JP2009188270A - Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder - Google Patents
Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder Download PDFInfo
- Publication number
- JP2009188270A JP2009188270A JP2008028110A JP2008028110A JP2009188270A JP 2009188270 A JP2009188270 A JP 2009188270A JP 2008028110 A JP2008028110 A JP 2008028110A JP 2008028110 A JP2008028110 A JP 2008028110A JP 2009188270 A JP2009188270 A JP 2009188270A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- powder
- particle powder
- magnetic metal
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、耐熱性に優れた絶縁層を有する軟磁性粒子粉末、軟磁性金属粒子表面への密着性に優れた均一な絶縁層を形成することのできる軟磁性粒子粉末の製造法及び該軟磁性粒子粉末を含有する高温で焼成した場合においても比抵抗が低下しにくい圧粉磁心を提供する。 The present invention relates to a soft magnetic particle powder having an insulating layer having excellent heat resistance, a method for producing a soft magnetic particle powder capable of forming a uniform insulating layer having excellent adhesion to the surface of soft magnetic metal particles, and the soft magnetic particle powder. Provided is a dust core in which specific resistance is less likely to decrease even when fired at a high temperature containing magnetic particle powder.
近年、家電及び電子機器の省エネルギー化及び小型化に伴い、これらに使用される磁心材料に対しても、小型で高出力、且つ電力変換効率の高効率化の要求が強まっている。機器サイズの小型化、高出力化及び電力変換効率の高効率化には動作周波数の高周波化が有効であることが知られており、高周波領域においても高い磁束密度と透磁率及び低鉄損を有する磁心材料が強く求められている。 In recent years, along with energy saving and miniaturization of home appliances and electronic devices, there is an increasing demand for miniaturization, high output, and high efficiency of power conversion efficiency for magnetic core materials used for these. Higher operating frequency is known to be effective in reducing the size of equipment, increasing output, and increasing power conversion efficiency. Even in the high frequency range, high magnetic flux density, magnetic permeability, and low iron loss. There is a strong need for magnetic core materials.
従来、このような磁心材料としては、ケイ素鋼板を用いた積層型磁心等が使用されているが、積層型磁心は、動作周波数が高くなるに従って磁心内部で発生する渦電流損失が増大するという欠点を有している。 Conventionally, as such a magnetic core material, a laminated magnetic core using a silicon steel plate or the like has been used. However, a laminated magnetic core has a disadvantage that eddy current loss generated inside the magnetic core increases as the operating frequency increases. have.
そのため、近年では、積層型磁心に比べて高周波領域での鉄損が低いと共に、成形性に優れた、軟磁性粉末をフェノール樹脂やエポキシ樹脂等の絶縁性樹脂で被覆し圧縮成形した圧粉磁心が、積層型磁心の代替品として広く用いられている。 For this reason, in recent years, a powder core in which a soft magnetic powder is coated with an insulating resin such as a phenol resin or an epoxy resin and is compression-molded has a low iron loss in a high frequency region as compared with a laminated magnetic core and has excellent moldability. However, it is widely used as a substitute for a laminated magnetic core.
一方、圧粉磁心に対して、更なる小型化及び高性能化、即ち、高磁束密度化が望まれており、このような高磁束密度化のために、軟磁性粉末の充填密度を増大させることが行われている。 On the other hand, further miniaturization and higher performance, that is, higher magnetic flux density is desired for the powder magnetic core. For such higher magnetic flux density, the packing density of the soft magnetic powder is increased. Things have been done.
しかしながら、軟磁性粉末を高充填するために高圧で圧縮成形を行うため、軟磁性粉末には歪みが残り、ヒステリシス損失の増大を招くことが知られている。そのため、歪みによるヒステリシス損失を低減するために、通常、成形品に対して焼鈍しが行われている。 However, it is known that since compression molding is performed at a high pressure in order to highly fill the soft magnetic powder, strain remains in the soft magnetic powder, leading to an increase in hysteresis loss. Therefore, in order to reduce the hysteresis loss due to strain, the molded product is usually annealed.
ところで、一般に、圧粉磁心の鉄損の主要因として、ヒステリシス損失と渦電流損失が知られている。ヒステリシス損失の低減方法としては、先に述べた通り、焼鈍しによる歪みの除去が有効であることが知られており、一方、渦電流損失の低減方法としては、粒子間を絶縁性樹脂等で絶縁することにより行われている。 By the way, in general, hysteresis loss and eddy current loss are known as main causes of iron loss of a dust core. As described above, it is known that the removal of strain due to annealing is effective as a method for reducing hysteresis loss. On the other hand, as a method for reducing eddy current loss, an insulating resin or the like is used between particles. It is done by insulating.
しかしながら、焼鈍しは、一般には500℃以上、好ましくは600℃、もしくはそれ以上の温度が効果的であるとされているが、軟磁性粒子粉末のバインダーとしての結合樹脂や上記粒子間の絶縁のために絶縁性樹脂を使用した場合、高温で焼鈍しを行うと樹脂が分解して成形体が脆くなり、絶縁性が低下してしまうため、高温での焼鈍しは困難であり、従って、ヒステリシス損失と渦電流損失の両方を同時に低減することは困難であった。 However, annealing is generally effective at a temperature of 500 ° C. or higher, preferably 600 ° C. or higher. However, the bonding resin as a binder of the soft magnetic particle powder and the insulation between the particles are not effective. For this reason, when an insulating resin is used, annealing at a high temperature causes the resin to decompose and the molded body to become brittle, resulting in a decrease in insulation. It was difficult to reduce both loss and eddy current loss at the same time.
これまでに、耐熱性に優れた絶縁被覆を有する軟磁性金属粉末を得ることを目的として、鉄粉などの軟磁性金属粉末表面に形成した鉄酸化物と絶縁物質とを強固に固着させた後、更にシリコーン樹脂を被覆した軟磁性金属粉末(特許文献1)が開示されている。 So far, after firmly fixing the iron oxide and insulating material formed on the surface of soft magnetic metal powder such as iron powder for the purpose of obtaining soft magnetic metal powder having insulating coating with excellent heat resistance Furthermore, a soft magnetic metal powder further coated with a silicone resin (Patent Document 1) is disclosed.
また、軟磁性粉の占積率を高めて磁束密度を向上させることを目的として、鉄粉などの軟磁性金属粒子表面に樹脂を含有しない無機物からなる絶縁層を形成させた軟磁性粉末粒子(特許文献2)が開示されている。 In addition, for the purpose of increasing the space factor of the soft magnetic powder and improving the magnetic flux density, soft magnetic powder particles in which an insulating layer made of an inorganic material containing no resin is formed on the surface of soft magnetic metal particles such as iron powder ( Patent Document 2) is disclosed.
また、鉄粉などの軟磁性金属粉末表面に被覆した高抵抗物質の剥離防止を目的として、軟磁性金属粒子表面に被覆した高抵抗物質の表面に、更にリン酸系化成被膜を形成した軟磁性粒子(特許文献3)が開示されている。 In addition, for the purpose of preventing exfoliation of high-resistance substances coated on the surface of soft magnetic metal powder such as iron powder, a soft magnetic material in which a phosphate conversion coating is further formed on the surface of the high-resistance substance coated on the surface of soft magnetic metal particles Particles (Patent Document 3) are disclosed.
