JP2016157753A - Powder magnetic core and manufacturing method thereof - Google Patents

Powder magnetic core and manufacturing method thereof Download PDF

Info

Publication number
JP2016157753A
JP2016157753A JP2015033464A JP2015033464A JP2016157753A JP 2016157753 A JP2016157753 A JP 2016157753A JP 2015033464 A JP2015033464 A JP 2015033464A JP 2015033464 A JP2015033464 A JP 2015033464A JP 2016157753 A JP2016157753 A JP 2016157753A
Authority
JP
Japan
Prior art keywords
powder
particles
soft magnetic
magnetic
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033464A
Other languages
Japanese (ja)
Other versions
JP6476989B2 (en
Inventor
ジョンハン ファン
Jonhan Fan
ジョンハン ファン
毅 服部
Takeshi Hattori
毅 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015033464A priority Critical patent/JP6476989B2/en
Publication of JP2016157753A publication Critical patent/JP2016157753A/en
Application granted granted Critical
Publication of JP6476989B2 publication Critical patent/JP6476989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method by which a powder magnetic core with high specific resistance and a high magnetic flux density can be obtained.SOLUTION: The manufacturing method of the powder magnetic core includes: a molding step for pressure-molding a magnetic core powder in which a surface of a soft magnetic particle formed from a pure iron or an iron alloy containing Fe in 90 mass% or more is formed from an ion-oxide particle of a metal element (M) that is one or more of Mn, Zn, Ni, Cu and Mg and a coated partial that is coated by the iron-oxide particle; and a heat treatment step for heating a mold that is obtained after the molding step, at 370 to 600°C. Thus, the powder magnetic core can be obtained in which a spinel-type ferrite (MFeO) is generated between the soft magnetic particles. It is preferable that the magnetic core powder relating to the present invention is obtained via a granulation step for stirring and mixing a soft magnetic powder formed from soft magnetic particles, an oxide powder formed from oxide particles and an iron-oxide powder formed from iron-oxide particles under strong energy satisfying collision energy 1 to 5 J/s g.SELECTED DRAWING: Figure 1

Description

本発明は、体積比抵抗値(以下単に「比抵抗」という。)と磁束密度が大きい圧粉磁心とその製造方法に関する。   The present invention relates to a dust core having a large volume specific resistance value (hereinafter simply referred to as “specific resistance”) and a high magnetic flux density, and a method for manufacturing the same.

変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。これらの製品は交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。   There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these products use an alternating magnetic field. In order to efficiently obtain a large alternating magnetic field locally, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

この磁心には、交番磁界中における高磁気的特性のみならず、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず単に「鉄損」という。)が少ないことが求められる。この鉄損には、渦電流損失、ヒステリシス損失および残留損失があり、中でも交番磁界の周波数の2乗に比例して高くなる渦電流損失の低減が重要である。   This magnetic core is required not only to have high magnetic characteristics in an alternating magnetic field but also to have low high-frequency loss (hereinafter simply referred to as “iron loss” regardless of the material of the magnetic core) when used in an alternating magnetic field. . This iron loss includes eddy current loss, hysteresis loss, and residual loss. In particular, it is important to reduce eddy current loss that increases in proportion to the square of the frequency of the alternating magnetic field.

このような磁心として、絶縁性膜(層)で被覆された軟磁性粒子の粉末(軟磁性粉末)を加圧成形した圧粉磁心がある。この圧粉磁心は、渦電流損失が小さくて形状自由度が高いため、モータ用コア等をはじめ種々の電磁機器に利用されている。もっとも、その絶縁性膜を非磁性なシリコン系樹脂やリン酸塩等で形成すると、圧粉磁心の(飽和)磁束密度等が低下し得る。そこで絶縁性膜としてフェライト膜を用いることが提案されており、例えば下記の特許文献に関連する記載がある。   As such a magnetic core, there is a powder magnetic core obtained by press-molding soft magnetic particle powder (soft magnetic powder) covered with an insulating film (layer). Since this dust core has a small eddy current loss and a high degree of freedom in shape, it is used in various electromagnetic devices such as motor cores. However, if the insulating film is formed of nonmagnetic silicon-based resin, phosphate, or the like, the (saturated) magnetic flux density of the dust core can be reduced. Therefore, it has been proposed to use a ferrite film as the insulating film, and for example, there is a description related to the following patent document.

特開2005−64396号公報JP 2005-64396 A 特開2011−214026号公報JP 2011-2104026 A

特許文献1では、水溶液反応法(無電解めっきの一種)によりフェライト膜を表面に形成した鉄系粒子からなる粉末を、温間で加圧成形(150℃×900MPa)した圧粉磁心(圧粉体)に関する記載がある。しかし、水溶液反応法よるフェライト膜の形成には長時間を要し、磁心用粉末や圧粉磁心を効率的に製造できない。また、フェライトはセラミックスの一種であり割れ易い。このため、フェライトめっき後の粉末を加圧成形すると、粒子表面のフェライト膜に多数の割れが生じて、高比抵抗な圧粉磁心を得ることができない。さらに、特許文献1には記載されていないが、通常、ヒステリシス損失の低減や磁束密度の向上を図るため、加圧成形後に成形体を高温(600℃以上)で加熱する歪み取り焼鈍がなされる。この際、鉄系粒子の表面に予め形成されていたフェライト膜は、鉄系粒子側へOが拡散して還元され、フェライト構造が崩壊し、絶縁性ひいては圧粉磁心の比抵抗が低下し得る。   In Patent Document 1, a powder magnetic core (powder powder) obtained by warm-pressing (150 ° C. × 900 MPa) a powder made of iron-based particles having a ferrite film formed on the surface by an aqueous solution reaction method (a kind of electroless plating). Body). However, it takes a long time to form the ferrite film by the aqueous solution reaction method, and the magnetic core powder and the dust core cannot be efficiently produced. Ferrite is a kind of ceramics and is easily broken. For this reason, when the powder after ferrite plating is pressure-molded, a large number of cracks are generated in the ferrite film on the particle surface, and a powder core having a high specific resistance cannot be obtained. Furthermore, although not described in Patent Document 1, normally, in order to reduce hysteresis loss and improve magnetic flux density, strain relief annealing is performed in which the molded body is heated at a high temperature (600 ° C. or higher) after pressure molding. . At this time, the ferrite film previously formed on the surface of the iron-based particles can be reduced by diffusion of O toward the iron-based particles, the ferrite structure can be collapsed, and the specific resistance of the insulating core and thus the dust core can be reduced. .

特許文献2は、パーマロイ合金(Fe−47%Ni)粒子の表面にMgO微粒子、Fe微粒子、MnO微粒子をコーティングしたコンポジット粉末を、仮成形、CIP成形(550℃)、SPS焼結、HIP成形(800℃)を行った高密度焼結体(ナノ磁性コンポジット)に関する記載がある。もっとも、このようなパーマロイ合金からなる焼結体は、通常、高い(飽和)磁束密度が要求されると共に非焼結なまま使用される圧粉磁心と、利用分野または技術分野が異なる。 Patent Document 2 discloses that a composite powder obtained by coating the surface of permalloy alloy (Fe-47% Ni) particles with MgO fine particles, Fe 2 O 3 fine particles, and MnO fine particles is temporarily formed, CIP formed (550 ° C.), SPS sintered, There is a description regarding a high-density sintered body (nanomagnetic composite) subjected to HIP molding (800 ° C.). However, a sintered body made of such a permalloy alloy usually requires a high (saturated) magnetic flux density and is different in the application field or technical field from a dust core used without being sintered.