また、鉄粉などの軟磁性金属粉末表面への均一な絶縁層の形成を目的として、軟磁性金属粉末の表面に、水溶液中で酸化物ゾルを付着させたり(特許文献4)、金属アルコキシドを加水分解させて軟磁性金属粉末表面に水酸化物を吸着させたり(特許文献5)、水溶液中でケイ素等の化合物を軟磁性金属粉末の表面に直接析出させた軟磁性金属粉末(特許文献6)が開示されている。 In addition, for the purpose of forming a uniform insulating layer on the surface of the soft magnetic metal powder such as iron powder, an oxide sol is attached to the surface of the soft magnetic metal powder in an aqueous solution (Patent Document 4), or a metal alkoxide is added. Hydromagnetic metal powder that is hydrolyzed to adsorb hydroxide on the surface of the soft magnetic metal powder (Patent Document 5), or a compound such as silicon is directly deposited on the surface of the soft magnetic metal powder in an aqueous solution (Patent Document 6) ) Is disclosed.
また、鉄粉などの軟磁性金属粉末表面への微細な無機化合物よりなる絶縁層の形成を目的として、軟磁性金属粉末の表面に、有機溶剤中で金属アルコキシドを加水分解させて軟磁性金属粉末表面に無機化合物を付着させた軟磁性金属粉末(特許文献7)が開示されている。 In addition, for the purpose of forming an insulating layer made of a fine inorganic compound on the surface of soft magnetic metal powder such as iron powder, the surface of soft magnetic metal powder is hydrolyzed with metal alkoxide in an organic solvent to form soft magnetic metal powder. A soft magnetic metal powder (Patent Document 7) having an inorganic compound attached to the surface is disclosed.
耐熱性に優れた絶縁層を有する軟磁性粒子粉末は、現在最も要求されているところであるが、未だ得られていない。 A soft magnetic particle powder having an insulating layer excellent in heat resistance is currently most demanded, but has not yet been obtained.
即ち、特許文献1には、軟磁性金属粉末表面に形成した鉄酸化物と絶縁物質とを強固に固着させた後、更にシリコーン樹脂を被覆することが記載されているが、シリコーン樹脂を添加することによって軟磁性金属粉末の比重が低下し、これを用いて得られる圧粉体も密度の低下が生じ、結果として十分な磁束密度が得られないという問題があった。 That is, in Patent Document 1, it is described that the iron oxide formed on the surface of the soft magnetic metal powder and the insulating substance are firmly fixed and then further coated with a silicone resin. As a result, the specific gravity of the soft magnetic metal powder is reduced, and the green compact obtained using the powder also has a problem that the density is lowered, and as a result, a sufficient magnetic flux density cannot be obtained.
また、特許文献2は、軟磁性金属粒子表面と酸化物粉末とを混合し、絶縁層を形成させることが記載されているが、絶縁層を形成する酸化物粉末の粒子サイズが0.1〜10μmと大きく、軟磁性金属粒子表面に均一な絶縁被覆を形成できないため、十分な耐熱性を得ることが困難であった。 Patent Document 2 describes that the surface of soft magnetic metal particles and oxide powder are mixed to form an insulating layer. The particle size of the oxide powder forming the insulating layer is 0.1 to 0.1. Since it is as large as 10 μm and a uniform insulating coating cannot be formed on the surface of the soft magnetic metal particles, it is difficult to obtain sufficient heat resistance.
特許文献3には、鉄粉などの軟磁性金属粒子表面に被覆した高抵抗物質の表面に、更にリン酸系化成処理液で処理して二層の絶縁層を形成することが記載されているが、リン酸系化成処理被膜が高温で変質してしまうため、600℃以上の温度では加熱処理できないという問題があった。 Patent Document 3 describes that the surface of a high-resistance substance coated on the surface of soft magnetic metal particles such as iron powder is further treated with a phosphoric acid chemical conversion treatment solution to form two insulating layers. However, since the phosphoric acid-based chemical conversion coating film changes in quality at a high temperature, there is a problem that heat treatment cannot be performed at a temperature of 600 ° C. or higher.
また、特許文献4乃至6には、軟磁性金属粉末表面への絶縁層の形成を水溶液中で行うことが記載されているが、軟磁性金属粉末は水分によって酸化・腐食し易く磁気特性が劣化すると共に、酸化被膜が厚くなるため、これを用いて圧粉磁心を形成した際に圧粉磁心における軟磁性金属粉末の割合が減少するため、高磁束密度化が困難となる。 Patent Documents 4 to 6 describe that the insulating layer is formed on the surface of the soft magnetic metal powder in an aqueous solution. However, the soft magnetic metal powder is easily oxidized and corroded by moisture, and the magnetic properties are deteriorated. At the same time, since the oxide film becomes thick, when the powder magnetic core is formed using the oxide film, the ratio of the soft magnetic metal powder in the powder magnetic core is reduced, so that it is difficult to increase the magnetic flux density.
また、特許文献7には、軟磁性金属粉末表面への絶縁層の形成を有機溶剤中で行うことが記載されているが、有機溶剤中にも0.5〜5%程度の水分が含まれており、上述の通り、軟磁性金属粉末は水分によって酸化・腐食し易く磁気特性が劣化すると共に、酸化被膜が厚くなるため、これを用いて圧粉磁心を形成した際に圧粉磁心における軟磁性金属粉末の割合が減少するため、高磁束密度化が困難となる。 Patent Document 7 describes that an insulating layer is formed on the surface of a soft magnetic metal powder in an organic solvent, but the organic solvent contains about 0.5 to 5% of water. As described above, the soft magnetic metal powder is easily oxidized and corroded by moisture, and its magnetic properties are deteriorated and the oxide film becomes thick. Therefore, when the powder magnetic core is formed using this, the soft magnetic metal powder is soft in the powder magnetic core. Since the proportion of the magnetic metal powder decreases, it is difficult to increase the magnetic flux density.
そこで、本発明は、耐熱性に優れた絶縁層を有する軟磁性粒子粉末を得ることを技術的課題とする。 Therefore, the present invention has a technical problem to obtain a soft magnetic particle powder having an insulating layer excellent in heat resistance.
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、粒子表面に絶縁層を有する軟磁性金属粒子粉末であって、該絶縁層が、平均粒子径100nmが未満であるアルミニウム、ケイ素、マグネシウム、チタン、ジルコニウム、イットリウム、カルシウムから選ばれる1種又は2種以上の酸化物微粒子からなる軟磁性粒子粉末は、耐熱性に優れており、また、該軟磁性粒子粉末を圧粉磁心用軟磁性材料として用いることにより、高温で焼成した場合においても比抵抗が低下しにくい圧粉磁心が得られることを見いだし、本発明をなすに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention are soft magnetic metal particle powders having an insulating layer on the particle surface, and the insulating layer has an average particle diameter of less than 100 nm, aluminum, The soft magnetic particle powder composed of one or more oxide fine particles selected from silicon, magnesium, titanium, zirconium, yttrium, and calcium has excellent heat resistance, and the soft magnetic particle powder is used as a dust core. It has been found that a powder magnetic core in which the specific resistance is hardly lowered even when baked at a high temperature can be obtained by using it as a soft magnetic material.
即ち、本発明は、粒子表面に絶縁層を有する軟磁性金属粒子粉末であって、該絶縁層が、アルミニウム、ケイ素、マグネシウム、チタン、ジルコニウム、イットリウム、カルシウムから選ばれる1種又は2種以上の酸化物微粒子からなることを特徴とする軟磁性粒子粉末である(本発明1)。 That is, the present invention is a soft magnetic metal particle powder having an insulating layer on the particle surface, wherein the insulating layer is one or more selected from aluminum, silicon, magnesium, titanium, zirconium, yttrium, and calcium. A soft magnetic particle powder characterized by comprising fine oxide particles (Invention 1).
また、本発明は、絶縁層を形成する酸化物微粒子が、平均粒子径100nm未満であることを特徴とする本発明1の軟磁性粒子粉末である(本発明2)。 Further, the present invention is the soft magnetic particle powder of the present invention 1 wherein the fine oxide particles forming the insulating layer have an average particle diameter of less than 100 nm (Invention 2).
また、本発明は、600℃で1時間加熱後の比抵抗が加熱前の比抵抗に対して80%以上であることを特徴とする本発明1又は2のいずれかの軟磁性粒子粉末である(本発明3)。 Further, the present invention is the soft magnetic particle powder according to any one of the present invention 1 or 2, wherein the specific resistance after heating at 600 ° C. for 1 hour is 80% or more with respect to the specific resistance before heating. (Invention 3).
また、本発明は、軟磁性金属粒子粉末と酸化物微粒子とをプレミックスした後、圧縮・せん断力よりなる機械的エネルギーを作用させて軟磁性金属粒子粉末の粒子表面に絶縁層を形成することを特徴とする軟磁性粒子粉末の製造法である(本発明4)。 Further, the present invention forms an insulating layer on the particle surface of the soft magnetic metal particle powder by premixing the soft magnetic metal particle powder and the oxide fine particle and then applying mechanical energy consisting of compression and shear force. (Invention 4).
また、本発明は、本発明1乃至3のいずれかの軟磁性材粒子粉末を圧縮成形してなる圧粉磁心である(本発明5)。 In addition, the present invention is a powder magnetic core obtained by compression-molding the soft magnetic material particle powder according to any one of the first to third aspects (Invention 5).
本発明に係る軟磁性粒子粉末は、耐熱性に優れた絶縁層を有しているので圧粉磁心用軟磁性材料として好適である。 Since the soft magnetic particle powder according to the present invention has an insulating layer excellent in heat resistance, it is suitable as a soft magnetic material for a dust core.
本発明に係る軟磁性粒子粉末の製造法は、有機溶剤等の溶液を使用することなく、また、工業的にも有利な方法で、軟磁性金属粒子表面に、密着性に優れた均一な絶縁層を形成することができるので、圧粉磁心用軟磁性材料の製造法として好適である。 The method for producing a soft magnetic particle powder according to the present invention is a method that is industrially advantageous without using a solution such as an organic solvent, and has a uniform insulation with excellent adhesion to the surface of the soft magnetic metal particle. Since a layer can be formed, it is suitable as a method for producing a soft magnetic material for a dust core.
本発明に係る圧粉磁心は、前記軟磁性粒子粉末を用いたことにより、高温で焼成した場合においても比抵抗が低下しにくいので、高性能圧粉磁心として好適である。 The powder magnetic core according to the present invention is suitable as a high-performance powder magnetic core because the use of the soft magnetic particle powder prevents specific resistance from being lowered even when fired at a high temperature.
本発明の構成をより詳しく説明すれば次の通りである。 The configuration of the present invention will be described in more detail as follows.
先ず、本発明に係る軟磁性粒子粉末について述べる。 First, the soft magnetic particle powder according to the present invention will be described.
本発明に係る軟磁性粒子粉末は、粒子表面に絶縁層を有する軟磁性金属粒子粉末であって、該絶縁層が、アルミニウム、ケイ素、マグネシウム、チタン、ジルコニウム、イットリウム、カルシウムから選ばれる1種又は2種以上の酸化物微粒子からなる。 The soft magnetic particle powder according to the present invention is a soft magnetic metal particle powder having an insulating layer on the particle surface, and the insulating layer is one selected from aluminum, silicon, magnesium, titanium, zirconium, yttrium, and calcium, or It consists of two or more kinds of oxide fine particles.
本発明に係る軟磁性粒子粉末の絶縁層を形成する酸化物微粒子は、アルミナ、シリカ、マグネシア、チタニア、ジルコニア、イットリア、カルシアから選ばれる1種又は2種からなる。殊に、耐熱性を考慮すれば、アルミナ、シリカ、イットリアが好ましい。 The oxide fine particles forming the insulating layer of the soft magnetic particle powder according to the present invention are composed of one or two selected from alumina, silica, magnesia, titania, zirconia, yttria, and calcia. In view of heat resistance, alumina, silica and yttria are particularly preferable.
本発明に係る軟磁性粒子粉末の絶縁層を形成する酸化物微粒子の平均粒子径は、100nm未満であり、好ましくは1〜80nm、より好ましくは3〜50nmである。酸化物微粒子の平均粒子径が100nm以上の場合には、酸化物微粒子からなる絶縁層の軟磁性金属粒子表面への均一な処理が困難となる。 The average particle diameter of the oxide fine particles forming the insulating layer of the soft magnetic particle powder according to the present invention is less than 100 nm, preferably 1 to 80 nm, more preferably 3 to 50 nm. When the average particle diameter of the oxide fine particles is 100 nm or more, it becomes difficult to uniformly treat the surface of the soft magnetic metal particles in the insulating layer made of the oxide fine particles.
本発明に係る軟磁性粒子粉末において、軟磁性金属粒子と絶縁層を形成する酸化物微粒子の平均粒子径の比は、1000以上であり、好ましくは2000以上、より好ましくは3000以上である。軟磁性金属粒子粉末と絶縁層を形成する酸化物微粒子の平均粒子径の比が1000未満の場合には、酸化物微粒子からなる絶縁層の軟磁性金属粒子表面への均一な処理が困難となる。 In the soft magnetic particle powder according to the present invention, the ratio of the average particle diameter of the soft magnetic metal particles to the oxide fine particles forming the insulating layer is 1000 or more, preferably 2000 or more, more preferably 3000 or more. When the ratio of the average particle diameter of the soft magnetic metal particle powder to the oxide fine particles forming the insulating layer is less than 1000, it is difficult to uniformly treat the surface of the insulating layer made of oxide fine particles on the soft magnetic metal particle surface. .