本発明はこのような事情に鑑みてなされたものであり、比抵抗と磁束密度の向上を図れる新たな圧粉磁心を提供することを目的とする。また、そのような圧粉磁心の製造方法も併せて提供することを目的とする   This invention is made | formed in view of such a situation, and it aims at providing the new powder magnetic core which can aim at the improvement of a specific resistance and magnetic flux density. Moreover, it aims at also providing the manufacturing method of such a powder magnetic core.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、軟磁性粒子の表面にフェライトの原料を付着させた被覆粒子からなる磁心用粉末を加圧成形して得られた成形体を熱処理(焼鈍)することにより、軟磁性粒子の表面(特に軟磁性粒子間)に比抵抗と磁束密度の向上に有効なフェライト膜(層)を形成することを着想し、その具体化に成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   The present inventor has intensively studied to solve this problem, and as a result of repeated trial and error, was obtained by press-molding a magnetic core powder made of coated particles in which a raw material of ferrite was adhered to the surface of soft magnetic particles. The idea is to form a ferrite film (layer) effective for improving specific resistance and magnetic flux density on the surface of soft magnetic particles (especially between soft magnetic particles) by heat treating (annealing) the compact. succeeded in. By developing this result, the present invention described below has been completed.

《圧粉磁心の製造方法》
(1)本発明の圧粉磁心の製造方法は、純鉄またはFeを90質量%以上含む鉄合金からなる軟磁性粒子の表面が、Mn、Zn、Ni、CuまたはMgの一種以上である金属元素(M)の酸化物粒子と酸化鉄粒子とにより被覆された被覆粒子からなる磁心用粉末を加圧成形する成形工程と、該成形工程後に得られた成形体を370〜600℃で加熱する熱処理工程とを備え、該軟磁性粒子間にスピネル型フェライト(MFe)が生成された圧粉磁心が得られることを特徴とする。
<Production method of dust core>
(1) The method for producing a dust core according to the present invention is a metal in which the surface of soft magnetic particles made of an iron alloy containing 90 mass% or more of pure iron or Fe is one or more of Mn, Zn, Ni, Cu, or Mg. A molding step for pressure-molding a magnetic core powder composed of coated particles coated with oxide particles of element (M) and iron oxide particles, and a molded body obtained after the molding step is heated at 370 to 600 ° C. And a heat treatment step, wherein a dust core in which spinel ferrite (MFe 2 O 4 ) is generated between the soft magnetic particles is obtained.

(2)本発明の製造方法によれば、熱処理(焼鈍)後でも、高比抵抗で高磁束密度な圧粉磁心を効率的に得ることができる。この理由は必ずしも定かではないが、現状では次のように考えられる。 (2) According to the production method of the present invention, a dust core having a high specific resistance and a high magnetic flux density can be efficiently obtained even after heat treatment (annealing). The reason for this is not necessarily clear, but at present it can be considered as follows.

本発明の製造方法では、先ず、純鉄またはFeを主成分とする軟磁性粒子の表面が、スピネル型フェライト(「S型フェライト」または単に「フェライト」という。)を構成する特定の金属元素(M)の酸化物からなる粒子(酸化物粒子)と酸化鉄粒子(特にFe粒子)でコーティングされた被覆粒子からなる磁心用粉末を用いている。 In the production method of the present invention, first, the surface of a soft magnetic particle containing pure iron or Fe as a main component is a specific metal element (hereinafter referred to as “S-type ferrite” or simply “ferrite”). A magnetic core powder made of coated particles coated with particles (oxide particles) of M) and iron oxide particles (particularly Fe 2 O 3 particles) is used.

次に、この磁心用粉末を加圧成形して得られた成形体を、特定温度(370〜600℃)で加熱している。この熱処理の際に、軟磁性粒子の表面に付着していた酸化鉄粒子と酸化物粒子が反応してS型フェライト(MFe)を生成する。こうして成形体(圧粉磁心)を構成する軟磁性粒子間に、絶縁材であると共に磁性材でもあるS型フェライトからなる粒界層(フェライト層)が形成される。こうして本発明の圧粉磁心は、優れた電気的特性(比抵抗)および磁気的特性(磁束密度、透磁率等)を発揮するようになったと考えられる。 Next, the molded body obtained by pressure molding this magnetic core powder is heated at a specific temperature (370 to 600 ° C.). During this heat treatment, iron oxide particles and oxide particles adhering to the surface of the soft magnetic particles react to generate S-type ferrite (MFe 2 O 4 ). In this way, a grain boundary layer (ferrite layer) made of S-type ferrite, which is both an insulating material and a magnetic material, is formed between the soft magnetic particles constituting the compact (dust core). Thus, it is considered that the dust core of the present invention has exhibited excellent electrical characteristics (specific resistance) and magnetic characteristics (magnetic flux density, magnetic permeability, etc.).

ちなみに、本発明に係るフェライト層(絶縁層)は、成形工程後の熱処理工程で生成されるため、当然ながら成形工程中に割れ等が生じることはなく、成形工程で塑性変形した軟磁性粒子の表面または粒界に沿って均質的に形成され易い。また本発明に係る熱処理工程は、実質的に焼鈍工程を兼ね得る。このため、熱処理工程によってフェライト層が生成されるのみならず、成形工程で軟磁性粒子へ導入された加工歪みが除去され、圧粉磁心の磁束密度の向上やヒステリシス損失の低減が図られる。こうして本発明の製造方法によれば、予めフェライト被覆された軟磁性粒子からなる従来の圧粉磁心よりも、高特性な圧粉磁心を効率的に得ることが可能となる。   Incidentally, since the ferrite layer (insulating layer) according to the present invention is generated in the heat treatment process after the molding process, naturally, cracks and the like do not occur during the molding process, and the soft magnetic particles deformed plastically in the molding process. It is easy to form homogeneously along the surface or grain boundary. Further, the heat treatment step according to the present invention can substantially serve as an annealing step. For this reason, not only the ferrite layer is generated by the heat treatment process, but also the processing strain introduced into the soft magnetic particles in the molding process is removed, and the magnetic flux density of the dust core is improved and the hysteresis loss is reduced. Thus, according to the production method of the present invention, it is possible to efficiently obtain a dust core having higher characteristics than a conventional dust core made of soft magnetic particles previously coated with ferrite.

《圧粉磁心または磁心用粉末》
本発明は上述した製造方法としてのみならず、その製造方法により得られた圧粉磁心としても把握できる。さらにいえば、本発明は、成形工程に供される被覆粒子からなる磁心用粉末としても把握することができる。
<Dust core or powder for magnetic core>
The present invention can be grasped not only as the above-described manufacturing method but also as a dust core obtained by the manufacturing method. Furthermore, the present invention can be grasped as a powder for a magnetic core composed of coated particles that are subjected to a molding process.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

試料1に係る成形体の熱処理前後の磁心用粉末の粒界を観察したX線回折(XRD)プロフィルである。2 is an X-ray diffraction (XRD) profile obtained by observing grain boundaries of a magnetic core powder before and after heat treatment of a molded body according to Sample 1. FIG. 造粒工程で用いる装置を変更して製造した磁心用粉末からなる成形体の熱処理前後の粒界を観察したXRDプロフィルである。It is the XRD profile which observed the grain boundary before and behind heat processing of the molded object which consists of the powder for magnetic cores manufactured by changing the apparatus used by a granulation process. Fe粒子(軟磁性粒子)をZrOボールに変更した粉末からなる成形体の熱処理前後の粒界を観察したXRDプロフィルである。Fe particles (soft particles) is an XRD profile was observed grain boundaries before and after the heat treatment of the molded article comprising the powder was changed to ZrO 2 balls.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の製造方法のみならず、圧粉磁心または磁心用粉末にも適宜該当し得る。製造方法に関する内容は、プロダクトバイプロセスとして理解すれば物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in this specification can be appropriately applied not only to the production method of the present invention but also to the dust core or the magnetic core powder. The content related to the manufacturing method can be a component related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《原料粉末》
(1)軟磁性粒子(軟磁性粉末)
軟磁性粒子は、8属遷移元素(Fe、Co、Ni等)などの強磁性元素を主成分とすれば足るが、特性、入手性、コスト等から純鉄または鉄合金からなると好ましい。軟磁性粉末として純鉄粉を用いると、高い飽和磁束密度が得られ、圧粉磁心の磁気的特性を向上させ得る。この観点から、軟磁性粉末として鉄合金粉を用いる場合も、そのFe含有量が大きいほど好ましい。例えば、全体を100質量%としたときに、Feが90質量%以上さらには95質量%以上である鉄合金粉を用いるとよい。鉄合金を構成する合金元素として、例えばSiやAlがある。これらの合金元素を1〜3質量%程度含むことにより、圧粉磁心の比抵抗をさらに向上させ得る。なお、本発明に係る軟磁性粉末は、組成または形態(粒径、形状)の異なる二種以上の粉末を混合した混合粉末でもよい。
<Raw material powder>
(1) Soft magnetic particles (soft magnetic powder)
The soft magnetic particles may be composed mainly of a ferromagnetic element such as a Group 8 transition element (Fe, Co, Ni, etc.), but are preferably made of pure iron or an iron alloy in view of characteristics, availability, cost, and the like. When pure iron powder is used as the soft magnetic powder, a high saturation magnetic flux density can be obtained, and the magnetic characteristics of the dust core can be improved. From this viewpoint, when iron alloy powder is used as the soft magnetic powder, the larger the Fe content, the better. For example, when the whole is 100% by mass, iron alloy powder having Fe of 90% by mass or more, further 95% by mass or more may be used. Examples of alloy elements constituting the iron alloy include Si and Al. By including about 1 to 3% by mass of these alloy elements, the specific resistance of the dust core can be further improved. The soft magnetic powder according to the present invention may be a mixed powder obtained by mixing two or more kinds of powders having different compositions or forms (particle diameter, shape).