本発明に係る軟磁性粒子粉末の酸化物微粒子からなる絶縁層の被覆量は、被処理粒子である軟磁性金属粒子粉末の比表面積にもよるが、各酸化物微粒子の元素換算で0.005〜5.0重量%が好ましい。0.005〜5.0重量%の範囲で絶縁層を形成することにより、耐熱性の優れた軟磁性粒子粉末を得ることができる。5.0重量%を超える場合には、磁性に関与しない酸化物微粒子が増加し、圧粉磁心中に占める軟磁性金属粉末の容積割合が低下するために磁気特性が低下する。得られる軟磁性粒子粉末材料の磁気特性を考慮した場合、0.075〜4.0重量%がより好ましく、更により好ましくは0.01〜3.0重量%である。 The coating amount of the insulating layer made of oxide fine particles of the soft magnetic particle powder according to the present invention depends on the specific surface area of the soft magnetic metal particle powder as the particles to be treated, but is 0.005 in terms of element of each oxide fine particle. -5.0 wt% is preferred. By forming the insulating layer in the range of 0.005 to 5.0% by weight, a soft magnetic particle powder having excellent heat resistance can be obtained. When the content exceeds 5.0% by weight, the fine oxide particles that do not participate in magnetism increase, and the volume ratio of the soft magnetic metal powder in the dust core decreases, so that the magnetic properties deteriorate. Considering the magnetic properties of the obtained soft magnetic particle powder material, 0.075 to 4.0% by weight is more preferable, and still more preferably 0.01 to 3.0% by weight.
本発明に係る軟磁性粒子粉末の平均粒子径は、用途や特性に応じて選べばよいが、1.0〜500.0μmの範囲が好ましい。平均粒子径が500.0μmを超える場合には粒子径が大きすぎ、圧粉磁心に用いた場合、充填密度が下がるため好ましくない。平均粒子径が1.0μm未満の場合には粒子径が小さすぎ、流動性及び圧縮成形性が低下するため好ましくない。より好ましくは2.0〜400.0μm、更により好ましくは3.0〜300.0μmである。 The average particle size of the soft magnetic particle powder according to the present invention may be selected according to the use and characteristics, but is preferably in the range of 1.0 to 500.0 μm. When the average particle diameter exceeds 500.0 μm, the particle diameter is too large, and when used for a dust core, the packing density is lowered, which is not preferable. An average particle size of less than 1.0 μm is not preferable because the particle size is too small and fluidity and compression moldability are reduced. More preferably, it is 2.0-400.0 micrometers, More preferably, it is 3.0-300.0 micrometers.
本発明に係る軟磁性粒子粉末の耐熱性は、600℃で1時間加熱後の比抵抗が加熱前の比抵抗に対して80%以上であることが好ましい。耐熱性が80%未満の場合には、絶縁層の耐熱性が十分とは言えず、圧縮成形後に軟磁性金属粒子粉末に加えられた歪みを開放するための高温での焼鈍を行うことができない。そのため、これにより得られた軟磁性金属粒子粉末を用いて作製された圧粉磁心は、ヒステリシス損を低減することができないため、鉄損も低減することが困難となる。より好ましくは90%以上であり、更により好ましくは95%以上である。 The heat resistance of the soft magnetic particle powder according to the present invention is preferably such that the specific resistance after heating at 600 ° C. for 1 hour is 80% or more with respect to the specific resistance before heating. When the heat resistance is less than 80%, the heat resistance of the insulating layer cannot be said to be sufficient, and annealing at a high temperature to release the strain applied to the soft magnetic metal particle powder after compression molding cannot be performed. . For this reason, the powder magnetic core produced using the soft magnetic metal particle powder thus obtained cannot reduce the hysteresis loss, and thus it is difficult to reduce the iron loss. More preferably, it is 90% or more, and still more preferably 95% or more.
次に、本発明に係る軟磁性粒子粉末の製造法について述べる。 Next, a method for producing the soft magnetic particle powder according to the present invention will be described.
本発明に係る軟磁性粒子粉末は、軟磁性金属粒子粉末と酸化物微粒子とをプレミックスした後、圧縮・せん断力よりなる機械的エネルギーを作用させて軟磁性金属粒子粉末の粒子表面に絶縁層を形成することによって得ることができる。 The soft magnetic particle powder according to the present invention is obtained by premixing the soft magnetic metal particle powder and the oxide fine particle, and then applying mechanical energy consisting of compression and shear force to act on the surface of the soft magnetic metal particle powder. Can be obtained.
軟磁性金属粒子粉末と酸化物微粒子とをプレミックスするための機器としては、容器回転式が好ましく、外部容器が回転もしくは転動するタイプのミルやミキサ(例えば、コンクリートミキサ等の重力式ミキサ)及びブレンダーを用いることが好ましい。プレミックスのために外部容器が固定されたタイプのミルやミキサを用いると、軟磁性金属粒子粉末と酸化物微粒子とは比重差があるため、比重の高い軟磁性金属粒子粉末は下に、比重の低い酸化物微粒子は上に分かれてしまい、均一に混ぜることができない。 As a device for premixing soft magnetic metal particle powder and oxide fine particles, a container rotating type is preferable, and a mill or a mixer of a type in which an outer container rotates or rolls (for example, a gravity mixer such as a concrete mixer). It is preferable to use a blender. If a mill or mixer with a fixed external container is used for premixing, there is a difference in specific gravity between the soft magnetic metal particle powder and the oxide fine particle. The oxide fine particles having a low particle size are separated upward and cannot be mixed uniformly.
本発明を実施するにあたり、軟磁性金属粒子粉末と酸化物微粒子とをプレミックスすることが肝要であり、プレミックスを行わず、軟磁性金属粒子粉末と酸化物微粒子を直接圧縮・せん断力を加えることのできる装置に投入して処理を行った場合には、軟磁性金属粒子粉末と酸化物微粒子との比重差から処理に偏りが生じるため、軟磁性金属粒子粉末の粒子表面に均一な絶縁層を形成させることは困難である。 In practicing the present invention, it is important to premix the soft magnetic metal particle powder and the oxide fine particle, and without applying premix, the soft magnetic metal particle powder and the oxide fine particle are directly compressed and sheared. When the treatment is performed in an apparatus capable of processing, the treatment is biased due to the difference in specific gravity between the soft magnetic metal particle powder and the oxide fine particle, so that a uniform insulating layer is formed on the particle surface of the soft magnetic metal particle powder. It is difficult to form.
プレミックスにより、軟磁性金属粒子粉末と酸化物微粒子とが均一に混合されていることを確認することが好ましく、その方法としては、得られた混合粒子粉体の数箇所からサンプリングを行い、蛍光X線にて含有量を確認することにより行う。 It is preferable to confirm that the soft magnetic metal particle powder and the oxide fine particle are uniformly mixed by premixing. As a method for this, sampling is performed from several places of the obtained mixed particle powder, and fluorescence is obtained. This is done by confirming the content with X-rays.
プレミックスにより得られた軟磁性金属粒子粉末と酸化物微粒子との混合粒子粉末は、次いで、圧縮・せん断力よりなる機械的エネルギーを作用させて軟磁性金属粒子粉末の粒子表面に絶縁層を形成する。粉体層に圧縮・せん断力を加えることのできる装置としては、例えば、ホイール型混練機、高速せん断ミル、ボール型混練機、ブレード型混練機、ロール型混練機、遊星ミルを用いることができる。本発明の実施にあたっては、ホイール型混練機、高速せん断ミル及びボール型混練機がより効果的に使用できる。 The mixed particle powder of soft magnetic metal particle powder and oxide fine particle obtained by premixing is then subjected to mechanical energy consisting of compression and shear force to form an insulating layer on the surface of the soft magnetic metal particle powder. To do. As an apparatus capable of applying a compressive / shearing force to the powder layer, for example, a wheel-type kneader, a high-speed shear mill, a ball-type kneader, a blade-type kneader, a roll-type kneader, or a planetary mill can be used. . In carrying out the present invention, a wheel-type kneader, a high-speed shear mill, and a ball-type kneader can be used more effectively.
前記ホイール型混練機としては、具体的に、エッジランナー(「ミックスマラー」、「シンプソンミル」、「サンドミル」と同義語である)、マルチマル、ストッツミル、ウエットパンミル、コナーミル、リングマラー等があり、好ましくはエッジランナー、マルチマル、ストッツミル、ウエットパンミル、リングマラー、であり、より好ましくはエッジランナーである。前記高速せん断ミルとしては、ハイブリダイザー(奈良機械製作所製)、ノビルタ(ホソカワミクロン製)等がある。前記ボール型混練機としては、アトライタ、振動ミル等がある。前記ブレード型混練機としては、ヘンシェルミキサー、プラネタリーミキサー、ナウターミキサー等がある。前記ロール型混練機としては、エクストルーダー等がある。 Specific examples of the wheel-type kneader include edge runners (synonymous with “mix muller”, “Simpson mill”, “sand mill”), multi-mal, stotz mill, wet pan mill, conner mill, ring muller, and the like. , Preferably an edge runner, multi-mal, Stots mill, wet pan mill, and ring muller, and more preferably an edge runner. Examples of the high-speed shear mill include a hybridizer (manufactured by Nara Machinery Co., Ltd.) and nobilta (manufactured by Hosokawa Micron). Examples of the ball kneader include an attritor and a vibration mill. Examples of the blade-type kneader include a Henschel mixer, a planetary mixer, and a nauter mixer. Examples of the roll-type kneader include an extruder.
本発明における軟磁性金属粒子粉末としては、アトマイズ鉄粉、還元鉄粉、カルボニル鉄粉等の各種製法による鉄粉、珪素鋼粉、センダスト粉、パーマロイ粉、パーメンダー粉等を用いることができる。得られる圧粉磁心の透磁率と磁束密度を考慮すれば、鉄粉が好ましい。軟磁性金属粒子粉末の平均粒子径は、1.0〜500.0μmが好ましく、より好ましくは2.0〜400.0μm、更により好ましくは3.0〜300.0μmである。 As the soft magnetic metal particle powder in the present invention, iron powder by various production methods such as atomized iron powder, reduced iron powder, carbonyl iron powder, silicon steel powder, sendust powder, permalloy powder, permender powder and the like can be used. Considering the permeability and magnetic flux density of the obtained dust core, iron powder is preferred. The average particle diameter of the soft magnetic metal particle powder is preferably 1.0 to 500.0 μm, more preferably 2.0 to 400.0 μm, and still more preferably 3.0 to 300.0 μm.
次に、本発明に係る圧粉磁心について述べる。 Next, the dust core according to the present invention will be described.
本発明に係る圧粉磁心は、本発明に係る軟磁性粒子粉末に、必要により、ステアリン酸亜鉛等の潤滑剤や結合剤樹脂等の添加剤を混合し、該混合粒子粉末を圧縮成形した後、加熱処理することによって得ることができる。 The powder magnetic core according to the present invention is obtained by mixing the soft magnetic particle powder according to the present invention with an additive such as a lubricant such as zinc stearate and a binder resin, if necessary, and compressing the mixed particle powder. It can be obtained by heat treatment.
結合剤樹脂としては、エポキシ樹脂、イミド樹脂、フェノール樹脂、又はシリコーン樹脂等を単独又は混合して用いることができる。 As the binder resin, an epoxy resin, an imide resin, a phenol resin, a silicone resin, or the like can be used alone or in combination.
圧縮成形は、通常行われている、金型を用いた圧縮成形法で行うことができる。なお、成形圧は、用途に応じて適宜選べばよい。 The compression molding can be performed by a compression molding method using a mold that is usually performed. In addition, what is necessary is just to select a shaping | molding pressure suitably according to a use.
圧縮成形後の歪み取りのための焼鈍温度は、磁性粒子自体が熱拡散による粒子成長が起こらない高温が望ましい。好ましくは500〜1200℃であり、より好ましくは600〜1000℃である。焼鈍の雰囲気は、窒素やArガスなどの不活性ガス雰囲気中、水素などの還元性雰囲気中、あるいは真空などの非酸化性雰囲気中で行うことが望ましい。 The annealing temperature for strain relief after compression molding is preferably a high temperature at which the magnetic particles themselves do not cause particle growth due to thermal diffusion. Preferably it is 500-1200 degreeC, More preferably, it is 600-1000 degreeC. The annealing atmosphere is desirably performed in an inert gas atmosphere such as nitrogen or Ar gas, in a reducing atmosphere such as hydrogen, or in a non-oxidizing atmosphere such as vacuum.
本発明に係る圧粉磁心は、高温(600℃及び700℃)における焼鈍後の比抵抗が、未処理の軟磁性金属粒子粉末を用いて得られた圧粉磁心の比抵抗と比べて高い値を有している。 In the dust core according to the present invention, the specific resistance after annealing at high temperatures (600 ° C. and 700 ° C.) is higher than the specific resistance of the dust core obtained by using the untreated soft magnetic metal particle powder. have.
<作用>
本発明における最も重要な点は、粒子表面に絶縁層を有する軟磁性金属粒子粉末であって、該絶縁層が、平均粒子径が100nm未満であるアルミニウム、ケイ素、マグネシウム、チタン、ジルコニウム、イットリウム、カルシウムから選ばれる1種又は2種以上の酸化物微粒子からなる軟磁性粒子粉末は、耐熱性に優れた絶縁層を有しているという事実である。
<Action>
The most important point in the present invention is a soft magnetic metal particle powder having an insulating layer on the particle surface, and the insulating layer has an average particle diameter of less than 100 nm, such as aluminum, silicon, magnesium, titanium, zirconium, yttrium, The fact is that the soft magnetic particle powder composed of one or more oxide fine particles selected from calcium has an insulating layer excellent in heat resistance.
本発明に係る軟磁性粒子粉末の耐熱性が優れている理由として、本発明者は、絶縁層を形成する酸化物粉末の粒子サイズを100nm未満の微細な粒子粉末に限定すると共に、プレミックスをすることにより軟磁性金属粒子表面に均一な絶縁被覆を形成できたためと考えている。 As the reason why the heat resistance of the soft magnetic particle powder according to the present invention is excellent, the present inventor limited the particle size of the oxide powder forming the insulating layer to a fine particle powder of less than 100 nm and the premix. This is considered to be because a uniform insulating coating could be formed on the surface of the soft magnetic metal particles.
以下、本発明における実施例を示し、本発明を具体的に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
各粒子粉末の平均粒子径は、いずれも電子顕微鏡写真に示される粒子50〜350個の粒子径をそれぞれ測定し、その平均値で示した。 The average particle diameter of each particle powder was measured by measuring the particle diameters of 50 to 350 particles shown in the electron micrographs, and indicated by the average value.