軟磁性粒子の粒度は、圧粉磁心の仕様に応じて調整され得るが、50〜500μmさらには106〜250μmであると好適である。粒度が過大では圧粉磁心の高密度化や渦電流損失の低減化が図り難く、粒度が過小では圧粉磁心の磁束密度の向上やヒステリシス損失の低減が図り難い。   The particle size of the soft magnetic particles can be adjusted according to the specifications of the dust core, but is preferably 50 to 500 μm, more preferably 106 to 250 μm. If the particle size is too large, it is difficult to increase the density of the dust core and reduce the eddy current loss. If the particle size is too small, it is difficult to improve the magnetic flux density of the dust core and reduce the hysteresis loss.

ちなみに、本明細書でいう「粒度」とは、軟磁性粒子の直径を指標する値であり、篩い分けにより特定される。具体的には、粉末の篩い分けに用いたメッシュサイズの上限値(d1)と下限値(d2)の中央値[(d1+d2)/2]を、粒度(D)とした。なお、粒度は、μm単位で表示して、小数点以下は四捨五入して表示する。これらのことは、軟磁性粒子に限らず、酸化物粒子および酸化鉄粒子についても同様である。   Incidentally, the “particle size” in the present specification is a value indicating the diameter of the soft magnetic particles, and is specified by sieving. Specifically, the median [(d1 + d2) / 2] of the upper limit (d1) and the lower limit (d2) of the mesh size used for sieving the powder was defined as the particle size (D). The particle size is displayed in units of μm, and the decimal part is rounded off. The same applies not only to soft magnetic particles but also to oxide particles and iron oxide particles.

軟磁性粉末は、例えば、アトマイズ法、機械的粉砕法、還元法等により製造される。アトマイズ粉は、水アトマイズ粉、ガスアトマイズ粉、ガス水アトマイズ粉のいずれでもよい。軟磁性粒子が略球状であるほど、隣接する軟磁性粒子間に均一的なフェライト層が形成され、軟磁性粒子間の絶縁性ひいては圧粉磁心の比抵抗が向上し得る。   The soft magnetic powder is manufactured by, for example, an atomizing method, a mechanical pulverizing method, a reducing method, or the like. The atomized powder may be any of water atomized powder, gas atomized powder, and gas water atomized powder. As the soft magnetic particles are substantially spherical, a uniform ferrite layer is formed between the adjacent soft magnetic particles, and the insulation between the soft magnetic particles and thus the specific resistance of the dust core can be improved.

(2)酸化鉄粒子(酸化鉄粉末)
酸化鉄は種々あるが、本発明に係る酸化鉄は主にFe さらにいえば、α−Fe(ヘマタイト)であると好ましい。熱処理工程によりS型フェライトが形成される限り、本発明に係る酸化鉄にはFeO(ウスタイト)、Fe (マグネタイト)等が少量含まれていてもよい。
(2) Iron oxide particles (iron oxide powder)
Although there are various types of iron oxides, the iron oxide according to the present invention is mainly preferably Fe 2 O 3 and more preferably α-Fe 2 O 3 (hematite). As long as S-type ferrite is formed by the heat treatment step, the iron oxide according to the present invention may contain a small amount of FeO (wustite), Fe 3 O 4 (magnetite), or the like.

酸化鉄粒子の粒度は、軟磁性粒子の粒度に応じて適宜調整され得るが、5μm以下であれば良く、粒度は微細なほど好適である。敢えていうと、その粒度は0.1μm以上とすればよい。   The particle size of the iron oxide particles can be appropriately adjusted according to the particle size of the soft magnetic particles, but may be 5 μm or less, and the finer the particle size, the better. If it dares to say, the particle size should just be 0.1 micrometer or more.

(3)酸化物粒子(酸化物粉末)
本発明に係る酸化物粒子は、Mn、Zn、Ni、CuおよびMgからなる特定金属群から選択された一種以上の金属元素(M)の酸化物からなる。Mは、Feと共にS型フェライトを構成する金属元素である。Mは一種でも二種以上でもよく、本発明に係る酸化物は複合酸化物(例えばMnZn1−xO、0<x<1)でもよい。また、Mの価数は2(例えばMnO)でも、3(例えばMn)でも、4(例えばMnO)でもよい。さらに、酸化物は一種に限らず二種以上でもよい。つまり本発明に係る酸化鉄粒子は、複数種の酸化物粒子を混合したもの(例えば、ZnOとMnOまたはMn)でもよい。
(3) Oxide particles (oxide powder)
The oxide particles according to the present invention are made of an oxide of one or more metal elements (M) selected from a specific metal group consisting of Mn, Zn, Ni, Cu and Mg. M is a metal element constituting S-type ferrite together with Fe. M may be one type or two or more types, and the oxide according to the present invention may be a complex oxide (for example, Mn x Zn 1-x O, 0 <x <1). The valence of M may be 2 (for example, MnO), 3 (for example, Mn 2 O 3 ), or 4 (for example, MnO 2 ). Furthermore, the oxide is not limited to one type, and may be two or more types. That is, the iron oxide particles according to the present invention may be a mixture of a plurality of types of oxide particles (for example, ZnO and MnO 2 or Mn 2 O 3 ).

ちなみに、MにMnが含まれると好適である。Mnを含むフェライトは、圧粉磁心の比抵抗と磁束密度の両方を向上させ得る。この理由は次のように考えられる。正スピネルと逆スピネルの固溶体の場合、スピネルの結晶構造中のAサイトまたはBサイトへの、Mの入り易さはMの種類により異なる。Mの相違により、各結晶構造に生じる磁気モーメントも変化する。Mn(さらにはZn)が固溶した結晶構造からなるフェライトの場合、他のMが固溶した場合よりも、大きな磁気モーメントを生じ、飽和磁化も大きくなる。特にMnFeは、各種の単元フェライト中でも飽和磁化が最大であり、比抵抗も大きい。このような理由により、Mの一種がMnであると好ましい。 Incidentally, it is preferable that M contains Mn. Ferrite containing Mn can improve both the specific resistance and magnetic flux density of the dust core. The reason is considered as follows. In the case of a solid solution of a normal spinel and a reverse spinel, the ease of entry of M into the A site or B site in the spinel crystal structure varies depending on the type of M. Due to the difference in M, the magnetic moment generated in each crystal structure also changes. In the case of ferrite having a crystal structure in which Mn (and Zn) is dissolved, a larger magnetic moment is generated and saturation magnetization is larger than in the case where other M is dissolved. In particular, MnFe 2 O 4 has the largest saturation magnetization and high specific resistance among various unit ferrites. For these reasons, one type of M is preferably Mn.

酸化物粒子の粒度は、軟磁性粒子の粒度に応じて適宜調整され得るが、酸化鉄粒子と同様に、例えば5μm以下で微細なほど好ましい。なお、酸化鉄粒子と酸化物粒子は、軟磁性粒子の表面に付着させる前に、予め湿式で混合しておくと好ましい。   The particle size of the oxide particles can be appropriately adjusted according to the particle size of the soft magnetic particles, but as with the iron oxide particles, for example, it is preferably as fine as 5 μm or less. The iron oxide particles and the oxide particles are preferably mixed in advance before being attached to the surface of the soft magnetic particles.

《磁心用粉末》
(1)造粒工程
軟磁性粒子の表面を酸化物粒子と酸化鉄粒子で被覆した被覆粒子(被覆型複合粒子)の造粒方法またはその被覆粒子からなる磁心用粉末の調製方法は種々考えられる。例えば、磁心用粉末は、軟磁性粒子からなる軟磁性粉末と酸化物粒子からなる酸化物粉末と酸化鉄粒子からなる酸化鉄粉末とを衝突エネルギー1〜5J/s・gを満たす強エネルギー下で撹拌混合する造粒工程を経て得られると好適である。このように強い(機械的)エネルギーが付与された被覆粒子は表面活性が高く、さらにはメカノケミカル的な反応も生じ易くなる。このため本発明に係る造粒工程を経て得られた磁心用粉末を用いると、一般的なフェライト生成温度(900℃以上)よりも大幅に低い温度で加熱(焼鈍等)しても、軟磁性粒子の表面にS型フェライト層を安定的に生成され易くなる。
<Magnetic core powder>
(1) Granulation step There are various methods for granulating coated particles (coated composite particles) in which the surface of soft magnetic particles is coated with oxide particles and iron oxide particles or for preparing magnetic core powders composed of the coated particles. . For example, the magnetic core powder is composed of a soft magnetic powder composed of soft magnetic particles, an oxide powder composed of oxide particles, and an iron oxide powder composed of iron oxide particles under strong energy satisfying a collision energy of 1 to 5 J / s · g. It is suitable if it is obtained through a granulation step of stirring and mixing. The coated particles to which such a strong (mechanical) energy is applied have a high surface activity, and further, a mechanochemical reaction easily occurs. For this reason, when the magnetic core powder obtained through the granulation process according to the present invention is used, even when heated (annealed, etc.) at a temperature significantly lower than the general ferrite formation temperature (900 ° C. or higher), soft magnetic An S-type ferrite layer is easily generated stably on the surface of the particle.

このような造粒工程は、例えば、種々の(乾式)機械的粒子複合化装置を用いて、原料粒子(軟磁性粒子、酸化鉄粒子および酸化物粒子)に強い衝撃力、圧縮力または剪断力を作用させることにより行える。具体的にいうと、遊星ボールミル、メカノフュージョン(ホソカワミクロン株式会社製)、シーターコンポーサー(株式会社徳寿工作所)、ハイブリダイゼーション(株式会社奈良機械製作所)等を用いた機械的複合化により被覆粒子を造粒すると好ましい。   Such a granulation process is performed by using, for example, various (dry) mechanical particle compositing apparatuses, strong impact force, compression force or shear force on raw material particles (soft magnetic particles, iron oxide particles and oxide particles). It can be done by acting. Specifically, coated particles are produced by mechanical complexation using a planetary ball mill, mechano-fusion (made by Hosokawa Micron Corporation), sheeter composer (Tokuju Kogakusho Co., Ltd.), hybridization (Nara Machinery Co., Ltd.), etc. It is preferable to granulate.

さらにいうと、例えば、メカノフュージョンを使用する場合、ロータの回転速度(例えば1000rpm)、ロータのクリアランス(例えば2mm)、粉末投入量(例えば200g)、作動時間(例えば15分)等のパラメータを適宜調整した条件下で運転して造粒工程を行うと好ましい。   Furthermore, for example, when using mechano-fusion, parameters such as the rotor rotational speed (eg, 1000 rpm), rotor clearance (eg, 2 mm), powder input amount (eg, 200 g), operating time (eg, 15 minutes) are appropriately set. It is preferable to perform the granulation step by operating under the adjusted conditions.

(2)配合
本発明に係るS型フェライト(MFe)は、基本的に軟磁性粒子の表面に付着した酸化物粒子と酸化鉄粒子により生成される。このため酸化物粒子(粉末)と酸化鉄粒子(粉末)は、金属元素(M)と鉄(Fe)の原子比が1:2となる付近(例えば、原子比でM/Fe=0.35〜0.65)で配合されると好ましい。
(2) Formulation The S-type ferrite (MFe 2 O 4 ) according to the present invention is basically generated by oxide particles and iron oxide particles attached to the surface of soft magnetic particles. Therefore, the oxide particles (powder) and the iron oxide particles (powder) are in the vicinity where the atomic ratio of the metal element (M) and iron (Fe) is 1: 2 (for example, M / Fe = 0.35 in atomic ratio). ~ 0.65) is preferred.

もっとも、圧粉磁心の比抵抗と磁束密度を両立させる観点から、磁心用粉末は、全体を100質量%としたときに、酸化物粒子:0.04〜0.8質量%さらには0.2〜0.4質量%であり、酸化鉄粒子:0.2〜4.0質量%さらには0.8〜1.6質量%であり、残部が軟磁性粒子であると好適である。   However, from the viewpoint of achieving both the specific resistance of the dust core and the magnetic flux density, the powder for the magnetic core is oxide particles: 0.04 to 0.8% by mass, and further 0.2 if the total is 100% by mass. It is suitable that it is -0.4 mass%, iron oxide particles: 0.2-4.0 mass%, further 0.8-1.6 mass%, and the balance is soft magnetic particles.

《成形工程》
本発明に係る成形工程は、通常、所望形状のキャビティを有する成形型に充填した磁心用粉末を加圧成形することによりなされる。成形圧力は適宜調整され得るが、高圧成形するほど高密度で高磁束密度の圧粉磁心が得られる。このような高圧成形方法として、金型潤滑温間高圧成形法を用いると好適である。金型潤滑温間高圧成形法は、高級脂肪酸系潤滑剤を内面に塗布した成形型へ磁心用粉末を充填する充填工程と、磁心用粉末と成形型の内面との間に高級脂肪酸系潤滑剤とは別の金属石鹸被膜が生成される成形温度および成形圧力で加圧成形する温間高圧成形工程とからなる。なお「温間」とは、表面被膜(または絶縁被膜)への影響や高級脂肪酸系潤滑剤の変質などを考慮して、例えば、成形温度を70℃〜200℃さらには100〜180℃とするとよい。金型潤滑温間高圧成形法の詳細については、日本特許公報特許3309970号公報、日本特許4024705号公報など多数の公報に詳細が記載されている。
<Molding process>
The molding process according to the present invention is usually performed by pressure molding a magnetic core powder filled in a mold having a cavity having a desired shape. The molding pressure can be adjusted as appropriate, but the higher the density, the higher the density and the higher magnetic flux density of the dust core. As such a high-pressure molding method, it is preferable to use a mold lubrication warm high-pressure molding method. The mold lubrication warm high-pressure molding method consists of a filling process in which a high-grade fatty acid-based lubricant is coated on the inner surface and the magnetic core powder is filled into a mold, and a higher fatty acid-based lubricant between the magnetic core powder and the inner surface of the mold. And a warm high pressure forming step in which pressure forming is performed at a forming temperature and a forming pressure at which another metal soap film is produced. Note that “warm” means that, for example, the molding temperature is set to 70 ° C. to 200 ° C. or even 100 to 180 ° C. in consideration of the influence on the surface coating (or insulating coating) or the alteration of the higher fatty acid lubricant. Good. Details of the mold lubrication warm high pressure molding method are described in many publications such as Japanese Patent Publication No. 3309970 and Japanese Patent No. 4024705.

《熱処理工程》
本発明に係る熱処理工程は、成形工程で得られた成形体を加熱してなされる。この熱処理工程により、軟磁性粒子をコーティングしている酸化物粒子と酸化鉄粒子が反応して、軟磁性粒子の表面または軟磁性粒子間にS型フェライトが生成される。なお、このフェライト生成反応には、Feを主成分とする軟磁性粒子が触媒的に作用していると考えられる。
《Heat treatment process》
The heat treatment process according to the present invention is performed by heating the molded body obtained in the molding process. Through this heat treatment step, the oxide particles coated with the soft magnetic particles and the iron oxide particles react to generate S-type ferrite on the surface of the soft magnetic particles or between the soft magnetic particles. In addition, it is thought that the soft magnetic particle which has Fe as a main component acts catalytically in this ferrite production | generation reaction.