軟磁性金属粒子粉末と酸化物微粒子の平均粒子径の比は、上述の電子顕微鏡写真から計測した各粒子の平均粒子径を用いた。 The average particle size of each particle measured from the above-mentioned electron micrograph was used as the ratio of the average particle size of the soft magnetic metal particle powder and the oxide fine particle.
軟磁性金属粒子粉末と酸化物微粒子をプレミックスした後の混合粒子粉末の均一性の確認は、無作為に5点サンプリングし、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、混合粒子粉末中の酸化物微粒子の含有量が、5点とも、仕込み時の軟磁性金属粒子粉末と酸化物微粒子との配合比とほぼ一致することで判断した。 To check the uniformity of the mixed particle powder after premixing the soft magnetic metal particle powder and the oxide fine particle, randomly sample 5 points and select "X-ray fluorescence analyzer 3063M type" (manufactured by Rigaku Corporation) The content of the oxide fine particles in the mixed particle powder was judged to be almost the same as the blending ratio of the soft magnetic metal particle powder and the oxide fine particles at the time of preparation.
軟磁性粒子粉末の粒子表面に形成されている酸化物微粒子からなる絶縁層の被覆量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。 The coating amount of the insulating layer made of oxide fine particles formed on the surface of the soft magnetic particle powder is “X-ray fluorescence analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.). Measurement was performed according to the "General Rules for Optical X-ray Analysis"
軟磁性金属粒子表面に形成された酸化物微粒子からなる絶縁層の均一性は、「走査型電子顕微鏡 S−4800」(株式会社日立製作所製)を用いて目視にて確認を行うと共に、「EDX Genesis」(EDAX社製)にて絶縁層の形成に用いた酸化物微粒子の金属原子によるマッピングを行い、軟磁性金属粒子表面における存在状態を確認することにより行った。 The uniformity of the insulating layer made of oxide fine particles formed on the surface of the soft magnetic metal particle is confirmed visually using “Scanning Electron Microscope S-4800” (manufactured by Hitachi, Ltd.) and “EDX”. Genesis ”(manufactured by EDAX) was used to perform mapping of the oxide fine particles used for forming the insulating layer with metal atoms and confirm the existence state on the surface of the soft magnetic metal particles.
軟磁性粒子粉末の耐熱性は、未加熱の軟磁性粒子粉末の比抵抗(ρ1)と600℃で1時間加熱した後の軟磁性粒子粉末の比抵抗(ρ2)をそれぞれ測定し、下記数1にそれぞれの値を挿入して、求めた値を耐熱性(加熱前後の比抵抗の変化率)(%)として示した。 The heat resistance of the soft magnetic particle powder was determined by measuring the specific resistance (ρ1) of the unheated soft magnetic particle powder and the specific resistance (ρ2) of the soft magnetic particle powder after heating at 600 ° C. for 1 hour, respectively, Each value was inserted into and the obtained value was shown as heat resistance (rate of change in specific resistance before and after heating) (%).
<数1>
耐熱性(%)=(ρ2/ρ1)×100
<Equation 1>
Heat resistance (%) = (ρ2 / ρ1) × 100
比抵抗は、試料粉体を試料台にセットし、荷重を0〜40MPaまで加えながら4端子法にて測定を行い、40MPaにおける比抵抗を用いた。 The specific resistance was measured by a four-terminal method while setting a sample powder on a sample stage and applying a load from 0 to 40 MPa, and the specific resistance at 40 MPa was used.
圧粉磁心の比抵抗は、まず、軟磁性粒子粉末6.0gを測り取り、外径20mm、内径10mmのリング成形金型を用いて、10トンプレスにて成形圧力686MPaで加圧成形を行い、リング成形体を複数個作製し、該リング成形体のプレス面を1mmピッチの4端子電気抵抗測定装置(ロレスタGP/MCP−T600、三菱化成製)で10Vの電圧を印加して測定した。 The specific resistance of the powder magnetic core is as follows. First, 6.0 g of soft magnetic particle powder is measured and subjected to pressure molding at a molding pressure of 686 MPa with a 10-ton press using a ring molding die having an outer diameter of 20 mm and an inner diameter of 10 mm. A plurality of ring molded bodies were produced, and the press surface of the ring molded body was measured by applying a voltage of 10 V with a 1 mm pitch 4-terminal electrical resistance measuring device (Loresta GP / MCP-T600, manufactured by Mitsubishi Kasei).
圧粉磁心の焼鈍後における比抵抗は、上述で作製したリング成形体を、窒素雰囲気下にて600℃及び700℃でそれぞれ1時間加熱処理を行った後、上述の比抵抗の測定と同様にして求めた。 The specific resistance after annealing of the powder magnetic core is the same as the measurement of the specific resistance described above, after the ring molded body prepared above was heated at 600 ° C. and 700 ° C. for 1 hour in a nitrogen atmosphere. Asked.
<実施例1−1:軟磁性粒子粉末の製造>
軟磁性金属粒子粉末A(種類:鉄粉、粒子形状:粒状、平均粒子径:115.0μm、比抵抗:116.2mΩ・cm)5kgと、酸化物微粒子A(種類:アルミナ、平均粒子径:13nm)50gとを重力式ミキサを用いてプレミックスし、混合粒子粉末を得た。得られた混合粒子粉末は、無作為に5点サンプリングし、蛍光X線により混合粒子粉末中の酸化物微粒子Aの含有量が、5点とも、仕込み時の軟磁性金属粒子粉末Aと酸化物微粒子Aとの配合比とほぼ一致することを確認した。
<Example 1-1: Production of soft magnetic particle powder>
Soft magnetic metal particle powder A (type: iron powder, particle shape: granular, average particle diameter: 115.0 μm, specific resistance: 116.2 mΩ · cm) 5 kg and oxide fine particles A (type: alumina, average particle diameter: 13 gm) was premixed with a gravitational mixer to obtain mixed particle powder. The obtained mixed particle powder was randomly sampled at five points, and the content of the oxide fine particles A in the mixed particle powder was measured by fluorescent X-rays at all five points. It was confirmed that the blending ratio with the fine particles A was almost the same.
次いで、得られた混合粒子粉末1010gを高速せん断ミルに入れ、2000rpmの回転数で10分間高速せん断処理を行い、軟磁性粒子粉末を得た。 Next, 1010 g of the obtained mixed particle powder was put into a high-speed shearing mill, and subjected to high-speed shearing treatment at a rotational speed of 2000 rpm for 10 minutes to obtain soft magnetic particle powder.
得られた軟磁性粒子粉末は、平均粒子径が115.3μmの粒状粒子であり、比抵抗は2376mΩ・cm、耐熱性は606%であった。絶縁層を構成する酸化物微粒子はAl換算で0.53重量%であり、軟磁性金属粒子と酸化物微粒子との粒径比は8846であった。 The obtained soft magnetic particle powder was a granular particle having an average particle diameter of 115.3 μm, a specific resistance of 2376 mΩ · cm, and a heat resistance of 606%. The oxide fine particles constituting the insulating layer was 0.53% by weight in terms of Al, and the particle size ratio of the soft magnetic metal particles to the oxide fine particles was 8846.