成形体の加熱温度は370〜700℃、さらには500〜600℃であると好ましい。加熱温度が過小ではフェライトが安定して生成されない。加熱温度が過大では軟磁性粒子の酸化、仮焼結等が生じて、圧粉磁心の比抵抗または磁束密度が低下し得る。   The heating temperature of the molded body is preferably 370 to 700 ° C, more preferably 500 to 600 ° C. If the heating temperature is too low, ferrite is not stably generated. If the heating temperature is excessive, the soft magnetic particles are oxidized, pre-sintered, etc., and the specific resistance or magnetic flux density of the dust core can be lowered.

本発明に係るフェライトは、基本的に酸化物粒子と酸化鉄粒子を原料として生成されるため、熱処理工程の雰囲気は不活性ガス(Ar、N等)雰囲気または真空雰囲気で行うことができる。但し、その雰囲気中に酸素が僅かに含まれていてもよい。すなわち、熱処理工程は、酸素濃度が10%以下、1%以下さらには0.1%以下の雰囲気でなされてもよい。さらにいえば、極僅かな酸素が含まれている雰囲気中で熱処理工程を行うことにより、フェライトが生成され易くなる場合もある。そこで酸素濃度は0.05%以上であると好ましい。特に酸化物粒子の一種がMnO粒子である場合、酸素が僅かに含まれる雰囲気中で熱処理工程を行うことにより、フェライトが安定的に生成され易くなる。逆に、酸化物粒子の一種がMn粒子である場合なら、雰囲気中の酸素濃度は0.1%以下さらには0.01%以下でも、フェライトが安定的に生成され得る。なお、本明細書でいう酸素濃度は常温、1気圧の状態で酸素濃度計により求めた体積%である。 Since the ferrite according to the present invention is basically generated using oxide particles and iron oxide particles as raw materials, the atmosphere of the heat treatment step can be performed in an inert gas (Ar, N 2, etc.) atmosphere or a vacuum atmosphere. However, oxygen may be slightly contained in the atmosphere. That is, the heat treatment step may be performed in an atmosphere having an oxygen concentration of 10% or less, 1% or less, or 0.1% or less. Furthermore, ferrite may be easily generated by performing the heat treatment step in an atmosphere containing a very small amount of oxygen. Therefore, the oxygen concentration is preferably 0.05% or more. In particular, when one kind of oxide particles is MnO 2 particles, ferrite is easily generated stably by performing the heat treatment step in an atmosphere containing a slight amount of oxygen. Conversely, if one kind of oxide particles is Mn 2 O 3 particles, ferrite can be stably generated even if the oxygen concentration in the atmosphere is 0.1% or less, further 0.01% or less. In addition, the oxygen concentration as used in this specification is the volume% calculated | required with the oxygen concentration meter in the state of normal temperature and 1 atmosphere.

なお、本発明に係る熱処理工程は、成形工程中に軟磁性粒子に導入された残留歪みや残留応力を除去して、圧粉磁心の保磁力またはヒステリシス損失の低減を図る焼鈍工程を兼ねることができる。勿論、熱処理工程と異なる条件(温度、時間、雰囲気)で、別途、焼鈍工程を行ってもよい。いずれの場合でも、熱処理工程の加熱時間は、例えば0.1〜5時間さらには0.5〜2時間とすればよい。   In addition, the heat treatment process according to the present invention can also serve as an annealing process for reducing the coercive force or hysteresis loss of the dust core by removing residual strain and residual stress introduced into the soft magnetic particles during the molding process. it can. Of course, the annealing step may be performed separately under conditions (temperature, time, atmosphere) different from the heat treatment step. In any case, the heating time of the heat treatment step may be, for example, 0.1 to 5 hours, and further 0.5 to 2 hours.

《S型フェライト》
軟磁性粒子の表面または粒界に生成されるS型フェライトは、MがMnとZnであるMnZnフェライト、またはMがMnとNiであるNiMnフェライトからなると、圧粉磁心の高比抵抗と高磁束密度の両立を図れて好ましい。さらにMは、Mn(任意でZn、Ni)に加えて、Mgを含むと好ましい。このようなフェライト層は、非常に薄くても優れた絶縁性を発揮し、熱処理前後における絶縁性の変化が少ない。
<< S-type ferrite >>
When the S-type ferrite generated on the surface or grain boundary of soft magnetic particles is made of MnZn ferrite in which M is Mn and Zn, or NiMn ferrite in which M is Mn and Ni, the high resistivity and high magnetic flux of the dust core It is preferable to achieve both density. Furthermore, M preferably contains Mg in addition to Mn (optionally Zn, Ni). Even if such a ferrite layer is very thin, it exhibits excellent insulation, and there is little change in insulation before and after heat treatment.

《圧粉磁心》
(1)磁気的特性
本発明に係る圧粉磁心は、飽和磁束密度が高く、例えば、10kA/mの磁界中で生じる磁束密度(B10k)が1.6T以上、1.7T以上さらには1.8T以上にもなり得る。また、その透磁率は、例えば、600以上さらには700以上にもなり得る。さらに、その比抵抗値は、例えば、50μΩm以上さらには100μΩm以上にもなり得る。なお、軟磁性粒子の真密度(ρ0)に対する圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0)は、例えば95%以上さらに98%以上であると、圧粉磁心の磁気的特性が向上して好ましい。
<Dust core>
(1) Magnetic characteristics The powder magnetic core according to the present invention has a high saturation magnetic flux density. For example, the magnetic flux density (B 10k ) generated in a magnetic field of 10 kA / m is 1.6 T or higher, 1.7 T or higher, or 1 Can be over 8T. Moreover, the magnetic permeability can be 600 or more, further 700 or more, for example. Further, the specific resistance value can be, for example, 50 μΩm or more, further 100 μΩm or more. The density ratio (ρ / ρ0), which is the ratio of the bulk density (ρ) of the dust core to the true density (ρ0) of the soft magnetic particles, is 95% or more and further 98% or more, for example. The magnetic characteristics are improved, which is preferable.

(2)用途
本発明に係る圧粉磁心は、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等の電磁機器に利用され得る。特に電動機または発電機の電機子(回転子または固定子)を構成する鉄心に用いられると好ましい。中でも、低損失で高出力(高磁束密度)が要求される駆動用モータ用の鉄心、具体的には、電気自動車やハイブリッド自動車の駆動用モータ用鉄心として好適である。なお、いずれの電磁機器中で使用されるにしても、本発明に係る圧粉磁心は100〜30000Hzさらには200〜20000Hz程度の交番磁界中で使用されると好ましい。
(2) Applications The dust core according to the present invention can be used for electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, reactors, and the like. In particular, it is preferably used for an iron core constituting an armature (rotor or stator) of an electric motor or generator. Among them, it is suitable as an iron core for a drive motor that requires low loss and high output (high magnetic flux density), specifically, as an iron core for a drive motor of an electric vehicle or a hybrid vehicle. In addition, even if it is used in any electromagnetic device, the dust core according to the present invention is preferably used in an alternating magnetic field of about 100 to 30000 Hz, and further about 200 to 20000 Hz.

《磁心用粉末の調製》
(1)原料粉末
軟磁性粉末として、純鉄からなるガス水アトマイズ粉(単に「Fe粉末」という。)を用意した。用いた各粉末の粒度は、上限値〜下限値→粒度の順で記載すると、212〜106μm→159μmである。なお、この粒度は、前述した通り、電磁式ふるい振とう器(レッチェ製)により分級(篩い分け)したときに用いたメッシュサイズの上限値と下限値の中央値である。この軟磁性粉末に30μm未満の軟磁性粒子が含まれていないことは、SEMより確認している。
<Preparation of powder for magnetic core>
(1) Raw material powder As a soft magnetic powder, gas water atomized powder (simply referred to as “Fe powder”) made of pure iron was prepared. The particle size of each powder used is 212-106 μm → 159 μm in the order of upper limit value to lower limit value → particle size. In addition, this particle size is the median value of the upper limit value and the lower limit value of the mesh size used when classification (sieving) is performed using an electromagnetic sieve shaker (manufactured by Lecce). It has been confirmed by SEM that this soft magnetic powder does not contain soft magnetic particles of less than 30 μm.

酸化鉄粉末として市販のFe粉末(粒度:1μm)を用意した。また酸化物粉末としてMnO粉末(粒度:10μm)、Mn粉末(粒度:10μm)、ZnO粉末(粒度:1μm)をそれぞれ用意した。これらの粉末の粒度も軟磁性粉末と同様に特定した。 Commercially available Fe 2 O 3 powder (particle size: 1 μm) was prepared as the iron oxide powder. As oxide powders, MnO 2 powder (particle size: 10 μm), Mn 2 O 3 powder (particle size: 10 μm), and ZnO powder (particle size: 1 μm) were prepared. The particle size of these powders was also specified in the same manner as the soft magnetic powder.

(2)原料粉末の配合
軟磁性粉末、酸化鉄粉末および酸化物粉末を次の2通りの割合で配合した。なお、各粉末の割合は、配合粉末全体を100質量%として示した。
(試料1)Fe粉末:0.8質量%、MnO粉末:0.2質量%、ZnO粉末:0.1質量%、Fe粉末:残部
(試料2)Fe粉末:1.6質量%、Mn粉末:0.35質量%、ZnO粉末:0.2質量%、Fe粉末:残部
(2) Blending of raw material powder Soft magnetic powder, iron oxide powder and oxide powder were blended in the following two proportions. In addition, the ratio of each powder showed the whole compounding powder as 100 mass%.
(Sample 1) Fe 2 O 3 powder: 0.8% by mass, MnO 2 powder: 0.2% by mass, ZnO powder: 0.1% by mass, Fe powder: remainder (Sample 2) Fe 2 O 3 powder: 1 .6 mass%, Mn 2 O 3 powder: 0.35 mass%, ZnO powder: 0.2 mass%, Fe powder: balance

(3)造粒工程
各配合粉末を遊星ボールミル(伊藤製作所社製 LP−4)で撹拌混合した。この処理は次の条件下で行った。SKD製250ccボットの中にZrOボール(粒径:3mm):800g、軟磁性粉末:100g、酸化鉄粉末および酸化物粉末の所定量を投入した。回転速度:500rpm、加工時間:0.5hとして、常温、大気中で処理した。このとき付与されるエネルギーの指標値は3J/s・gである。こうして試料1および試料2に係る磁心用粉末をそれぞれ調製した。
(3) Granulation step Each blended powder was stirred and mixed with a planetary ball mill (LP-4 manufactured by Ito Seisakusho). This treatment was performed under the following conditions. ZrO 2 balls (particle size: 3 mm): 800 g, soft magnetic powder: 100 g, predetermined amounts of iron oxide powder and oxide powder were put into a 250 cc bot made of SKD. It processed in normal temperature and air | atmosphere as rotation speed: 500rpm and processing time: 0.5h. The index value of energy applied at this time is 3 J / s · g. Thus, magnetic core powders according to Sample 1 and Sample 2 were prepared.

《圧粉磁心の製造》
(1)成形工程
各磁心用粉末を用いて、金型潤滑温間高圧成形法により、リング状(外径:φ39mm×φ30mm×厚さ5mm)の成形体を得た。この際、内部潤滑剤や樹脂バインダー等は一切使用しなかった。具体的には次のようにして成形した。
<Manufacture of dust core>
(1) Molding Step Using each magnetic core powder, a ring-shaped (outside diameter: φ39 mm × φ30 mm × thickness 5 mm) shaped body was obtained by a mold lubrication warm high pressure molding method. At this time, no internal lubricant or resin binder was used. Specifically, it was molded as follows.

所望形状に応じたキャビティを有する超硬製の金型を用意した。この金型をバンドヒータで予め130℃に加熱しておいた。また、この金型の内周面には、予めTiNコート処理を施し、その表面粗さを0.4Zとした。   A cemented carbide mold having a cavity corresponding to a desired shape was prepared. This mold was previously heated to 130 ° C. with a band heater. Further, the inner peripheral surface of this mold was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z.

加熱した金型の内周面に、ステアリン酸リチウム(1%)の水分散液をスプレーガンにて10cm/分程度の割合で均一に塗布した。なお、この水分散液は、水に界面活性剤と消泡剤とを添加したものである。その他の詳細は、日本特許公報特許3309970号公報、日本特許4024705号公報等に記載に沿って行った。 An aqueous dispersion of lithium stearate (1%) was uniformly applied to the inner peripheral surface of the heated mold with a spray gun at a rate of about 10 cm 3 / min. This aqueous dispersion is obtained by adding a surfactant and an antifoaming agent to water. Other details were made in accordance with the descriptions in Japanese Patent Publication No. 3309970, Japanese Patent No. 4024705, and the like.

各磁心用粉末をステアリン酸リチウムが内面に塗布された金型へ充填し(充填工程)、金型を130℃に保持したまま1568MPaで温間成形した(成形工程)。なお、この温間成形時、いずれの成形体も金型とかじり等を生じることはなく、低い抜圧で金型からの取り出しが可能であった。   Each magnetic core powder was filled into a mold having lithium stearate coated on the inner surface (filling process), and warm-molded at 1568 MPa while maintaining the mold at 130 ° C. (molding process). In this warm molding, none of the molded bodies generated galling or the like with the mold, and the mold could be taken out from the mold with a low pressure.

(2)熱処理工程(焼鈍工程)
得られた各成形体を加熱炉に入れて、酸素濃度0.1%の不活性ガス(Ar)雰囲気中で1時間加熱した。このときの加熱温度は400℃とした。なお、この雰囲気中の酸素濃度を、0%、0.01%または20%とした酸素含有雰囲気中でも、別途、各成形体を加熱した。こうして、熱処理後の各種の成形体(圧粉磁心)を得た。なお、ここで示した酸素濃度「%」は、常温、1気圧状態で酸素濃度計で測定して求めた。
(2) Heat treatment process (annealing process)
Each obtained compact was put into a heating furnace and heated in an inert gas (Ar) atmosphere having an oxygen concentration of 0.1% for 1 hour. The heating temperature at this time was 400 degreeC. Each molded body was separately heated even in an oxygen-containing atmosphere in which the oxygen concentration in the atmosphere was 0%, 0.01%, or 20%. Thus, various molded bodies (dust cores) after the heat treatment were obtained. The oxygen concentration “%” shown here was determined by measuring with an oxygen concentration meter at room temperature and 1 atm.

《測定・観察》
(1)比抵抗および磁束密度
熱処理前後の各成形体について、それぞれの比抵抗(ρ)と磁束密度B10kを求めた。比抵抗は、デジタルマルチメータ(メーカ:(株)エーディーシー、型番:R6581)を用いて4端子法により測定した電気抵抗と、各試料を実際に採寸して求めた体積とから算出した。
<Measurement / Observation>
(1) Specific resistance and magnetic flux density About each molded object before and behind heat processing, each specific resistance ((rho)) and magnetic flux density B10k were calculated | required. The specific resistance was calculated from the electrical resistance measured by a four-terminal method using a digital multimeter (manufacturer: ADC Corporation, model number: R6581) and the volume obtained by actually measuring each sample.

磁束密度B10kは直流自記磁束計(メーカ:東英工業、型番:MODEL−TRF)により測定した。なお、磁束密度B10kは、磁界の強さを10kA/mとしたときに生じる磁束密度である。 The magnetic flux density B 10k was measured with a DC self-recording magnetometer (manufacturer: Toei Kogyo, model number: MODEL-TRF). The magnetic flux density B 10k is a magnetic flux density generated when the magnetic field strength is 10 kA / m.

(2)X線回折
熱処理前後の各成形体をそれぞれ切断し、Fe粒子の粒界をX線回折(XRD)により分析した。XRDは、X線回折装置(D8 ADVANCE:ブルカー・エイエックスエス株式会社製)を用いて、管球:Fe−Kα、 2θ:30〜50deg、測定条件:0.021deg/step、9step/secとして行った。
(2) X-ray diffraction Each compact before and after heat treatment was cut, and the grain boundaries of Fe particles were analyzed by X-ray diffraction (XRD). XRD is performed using an X-ray diffractometer (D8 ADVANCE: Bruker AXS Co., Ltd.), tube: Fe-Kα, 2θ: 30 to 50 deg, measurement conditions: 0.021 deg / step, 9 step / sec. went.