電子顕微鏡観察の結果、絶縁層の形成に用いた酸化物微粒子Aが軟磁性金属粒子粉末Aの粒子表面にほぼ均一に形成されていること、及び、EDXのマッピングにより、アルミニウムが軟磁性金属粒子粉末Aの粒子表面にムラなく存在していることを確認した。 As a result of observation by an electron microscope, the oxide fine particles A used for forming the insulating layer are formed almost uniformly on the particle surface of the soft magnetic metal particle powder A, and aluminum is soft magnetic metal particles by EDX mapping. It was confirmed that the powder A was present evenly on the particle surface.
<実施例2−1:圧粉磁心の製造>
前記軟磁性粒子粉末6.0gを秤量し、ステアリン酸亜鉛を塗布した金型を用い、成形圧力686MPaでリング状(φ20×φ10mm)に圧縮成形し、圧粉磁心(リング成形体)を得た。
<Example 2-1: Production of dust core>
6.0 g of the soft magnetic particle powder was weighed and compression molded into a ring shape (φ20 × φ10 mm) at a molding pressure of 686 MPa using a die coated with zinc stearate to obtain a dust core (ring compact). .
得られた圧粉磁心の、600℃で1時間焼鈍後の比抵抗(600℃)は160mΩ・cm、700℃で1時間焼鈍後の比抵抗(700℃)は68mΩ・cmであった。 The specific resistance (600 ° C.) after annealing at 600 ° C. for 1 hour of the obtained powder magnetic core was 160 mΩ · cm, and the specific resistance (700 ° C.) after annealing at 700 ° C. for 1 hour was 68 mΩ · cm.
前記実施例1−1及び2−1に従って軟磁性粒子粉末及び圧粉磁心を作製した。各製造条件及び得られた軟磁性粒子粉末及び圧粉磁心の諸特性を示す。 Soft magnetic particle powders and dust cores were prepared according to Examples 1-1 and 2-1. Various characteristics of each production condition and the obtained soft magnetic particle powder and dust core are shown.
軟磁性金属粒子A〜E:
被処理粒子粉末として表1に示す特性を有する軟磁性金属粒子粉末を用意した。
Soft magnetic metal particles A to E:
A soft magnetic metal particle powder having the characteristics shown in Table 1 was prepared as a particle to be treated.
酸化物微粒子A〜E:
絶縁層を構成する酸化物微粒子として表2に示す特性を有する酸化物微粒子を用意した。
Oxide fine particles A to E:
Oxide fine particles having the characteristics shown in Table 2 were prepared as oxide fine particles constituting the insulating layer.
実施例1−2〜1−5、比較例1−1〜1−3:
軟磁性金属粒子粉末の種類、酸化物微粒子の種類及び添加量を種々変化させた以外は、前記実施例1−1と同様にして軟磁性粒子粉末を得た。
Examples 1-2 to 1-5, Comparative Examples 1-1 to 1-3:
A soft magnetic particle powder was obtained in the same manner as in Example 1-1 except that the type of soft magnetic metal particle powder, the type of oxide fine particles, and the amount added were variously changed.
このときの製造条件を表3に、得られた軟磁性粒子粉末の諸特性を表4に示す。 The production conditions at this time are shown in Table 3, and various properties of the obtained soft magnetic particle powder are shown in Table 4.
なお、比較例1−1では、軟磁性金属粒子粉末A 1kgと、酸化物微粒子A 10gとをプレミックスすることなく高速せん断ミルに入れ、2000rpmの回転数で10分間高速せん断処理を行い、比較例1−1の軟磁性粒子粉末を得た。 In Comparative Example 1-1, 1 kg of soft magnetic metal particle powder A and 10 g of oxide fine particles A were put in a high-speed shearing mill without premixing, and subjected to high-speed shearing treatment for 10 minutes at a rotational speed of 2000 rpm. The soft magnetic particle powder of Example 1-1 was obtained.
また、比較例1−2では、軟磁性金属粒子粉末A 5kgと、酸化物微粒子A50gとをエッジランナー「MPUV−2型」(製品名、株式会社松本鋳造鉄工所製)(外部容器が固定されたタイプのミル)に投入し、588N/cmの線荷重で20分間プレミックスし、混合粒子粉末を得た。得られた混合粒子粉末は、無作為に5点サンプリングし、蛍光X線を使用して、混合粒子粉末中の酸化物微粒子Aの含有量を調べたが、5点とも軟磁性金属粒子粉末Aと酸化物微粒子Aの配合量とは一致せず、ばらつきが大きいものであった。次いで、得られた混合粒子粉末1010gを高速せん断ミルに入れ、2000rpmの回転数で10分間高速せん断処理を行い、比較例1−2の軟磁性粒子粉末を得た。 Further, in Comparative Example 1-2, 5 kg of soft magnetic metal particle powder A and 50 g of oxide fine particles A were used as an edge runner “MPUV-2 type” (product name, manufactured by Matsumoto Casting Co., Ltd.) (an external container was fixed). Was mixed for 20 minutes at a line load of 588 N / cm to obtain mixed particle powder. The obtained mixed particle powder was randomly sampled at five points, and the content of oxide fine particles A in the mixed particle powder was examined using fluorescent X-rays. And the amount of oxide fine particles A were not consistent, and the variation was large. Next, 1010 g of the obtained mixed particle powder was put in a high-speed shearing mill, and subjected to high-speed shearing treatment at a rotation speed of 2000 rpm for 10 minutes to obtain a soft magnetic particle powder of Comparative Example 1-2.
実施例2−2〜2−5、比較例2−1〜2−8:
軟磁性粒子粉末の種類を種々変化させた以外は、前記実施例2−1と同様にして圧粉磁心を得た。
Examples 2-2 to 2-5, comparative examples 2-1 to 2-8:
A dust core was obtained in the same manner as in Example 2-1, except that various types of soft magnetic particle powder were used.
得られた圧粉磁心の諸特性を表5に示す。 Table 5 shows various characteristics of the obtained dust core.
本発明に係る軟磁性材料は、耐熱性に優れた絶縁層を有しているので圧粉磁心用軟磁性材料として好適である。 Since the soft magnetic material according to the present invention has an insulating layer having excellent heat resistance, it is suitable as a soft magnetic material for a dust core.
本発明に係る圧粉磁心は、前記軟磁性粒子粉末を用いたことにより、高温で焼成した場合においても比抵抗が低下しにくいので、高性能圧粉磁心として好適である。
The powder magnetic core according to the present invention is suitable as a high-performance powder magnetic core because the use of the soft magnetic particle powder prevents specific resistance from being lowered even when fired at a high temperature.