《評価》
(1)磁束密度と比抵抗
試料1に係る熱処理前の成形体は、ρ=150μΩm、B10k=1.55T であった。この成形体を、酸素を0.1%含む不活性ガス中で熱処理したところ、ρ=90μΩm、B10k=1.7Tとなった。このことから、上述した製造方法を実施することにより、比抵抗の低減を抑制しつつ(耐熱性を確保しつつ)、磁束密度の向上を図れることがわかった。
<Evaluation>
(1) Magnetic flux density and specific resistance The molded body before heat treatment according to Sample 1 was ρ = 150 μΩm and B 10k = 1.55T. When this molded body was heat-treated in an inert gas containing 0.1% oxygen, ρ = 90 μΩm and B 10k = 1.7T were obtained. From this, it was found that by implementing the manufacturing method described above, it is possible to improve the magnetic flux density while suppressing a reduction in specific resistance (while ensuring heat resistance).

ちなみに、予めフェライト被覆されている軟磁性粒子からなる磁心用粉末を、加圧成形した成形体を400℃で焼鈍すると、比抵抗がρ=300μΩm(焼鈍前)からρ=5μΩm(焼鈍後)へ急激に低下した。なお、比較例で用いた磁心用粉末は特開2013−191839に基づいて製造したものである。その他の製造条件は試料1と同様とした。   By the way, when a molded body obtained by press-molding a magnetic core powder composed of soft magnetic particles previously coated with ferrite at 400 ° C. is annealed at a specific resistance of ρ = 300 μΩm (before annealing) to ρ = 5 μΩm (after annealing). It dropped sharply. In addition, the powder for magnetic cores used by the comparative example is manufactured based on Unexamined-Japanese-Patent No. 2013-191839. Other manufacturing conditions were the same as those of Sample 1.

(2)熱処理雰囲気
酸素濃度が異なる種々の雰囲気で熱処理工程を行った種々の成形体(試料1)の粒界をXRDで観察した。その結果、酸素濃度が0.1%である不活性ガス(Ar)中で熱処理した圧粉磁心の粒界は、ほぼS型フェライトのみとなっていた(図1参照)。
(2) Heat treatment atmosphere Grain boundaries of various molded bodies (sample 1) subjected to the heat treatment step in various atmospheres having different oxygen concentrations were observed by XRD. As a result, the grain boundary of the dust core heat-treated in an inert gas (Ar) having an oxygen concentration of 0.1% was almost only S-type ferrite (see FIG. 1).

酸素濃度がそれ以外のときでもS型フェライトは生成されたが、酸素濃度が0%(Arのみ)または0.01%で過小なときは、金属間化合物(MnZn)も検出された。逆に、酸素濃度が20%で過大なときはS型フェライト以外に、Feも検出された。これは基粒子であるFe粒子が酸化されたためと考えられる。 S-type ferrite was generated even when the oxygen concentration was other than that, but when the oxygen concentration was too low at 0% (Ar only) or 0.01%, an intermetallic compound (MnZn) was also detected. On the other hand, when the oxygen concentration was excessive at 20%, Fe 2 O 3 was also detected in addition to S-type ferrite. This is considered to be because the Fe particles as the base particles were oxidized.

試料2に係る圧粉磁心についても同様に観察したところ、熱処理雰囲気中の酸素濃度が0%(Arのみ)または0.01%のとき、粒界に金属間化合物(MnZn)が検出されず、粒界はほぼS型フェライトのみからなっていた。   When the powder magnetic core according to Sample 2 was observed in the same manner, when the oxygen concentration in the heat treatment atmosphere was 0% (Ar only) or 0.01%, no intermetallic compound (MnZn) was detected at the grain boundary, Grain boundaries consisted of only S-type ferrite.

(3)造粒工程
試料1に係る造粒工程を、遊星ボールミルに替えて、一般的なボールミル(アサヒ理化製作所社製 AV−1)を用いて行った。このときの処理条件は、回転速度150rpmであり、付与されるエネルギーの指標値は0.1J/s・gである。
(3) Granulation step The granulation step according to Sample 1 was performed using a general ball mill (AV-1 manufactured by Asahi Rika Seisakusho Co., Ltd.) instead of the planetary ball mill. The processing condition at this time is a rotational speed of 150 rpm, and the index value of the applied energy is 0.1 J / s · g.

こうして得られた磁心用粉末を用いて、上述した成形工程と熱処理工程を行った。熱処理前後の成形体についてXRDにより解析した結果を図2に示した。図2からわかるように400℃で熱処理する場合、造粒工程時に各粒子へ付与するエネルギーが小さいと、フェライトが生成され難いことがわかる。   Using the magnetic core powder thus obtained, the above-described forming step and heat treatment step were performed. FIG. 2 shows the result of XRD analysis of the molded body before and after the heat treatment. As can be seen from FIG. 2, when the heat treatment is performed at 400 ° C., it is difficult to generate ferrite if the energy applied to each particle during the granulation step is small.

(4)基粒子
試料1に係るFe粉末をZrOボール(粒径:3mm)に替えて、上述した造粒工程、成形工程および熱処理工程をそれぞれ行った。熱処理前後の成形体についてXRDにより解析した結果を図3に示した。図3からわかるように、基粒子がZrOであると、Fe粒子の場合と同様に処理しても、粒子表面にフェライトが生成されないことがわかった。
(4) Base particles The Fe powder according to Sample 1 was replaced with ZrO 2 balls (particle diameter: 3 mm), and the above-described granulation step, molding step, and heat treatment step were performed. FIG. 3 shows the result of analyzing the molded body before and after the heat treatment by XRD. As can be seen from FIG. 3, it was found that when the base particle is ZrO 2 , ferrite is not generated on the particle surface even if the base particle is treated in the same manner as the Fe particle.

Claims (7)

純鉄またはFeを90質量%以上含む鉄合金からなる軟磁性粒子の表面が、Mn、Zn、Ni、CuまたはMgの一種以上である金属元素(M)の酸化物粒子と酸化鉄粒子とにより被覆された被覆粒子からなる磁心用粉末を加圧成形する成形工程と、
該成形工程後に得られた成形体を370〜700℃で加熱する熱処理工程とを備え、
該軟磁性粒子間にスピネル型フェライト(MFe)が生成された圧粉磁心が得られることを特徴とする圧粉磁心の製造方法。
The surface of soft magnetic particles made of an iron alloy containing 90 mass% or more of pure iron or Fe is composed of metal element (M) oxide particles and iron oxide particles that are one or more of Mn, Zn, Ni, Cu, or Mg. A molding step of pressure-molding the magnetic core powder comprising the coated particles,
A heat treatment step of heating the molded body obtained after the molding step at 370 to 700 ° C,
A method for producing a dust core, wherein a dust core in which spinel ferrite (MFe 2 O 4 ) is generated between the soft magnetic particles is obtained.
前記磁心用粉末は、前記軟磁性粒子からなる軟磁性粉末と前記酸化物粒子からなる酸化物粉末と前記酸化鉄粒子からなる酸化鉄粉末とを衝突エネルギー1〜5J/s・gを満たす強エネルギー下で撹拌混合する造粒工程を経て得られる請求項1に記載の圧粉磁心の製造方法。   The magnetic core powder is composed of the soft magnetic powder composed of the soft magnetic particles, the oxide powder composed of the oxide particles, and the iron oxide powder composed of the iron oxide particles. The strong energy satisfying a collision energy of 1 to 5 J / s · g. The manufacturing method of the powder magnetic core of Claim 1 obtained through the granulation process of stirring and mixing below. 前記磁心用粉末は、全体を100質量%として、
前記酸化物粒子:0.04〜0.8質量%、
前記酸化鉄粒子:0.2〜4.0質量%、
前記軟磁性粒子:残部である請求項1または2に記載の圧粉磁心の製造方法。
The magnetic core powder is 100% by mass as a whole,
The oxide particles: 0.04 to 0.8% by mass,
Iron oxide particles: 0.2 to 4.0% by mass,
The method for producing a dust core according to claim 1, wherein the soft magnetic particles are the balance.
前記軟磁性粒子の粒度:50〜500μmであり、
前記酸化物粒子の粒度:5μm以下であり、
前記酸化鉄粒子の粒度:5μm以下である請求項1〜3のいずれかに記載の圧粉磁心の製造方法。
The soft magnetic particles have a particle size of 50 to 500 μm,
Particle size of the oxide particles: 5 μm or less,
The particle size of the iron oxide particles: 5 µm or less. The method for producing a dust core according to any one of claims 1 to 3.
前記熱処理工程は、酸素濃度が10%以下である不活性ガス雰囲気でなされる請求項1に記載の圧粉磁心の製造方法。   The method of manufacturing a dust core according to claim 1, wherein the heat treatment step is performed in an inert gas atmosphere having an oxygen concentration of 10% or less. 前記酸化物粒子は、MnO、MnOまたはMn粒子を含み、
前記不活性ガス雰囲気中の酸素濃度は0.1%以下である請求項5に記載の圧粉磁心の製造方法。
The oxide particles include MnO, MnO 2 or Mn 2 O 3 particles,
The method for producing a dust core according to claim 5, wherein the oxygen concentration in the inert gas atmosphere is 0.1% or less.
請求項1〜6のいずれかの製造方法により得られることを特徴とする圧粉磁心。   A powder magnetic core obtained by the production method according to claim 1.
JP2015033464A 2015-02-24 2015-02-24 Method of manufacturing dust core Active JP6476989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033464A JP6476989B2 (en) 2015-02-24 2015-02-24 Method of manufacturing dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033464A JP6476989B2 (en) 2015-02-24 2015-02-24 Method of manufacturing dust core

Publications (2)

Publication Number Publication Date
JP2016157753A true JP2016157753A (en) 2016-09-01
JP6476989B2 JP6476989B2 (en) 2019-03-06

Family

ID=56826431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033464A Active JP6476989B2 (en) 2015-02-24 2015-02-24 Method of manufacturing dust core

Country Status (1)

Country Link
JP (1) JP6476989B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106583709A (en) * 2016-12-26 2017-04-26 安徽工业大学 Iron silicon alloy composite powder of core-shell structure and preparation method thereof
KR20180055257A (en) * 2016-11-16 2018-05-25 재단법인 포항산업과학연구원 Iron-based powder and method for manufacturing the same
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
JP2019096747A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020077730A (en) * 2018-11-07 2020-05-21 日本特殊陶業株式会社 Powder magnetic core
CN112094114A (en) * 2020-09-25 2020-12-18 麦格磁电科技(珠海)有限公司 Manganese-zinc ferrite composite material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
JP2002256304A (en) * 2001-02-28 2002-09-11 Sumitomo Electric Ind Ltd Composite magnetic material and its manufacturing method
JP2004014614A (en) * 2002-06-04 2004-01-15 Mitsubishi Materials Corp METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2004014613A (en) * 2002-06-04 2004-01-15 Mitsubishi Materials Corp PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2009188270A (en) * 2008-02-07 2009-08-20 Toda Kogyo Corp Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder
JP2011214026A (en) * 2010-03-31 2011-10-27 Doshisha Magnetic nanocomposite and method for producing the same
JP2012094806A (en) * 2010-09-30 2012-05-17 Tdk Corp Soft magnetic material
JP2013062457A (en) * 2011-09-15 2013-04-04 Sumitomo Electric Ind Ltd Green compact and current sensor
JP2013191839A (en) * 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor
JP2014060183A (en) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd Soft magnetic material and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
US5348800A (en) * 1991-08-19 1994-09-20 Tdk Corporation Composite soft magnetic material
JP2002256304A (en) * 2001-02-28 2002-09-11 Sumitomo Electric Ind Ltd Composite magnetic material and its manufacturing method
JP2004014614A (en) * 2002-06-04 2004-01-15 Mitsubishi Materials Corp METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2004014613A (en) * 2002-06-04 2004-01-15 Mitsubishi Materials Corp PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2009188270A (en) * 2008-02-07 2009-08-20 Toda Kogyo Corp Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder
JP2011214026A (en) * 2010-03-31 2011-10-27 Doshisha Magnetic nanocomposite and method for producing the same
JP2012094806A (en) * 2010-09-30 2012-05-17 Tdk Corp Soft magnetic material
JP2013062457A (en) * 2011-09-15 2013-04-04 Sumitomo Electric Ind Ltd Green compact and current sensor
JP2013191839A (en) * 2012-02-17 2013-09-26 Toyota Central R&D Labs Inc Dust core and powder for magnetic core used therefor
JP2014060183A (en) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd Soft magnetic material and method for manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180055257A (en) * 2016-11-16 2018-05-25 재단법인 포항산업과학연구원 Iron-based powder and method for manufacturing the same
KR102647523B1 (en) * 2016-11-16 2024-03-13 재단법인 포항산업과학연구원 Iron-based powder and method for manufacturing the same
CN106583709A (en) * 2016-12-26 2017-04-26 安徽工业大学 Iron silicon alloy composite powder of core-shell structure and preparation method thereof
CN106583709B (en) * 2016-12-26 2022-06-07 安徽工业大学 Iron-silicon alloy composite powder with core-shell structure and preparation method thereof
US11211198B2 (en) 2017-08-10 2021-12-28 Sumitomo Electric Industries, Ltd. Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
WO2019031399A1 (en) * 2017-08-10 2019-02-14 住友電気工業株式会社 Method for manufacturing powder magnetic core, and method for manufacturing electromagnetic component
JPWO2019031399A1 (en) * 2017-08-10 2020-02-06 住友電気工業株式会社 Manufacturing method of dust core, manufacturing method of electromagnetic parts
CN110997187A (en) * 2017-08-10 2020-04-10 住友电气工业株式会社 Method for manufacturing dust core and method for manufacturing electromagnetic component
CN110997187B (en) * 2017-08-10 2021-09-07 住友电气工业株式会社 Method for manufacturing dust core and method for manufacturing electromagnetic component
JP2019096747A (en) * 2017-11-24 2019-06-20 日本特殊陶業株式会社 Powder-compact magnetic core
JP7227736B2 (en) 2018-11-07 2023-02-22 日本特殊陶業株式会社 dust core
JP2020077730A (en) * 2018-11-07 2020-05-21 日本特殊陶業株式会社 Powder magnetic core
CN112094114A (en) * 2020-09-25 2020-12-18 麦格磁电科技(珠海)有限公司 Manganese-zinc ferrite composite material and preparation method thereof

Also Published As

Publication number Publication date
JP6476989B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6476989B2 (en) Method of manufacturing dust core
JP5728987B2 (en) Dust core
KR102165131B1 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
JP5986010B2 (en) Powder magnetic core and magnetic core powder used therefor
EP3567611A2 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP5482097B2 (en) Soft magnetic material, dust core and method for manufacturing the same
JP4710485B2 (en) Method for producing soft magnetic material and method for producing dust core
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
EP1600987A2 (en) Soft magnetic material, powder metallurgy soft magnetic material and manufacturing methods therefor
KR20190106791A (en) Soft magnetic metal powder, dust core, and magnetic component
JP2015233119A (en) Soft magnetic metal powder, and soft magnetic metal powder compact core arranged by use thereof
TW201606815A (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
JP2008189950A (en) Method for manufacturing soft magnetic powder, method for manufacturing soft magnetic material, method for manufacturing powder magnetic core, soft magnetic powder, soft magnetic material and powder magnetic core
JP2009164401A (en) Manufacturing method of dust core
CN110997187B (en) Method for manufacturing dust core and method for manufacturing electromagnetic component
JP2015103719A (en) Powder-compact magnetic core, coil part, and method for manufacturing powder-compact magnetic core
JP2005286145A (en) Method for manufacturing soft magnetic material, soft magnetic powder and dust core
WO2005095030A1 (en) Method for producing soft magnetic material, soft magnetic powder and dust core
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP2005303006A (en) Method of manufacturing dust core and dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6476989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150