Claims (5)
A dust core obtained by compression-molding the soft magnetic material particle powder according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028110A JP5310988B2 (en) | 2008-02-07 | 2008-02-07 | SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028110A JP5310988B2 (en) | 2008-02-07 | 2008-02-07 | SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009188270A true JP2009188270A (en) | 2009-08-20 |
JP5310988B2 JP5310988B2 (en) | 2013-10-09 |
Family
ID=41071205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008028110A Active JP5310988B2 (en) | 2008-02-07 | 2008-02-07 | SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5310988B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016086124A (en) * | 2014-10-28 | 2016-05-19 | アイシン精機株式会社 | Method for manufacturing soft magnetic material |
JP2016157753A (en) * | 2015-02-24 | 2016-09-01 | 株式会社豊田中央研究所 | Powder magnetic core and manufacturing method thereof |
JP2019192868A (en) * | 2018-04-27 | 2019-10-31 | セイコーエプソン株式会社 | Insulator coating soft magnetic powder, dust core, magnetic element, electronic apparatus, and moving body |
JP2021082717A (en) * | 2019-11-19 | 2021-05-27 | 小林 博 | Method for manufacturing powder magnetic core obtained by connecting soft magnetic powders with friction bonding of aluminum oxide fine particles by insulating soft magnetic powder with aggregate of aluminum oxide powders |
CN113053651A (en) * | 2021-03-24 | 2021-06-29 | 福建尚辉润德新材料科技有限公司 | Preparation method of soft magnetic composite material and soft magnetic composite material |
CN113363043A (en) * | 2020-03-05 | 2021-09-07 | 精工爱普生株式会社 | Soft magnetic powder coated with insulator, dust core, magnetic element, and electronic device |
US11456098B2 (en) | 2018-02-28 | 2022-09-27 | Seiko Epson Corporation | Insulator-coated soft magnetic powder, method for producing insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle |
WO2023188780A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社村田製作所 | Method for producing magnetic core and method for producing coil component |
US11901101B2 (en) | 2021-05-18 | 2024-02-13 | Seiko Epson Corporation | Insulating material-coated soft magnetic powder, dust core, magnetic element, electronic device, and moving body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244706A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Manufacture of iron core |
JP2006128521A (en) * | 2004-10-29 | 2006-05-18 | Jfe Steel Kk | Dust core and soft magnetic metal powder therefor |
JP2007019134A (en) * | 2005-07-06 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Method of manufacturing composite magnetic material |
-
2008
- 2008-02-07 JP JP2008028110A patent/JP5310988B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244706A (en) * | 1987-03-31 | 1988-10-12 | Toshiba Corp | Manufacture of iron core |
JP2006128521A (en) * | 2004-10-29 | 2006-05-18 | Jfe Steel Kk | Dust core and soft magnetic metal powder therefor |
JP2007019134A (en) * | 2005-07-06 | 2007-01-25 | Matsushita Electric Ind Co Ltd | Method of manufacturing composite magnetic material |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016086124A (en) * | 2014-10-28 | 2016-05-19 | アイシン精機株式会社 | Method for manufacturing soft magnetic material |
JP2016157753A (en) * | 2015-02-24 | 2016-09-01 | 株式会社豊田中央研究所 | Powder magnetic core and manufacturing method thereof |
US11456098B2 (en) | 2018-02-28 | 2022-09-27 | Seiko Epson Corporation | Insulator-coated soft magnetic powder, method for producing insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle |
US11289254B2 (en) | 2018-04-27 | 2022-03-29 | Seiko Epson Corporation | Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle |
JP2019192868A (en) * | 2018-04-27 | 2019-10-31 | セイコーエプソン株式会社 | Insulator coating soft magnetic powder, dust core, magnetic element, electronic apparatus, and moving body |
JP2021082717A (en) * | 2019-11-19 | 2021-05-27 | 小林 博 | Method for manufacturing powder magnetic core obtained by connecting soft magnetic powders with friction bonding of aluminum oxide fine particles by insulating soft magnetic powder with aggregate of aluminum oxide powders |
JP7253202B2 (en) | 2019-11-19 | 2023-04-06 | 博 小林 | A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles. |
US20210280347A1 (en) * | 2020-03-05 | 2021-09-09 | Seiko Epson Corporation | Insulating material coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and moving body |
JP2021141203A (en) * | 2020-03-05 | 2021-09-16 | セイコーエプソン株式会社 | Insulator coating soft magnetic powder, dust core, magnetic element, electronic apparatus, and movable body |
CN113363043A (en) * | 2020-03-05 | 2021-09-07 | 精工爱普生株式会社 | Soft magnetic powder coated with insulator, dust core, magnetic element, and electronic device |
JP7459568B2 (en) | 2020-03-05 | 2024-04-02 | セイコーエプソン株式会社 | Insulating material-coated soft magnetic powder, dust core, magnetic element, electronic device, and mobile object |
CN113363043B (en) * | 2020-03-05 | 2024-05-31 | 精工爱普生株式会社 | Soft magnetic powder coated with insulator, powder magnetic core, magnetic element, and electronic device |
CN113053651A (en) * | 2021-03-24 | 2021-06-29 | 福建尚辉润德新材料科技有限公司 | Preparation method of soft magnetic composite material and soft magnetic composite material |
US11901101B2 (en) | 2021-05-18 | 2024-02-13 | Seiko Epson Corporation | Insulating material-coated soft magnetic powder, dust core, magnetic element, electronic device, and moving body |
WO2023188780A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社村田製作所 | Method for producing magnetic core and method for producing coil component |
Also Published As
Publication number | Publication date |
---|---|
JP5310988B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5310988B2 (en) | SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER | |
JP5728987B2 (en) | Dust core | |
JP4706411B2 (en) | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core | |
TWI294321B (en) | Method for manufacturing of insulated soft magnetic metal powder formed body | |
WO2017018264A1 (en) | Dust core, electromagnetic component and method for producing dust core | |
TWI406305B (en) | Iron-based soft magnetic powder and dust core for powder core | |
JP5071671B2 (en) | SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER | |
JP6511832B2 (en) | Soft magnetic metal powder and soft magnetic metal powder core using the powder | |
JP6700919B2 (en) | Silica-based insulating coated soft magnetic iron powder and method for producing the same | |
JP5920495B2 (en) | Soft magnetic metal powder and soft magnetic metal powder core using the powder | |
JP2009228107A (en) | Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core | |
JP2008063651A (en) | Iron based soft magnetic powder for dust core, its production method, and dust core | |
JP5916392B2 (en) | Powdered soft magnetic material, method for producing powdered magnetic material, and motor | |
JP6511831B2 (en) | Soft magnetic metal powder and soft magnetic metal powder core using the powder | |
JP7179617B2 (en) | Silica-based insulation-coated soft magnetic powder and method for producing the same | |
JP5439888B2 (en) | Composite magnetic material and method for producing the same | |
WO2012124032A1 (en) | Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core | |
JP2015103719A (en) | Powder-compact magnetic core, coil part, and method for manufacturing powder-compact magnetic core | |
JP5513922B2 (en) | Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core | |
JP6582745B2 (en) | Composite soft magnetic material and manufacturing method thereof | |
JP6609255B2 (en) | Soft magnetic powder mixture | |
JP2009032880A (en) | Iron-based soft magnetic powder for dust core for high frequency, and dust core | |
JP2007220876A (en) | Soft magnetic alloy consolidation object, and its manufacturing method | |
JP2007273929A (en) | Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method | |
JP2006183121A (en) | Iron based powder for powder magnetic core and powder magnetic core using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130618 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5310988 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |