JP7253202B2 - A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles. - Google Patents

A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles. Download PDF

Info

Publication number
JP7253202B2
JP7253202B2 JP2019209199A JP2019209199A JP7253202B2 JP 7253202 B2 JP7253202 B2 JP 7253202B2 JP 2019209199 A JP2019209199 A JP 2019209199A JP 2019209199 A JP2019209199 A JP 2019209199A JP 7253202 B2 JP7253202 B2 JP 7253202B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
flat
magnetic
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019209199A
Other languages
Japanese (ja)
Other versions
JP2021082717A (en
Inventor
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019209199A priority Critical patent/JP7253202B2/en
Publication of JP2021082717A publication Critical patent/JP2021082717A/en
Application granted granted Critical
Publication of JP7253202B2 publication Critical patent/JP7253202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、熱分解で酸化アルミニウムを析出するアルミニウム化合物の微細結晶の集まりを有機化合物中に析出させ、該有機化合物を金属ないしは合金からなる軟磁性扁平粉の表面に付着させ、さらに、有機化合物を気化させた後に、アルミニウム化合物を熱分解し、軟磁性扁平粉の表面に酸化アルミニウム微粒子の集まりを析出させる。この後、軟磁性扁平粉の集まりを金型に充填し、プレス機で軟磁性扁平粉の集まり圧縮し、プレス機が受ける反発力が継続して増加した際に、プレス機に依る圧縮を停止する。これによって、酸化アルミニウム微粒子が軟磁性扁平粉の表面に摩擦熱で接合するとともに、該酸化アルミニウム微粒子同士が摩擦熱で接合することで前記軟磁性扁平粉同士が結合され、該軟磁性扁平粉の集まりからなる圧縮成形体が金型内に製造される圧粉磁心の製造方法である。本製造方法は、軟磁性扁平粉が圧縮される直前にプレス機に依る圧縮を停止させるため、軟磁性扁平粉が塑性変形しない。このため、軟磁性扁平粉に加工歪が発生せず、圧縮成形体の形成後に、軟磁性扁平粉の保持力を元に戻す焼鈍処理が不要になる。 The present invention deposits a collection of fine crystals of an aluminum compound that deposits aluminum oxide by thermal decomposition in an organic compound, deposits the organic compound on the surface of a soft magnetic flat powder made of a metal or alloy, and furthermore, the organic compound is vaporized, the aluminum compound is thermally decomposed, and a group of aluminum oxide fine particles is deposited on the surface of the soft magnetic flat powder. After that, a mass of soft magnetic flat powder is filled into a mold, and the mass of soft magnetic flat powder is compressed by a press machine. When the repulsive force received by the press machine continues to increase, compression by the press machine is stopped. do. As a result, the aluminum oxide fine particles are bonded to the surface of the soft magnetic flat powder by frictional heat, and the aluminum oxide fine particles are bonded to each other by frictional heat, so that the soft magnetic flat powders are bonded to each other, and the soft magnetic flat powder is bonded. A method for manufacturing a powder magnetic core in which a compression-molded body consisting of an assembly is manufactured in a mold. In this manufacturing method, since compression by the pressing machine is stopped immediately before the soft magnetic flat powder is compressed, the soft magnetic flat powder is not plastically deformed. Therefore, the flat soft magnetic powder is not strained during processing, and the annealing treatment for restoring the holding force of the flat soft magnetic powder after forming the compact is unnecessary.

圧粉磁心は、表面を絶縁処理した軟磁性粉の集まりを金型に充填して圧縮し、この後、圧縮時に発生した軟磁性粉の加工歪を除去するため、圧縮成形体を焼鈍処理し、軟磁性粉の保持力を元に戻し、圧粉磁心を製造する。こうした圧粉磁心は、モータにおけるステーターやローターを構成する磁心や、電源回路におけるリアクトルやノイズフィルターやチョークコイルなどを構成する磁心として用いられている。これらの電気製品はいずれも汎用的な製品であり、圧粉磁心の製造費用が安価であることが求められる。
なお、表面が絶縁された軟磁性粉は、交流磁界での動作に際し、渦電流が軟磁性粉の内部に閉じ込められる。すなわち、渦電流は、軟磁性粉内に流れる渦電流と、軟磁性粉同士の間隙に流れる渦電流とが存在し、軟磁性粉の表面を絶縁物で絶縁化すると、絶縁物の絶縁性が高いほど、後者の渦電流が低減する。渦電流損失が交流磁界の周波数の2乗に比例するため、高い周波数ほど渦電流損失の低減効果が大きい。この渦電流損失は、電磁変換時のエネルギー損失となり、このエネルギー損失によって圧粉磁心が発熱する。従って、軟磁性粉の表面を絶縁化することで、圧粉磁心の発熱が低減される。
また、軟磁性粉を圧縮する際に、軟磁性粉が塑性変形し、軟磁性粉の加工歪によって保持力が増大する。これによって、軟磁性粉のヒステリシス損失が増大し、このヒステリシス損失は、電磁変換時のエネルギー損失となり、このエネルギー損失によって圧粉磁心が発熱する。このため、圧縮成形体を焼鈍して軟磁性粉の保持力を元に戻し、圧縮成形体からなる圧粉磁心の発熱を低減する。このように、電磁変換時のエネルギー損失は、渦電流損失とヒステリシス損失とからなり、両者を合わせて圧粉磁心の鉄損という。この鉄損によって圧粉磁心が発熱するため、軟磁性粉を絶縁化する処理と、圧縮成形体を焼鈍する処理とが必要になる。
ところで、軟磁性粉の透磁率が大きいほど軟磁性粉が磁化されやすく、圧粉磁心に磁気エネルギーが取り込まれやすい。また、軟磁性粉の飽和磁束密度が大きいほど、磁化された圧粉磁心の磁気エネルギーは大きい。しかしながら、透磁率と飽和磁束密度との双方が大きい軟磁性粉は存在せず、相対的な大きさの比較になる。いっぽう、圧粉磁心の多くは、動作周波数が1-500kHzで、動作磁束密度が0.3-1.3テスラで用いられている。このため、圧粉磁心の動作周波数領域における飽和磁束密度に応じて、電気製品に適応する圧粉磁心を用いる。いっぽう、圧粉磁心の性能は、軟磁性粉の透磁率の周波数特性と、軟磁性粉の飽和磁束密度とに依存するため、圧粉磁心の適応範囲を広げるには、全ての軟磁性粉を原料として用いることができる圧粉磁心の製造方法が好ましい。
例えば、コバルト基アモルファスからなる軟磁性材料は、透磁率が大きいが、飽和磁束密度はMn・Zn系フェライトに近い小さな値を持つ。いっぽう、鉄基アモルファスからなる軟磁性材料は、飽和磁束密度が大きいが、透磁率は小さい。また、鉄粉は、軟磁性材料の中で飽和磁束密度が最も大きいが、透磁率は最も小さい。さらに、ニッケル・鉄系合金であるパーマロイの中で、Ni77質量%、Fe14質量%、Cu5質量%、Mo4質量%の組成からなる合金は、パーマロイの中で最も透磁率が大きいが、透磁率と飽和磁束密度とは、軟磁性材料の中間的な値を持つ。また、鉄・シリコーン・アルミニウム系合金の中で最も透磁率が大きいセンダスト(Fe9.6質量%、Si5.6質量%、その他がAlからなる合金で東北大学の登録商標)は、透磁率と飽和磁束密度との双方が、軟磁性材料の中間的な値を持つ。なお、最も安価な材料であるMn・Zn系フェライトは、透磁率が大きいが、飽和磁束密度は最も小さい。
こうした軟磁性材料に加え、アモルファス合金を急冷させた薄帯の新たな材料開発が行われている。例えば、鉄を主成分とし、シリコーンとボロンとを加え、さらに、微量の銅とニオブとを加え、これらの組成からなる高温溶解液を100万℃/秒の速度で急冷させたアモルファス合金薄帯が開発されている。このアモルファス急冷薄帯は、透磁率と飽和磁束密度との双方が相対的に大きい材料である(特許文献1を参照)。さらに、透磁率の値がセンダストに近く、飽和磁束密度の値がケイ素鋼に近い、アモルファス合金からなる薄帯が開発されている。この材料は、高濃度の鉄に、ケイ素、ホウ素、リン、銅を加えた合金からなる材料である(特許文献2を参照)。
いっぽう、軟磁性材料の中で、Mn-Zn系フェライトとNi-Zn系フェライトは、延性と展性とを持たず、衝撃に弱い脆い材料であるため、焼結体で磁心を形成する。いっぽう、体積抵抗率は、Mn・Zn系フェライトが1×10Ω・cmで、Ni-Zn系フェライトが1×10Ω・cmからなる絶縁体である。従って、焼結体内に流れる渦電流は小さい。その他の軟磁性材料はいずれも導電性の金属ないしは合金であり、軟磁性粉の内部を流れる渦電流は大きく、軟磁性粉を絶縁化し、渦電流を軟磁性粉の内部に閉じ込める。また、金属ないしは合金は、延性と展性とを持ち、圧縮応力によって弾性変形及び塑性変形する。従って、金属ないしは合金からなる軟磁性粉の表面を絶縁化し、該表面が絶縁化された金属ないしは合金からなる軟磁性粉の集まりを金型内で圧縮し、塑性変形した軟磁性粉同士の絡み合いで圧縮成形体に機械的強度をもたらし、圧粉磁心とする。本発明における圧粉磁心は、軟磁性粉の集まりを金型内で圧縮させるため、金属ないしは合金からなる軟磁性粉を用いる。
Powder magnetic cores are produced by filling a mass of soft magnetic powder with an insulated surface in a mold and compressing it, and then annealing the compression molded body in order to remove the processing strain of the soft magnetic powder generated during compression. , restores the coercive force of the soft magnetic powder to produce a dust core. Such powder magnetic cores are used as magnetic cores forming stators and rotors in motors, and magnetic cores forming reactors, noise filters, choke coils, and the like in power supply circuits. All of these electrical products are general-purpose products, and it is required that the manufacturing cost of the dust core be low.
In the soft magnetic powder whose surface is insulated, eddy currents are confined inside the soft magnetic powder during operation in an AC magnetic field. That is, eddy currents include eddy currents flowing in the soft magnetic powder and eddy currents flowing in the gaps between the soft magnetic powders. The higher, the lower the eddy currents of the latter. Since the eddy current loss is proportional to the square of the frequency of the alternating magnetic field, the higher the frequency, the greater the effect of reducing the eddy current loss. This eddy current loss results in energy loss during electromagnetic conversion, and this energy loss generates heat in the dust core. Therefore, by insulating the surface of the soft magnetic powder, heat generation of the powder magnetic core is reduced.
In addition, when the soft magnetic powder is compressed, the soft magnetic powder is plastically deformed, and processing distortion of the soft magnetic powder increases the holding force. As a result, the hysteresis loss of the soft magnetic powder increases, this hysteresis loss becomes energy loss during electromagnetic conversion, and this energy loss causes the dust core to generate heat. For this reason, the compression-molded body is annealed to restore the holding power of the soft magnetic powder to reduce the heat generation of the powder magnetic core made of the compression-molded body. Thus, energy loss during electromagnetic conversion consists of eddy current loss and hysteresis loss, and both are collectively referred to as iron loss of the dust core. Since the dust core generates heat due to the iron loss, it is necessary to insulate the soft magnetic powder and to anneal the compact.
By the way, the higher the magnetic permeability of the soft magnetic powder, the easier the soft magnetic powder is magnetized, and the easier the magnetic energy is taken into the dust core. Moreover, the magnetic energy of the magnetized dust core increases as the saturation magnetic flux density of the soft magnetic powder increases. However, there is no soft magnetic powder having both high permeability and high saturation magnetic flux density, and the comparison is relative. On the other hand, most dust cores are used at operating frequencies of 1-500 kHz and operating magnetic flux densities of 0.3-1.3 tesla. Therefore, according to the saturation magnetic flux density in the operating frequency range of the powder magnetic core, a powder magnetic core suitable for electrical products is used. On the other hand, the performance of the dust core depends on the frequency characteristics of the magnetic permeability of the soft magnetic powder and the saturation magnetic flux density of the soft magnetic powder. A method for producing a dust core that can be used as a raw material is preferred.
For example, a cobalt-based amorphous soft magnetic material has a high magnetic permeability but a small saturation magnetic flux density close to that of Mn-Zn ferrite. On the other hand, iron-based amorphous soft magnetic materials have a high saturation magnetic flux density but a low magnetic permeability. Iron powder has the highest saturation magnetic flux density among soft magnetic materials, but the lowest magnetic permeability. Furthermore, among permalloys, which are nickel-iron alloys, an alloy composed of 77% by mass of Ni, 14% by mass of Fe, 5% by mass of Cu, and 4% by mass of Mo has the highest magnetic permeability among the permalloys. The saturation magnetic flux density has an intermediate value of soft magnetic materials. In addition, Sendust (an alloy consisting of 9.6 mass% Fe, 5.6 mass% Si, and other parts Al, registered trademark of Tohoku University), which has the highest magnetic permeability among iron-silicon-aluminum alloys, has a magnetic permeability and saturation and magnetic flux density have intermediate values for soft magnetic materials. Mn-Zn ferrite, which is the cheapest material, has a high magnetic permeability but the lowest saturation magnetic flux density.
In addition to such soft magnetic materials, new thin ribbon materials are being developed by quenching amorphous alloys. For example, an amorphous alloy ribbon obtained by quenching a high-temperature solution composed of, for example, iron as a main component, silicone and boron, and trace amounts of copper and niobium, at a rate of 1,000,000°C/sec. is being developed. This amorphous quench ribbon is a material with relatively high magnetic permeability and saturation magnetic flux density (see Patent Document 1). Further, a thin ribbon made of an amorphous alloy has been developed, which has a magnetic permeability value close to that of sendust and a saturation magnetic flux density value close to that of silicon steel. This material is an alloy of high-concentration iron to which silicon, boron, phosphorus, and copper are added (see Patent Document 2).
On the other hand, among soft magnetic materials, Mn--Zn system ferrite and Ni--Zn system ferrite do not have ductility and malleability, and are brittle materials that are weak against impact, so they form a magnetic core with a sintered body. On the other hand, the volume resistivity of the Mn.Zn ferrite is 1×10 3 Ω·cm, and the Ni—Zn ferrite is 1×10 6 Ω·cm. Therefore, the eddy current flowing in the sintered body is small. All other soft magnetic materials are conductive metals or alloys, and the eddy current flowing inside the soft magnetic powder is large, so that the soft magnetic powder is insulated and the eddy current is trapped inside the soft magnetic powder. Also, metals or alloys have ductility and malleability, and are elastically and plastically deformed by compressive stress. Therefore, the surface of the soft magnetic powder made of metal or alloy is insulated, and a mass of soft magnetic powder made of metal or alloy with the surface insulated is compressed in a mold to entangle the plastically deformed soft magnetic powder. brings about mechanical strength to the compression molded body to obtain a powder magnetic core. The powder magnetic core in the present invention uses soft magnetic powder made of metal or alloy in order to compress a mass of soft magnetic powder in a mold.

前記したように、圧粉磁心の製造に当たり、表面を絶縁化した軟磁性粉の集まりを金型内に充填し、該軟磁性粉の集まりを金型内で単純に圧縮し、塑性変形した軟磁性粉同士の絡み合いで一定の機械的強度を持つ圧粉磁心を金型に製造する。つまり、軟磁性粉の集まりを単純に圧縮すると、軟磁性粉が塑性変形する現象と、軟磁性粉が塑性変形することで空隙が形成され、この空隙を埋めるように軟磁性粉が再配列する現象とが起こる。軟磁性粉の再配列は比較的小さな圧縮圧力で終了するが、圧縮圧力の増大と共に、軟磁性粉の塑性変形は進み、軟磁性粉の集まりの空隙が低減され、圧縮密度が高まる。これによって、磁化された圧粉磁心の磁気エネルギーが増大する。また、軟磁性粉の集まりは一定の粒度分布を持つため、粒径が異なる軟磁性粉が同時に塑性変形し、該塑性変形した粒径が異なる軟磁性粉が隣接することで、軟磁性粉同士が絡み合い、該軟磁性粉同士の絡み合いが進むことで、軟磁性粉同士の結合が進み、圧粉磁心の機械的強度が実現する。従って、圧粉磁心は、軟磁性粉の集まりを単純に圧縮し、塑性変形が進んだ軟磁性粉によって構成される。しかし、軟磁性粉の塑性変形が進むほど、軟磁性粉の加工歪が増大し、これによって、軟磁性粉の保持力が増大し、軟磁性粉のヒステリシス損失が増大する。これによって、圧粉磁心が発熱する。このヒステリシス損失は、軟磁性粉内の渦電流損失より大きい。このため、塑性変形の進行度に応じて、圧縮成形体を還元雰囲気の500-800℃で焼鈍し、軟磁性粉の加工歪を除去し、軟磁性粉の保持力を元の値に戻す必要がある。いっぽう、軟磁性粉の硬度が高いほど、また、軟磁性粉の集まりにおける空隙を少なくするほど、大きな圧縮圧力が必要になり、軟磁性粉の加工歪が増大し、歪取り焼鈍の温度が高まる。従って、軟磁性粉の保持力を元の値に戻すには、耐熱性の高い無機材料からなる絶縁物質によって、軟磁性粉を絶縁化させる必要がある。従って、軟磁性粉を絶縁化させる材料の耐熱性によって、軟磁性粉の保持力の復元が左右される。例えば、耐熱性が低い合成樹脂に依って軟磁性粉を絶縁化させた圧粉磁心では、200℃前後の樹脂硬化を兼ねた熱処理であるため、保持力の復元効果は殆どない。
いっぽう、耐熱性の高い無機材料で軟磁性粉を絶縁化させ、歪取り焼鈍の温度を高めると、軟磁性粉を絶縁化させる処理費用と焼鈍費用とが増大する。このように、歪取り焼鈍の処理が、圧粉磁心の性能と製造コストとを大きく左右する。従って、歪取り焼鈍が不要な圧粉磁心の製造方法であれば、ヒステリシス損失が少ない圧粉磁心が製造され、かつ、安価な圧粉磁心が製造される。
例えば、アトマイズ鉄粉はビッカース硬度が75-87HVで、軟磁性粉の中で最も硬度が低く、圧縮成形体の圧縮密度は鉄の密度の90%に近い。また、保持力を元に戻す焼鈍温度は、500-600℃と低い。しかし、アトマイズ鉄粉は、1kHzを超えた周波数において飽和磁束密度が急激に低下する。
これに対し、センダスト(東北大学の登録商標)は、不純物を取り除く処理を兼ねた1100℃にも及ぶ磁気焼鈍を行うが、ビッカース硬度が410-480HVと高い。いっぽう、飽和磁束密度は、鉄粉のように1kHzを超えた比較的低い周波数帯域で低減しない。しかし、保持力を元に戻す焼鈍温度が600-700℃と高く、センダストを絶縁化させる処理費用と焼鈍費用とが増大する。
さらに、アモルファス合金からなる薄帯は、10万-100万℃/秒の速度で急冷させるため硬度がさらに高い。例えば、前記した鉄を主成分とし、シリコーンとボロンとを加えたアモルファス合金薄帯のビッカース硬度は720HVと高く、焼鈍処理によっても硬度が著しく下がらない。従って、保持力を元に戻す焼鈍温度はセンダストより高く、アモルファス合金を絶縁化させる処理費用と焼鈍費用とがセンダストよりさらに高価になる。
従って、圧粉磁心を製造する際に、軟磁性粉が塑性変形しなければ、加工歪が発生せず、歪取り焼鈍が不要になる。また、軟磁性粉のヒステリシス損失が増大しない。しかし、圧縮成形体の機械的強度を実現するために、また、圧縮成形体の圧縮密度を高めるために、軟磁性粉の塑性変形以外の手段が必要になる。このため、第一に、軟磁性粉の配列を進め、高密度に集積した軟磁性粉の集まりを作成する必要がある。また、軟磁性粉を絶縁性が高い絶縁物で被覆できれば、軟磁性粉同士の間隙に流れる渦電流が低減する。第二に、絶縁物で覆われた軟磁性粉の集まりを圧縮する際に、軟磁性粉を覆う絶縁物同士が接合し、この絶縁物同士の接合で、軟磁性粉同士が結合すれば、圧縮成形体が形成できる。これによって、軟磁性粉を塑性変形させる必要がなくなる。従って、軟磁性粉の硬度に関わらず、軟磁性粉の表面を絶縁性の高い絶縁物で絶縁化し、該軟磁性粉の集まりを再配列させて高密度に集積させ、該軟磁性粉を圧縮した際に、絶縁物同士が接合し、絶縁物同士の接合で、軟磁性粉同士が結合すれば、鉄損が少なく安価な圧粉磁心が製造できる画期的な圧粉磁心の製造方法になる。
従って、新たな圧粉磁心の製造方法は、第一に、軟磁性粉の硬度に関わらず、全ての軟磁性粉を用い、第二に、絶縁性の高い物質で軟磁性粉を絶縁化し、第三に、軟磁性粉の集まりを高密度に集積させ、第四に、軟磁性粉の集まりを圧縮すると、絶縁物同士が接合し、絶縁物同士の接合で軟磁性粉同士が結合する、これら4つの特徴を持つ圧粉磁心の製造方法になる。こうした画期的な圧粉磁心の製造方法は、今までのところ存在しない。
As described above, in manufacturing a powder magnetic core, a mass of soft magnetic powder with an insulated surface is filled in a mold, and the mass of soft magnetic powder is simply compressed in the mold to produce a plastically deformed soft magnetic powder. A powder magnetic core with a certain mechanical strength is produced in a mold by entanglement of magnetic powder. In other words, when a group of soft magnetic powders is simply compressed, the phenomenon of plastic deformation of the soft magnetic powder and the plastic deformation of the soft magnetic powder form voids, and the soft magnetic powder rearranges to fill the voids. phenomena occur. The rearrangement of the soft magnetic powder ends with a relatively small compression pressure, but as the compression pressure increases, the plastic deformation of the soft magnetic powder progresses, the voids in the soft magnetic powder clusters are reduced, and the compression density increases. This increases the magnetic energy of the magnetized dust core. In addition, since the collection of soft magnetic powders has a certain particle size distribution, the soft magnetic powders with different particle sizes undergo plastic deformation at the same time, and the plastically deformed soft magnetic powders with different particle sizes are adjacent to each other. are entangled, and the entanglement of the soft magnetic powders progresses, so that the bonding between the soft magnetic powders progresses and the mechanical strength of the powder magnetic core is realized. Therefore, the powder magnetic core is composed of the soft magnetic powder that has undergone plastic deformation by simply compressing a collection of soft magnetic powder. However, as the plastic deformation of the soft magnetic powder progresses, the processing strain of the soft magnetic powder increases, thereby increasing the holding power of the soft magnetic powder and increasing the hysteresis loss of the soft magnetic powder. This causes the dust core to generate heat. This hysteresis loss is greater than the eddy current loss in the soft magnetic powder. Therefore, depending on the progress of plastic deformation, it is necessary to anneal the compression molded body at 500-800°C in a reducing atmosphere to remove the processing strain of the soft magnetic powder and return the holding power of the soft magnetic powder to its original value. There is On the other hand, the higher the hardness of the soft magnetic powder and the smaller the voids in the aggregate of the soft magnetic powder, the greater the compression pressure required, the greater the processing strain of the soft magnetic powder, and the higher the strain relief annealing temperature. . Therefore, in order to return the holding force of the soft magnetic powder to its original value, it is necessary to insulate the soft magnetic powder with an insulating material made of an inorganic material having high heat resistance. Therefore, the restoration of the holding force of the soft magnetic powder depends on the heat resistance of the material that insulates the soft magnetic powder. For example, in a powder magnetic core in which soft magnetic powder is insulated with a synthetic resin having low heat resistance, heat treatment at about 200° C. also serves to harden the resin, so there is almost no effect of restoring the coercive force.
On the other hand, if the soft magnetic powder is insulated with a highly heat-resistant inorganic material and the temperature of strain relief annealing is increased, the processing cost for insulating the soft magnetic powder and the annealing cost increase. As described above, the strain relief annealing process greatly affects the performance and manufacturing cost of the powder magnetic core. Therefore, a powder magnetic core manufacturing method that does not require strain relief annealing can produce a powder magnetic core with less hysteresis loss and at a low cost.
For example, atomized iron powder has a Vickers hardness of 75 to 87 HV, which is the lowest hardness among soft magnetic powders, and the compression density of the compact is close to 90% of the density of iron. Also, the annealing temperature for restoring the holding power is as low as 500-600°C. However, the atomized iron powder has a sharp drop in saturation magnetic flux density at frequencies above 1 kHz.
On the other hand, Sendust (registered trademark of Tohoku University) is magnetically annealed up to 1100° C. to remove impurities, but has a high Vickers hardness of 410-480 HV. On the other hand, the saturation magnetic flux density does not decrease in a relatively low frequency band exceeding 1 kHz, unlike iron powder. However, the annealing temperature for restoring the coercive force is as high as 600-700° C., and the processing and annealing costs for insulating the sendust are increased.
Further, the amorphous alloy ribbon is quenched at a rate of 100,000 to 1,000,000° C./second, and thus has a higher hardness. For example, the above-described amorphous alloy ribbon containing iron as a main component and to which silicone and boron are added has a high Vickers hardness of 720 HV, and the hardness does not significantly decrease even after annealing. Therefore, the annealing temperature to restore the coercive force is higher than Sendust, and the processing and annealing costs for insulating the amorphous alloy are more expensive than Sendust.
Therefore, if the soft magnetic powder is not plastically deformed when manufacturing the powder magnetic core, no working strain is generated, and strain relief annealing is not required. Also, the hysteresis loss of the soft magnetic powder does not increase. However, in order to achieve the mechanical strength of the compression molded body and to increase the compression density of the compression molded body, means other than plastic deformation of the soft magnetic powder are required. For this reason, first, it is necessary to proceed with the arrangement of the soft magnetic powder and create a cluster of soft magnetic powder that is densely accumulated. In addition, if the soft magnetic powder can be covered with an insulating material having high insulating properties, eddy currents flowing through the gaps between the soft magnetic powders can be reduced. Secondly, when compressing a group of soft magnetic powder covered with an insulator, if the insulators covering the soft magnetic powder are joined together, and the soft magnetic powders are joined together by joining the insulators together, Compression molded bodies can be formed. This eliminates the need to plastically deform the soft magnetic powder. Therefore, regardless of the hardness of the soft magnetic powder, the surface of the soft magnetic powder is insulated with an insulating material having a high insulating property, the clusters of the soft magnetic powder are rearranged and accumulated at high density, and the soft magnetic powder is compressed. When the insulators are bonded together, the insulators are bonded together, and the soft magnetic powders are bonded together. Become.
Therefore, the new powder magnetic core production method first uses all soft magnetic powder regardless of the hardness of the soft magnetic powder, and second, insulates the soft magnetic powder with a highly insulating substance, Thirdly, the clusters of soft magnetic powders are accumulated at high density. Fourthly, when the clusters of soft magnetic powders are compressed, the insulators are bonded together, and the soft magnetic powders are bonded together by bonding the insulators together. A method for manufacturing a powder magnetic core having these four characteristics is obtained. There is no such revolutionary method for manufacturing powder magnetic cores so far.

特開2001-300697号公報Japanese Patent Application Laid-Open No. 2001-300697 特開2016-094651号公報JP 2016-094651 A

山陽特殊鋼技報、Vol.7(2000)No.1、ページ29-34Sanyo Special Steel Technical Report, Vol. 7 (2000) No. 1, pages 29-34 粉体および冶金、47巻、7号、ページ711-716Powders and Metallurgy, Volume 47, Issue 7, Pages 711-716 川崎製鉄技報、33(2001)4、ページ184-187Kawasaki Steel Engineering Report, 33 (2001) 4, pp. 184-187 粉体および冶金、32巻、7号、ページ9-13Powders and Metallurgy, Volume 32, Issue 7, Pages 9-13 神戸製鋼技報、Vol.48、No.3(1998)、ページ25-28Kobe Steel Technical Report, Vol. 48, No. 3 (1998), pp. 25-28 神戸製鋼技報、Vol.50、No.3(2000)、ページ38Kobe Steel Technical Report, Vol. 50, No. 3 (2000), page 38 神戸製鋼技報、Vol.60、No.2(2010)、ページ82Kobe Steel Technical Report, Vol. 60, No. 2 (2010), page 82 第42回日本磁気学会学術講演概要集(2018)、13aC-3Abstracts of the 42nd Annual Meeting of the Magnetics Society of Japan (2018), 13aC-3

ここで、新たな圧粉磁心の製造方法を実現する上での課題を整理する。
前記したように、第一に絶縁性の高い物質で軟磁性粉を絶縁化し、第二に軟磁性粉の集まりを高密度に集積させ、第三に軟磁性粉の集まりを圧縮する際に、絶縁物同士が接合し、該絶縁物同士の接合で、軟磁性粉同士が結合する、第四に軟磁性粉の硬度に関わらず、全ての軟磁性粉を用いて圧粉磁心が製造できれば、従来の圧粉磁心より、第一に渦電流損失が少なく、第二に飽和磁束密度が高く、第三にヒステリシス損失の増大がなく、第四に軟磁性粉の磁気特性が反映された圧粉磁心が製造できる。このため、新たな製造方法は、次の4つの要件を備える必要がある。
第一の要件は、絶縁性の高い物質で軟磁性粉を満遍なく覆う。
第二の要件は、軟磁性粉の集まりを再配列させ、集積密度が高く、軟磁性粉の面同士が重なり合った軟磁性粉の集まりとする。すなわち、軟磁性粉の集まりの隙間に、相対的に粒径が小さい軟磁性粉が入り込む配列を進め、この後、軟磁性粉の面同士を重ね合わせる。さらに、軟磁性粉の面同士が重なり合った軟磁性粉の表面を絶縁物で覆う。また、絶縁物の重量を軟磁性粉の重量の1%より低くする。こうした集積密度が高い軟磁性粉の集まりを圧縮すると、圧粉成形体の密度は軟磁性粉の密度に近づく。これによって、圧粉磁心が磁化されると、磁化された圧粉磁心の磁気エネルギーが大きい。いっぽう、軟磁性粉の面方向が軟磁性粉の磁化容易軸方向であるため、全ての軟磁性粉を面同士で重ね合わせると、圧粉磁心の透磁率が増大し、磁化されやすくなる。この結果、磁化されやすくなった圧粉磁心の磁気エネルギーは大きい。
第三の要件は、圧縮成形体を作成する条件に関わる。すなわち、絶縁被覆された軟磁性粉の集まりを金型に充填し、プレス機で軟磁性粉の集まりを圧縮すると、第一に、絶縁被覆された軟磁性粉の集まりが金型の形状に成形される。第二に、軟磁性粉を覆う絶縁物が継続して移動し、軟磁性粉の集まりの空隙を埋め、絶縁物の継続した移動で隣接する軟磁性粉も移動して再配列が進み、軟磁性粉の集積度がさらに高まる。第三に、絶縁物が移動できなくなると絶縁物同士が接触し、接触部に摩擦熱が発生し、該摩擦熱で絶縁物同士が接合される。さらに、絶縁物同士の接合することで、軟磁性粉同士が結合され、軟磁性粉の集まりからなる圧粉磁心が金型内に製造される。第四に、絶縁物同士が接触して摩擦熱で結合する際に、プレス機が受ける反発力が継続して増大し、この時点でプレス機に依る圧縮を停止する。これによって、軟磁性粉が圧縮される直前で圧縮が停止され、軟磁性粉は塑性変形しない。このため、圧粉磁心のヒステリシス損失が増大しない。
第四に、軟磁性粉の硬度に関わらず、全ての軟磁性粉を用い、前記3つの要件を満たして圧粉磁心を製造する。
上記の4つの要件を実現する軟磁性粉の処理方法と絶縁物に関わる条件を検討する。
第一の条件は、軟磁性粉の集積度を高めることである。すなわち、軟磁性粉の集まりを液体中で前後、左右、上下の3方向に繰り返し移動させ、軟磁性粉の配列を液体中で進め、軟磁性粉の集まりの集積密度を高める。つまり、液体中では軟磁性粉同士が直接接触しないため、軟磁性粉が容易に移動する。従って、軟磁性粉の集まりを液体中で前後、左右、上下の3方向に繰り返し移動させると、相対的に粒径の小さい軟磁性粉が軟磁性粉の集まりの隙間に入り込む配列と、相対的に粒径の小さい軟磁性粉が軟磁性粉の集まりの上方に移動する配列が進む。最後に、軟磁性粉の集まりを上下方向に移動させると、軟磁性粉の面同士が重なり合う。
第二の条件は、絶縁物に関わる。絶縁物は、絶縁性が高く、耐熱性が高く、軟磁性粉より硬度が高く、大きさが、軟磁性粉の平均粒径より3桁小さく、軟磁性粉の厚みより2桁小さい微粒子とし、微粒子の集まりの重量が軟磁性粉の集まりの重量の1%より少なくする。こうした性質を兼備する微粒子で軟磁性粉を覆い、軟磁性粉の集まりを圧縮する。微粒子が圧縮応力を受けると継続して移動し、軟磁性粉同士の空隙を微粒子が埋める。また、微粒子が継続して移動すると、隣接する軟磁性粉が移動して再配列が進み、軟磁性粉の集積度がさらに高まる。さらに、微粒子が移動できなくなると微粒子同士が接触し、接触部に摩擦熱が発生し、該摩擦熱で微粒子同士が接合される。微粒子同士の接合によって軟磁性粉が結合され、軟磁性粉の集まりからなる圧粉磁心が金型内に製造される。いっぽう、微粒子同士が接触して摩擦熱で結合する際に、微粒子の数が極めて多いため、プレス機が受ける反発力が継続して増大し、この時点でプレス機に依る圧縮を停止する。これによって、軟磁性粉が圧縮される直前で圧縮が停止され、軟磁性粉は塑性変形しない。
つまり、上記の性質を兼備する微粒子の集まりで軟磁性粉を満遍なく覆い、該軟磁性粉の集まりを金型に充填し、該軟磁性粉の集まりをプレス機で圧縮する。この際、第一に、微粒子の集まりで覆われた軟磁性粉の集まりが金型の形状に成形される。第二に、微粒子が軟磁性粉の集まりの空隙を埋めるように継続して移動する。第三に、微粒子に隣接する軟磁性粉も移動して再配列し、軟磁性粉の集積度が高まる。第四に、微粒子が移動できる空隙がなくなると、微粒子同士が接触する。微粒子は、耐熱性が高く硬いため、微粒子は接触によって破壊されず、微粒子同士が接触する部位に過大な摩擦熱が発生し、接触部の異物ないしは不純物が気化した後に、清浄化された接触部で微粒子同士が摩擦熱で強固に接合する。また、軟磁性粉の表面と接触する微粒子は、軟磁性粉の表面と接触する部位に過大な摩擦熱が発生し、接触部の異物ないしは不純物が気化した後に、清浄化された軟磁性粉の接触部に摩擦熱で強固に接合する。第五に、微粒子同士が摩擦熱で接合する反応と、微粒子が軟磁性粉の表面に摩擦熱で接合する反応とが起こる際に、微粒子の数が極めて多いため、加圧圧力に対する反発力がプレス機に継続して発生し、この時点でプレス機に依る圧縮を停止する。これによって、軟磁性粉が圧縮される直前に加圧圧力が停止され、軟磁性粉は塑性変形しない。
第三の条件は、全ての軟磁性粉を用いて圧粉磁心を製造する。
ところで、従来の圧粉磁心の製造方法では、軟磁性粉の集まりを単純に圧縮して、軟磁性粉の塑性変形を進ませ、これによって、塑性変形した軟磁性粉同士の絡み合いが進み、圧縮成形体に必要となる機械的強度を持たせた。従って、前記した第一の条件に記載した、軟磁性粉の面同士が重なり合った集積度が高い軟磁性粉の集まりとし、軟磁性粉の集まりを圧縮すると、軟磁性粉同士が絡み合わない。このため、従来の圧粉磁心の製造方法では、軟磁性粉の集積度を高める処理は不要であり、軟磁性粉の集まりを単純に圧縮した。これに対し、新たな圧粉磁心の製造方法では、面同士で重なり合った軟磁性粉を、微粒子同士の接合で軟磁性粉を結合させる。微粒子の数が極めて多いため、摩擦熱による微粒子同士の接合によって、圧粉磁心は一定の機械的強度を持つ。
従って、上記の3つの条件を新たな圧粉磁心の製造方法に反映し、製造した圧粉磁心が、従来の圧粉磁心より、飽和磁束密度と透磁率とが増大し、渦電流損失が少なく、ヒステリシス損失の増大がなく、圧粉磁心が一定の機械的強度を持ち、安価な圧粉磁心が製造でき、また、製造する圧粉磁心の形状と大きさに制約がなければ、理想的な圧粉磁心の製造方法になる。さらに、硬度に関わらず全ての軟磁性粉が使用できれば、軟磁性粉の磁気特性が反映された圧粉磁心が形成できる。特に、透磁率の周波数特性が軟磁性粉の材質ごとに異なるため、高い周波数帯域でも、磁化されやすく、磁気エネルギーが取り込みやすい圧粉磁心が製造できる。この理想的な製造方法を実現するには幾つかの課題があり、これらの課題は、本発明が解決しようとする課題である。以下に本発明の課題を記載する。
第一の課題は、全ての軟磁性粉を原料として用い、液体中で軟磁性粉の集まりを処理し、軟磁性粉の配列を進め、集積密度が高く、面同士が重なり合った軟磁性粉の集まりを液体中に作成する。第二の課題は、軟磁性粉より硬度が高く、絶縁性に優れ、耐熱性が高く、大きさが、軟磁性粉の平均粒径より3桁小さく、軟磁性粉の厚みより2桁小さい微粒子の集まりを、軟磁性粉の表面に析出させる。第三の課題は、微粒子の集まりで覆われた軟磁性粉の集まりを圧縮し、互いに接触する微粒子同士を摩擦熱で接合させ、微粒子同士の接合で軟磁性粉同士を結合させる。第四の課題は、軟磁性粉の集まりを圧縮する際に、軟磁性粉が塑性変形しない。第五の課題は、軟磁性粉の液体中での処理から圧粉磁心の形成に至るまでの工程が、簡単な処理を連続して実施する製法である。第六の課題は、圧粉磁心の形状と大きさに制約がない。この結果、従来の圧粉磁心より優れた性能を持ち、従来の圧粉磁心に準じる機械的強度を持ち、より安価な費用で圧粉磁心が製造でき、製造される圧粉磁心の形状と大きさに制約がない。本発明の課題は、6つの課題を同時に解決する圧粉磁心の製造方法を実現することである。
Here, problems in realizing a new method for manufacturing a powder magnetic core are sorted out.
As described above, firstly, the soft magnetic powder is insulated with a highly insulating substance, secondly, the aggregate of the soft magnetic powder is densely accumulated, and thirdly, when compressing the aggregate of the soft magnetic powder, Insulators are bonded together, and soft magnetic powders are bonded together by bonding the insulators together. Compared to conventional dust cores, 1) less eddy current loss, 2) higher saturation magnetic flux density, 3) no increase in hysteresis loss, and 4) dust that reflects the magnetic properties of soft magnetic powder. A magnetic core can be manufactured. Therefore, the new manufacturing method should meet the following four requirements.
The first requirement is to evenly cover the soft magnetic powder with a highly insulating substance.
The second requirement is to rearrange the groups of soft magnetic powders so that the groups of soft magnetic powders have a high integration density and the surfaces of the soft magnetic powders overlap each other. That is, the arrangement is advanced so that the soft magnetic powder particles having a relatively small particle size enter the gaps between the clusters of the soft magnetic powder particles, and then the surfaces of the soft magnetic powder particles are overlapped. Furthermore, the surface of the soft magnetic powder, in which the surfaces of the soft magnetic powder overlap each other, is covered with an insulator. Also, the weight of the insulator is less than 1% of the weight of the soft magnetic powder. When a mass of soft magnetic powder with such a high integration density is compressed, the density of the green compact approaches the density of the soft magnetic powder. Accordingly, when the powder magnetic core is magnetized, the magnetic energy of the magnetized powder magnetic core is large. On the other hand, since the surface direction of the soft magnetic powder is the easy magnetization axis direction of the soft magnetic powder, when all the soft magnetic powders are superimposed face to face, the magnetic permeability of the dust core increases, making it easier to magnetize. As a result, the magnetic energy of the easily magnetized dust core is large.
The third requirement relates to the conditions under which the compression-molded body is created. That is, when a mass of soft magnetic powder coated with insulation is filled into a mold and the mass of soft magnetic powder is compressed with a press, first, the mass of soft magnetic powder coated with insulation is formed into the shape of the mold. be done. Second, the insulating material covering the soft magnetic powder continuously moves to fill the gaps in the aggregate of the soft magnetic powder. The degree of accumulation of the magnetic powder is further increased. Thirdly, when the insulators cannot move, the insulators come into contact with each other, frictional heat is generated at the contact portion, and the insulators are joined together by the frictional heat. Furthermore, by bonding the insulators together, the soft magnetic powders are bonded to each other, and a powder magnetic core composed of a collection of soft magnetic powders is manufactured in the mold. Fourth, when the insulators are brought into contact with each other and bonded by frictional heat, the repulsive force received by the press continues to increase, and at this point the compression by the press is stopped. As a result, the compression is stopped just before the soft magnetic powder is compressed, and the soft magnetic powder is not plastically deformed. Therefore, the hysteresis loss of the dust core does not increase.
Fourth, regardless of the hardness of the soft magnetic powder, all soft magnetic powders are used to manufacture the powder magnetic core while satisfying the above three requirements.
The method of processing the soft magnetic powder and the conditions related to the insulator to realize the above four requirements will be examined.
The first condition is to increase the density of the soft magnetic powder. That is, the clusters of soft magnetic powder are repeatedly moved in the liquid in the three directions of back and forth, left and right, and up and down to advance the arrangement of the soft magnetic particles in the liquid and increase the density of the clusters of soft magnetic powder. In other words, since the soft magnetic particles do not come into direct contact with each other in the liquid, the soft magnetic particles move easily. Therefore, when the cluster of soft magnetic powder is repeatedly moved in the three directions of back and forth, left and right, and up and down in the liquid, the soft magnetic powder having a relatively small particle size enters the gap of the cluster of soft magnetic powder. At the beginning, the arrangement in which the soft magnetic powder with a small particle size moves to the upper part of the cluster of soft magnetic powder advances. Finally, when the cluster of soft magnetic powder is moved vertically, the surfaces of the soft magnetic powder overlap each other.
The second condition concerns insulators. The insulator is fine particles having high insulating properties, high heat resistance, higher hardness than the soft magnetic powder, and a size three orders of magnitude smaller than the average particle diameter of the soft magnetic powder and two orders of magnitude smaller than the thickness of the soft magnetic powder, The weight of the aggregate of fine particles is less than 1% of the weight of the aggregate of soft magnetic powder. The soft magnetic powder is covered with fine particles having such properties, and the aggregate of the soft magnetic powder is compressed. When the microparticles receive compressive stress, they move continuously and fill the gaps between the soft magnetic particles. Further, when the fine particles continue to move, the adjacent soft magnetic particles move and rearrangement progresses, further increasing the degree of accumulation of the soft magnetic particles. Furthermore, when the particles cannot move, the particles come into contact with each other, and frictional heat is generated at the contact portion, and the particles are joined together by the frictional heat. The soft magnetic powder is bonded by bonding the fine particles together, and a powder magnetic core composed of a collection of the soft magnetic powder is manufactured in the mold. On the other hand, when the fine particles come into contact with each other and bond with each other by frictional heat, since the number of fine particles is extremely large, the repulsive force received by the pressing machine continues to increase, and at this point the compression by the pressing machine is stopped. As a result, the compression is stopped just before the soft magnetic powder is compressed, and the soft magnetic powder is not plastically deformed.
That is, the soft magnetic powder is evenly covered with a cluster of fine particles having the above properties, the soft magnetic powder cluster is filled in a mold, and the soft magnetic powder cluster is compressed with a press. At this time, first, the cluster of soft magnetic powder covered with the cluster of fine particles is molded into the shape of the mold. Second, the fine particles continuously move so as to fill the voids in the cluster of soft magnetic powder. Third, the soft magnetic powder adjacent to the fine particles also moves and rearranges, increasing the degree of accumulation of the soft magnetic powder. Fourth, when there is no space for the particles to move, the particles come into contact with each other. Since fine particles have high heat resistance and are hard, the fine particles are not destroyed by contact, and excessive frictional heat is generated at the portion where the fine particles come into contact with each other. At this point, the fine particles are strongly bonded to each other by frictional heat. In addition, the fine particles in contact with the surface of the soft magnetic powder generate excessive frictional heat at the portion that contacts the surface of the soft magnetic powder, and after the foreign matter or impurities in the contact portion are vaporized, the cleaned soft magnetic powder is removed. Firmly joins to the contact area by frictional heat. Fifth, when the reaction in which the fine particles are bonded to each other by frictional heat and the reaction in which the fine particles are bonded to the surface of the soft magnetic powder by frictional heat occur, the number of fine particles is extremely large, so the repulsive force against the applied pressure is increased. It continues to occur in the press machine, and at this point the compression by the press machine is stopped. As a result, the pressure is stopped immediately before the soft magnetic powder is compressed, and the soft magnetic powder is not plastically deformed.
The third condition is to manufacture dust cores using all soft magnetic powders.
By the way, in the conventional method of manufacturing a powder magnetic core, a mass of soft magnetic powder is simply compressed to promote plastic deformation of the soft magnetic powder. The mechanical strength required for the molded body was given. Therefore, when a group of soft magnetic powders having a high degree of accumulation in which the surfaces of the soft magnetic powders overlap each other is formed as described in the first condition, and the group of soft magnetic powders is compressed, the soft magnetic powders do not entangle with each other. For this reason, in the conventional method of manufacturing a powder magnetic core, a process for increasing the degree of accumulation of the soft magnetic powder is unnecessary, and the aggregate of the soft magnetic powder is simply compressed. On the other hand, in a new dust core manufacturing method, the soft magnetic powders that are overlapped face to face are joined together by joining the fine particles. Since the number of fine particles is extremely large, the powder magnetic core has a certain mechanical strength due to the joining of the fine particles by frictional heat.
Therefore, the above three conditions are reflected in the new powder magnetic core manufacturing method, and the manufactured powder magnetic core has higher saturation magnetic flux density and magnetic permeability than the conventional powder magnetic core, and has less eddy current loss. , there is no increase in hysteresis loss, the powder magnetic core has a certain mechanical strength, the powder magnetic core can be manufactured at low cost, and there are no restrictions on the shape and size of the powder magnetic core to be manufactured. It becomes a manufacturing method of powder magnetic core. Furthermore, if all soft magnetic powders can be used regardless of their hardness, dust cores reflecting the magnetic properties of the soft magnetic powders can be formed. In particular, since the frequency characteristics of the magnetic permeability differ depending on the material of the soft magnetic powder, it is possible to manufacture a powder magnetic core that is easily magnetized and absorbs magnetic energy even in a high frequency band. There are several problems in realizing this ideal manufacturing method, and these problems are the problems to be solved by the present invention. The problems of the present invention are described below.
The first issue is to use all soft magnetic powders as raw materials, process the clusters of soft magnetic powders in a liquid, promote the arrangement of soft magnetic powders, and create soft magnetic powders with high accumulation density and overlapping surfaces. Create a cluster in the liquid. The second problem is fine particles that are harder than soft magnetic powder, have excellent insulation properties, have high heat resistance, and are three orders of magnitude smaller than the average particle size of soft magnetic powder and two orders of magnitude smaller than the thickness of soft magnetic powder. is deposited on the surface of the soft magnetic powder. The third problem is to compress a group of soft magnetic powder covered with a group of fine particles, join the fine particles that are in contact with each other by frictional heat, and bond the soft magnetic powders together by joining the fine particles. The fourth problem is that the soft magnetic powder is not plastically deformed when the soft magnetic powder is compressed. The fifth problem is a manufacturing method in which the steps from the treatment of the soft magnetic powder in the liquid to the formation of the powder magnetic core are simple and continuous. The sixth problem is that there are no restrictions on the shape and size of the dust core. As a result, it has better performance than conventional powder magnetic cores, has mechanical strength equivalent to that of conventional powder magnetic cores, can be manufactured at a lower cost, and can be manufactured in various shapes and sizes. There are no restrictions on An object of the present invention is to realize a powder magnetic core manufacturing method that solves the six problems at the same time.

軟磁性扁平粉の扁平面同士の間隙に析出させるとともに、該軟磁性扁平粉を覆う酸化アルミニウム微粒子の集まりを圧縮し、該酸化アルミニウム微粒子同士が摩擦熱で接合されることで前記軟磁性扁平粉同士が結合された該軟磁性扁平粉の集まりからなる圧粉磁心の製造方法は、
熱分解で酸化アルミニウム微粒子を析出するアルミニウム化合物を、該酸化アルミニウム微粒子が析出する重量が、軟磁性扁平粉の集まりの重量の1/100より少ない重量として析出する該アルミニウム化合物をメタノールに分散し、該アルミニウム化合物のメタノール分散液を作成し、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、かつ、前記アルミニウム化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、前記メタノール分散液に混合して混合液を作成する、この後、加熱機能が併設された混合機を加振台の上に配置し、該混合機に前記混合液と前記軟磁性扁平粉の集まりを充填し、該混合機を回転および揺動させ、前記軟磁性扁平粉の集まりを前記混合液中に分散させる、さらに、加振機によって上下、左右、前後の3方向の振動を繰り返し発生させ、最後に上下方向の振動を発生させ、該加振機に依る振動を、前記加振台を介して前記混合機に伝え、該混合機内の前記軟磁性扁平粉の集まりを、前記混合液中で前記振動方向に繰り返し移動させ、該混合液中で前記軟磁性扁平粉の配列を進め、最後に上下方向の振動が加わることで、該軟磁性扁平粉の扁平面同士が前記混合液を介して重なり合い、前記混合機の底面に該底面の形状からなる前記軟磁性扁平粉の集まりが形成される、この後、前記混合機をメタノールの沸点に昇温する、これによって、前記アルミニウム化合物の微細結晶の集まりが前記有機化合物中に一斉に析出し、該アルミニウム化合物の微細結晶が析出した有機化合物が前記軟磁性扁平粉に付着し、該アルミニウム化合物の微細結晶が析出した有機化合物を介して前記軟磁性扁平粉の扁平面同士が重なり合った該軟磁性扁平粉の集まりが、前記混合機の底面に該底面の形状として形成される第一の工程と、
前記第一の工程で作成した軟磁性扁平粉の集まりを金型に充填し、該金型を前記アルミニウム化合物が熱分解する温度に昇温する、これによって、最初に、前記有機化合物が気化し、次に、前記アルミニウム化合物の微細結晶が熱分解し、前記軟磁性扁平粉の表面に酸化アルミニウム微粒子の集まりが一斉に析出し、該酸化アルミニウム微粒子の集まりが前記軟磁性扁平粉を覆う、この後、連続的に増大する加圧圧力を、プレス機によって前記軟磁性扁平粉の集まりに加え、該プレス機が受ける反発力が継続して増大した時点で該プレス機に依る加圧圧力を停止する、これによって、最初に、前記軟磁性扁平粉の集まりが前記金型の形状に成形され、次に、該軟磁性扁平粉の扁平面同士の間隙に酸化アルミニウム微粒子の集まりが析出し、さらに、前記酸化アルミニウム微粒子が継続して移動し、前記軟磁性扁平粉の集まりにおける空隙を埋め、該酸化アルミニウム微粒子が移動できなくなると、前記軟磁性扁平粉の表面と接触する前記酸化アルミニウム微粒子が該軟磁性扁平粉の表面に摩擦熱で接合し、また、互いに接触する前記酸化アルミニウム微粒子同士が接触部位で摩擦熱によって接合し、該酸化アルミニウム微粒子同士の接合で前記軟磁性扁平粉同士が結合され、該結合された軟磁性扁平粉の集まりからなる圧粉磁心が前記金型内に製造される第二の工程とからなり、
前記2つの工程を連続して実施することで、軟磁性扁平粉の扁平面同士の間隙に析出させるとともに、該軟磁性扁平粉を覆う酸化アルミニウム微粒子同士の接合で軟磁性扁平粉同士が結合された該軟磁性扁平粉の集まりからなる圧粉磁心が製造される、圧粉磁心の製造方法。
The soft magnetic flat powder is precipitated in the gaps between the flat surfaces of the soft magnetic flat powder, the aluminum oxide fine particles covering the soft magnetic flat powder are compressed, and the aluminum oxide fine particles are bonded to each other by frictional heat. A method for producing a powder magnetic core consisting of a collection of soft magnetic flat powders bonded together,
dispersing an aluminum compound that deposits aluminum oxide fine particles by thermal decomposition in methanol, wherein the weight of the aluminum oxide fine particles deposited is less than 1/100 of the weight of the aggregate of the soft magnetic flat powder; A methanol dispersion liquid of the aluminum compound is prepared, and the first property of dissolving or being miscible in methanol, the second property of having a viscosity higher than that of methanol, and the boiling point of the aluminum compound being higher than the boiling point of methanol. An organic compound having a third property lower than the thermal decomposition temperature is mixed with the methanol dispersion to prepare a mixed liquid. After that, a mixer equipped with a heating function is placed on a shaking table. , the mixer is filled with the mixed liquid and the cluster of the soft magnetic flat powder, the mixer is rotated and oscillated to disperse the cluster of the soft magnetic flat powder in the mixed liquid, and further vibrating Vibration in three directions, i.e., up and down, left and right, and back and forth, is repeatedly generated by the machine, and finally vibration in the vertical direction is generated. A collection of the soft magnetic flat powder in the mixer is repeatedly moved in the mixed liquid in the vibration direction, the soft magnetic flat powder is arranged in the mixed liquid, and finally a vertical vibration is applied. , the flat surfaces of the soft magnetic flat powder overlap each other through the mixed liquid, and a collection of the soft magnetic flat powder having the shape of the bottom surface is formed on the bottom surface of the mixer. By raising the temperature to the boiling point of methanol, a collection of fine crystals of the aluminum compound precipitates in the organic compound all at once, and the organic compound with the precipitated fine crystals of the aluminum compound adheres to the soft magnetic flat powder. , a collection of the soft magnetic flat powder, in which the flat surfaces of the soft magnetic flat powder overlap each other through the organic compound in which the fine crystals of the aluminum compound are precipitated, is formed on the bottom surface of the mixer in the shape of the bottom surface. a first step;
A mass of soft magnetic flat powder prepared in the first step is filled in a mold, and the mold is heated to a temperature at which the aluminum compound thermally decomposes, thereby first vaporizing the organic compound. Next, the fine crystals of the aluminum compound are thermally decomposed, and a group of aluminum oxide fine particles precipitates on the surface of the soft magnetic flat powder all at once, and the group of aluminum oxide fine particles covers the soft magnetic flat powder. After that, a presser applies a continuously increasing pressure to the aggregate of the soft magnetic flat powder, and when the repulsive force received by the press continues to increase, the pressurization by the press is stopped. As a result, first, the cluster of soft magnetic flat powder is molded into the shape of the mold, then the cluster of aluminum oxide fine particles precipitates in the gap between the flat surfaces of the soft magnetic flat powder, and further , the aluminum oxide fine particles continue to move to fill the gaps in the aggregate of the soft magnetic flat powder, and when the aluminum oxide fine particles become unable to move, the aluminum oxide fine particles in contact with the surface of the soft magnetic flat powder The surface of the soft magnetic flat powder is bonded by frictional heat, and the aluminum oxide fine particles that are in contact with each other are bonded by frictional heat at the contact portion, and the soft magnetic flat powder is bonded by the bonding of the aluminum oxide fine particles. and a second step in which a powder magnetic core composed of a collection of bonded soft magnetic flat powders is manufactured in the mold,
By continuously performing the above two steps, the soft magnetic flat powder is precipitated in the gaps between the flat surfaces of the soft magnetic flat powder, and the soft magnetic flat powder is bonded to each other by joining the aluminum oxide fine particles that cover the soft magnetic flat powder . and a method for producing a powder magnetic core, wherein a powder magnetic core is produced from an aggregate of the soft magnetic flat powder.

本発明は、液体中にある軟磁性扁平粉の集まりに3方向の振動を繰り返し加え、最後に、上下方向の振動を加え、液体中で軟磁性扁平粉の配列を進め、この後、軟磁性扁平粉の扁平面同士を重ね合わせる。次に、軟磁性扁平粉の平均粒径より3桁小さく、軟磁性扁平粉の厚みより2桁小さい40-60nmの大きさからなる粒状の酸化アルミニウムの微粒子の集まりを、軟磁性扁平粉の表面に析出させる。さらに、軟磁性扁平粉の集まりを金型に充填し、プレス機で軟磁性扁平粉の集まりを圧縮し、プレス機が受ける反発力が継続して増大した時点で、プレス機に依る圧縮を停止する。これによって、酸化アルミニウム微粒子が摩擦熱で軟磁性扁平粉の表面に接合し、該軟磁性扁平粉が絶縁化され、また、酸化アルミニウム微粒子同士が摩擦熱で接合し、これによって、軟磁性扁平粉同士が結合し、該軟磁性扁平粉の集まりからなる圧粉磁心が金型内に製造される。極めて多数の酸化アルミニウム微粒子同士が摩擦熱で強固に接合するため、圧粉磁心は必要な機械的強度を持つ。また、プレス機が受ける反発力が継続して増大した時点で、プレス機に依る圧縮を停止するため、軟磁性扁平粉が圧縮される直前で軟磁性扁平粉の圧縮が停止され、軟磁性扁平粉が塑性変形しない。このため、金型内に製造した圧粉磁心の歪取り焼鈍処理が不要になる。また、軟磁性扁平粉を塑性変形させないため、軟磁性扁平粉の硬度にかかわらず、全ての軟磁性扁平粉を圧粉磁心の原料として用いることができる。
いっぽう、軟磁性粉を磁化容易軸方向である面方向に扁平化すると、反磁場係数が小さくなり、扁平率が大きいほど扁平粉の透磁率が増大する。従って、扁平粉を用いて圧粉磁心を製造すると、全ての扁平粉が扁平面同士で重なり合うとともに、磁化容易軸方向である扁平面方向に揃って結合されるため、圧粉磁心は磁化されやすくなる。この結果、透磁率が増大し、扁平粉の飽和磁束密度に近い飽和磁束密度を持つ圧粉磁心が金型内に形成される。この圧粉磁心は、軟磁性粉の硬度にかかわらず、磁化されやすく、取り込んだ磁気エネルギーが大きい。なお、軟磁性粉の扁平処理は、ボールミルに依る長時間のバッチ処理に依らず、メディア撹拌型ミルに依ってアトライタ処理すると、短時間で連続して扁平粉が得られ、安価な費用で製造される。いっぽう、扁平処理によって発生した加工歪は、磁気焼鈍で解消させる。
ところで、軟磁性扁平粉の表面を覆う酸化アルミニウムAlは、次の優れた性質を圧粉磁心にもたらす。第一に、酸化アルミニウムが優れた絶縁体であり、体積抵抗率が1015Ω・cmと大きく、絶縁破壊電圧も15kV/mmと高く、絶縁性の周波数依存性がない。このため、高周波数領域でも圧粉磁心の渦電流損失は小さい。第二に、酸化アルミニウムの融点が2072℃と高く、耐熱性は軟磁性扁平粉より優れ、従来の圧粉磁心より耐熱性に優れる。また、微粒子同士が接触する部位に過大な摩擦熱が発生するが、該摩擦熱で微粒子同士が接合する。第三に、酸化アルミニウムはモース硬度が9と大きく、ダイアモンドに次ぐ硬い物質で、全ての軟磁性扁平粉より硬く、全ての軟磁性扁平粉を圧粉磁心に用いることができる。また、酸化アルミニウム微粒子が応力を受けると、空隙を埋めるように継続して移動する。移動できる空隙がなくなると、微粒子同士が接触し、接触部に摩擦応力が発生するが、微粒子は破壊しない。第四に、酸化アルミニウムは酸やアルカリに侵されにくく、軟磁性扁平粉より耐薬品性に優れ、従来の圧粉磁心より耐薬品性に優れる。なお、酸化アルミニウムの密度は、3.95g/cmで、鉄の密度の1/2である。
ここで、本発明の圧粉磁心を製造する製造方法を説明する。圧粉磁心を製造する製造方法は、以下の7つの工程からなる。
原料が安価で、熱分解という簡単な処理で酸化アルミニウムが析出し、熱分解温度が300℃程度と低い、これら3つの性質を兼備するアルミニウム化合物を、酸化アルミニウムの原料として用いた。いっぽう、酸化アルミニウム微粒子の集まりで軟磁性扁平粉を覆うため、第一の工程は、アルミニウム化合物をメタノールに分散し、アルミニウム化合物を液相化する。
酸化アルミニウム微粒子の集まりで軟磁性扁平粉を覆うには、アルミニウム化合物のメタノール分散液を軟磁性扁平粉の表面に付着させる必要がある。従って、第二の工程は、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、かつ、前記アルミニウム化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、メタノール分散液に混合し混合液を作成する。
第三の工程は、前記混合液と軟磁性扁平粉の集まりを、加振台の上に配置した混合機に充填し、該混合機を回転および揺動させ、アルミニウム化合物が、メタノールと有機化合物との混合液に均一に分散し、この混合液に軟磁性扁平粉が均一に分散した混合物を作成する。従って、混合液が有する粘度によって、混合液は軟磁性粉に付着する。
第四の工程は、加振機に依る振動を、加振台を介して混合機に伝え、混合物の全体を振動させる。この際、軟磁性扁平粉は、厚みに対する面積の比率であるアスペクト比が一定の値を持つ粉体であり、軟磁性扁平粉の密度が混合液の密度の10倍に近いため、軟磁性扁平粉は扁平面を上に向けて混合液中を振動方向に移動する。また、相対的に粒径が小さい軟磁性扁平粉ほど質量が小さいため、粒径が小さい軟磁性扁平粉ほど混合液中での移動量が大きい。従って、混合物の全体に前後、左右、上下の3方向の振動を繰り返し加えると、軟磁性扁平粉が混合液中で3方向に繰り返し移動する。この際、相対的に粒径が小さい軟磁性扁平粉は、軟磁性扁平粉の集まりの空隙に入り込む配列と、軟磁性扁平粉の集まりの上方に移動する配列とが進み、軟磁性扁平粉の集まりの集積度が高まる。最後に、上下方向の振動を加えると、扁平面を上に向けて軟磁性扁平粉同士が混合液を介して重なり合う。この結果、軟磁性扁平粉の扁平面同士が重なり合った集積度が高い軟磁性扁平粉の集まりが、混合機の底面に該底面の形状として形成される。なお、混合物に加える振動加速度は、充填する軟磁性扁平粉の量に依存するが、混合液の粘度が低く、軟磁性扁平粉の密度が混合液の密度の10倍と高いため、0.2-0.4G程度である。これによって、6段落に記載した第一の課題が解決される。
第五の工程は、混合機をメタノールの沸点に昇温する。この際、アルミニウム化合物の微細結晶が有機化合物中に一斉に析出し、該アルミニウム化合物の微細結晶が析出した有機化合物が軟磁性扁平粉に付着し、該アルミニウム化合物の微細結晶が析出した有機化合物を介して軟磁性扁平粉の扁平面同士が重なり合った軟磁性扁平粉の集まりが、混合機の底面に該底面の形状として形成される。なお、気化したメタノールは、回収機で回収して再利用する。
第六の工程は、軟磁性扁平粉の集まりを混合機から金型に移し、該金型を前記アルミニウム化合物が熱分解する温度に昇温する。この際、最初に有機化合物が気化し、次にアルミニウム化合物の微細結晶が熱分解し、軟磁性扁平粉の表面に酸化アルミニウム微粒子の集まりが一斉に析出し、該酸化アルミニウム微粒子の集まりで軟磁性扁平粉が覆われる。アルミニウム化合物の熱分解で析出した酸化アルミニウムは、40-60nmの大きさからなる粒状微粒子で、軟磁性扁平粉の平均粒径より3桁小さく、軟磁性扁平粉の厚みより2桁小さい。これによって、6段落に記載した第二の課題が解決される。なお、気化した有機化合物は回収して再利用する。
第七の工程は、プレス機によって連続的に増大する加圧圧力を、軟磁性扁平粉の集まりに加え、プレス機が受ける反発力が継続して増大した時点で圧縮を停止する。つまり、加圧圧力を軟磁性扁平粉の集まりに加えた時点では、酸化アルミニウム微粒子同士が接合していないため、また、酸化アルミニウム微粒子が軟磁性扁平粉に接合していないため、軟磁性扁平粉の集まりは金型の形状に成形される。この後、加圧圧力が増大すると、軟磁性扁平粉の集まりに空隙が存在するため、空隙を埋めるように酸化アルミニウム微粒子が継続して移動する。また、酸化アルミニウム微粒子の継続した移動に伴い、隣接した軟磁性扁平粉も移動し、軟磁性扁平粉の集積度がさらに高まる。さらに、加圧圧力が増大すると、酸化アルミニウム微粒子が移動できる空隙がなくなり、酸化アルミニウム微粒子同士が互いに接触し、接触部位に過大な摩擦熱が発生し、酸化アルミニウム微粒子同士が摩擦熱で接合する。この際、酸化アルミニウムが硬く融点が高いため、微粒子同士の摩擦でも微粒子は破壊しない。酸化アルミニウム微粒子同士が接合することで、軟磁性扁平粉同士が結合される。同様に、軟磁性扁平粉の表面と接触する酸化アルミニウム微粒子が移動できなくなると、接触部位に過大な摩擦熱が発生し、酸化アルミニウム微粒子が摩擦熱で軟磁性扁平粉の表面に接合する。この結果、酸化アルミニウム微粒子同士の接合を介して軟磁性扁平粉同士が結合した圧粉磁心が、金型内に製造される。いっぽう、酸化アルミニウム微粒子同士が摩擦熱で接合する反応と、酸化アルミニウム微粒子が摩擦熱で軟磁性扁平粉の表面に接合する反応とが起こる際に、酸化アルミニウムの微粒子の数が極めて多いため、これらの反応を起こすには一段と大きな加圧圧力が必要になり、プレス機が受ける反発力が継続して増大する。この時点、すなわち、摩擦熱による酸化アルミニウム微粒子の接合が起きた直後にプレス機に依る圧縮を停止する。このため、軟磁性扁平粉が圧縮される直前に加圧圧力が停止され、軟磁性扁平粉は塑性変形しない。これによって、6段落に記載した第三と第四の課題が解決される。また、軟磁性扁平粉の集まりを充填する金型の大きさと形状の制約はない。これによって、6段落に記載した第六の課題が解決される。
以上に説明した7つの工程からなる圧粉磁心の製造方法は、簡単な処理を連続して実施する方法である。これによって、6段落に記載した第五の課題が解決される。この結果、6段落に記載した本発明が解決すべき全ての課題が解決された。
上記した製造方法で製造した圧粉磁心は、次の作用効果をもたらす。
第一に、圧粉磁心における軟磁性扁平粉の充填率が高いため、圧粉磁心の飽和磁束密度は、軟磁性扁平粉の飽和磁束密度に近づく。このため、磁化された圧粉磁心の磁気エネルギーが大きい。つまり、軟磁性扁平粉の配列を進め、軟磁性粉の扁平面同士が混合液を介して重なり合った集積度が高い軟磁性扁平粉の集まりを、混合機内に形成した。さらに、酸化アルミニウム微粒子で覆われた軟磁性扁平粉を、軟磁性扁平粉の扁平面同士が重なり合った集積度が高い軟磁性扁平粉の集まりとした。この軟磁性扁平粉の集まりをプレス機で圧縮すると、圧縮成形体の圧縮密度が軟磁性扁平粉の密度に近づく。つまり、プレス機で軟磁性扁平粉の集まりを圧縮すると、最初に、軟磁性扁平粉の集まりが金型の形状に成形され、次に、酸化アルミニウム微粒子が継続して移動し、軟磁性扁平粉の集まりの空隙を埋め、また、酸化アルミニウム微粒子が継続して移動すると、隣接した軟磁性扁平粉も移動し、軟磁性扁平粉が再配列し、軟磁性扁平粉の集まりの集積度が高まる。さらに、酸化アルミニウム微粒子が移動できなくなると、酸化アルミニウム微粒子同士が接触し、酸化アルミニウム微粒子同士が摩擦熱で接合され、酸化アルミニウム微粒子同士の接合によって軟磁性粉扁平同士が結合される。また、酸化アルミニウム微粒子の重量は、軟磁性扁平粉の集まりの重量の1%より少ない。この結果、圧縮成形体の圧縮密度が軟磁性扁平粉の密度に近づく。従って、圧粉磁心の飽和磁束密度は、軟磁性扁平粉の飽和磁束密度に近づく。また、アルミニウム化合物がメタノールと有機化合物との混合液に分散した分散液に、軟磁性扁平粉の集まりを混合させるため、原料として用いる軟磁性扁平粉の形状、大きさ、粒径分布の制約はない。
第二に、歪取り焼鈍処理が不要になる。このため、圧粉磁心を構成する軟磁性扁平粉の保持力は変わらず、圧粉磁心におけるヒステリシス損失の増大がない。さらに、軟磁性扁平粉を塑性変形させないため、硬度の如何に関わらず、全ての軟磁性扁平粉を原料として用いることができる。つまり、硬度が高い軟磁性扁平粉ほど、圧縮成形体を形成する加圧圧力が増大する。これによって、軟磁性扁平粉の塑性変形が進み、軟磁性扁平粉の歪が増大し、圧縮成形体の焼鈍温度が高まり、軟磁性扁平粉の保持力の復元が困難になる。あるいは、焼鈍費用が高まる。従って、歪取り焼鈍処理が不要になる効果は大きい。つまり、軟磁性扁平粉の集まりを圧縮する際に、酸化アルミニウム微粒子が移動できなくなると、酸化アルミニウム微粒子同士が接触し、酸化アルミニウム微粒子同士が摩擦熱で接合する反応が起きる。また、酸化アルミニウム微粒子が軟磁性扁平粉の表面と接触し、摩擦熱で軟磁性扁平粉の表面に酸化アルミニウム微粒子が接合する反応が起きる。この摩擦反応が起きた際に、酸化アルミニウム微粒子の数が極めて多いため、プレス機が受ける反発力が継続して増大し、この時点、すなわち、摩擦反応が起きた直後に、プレス機に依る圧縮を停止する。このため、軟磁性扁平粉が圧縮される直前で、軟磁性扁平粉への加圧圧力が停止され、軟磁性粉は塑性変形せず、軟磁性粉の保持力が増大しない。また、軟磁性粉を塑性変形させないため、軟磁性扁平粉の硬度に左右されず、全ての軟磁性扁平粉を圧粉磁心の原料として用いることができる。この結果、歪取り焼鈍処理が不要になり、圧粉磁心の製造費用が安価で済む。
つまり、従来の圧粉磁心の製造方法は、過大な加圧圧力を軟磁性粉に加え、硬度が高い軟磁性粉を十分に塑性変形させ、軟磁性粉の集まりの空隙を塑性変形した軟磁性粉で埋めるとともに、塑性変形した軟磁性粉同士が絡み合う。この結果、圧縮成形体の圧縮密度が軟磁性粉の密度に近づき、また、圧縮成形体に必要な機械的強度を発生させた。これに対し、本製造方法では、酸化アルミニウムの微粒子が、集積密度の高い軟磁性扁平粉の集まりの空隙を埋めるとともに、摩擦熱によって酸化アルミニウム微粒子同士を接合させ、この酸化アルミニウム微粒子同士の接合で、軟磁性扁平粉同士を結合させた。このため、軟磁性扁平粉を塑性変形させる必要がない。
第三に、従来の圧粉磁心より絶縁抵抗が大きい絶縁体で軟磁性粉が絶縁化され、従来の圧粉磁心より渦電流損失が小さい。すなわち、アルミニウム化合物の熱分解で析出した酸化アルミニウムは、40-60nmの大きさからなる粒状微粒子で、この粒状微粒子の集まりが積層して軟磁性扁平粉を絶縁化する。酸化アルミニウム微粒子が粒状であるため、酸化アルミニウム微粒子より体積が小さいが、酸化アルミニウム微粒子の数に近い空孔が、酸化アルミニウム微粒子に隣接して多数存在する。この空孔は、体積抵抗率が酸化アルミニウムよりさらに2桁大きい、1017Ω・cmを超える空気が占める。従って、積層した酸化アルミニウム微粒子の集まりが形成する絶縁抵抗は、酸化アルミニウム微粒子からなる抵抗体と、空気からなる空孔の抵抗体とが直列接続して絶縁抵抗を形成する。さらに、酸化アルミニウム微粒子と空孔との数が極めて多い。従って、軟磁性扁平粉を絶縁化する絶縁抵抗は、バルクからなる酸化アルミニウムが、体積抵抗率が1015Ω・cmに基づいて形成する絶縁抵抗より3桁増大する。この結果、軟磁性粉を、体積抵抗率が1014-1015Ω・cmからなる高分子材料で絶縁化させた圧粉磁心より、絶縁性が3桁増大する。また、酸化アルミニウムと空気との双方の絶縁抵抗の周波数依存性が小さい。従って、圧粉磁心の渦電流損失は、高い周波数領域においても極めて小さい。これによって、圧粉磁心の複素透磁率の虚部が増大する。
第四に、全ての軟磁性扁平粉を扁平面方向に揃え、酸化アルミニウム微粒子の集まりを介して、軟磁性扁平粉が扁平面同士で重ね合って結合する。軟磁性扁平粉の扁平面方向は、軟磁性扁平粉の磁化容易軸方向であり、全ての軟磁性扁平粉が扁平面方向に揃った圧粉磁心は、磁化されやすく、透磁率が増大する。このため、圧粉磁心は磁化されやすく、磁気エネルギーを取り込みやすくなる。
第五に、安価な手段で軟磁性扁平粉が絶縁化される。つまり、酸化アルミニウムの原料が安価なアルミニウム化合物であり、有機化合物も汎用的な工業用薬品である。また、大気雰囲気の300℃程度の温度で熱分解させて酸化アルミニウム微粒子が生成されるため、安価な原料を用い、安価な処理費用で軟磁性扁平粉が絶縁化される。
第六に、圧粉磁心を製造する製造方法が、前記したように7つの工程からなる簡単な処理を連続して実施する製造方法である。また、歪取り焼鈍が不要になる。この結果、安価な製造費用で圧粉磁心が製造できる。
第七に、製造する圧粉磁心の形状と大きさに制約がない。つまり、軟磁性扁平粉の集まりを充填する金型の大きさと形状に制約がないため、圧粉磁心の形状と大きさに制約がない。
第八に、従来の圧粉磁心に近い機械的強度を持つ圧粉磁心が製造される。つまり、軟磁性扁平粉の全ての扁平面に酸化アルミニウム微粒子が摩擦接合し、接触する全ての酸化アルミニウム微粒子同士が互いに摩擦接合する、ミクロな接合で圧粉磁心を形成するが、酸化アルミニウム微粒子の数が極めて多いため、従来の軟磁性粉の塑性変形によるマクロな接合に近い機械的強度が得られる。つまり、極めて多数の酸化アルミニウム微粒子が軟磁性扁平粉の表面に食い込む際に摩擦熱が発生し、両者の接触部に存在する異物が全て気化し、接触部が清浄化された後に、酸化アルミニウム微粒子が軟磁性扁平粉の表面に摩擦熱で強固に接合する。また、極めて多数の酸化アルミニウム微粒子同士が接触した際に接触部に摩擦熱が発生し、接触部に存在する異物が全て気化し、接触部が清浄化された後に、酸化アルミニウム微粒子同士が摩擦熱で強固に接合する。従って、軟磁性扁平粉を塑性変形させる必要がない。
以上に説明したように、本製造方法に依れば、従来の圧粉磁心より、飽和磁束密度と絶縁性と透磁率とが増大し、渦電流損失が少なく、ヒステリシス損失が増大しない圧粉磁心が製造できる。この結果、従来の圧粉磁心より優れた性能を持ち、従来の圧粉磁心より安価な費用で圧粉磁心が製造できる。
In the present invention, a group of soft magnetic flat powders in a liquid is repeatedly subjected to vibration in three directions, and finally, a vertical vibration is applied to advance the arrangement of the soft magnetic flat powders in the liquid. The flat surfaces of the flat powder are superimposed on each other. Next, a group of granular aluminum oxide fine particles having a size of 40 to 60 nm, which is three orders of magnitude smaller than the average particle size of the soft magnetic flat powder and two orders of magnitude smaller than the thickness of the soft magnetic flat powder, is placed on the surface of the soft magnetic flat powder. to precipitate. Furthermore, a mass of soft magnetic flat powder is filled into a mold, and the mass of soft magnetic flat powder is compressed with a press. When the repulsive force received by the press continues to increase, compression by the press is stopped. do. As a result, the aluminum oxide fine particles are bonded to the surface of the soft magnetic flat powder by frictional heat, the soft magnetic flat powder is insulated, and the aluminum oxide fine particles are bonded to each other by frictional heat. A powder magnetic core is produced in a mold by bonding together and consisting of a collection of the soft magnetic flat powders. Since a very large number of aluminum oxide fine particles are strongly bonded together by frictional heat, the powder magnetic core has the necessary mechanical strength. Further, when the repulsive force received by the press machine continues to increase , the compression by the press machine is stopped . The powder does not undergo plastic deformation. For this reason, strain relief annealing treatment of the powder magnetic core manufactured in the mold becomes unnecessary. In addition, since the soft magnetic flat powder is not plastically deformed, all soft magnetic flat powder can be used as a raw material for the powder magnetic core regardless of the hardness of the soft magnetic flat powder.
On the other hand, when the soft magnetic powder is flattened in the direction of the axis of easy magnetization, the diamagnetic field coefficient decreases, and the magnetic permeability of the flattened powder increases as the flatness increases. Therefore, when a powder magnetic core is produced using flat powder, all the flat powder surfaces overlap each other and are aligned in the direction of the easy axis of magnetization, which is the direction of the flat surface, so that the powder magnetic core is easily magnetized. Become. As a result, the magnetic permeability is increased, and a powder magnetic core having a saturation magnetic flux density close to that of the flat powder is formed in the mold. This powder magnetic core is easily magnetized regardless of the hardness of the soft magnetic powder, and absorbs a large amount of magnetic energy. Flattening of the soft magnetic powder does not rely on long-term batch processing using a ball mill, but by using an attritor treatment using a media-stirring mill, flattened powder can be obtained continuously in a short period of time and manufactured at low cost. be done. On the other hand, the working strain generated by flattening is eliminated by magnetic annealing.
By the way, the aluminum oxide Al 2 O 3 covering the surface of the soft magnetic flat powder brings the following excellent properties to the powder magnetic core. First, aluminum oxide is an excellent insulator, having a high volume resistivity of 10 15 Ω·cm, a high dielectric breakdown voltage of 15 kV/mm, and no insulation frequency dependence. Therefore, the eddy current loss of the dust core is small even in the high frequency range. Secondly, the melting point of aluminum oxide is as high as 2072° C., the heat resistance is superior to that of soft magnetic flat powder, and the heat resistance is superior to that of conventional dust cores. Also, excessive frictional heat is generated at the portion where the fine particles come into contact with each other, and the fine particles are joined together by the frictional heat. Thirdly, aluminum oxide has a high Mohs hardness of 9, which is second only to diamond, and is harder than all soft magnetic flat powders, so all soft magnetic flat powders can be used for powder magnetic cores. In addition, when the aluminum oxide fine particles are stressed, they continue to move so as to fill the voids. When there are no gaps for movement, the microparticles come into contact with each other and frictional stress is generated in the contact area, but the microparticles do not break. Fourthly, aluminum oxide is resistant to acid and alkali, has better chemical resistance than flat soft magnetic powder, and has better chemical resistance than conventional powder magnetic cores. The density of aluminum oxide is 3.95 g/cm 3 , which is half the density of iron.
Here, a manufacturing method for manufacturing the powder magnetic core of the present invention will be described. A manufacturing method for manufacturing a powder magnetic core consists of the following seven steps.
An aluminum compound, which is inexpensive as a raw material, deposits aluminum oxide by a simple thermal decomposition process, and has a low thermal decomposition temperature of about 300° C., was used as a raw material for aluminum oxide. On the other hand, in order to cover the soft magnetic flat powder with aggregates of aluminum oxide fine particles, the first step is to disperse the aluminum compound in methanol and convert the aluminum compound into a liquid phase.
In order to cover the soft magnetic flat powder with aggregates of aluminum oxide fine particles, it is necessary to adhere a methanol dispersion of an aluminum compound to the surface of the soft magnetic flat powder. Therefore, the second step has a first property of being soluble or miscible with methanol, a second property having a viscosity higher than that of methanol, and a boiling point higher than the boiling point of methanol and the thermal decomposition temperature of the aluminum compound. An organic compound with a lower third property is mixed with the methanol dispersion to form a mixture.
In the third step, the mixed solution and the soft magnetic flat powder mass are charged into a mixer placed on a vibration table, and the mixer is rotated and oscillated so that the aluminum compound is mixed with methanol and an organic compound. and the soft magnetic flat powder is uniformly dispersed in the mixed liquid to prepare a mixture. Therefore, the mixed liquid adheres to the soft magnetic powder due to the viscosity of the mixed liquid.
In the fourth step, the vibration from the vibrator is transmitted to the mixer through the vibration table to vibrate the entire mixture. At this time, the soft magnetic flat powder is a powder having a constant aspect ratio, which is the ratio of the area to the thickness, and the density of the soft magnetic flat powder is nearly 10 times the density of the mixed liquid. The powder moves in the vibration direction in the mixed liquid with the flat surface facing upward. Further, since the soft magnetic flat powder having a relatively smaller particle size has a smaller mass, the soft magnetic flat powder having a smaller particle size moves more in the mixed liquid. Therefore, when the entire mixture is repeatedly vibrated in three directions, i.e., back and forth, left and right, and up and down, the soft magnetic flat powder moves repeatedly in three directions in the mixed liquid. At this time, the soft magnetic flat powder having a relatively small particle size is arranged to enter the gaps of the aggregate of the soft magnetic flat powder and to move upward in the aggregate of the soft magnetic flat powder. Gathering density increases. Finally, when vibration is applied in the vertical direction, the soft magnetic flat powders overlap each other with the flat surfaces facing upward through the liquid mixture. As a result, a cluster of soft magnetic flat powder having a high degree of accumulation in which the flat surfaces of the soft magnetic flat powder overlap each other is formed on the bottom surface of the mixer in the shape of the bottom surface. The vibration acceleration applied to the mixture depends on the amount of the soft magnetic flat powder to be filled, but since the mixed liquid has a low viscosity and the density of the soft magnetic flat powder is as high as 10 times the density of the mixed liquid, it is 0.2 It is about -0.4G. This solves the first problem described in paragraph 6.
The fifth step is to raise the temperature of the mixer to the boiling point of methanol. At this time, the fine crystals of the aluminum compound are precipitated all at once in the organic compound, the organic compound in which the fine crystals of the aluminum compound are precipitated adheres to the soft magnetic flat powder, and the organic compound in which the fine crystals of the aluminum compound are precipitated is formed. A collection of soft magnetic flat powders in which the flat surfaces of the soft magnetic flat powders overlap with each other is formed on the bottom surface of the mixer in the shape of the bottom surface. The vaporized methanol is recovered by a recovery machine and reused.
In the sixth step, the soft magnetic flat powder mass is transferred from the mixer to a mold, and the mold is heated to a temperature at which the aluminum compound is thermally decomposed. At this time, the organic compound is first vaporized, then the fine crystals of the aluminum compound are thermally decomposed, and a group of aluminum oxide fine particles precipitates on the surface of the soft magnetic flat powder all at once. Flat powder is covered. The aluminum oxide deposited by thermal decomposition of the aluminum compound is granular fine particles having a size of 40 to 60 nm, which is three orders of magnitude smaller than the average particle size of the soft magnetic flat powder and two orders of magnitude smaller than the thickness of the soft magnetic flat powder. This solves the second problem described in paragraph 6. The vaporized organic compound is recovered and reused.
In the seventh step, a pressing machine applies a continuously increasing pressure to the aggregate of the soft magnetic flat powder, and the compression is stopped when the repulsive force received by the pressing machine continues to increase. That is, at the time when a pressurizing pressure is applied to the aggregate of the soft magnetic flat powder, the aluminum oxide fine particles are not bonded to each other, and the aluminum oxide fine particles are not bonded to the soft magnetic flat powder. The collection of is molded into the shape of the mold. After that, when the applied pressure increases, since there are gaps in the aggregate of soft magnetic flat powder, the aluminum oxide fine particles continue to move so as to fill the gaps. In addition, as the aluminum oxide fine particles continue to move, the adjacent soft magnetic flat powder also moves, further increasing the degree of accumulation of the soft magnetic flat powder. Furthermore, when the applied pressure increases, the gaps through which the aluminum oxide fine particles can move disappear, the aluminum oxide fine particles come into contact with each other, excessive frictional heat is generated at the contact portions, and the aluminum oxide fine particles are joined by the frictional heat. At this time, since aluminum oxide is hard and has a high melting point, the fine particles are not destroyed even by friction between the fine particles. Soft magnetic flat powders are bonded to each other by bonding aluminum oxide fine particles to each other. Similarly, when the aluminum oxide fine particles in contact with the surface of the soft magnetic flat powder cannot move, excessive frictional heat is generated at the contact portion, and the aluminum oxide fine particles are bonded to the surface of the soft magnetic flat powder by the frictional heat. As a result, a powder magnetic core in which the soft magnetic flat powders are bonded to each other through the bonding of the aluminum oxide fine particles is produced in the mold. On the other hand, when the reaction in which the aluminum oxide fine particles are bonded to each other by frictional heat and the reaction in which the aluminum oxide fine particles are bonded to the surface of the soft magnetic flat powder by frictional heat, the number of aluminum oxide fine particles is extremely large. In order to cause the reaction of , a larger pressurizing pressure is required, and the repulsive force that the press receives continues to increase. At this point, that is, immediately after bonding of the aluminum oxide fine particles due to frictional heat occurs, the compression by the pressing machine is stopped. Therefore, the pressing pressure is stopped immediately before the soft magnetic flat powder is compressed, and the soft magnetic flat powder is not plastically deformed. This solves the third and fourth problems described in paragraph 6. Moreover, there are no restrictions on the size and shape of the mold that is filled with the aggregate of soft magnetic flat powder. This solves the sixth problem described in paragraph 6.
The dust core manufacturing method comprising the seven steps described above is a method in which simple treatments are continuously performed. This solves the fifth problem described in paragraph 6. As a result, all the problems to be solved by the present invention described in paragraph 6 have been solved.
The powder magnetic core manufactured by the manufacturing method described above provides the following effects.
First, since the soft magnetic flat powder has a high filling rate in the dust core, the saturation magnetic flux density of the dust core approaches the saturation magnetic flux density of the soft magnetic flat powder. Therefore, the magnetic energy of the magnetized dust core is large. That is, the arrangement of the soft magnetic flat powder was advanced, and a cluster of the soft magnetic flat powder having a high degree of accumulation in which the flat surfaces of the soft magnetic powder overlapped with each other through the mixed liquid was formed in the mixer. Furthermore, the soft magnetic flat powder covered with the aluminum oxide fine particles was made into a collection of soft magnetic flat powder with a high degree of accumulation in which the flat surfaces of the soft magnetic flat powder overlap each other. When this mass of soft magnetic flat powder is compressed with a press, the compression density of the compacted body approaches the density of the soft magnetic flat powder. In other words, when a mass of soft magnetic flat powder is compressed by a press, the mass of soft magnetic flat powder is first formed into the shape of the mold, and then the aluminum oxide fine particles continue to move to form the soft magnetic flat powder. In addition, when the aluminum oxide fine particles continue to move, the adjacent soft magnetic flat powder also moves, rearranges the soft magnetic flat powder, and increases the degree of accumulation of the soft magnetic flat powder. Further, when the aluminum oxide fine particles become unable to move, the aluminum oxide fine particles come into contact with each other, the aluminum oxide fine particles are bonded to each other by frictional heat, and the soft magnetic powder flats are bonded by the bonding of the aluminum oxide fine particles to each other. Also, the weight of the aluminum oxide fine particles is less than 1% of the weight of the aggregate of the soft magnetic flat powder. As a result, the compression density of the compression molded body approaches the density of the soft magnetic flat powder. Therefore, the saturation magnetic flux density of the dust core approaches the saturation magnetic flux density of the soft magnetic flake powder. In addition, since a collection of soft magnetic flat powder is mixed with a dispersion in which an aluminum compound is dispersed in a mixture of methanol and an organic compound, the shape, size, and particle size distribution of the soft magnetic flat powder used as a raw material are not restricted. do not have.
Secondly, the strain relief annealing treatment becomes unnecessary. Therefore, the coercive force of the flat soft magnetic powder forming the dust core remains unchanged, and the hysteresis loss in the dust core does not increase. Furthermore, since the soft magnetic flat powder is not plastically deformed, all soft magnetic flat powder can be used as a raw material regardless of hardness. In other words, the higher the hardness of the soft magnetic flat powder, the greater the pressure required to form the compact. As a result, the plastic deformation of the soft magnetic flat powder progresses, the distortion of the soft magnetic flat powder increases, the annealing temperature of the compression molded body rises, and it becomes difficult to restore the holding force of the soft magnetic flat powder. Alternatively, annealing costs increase. Therefore, the effect of eliminating the need for strain relief annealing is significant. That is, if the aluminum oxide fine particles cannot move when compressing the aggregate of the soft magnetic flat powder, the aluminum oxide fine particles come into contact with each other, and a reaction occurs in which the aluminum oxide fine particles are joined together by frictional heat. Further, the aluminum oxide fine particles come into contact with the surface of the soft magnetic flat powder, and frictional heat causes a reaction in which the aluminum oxide fine particles are bonded to the surface of the soft magnetic flat powder. When this friction reaction occurs, since the number of fine aluminum oxide particles is extremely large, the repulsive force received by the press continues to increase. to stop. Therefore, immediately before the flat soft magnetic powder is compressed, the pressure applied to the flat soft magnetic powder is stopped, the soft magnetic powder is not plastically deformed, and the holding force of the soft magnetic powder does not increase. In addition, since the soft magnetic powder is not plastically deformed, all soft magnetic flat powders can be used as raw materials for dust cores regardless of the hardness of the soft magnetic flat powder. As a result, the strain relief annealing process becomes unnecessary, and the manufacturing cost of the powder magnetic core can be reduced.
In other words, the conventional method for manufacturing a powder magnetic core is to apply an excessive pressure to the soft magnetic powder, sufficiently plastically deform the soft magnetic powder with high hardness, and plastically deform the voids in the soft magnetic powder. While filling with powder, plastically deformed soft magnetic powder is entangled with each other. As a result, the compression density of the compression molded body approached the density of the soft magnetic powder, and the mechanical strength required for the compression molded body was generated. On the other hand, in the present manufacturing method, the fine particles of aluminum oxide fill the voids in the clusters of the soft magnetic flat powder with a high integration density, and the aluminum oxide fine particles are bonded to each other by the heat of friction. , the soft magnetic flat powders were bonded together. Therefore, it is not necessary to plastically deform the flat soft magnetic powder.
Third, the soft magnetic powder is insulated with an insulator having higher insulation resistance than the conventional dust core, and the eddy current loss is smaller than that of the conventional dust core. That is, the aluminum oxide precipitated by the thermal decomposition of the aluminum compound is granular fine particles having a size of 40 to 60 nm, and these granular fine particles are laminated to insulate the soft magnetic flat powder. Since the aluminum oxide fine particles are granular, there are a large number of pores adjacent to the aluminum oxide fine particles, although the volume is smaller than that of the aluminum oxide fine particles. The voids are occupied by air with a volume resistivity of more than 10 17 Ω·cm, which is two orders of magnitude higher than aluminum oxide. Therefore, an insulation resistance formed by a group of laminated aluminum oxide fine particles is formed by serially connecting a resistor made of aluminum oxide fine particles and a porous resistor made of air. Furthermore, the number of aluminum oxide fine particles and voids is extremely large. Therefore, the insulation resistance that insulates the flat soft magnetic powder is three orders of magnitude higher than the insulation resistance formed by bulk aluminum oxide based on the volume resistivity of 10 15 Ω·cm. As a result, the insulating property is increased by three orders of magnitude compared to a powder magnetic core in which soft magnetic powder is insulated with a polymer material having a volume resistivity of 10 14 -10 15 Ω·cm. Moreover, the frequency dependence of the insulation resistance of both aluminum oxide and air is small. Therefore, the eddy current loss of the dust core is extremely small even in the high frequency range. This increases the imaginary part of the complex permeability of the dust core.
Fourthly, all of the soft magnetic flat powder is aligned in the direction of the flat surfaces, and the flat surfaces of the soft magnetic flat powder are overlapped and bonded via the aggregate of the aluminum oxide fine particles. The flat plane direction of the soft magnetic flat powder is the easy magnetization axis direction of the soft magnetic flat powder, and a powder magnetic core in which all the soft magnetic flat powder is aligned in the flat plane direction is easily magnetized and has an increased magnetic permeability. For this reason, the dust core is easily magnetized and easily captures magnetic energy.
Fifth, the flat soft magnetic powder is insulated by inexpensive means. In other words, the raw material for aluminum oxide is an inexpensive aluminum compound, and the organic compound is also a general-purpose industrial chemical. In addition, since aluminum oxide fine particles are generated by thermal decomposition at a temperature of about 300° C. in an air atmosphere, the soft magnetic flat powder can be insulated at low processing costs using inexpensive raw materials.
Sixthly, the manufacturing method for manufacturing the powder magnetic core is a manufacturing method in which a simple process consisting of seven steps as described above is continuously performed. In addition, strain relief annealing becomes unnecessary. As a result, the powder magnetic core can be manufactured at a low manufacturing cost.
Seventh, there are no restrictions on the shape and size of the powder magnetic core to be manufactured. In other words, there are no restrictions on the size and shape of the mold for filling the mass of soft magnetic flat powder, so there are no restrictions on the shape and size of the dust core.
Eighth, a powder magnetic core having a mechanical strength close to that of a conventional powder magnetic core is manufactured. In other words, the aluminum oxide fine particles are frictionally bonded to all the flat surfaces of the soft magnetic flat powder, and all the aluminum oxide fine particles that are in contact are frictionally bonded to each other. Since the number is extremely large, a mechanical strength close to that of conventional macro-bonding by plastic deformation of soft magnetic powder can be obtained. In other words, frictional heat is generated when an extremely large number of fine aluminum oxide particles bite into the surface of the soft magnetic flat powder, and all foreign matter present at the contact portion between the two is vaporized. After the contact portion is cleaned, the aluminum oxide fine particles is strongly bonded to the surface of the soft magnetic flat powder by frictional heat. In addition, when a large number of fine aluminum oxide particles come into contact with each other, frictional heat is generated at the contact area. to join firmly. Therefore, it is not necessary to plastically deform the soft magnetic flat powder.
As described above, according to the present manufacturing method, the powder magnetic core has higher saturation magnetic flux density, insulation, and magnetic permeability than conventional powder magnetic cores, less eddy current loss, and no increase in hysteresis loss. can be manufactured. As a result, the powder magnetic core can be manufactured at a lower cost than the conventional powder magnetic core while having better performance than the conventional powder magnetic core.

7段落に記載した圧粉磁心の製造方法において、段落に記載したアルミニウム化合物が、安息香酸アルミニウムないしはナフテン酸アルミニウムであり、7段落に記載した有機化合物が、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれか1種類のエステル類、ないしは、グリコール類、グリコールエーテル類のいずれか1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーであり、これらの物質を用い、7段落に記載した圧粉磁心の製造方法に従って圧粉磁心を製造する、圧粉磁心の製造方法。 In the method for producing a powder magnetic core described in paragraph 7, the aluminum compound described in paragraph 7 is aluminum benzoate or aluminum naphthenate, and the organic compound described in paragraph 7 is vinyl carboxylates and acrylic esters. or any one type of ester consisting of methacrylic acid esters, or an organic compound of any one type of glycols or glycol ethers, or a liquid monomer consisting of styrene monomer, and using these substances, A method for producing a powder magnetic core, wherein the powder magnetic core is produced according to the method for producing a powder magnetic core described in paragraph 7.

分解で金属酸化物を析出するカルボン酸金属化合物を説明する。カルボン酸金属化合物の中に、カルボキシル基を構成する酸素イオンが配位子になって、金属イオンに近づいて配位結合するカルボン酸金属化合物がある。このカルボン酸金属化合物は、最も大きいイオンである金属イオンが酸素イオン近づいて配位結合するため、両者の距離は短くなる。これによって、金属イオンに配位結合する酸素イオンが、金属イオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸金属化合物は、カルボン酸金属化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンが、金属イオンの反対側で共有結合するイオンとの結合部が最初に分断され、金属酸化物とカルボン酸に分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した後に、金属酸化物が析出する。こうしたカルボン酸金属化合物の中で、300℃程度の比較的低い温度で熱分解が完了するカルボン酸金属化合物として、カルボン酸の沸点が低い順に、酢酸金属化合物、カプリル酸金属化合物、安息香酸金属化合物、ナフテン酸金属化合物がある。従って、酢酸金属化合物、カプリル酸金属化合物、安息香酸金属化合物及びナフテン酸金属化合物は、比較的低い温度の熱分解で金属酸化物を析出する金属化合物である。
いっぽう、カルボキシラートアニオンが金属イオンに共有結合するカルボン酸金属化合物は、イオン同士の結合の中で、酸素イオンと金属イオンとの結合部が最も長いため、熱分解で金属を析出する。
熱分解で酸化アルミニウムを析出するカルボン酸アルミニウム化合物において、酢酸アルミニウムとカプリル酸アルミニウムは、熱分解で無定形アルミナを析出する。このため、熱分解で酸化アルミニウムを析出させる原料として、安息香酸アルミニウムとナフテン酸アルミニウムが存在する。なお、安息香酸の沸点は249℃で、安息香酸アルミニウムは、大気雰囲気の310℃で熱分解が完了し、酸化アルミニウムを析出する。また、ナフテン酸アルミニウムの熱分解温度より340℃で熱分解が完了し、酸化アルミニウムを析出する。従って、7段落に記載した圧粉磁心の製造方法において、アルミニウム化合物として安息香酸アルミニウムないしはナフテン酸アルミニウムを用いる。なお、カルボン酸アルミニウム化合物の熱分解は、大気雰囲気のほうが窒素雰囲気より、熱分解が完了する温度が50-60℃低いため、大気雰囲気での熱処理は、熱処理費用が安価で済む。
次に、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点が65℃より高く340℃より低い第三の性質を兼備する有機化合物を、7段落に記載した有機化合物として用いる。
このような有機化合物として、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれか1種類のエステル類、ないしは、グリコール類、グリコールエーテル類のいずれか1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーが存在する。従って、7段落に記載した圧粉磁心の製造方法において、有機化合物としてこれらの有機化合物のいずれかを用いる。
従って、段落に記載したアルミニウム化合物として安息香酸アルミニウムないしはナフテン酸アルミニウムを用い、7段落に記載した有機化合物として、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれか1種類のエステル類、ないしは、グリコール類、グリコールエーテル類のいずれか1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーを用い、7段落に記載した製造方法に従って圧粉磁心を製造すると、磁化されやすく、取り込んだ磁気エネルギーが大きい圧粉磁心が金型内に製造される。
A carboxylic acid metal compound that deposits a metal oxide upon thermal decomposition will be described. Among metal carboxylate compounds, there is a metal carboxylate compound in which an oxygen ion constituting a carboxyl group becomes a ligand and approaches a metal ion to form a coordinate bond. In this carboxylate metal compound, since the metal ion, which is the largest ion, approaches the oxygen ion and forms a coordinate bond, the distance between the two is shortened. This causes the oxygen ion coordinated to the metal ion to have the greatest distance to the covalently bonded ion on the opposite side of the metal ion. In a metal carboxylate compound having such molecular structural features, when the boiling point of the carboxylic acid constituting the metal carboxylate compound is exceeded, the oxygen ion that constitutes the carboxyl group covalently bonds with the ion covalently bonded on the opposite side of the metal ion. Bonds are cleaved first, decomposing into metal oxides and carboxylic acids. When the temperature is further increased, the carboxylic acid takes the heat of vaporization and vaporizes, and after the vaporization of the carboxylic acid is completed, the metal oxide is deposited. Among these carboxylic acid metal compounds, the carboxylic acid metal compounds that complete thermal decomposition at a relatively low temperature of about 300° C. are, in descending order of the boiling point of the carboxylic acid, metal acetate compounds, metal caprylate compounds, and metal benzoate compounds. , and metal naphthenate compounds. Accordingly, metal acetate compounds, metal caprylate compounds, metal benzoate compounds, and metal naphthenate compounds are metal compounds that deposit metal oxides upon thermal decomposition at relatively low temperatures.
On the other hand, in a metal carboxylate compound in which a carboxylate anion is covalently bonded to a metal ion, the bond between the oxygen ion and the metal ion is the longest among the bonds between the ions, so the metal is precipitated by thermal decomposition.
Among aluminum carboxylate compounds that deposit aluminum oxide upon thermal decomposition, aluminum acetate and aluminum caprylate deposit amorphous alumina upon thermal decomposition. Therefore, aluminum benzoate and aluminum naphthenate exist as raw materials for depositing aluminum oxide by thermal decomposition. The boiling point of benzoic acid is 249° C., and aluminum benzoate completes thermal decomposition at 310° C. in the air atmosphere to deposit aluminum oxide. Thermal decomposition is completed at 340° C. from the thermal decomposition temperature of aluminum naphthenate, and aluminum oxide is precipitated. Therefore, in the method for producing a powder magnetic core described in paragraph 7, aluminum benzoate or aluminum naphthenate is used as the aluminum compound. In the case of thermal decomposition of the aluminum carboxylate compound, the temperature at which thermal decomposition is completed is 50 to 60° C. lower in an air atmosphere than in a nitrogen atmosphere.
Next, an organic compound having a first property of being soluble or miscible with methanol, a second property of having a viscosity higher than that of methanol, and a third property of having a boiling point of higher than 65° C. and lower than 340° C. 7 It is used as an organic compound described in the paragraph.
Examples of such an organic compound include any one type of esters consisting of carboxylic acid vinyl esters, acrylic acid esters and methacrylic acid esters, or an organic compound of any one type of glycols and glycol ethers, or , liquid monomers consisting of styrene monomers. Therefore, any one of these organic compounds is used as the organic compound in the method for producing the powder magnetic core described in paragraph 7.
Therefore, aluminum benzoate or aluminum naphthenate is used as the aluminum compound described in paragraph 7 , and any one of carboxylic acid vinyl esters, acrylic esters, and methacrylic esters is used as the organic compound described in paragraph 7. Esters, or glycols, glycol ethers, or an organic compound of any one kind, or a liquid monomer consisting of a styrene monomer, and a powder magnetic core is produced according to the production method described in paragraph 7, it is easily magnetized. , a powder magnetic core with a large captured magnetic energy is produced in the mold.

圧粉磁心の切断面の一部を拡大して模式的に示す説明図である。It is explanatory drawing which expands and shows a part of cut surface of a powder magnetic core typically.

実施形態1
本実施形態は、7段落に記載した圧粉磁心の製造方法における有機化合物に関わり、該有機化合物はメタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点である65℃より高く340℃より低い第三の性質を兼備する。
このような有機化合物として、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれかのエステル類、グリコール類、グリコールエーテル類のいずれかに属する1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーがある。
カルボン酸ビニルエステル類は、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、クロトン酸ビニル、安息香酸ビニルなどからなるカルボン酸ビニル類である。
例えば、沸点が低いカルボン酸ビニルエステル類に酢酸ビニルがあり、化学式がCHCOO-CH=CHで示され、メタノールに溶解し、メタノールより高い粘度を持ち、沸点が72.7℃である。酢酸ビニルは、酢酸とビニルアルコールとを反応させたエステルで、ポリ酢酸ビニルの合成に用いる原料として用いられている安価な有機化合物である。なお、酢酸ビニルは光や熱で容易に重合するため、微量の重合禁止剤(重合防止剤ともいう)が添加されている。
さらに、モノクロロ酢酸ビニルは、化学式がCl-CHCOO-CH=CHで示され、メタノールに溶解し、沸点が136℃である。モノクロロ酢酸ビニルは、アクリルゴムの架橋サイトとして用いられている安価な有機化合物である。
また、アクリル酸エステル類は、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2エチルヘキシルなどからなるアクリル酸エステル類である。
例えば、沸点が低いアクリル酸エステル類にアクリル酸メチルがあり、化学式がCH=CH-COOCHで示され、メタノールに溶解し、沸点が80℃である。アクリル酸メチルは、アクリル樹脂の原料として用いられている安価な有機化合物である。なお、アクリル酸メチルは、重合しやすい物質であるため、微量の安定剤が添加されている。
さらに、アクリル酸ブチルは、化学式がCH=CH-COOCで示され、メタノールに溶解し、沸点が148℃である。アクリル酸ブチルは、アクリル酸とn-ブタノールを反応させたエステルで、繊維処理剤、粘接着剤、塗料、合成樹脂、アクリルゴム、エマルションの原料として使用される安価な有機化合物である。なお、アクリル酸メチルは重合しやすい物質であり、微量の安定剤が添加されている。
また、メタクリル酸エステル類は、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸アルキル、メタクリル酸トリデシル、メタクリル酸ステアリルなどからなるメタクリル酸エステル類である。
例えば、沸点が低いメタクリル酸エステル類にメタクリル酸エチルがあり、化学式がHC=C(CH)COOCで示され、メタノールに溶解し、沸点が117℃である。メタクリル酸エチルは、顔料、塗料、接着剤、繊維処理剤、成形材料、歯科用材料の原料として用いられている安価な有機化合物である。なお、メタクリル酸エチルは、重合しやすい物質であり、微量の安定剤が添加されている。
さらに、メタクリル酸nブチルは、化学式がCHC(CH)COO(CHCHで示され、メタノールに溶解し、沸点が163.5℃である。メタクリル酸nブチルは、塗料、分散剤、繊維処理剤の原料として用いられている安価な有機化合物である。なお、メタクリル酸nブチルは、光や熱で容易に重合するため、微量の重合防止剤が添加されている。
また、グリコール類はアルコールの一種で、鎖式脂肪族炭化水素の2つの炭素原子に1つずつヒドロキシ基が置換している構造を持つ化合物である。沸点が低いグリコール類にエチレングリコールがあり、化学式がC(OH)で示され、メタノールと混和し、沸点が197.3℃である。エチレングリコールは、溶媒、不凍液、合成原料などとして広く用いられている安価な有機化合物である。
さらに、化学式がO(CHCHOH)で示されるジエチレングリコールは、メタノールと混和し、沸点が244.3℃である。ジエチレングリコールは不凍液の他に、ブレーキ液、潤滑剤、インキ、たばこの保湿剤、織物の柔軟剤、コルクの可塑剤、接着剤、紙、包装材料、塗料などに使われている安価な有機化合物である。
また、化学式がCHCHOHCHOHで示されるプロピレングリコールは、メタノールと混和し、沸点が188.2℃である。プロピレングリコールは、保湿剤、潤滑剤、乳化剤、不凍液、プラスチックの中間原料、溶媒などとして用いられている他に、保湿性や防カビ性に富むことから医薬品や化粧品、麺やおにぎりなどの品質改善剤等、広範囲で用いられている安価な有機化合物である。
さらに、ジプロピレングリコールは、化学式が[CHCH(OH)CHOで示され、メタノールと混和し、沸点が232.2℃である。ジプロピレングリコールは、ポリエステル樹脂の中間原料や水圧機器の作動油、不凍液、印刷インキ原料などに用いられている安価な有機化合物である。
また、トリプロピレングリコールは、化学式が[CHCH(OH)CHOで示され、メタノールと混和し、沸点が265℃である。トリプロピレングリコールは、潤滑油・カッティングオイルの原料、ポリウレタン・アクリル酸エステル中間体の原料、塗料・インキ溶剤、不凍液、飼料添加剤、ポリエステル樹脂の中間原料、水溶性油剤の溶剤などに用いられている安価な有機化合物である。
さらに、グリコールエーテル類は、一分子内にエーテル基と水酸基の両方を有し、水や多くの有機溶剤、さらに、樹脂の溶解性も高い溶剤で、殆どのグリコールエーテル類がメタノールに溶解する。次の3種類のグリコールエーテル類がある。エチレングリコール系エーテルと、プロピレングリコール系エーテルとは、塗料、インキ、染料、写真複写液、洗浄剤、電解液、ソリュブルオイル、作動油、ブレーキ液、冷媒、凍結防止剤等に使用されている安価な有機化合物である。また、ジアルキルグリコールは、さらに、反応溶剤、分離抽出剤、重合溶剤、分解防止及び安定剤、電池やコンデンサーの電解液等に使用されている安価な有機化合物である。
例えば、沸点が低いエチレングリコール系エーテルに、エチレングリコールモノメチルエーテルがあり、化学式がCHO-(CHCHO)-Hで示され、メタノールに溶解し、沸点が124.5℃である。また、エチレングリコールモノイソプロピルエーテルは、化学式が(CHCHO-(CHCHO)-Hで示され、メタノールに溶解し、沸点が141.8℃である。
また、沸点が高いエチレングリコール系エーテルに、トリエチレングリコールモノブチルエーテルがあり、化学式がCO-(CHCHO)-Hで示され、メタノールに溶解し、沸点が271.2℃である。また、ジエチレングリコールモノ2-エチルヘキシルエーテルは、化学式がC-CCHCHO-(CHCHO)-Hで示され、メタノールに溶解し、沸点が272℃である。
さらに、沸点が低いプロピレングリコール系エーテルに、プロピレングリコールモノメチルエーテルがあり、化学式がCH-CHO-(CHCHO)-Hで示され、メタノールに溶解し、沸点が121℃である。
また、沸点が高いプロピレングリコール系エーテルに、トリプロピレングリコールモノブチルエーテルがあり、化学式がCH-C-(CHCHO)-Hで示され、メタノールに溶解し、沸点が274℃である。
さらに、沸点が低いジアルキルグリコールに、エチレングリコールジメチルエーテルがあり、化学式がCHO-(CHCHO)-CHで示され、メタノールに溶解し、沸点が85.2℃である。
また、沸点が高いジアルキルグリコールに、ジエチレングリコールジブチルエーテルがあり、化学式がCO-(CHCHO)-Cで示され、メタノールに溶解し、沸点が274℃である。
さらに、スチレンモノマーは化学式がCCH=CHで示され、メタノールと混和し、沸点が145℃の液状モノマーである。スチレンモノマーは、ポリスチレンを始めとして、発泡ポリスチレン、アクリロニトリル・スチレン、アクリロニトリル・ブタジエン・スチレン、不飽和ポリエステルなどの合成樹脂材料の原料となる安価な有機化合物である。スチレンモノマーは容易に重合するため、微量の重合禁止剤が添加されている。
以上に説明したように、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれか1種類のエステル類、ないしは、グリコール類、グリコールエーテル類のいずれかに属する1種類の有機化合物に、前記した3つの性質を兼備する有機化合物が存在する。また、スチレンモノマーは、前記した3つの性質を兼備する。従って、これらの有機化合物は、7段落に記載した圧粉磁心の製造方法における有機化合物として用いられる。
Embodiment 1
This embodiment relates to the organic compound in the method for producing the powder magnetic core described in paragraph 7, and the organic compound has a first property of being dissolved or mixed with methanol and a second property of having a viscosity higher than that of methanol. , the boiling point of which is higher than 65°C and lower than 340°C, which is the boiling point of methanol.
Examples of such organic compounds include one type of organic compound belonging to any one of vinyl carboxylates, acrylic esters, and methacrylic esters, glycols, and glycol ethers, or styrene. There are liquid monomers consisting of monomers.
Carboxylic acid vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl piperate, octyl Vinyl carboxylates such as vinyl acid, vinyl monochloroacetate, vinyl adipate, vinyl crotonate, and vinyl benzoate.
For example, carboxylic acid vinyl esters with a low boiling point include vinyl acetate, which has a chemical formula of CH3COO -CH= CH2 , dissolves in methanol, has a higher viscosity than methanol, and has a boiling point of 72.7°C. . Vinyl acetate is an ester obtained by reacting acetic acid with vinyl alcohol, and is an inexpensive organic compound used as a raw material for the synthesis of polyvinyl acetate. Since vinyl acetate is easily polymerized by light or heat, a small amount of polymerization inhibitor (also referred to as a polymerization inhibitor) is added.
Furthermore, vinyl monochloroacetate has the chemical formula Cl--CH 2 COO--CH=CH 2 , dissolves in methanol, and has a boiling point of 136°C. Monochlorovinyl acetate is an inexpensive organic compound used as a cross-linking site for acrylic rubber.
Acrylic esters are acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate.
For example, acrylic esters with a low boiling point include methyl acrylate, which has a chemical formula of CH 2 =CH-COOCH 3 , dissolves in methanol, and has a boiling point of 80°C. Methyl acrylate is an inexpensive organic compound used as a raw material for acrylic resins. Since methyl acrylate is a substance that easily polymerizes, a small amount of stabilizer is added.
Furthermore, butyl acrylate has a chemical formula of CH 2 =CH-COOC 4 H 9 , dissolves in methanol, and has a boiling point of 148°C. Butyl acrylate is an ester obtained by reacting acrylic acid and n-butanol, and is an inexpensive organic compound used as a raw material for fiber treatment agents, adhesives, paints, synthetic resins, acrylic rubbers, and emulsions. Methyl acrylate is a substance that easily polymerizes, and a small amount of stabilizer is added.
Methacrylic acid esters are methacrylic acid esters such as ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, alkyl methacrylate, tridecyl methacrylate, and stearyl methacrylate. .
For example, methacrylic acid esters with a low boiling point include ethyl methacrylate, which has a chemical formula of H 2 C=C(CH 3 )COOC 2 H 5 , dissolves in methanol, and has a boiling point of 117°C. Ethyl methacrylate is an inexpensive organic compound used as a raw material for pigments, paints, adhesives, fiber treatment agents, molding materials, and dental materials. Ethyl methacrylate is a substance that easily polymerizes, and a small amount of stabilizer is added.
Furthermore, n-butyl methacrylate has a chemical formula of CH2C ( CH3 )COO( CH2 ) 3CH3 , is soluble in methanol, and has a boiling point of 163.5°C. n-Butyl methacrylate is an inexpensive organic compound used as a raw material for paints, dispersants, and fiber treatment agents. Since n-butyl methacrylate is easily polymerized by light or heat, a small amount of polymerization inhibitor is added.
Glycols are a type of alcohol, and are compounds having a structure in which two carbon atoms of a chain aliphatic hydrocarbon are substituted with one hydroxy group each. Glycols with a low boiling point include ethylene glycol, which has a chemical formula of C 2 H 4 (OH) 2 , is miscible with methanol, and has a boiling point of 197.3°C. Ethylene glycol is an inexpensive organic compound that is widely used as a solvent, antifreeze, and synthetic raw material.
Furthermore, diethylene glycol, whose chemical formula is O(CH 2 CH 2 OH) 2 , is miscible with methanol and has a boiling point of 244.3°C. Diethylene glycol is an inexpensive organic compound used in antifreeze, brake fluid, lubricants, inks, tobacco moisturizers, fabric softeners, cork plasticizers, adhesives, paper, packaging materials, and paints. be.
Propylene glycol, whose chemical formula is CH 3 CHOHCH 2 OH, is miscible with methanol and has a boiling point of 188.2°C. Propylene glycol is used as a moisturizer, lubricant, emulsifier, antifreeze liquid, intermediate raw material for plastics, solvent, etc. In addition, it is highly moisturizing and antifungal, so it is used to improve the quality of pharmaceuticals, cosmetics, noodles and rice balls. It is an inexpensive organic compound that is widely used as a drug.
Furthermore, dipropylene glycol, which has the chemical formula [ CH3CH (OH) CH2 ] 2O , is miscible with methanol and has a boiling point of 232.2°C. Dipropylene glycol is an inexpensive organic compound that is used as an intermediate raw material for polyester resins, hydraulic oil for hydraulic equipment, antifreeze liquid, raw material for printing ink, and the like.
Tripropylene glycol has a chemical formula of [CH 3 CH(OH)CH 2 ] 2 O, is miscible with methanol, and has a boiling point of 265°C. Tripropylene glycol is used as a raw material for lubricating oil and cutting oil, a raw material for polyurethane and acrylic acid ester intermediates, a paint and ink solvent, an antifreeze liquid, a feed additive, an intermediate raw material for polyester resin, and a solvent for water-soluble oils. It is an inexpensive organic compound that contains
Furthermore, glycol ethers have both an ether group and a hydroxyl group in one molecule, and are highly soluble in water, many organic solvents, and resins, and most glycol ethers dissolve in methanol. There are three types of glycol ethers: Ethylene glycol-based ethers and propylene glycol-based ethers are inexpensive and are used in paints, inks, dyes, photocopying fluids, detergents, electrolytes, soluble oils, hydraulic fluids, brake fluids, refrigerants, antifreeze agents, etc. organic compounds. Dialkyl glycols are also inexpensive organic compounds that are used as reaction solvents, separation extractants, polymerization solvents, antidegradants and stabilizers, electrolytes in batteries and capacitors, and the like.
For example, an ethylene glycol-based ether with a low boiling point is ethylene glycol monomethyl ether, which has the chemical formula CH 3 O—(CH 2 CH 2 O)—H, dissolves in methanol, and has a boiling point of 124.5°C. . Ethylene glycol monoisopropyl ether has a chemical formula of (CH 3 ) 2 CHO—(CH 2 CH 2 O)—H, dissolves in methanol, and has a boiling point of 141.8°C.
Also, among ethylene glycol-based ethers with high boiling points, there is triethylene glycol monobutyl ether, which has a chemical formula of C 4 H 9 O—(CH 2 CH 2 O) 3 —H, dissolves in methanol, and has a boiling point of 271. 2°C. Diethylene glycol mono-2-ethylhexyl ether has a chemical formula of C 2 H 5 —C 4 H 9 CHCH 2 O—(CH 2 CH 2 O) 2 —H, dissolves in methanol, and has a boiling point of 272°C. .
In addition, propylene glycol-based ethers with low boiling points include propylene glycol monomethyl ether, which has the chemical formula of CH 3 —CH 3 O—(CH 2 CHO) 2 —H, dissolves in methanol, and has a boiling point of 121°C. .
Also, among propylene glycol-based ethers with a high boiling point, there is tripropylene glycol monobutyl ether, which has a chemical formula of CH 3 —C 4 H 9 —(CH 2 CHO) 3 —H, dissolves in methanol, and has a boiling point of 274°C. is.
In addition, dialkyl glycols with low boiling points include ethylene glycol dimethyl ether, which has the chemical formula CH 3 O—(CH 2 CHO)—CH 3 , dissolves in methanol, and has a boiling point of 85.2°C.
In addition, among dialkyl glycols with high boiling points, there is diethylene glycol dibutyl ether, which has a chemical formula of C 4 H 9 O—(CH 2 CH 2 O) 2 —C 4 H 9 , dissolves in methanol, and has a boiling point of 274°C. be.
Furthermore, the styrene monomer is a liquid monomer with a chemical formula of C 6 H 5 CH=CH 2 , miscible with methanol, and having a boiling point of 145°C. Styrene monomers are inexpensive organic compounds that are raw materials for synthetic resin materials such as polystyrene, foamed polystyrene, acrylonitrile-styrene, acrylonitrile-butadiene-styrene, and unsaturated polyesters. Since the styrene monomer readily polymerizes, a small amount of polymerization inhibitor is added.
As described above, any one type of esters consisting of carboxylic acid vinyl esters, acrylic acid esters, and methacrylic acid esters, or one type of organic compound belonging to any one of glycols and glycol ethers There are organic compounds that have the above three properties. Also, the styrene monomer has the above three properties. Therefore, these organic compounds are used as organic compounds in the method for producing a powder magnetic core described in paragraph 7.

実施形態2
本実施形態は、圧粉磁心の原料として用いる軟磁性粉に関わる。圧粉磁心が実装された電気製品の動作周波数領域と、この周波数領域における圧粉磁心の磁束密度の大きさから、軟磁性粉が選択される。いっぽう、圧粉磁心の飽和磁束密度を高めるには、圧粉磁心における軟磁性粉の充填率を高める必要がある。軟磁性粉の充填率を高めるには、軟磁性粉の集まりに大きな加圧圧力を加え、軟磁性粉の塑性変形を進める必要がある。従って、多くの軟磁性粉の硬度が高いため、予め軟磁性粉を焼鈍し、軟磁性粉の硬度を下げる。また、塑性変形が進んだ軟磁性粉は保持力が増大するため、圧粉磁心の磁気焼鈍によって、軟磁性粉の保持力を元に戻し、圧粉磁心の鉄損を下げている。
モータにおけるステーターやローターを構成する圧粉磁心は、動作周波数は低いが、飽和磁束密度が高い。こうした用途には、軟磁性粉の中で飽和磁束密度が最も高い純鉄粉が用いられる。これとは反対に、電源回路におけるリアクトルやノイズフィルターやチョークコイルなどを構成する圧粉磁心は、動作周波数が高いが、飽和磁束密度は低い。こうした用途には、Fe-Si系合金粉、Fe-Si-Al系合金粉、Fe-Ni系合金粉が用いられる。なお、アモルファス系の合金粉は多種多様の磁気特性を持ち、合金の組成によって個別の特性を持つため、ここでは取り上げない。
純鉄粉は、飽和磁束密度が2.2テスラで、軟磁性粉の中で最も飽和磁束密度が高く、さらに、硬度が相対的に低く、水素焼鈍した純鉄粉は塑性変形しやすいため、圧粉磁心における充填密度が高く、圧粉磁心の飽和磁束密度がさらに高まる。このため、磁気エネルギーを必要とするモータのステーターやローターを構成する圧粉磁心に用いられる。例えば、ビッカース硬度が75-87HVの値を持つアトマイズ鉄粉は、軟磁性粉の中では硬度が最も低く、水素焼鈍したアトマイズ鉄粉を用いた圧縮成形体の圧縮密度は鉄の密度の90%に近い。いっぽう、還元鉄粉のビッカース硬度は160-210HVで、アトマイズ鉄粉の硬度の2倍を超えるが、多くの空隙を持つ多孔質体であるため塑性変形しやすい。しかし、圧粉磁心の製造に当たっては、水素焼鈍によって硬度を低下させる。いっぽう、純鉄粉は、透磁率が軟磁性粉の中で最も小さく、圧粉磁心に磁気エネルギーが取り込みにくいという欠点を持つ。また、保持力が80A/mと大きく、ヒステリシス損失が大きい。まさらに、体積抵抗率が1×10-5Ω・cmからなる導電体である。
いっぽう、鉄にケイ素を含有させると透磁率が増大するが、ケイ素の含有量が5質量%を超えると著しく脆くなり、Fe-Si系合金の多くは、ケイ素の含有量は5質量%未満である。また、鉄にケイ素を含有させると電気抵抗が増えるが、3質量%のFe-Si系合金の体積抵抗率は5×10-5Ω・cmと導電性である。また、3質量%のFe-Si系合金の保持力は、65A/mと大きくヒステリシス損失も大きいが、飽和磁束密度は1.3テスラと高い。また、ビッカース硬度が180-205HVであり、焼鈍によって硬度を低下させて圧粉磁心の原料に用いる。このようにFe-Si系合金の磁気特性は還元鉄粉に近いが、還元鉄粉より腐食しにくいため、Fe-Si系合金は純鉄粉と同様に、モータのステーターやローターを構成する圧粉磁心に用いられる。
さらに、鉄にニッケルを含有させたFe-Ni系合金のパーマロイは、鉄に比べると透磁率は著しく増大するが、飽和磁束密度は小さい。また、ニッケルの含有量が多いほど高価になり、ニッケルの含有量は50質量%以下に抑制される。また、水素雰囲気の1100℃で3時間ほど磁性焼鈍を行い、不純物を除去し、パーマロイの磁気特性を整える。ここで、ニッケルが45質量%のパーマロイを代表させて性質を示す。直流磁気特性は、初透磁率が3000で、飽和磁束密度が1.4テスラで、保持力は16A/mで、純鉄粉に比べると飽和磁束密度は小さいが、他の軟磁性粉より大きい。また、交流磁気特性は、板厚が0.1mmのパーマロイで、1kHzにおける実効透磁率が3000で、3kHzで2500である。また、物理的性質は、密度が8.25g/cmで鉄より5%ほど高く、体積抵抗率が5×10-5Ω・cmと導電性で、磁気キュリー点が420℃で鉄より350℃低く、硬度はロックウェル硬度で60-90HRB(ビッカース硬度で110-190HVに相当する)である。従って、パーマロイは、交流の透磁率特性と飽和磁束密度に優れるためトランスコア、モータコアやリレー用鉄心に用いられる。
また、鉄にケイ素とアルミニウムとを加えたFe-Si-Al系合金は、硬度が高くて脆いため、容易に粉体化される。特に、Fe-10質量%Si-6質量%Alの組成からなるセンダスト(東北大学の登録商標)は、透磁率が1.2×10と大きく磁化されやすく、保持力が0.1A/mと小さいためヒステリシス損失が少なく、飽和磁束密度は1テスラでパーマロイに近い。また、体積抵抗率が8×10-5Ω・cmからなる導電体である。いっぽう、ビッカース硬度が410HVと高く、焼鈍によって硬度を下げるが、純鉄粉ほどの充填率は得られない。また、センダストからなる圧粉磁心を80-120℃で使用すると、鉄損が常温より増大し、鉄損に依る発熱がさらに鉄損の増大をもたらし、大出力のトランスでは熱暴走する危険性があった。しかし、最近、Fe-8.8質量%Si-6.0質量%Alの組成とすることで、鉄損が下がるとともに、鉄損の温度係数が負になることが分かった(非特許文献1参照)。
さらに、鉄にクロムとアルミニウムとモリブデンと加えた電磁ステンレス鋼の中で、Fe-13質量%Cr-0.2質量%Al-1質量%Moからなる電磁ステンレス鋼は、透磁率は大きいが、保持力が85A/mと大きくヒステリシス損失が大きい。いっぽう、磁束密度は1.35テスラでパーマロイ並みである。また、ロックウェル硬度が70HRB(ビッカース硬度で130HVに相当する)で、アトマイズ鉄粉より硬く、還元鉄粉より柔らかい。また、耐食性に優れる。このため、電磁ステンレス鋼は、パルス磁場に対する応答性に優れることから、自動車の電磁弁に用いられている。また、体積抵抗率が6.5×10-5Ω・cmの導電体である。
以上に様々な種類の軟磁性粉について、代表的な組成からなる軟磁性粉の特性を記載した。いずれの軟磁性粉も導電体であるため、軟磁性粉の絶縁化が必要になる。本発明における耐熱性と絶縁性とが高い酸化アルミニウム微粒子の集まりで、軟磁性粉を絶縁化すれば、渦電流損失が著しく低減する。また、800℃を超える温度での焼鈍が可能になり、圧粉磁心のヒステリシス損失が低減できる。また、圧粉磁心の密度を軟磁性粉の密度に近づけるため、軟磁性粉を予め焼鈍によって硬度を下げる。従って、本発明における集積度を高めた軟磁性粉を面同士で重ね合わせ、該軟磁性粉の集まりを圧縮し、軟磁性を塑性変形させずに圧粉磁心を製造する効果は大きい。
Embodiment 2
The present embodiment relates to soft magnetic powder used as a raw material for dust cores. The soft magnetic powder is selected based on the operating frequency range of the electrical product in which the powder magnetic core is mounted and the magnitude of the magnetic flux density of the powder magnetic core in this frequency range. On the other hand, in order to increase the saturation magnetic flux density of the dust core, it is necessary to increase the filling rate of the soft magnetic powder in the dust core. In order to increase the filling rate of the soft magnetic powder, it is necessary to apply a large pressure to the aggregate of the soft magnetic powder to promote plastic deformation of the soft magnetic powder. Therefore, since most soft magnetic powders have high hardness, the soft magnetic powder is annealed in advance to reduce the hardness of the soft magnetic powder. In addition, since the soft magnetic powder that has undergone plastic deformation has an increased coercive force, magnetic annealing of the dust core restores the coercive force of the soft magnetic powder to reduce the core loss of the dust core.
A dust core that forms a stator or rotor in a motor has a low operating frequency but a high saturation magnetic flux density. For such applications, pure iron powder, which has the highest saturation magnetic flux density among soft magnetic powders, is used. On the contrary, powder magnetic cores constituting reactors, noise filters, choke coils, etc. in power supply circuits have a high operating frequency but a low saturation magnetic flux density. Fe--Si alloy powder, Fe--Si--Al alloy powder, and Fe--Ni alloy powder are used for such applications. Amorphous alloy powders have a wide variety of magnetic properties, and since they have individual properties depending on the composition of the alloy, they are not dealt with here.
Pure iron powder has a saturation magnetic flux density of 2.2 tesla, which is the highest among soft magnetic powders. The packing density in the powder magnetic core is high, and the saturation magnetic flux density of the powder magnetic core is further increased. For this reason, it is used in dust cores that make up stators and rotors of motors that require magnetic energy. For example, atomized iron powder with a Vickers hardness of 75 to 87 HV has the lowest hardness among soft magnetic powders, and the compression density of a compression molded body using hydrogen-annealed atomized iron powder is 90% of the density of iron. close to On the other hand, the reduced iron powder has a Vickers hardness of 160 to 210 HV, which is more than double the hardness of the atomized iron powder, but it is a porous body with many voids and is therefore easily plastically deformed. However, in manufacturing the dust core, the hardness is reduced by hydrogen annealing. On the other hand, pure iron powder has the lowest magnetic permeability among the soft magnetic powders, and has the disadvantage that it is difficult to capture magnetic energy into the dust core. Moreover, the holding force is as large as 80 A/m, and the hysteresis loss is large. Furthermore, it is a conductor having a volume resistivity of 1×10 −5 Ω·cm.
On the other hand, when silicon is added to iron, the magnetic permeability increases, but if the silicon content exceeds 5% by mass, it becomes extremely brittle. be. In addition, when silicon is added to iron, the electrical resistance increases, but the volume resistivity of the 3% by mass Fe—Si alloy is 5×10 −5 Ω·cm, which is conductive. The 3% by mass Fe—Si alloy has a high coercive force of 65 A/m and a large hysteresis loss, but a high saturation magnetic flux density of 1.3 tesla. Moreover, it has a Vickers hardness of 180 to 205 HV, and is used as a raw material for powder magnetic cores after the hardness is reduced by annealing. As described above, the magnetic properties of the Fe--Si alloy are close to those of the reduced iron powder, but since it is less susceptible to corrosion than the reduced iron powder, the Fe--Si alloy, like the pure iron powder, is used as a compressor for motor stators and rotors. Used for powder magnetic cores.
Furthermore, Permalloy, which is an Fe—Ni alloy in which nickel is added to iron, has a significantly higher magnetic permeability than iron, but a lower saturation magnetic flux density. Also, the higher the nickel content, the higher the price, so the nickel content is suppressed to 50% by mass or less. In addition, magnetic annealing is performed at 1100° C. in a hydrogen atmosphere for about 3 hours to remove impurities and adjust the magnetic properties of permalloy. Here, the properties are shown as a representative permalloy containing 45% by mass of nickel. DC magnetic properties include an initial permeability of 3000, a saturation magnetic flux density of 1.4 tesla, and a coercive force of 16 A/m. . In terms of AC magnetic properties, permalloy with a plate thickness of 0.1 mm has an effective magnetic permeability of 3000 at 1 kHz and 2500 at 3 kHz. In addition, its physical properties include a density of 8.25 g/cm 3 , which is about 5% higher than that of iron, a volume resistivity of 5×10 −5 Ω·cm, which is conductive, and a magnetic Curie point of 420° C., which is 350% higher than that of iron. °C, and the hardness is 60-90 HRB in Rockwell hardness (corresponding to 110-190 HV in Vickers hardness). Therefore, permalloy is used for transformer cores, motor cores, and iron cores for relays because it is excellent in AC magnetic permeability and saturation magnetic flux density.
Further, the Fe--Si--Al system alloy obtained by adding silicon and aluminum to iron has high hardness and is brittle, so it is easily pulverized. In particular, Sendust (registered trademark of Tohoku University), which has a composition of Fe-10 mass% Si-6 mass% Al, has a magnetic permeability of 1.2 × 10 5 and is easily magnetized, and has a coercive force of 0.1 A / m. , the hysteresis loss is small, and the saturation magnetic flux density is 1 tesla, which is close to permalloy. Also, it is a conductor having a volume resistivity of 8×10 −5 Ω·cm. On the other hand, the Vickers hardness is as high as 410 HV, and although the hardness is lowered by annealing, the filling rate is not as high as that of pure iron powder. In addition, when a powder magnetic core made of sendust is used at 80-120°C, the iron loss increases from that at room temperature, and the heat generated by the iron loss further increases the iron loss. there were. However, recently, it has been found that by setting the composition of Fe-8.8% by mass Si-6.0% by mass Al, the iron loss decreases and the temperature coefficient of the iron loss becomes negative (Non-Patent Document 1 reference).
Furthermore, among the electromagnetic stainless steels in which chromium, aluminum and molybdenum are added to iron, the electromagnetic stainless steel composed of Fe-13% by mass Cr-0.2% by mass Al-1% by mass Mo has a large magnetic permeability, The holding force is as large as 85 A/m and the hysteresis loss is large. On the other hand, the magnetic flux density is 1.35 Tesla, which is comparable to permalloy. Further, it has a Rockwell hardness of 70 HRB (corresponding to 130 HV in Vickers hardness), which is harder than atomized iron powder and softer than reduced iron powder. Moreover, it is excellent in corrosion resistance. For this reason, electromagnetic stainless steel is used for electromagnetic valves of automobiles because of its excellent response to pulsed magnetic fields. It is also a conductor with a volume resistivity of 6.5×10 −5 Ω·cm.
The characteristics of soft magnetic powders having representative compositions have been described above for various types of soft magnetic powders. Since any soft magnetic powder is a conductor, it is necessary to insulate the soft magnetic powder. Eddy current loss can be remarkably reduced by insulating the soft magnetic powder with a collection of fine aluminum oxide particles having high heat resistance and insulating properties according to the present invention. Moreover, annealing at a temperature exceeding 800° C. is possible, and the hysteresis loss of the powder magnetic core can be reduced. In order to bring the density of the powder magnetic core closer to the density of the soft magnetic powder, the soft magnetic powder is preliminarily annealed to lower its hardness. Therefore, the present invention is highly effective in producing a powder magnetic core without plastically deforming the soft magnetic particles by stacking the soft magnetic particles having an increased degree of accumulation face-to-face and compressing the aggregate of the soft magnetic particles.

実施形態3
本実施形態は、軟磁性粉の中で最も安価な材料であるアトマイズ鉄粉および還元鉄粉を用いて作成した圧粉磁心の実施形態であり、非特許文献2に記載されている。また、2種類の圧粉磁心の実施形態から、本発明の圧粉磁心を製造する方法の優位性を説明する。なお、非特許文献2で用いたアトマイズ鉄粉のビッカース硬度が100で、還元鉄粉のビッカース硬度が60と双方の硬度が、研磨剤などで用いる鉄粉に比べ硬度が低い。このため、製造された鉄粉を、さらに水素焼鈍によって硬度を低下させたと考えられる。
なお、鉄粉の初透磁率は、鉄粉の製造条件によって不純物濃度が変わり、ケイ素とマンガンとの不純物濃度によって、初透磁率が変わる。非特許文献2で用いた還元鉄粉は、ケイ素の濃度が0.05質量%で、マンガンの濃度が0.25質量%である。これに対し、非特許文献2で用いたアトマイズ鉄粉は、ケイ素の濃度は0.01質量%と低く、マンガンの濃度も0.04質量%と低い。このため、初透磁率は、還元鉄粉のほうがアトマイズ鉄粉より大きい。
圧粉磁心の製作は、双方の鉄粉に、絶縁材料としてエポキシ樹脂の0.75質量%と、潤滑材料としてステアリン酸亜鉛の0.5質量%とを加え、490MPaと686MPaとの2種類の加圧圧力を加え、外径が38mmで内径が25mmで厚みが6.2mmのリング形状に成形した。この後、圧粉体を大気中の180℃で熱処理し、エポキシ樹脂を硬化し、圧粉磁心を製作した。なお、ステアリン酸亜鉛は融点が140℃であり、エポキシ樹脂を重合する際に液化し、潤滑剤としての機能を発揮する。
なお、エポキシ樹脂は、体積抵抗率が1015Ω・cmと絶縁性に優れるが、耐熱性が200℃より低い。また、ステアリン酸亜鉛は、420℃で熱分解し、有毒な一酸化炭素、二酸化炭素、酸化亜鉛のガスと固体粒子になる。従って、製作した圧粉磁心は、耐熱性が200℃より低く、保持力を元に戻す焼鈍処理ができないまた。また、加圧圧力の大きさから、双方の鉄粉は塑性変形が進んでいる。しかし、180℃の熱処理では焼鈍効果がないため、圧粉磁心のヒステリシス損失は大きい。
490MPaの加圧圧力を加えた還元鉄粉からなる圧粉磁心は、密度が6.74g/cmで、充填率が85.8%に相当し、直流の初透磁率が71.1である。686MPaの加圧圧力を加えた還元鉄粉からなる圧粉磁心は、密度が6.95g/cmで、充填率が88.4%に相当し、直流の初透磁率が75.7である。これに対し、490MPaの加圧圧力を加えたアトマイズ鉄粉からなる圧粉磁心は、密度が6.87g/cmで、充填率が87.4%に相当し、直流の初透磁率が64.2である。686MPaの加圧圧力を加えたアトマイズ鉄粉からなる圧粉磁心は、密度が7.06g/cmで、充填率が89.8%に相当し、直流の初透磁率が68.7である。
還元鉄粉からなる圧粉磁心の交流の初透磁率は、10kHzにおいて74で、周波数が高まるほど初透磁率が緩やかに低下し、300kHz付近から低下率が増える。これに対し、アトマイズ鉄粉からなる圧粉磁心の交流の初透磁率は、還元鉄粉の圧粉磁心の交流の初透磁率の周波数特性を、10だけ初透磁率を下方に移動した周波数特性を示している。
さらに、2種類の鉄粉を加圧した際の鉄粉の圧密化の挙動は、加圧圧力に対して空隙率が減少する割合は、2種類の鉄粉において同様の特性を示している。なお、空隙率の減少は、鉄粉の塑性変形と再配列とに依る。2種類の鉄粉は、100MPaの圧力において鉄粉の再配列が終了し、また、50MPa付近の加圧圧力から塑性変形が開始されている。従って、50MPa付近までの圧力では、鉄粉の再配列によって空隙が減少し、100MPaまでの圧力では、鉄粉の再配列と鉄粉の塑性変形とによって空隙が減少し、100MPa以上の圧力では、鉄粉の塑性変形によって空隙が減少する。従って、490MPaの加圧圧力を加えて製作した圧粉磁心は、鉄粉の塑性変形が十分に進んでいる。このため、圧粉磁心のヒステリシス損失が増大している。
ここで、2種類の圧粉磁心の測定結果について検討する。
第一に、圧縮成形体の圧縮密度は、同一の加圧圧力に対し、アトマイズ鉄粉のほうが圧縮密度は高い。しかし、圧縮密度の差は僅か2%に過ぎない。いっぽう、使用した還元鉄粉のビッカース硬度は、使用したアトマイズ鉄粉の0.6倍で塑性変形しやすい。しかし、双方の鉄粉が、50MPa付近の圧力から塑性変形が開始され、490MPaの加圧圧力では、双方の鉄粉は塑性変形が十分に進んでいる。このため、鉄粉の硬度の違いが、圧縮密度の違いに与える影響は小さい。いっぽう、還元鉄粉は、多くの空隙を持つ多孔質体で、加圧圧力に対して潰れやすいが、塑性変形した鉄粉における空隙率が高い。従って、圧縮密度の違いは、塑性変形後の還元鉄粉の空隙率が高いことに依ると考える。
第二に、還元鉄粉における直流の初透磁率は、アトマイズ鉄粉における直流の初透磁率より10%も大きい。さらに、10kHzから1MHzにおける交流の初透磁率は、還元鉄粉からなる圧粉磁心は、アトマイズ鉄粉からなる圧粉磁心より、15%も大きい。前記したように、還元鉄粉はケイ素とマンガンとの不純物濃度が高いため、初透磁率が大きい。さらに、還元鉄粉の扁平効果に依って、初透磁率が増大した。つまり、アトマイズ鉄粉は、輪郭が不定形であり、加圧すると等方的に変形する。これに対し、還元鉄粉も輪郭が不定形であるが、多孔質体であるため、還元鉄粉は加圧方向に潰れやすく、加圧方向に垂直な方向に変形しやすい。つまり、磁化の容易軸方向である面方向に還元鉄粉が変形し、反磁場係数が小さくなり、還元鉄粉の初透磁率が増大した。この現象は、軟磁性粉を扁平処理すると、透磁率が増大する現象に類似している。
第三に、2種類の鉄粉の塑性変形は、50MPa付近から開始されるため、490MPaの加圧圧力では、2種類の鉄粉の塑性変形が進み、保持力が増加した鉄粉で圧粉磁心が形成される。しかし、圧粉磁心の熱処理は、エポキシ樹脂の硬化処理温度である180℃である。従って、180℃の熱処理では、保持力を元に戻す焼鈍効果はない。また、2種類の鉄粉の輪郭が不定形で、形状異方性を持たない。このような鉄粉の集まりを圧縮し、圧縮成形体として必要な機械的強度を実現させるには、490MPaの加圧圧力が必要になる。この加圧圧力によって鉄粉の塑性変形が進み、鉄粉同士の絡み合いで、圧縮成形体に必要な機械的強度が実現する。しかし、圧粉磁心のヒステリシス損失は増大する。
ここで、2種類の圧粉磁心の結果に対する、本発明の圧粉磁心の製造方法の優位性を説明する。
第一に、酸化アルミニウム微粒子の集まりで鉄粉を絶縁化すれば、耐熱性が鉄粉の耐熱性より高いため、歪取り焼鈍が可能になり、鉄粉の保持力が元に戻る。また、酸化アルミニウム微粒子の集まりが、鉄粉同士の間隙と還元鉄粉の空隙を埋め、圧縮密度が増大するとともに、間隙と空隙を埋め尽くした酸化アルミニウム微粒子同士が摩擦熱で接合し、圧粉磁心としての機械的強度の実現に貢献する。また、鉄粉の間隙と空隙とを摩擦熱で接合した酸化アルミニウム微粒子が埋めるため、鉄粉同士の間隙を流れる渦電流が減少する。
第二に、鉄粉が不定形であっても、鉄粉の集まりを面同士で重なり合った鉄粉の集まりとし、鉄粉の集まりを圧縮すると、面同士で重なり合った鉄粉同士の間隙が狭まり、圧縮密度が高まる。また、全ての鉄粉が面同士で重なり合い、磁化の容易軸方向が面方向であるため、圧粉磁心が磁化されやすくなり、鉄粉の初透磁率が増大する。
第三に、鉄粉が塑性変形する前に加圧圧力を停止し、酸化アルミニウム微粒子同士の接合を介して鉄粉同士を結合すれば、圧粉磁心におけるヒステリシス損失は増加せず、また、圧粉磁心は必要な機械的強度を持つ。
この結果、アトマイズ鉄粉および還元鉄粉を用い、本発明の圧粉磁心の製造方法に従って製造した圧粉磁心は、初透磁率が増大し、渦電流損失が低減し、ヒステリシス損失が増大しない。
Embodiment 3
This embodiment is an embodiment of a powder magnetic core produced using atomized iron powder and reduced iron powder, which are the cheapest materials among soft magnetic powders, and is described in Non-Patent Document 2. In addition, the superiority of the method for manufacturing the dust core of the present invention will be explained from two types of embodiments of the dust core. The atomized iron powder used in Non-Patent Document 2 has a Vickers hardness of 100, and the reduced iron powder has a Vickers hardness of 60, both of which are lower than the iron powder used as an abrasive. For this reason, it is considered that the hardness of the produced iron powder was further reduced by hydrogen annealing.
The initial magnetic permeability of the iron powder varies depending on the manufacturing conditions of the iron powder and the concentration of impurities such as silicon and manganese. The reduced iron powder used in Non-Patent Document 2 has a silicon concentration of 0.05% by mass and a manganese concentration of 0.25% by mass. In contrast, the atomized iron powder used in Non-Patent Document 2 has a silicon concentration as low as 0.01% by mass and a manganese concentration as low as 0.04% by mass. Therefore, the initial magnetic permeability of the reduced iron powder is higher than that of the atomized iron powder.
To manufacture the dust core, 0.75% by mass of epoxy resin as an insulating material and 0.5% by mass of zinc stearate as a lubricating material are added to both iron powders, and two types of 490 MPa and 686 MPa are produced. Pressurization was applied to form a ring shape having an outer diameter of 38 mm, an inner diameter of 25 mm, and a thickness of 6.2 mm. After that, the green compact was heat-treated at 180° C. in the atmosphere to cure the epoxy resin and produce a powder magnetic core. Zinc stearate has a melting point of 140° C., liquefies when the epoxy resin is polymerized, and functions as a lubricant.
Epoxy resin has a volume resistivity of 10 15 Ω·cm and is excellent in insulating properties, but its heat resistance is lower than 200°C. Zinc stearate also thermally decomposes at 420° C. into toxic carbon monoxide, carbon dioxide, zinc oxide gases and solid particles. Therefore, the manufactured powder magnetic core has a heat resistance lower than 200° C. and cannot be annealed to restore the coercive force. In addition, both iron powders are undergoing plastic deformation due to the magnitude of the applied pressure. However, since heat treatment at 180° C. has no annealing effect, the hysteresis loss of the dust core is large.
A dust core made of reduced iron powder pressurized at 490 MPa has a density of 6.74 g/cm 3 , which corresponds to a filling rate of 85.8%, and a DC initial magnetic permeability of 71.1. . A dust core made of reduced iron powder pressurized at 686 MPa has a density of 6.95 g/cm 3 , a filling rate of 88.4%, and an initial DC permeability of 75.7. . On the other hand, a powder magnetic core made of atomized iron powder pressurized at 490 MPa has a density of 6.87 g/cm 3 , which corresponds to a filling rate of 87.4% and an initial magnetic permeability of 64 g/cm 3 . .2. A dust core made of atomized iron powder pressurized at 686 MPa has a density of 7.06 g/cm 3 , a filling rate of 89.8%, and an initial DC permeability of 68.7. .
The AC initial magnetic permeability of the powder magnetic core made of reduced iron powder is 74 at 10 kHz, and the initial magnetic permeability gradually decreases as the frequency increases, and the rate of decrease increases from around 300 kHz. On the other hand, the AC initial permeability of the dust core made of the atomized iron powder is the frequency characteristic obtained by shifting the initial permeability of the dust core of the reduced iron powder downward by 10. is shown.
Furthermore, regarding the compaction behavior of the iron powders when the two types of iron powders are pressurized, the two types of iron powders show similar characteristics in terms of the rate of reduction in porosity with respect to the pressurization pressure. The decrease in porosity is due to plastic deformation and rearrangement of the iron powder. For the two types of iron powder, the rearrangement of the iron powder is completed at a pressure of 100 MPa, and plastic deformation is started from a pressure of around 50 MPa. Therefore, at pressures up to about 50 MPa, the voids are reduced due to the rearrangement of the iron powder. The voids are reduced by plastic deformation of the iron powder. Therefore, in the powder magnetic core manufactured by applying a pressing pressure of 490 MPa, the plastic deformation of the iron powder has sufficiently progressed. Therefore, the hysteresis loss of the powder magnetic core increases.
Here, the measurement results of two types of powder magnetic cores are examined.
First, regarding the compression density of the compression molded body, the atomized iron powder has a higher compression density with respect to the same pressing pressure. However, the difference in compacted density is only 2%. On the other hand, the Vickers hardness of the reduced iron powder used is 0.6 times that of the atomized iron powder used, and is easily plastically deformed. However, both iron powders start to undergo plastic deformation at a pressure of around 50 MPa, and at a pressure of 490 MPa, the plastic deformation of both iron powders has progressed sufficiently. Therefore, the difference in hardness of the iron powder has little effect on the difference in compression density. On the other hand, the reduced iron powder is a porous body with many voids and is easily crushed by the applied pressure, but the plastically deformed iron powder has a high porosity. Therefore, it is considered that the difference in compaction density is due to the high porosity of the reduced iron powder after plastic deformation.
Second, the initial DC permeability of the reduced iron powder is 10% higher than that of the atomized iron powder. Furthermore, the initial magnetic permeability of alternating current from 10 kHz to 1 MHz is 15% higher in the powder magnetic core made of reduced iron powder than in the powder magnetic core made of atomized iron powder. As described above, the reduced iron powder has a high impurity concentration of silicon and manganese, and thus has a high initial magnetic permeability. Furthermore, the initial permeability increased due to the flattening effect of the reduced iron powder. In other words, the atomized iron powder has an irregular contour and isotropically deforms when pressurized. On the other hand, the reduced iron powder also has an irregular outline, but since it is a porous body, the reduced iron powder is easily crushed in the pressurizing direction and easily deformed in the direction perpendicular to the pressurizing direction. In other words, the reduced iron powder was deformed in the plane direction, which is the direction of the axis of easy magnetization, and the demagnetizing field coefficient decreased, and the initial magnetic permeability of the reduced iron powder increased. This phenomenon is similar to the phenomenon that magnetic permeability increases when soft magnetic powder is flattened.
Third, since the plastic deformation of the two types of iron powder starts at around 50 MPa, the plastic deformation of the two types of iron powder progresses at a pressure of 490 MPa, and the iron powder with increased holding power is compacted. A magnetic core is formed. However, the heat treatment of the powder magnetic core is 180° C., which is the curing treatment temperature of the epoxy resin. Therefore, the heat treatment at 180° C. has no annealing effect to restore the holding power. In addition, the contours of the two types of iron powder are irregular and do not have shape anisotropy. A pressure of 490 MPa is required in order to compress such a mass of iron powder and achieve the mechanical strength necessary for a compression molded body. The applied pressure promotes plastic deformation of the iron powder, and the entanglement of the iron powder realizes the mechanical strength required for the compression-molded body. However, the hysteresis loss of the dust core increases.
Here, the superiority of the powder magnetic core manufacturing method of the present invention over the results of two types of powder magnetic cores will be described.
Firstly, if the iron powder is insulated by a collection of aluminum oxide fine particles, the heat resistance is higher than that of the iron powder, so strain relief annealing becomes possible, and the holding power of the iron powder is restored. In addition, the aggregates of aluminum oxide fine particles fill the gaps between the iron powders and the gaps between the reduced iron powders, increasing the compaction density. Contributes to the realization of mechanical strength as a magnetic core. In addition, since the aluminum oxide fine particles bonded by frictional heat fill the gaps between the iron powders, the eddy current flowing through the gaps between the iron powders is reduced.
Secondly, even if the iron powder has an irregular shape, if the iron powder mass is made into a mass of iron powder that overlaps with each other, and the mass of iron powder is compressed, the gap between the iron powder that overlaps with each other narrows. , the compression density increases. In addition, since all the iron powders overlap each other and the easy axis of magnetization is in the plane direction, the dust core is easily magnetized and the initial permeability of the iron powder increases.
Thirdly, if the applied pressure is stopped before the iron powder is plastically deformed and the iron powders are joined together through the joining of the aluminum oxide fine particles, the hysteresis loss in the powder magnetic core does not increase, and the pressure is reduced. Powder magnetic cores have the required mechanical strength.
As a result, the dust core manufactured using the atomized iron powder and the reduced iron powder according to the method for manufacturing a dust core of the present invention has increased initial permeability, reduced eddy current loss, and no increase in hysteresis loss.

実施形態4
本実施形態は、還元鉄粉を用いて製作した圧粉磁心と、扁平還元鉄粉を用いて製作した圧粉磁心との性能を比較する実施形態であり、非特許文献3に記載されている。また、2種類の圧粉磁心の実施形態から、本発明の圧粉磁心を製造する方法の優位性を説明する。
双方の鉄粉に、絶縁材料としてのエポキシ樹脂を1質量%として加え、潤滑材料としてのステアリン酸亜鉛を0.1質量%として加え、490MPaと686MPaとの加圧圧力を加え、外径が38mmで内径が25mmで厚みが6.2mmのリング形状に成形し、この後、圧粉体を大気中の180℃で30分間熱処理し、エポキシ樹脂を硬化させて圧粉磁心を製作した。なお、180℃で30分間熱処理しても、還元鉄粉の保持力を元に戻すことができず、圧粉磁心におけるヒステリシス損失が大きい。
490MPaの加圧圧力で製作した圧粉磁心において、扁平還元鉄粉では、圧縮密度が6.93g/cmで充填率が88.0%で直流の初透磁率が94.9である。これに対し、還元鉄粉では、圧縮密度が6.74g/cmで充填率が85.7%で直流の初透磁率が72.1である。また、686MPaの加圧圧力で製作した圧粉磁心において、扁平還元鉄粉では、圧縮密度が7.09g/cmで充填率が90.0%で直流の初透磁率が99.1である。これに対し、還元鉄粉では、圧縮密度が6.97g/cmで充填率が88.5%で直流の初透磁率が78.1である。いずれの還元鉄粉も、圧縮応力を高めると圧縮密度と直流の初透磁率とが高まる。
また、686MPaの加圧圧力で圧縮した圧粉磁心は、10-200kHzにおける交流の初透磁率は、扁平還元鉄粉の圧粉磁心の初透磁率が100で、還元鉄粉の圧粉磁心の初透磁率が80で、初透磁率が20%増加している。なお、200kHz-1MHzにおいては周波数が高くなるほど、初透磁率の差が徐々に少なくなる。
また、50mTの磁束密度における鉄損は、扁平還元鉄粉を用いた圧粉磁心の鉄損は、還元鉄粉を用いた圧粉磁心の鉄損より小さく、周波数が高まるほど、両者の差が広がる。つまり、同一の物質と同一の質量数で双方の鉄粉を絶縁化しているにもかかわらず、扁平還元鉄粉を用いた圧粉磁心のほうが鉄損は小さい。
ここで、2種類の圧粉磁心の測定結果について検討する。
第一に、扁平還元鉄粉を用いた圧縮成形体における扁平還元鉄粉同士の間隙が、還元鉄粉を用いた場合に比べ、相対的に狭くなり、圧縮密度が増大した。しかし、圧縮密度の差は僅かに2ないし3%に過ぎない。また、686MPaの加圧圧力で製作した圧粉磁心に於ける充填率と、490MPaの加圧圧力で製作した圧粉磁心に於ける充填率との比率は、扁平還元鉄粉を用いた圧粉磁心では1.023であるに対し、還元鉄粉を用いた圧粉磁心では1.033である。全ての扁平還元鉄粉が扁平面同士で重なり合っていれば、前記した圧粉密度の差が2ないし3%より広がり、また、扁平還元鉄粉を用いた場合の充填率の比率が1.023より大きくなる。従って、扁平面同士で重なり合った扁平還元鉄粉は一部に留まっている。いっぽう、全ての扁平還元鉄粉が扁平面同士で重なり合うと、圧粉磁心に必要な機械的強度が実現できない問題点が現れる。このため、扁平還元鉄粉の集まりを単純に圧縮した。
第二に、扁平還元鉄粉を用いた圧粉磁心では、還元鉄粉を用いた圧粉磁心に比べ、直流の初透磁率が、490MPaの加圧圧力で31%増加し、686MPaの加圧圧力で27%増大した。また、686MPaの加圧圧力で作成した圧粉磁心において、10-200kHzの周波数で、初透磁率が20%増加した。つまり、扁平還元鉄粉に加圧圧力を加えると、扁平還元鉄粉が潰れ、一定の割合からなる扁平還元鉄粉が、扁平面方向に変形し、扁平率が増大する。この扁平面方向が磁化容易軸方向であるため、扁平効果に依って初透磁率が増加した。このため、扁平還元鉄粉を用いた圧粉磁心と、還元鉄粉を用いた圧粉磁心との間に、初透磁率の差が表れた。
第三に、圧粉磁心における鉄損の結果は、還元鉄粉の形状は不定形で、扁平還元鉄粉の形状は面方向に扁平化されていることに依る。つまり、扁平還元鉄粉からなる圧縮成形体における扁平還元鉄粉同士の間隙が狭くなり、圧縮密度が増大した。扁平還元鉄粉同士の間隙が狭くなると、隣接する扁平還元鉄粉間の絶縁性が高くなり、扁平還元鉄粉同士の間隙を流れる渦電流が少なくなり、扁平還元鉄粉を用いた圧粉磁心の渦電流損失が、還元鉄粉を用いた圧粉磁心の渦電流損失より小さくなった。
ここで、2種類の圧粉磁心の結果に対する、本発明の圧粉磁心の製造方法の優位性を説明する。
第一に、耐熱性が還元鉄粉より高い酸化アルミニウム微粒子の集まりで、還元鉄粉を絶縁化すれば、歪取り焼鈍が可能になり、保持力が元に戻り、圧粉磁心のヒステリシス損失が減少する。また、大きさがエポキシ樹脂のペレットより3桁小さい酸化アルミニウム微粒子の集まりが、還元鉄粉同士の間隙と還元鉄粉の空隙を酸化アルミニウム微粒子が埋め尽くし、圧縮密度が増大する。また、間隙と空隙を埋め尽くした酸化アルミニウム微粒子同士が摩擦熱で接合し、圧粉磁心としての機械的強度が実現する。これによって、還元鉄粉および扁平還元鉄粉の塑性変形が不要になり、圧粉磁心のヒステリシス損失は小さい。
第二に、還元鉄粉が不定形であっても、還元鉄粉の集まりを面同士で重なり合った集積度が高い鉄粉の集まりとし、還元鉄粉の集まりを圧縮すると、全ての還元鉄粉について、面同士で重なり合った還元鉄粉の間隙が狭まり、圧縮密度が高まる。扁平還元鉄粉では、扁平面同士が重なり合った扁平還元鉄粉の集まりを圧縮するため、圧縮密度がさらに高まる。また、全ての還元鉄粉ないしは全ての扁平還元鉄粉が、扁平面の方向に揃っているため、圧粉磁心の初透磁率がさらに増える。また、還元鉄粉同士の間隙ないしは扁平還元鉄粉同士の間隙がより狭くなり、より狭くなった間隙が、絶縁性の高い酸化アルミニウム微粒子で埋め尽くされ、間隙を流れる渦電流はさらに減少する。この結果、初透磁率が増加する。
第三に、双方の鉄粉が塑性変形する前に加圧圧力を停止し、酸化アルミニウム微粒子同士の接合を介して双方の鉄粉同士を結合すれば、圧粉磁心におけるヒステリシス損失は増加せず、また、圧粉磁心は必要な機械的強度を持つ。
この結果、還元鉄粉および扁平還元鉄粉を用い、本発明の圧粉磁心の製造方法に従って製造した圧粉磁心は、初透磁率が増大し、渦電流損失が低減し、ヒステリシス損失が増大しない。
Embodiment 4
This embodiment is an embodiment for comparing the performance of a dust core manufactured using reduced iron powder and a dust core manufactured using flat reduced iron powder, and is described in Non-Patent Document 3. . In addition, the superiority of the method for manufacturing the dust core of the present invention will be explained from two types of embodiments of the dust core.
To both iron powders, 1% by mass of epoxy resin was added as an insulating material, and 0.1% by mass of zinc stearate was added as a lubricating material. After that, the green compact was heat-treated at 180° C. in the air for 30 minutes to harden the epoxy resin to produce a green powder magnetic core. Even if the heat treatment is performed at 180° C. for 30 minutes, the retention force of the reduced iron powder cannot be restored, and the hysteresis loss in the dust core is large.
In a powder magnetic core manufactured at a pressurization pressure of 490 MPa, the flat reduced iron powder has a compaction density of 6.93 g/cm 3 , a filling rate of 88.0%, and an initial DC permeability of 94.9. On the other hand, the reduced iron powder has a compaction density of 6.74 g/cm 3 , a filling rate of 85.7%, and an initial DC magnetic permeability of 72.1. In addition, in the powder magnetic core manufactured at a pressurization pressure of 686 MPa, the flat reduced iron powder has a compaction density of 7.09 g/cm 3 , a filling rate of 90.0%, and a direct current initial magnetic permeability of 99.1. . On the other hand, the reduced iron powder has a compaction density of 6.97 g/cm 3 , a filling rate of 88.5%, and an initial DC magnetic permeability of 78.1. For any of the reduced iron powders, increasing the compressive stress increases the compressive density and the direct current initial magnetic permeability.
In addition, the powder magnetic core compressed at a pressure of 686 MPa has an alternating initial magnetic permeability of 100 at 10 to 200 kHz. The initial permeability is 80, and the initial permeability is increased by 20%. In the range of 200 kHz-1 MHz, the higher the frequency, the smaller the difference in the initial magnetic permeability.
In addition, the iron loss at a magnetic flux density of 50 mT is smaller for the dust core using flat reduced iron powder than for the dust core using reduced iron powder, and the difference between the two increases as the frequency increases. spread. In other words, although both iron powders are insulated with the same material and the same mass number, the iron loss of the dust core using flat reduced iron powder is smaller.
Here, the measurement results of two types of powder magnetic cores are examined.
First, the gaps between the flat reduced iron powders in the compression molded body using the flat reduced iron powder became relatively narrower than when the reduced iron powder was used, and the compression density increased. However, the difference in compacted density is only 2-3%. In addition, the ratio of the filling rate in the powder magnetic core manufactured with a pressure of 686 MPa and the filling rate in the powder magnetic core manufactured with a pressure of 490 MPa is While it is 1.023 for the magnetic core, it is 1.033 for the dust core using reduced iron powder. If all the flattened reduced iron powders are overlapped with each other, the above-mentioned difference in the compaction density will be wider than 2 to 3%, and the filling rate ratio in the case of using the flattened reduced iron powder will be 1.023. get bigger. Therefore, the flattened reduced iron powder that overlapped with each other remains partially. On the other hand, if all the flattened reduced iron powders are overlapped with each other, there arises a problem that the mechanical strength required for the powder magnetic core cannot be achieved. For this reason, a mass of flat reduced iron powder was simply compressed.
Secondly, in the dust core using the flat reduced iron powder, compared with the dust core using the reduced iron powder, the DC initial magnetic permeability increased by 31% at a pressure of 490 MPa, and increased by 686 MPa. 27% increase in pressure. Also, in the powder magnetic core produced at a pressure of 686 MPa, the initial magnetic permeability increased by 20% at a frequency of 10-200 kHz. That is, when pressure is applied to the flat reduced iron powder, the flat reduced iron powder is crushed, and the flat reduced iron powder having a certain proportion is deformed in the flat plane direction and the flatness increases. Since this flat plane direction is the direction of easy axis of magnetization, the initial magnetic permeability increased due to the flattening effect. Therefore, a difference in initial magnetic permeability appeared between the dust core using the flat reduced iron powder and the dust core using the reduced iron powder.
Thirdly, the iron loss in the dust core is due to the shape of the reduced iron powder being irregular and the shape of the flattened reduced iron powder being flattened in the surface direction. In other words, the gaps between the flat reduced iron powders in the compression-molded body made of the flat reduced iron powder were narrowed, and the compression density was increased. When the gap between the flat reduced iron powders becomes narrower, the insulation between the adjacent flat reduced iron powders becomes higher, and the eddy current flowing through the gap between the flat reduced iron powders decreases. The eddy current loss of the core was smaller than that of the dust core using the reduced iron powder.
Here, the superiority of the powder magnetic core manufacturing method of the present invention over the results of two types of powder magnetic cores will be described.
First, if the reduced iron powder is insulated with a collection of fine aluminum oxide particles that have higher heat resistance than the reduced iron powder, strain relief annealing becomes possible, the holding force is restored, and the hysteresis loss of the powder magnetic core is reduced. Decrease. In addition, the aggregate of aluminum oxide fine particles, which are three orders of magnitude smaller than the epoxy resin pellets, fills the gaps between the reduced iron powders and the gaps between the reduced iron powders, increasing the compaction density. In addition, the fine aluminum oxide particles filling the gaps and voids are bonded to each other by frictional heat, and the mechanical strength of the powder magnetic core is realized. This eliminates the need for plastic deformation of the reduced iron powder and flattened reduced iron powder, and reduces the hysteresis loss of the dust core.
Secondly, even if the reduced iron powder has an irregular shape, if the aggregate of the reduced iron powder is made into an aggregate of iron powder with a high degree of accumulation overlapping the faces, and the aggregate of the reduced iron powder is compressed, all of the reduced iron powder can be obtained. As for , the gaps between the reduced iron powders that overlap each other are narrowed, and the compaction density is increased. In the case of flat reduced iron powder, since a group of flat reduced iron powders in which the flat surfaces overlap each other is compressed, the compression density is further increased. In addition, since all the reduced iron powder or all the flattened reduced iron powders are aligned in the flat plane direction, the initial magnetic permeability of the powder magnetic core is further increased. In addition, the gaps between the reduced iron powders or the gaps between the flat reduced iron powders become narrower, and the narrowed gaps are filled with highly insulating aluminum oxide fine particles, further reducing the eddy current flowing through the gaps. As a result, the initial permeability increases.
Third, if the pressure is stopped before both iron powders are plastically deformed, and the two iron powders are bonded together via the bonding of the aluminum oxide fine particles, the hysteresis loss in the powder magnetic core does not increase. , and the dust core has the necessary mechanical strength.
As a result, the dust core manufactured using the reduced iron powder and the flat reduced iron powder according to the method for manufacturing a dust core of the present invention has an increased initial permeability, a reduced eddy current loss, and no increase in hysteresis loss. .

実施形態5
本実施形態は、アトマイズ鉄粉を用いて製作した圧粉磁心の実施形態であり、非特許文献4に記載されている。また、圧粉磁心の実施形態から、本発明の圧粉磁心を製造する方法の優位性を説明する。
アトマイズ鉄粉に0.5重量%のエポキシ樹脂粉末を添加し、フローティングダイ方式の金型で、196-686MPaからなる4種類の加圧圧力を加え、外径が38mmで内径が25mmで高さが6.5mmのリングに成形し、この後、150℃で1時間キュアリングして4個の圧粉磁心を製作した。なお、150℃でのキュアリングでは、アトマイズ鉄粉の保持力を元に戻す焼鈍効果はない。
196MPaの加圧圧力で成形した圧粉磁心は、充填率が76%で、直流の初透磁率が49である。294MPaの加圧圧力で成形した圧粉磁心は、充填率が81%で、直流の初透磁率が60である。490MPaの加圧圧力で成形した圧粉磁心は、充填率が87%で、直流の初透磁率が72である。686MPaの加圧圧力で成形した圧粉磁心は、充填率が91%で、直流の初透磁率が78である。
いっぽう、非特許文献2に記載されたアトマイズ鉄粉からなる圧粉磁心は、490MPaの加圧圧力を加えた圧粉磁心の充填率が87.4%で、直流の初透磁率が64.2であった。686MPaの加圧圧力を加えた圧粉磁心の充填率が89.8%で、直流の初透磁率が68.7であった。非特許文献4に記載された圧粉磁心に比べると、同一の加圧圧力において、充填率の値は近いが、直流の透磁率は小さい。この理由は、不純物の濃度に依る。非特許文献2におけるケイ素の濃度が0.01質量%で、マンガンの濃度が0.04質量%である。これに対し、非特許文献4では、ケイ素の濃度が0.029質量%と高く、マンガンの濃度が0.069質量%と高い。非特許文献4のアトマイズ鉄粉は、ケイ素とマンガンとの濃度が高いため、初透磁率が大きくなった。
また、非特許文献2に記載された圧粉磁心に用いたアトマイズ鉄粉は、非特許文献4に記載された圧粉磁心に用いたアトマイズ鉄粉に比べ粒径が小さい。例えば、非特許文献2に記載されたアトマイズ鉄粉は、粒径が180μmより大きいアトマイズ鉄粉は存在しない。また、粒径が45μm以下のアトマイズ鉄粉が23%を占める。これに対し、非特許文献4に記載されたアトマイズ鉄粉は、粒径が200-250μmのアトマイズ鉄粉は11.2%を、粒径が250-325μmのアトマイズ鉄粉は20.1%を、粒径が325μm以上のアトマイズ鉄粉が23.2%を占める。また、粒径が80μm以下のアトマイズ鉄粉が僅か0.1%である。
さらに、加圧圧力を増大させるほど、複素透磁率の実部と虚部の値が少しずつ増大するとともに、複素透磁率の実部と虚部の値の低下が始まる周波数が、少しずつ低周波数側にずれる結果が示されている。294MPaの加圧圧力では、500kHz付近まで実部が80の値を持つ。また、周波数が500kHzより増大するにつれ実部が徐々に減少する。これに対し、複素透磁率の虚部は、60kHz付近から徐々に増大し、1MHzを超えた周波数領域でピーク値の20を持ち、200MHzを超えた周波数で実部に重なる。
ここで、圧粉磁心の測定結果について検討する。
第一に、圧縮密度の結果について検討する。圧粉磁心に用いるアトマイズ鉄粉の粒径が小さいほど、圧縮密度が増大すると予想される。非特許文献2で用いたアトマイズ鉄粉は、非特許文献4で用いたアトマイズ鉄粉に比べ、明らかに粒径が小さい。粒径の大きさに明らかに違いがあるにもかかわらず、圧粉磁心の充填率の差は殆どない。いっぽう、アトマイズ鉄粉は50MPa付近の加圧圧力から塑性変形が開始され、490MPaの加圧圧力では、アトマイズ鉄粉の塑性変形が相当進んでいる。従って、鉄粉の塑性変形が進み、鉄粉の粒径分布の違いにも関わらず、鉄粉の充填率は変わらない結果になった。つまり、圧粉磁心として必要な機械的強度を得るために、490MPa程度の加圧圧力でアトマイズ鉄粉を圧縮した。しかしながら、塑性変形が進んだ鉄粉は、鉄粉の保持力が増大し、ヒステリシス損失が増大する。さらに、150℃での1時間のキュアリングでは、鉄粉の保持力は元に戻らない。
第二に、複素透磁率の結果について検討する。アトマイズ鉄粉は、還元鉄粉と同様に、輪郭が不定形であるが、還元鉄粉のように多孔質体ではない。絶縁化されたアトマイズ鉄粉の集まりを加圧する圧力を高めるほど、アトマイズ鉄粉同士の間隙が狭まり、間隙に流れる渦電流が小さくなり、渦電流損失が減少する。この結果、複素透磁率の実部と虚部の値が、加圧圧力を高めるほど増大した。また、アトマイズ鉄粉は、多孔質体ではないが、加圧圧力を高めるほどアトマイズ鉄粉の扁平化が進み、扁平率が増大する。この結果、複素透磁率の実部と虚部の値が増大した。つまり、磁化の容易軸方向である面方向に変形したアトマイズ鉄粉の割合が増大し、また、扁平率が増大し、アトマイズ鉄粉の複素透磁率の実部と虚部の値が増大した。
ここで、2種類の圧粉磁心の結果に対する、本発明の圧粉磁心の製造方法の優位性を説明する。
第一に、塑性変形が進んだアトマイズ鉄粉で、圧粉磁心が構成された。これによって、アトマイズ鉄粉の保持力が、塑性変形の進行度に応じて増大し、保持力の増大に応じて、ヒステリシス損失が増大する。アトマイズ鉄粉の保持力を元に戻すためには、500℃より高い水素雰囲気での焼鈍が必要になり、アトマイズ鉄粉を絶縁化する材料は、500℃より高い耐熱性が必要になる。本発明における酸化アルミニウム微粒子で、アトマイズ鉄粉を絶縁化すれば、耐熱性がアトマイズ鉄粉の耐熱性より高いため、歪取り焼鈍が可能になり、保持力が元に戻り、圧粉磁心のヒステリシス損失が減少する。
第二に、本発明における酸化アルミニウム微粒子で絶縁材料を構成すれば、微粒子の大きさがエポキシ樹脂のペレットより3桁小さいため、アトマイズ鉄粉同士の間隙がさらに狭まり、狭まった間隙を、絶縁性が高い酸化アルミニウム微粒子で埋め尽くされ、間隙を流れる渦電流がさらに少なくなる。これによって、複素透磁率の実部と虚部の値が、さらに増大する。また、圧縮密度も増え、圧粉磁心の飽和磁束密度が高まる。
第三に、本発明の圧粉磁心の製造法では、アトマイズ鉄粉の集まりを、集積度が高く、面同士で重なり合ったアトマイズ鉄粉の集まりとし、該アトマイズ鉄粉の集まりを圧縮する。このため、面同士が重なり合って圧縮され、アトマイズ鉄粉同士の間隙が狭まり、狭くなった間隙が絶縁性の高い酸化アルミニウム微粒子で埋め尽くされる。これによって、間隙を流れる渦電流がさらに減少し、複素透磁率の実部と虚部の値がさらに増大する。
第四に、アトマイズ鉄粉が塑性変形する前に加圧圧力を停止し、酸化アルミニウム微粒子同士の接合を介してアトマイズ鉄粉同士を結合すれば、圧粉磁心におけるヒステリシス損失は増加せず、また、圧粉磁心は必要な機械的強度を持つ。
この結果、アトマイズ鉄粉を用い、本発明の圧粉磁心の製造方法に従って製造した圧粉磁心は、初透磁率が増大し、渦電流損失が低減し、ヒステリシス損失が増大しない。
Embodiment 5
This embodiment is an embodiment of a powder magnetic core manufactured using atomized iron powder, and is described in Non-Patent Document 4. Also, the superiority of the method for manufacturing the dust core of the present invention will be explained from the embodiment of the dust core.
0.5% by weight of epoxy resin powder was added to the atomized iron powder, and four pressures of 196 to 686 MPa were applied in a floating die type mold, and the outer diameter was 38 mm, the inner diameter was 25 mm, and the height was 6.5 mm, and then cured at 150° C. for 1 hour to produce four dust cores. Curing at 150° C. does not have the annealing effect of restoring the holding power of the atomized iron powder.
The powder magnetic core molded under a pressure of 196 MPa has a filling rate of 76% and an initial DC magnetic permeability of 49. The powder magnetic core molded under a pressure of 294 MPa has a filling rate of 81% and an initial DC magnetic permeability of 60. The powder magnetic core molded under a pressure of 490 MPa has a filling rate of 87% and an initial magnetic permeability of 72 for direct current. The powder magnetic core molded under a pressure of 686 MPa has a filling rate of 91% and an initial DC magnetic permeability of 78.
On the other hand, the powder magnetic core made of atomized iron powder described in Non-Patent Document 2 has a filling rate of 87.4% when a pressure of 490 MPa is applied, and an initial magnetic permeability of direct current is 64.2. Met. The powder magnetic core to which a pressurization pressure of 686 MPa was applied had a filling rate of 89.8% and an initial DC magnetic permeability of 68.7. Compared to the powder magnetic core described in Non-Patent Document 4, at the same pressurization pressure, the value of the filling factor is close, but the DC magnetic permeability is small. The reason for this depends on the impurity concentration. The concentration of silicon in Non-Patent Document 2 is 0.01% by mass, and the concentration of manganese is 0.04% by mass. On the other hand, in Non-Patent Document 4, the concentration of silicon is as high as 0.029% by mass and the concentration of manganese is as high as 0.069% by mass. The atomized iron powder of Non-Patent Document 4 has a high initial permeability due to high concentrations of silicon and manganese.
Further, the atomized iron powder used for the dust core described in Non-Patent Document 2 has a smaller particle size than the atomized iron powder used for the dust core described in Non-Patent Document 4. For example, in the atomized iron powder described in Non-Patent Document 2, there is no atomized iron powder with a particle size larger than 180 μm. In addition, atomized iron powder with a particle size of 45 μm or less accounts for 23%. On the other hand, in the atomized iron powder described in Non-Patent Document 4, the atomized iron powder with a particle size of 200-250 μm contains 11.2%, and the atomized iron powder with a particle size of 250-325 μm contains 20.1%. , atomized iron powder having a particle size of 325 μm or more accounts for 23.2%. Also, atomized iron powder with a particle size of 80 μm or less is only 0.1%.
Furthermore, as the applied pressure increases, the values of the real and imaginary parts of the complex permeability gradually increase, and the frequency at which the values of the real and imaginary parts of the complex permeability begin to decrease gradually decreases. Side-shifting results are shown. At a pressure of 294 MPa, the real part has a value of 80 up to around 500 kHz. Also, the real part gradually decreases as the frequency increases from 500 kHz. On the other hand, the imaginary part of the complex permeability gradually increases from around 60 kHz, has a peak value of 20 in the frequency region over 1 MHz, and overlaps the real part at frequencies over 200 MHz.
Here, the measurement results of the powder magnetic core are examined.
First, consider the compacted density results. It is expected that the smaller the particle size of the atomized iron powder used for the powder magnetic core, the higher the compression density. The atomized iron powder used in Non-Patent Document 2 clearly has a smaller particle size than the atomized iron powder used in Non-Patent Document 4. Despite the apparent difference in particle size, there is little difference in the packing ratio of the dust cores. On the other hand, the atomized iron powder begins to undergo plastic deformation at a pressure of around 50 MPa, and at a pressure of 490 MPa, the plastic deformation of the atomized iron powder has progressed considerably. Therefore, the plastic deformation of the iron powder progressed, and despite the difference in the particle size distribution of the iron powder, the filling rate of the iron powder did not change. That is, in order to obtain the mechanical strength necessary for the powder magnetic core, the atomized iron powder was compressed with a pressure of about 490 MPa. However, the iron powder that has undergone plastic deformation has an increased holding power for the iron powder, resulting in an increased hysteresis loss. Furthermore, curing at 150° C. for 1 hour does not restore the retention of the iron powder.
Second, we consider the complex permeability results. Like the reduced iron powder, the atomized iron powder has an irregular contour, but unlike the reduced iron powder, it is not porous. As the pressure applied to the insulated mass of atomized iron powder is increased, the gap between the atomized iron powder particles becomes narrower, the eddy current flowing in the gap becomes smaller, and the eddy current loss is reduced. As a result, the values of the real part and the imaginary part of the complex magnetic permeability increased with increasing applied pressure. Further, although the atomized iron powder is not porous, the flattening of the atomized iron powder progresses and the flattening rate increases as the pressure is increased. As a result, the values of the real and imaginary parts of the complex permeability increased. That is, the proportion of the atomized iron powder deformed in the plane direction, which is the direction of easy magnetization, increased, the flatness increased, and the values of the real part and the imaginary part of the complex permeability of the atomized iron powder increased.
Here, the superiority of the powder magnetic core manufacturing method of the present invention over the results of two types of powder magnetic cores will be described.
First, a powder magnetic core was composed of atomized iron powder with advanced plastic deformation. As a result, the holding force of the atomized iron powder increases as the plastic deformation progresses, and the hysteresis loss increases as the holding force increases. In order to restore the holding power of the atomized iron powder, annealing in a hydrogen atmosphere at a temperature higher than 500°C is required, and the material used to insulate the atomized iron powder must have heat resistance higher than 500°C. If the atomized iron powder is insulated with the aluminum oxide fine particles of the present invention, the heat resistance is higher than the heat resistance of the atomized iron powder, so strain relief annealing is possible, the holding force is restored, and the hysteresis of the powder magnetic core. loss is reduced.
Secondly, if the insulating material is composed of the aluminum oxide fine particles of the present invention, the size of the fine particles is three orders of magnitude smaller than that of the epoxy resin pellets, so that the gaps between the atomized iron powders are further narrowed, and the narrowed gaps are treated as insulation. are filled with aluminum oxide particulates with high V, resulting in even less eddy currents flowing through the gap. This further increases the values of the real and imaginary parts of the complex permeability. In addition, the compression density increases, and the saturation magnetic flux density of the powder magnetic core increases.
Thirdly, in the method for manufacturing a powder magnetic core of the present invention, a mass of atomized iron powder is made into a mass of atomized iron powder having a high degree of accumulation and overlapping faces, and the mass of atomized iron powder is compressed. As a result, the surfaces are overlapped and compressed, the gaps between the atomized iron powders are narrowed, and the narrowed gaps are filled with highly insulating aluminum oxide fine particles. This further reduces the eddy currents flowing through the gap and further increases the values of the real and imaginary parts of the complex permeability.
Fourth, if the applied pressure is stopped before the atomized iron powder is plastically deformed and the atomized iron powders are bonded to each other through the bonding of the aluminum oxide fine particles, the hysteresis loss in the powder magnetic core does not increase. , the dust core has the required mechanical strength.
As a result, the powder magnetic core manufactured by using the atomized iron powder and according to the method for manufacturing the powder magnetic core of the present invention has increased initial magnetic permeability, reduced eddy current loss, and no increase in hysteresis loss.

実施形態6
本実施形態は、扁平アトマイズ鉄粉を用いて製作した圧粉磁心の実施形態であり、非特許文献5に記載されている。また、圧粉磁心の実施形態から、本発明の圧粉磁心を製造する方法の優位性を説明する。
扁平アトマイズ鉄粉を用い、また、3種類の絶縁材料で絶縁化した扁平アトマイズ鉄粉を用い、いずれも490MPaの加圧圧力を加え、外径が36mm、内径が24mm、厚さが5mmのリング形状からなる4種類の圧粉磁心を製作した。第一の絶縁化した扁平アトマイズ鉄粉は、鉄粉に合成樹脂を0.8重量%で加えた。第二の絶縁化した扁平アトマイズ鉄粉は、リン酸・ホウ酸・酸化マグネシウムの水溶液と、扁平アトマイズ鉄粉とを混合し、その後、乾燥させた。第三の絶縁化した扁平アトマイズ鉄粉は、第二の絶縁化した扁平アトマイズ鉄粉に、さらに、合成樹脂を0.8重量%で加え、二重の絶縁層で鉄粉を絶縁化した。
なお、扁平アトマイズ鉄粉の絶縁化に用いたリン酸は融点が42.35℃で、200℃で二リン酸Hに、300℃以上でメタリン酸(HPOに変化する。また、ホウ酸は100℃でメタホウ酸HBOに、140℃で四ホウ酸Hに変化し、300℃でガラス状の酸化ホウ酸Bになる。いっぽう、酸化マグネシウムは融点が2852℃で耐熱性に優れる。また、4種類の圧粉磁心は、扁平アトマイズ鉄粉の集まりに、490MPaの加圧圧力を加えて製作しているため、アトマイズ鉄粉が50MPa付近の加圧圧力から塑性変形が開始されるため、4種類の圧粉磁心を構成する扁平アトマイズ鉄粉の塑性変形は進んでいる。いっぽう、酸化マグネシウムの耐熱性から、圧粉磁心を500℃より高い温度で水素焼鈍を行うことが可能である。しかし、4種類の圧粉磁心の水素焼鈍を行っていないため、4種類の圧粉磁心のヒステリシス損失は大きい。
最初に、圧縮密度の結果について説明する。扁平アトマイズ鉄粉で製作した圧粉磁心の密度は7.10g/cmで、充填率が90%である。この充填率は、非特許文献4に記載されたアトマイズ鉄粉を用い、同じ490MPaの加圧圧力を加えて製作した圧粉磁心より3%充填率が高い。この結果は、アトマイズ鉄粉の扁平効果が圧縮密度の増大に表れた。また、非特許文献3に記載され扁平還元鉄粉を用い、同じ490MPaの加圧圧力を加えて製作した圧粉磁心より2%充填率が高い。この結果は、扁平アトマイズ鉄粉を水素焼鈍した温度が、非特許文献3に記載され扁平還元鉄粉の水素焼鈍の温度より高く、扁平アトマイズ鉄粉の硬度が、扁平還元鉄粉の硬度より低いことに依ると思われる。さらに、第一の絶縁化した鉄粉で製作した圧粉磁心の密度は6.90g/cmであり、第二の絶縁化した鉄粉で製作した圧粉磁心の密度は7.04g/cmであり、第三の絶縁化した鉄粉で製作した圧粉磁心の密度は6.83g/cmである。
次に、4種類の圧粉磁心の比抵抗の結果について説明する。絶縁物に依る絶縁化の効果は、第一の絶縁物では絶縁効果はなく、第二の絶縁物では僅かな絶縁効果が得られ、第三の絶縁物で絶縁化効果が得られている。
さらに、4種類の圧粉磁心の渦電流損失の結果について説明する。鉄粉のみからなる圧粉磁心、第一の絶縁物からなる圧粉磁心、第三の絶縁物からなる圧粉磁心、第二の絶縁物からなる圧粉磁心の順で渦電流損失が大きい。なお、第三の絶縁物からなる圧粉磁心と、第二の絶縁物からなる圧粉磁心とにおける渦電流損失の差は小さいが、鉄粉のみからなる圧粉磁心と、第一の絶縁物からなる圧粉磁心とに比べると、渦電流損失の差が大きい。
ここで、圧粉磁心の結果について検討する。
第一に、圧縮密度の結果について検討する。扁平アトマイズ鉄粉を絶縁化した3種類の圧粉磁心の密度は、鉄粉のみで製作した圧粉磁心の密度より低下している。つまり、塑性変形した扁平アトマイズ鉄粉が形成する間隙を、絶縁物が十分に埋めていない。扁平アトマイズ鉄粉の輪郭は不定形で、全ての扁平アトマイズ鉄粉が扁平面同士で重なっていないため、また、扁平アトマイズ鉄粉が様々な大きさの粉体からなるため、加圧すると圧縮成形体に、多くの空隙が形成される。いっぽう、3種類の絶縁材料の各々が一定の大きさを持つため、空隙を埋めることができず、圧縮密度が低下した。また、第二の絶縁化した鉄粉で製作した圧粉磁心の密度の低下は、第一の絶縁化した鉄粉で製作した圧粉磁心と、第三の絶縁化した鉄粉で製作した圧粉磁心との圧縮密度の低下より小さい。この理由は、酸化マグネシウムの粉体の粒径より、破砕した樹脂のペレットのほうが大きく、破砕した樹脂のペレットが空隙を埋める障害になっている。
第二に、比抵抗の結果について検討する。第一の絶縁物は、鉄粉に合成樹脂を0.8重量%で加えだけであり、合成樹脂のペレットが一定の大きさを持つため、破砕された合成樹脂のペレットが、扁平アトマイズ鉄粉同士の間隙を埋め尽くさず、一部の扁平アトマイズ鉄粉同士が直接接触することで、絶縁効果が得られなかった。これに対し、二重の絶縁層で覆われた扁平アトマイズ鉄粉を圧縮すると、合成樹脂のペレットより硬度が高い酸化マグネシウムの粉体が、合成樹脂のペレットと接触し、合成樹脂のペレットを微細に粉砕し、第一の絶縁物より小さくなった合成樹脂のペレットの細片と、酸化マグネシウムの粉体とが、扁平アトマイズ鉄粉同士の間隙に入り込む。両者の絶縁性が高いため、絶縁化が進んだ。
第三に、渦電流損失の結果について検討する。第一の絶縁物からなる圧粉磁心は、圧縮密度の結果と同様に、樹脂のペレットが大きいため、扁平アトマイズ鉄粉同士の間隙を埋め尽くすに至らず、一部の扁平アトマイズ鉄粉同士が直接接触することで、鉄粉のみからなる圧粉磁心に近い渦電流損失になった。これに対し、第三の絶縁物からなる圧粉磁心と、第二の絶縁物からなる圧粉磁心とは、体積抵抗率が2×1016Ω・cmと絶縁性が高く、平均粒径が1.3μmである酸化マグネシウムの粉末と、合成樹脂のペレットの細片とが鉄粉同士の間隙に存在し、渦電流損失が低下した。
ここで、2種類の圧粉磁心の結果に対する、本発明の圧粉磁心の製造方法の優位性を説明する。
第一に、前記した圧縮密度の結果から、扁平アトマイズ鉄粉を絶縁化する絶縁物の大きさが小さいほど、アトマイズ鉄粉同士の間隙が絶縁物で埋め尽くされ、圧縮密度の低下が抑制された。従って、本発明における40-60nmからなる酸化アルミニウム微粒子の大きさは、平均粒径が1.3μmである酸化マグネシウムの粉末より2桁小さいため、圧縮密度の低下が抑制できる。また、扁平アトマイズ鉄粉同士の間隙が確実に絶縁化され、間隙を流れる渦電流が減少する。この結果、複素透磁率の実部と虚部の値が増大する。
第二に、本発明のように、40-60nmからなる粒状の酸化アルミニウム微粒子の集まりで、扁平アトマイズ鉄粉を絶縁化すれば、扁平アトマイズ鉄粉同士の間隙が酸化アルミニウム微粒子で埋め尽くせされ、圧縮密度が増大するとともに、莫大な数からなる粒状の酸化アルミニウム微粒子と空孔とによって、間隙の絶縁抵抗が著しく増大する。これによって、間隙を流れる渦電流が著しく減少し、圧粉磁心の渦電流損失が低下する。また、渦電流損失の低下の度合いに応じて、複素透磁率の実部と虚部の値が増大する。
第三に、本発明のように、面同士で重なり合った扁平アトマイズ鉄粉の集まりを圧縮すれば、扁平アトマイズ鉄粉同士の間隙が確実に絶縁化され、間隙を流れる渦電流が減少し、また、圧縮密度が高まる。また、全ての扁平アトマイズ鉄粉が、扁平面同士で重なり合い、磁化の容易軸方向である面方向に揃うため、圧粉磁心は磁化されやすくなり、圧粉磁心の透磁率が増大する。
第四に、本発明のように、扁平アトマイズ鉄粉が塑性変形する前に加圧圧力を停止し、酸化アルミニウム微粒子同士の接合を介して扁平アトマイズ鉄粉同士を結合すれば、圧粉磁心におけるヒステリシス損失は増加せず、また、圧粉磁心は必要な機械的強度を持つ。
この結果、扁平アトマイズ鉄粉を用い、本発明の圧粉磁心の製造方法に従って製造した圧粉磁心は、初透磁率が増大し、渦電流損失が低減し、ヒステリシス損失が増大しない。
Embodiment 6
This embodiment is an embodiment of a powder magnetic core manufactured using flat atomized iron powder, and is described in Non-Patent Document 5. Also, the superiority of the method for manufacturing the dust core of the present invention will be explained from the embodiment of the dust core.
A ring having an outer diameter of 36 mm, an inner diameter of 24 mm, and a thickness of 5 mm was obtained by using flat atomized iron powder and flat atomized iron powder insulated with three kinds of insulating materials, and applying a pressure of 490 MPa in each case. Four types of dust cores having different shapes were produced. The first insulated flat atomized iron powder was made by adding 0.8% by weight of a synthetic resin to the iron powder. The second insulated flat atomized iron powder was obtained by mixing an aqueous solution of phosphoric acid, boric acid, and magnesium oxide with the flat atomized iron powder, and then drying the mixture. The third insulated flat atomized iron powder was obtained by adding 0.8% by weight of synthetic resin to the second insulated flat atomized iron powder, and insulating the iron powder with a double insulating layer.
The phosphoric acid used to insulate the flat atomized iron powder has a melting point of 42.35°C, and changes to diphosphate H 4 P 2 O 7 at 200°C and metaphosphoric acid (HPO 3 ) n at 300°C or higher. do. Also, boric acid changes to metaborate HBO 2 at 100°C, tetraborate H 2 B 4 O 7 at 140°C, and glassy boric oxide B 2 O 3 at 300°C. On the other hand, magnesium oxide has a melting point of 2852° C. and is excellent in heat resistance. In addition, since the four types of powder magnetic cores are manufactured by applying a pressure of 490 MPa to a mass of flat atomized iron powder, plastic deformation of the atomized iron powder starts at a pressure of around 50 MPa. , the plastic deformation of the flat atomized iron powder that constitutes the four types of powder magnetic cores is progressing. On the other hand, due to the heat resistance of magnesium oxide, it is possible to carry out hydrogen annealing at a temperature higher than 500°C. However, since the four types of powder magnetic cores were not subjected to hydrogen annealing, the four types of powder magnetic cores had a large hysteresis loss.
First, the compacted density results are described. The dust core made of flat atomized iron powder has a density of 7.10 g/cm 3 and a filling rate of 90%. This packing rate is 3% higher than that of the powder magnetic core manufactured by using the atomized iron powder described in Non-Patent Document 4 and applying the same pressure of 490 MPa. As a result, the flattening effect of the atomized iron powder appeared in the increase of the compaction density. In addition, the filling rate is 2% higher than that of the powder magnetic core manufactured by using the flat reduced iron powder described in Non-Patent Document 3 and applying the same pressurization pressure of 490 MPa. This result shows that the temperature at which the flat atomized iron powder is hydrogen-annealed is higher than the hydrogen annealing temperature of the flat reduced iron powder described in Non-Patent Document 3, and the hardness of the flat atomized iron powder is lower than the hardness of the flat reduced iron powder. I think it depends. Furthermore, the density of the dust core made from the first insulated iron powder is 6.90 g/ cm3 , and the density of the dust core made from the second insulated iron powder is 7.04 g/cm3. 3 , and the density of the dust core made from the third insulated iron powder is 6.83 g/cm 3 .
Next, the results of the resistivity of four types of powder magnetic cores will be described. As for the insulating effect of the insulator, the first insulator has no insulating effect, the second insulator has a slight insulating effect, and the third insulator has an insulating effect.
Furthermore, the results of eddy current loss of four types of dust cores will be described. The eddy current loss is large in the order of the dust core made of only iron powder, the dust core made of the first insulator, the dust core made of the third insulator, and the dust core made of the second insulator. Although the difference in eddy current loss between the dust core made of the third insulator and the dust core made of the second insulator is small, the dust core made only of iron powder and the first insulator The difference in eddy current loss is large compared to a powder magnetic core made of
Here, the results for dust cores are examined.
First, consider the compacted density results. The densities of the three types of powder magnetic cores insulated from the flat atomized iron powder are lower than the densities of the powder magnetic cores produced only from the iron powder. In other words, the insulator does not sufficiently fill the gaps formed by the plastically deformed flat atomized iron powder. Since the outline of the flat atomized iron powder is irregular, and not all the flat surfaces of the atomized iron powder overlap each other, and because the flat atomized iron powder consists of powders of various sizes, compression molding is possible when pressure is applied. Many cavities are formed in the body. On the other hand, since each of the three types of insulating materials has a certain size, the voids could not be filled and the compression density decreased. In addition, the decrease in the density of the dust core made from the second insulated iron powder is the same as the dust core made from the first insulated iron powder and the dust core made from the third insulated iron powder. Less than the decrease in compaction density with the powder magnetic core. The reason for this is that the crushed resin pellets are larger in particle size than the magnesium oxide powder, and the crushed resin pellets are an obstacle to filling the voids.
Second, consider the resistivity results. The first insulator is made by adding only 0.8% by weight of synthetic resin to iron powder, and since the synthetic resin pellets have a certain size, the crushed synthetic resin pellets are flat atomized iron powder. The insulation effect was not obtained because some of the flat atomized iron powders were in direct contact with each other without filling the gaps between them. On the other hand, when flat atomized iron powder covered with a double insulating layer is compressed, the magnesium oxide powder, which is harder than the synthetic resin pellets, comes into contact with the synthetic resin pellets, making them finer. Fine pieces of synthetic resin pellets that are pulverized into particles smaller than the first insulator and magnesium oxide powder enter the gaps between the flat atomized iron powders. Since the insulation between the two is high, insulation has progressed.
Third, consider the consequences of eddy current losses. In the powder magnetic core made of the first insulating material, similar to the result of the compaction density, since the resin pellets are large, the gaps between the flat atomized iron powders are not completely filled, and some of the flat atomized iron powders are separated from each other. Direct contact resulted in an eddy current loss similar to that of a dust core made of iron powder only. On the other hand, the powder magnetic core made of the third insulator and the powder magnetic core made of the second insulator have a volume resistivity of 2×10 16 Ω·cm, which is high insulation, and an average particle diameter of Magnesium oxide powder of 1.3 μm and bits of synthetic resin pellets were present in the interstices between the iron powders to reduce eddy current losses.
Here, the superiority of the powder magnetic core manufacturing method of the present invention over the results of two types of powder magnetic cores will be described.
First, from the results of the compression density described above, the smaller the size of the insulator that insulates the flat atomized iron powder, the more the gaps between the atomized iron powders are filled with the insulator, and the lower the compression density is suppressed. rice field. Therefore, the size of the aluminum oxide fine particles of 40 to 60 nm in the present invention is two orders of magnitude smaller than that of the magnesium oxide powder having an average particle size of 1.3 μm, so that the reduction in compaction density can be suppressed. Also, the gaps between the flat atomized iron powders are reliably insulated, and the eddy current flowing through the gaps is reduced. As a result, the values of the real and imaginary parts of the complex permeability increase.
Secondly, if the flat atomized iron powder is insulated with a group of granular aluminum oxide fine particles of 40 to 60 nm as in the present invention, the gaps between the flat atomized iron powders are filled with the aluminum oxide fine particles, As the compaction density increases, the insulation resistance of the gap increases remarkably due to the enormous number of granular aluminum oxide particles and pores. This significantly reduces the eddy currents flowing through the gap and reduces the eddy current losses in the dust core. Moreover, the values of the real part and the imaginary part of the complex magnetic permeability increase according to the degree of decrease in the eddy current loss.
Third, as in the present invention, by compressing a group of flat atomized iron powders that overlap with each other, the gaps between the flat atomized iron powders are reliably insulated, the eddy current flowing through the gaps is reduced, and , the compression density increases. In addition, since all the flattened atomized iron powders overlap each other and are aligned in the plane direction, which is the direction of the axis of easy magnetization, the powder magnetic core is easily magnetized and the magnetic permeability of the powder magnetic core increases.
Fourthly, as in the present invention, if the pressure is stopped before the flat atomized iron powder is plastically deformed and the flat atomized iron powders are joined together via the joining of the aluminum oxide fine particles, the powder magnetic core can be Hysteresis losses are not increased and the dust core has the required mechanical strength.
As a result, the dust core manufactured by using the flat atomized iron powder and according to the method for manufacturing a dust core of the present invention has increased initial permeability, reduced eddy current loss, and no increase in hysteresis loss.

アトマイズ鉄粉、扁平アトマイズ鉄粉、還元鉄粉および扁平還元鉄粉を用いて製作した4種類の圧粉磁心の実施形態を説明した。実施形態の圧粉磁心は、耐熱性の低い絶縁材料で鉄粉を絶縁化しため、鉄粉の水素焼鈍が不可能である。また、塑性変形を進めた鉄粉によって圧粉磁心を形成したため、圧粉磁心のヒステリシス損失が増大した。さらに、熱処理温度が180℃と低く、塑性変形した鉄粉の焼鈍効果はない。このような圧粉磁心に対し、本発明の圧粉磁心の製造方法で製造した圧粉磁心は、下記の2点で優位性を持つ。
第一に、鉄粉の表面を酸化アルミニウムの微粒子の集まりで絶縁化した。これによって、次の4つの作用効果がもたらされる。第一に、酸化アルミニウムの融点が、鉄粉の融点より高く、圧粉磁心の耐熱性が鉄粉の耐熱性となる。これによって、圧粉磁心の水素焼鈍が可能になり、鉄粉の保持力が元に戻り、圧粉磁心のヒステリシス損失が減少する。第二に、酸化アルミニウムが40-60nmからなる粒状の微粒子であり、酸化アルミニウムの微粒子で覆われた鉄粉の集まりを圧縮すると、酸化アルミニウム微粒子が移動して鉄粉の集まりの空隙を埋める。さらに、酸化アルミニウム微粒子同士が接触部で摩擦熱によって接合し、極めて多数からなる酸化アルミニウム微粒子同士の接合で、圧粉磁心は必要な機械的強を持つ。第三に、酸化アルミニウムが優れた絶縁体で、極めて多数の酸化アルミニウム微粒子と空孔との抵抗体が、鉄粉同士の間隙を埋め尽くし、間隙の絶縁抵抗が著しく増大する。これによって、鉄粉同士の間隙に流れる渦電流が著しく減少し、圧粉磁心の交流の透磁率が増え、該当する周波数帯域で圧粉磁心が磁化されやすくなる。第四に、酸化アルミニウムがダイアモンドに次ぐ硬い物質で、また、融点が極めて高いため、酸化アルミニウム微粒子同士が接触すると、微粒子が破壊されずに、接触部に過大な摩擦熱が発生し、微粒子同士が摩擦熱で接合する。圧縮する鉄粉の集まりには、極めて多数の酸化アルミニウム微粒子が存在するため、酸化アルミニウム微粒子同士が接合する際に、鉄粉の集まりを圧縮する反発力が増大し、この時点で圧縮を停止することができる。これによって、鉄粉は塑性変形せず、圧粉磁心のヒステリシス損失が増えない。
第二に、鉄粉の集まりに対し、鉄粉の面同士が重なり合った鉄粉の集まりとする処理を行うことである。これによって、次の3つの作用効果がもたらされる。第一に、鉄粉同士の間隙が狭まり、これによって、圧縮成形体の圧縮密度が高まり、圧粉磁心の飽和磁束密度が高まる。第二に、狭まった鉄粉同士の間隙は、酸化アルミニウム微粒子の集まりで埋め尽くされ、鉄粉同士の間隙に流れる渦電流が減少し、圧粉磁心の渦電流損失が減少する。これによって、交流の初透磁率が増大し、該当する周波数帯域で圧粉磁心が磁化されやすくなる。第三に、面同士が重なり合った鉄粉の集まりを圧縮すると、面と垂直な磁化容易軸方向に鉄粉が変形するため、交流の初透磁率が増大し、該当する周波数帯域で圧粉磁心が磁化されやすくなる。
Embodiments of four types of powder magnetic cores manufactured using atomized iron powder, flat atomized iron powder, reduced iron powder, and flat reduced iron powder have been described. In the powder magnetic core of the embodiment, since the iron powder is insulated with an insulating material having low heat resistance, hydrogen annealing of the iron powder is impossible. In addition, since the powder magnetic core was formed from iron powder that had undergone plastic deformation, the hysteresis loss of the powder magnetic core increased. Furthermore, the heat treatment temperature is as low as 180° C., and there is no annealing effect for plastically deformed iron powder. Compared with such a powder magnetic core, the powder magnetic core produced by the method for producing a powder magnetic core of the present invention has the following two advantages.
First, the surface of the iron powder was insulated with a collection of fine particles of aluminum oxide. This provides the following four effects. First, the melting point of aluminum oxide is higher than that of iron powder, and the heat resistance of the powder magnetic core is the heat resistance of the iron powder. As a result, the dust core can be annealed in hydrogen, the holding force of the iron powder is restored, and the hysteresis loss of the dust core is reduced. Secondly, aluminum oxide is granular microparticles of 40-60 nm, and when a mass of iron powder covered with aluminum oxide microparticles is compressed, the aluminum oxide microparticles move to fill the voids in the mass of iron powder. Furthermore, the aluminum oxide fine particles are bonded to each other by frictional heat at the contact portion, and the dust core has the necessary mechanical strength due to the bonding of the extremely large number of aluminum oxide fine particles. Thirdly, aluminum oxide is an excellent insulator, and a large number of fine aluminum oxide particles and pores fill the gaps between the iron powders, resulting in a significant increase in the insulation resistance of the gaps. As a result, the eddy currents flowing in the gaps between the iron powders are significantly reduced, the AC magnetic permeability of the powder magnetic core is increased, and the powder magnetic core is easily magnetized in the corresponding frequency band. Fourth, aluminum oxide is a hard substance next to diamond and has an extremely high melting point. Therefore, when aluminum oxide fine particles come into contact with each other, the fine particles are not destroyed, and excessive frictional heat is generated at the contact area, are joined by frictional heat. Since an extremely large number of aluminum oxide fine particles exist in the mass of iron powder to be compressed, when the aluminum oxide fine particles are bonded together, the repulsive force compressing the mass of iron powder increases, and the compression is stopped at this point. be able to. As a result, the iron powder is not plastically deformed and the hysteresis loss of the dust core is not increased.
Secondly, a process is performed on the mass of iron powder to form a mass of iron powder in which the surfaces of the iron powder overlap each other. This provides the following three effects. First, the gaps between the iron powders are narrowed, which increases the compression density of the compact and increases the saturation magnetic flux density of the dust core. Secondly, the narrowed gaps between the iron powders are filled with aggregates of aluminum oxide fine particles, the eddy current flowing in the gaps between the iron powders is reduced, and the eddy current loss of the powder magnetic core is reduced. This increases the initial magnetic permeability of alternating current, making it easier to magnetize the dust core in the corresponding frequency band. Third, when a group of iron powders whose faces overlap each other is compressed, the iron powders are deformed in the direction of the easy magnetization axis perpendicular to the faces, so the initial magnetic permeability of alternating current increases, and the dust core in the corresponding frequency band becomes easily magnetized.

ここで、軟磁性材料の複素透磁率について説明する。圧粉磁心に巻線を施し、交流を流して圧粉磁心を励磁すると、圧粉磁心を構成する軟磁性材料に基づくヒステリシス損失が発生する。この圧粉磁心の構成を電気回路で示すと、巻線がL成分を形成し、圧粉磁心がR成分を形成するため、インピーダンスはR+jωLで表わされる。この関係を透磁率に当てはめると、透磁率は式1で表わされる。この際、μ´が複素透磁率の実部でインダクタンス成分を、μ´´が複素透磁率の虚部で抵抗成分を表わす。
(式1) μ=μ´-jμ´´
いっぽう、圧粉磁心に周波数の高い交流を流すと、軟磁性材料の透磁率は、磁界Hの変化に磁束密度Bが追従できなくなり、位相の遅れが発生する。この際、L成分(μ´)が減少し、R成分(μ´´)が増大する。この事例は、前記の扁平粉における複素透磁率の挙動で説明した。
なお、磁界の強さHと磁束密度Bとの関係で表わされる透磁率μの定義であるB=μHにおける透磁率と複素透磁率との関係は式2になる。このため、実部μ´と虚部μ´´の少なくともいずれか一方が増加すれば透磁率μは増加する。透磁率μの増加によって、圧粉磁心が磁化されやすくなり、飽和磁束密度と印加された磁界との積に基づく磁気エネルギーが圧粉磁心に取り込まれる。
(式2) μ={(μ´)+(μ´´)1/2
Here, the complex magnetic permeability of the soft magnetic material will be explained. When a powder magnetic core is wound and an alternating current is applied to excite the powder magnetic core, hysteresis loss occurs due to the soft magnetic material forming the powder magnetic core. When the structure of this powder magnetic core is represented by an electric circuit, the winding forms the L component and the powder magnetic core forms the R component, so the impedance is represented by R+jωL. If this relationship is applied to the magnetic permeability, the magnetic permeability is expressed by Equation (1). In this case, μ′ is the real part of the complex permeability and represents the inductance component, and μ″ is the imaginary part of the complex permeability and represents the resistance component.
(Formula 1) μ=μ′−jμ″
On the other hand, when a high-frequency alternating current is passed through the powder magnetic core, the magnetic permeability of the soft magnetic material is such that the magnetic flux density B cannot follow changes in the magnetic field H, resulting in a phase lag. At this time, the L component (μ') decreases and the R component (μ'') increases. This case was explained in the behavior of the complex magnetic permeability in the flat powder described above.
The relationship between the magnetic permeability and the complex magnetic permeability when B=μH, which is the definition of the magnetic permeability μ represented by the relationship between the magnetic field strength H and the magnetic flux density B, is given by Equation (2). Therefore, if at least one of the real part μ′ and the imaginary part μ″ increases, the magnetic permeability μ increases. The increase in magnetic permeability μ makes the dust core more magnetized, and magnetic energy based on the product of the saturation magnetic flux density and the applied magnetic field is taken into the dust core.
(Formula 2) μ={(μ′) 2 +(μ″) 2 } 1/2

実施例1
本実施例は、アトマイズ鉄粉を扁平処理した扁平アトマイズ鉄粉を、酸化アルミニウムの微粒子の集まりで絶縁化させ、絶縁化された扁平アトマイズ鉄粉の集まりを金型内で圧縮し、圧粉磁心を金型内に製造する実施例である。
扁平アトマイズ鉄粉として、株式会社神戸製鋼の290PC-2を用いた。この扁平鉄粉は、アトマイズ鉄粉(株式会社神戸製鋼の300M)を扁平加工したものである。なお、アトマイズ鉄粉(300M)の不純物濃度は、ケイ素が0.01重量%で、マンガンが0.19重量%であり(非特許文献6に依る)、前記した非特許文献2に記載されたアトマイズ鉄粉の不純物濃度に比べるとマンガンの濃度が高い。このため、初透磁率は、アトマイズ鉄粉(300M)のほうが若干大きい。
また、酸化アルミニウムの原料として、安息香酸アルミニウムAl(CCOO)(例えば、三津和化学薬品株式会社の製品)を用いた。さらに、有機化合物として、沸点が244℃で、25℃の粘度がメタノールの粘度の50倍に近い30mPasであるジエチレングリコール(例えば、純正化学株式会社の製品)を用いた。また、混合機として、遠赤外線によるヒータが内蔵され、回転による拡散混合と、揺動による移動混合とを同時に行う装置(例えば、愛知電機株式会社のロッキングミキサーRMH-HT)を用い、さらに、混合機の下部に加振機を併設させた。
安息香酸アルミニウムの31g(0.08モルに相当する)を1リットルのメタノールに分散し、このメタノール分散液にジエチレングリコールの200ccを混合し、混合液を作成した。従って、混合液の粘度はメタノールの粘度の10倍に近い。次に、混合機を加振台の上に配置させ、混合機に混合液と扁平アトマイズ鉄粉の1kgとを投入し、混合機によって混合と揺動とを繰り返し、混合物を作成した。従って、混合物におけるメタノールが占める体積は、扁平アトマイズ鉄粉が占める体積の8倍である。また、安息香酸アルミニウム31gを熱分解すると、酸化アルミニウムの8gが析出し、扁平アトマイズ鉄粉の重量に対する酸化アルミニウムの重量の比率は0.008に相当する。次に、0.3Gからなる前後、左右、上下の3方向の振動加速度を加振機によって繰り返し発生し、加振台を介して混合機内の混合物に振動を伝え、最後に、0.3Gからなる上下方向の振動加速度を混合物に加えた。さらに、混合機をメタノールの沸点である65℃に昇温し、メタノールを気化させた。なお、気化したメタノールは回収して再利用する。この後、混合機内のカプセルを外し、カプセルからメタノールが気化した混合物を取り出し、金型に充填した。金型は外径が40mm、内径が25mm、厚さが6mmのリング形状の成形体が成形される形状を持つ。
次に、金型を20℃/分の昇温速度で310℃まで昇温し、1分間保持した。これによって、最初にジエチレングリコールが気化し、次に安息香酸アルミニウムが熱分解した。気化したジエチレングリコールは回収して再利用する。この後、10MPa/分の速度で増加する加圧圧力をプレス機によって発生させ、該加圧圧力を金型内の混合物に加え、プレス機が受ける反発力が継続して増加した時点で圧縮を停止し、圧粉磁心を金型内に製作した。この後、金型から圧粉磁心を取り出した。
次に、作成した圧粉磁心の性能を測定した。この結果を、非特許文献5に記載された2種類の圧粉磁心と比較する。第一の圧粉磁心は、扁平アトマイズ鉄粉(290PC-2)を、490MPaの加圧圧力を加えて製作したリング形状の圧粉磁心である。第二の圧粉磁心は、扁平アトマイズ鉄粉(290PC-2)の表面を、リン酸、ホウ酸、酸化マグネシウムで絶縁し、さらに、合成樹脂を0.8重量%加え、2種類の絶縁物で絶縁化した扁平アトマイズ鉄粉の集まりを、490MPaの加圧圧力で成形した圧粉磁心である。
最初に、圧粉磁心の重量を測定し、圧粉磁心の体積から圧粉磁心の密度を求めた。密度は7.3g/cmであった。いっぽう、非特許文献5に記載された第一の圧粉磁心の密度は、7.1g/cmで、第二の圧粉磁心の圧縮密度は、6.84g/cmである。作成した圧粉磁心の密度は、非特許文献5に記載された2種類の圧粉磁心の密度より高い。この理由は、全ての扁平アトマイズ鉄粉を扁平面同士で重ね合わせることで、扁平アトマイズ鉄粉同士の間隙が狭くなった効果と、酸化アルミニウム微粒子が、扁平アトマイズ鉄粉の集まりの空隙を埋め尽くした効果と、酸化アルミニウム微粒子の移動に伴って、扁平アトマイズ鉄粉の集積度が高まった効果とに依る。
さらに、圧粉磁心の比抵抗を測定した。圧粉磁心の双方の平面に導電性ペーストを介して銅板を貼り付け、銅板を加圧して比抵抗を測定した。作成した圧粉磁心の比抵抗は38Ω・cmであった。いっぽう、非特許文献5に記載された第二の圧粉磁心の比抵抗は21Ω・cmである。作成した圧粉磁心の比抵抗は、非特許文献5に記載された第二の圧粉磁心の比抵抗より高い。この理由は、絶縁抵抗が極めて高い酸化アルミニウム微粒子と空孔との集まりによって、扁平同士で重なり合った扁平アトマイズ鉄粉の表面を覆い、該扁平アトマイズ鉄粉の集まりを圧縮することで、扁平同士で重なり合った僅かな間隙を、酸化アルミニウム微粒子と空孔との集まりが埋め尽くし、また、隣り合う扁平アトマイズ鉄粉の空隙を、酸化アルミニウム微粒子と空孔との集まりが埋め尽くしたことに依る。
次に、B-Hアナライザである岩崎通信機株式会社の製品SY-8218/SY-8218を用い、作成した圧粉磁心の渦電流損失を求めた。磁束密度50mTにおける渦電流損失は、10kHzにおいて1kW/mで、100kHzにおいて100kW/mであった。この値は、非特許文献5に記載された第二の圧粉磁心の渦電流損失の1/8である。この理由は、絶縁抵抗が極めて高い酸化アルミニウム微粒子と空孔との集まりが、扁平面同士が重なり合った僅かな間隙を埋め尽くし、また、隣り合う扁平アトマイズ鉄粉の空隙を埋め尽くし、扁平アトマイズ鉄粉の間隙を流れる渦電流が減少したことに依る。
さらに、磁性体測定システムでキーコム株式会社のModel No.perを用い、透磁率の周波数特性を測定した。8A/mの磁界において、作成した圧粉磁心の初透磁率は、10kHz付近まで80で、100kHz付近で65あった。これに対し、非特許文献5に記載された第一の圧粉磁心の初透磁率は、8A/mの磁界において、10kHz付近まで82で、100kHz付近で68である。第二の圧粉磁心の初透磁率は、8A/mの磁界において、10kHz付近で65の値を持ち、100kHz付近で63の値である。圧粉磁心の初透磁率は、非特許文献5に記載された2種類の圧粉磁心の初透磁率より大きい。この理由は、全ての扁平アトマイズ鉄粉を、磁化容易軸方向である扁平面方向に揃えた効果と、絶縁抵抗が極めて高い酸化アルミニウム微粒子と空孔との集まりが、扁平面同士が重なり合った僅かな間隙を埋め尽くし、また、隣り合う扁平アトマイズ鉄粉の空隙を埋め尽くし、扁平アトマイズ鉄粉同士の間隙を流れる渦電流が減少したことに依る。
また、東英工業株式会社の簡易鉄損測定器によって、励磁磁束密度が1Tで励磁周波数が100-800Hzからなる測定条件における作成した圧粉磁心の鉄損を測定した。鉄損は100Hzで6W/kgで、200Hzで13W/kgで、400Hzで28W/kgで、800Hzで56W/kgであった。
いっぽう、非特許文献7に、アトマイズ鉄粉(神戸製鋼所の300NH)を、リン酸系無機絶縁皮膜とシリコーン樹脂による2層被膜で絶縁化し、この粉末を130℃に加熱し、金型潤滑成形法により1176MPaでリング形状の圧粉磁心を成形した後に、窒素雰囲気の500℃で30分間磁気焼鈍を行った圧粉磁心が記載されている。焼鈍温度は、絶縁物の耐熱性で550℃に制約される。非特許文献7に依ると、圧縮密度は、加圧圧力が1176MPaと高いため、7.61g/cmで、充填率が97%に及ぶ。いっぽう、1176MPaで加圧したアトマイズ鉄粉は、十分に塑性変形が進んでいる。このため、500℃での磁気焼鈍では、圧粉磁心のヒステリシス損失の低減は一部に留まる。また、励磁磁束密度が1.5Tで励磁周波数が200-700Hzからなる測定条件における圧粉磁心の鉄損は、50Hzで5W/kgで、100Hzで12W/kgで、200Hzで23W/kgで、400Hzで50W/kgで、700Hzで100W/kgである。
製作した圧粉磁心の鉄損は、非特許文献7に記載された圧粉磁心の約1/2である。この理由は、製作した圧粉磁心は、扁平アトマイズ鉄粉の間隙を流れる渦電流が、非特許文献7に記載されたアトマイズ鉄粉同士の間隙を流れる渦電流より少なく、また、扁平アトマイズ鉄粉が塑性変形せず、扁平アトマイズ鉄粉の保持力が増大していないことに依る。
次に、作成した圧粉磁心を2mの高さから床面に落下させたが、圧粉磁心は破壊しなかった。このため、作成した圧粉磁心は必要な機械的強度を持つ。この理由は、極めて多数からなる酸化アルミニウム微粒子同士が、摩擦熱で接合したことに依る。
さらに、製作した圧粉磁心の観察と分析を行なった。製作した圧粉磁心を厚み方向に2つに切断し、切断面を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による観察が可能で、試料に導電性の被膜を形成せずに直接試料が観察できる特徴を有する。
最初に、反射電子線の900-1000Vの間にある2次電子線を取り出して画像処理を行い、切断面を観察した。扁平アトマイズ鉄粉が扁平面同士で重なり合い、40-60nmの大きさからなる粒状の微粒子が13-17層を形成して積層し、扁平面同士が重なり合った間隙を満遍なく埋め尽くしていた。次に、特性エックス線のエネルギーとその強度を画像処理し、粒状微粒子を構成する元素の種類とその分布状態を分析した。アルミニウム原子と酸素原子の双方が均一に分散して存在し、特段に偏在する箇所が見られなかった。このため、酸化アルミニウムの粒状微粒子が、扁平面同士で重なり合った扁平アトマイズ鉄粉の間隙を満遍なく埋め尽くしていることが確認できた。図1に、切断面の一部を拡大した様子を模式的に示す。1は扁平アトマイズ鉄粉で、2は酸化アルミニウムの微粒子である。
以上に説明したように、扁平アトマイズ鉄粉を用いて作成した圧粉磁心は、扁平アトマイズ鉄粉を用い従来の製造方法で作成した圧粉磁心より、圧縮密度が高く、絶縁抵抗が増大し、渦電流損失が少なく、初透磁率が増大し、扁平アトマイズ鉄粉の保持力が増大せず、必要な機械的強度を持った。
Example 1
In this embodiment, the flat atomized iron powder obtained by flattening the atomized iron powder is insulated with a group of fine particles of aluminum oxide, and the insulated group of flat atomized iron powder is compressed in a mold to form a powder magnetic core. is manufactured in a mold.
290PC-2 manufactured by Kobe Steel, Ltd. was used as the flat atomized iron powder. This flattened iron powder is obtained by flattening atomized iron powder (300M manufactured by Kobe Steel, Ltd.). The impurity concentration of the atomized iron powder (300M) is 0.01% by weight of silicon and 0.19% by weight of manganese (according to Non-Patent Document 6). The manganese concentration is higher than the impurity concentration of the atomized iron powder. Therefore, the initial magnetic permeability of the atomized iron powder (300M) is slightly higher.
Aluminum benzoate Al(C 6 H 5 COO) 3 (for example, a product of Mitsuwa Chemicals Co., Ltd.) was used as a raw material for aluminum oxide. Furthermore, as an organic compound, diethylene glycol (a product of Junsei Chemical Co., Ltd., for example) having a boiling point of 244° C. and a viscosity of 30 mPas at 25° C., which is nearly 50 times the viscosity of methanol, was used. In addition, as a mixer, a device with a built-in far-infrared heater that simultaneously performs diffusion mixing by rotation and movement mixing by shaking (for example, rocking mixer RMH-HT of Aichi Electric Co., Ltd.) is used. A vibration exciter was added to the bottom of the machine.
31 g (corresponding to 0.08 mol) of aluminum benzoate was dispersed in 1 liter of methanol, and this methanol dispersion was mixed with 200 cc of diethylene glycol to prepare a mixed solution. Therefore, the viscosity of the mixture is nearly ten times that of methanol. Next, a mixer was placed on a vibration table, and the mixed liquid and 1 kg of the flat atomized iron powder were put into the mixer, and mixing and shaking were repeated by the mixer to prepare a mixture. Therefore, the volume occupied by methanol in the mixture is eight times the volume occupied by flat atomized iron powder. Further, when 31 g of aluminum benzoate is thermally decomposed, 8 g of aluminum oxide is deposited, and the ratio of the weight of aluminum oxide to the weight of flat atomized iron powder corresponds to 0.008. Next, a vibratory acceleration of 0.3 G in three directions, front and back, left and right, and up and down, is repeatedly generated by a vibration exciter, the vibration is transmitted to the mixture in the mixer through the vibration table, and finally, from 0.3 G An up-and-down vibrational acceleration of about Furthermore, the temperature of the mixer was raised to 65° C., which is the boiling point of methanol, to vaporize the methanol. The vaporized methanol is recovered and reused. After that, the capsule in the mixer was removed, and the mixture in which methanol was vaporized was taken out from the capsule and filled into a mold. The mold has a shape for molding a ring-shaped body having an outer diameter of 40 mm, an inner diameter of 25 mm, and a thickness of 6 mm.
Next, the mold was heated to 310° C. at a heating rate of 20° C./min and held for 1 minute. This caused first the diethylene glycol to vaporize and then the aluminum benzoate to pyrolyze. Vaporized diethylene glycol is recovered and reused. After that, the pressing machine generates a pressurizing pressure that increases at a rate of 10 MPa / min, applies the pressurizing pressure to the mixture in the mold, and starts compression when the repulsive force received by the press continues to increase. It was stopped and a dust core was produced in the mold. After that, the dust core was taken out from the mold.
Next, the performance of the produced powder magnetic core was measured. This result is compared with two types of dust cores described in Non-Patent Document 5. The first dust core is a ring-shaped dust core produced by pressing flat atomized iron powder (290PC-2) at a pressure of 490 MPa. In the second powder magnetic core, the surface of the flat atomized iron powder (290PC-2) is insulated with phosphoric acid, boric acid, and magnesium oxide, and 0.8% by weight of synthetic resin is added, and two types of insulators are added. It is a powder magnetic core formed by compacting a mass of flat atomized iron powders insulated by , under a pressure of 490 MPa.
First, the weight of the powder magnetic core was measured, and the density of the powder magnetic core was obtained from the volume of the powder magnetic core. The density was 7.3 g/ cm3 . On the other hand, the density of the first dust core described in Non-Patent Document 5 is 7.1 g/cm 3 and the compression density of the second dust core is 6.84 g/cm 3 . The density of the produced powder magnetic core is higher than the density of the two types of powder magnetic cores described in Non-Patent Document 5. The reason for this is that the gaps between the flat atomized iron powders are narrowed by laying all the flat atomized iron powders on top of each other, and the aluminum oxide fine particles fill the gaps in the clusters of the flat atomized iron powders. and the effect that the degree of accumulation of the flat atomized iron powder increases with the movement of the aluminum oxide fine particles.
Furthermore, the specific resistance of the dust core was measured. A copper plate was attached to both surfaces of the powder magnetic core via a conductive paste, and the copper plate was pressed to measure the specific resistance. The specific resistance of the produced powder magnetic core was 38 Ω·cm. On the other hand, the second dust core described in Non-Patent Document 5 has a specific resistance of 21 Ω·cm. The specific resistance of the produced powder magnetic core is higher than that of the second powder magnetic core described in Non-Patent Document 5. The reason for this is that the surfaces of the flat atomized iron powders that are overlapped with each other are covered with aggregates of aluminum oxide fine particles and holes having extremely high insulation resistance, and by compressing the aggregates of the flat atomized iron powders, This is because the aluminum oxide fine particles and the vacancies filled the overlapping slight gaps, and the aluminum oxide fine particles and the vacancies filled the gaps between the adjacent flat atomized iron powders.
Next, using a BH analyzer, SY-8218/SY-8218 manufactured by Iwasaki Tsushinki Co., Ltd., the eddy current loss of the produced powder magnetic core was determined. Eddy current losses at a magnetic flux density of 50 mT were 1 kW/m 3 at 10 kHz and 100 kW/m 3 at 100 kHz. This value is ⅛ of the eddy current loss of the second dust core described in Non-Patent Document 5. The reason for this is that the clusters of aluminum oxide fine particles with extremely high insulation resistance and voids fill the slight gaps between the flat surfaces overlapping with each other, and also fill the gaps between adjacent flat atomized iron powders, resulting in flat atomized iron powder. This is due to the reduced eddy currents flowing through the powder gaps.
Furthermore, Model No. of Keycom Co., Ltd. is used as a magnetic material measurement system. Using per, the frequency characteristic of magnetic permeability was measured. In a magnetic field of 8 A/m, the initial magnetic permeability of the produced dust core was 80 up to around 10 kHz and 65 around 100 kHz. On the other hand, the initial magnetic permeability of the first dust core described in Non-Patent Document 5 is 82 up to around 10 kHz and 68 around 100 kHz in a magnetic field of 8 A/m. The initial magnetic permeability of the second dust core has a value of 65 near 10 kHz and a value of 63 near 100 kHz in a magnetic field of 8 A/m. The initial magnetic permeability of the powder magnetic core is higher than those of the two types of powder magnetic cores described in Non-Patent Document 5. The reason for this is that all of the flat atomized iron powder is aligned in the flat plane direction, which is the direction of the easy axis of magnetization, and the collection of aluminum oxide fine particles with extremely high insulation resistance and the air holes causes the flat planes to overlap each other. This is because the gaps between adjacent flat atomized iron powders are filled, and the eddy current flowing through the gaps between the flat atomized iron powders is reduced.
In addition, using a simple iron loss measuring instrument manufactured by Toei Kogyo Co., Ltd., the iron loss of the produced powder magnetic core was measured under the measurement conditions of an excitation magnetic flux density of 1 T and an excitation frequency of 100 to 800 Hz. Iron losses were 6 W/kg at 100 Hz, 13 W/kg at 200 Hz, 28 W/kg at 400 Hz and 56 W/kg at 800 Hz.
On the other hand, in Non-Patent Document 7, atomized iron powder (300NH of Kobe Steel, Ltd.) is insulated with a two-layer coating of a phosphoric acid-based inorganic insulating coating and a silicone resin, and this powder is heated to 130 ° C. and molded with mold lubrication. describes a powder magnetic core obtained by forming a ring-shaped powder magnetic core at 1176 MPa according to the method and then performing magnetic annealing at 500° C. for 30 minutes in a nitrogen atmosphere. The annealing temperature is restricted to 550° C. due to the heat resistance of the insulator. According to Non-Patent Document 7, the compressed density is 7.61 g/cm 3 and the filling rate reaches 97% because the applied pressure is as high as 1176 MPa. On the other hand, the atomized iron powder pressurized at 1176 MPa is sufficiently plastically deformed. Therefore, magnetic annealing at 500° C. only partially reduces the hysteresis loss of the dust core. In addition, the iron loss of the powder magnetic core under the measurement conditions of an excitation magnetic flux density of 1.5 T and an excitation frequency of 200 to 700 Hz is 5 W/kg at 50 Hz, 12 W/kg at 100 Hz, 23 W/kg at 200 Hz, 50 W/kg at 400 Hz and 100 W/kg at 700 Hz.
The iron loss of the manufactured powder magnetic core is about 1/2 of the powder magnetic core described in Non-Patent Document 7. The reason for this is that the produced dust core has less eddy current flowing through the gaps between the flat atomized iron powders than the eddy current flowing through the gaps between the atomized iron powders described in Non-Patent Document 7, and the flat atomized iron powders is not plastically deformed and the retention force of the flat atomized iron powder is not increased.
Next, the produced powder magnetic core was dropped from a height of 2 m onto the floor, but the powder magnetic core was not destroyed. Therefore, the produced powder magnetic core has the required mechanical strength. The reason for this is that the extremely large number of aluminum oxide fine particles are bonded to each other by frictional heat.
Furthermore, observation and analysis of the manufactured powder magnetic core were performed. The produced powder magnetic core was cut into two in the thickness direction, and the cut surface was observed with an electron microscope. As an electron microscope, an ultra-low accelerating voltage SEM manufactured by JFE Techno-Research Corporation was used. This apparatus is capable of observation with an extremely low accelerating voltage from 100 volts, and has the feature of directly observing a sample without forming a conductive coating on the sample.
First, a secondary electron beam between 900 and 1000 V of the reflected electron beam was taken out, image processing was performed, and the cut surface was observed. Flat atomized iron powder overlapped with each other on flat surfaces, and granular fine particles with a size of 40 to 60 nm were stacked to form 13 to 17 layers, evenly filling gaps between flat surfaces. Next, the energy and intensity of the characteristic X-rays were subjected to image processing, and the types of elements constituting the granular fine particles and their distribution states were analyzed. Both aluminum atoms and oxygen atoms were uniformly distributed, and no particular uneven distribution was observed. For this reason, it was confirmed that the granular fine particles of aluminum oxide evenly filled the gaps between the flat atomized iron powders overlapping the flat surfaces. FIG. 1 schematically shows a state in which a part of the cut surface is enlarged. 1 is flat atomized iron powder and 2 is fine particles of aluminum oxide.
As described above, the dust core produced using the flat atomized iron powder has a higher compaction density and an increased insulation resistance than the dust core produced by the conventional manufacturing method using the flat atomized iron powder. The eddy current loss was small, the initial magnetic permeability increased, and the flat atomized iron powder retention force did not increase, and it had the necessary mechanical strength.

実施例2
本実施例は、還元鉄粉を扁平処理した扁平還元鉄粉を、酸化アルミニウムの微粒子の集まりで絶縁化させ、絶縁化された扁平還元鉄粉の集まりを金型内で圧縮し、圧粉磁心を金型内に製造する実施例である。
扁平還元鉄粉として、JFEスチール株式会社のMG150Dを用いた。この扁平還元鉄粉は、還元鉄粉(JFEスチール株式会社のMG270H)を扁平加工したもので、非特許文献3に記載された扁平還元鉄粉である。
また、実施例1と同様に、酸化アルミニウムの原料として、安息香酸アルミニウムを用い、有機化合物としてジエチレングリコールを用い、混合機として同一の装置を用い、混合機の下部に加振機を併設させた。
さらに、実施例1と同様に、安息香酸アルミニウムの31gを1リットルのメタノールに分散し、このメタノール分散液にジエチレングリコールの200ccを混合し、混合液を作成した。次に、混合機を加振台の上に配置させ、混合機に混合液と扁平還元鉄粉の1kgとを投入し、混合機によって混合と揺動とを繰り返し、混合物を作成した。次に、0.3Gからなる前後、左右、上下の3方向の振動加速度を加振機によって繰り返し発生し、最後に、0.3Gからなる上下方向の振動加速度を混合物に加えた。さらに、混合機を65℃に昇温し、メタノールを気化させた。この後、混合機内のカプセルを外し、カプセルからメタノールが気化した混合物を取り出し、実施例1と同一の金型に充填した。
次に、実施例1と同様に、金型を310℃まで昇温し、1分間保持した。この後、実施例1と同様に、10MPa/分の速度で増加する加圧圧力をプレス機によって発生させ、該加圧圧力を金型内の混合物に加え、プレス機が受ける反発力が継続して増加した時点で圧縮を停止し、圧粉磁心を金型内に製作した。この後、金型から圧粉磁心を取り出した。
次に、作成した圧粉磁心の性能を測定した。この結果を、非特許文献3に記載された圧粉磁心と比較する。なお、双方の圧粉磁心が扁平還元鉄粉としてMG150Dを用いた。
最初に、圧粉磁心の重量を測定し、圧粉磁心の体積から圧粉磁心の密度を求めた。密度は7.2g/cmであった。いっぽう、非特許文献3に記載された圧粉磁心の密度は、6.93g/cmである。作成した圧粉磁心の密度が、非特許文献3に記載された圧粉磁心の密度より高い理由は、実施例1と同様に、全ての扁平還元鉄粉を扁平面同士で重ね合わせることで、扁平還元鉄粉同士の間隙が狭くなった効果と、酸化アルミニウム微粒子が、扁平還元鉄粉の集まりの空隙を埋め尽くした効果と、酸化アルミニウム微粒子の移動に伴って、扁平還元鉄粉の集積度が高まった効果とに依る。さらに、非特許文献3に記載された圧粉磁心は、扁平還元鉄粉が多孔質体であるため、硬化したエポキシ樹脂が全ての扁平還元鉄粉の空隙を埋めることができず、圧粉磁心の密度が低下した。
次に、電子磁気工業株式会社のBHアナライザを用い、直流での初透磁率を測定した。作成した圧粉磁心の直流での初透磁率は100であった。これに対し、非特許文献3に記載された圧粉磁心の直流での初透磁率は、94.9である。
また、実施例1の装置を用い、交流での初透磁率を測定した。製作した圧粉磁心は、200kHz付近までは100であり、200kHzを超えると徐々に低下し、1MHzで67であった。これに対し、非特許文献3に記載された圧粉磁心は、200kHz付近までは94.9であり、200kHzを超えると徐々に低下し、1MHzで63であった。
作成した圧粉磁心の初透磁率が、非特許文献3に記載された初透磁率より高い理由は、実施例1と同様に、全ての扁平還元鉄粉を、磁化容易軸方向である扁平面方向に揃えた効果と、絶縁抵抗が極めて高い酸化アルミニウム微粒子と空孔との集まりが、扁平面同士が重なり合った僅かな間隙を埋め尽くし、また、隣り合う扁平還元鉄粉の空隙を埋め尽くし、扁平還元鉄粉同士の間隙を流れる渦電流が減少したことに依る。
また、実施例1の装置を用い、励磁磁束密度が50mTで励磁周波数が20-100kHzからなる測定条件における圧粉磁心の鉄損を測定した。製作した圧粉磁心の鉄損は、20kHzで非特許文献3に記載された圧粉磁心の鉄損の約1/2で、50kHzで非特許文献3に記載された圧粉磁心の鉄損の約1/4で、100kHzで非特許文献3に記載された圧粉磁心の鉄損の約1/5であった。なお、非特許文献3に記載された鉄損は、扁平還元鉄粉の集まりを加圧する圧力が、490MPaでなく686MPaである。
鉄損の結果は、実施例1の結果と比べると、周波数が高くなるほど、非特許文献3に記載された圧粉磁心の鉄損との差が拡大する。この理由は、非特許文献3に記載された扁平還元鉄粉を絶縁化させるエポキシ樹脂が扁平還元鉄粉同士の間隙を埋め尽くさず、一部の扁平還元鉄粉が直接接触し、扁平還元鉄粉同士の間隙を渦電流損失が流れることに依る。つまり、全ての扁平還元鉄粉が扁平面同士で重なり合うと、圧粉磁心に必要な機械的強度が実現できないため、扁平還元鉄粉の集まりを単純に圧縮した。これによって、一部の扁平還元鉄粉が直接接触する。この結果、渦電流損失が周波数の2乗に比例するため、周波数が高くなるほど、非特許文献3に記載された圧粉磁心の渦電流損失が増大する結果になった。また、20kHzでの鉄損が、非特許文献3に記載された圧粉磁心の鉄損の約1/2であるため、圧粉磁心を製造する際に扁平還元鉄粉のヒステリシス損失が増大しなかった効果に依る。つまり、非特許文献3に記載された圧粉磁心は、180℃で30分間熱処理を実施しているが、180℃では686MPaの加圧圧力で塑性変形が進んだ扁平還元鉄粉の加工歪は解消できず、扁平還元鉄粉の保持力の増大によって、圧粉磁心のヒステリシス損失が増大している。
次に、実施例1と同様に、圧粉磁心を2mの高さから床面に落下させたが、圧粉磁心は破壊しなかった。このため、圧粉磁心は必要な機械的強度を持つ。この理由は、極めて多数からなる酸化アルミニウム微粒子同士が、摩擦熱で接合したことに依る。
さらに、実施例1と同様に、製作した圧粉磁心を厚み方向に2つに切断し、切断面を電子顕微鏡で観察した。実施例1と同様に、酸化アルミニウムの粒状微粒子が、扁平面同士で重なり合った扁平還元鉄粉の間隙を満遍なく埋め尽くしていることが確認できた。
以上に説明したように、扁平還元鉄粉を用いて作成した圧粉磁心は、扁平還元鉄粉を用い従来の製造方法で作成した圧粉磁心より、圧縮密度が高く、絶縁抵抗が増大し、渦電流損失が少なく、初透磁率が増大し、扁平アトマイズ鉄粉の保持力が増大せず、必要な機械的強度を持った。
Example 2
In this embodiment, the flat reduced iron powder obtained by flattening the reduced iron powder is insulated with a group of fine particles of aluminum oxide, and the insulated group of flat reduced iron powder is compressed in a mold to form a powder magnetic core. is manufactured in a mold.
MG150D manufactured by JFE Steel Corporation was used as the flat reduced iron powder. This flat reduced iron powder is obtained by flattening reduced iron powder (MG270H manufactured by JFE Steel Corporation), and is the flat reduced iron powder described in Non-Patent Document 3.
Further, as in Example 1, aluminum benzoate was used as the raw material of aluminum oxide, diethylene glycol was used as the organic compound, and the same apparatus was used as the mixer.
Further, in the same manner as in Example 1, 31 g of aluminum benzoate was dispersed in 1 liter of methanol, and this methanol dispersion was mixed with 200 cc of diethylene glycol to prepare a mixed solution. Next, a mixer was placed on a vibration table, and the mixed liquid and 1 kg of flat reduced iron powder were put into the mixer, and mixing and shaking were repeated by the mixer to prepare a mixture. Next, a vibratory acceleration of 0.3 G in three directions of front and back, left and right, and up and down was repeatedly generated by a vibrator, and finally a vertical vibration acceleration of 0.3 G was applied to the mixture. Furthermore, the temperature of the mixer was raised to 65° C. to vaporize the methanol. Thereafter, the capsule in the mixer was removed, and the mixture in which methanol was vaporized was taken out from the capsule and filled into the same mold as in Example 1.
Next, as in Example 1, the mold was heated to 310° C. and held for 1 minute. Thereafter, in the same manner as in Example 1, the pressing machine generated a pressurizing pressure increasing at a rate of 10 MPa/min, and the pressurizing pressure was applied to the mixture in the mold, and the repulsive force received by the press continued. Compression was stopped at the time when the core was increased, and a powder magnetic core was produced in the mold. After that, the dust core was taken out from the mold.
Next, the performance of the produced powder magnetic core was measured. This result is compared with the dust core described in Non-Patent Document 3. MG150D was used as flat reduced iron powder for both powder magnetic cores.
First, the weight of the powder magnetic core was measured, and the density of the powder magnetic core was obtained from the volume of the powder magnetic core. The density was 7.2 g/ cm3 . On the other hand, the density of the powder magnetic core described in Non-Patent Document 3 is 6.93 g/cm 3 . The reason why the density of the produced dust core is higher than that of the dust core described in Non-Patent Document 3 is that, as in Example 1, all the flattened reduced iron powders are overlapped with their flat surfaces, The effect of narrowing the gaps between the flat reduced iron powders, the effect of the aluminum oxide fine particles filling the gaps in the collection of the flat reduced iron powders, and the degree of accumulation of the flat reduced iron powders along with the movement of the aluminum oxide fine particles depends on the effect of heightened Furthermore, in the dust core described in Non-Patent Document 3, since the flat reduced iron powder is a porous body, the cured epoxy resin cannot fill all the voids in the flat reduced iron powder, and the dust core density decreased.
Next, a BH analyzer manufactured by Denshi Jiki Kogyo Co., Ltd. was used to measure the initial magnetic permeability at direct current. The initial magnetic permeability of the produced powder magnetic core was 100 at direct current. On the other hand, the powder magnetic core described in Non-Patent Document 3 has an initial magnetic permeability at direct current of 94.9.
Also, the apparatus of Example 1 was used to measure the initial magnetic permeability with an alternating current. The manufactured powder magnetic core was 100 up to around 200 kHz, gradually decreased beyond 200 kHz, and was 67 at 1 MHz. On the other hand, the dust core described in Non-Patent Document 3 was 94.9 up to around 200 kHz, and after 200 kHz it gradually decreased to 63 at 1 MHz.
The reason why the initial magnetic permeability of the produced powder magnetic core is higher than the initial magnetic permeability described in Non-Patent Document 3 is that, as in Example 1, all the flattened reduced iron powders are placed in flat planes in the direction of the easy axis of magnetization. The effect of aligning in the direction and the collection of aluminum oxide fine particles and holes with extremely high insulation resistance fill the slight gaps between the flat surfaces overlapping each other, and also fill the gaps between the adjacent flat reduced iron powders, This is because the eddy current flowing through the gaps between the flat reduced iron powders has decreased.
Using the apparatus of Example 1, the iron loss of the dust core was measured under the measurement conditions of an excitation magnetic flux density of 50 mT and an excitation frequency of 20-100 kHz. The iron loss of the manufactured dust core is about half the iron loss of the dust core described in Non-Patent Document 3 at 20 kHz, and the iron loss of the dust core described in Non-Patent Document 3 at 50 kHz. It was about 1/4, and about 1/5 of the iron loss of the dust core described in Non-Patent Document 3 at 100 kHz. Note that the iron loss described in Non-Patent Document 3 is based on a pressure of 686 MPa instead of 490 MPa for pressurizing a mass of flat reduced iron powder.
As compared with the results of Example 1, the iron loss results differ from the iron loss of the dust core described in Non-Patent Document 3 as the frequency increases. The reason for this is that the epoxy resin that insulates the flat reduced iron powders described in Non-Patent Document 3 does not fill the gaps between the flat reduced iron powders, and some of the flat reduced iron powders are in direct contact with each other. This is due to eddy current losses flowing through the gaps between powders. In other words, if all the flat reduced iron powders overlap with each other, the mechanical strength required for the powder magnetic core cannot be achieved, so the collection of flat reduced iron powders was simply compressed. This brings some of the flat reduced iron powder into direct contact. As a result, since the eddy current loss is proportional to the square of the frequency, the higher the frequency, the greater the eddy current loss of the dust core described in Non-Patent Document 3. In addition, since the iron loss at 20 kHz is about half the iron loss of the dust core described in Non-Patent Document 3, the hysteresis loss of the flattened reduced iron powder increases when manufacturing the dust core. Depends on the effect it didn't have. In other words, the powder magnetic core described in Non-Patent Document 3 was heat-treated at 180°C for 30 minutes, but at 180°C under pressure of 686 MPa, the working strain of the flattened reduced iron powder in which plastic deformation progressed was The hysteresis loss of the powder magnetic core is increasing due to the increase in the coercive force of the flat reduced iron powder.
Next, the powder magnetic core was dropped from a height of 2 m onto the floor in the same manner as in Example 1, but the powder magnetic core was not destroyed. Therefore, the dust core has the required mechanical strength. The reason for this is that the extremely large number of aluminum oxide fine particles are bonded to each other by frictional heat.
Furthermore, in the same manner as in Example 1, the manufactured powder magnetic core was cut into two in the thickness direction, and the cut surfaces were observed with an electron microscope. As in Example 1, it was confirmed that the granular fine particles of aluminum oxide evenly filled the gaps between the flat reduced iron powders overlapping the flat surfaces.
As described above, the dust core produced using the flat reduced iron powder has a higher compression density and an increased insulation resistance than the dust core produced by the conventional manufacturing method using the flat reduced iron powder. The eddy current loss was small, the initial magnetic permeability was increased, the holding force of flat atomized iron powder was not increased, and the required mechanical strength was obtained.

実施例3
本実施例は、硬度の高い扁平軟磁性粉として扁平センダスト粉を用い、扁平センダスト粉を酸化アルミニウムの微粒子の集まりで絶縁化させ、絶縁化された扁平センダスト粉の集まりを金型内で圧縮し、圧粉磁心を金型内に製造する実施例である。
扁平センダスト粉(株式会社トーキンの製品)は、水アトマイズ・センダスト紛を扁平加工し、この後、650℃のアルゴンガス雰囲気で2時間焼鈍処理を行い、扁平加工に依る歪を取り除いた。平均長径が40μmで、平均厚みが1.5μmであり、厚みが前記した扁平鉄粉より薄く扁平率は高い。なお、扁平センダスト粉は硬度が高く、扁平センダスト粉を塑性変形させるには、前記した扁平鉄粉を塑性変形させる加圧圧力より大きい加圧圧力を加える。これによって、圧粉磁心のヒステリシス損失が増大する。
また、実施例1と同様に、酸化アルミニウムの原料として、安息香酸アルミニウムを用い、有機化合物としてジエチレングリコールを用い、混合機として同一の装置を用い、混合機の下部に加振機を併設させた。
さらに、実施例1と同様に、安息香酸アルミニウムの31gを1リットルのメタノールに分散し、このメタノール分散液にジエチレングリコールの200ccを混合し、混合液を作成した。次に、混合機を加振台の上に配置させ、混合機に混合液と扁平センダスト粉の1kgとを投入し、混合機によって混合と揺動とを繰り返し、混合物を作成した。次に、0.3Gからなる前後、左右、上下の3方向の振動加速度を加振機によって繰り返し発生し、最後に、0.3Gからなる上下方向の振動加速度を混合物に加えた。さらに、混合機を65℃に昇温し、メタノールを気化させた。この後、混合機内のカプセルを外し、カプセルからメタノールが気化した混合物を取り出し、実施例1と同一の金型に充填した。
次に、作成した圧粉磁心の性能を測定した。この結果を、非特許文献8に記載された扁平センダスト粉を用いた圧粉磁心と比較する。なお、非特許文献8に記載された圧粉磁心は、扁平粉にシリコーンレジンと増粘剤と溶剤を混合して得たスラリーをシート状に成形し、得られたシートに加圧成型と熱処理を施し、圧粉磁心を製作した。なお、シリコーンレジンは、エポキシ樹脂と同様に絶縁性に優れるが、耐熱性が250℃より低く、熱処理によって、扁平センダスト粉の保持力を元に戻すことができず、圧粉磁心におけるヒステリシス損失は大きい。
最初に、圧粉磁心の重量を測定し、圧粉磁心の体積から圧粉磁心の充填率を求めた。充填率は82重量%であった。いっぽう、非特許文献8に記載された圧粉磁心の充填率は70重量%である。充填率の大きな差異は、以下の理由に依る。
非特許文献8に掲載された圧粉磁心の断面写真をみると、多くの空隙が形成されている。さらに、空隙の多くは、相対的に粒径が大きい扁平センダスト粉の上下に形成されている。従って、スラリーをシート状に成形した際に、シートに空隙が形成され、この後、シートを加圧成形したため、空隙がさらに拡大した。この結果、圧粉磁心の充填率が低くなった。つまり、シート状に成形しただけでは、扁平センダスト粉の集まりが再配列していないため、扁平センダスト粉の集まりの集積度は低く、相対的に粒径が大きい扁平センダスト粉の上下に空隙ができやすい。また、圧粉磁心の断面写真では、殆どの扁平センダスト粉が、扁平面を上下方向にして、うねるように変形している。つまり、扁平センダスト粉は硬度が高く、圧粉磁心を製作する際に大きな加圧圧力を加え、扁平センダスト粉を十分に塑性変形させ、塑性変形した扁平センダスト粉の絡み合いで、圧粉磁心の機械的強度が発生する。従って、空隙が形成された扁平センダスト粉の集まりに、大きな加圧圧力を加えて圧縮したため、殆どの扁平センダスト粉が、扁平面を上下方向にして、うねるように変形した。これによって、空隙がさらに拡大した。いっぽう、絶縁材料の耐熱性が250℃より低く、圧粉磁心の熱処理によって、扁平センダスト粉の保持力を元に戻すことができず、非特許文献8に掲載された圧粉磁心のヒステリシス損失は大きい。いっぽう、実施例3のように、全ての扁平軟磁性粉を扁平面方向に揃えると、塑性変形した扁平センダスト粉の絡みにくくなるため、圧粉磁心の必要となる機械的強度が実現しない。
これに対し、実施例3の圧粉磁心では、扁平センダスト粉の集まりと混合液との混合物に、3方向の振動を繰り返し加え、最後に上下方向の振動を加えた。このため、相対的に粒径が小さい扁平センダスト粉が扁平面を上にして、扁平センダスト粉の集まりの空隙に入り込む配列と、扁平センダスト粉の集まりの上方に移動する配列とが進み、扁平センダスト粉の集まりの集積度が高まる。最後に、上下方向の振動を加えると、全ての扁平センダスト粉が、面を上に向けて扁平面同士が重なり合う。この結果、実施例3の圧粉磁心の充填率が高まった。
次に、実施例1の装置を用い、交流での複素透磁率を測定した。製作した圧粉磁心は、実部が10MHz付近までは400の値を持ち、10MHzを超えると徐々に低下し、300MHz付近で210の値まで低下し、虚部と重なった。虚部は、3MHz付近から増大し、300MHz付近でピーク値の210となり、300MHzから徐々に減少した。なお、センダストの導電率は1.25×10S/mであり、10MHzで比透磁率が400のセンダストの表皮の厚みは、2.25μmとなる。この値は、扁平センダスト粉の平均厚みの1.5μmに、50nmからなる酸化アルミニウム微粒子を、7層ないし8層で近い厚みで積層して絶縁化させた値に相当する。従って、実施例3では、酸化アルミニウム微粒子の集まりで絶縁化した全ての扁平センダスト粉を、扁平面同士で重ね合わせたため、縮減された渦電流が絶縁性の高い扁平面同士の間隙を流れる。また、渦電流が縮減されることで、複素透磁率の虚部が増大した。また、全ての扁平センダスト粉を、磁化容易軸方向である扁平面方向に揃えたため、複素透磁率の実部が一定の値を持った。
これに対し、非特許文献8に掲載された圧粉磁心は、5MHz付近までは280の値を持ち、5MHzを超えると徐々に低下し、500MHz付近で130の値まで低下し、虚部と重なった。虚部は、2MHz付近から増大し、500MHz付近で130の値まで増加し、実部と重なった。つまり、非特許文献8に掲載された圧粉磁心は、前記したように、多くの空隙が形成され、また、殆どの扁平センダスト粉が、扁平面を上下方向にして、うねるように変形している。また、扁平センダスト粉に加えたシリコーンレジンと増粘剤と溶剤とは、増粘剤の濃度に応じた接着力で、扁平センダスト粉に吸着する。なお、熱処理後に、シリコーンレジンが硬化し、増粘剤と溶剤とは揮発する。従って、より大きな空隙が形成された部位においては、扁平センダスト粉がうねるように変形する際に、絶縁物の一部が扁平センダスト粉から剥離し、扁平センダスト粉同士が直接接触する。これによって、扁平センダスト粉同士の間隙に渦電流が流れる。この結果、非特許文献8に掲載された圧粉磁心における複素透磁率の虚部の値は、実施例3における圧粉磁心の複素透磁率の虚部の値の0.6倍となった。また、非特許文献8に掲載された圧粉磁心は、全ての扁平センダスト粉がうねるように変形し、かつ、扁平センダスト粉同士の間隙に多くの空隙が形成された。これに対し、実施例3における圧粉磁心は、全ての扁平センダスト粉を、磁化容易軸方向である扁平面方向に揃えたため、複素透磁率の実部の値が、非特許文献8に掲載された圧粉磁心の複素透磁率の実部の値の1.4倍になった。
次に、実施例1と同様に、圧粉磁心を2mの高さから床面に落下させたが、圧粉磁心は破壊しなかった。このため、圧粉磁心は必要な機械的強度を持つ。この理由は、極めて多数からなる酸化アルミニウム微粒子同士が、摩擦熱で接合したことに依る。
さらに、実施例1と同様に、製作した圧粉磁心を厚み方向に2つに切断し、切断面を電子顕微鏡で観察した。実施例1と同様に、酸化アルミニウムの粒状微粒子が、扁平面同士で重なり合った扁平センダスト粉の間隙を満遍なく埋め尽くしていることが確認できた。
以上に説明したように、扁平センダスト粉を用いて作成した圧粉磁心は、扁平センダスト粉を用い従来の製造方法で作成した圧粉磁心より、圧縮密度が高く、絶縁抵抗が増大し、渦電流損失が少なく、初透磁率が増大し、扁平アトマイズ鉄粉の保持力が増大せず、必要な機械的強度を持った。
Example 3
In this embodiment, flat sendust powder is used as flat soft magnetic powder having a high hardness, the flat sendust powder is insulated with a group of aluminum oxide fine particles, and the insulated flat sendust powder is compressed in a mold. , is an embodiment of manufacturing a powder magnetic core in a mold.
Flat sendust powder (a product of Tokin Co., Ltd.) was obtained by flattening water-atomized sendust powder, and then annealing it in an argon gas atmosphere at 650° C. for 2 hours to remove distortion due to flattening. The iron powder has an average length of 40 μm and an average thickness of 1.5 μm. The flat sendust powder has a high hardness, and in order to plastically deform the flat sendust powder, a higher pressure than the above-described pressure for plastically deforming the flat iron powder is applied. This increases the hysteresis loss of the dust core.
Further, as in Example 1, aluminum benzoate was used as the raw material of aluminum oxide, diethylene glycol was used as the organic compound, and the same apparatus was used as the mixer.
Further, in the same manner as in Example 1, 31 g of aluminum benzoate was dispersed in 1 liter of methanol, and this methanol dispersion was mixed with 200 cc of diethylene glycol to prepare a mixed solution. Next, a mixer was placed on a vibration table, and the mixed liquid and 1 kg of flat sendust powder were put into the mixer, and mixing and shaking were repeated by the mixer to prepare a mixture. Next, a vibratory acceleration of 0.3 G in three directions of front and back, left and right, and up and down was repeatedly generated by a vibrator, and finally a vertical vibration acceleration of 0.3 G was applied to the mixture. Furthermore, the temperature of the mixer was raised to 65° C. to vaporize the methanol. Thereafter, the capsule in the mixer was removed, and the mixture in which methanol was vaporized was taken out from the capsule and filled into the same mold as in Example 1.
Next, the performance of the produced powder magnetic core was measured. This result is compared with the powder magnetic core using flat sendust powder described in Non-Patent Document 8. In addition, the powder magnetic core described in Non-Patent Document 8 is formed by forming a slurry obtained by mixing a silicone resin, a thickener, and a solvent into a flat powder into a sheet, and pressing and heat-treating the obtained sheet. was applied to produce a dust core. In addition, although silicone resin has excellent insulating properties like epoxy resin, its heat resistance is lower than 250 ° C., and heat treatment cannot restore the holding power of flat sendust powder, and the hysteresis loss in the powder magnetic core is big.
First, the weight of the powder magnetic core was measured, and the filling rate of the powder magnetic core was obtained from the volume of the powder magnetic core. The filling rate was 82% by weight. On the other hand, the packing rate of the powder magnetic core described in Non-Patent Document 8 is 70% by weight. The large difference in filling rate is due to the following reasons.
Looking at the cross-sectional photograph of the powder magnetic core published in Non-Patent Document 8, many voids are formed. Furthermore, most of the voids are formed above and below the flat sendust powder having a relatively large particle size. Therefore, when the slurry was formed into a sheet, voids were formed in the sheet, and the voids were further expanded as the sheet was then press-molded. As a result, the packing rate of the dust core was lowered. In other words, if the flat sendust powder is only formed into a sheet, the clusters of the flat sendust powder are not rearranged, so the density of the clusters of the flat sendust powder is low. Cheap. Moreover, in the photograph of the cross section of the powder magnetic core, most of the flat sendust powder is deformed in an undulating manner with the flat surface facing up and down. In other words, the flat sendust powder has a high hardness, and when a dust core is produced, a large pressure is applied to sufficiently plastically deform the flat sendust powder. strength occurs. Therefore, since a mass of flat sendust powder in which voids were formed was compressed by applying a large pressure, most of the flat sendust powder was deformed in an undulating manner with its flat surface facing up and down. This further enlarged the void. On the other hand, the heat resistance of the insulating material is lower than 250 ° C., and the heat treatment of the dust core cannot restore the holding power of the flat sendust powder, and the hysteresis loss of the dust core published in Non-Patent Document 8 is big. On the other hand, when all the flat soft magnetic powders are arranged in the flat plane direction as in Example 3, the plastically deformed flat sendust powder is less likely to entangle, and the required mechanical strength of the powder magnetic core is not achieved.
On the other hand, in the dust core of Example 3, the mixture of the flat sendust powder and the liquid mixture was repeatedly vibrated in three directions and finally vibrated in the vertical direction. For this reason, the flat surface of the flat sendust powder having a relatively small particle size faces up, and the arrangement in which it enters the gaps of the aggregate of the flat sendust powder and the arrangement in which it moves upward in the aggregate of the flat sendust powder progresses. The degree of accumulation of powder clusters increases. Finally, when vibration is applied in the vertical direction, all the flat sendust powders face upward and the flat surfaces overlap each other. As a result, the packing rate of the powder magnetic core of Example 3 was increased.
Next, using the apparatus of Example 1, the complex magnetic permeability was measured with an alternating current. The manufactured dust core had a real part value of 400 up to around 10 MHz, which gradually decreased beyond 10 MHz, dropped to a value of 210 around 300 MHz, and overlapped with the imaginary part. The imaginary part increased from around 3 MHz, reached a peak value of 210 around 300 MHz, and gradually decreased from 300 MHz. The conductivity of sendust is 1.25×10 6 S/m, and the skin thickness of sendust with a relative magnetic permeability of 400 at 10 MHz is 2.25 μm. This value corresponds to an insulating value obtained by laminating 7 to 8 layers of fine aluminum oxide particles of 50 nm on an average thickness of flat sendust powder of 1.5 μm to a similar thickness. Therefore, in Example 3, since all the flat sendust powders insulated with a group of aluminum oxide fine particles were superimposed between flat surfaces, a reduced eddy current flows through the gap between flat surfaces with high insulation. In addition, the imaginary part of the complex permeability increased due to the reduction of the eddy current. In addition, since all the flat sendust powders were arranged in the flat plane direction, which is the direction of easy magnetization, the real part of the complex magnetic permeability had a constant value.
On the other hand, the powder magnetic core published in Non-Patent Document 8 has a value of 280 up to around 5 MHz, gradually decreases beyond 5 MHz, and drops to a value of 130 around 500 MHz, overlapping with the imaginary part. rice field. The imaginary part increased from around 2 MHz, increased to a value of 130 around 500 MHz, and overlapped with the real part. That is, the powder magnetic core published in Non-Patent Document 8 has many voids as described above, and most of the flat sendust powder is deformed in an undulating manner with the flat surface in the vertical direction. there is Further, the silicone resin, the thickener and the solvent added to the flat sendust powder are adsorbed to the flat sendust powder with an adhesive force depending on the concentration of the thickener. After the heat treatment, the silicone resin is cured and the thickener and solvent are volatilized. Therefore, in the portion where the larger gap is formed, when the flat sendust powder is deformed in an undulating manner, part of the insulator is separated from the flat sendust powder, and the flat sendust powders come into direct contact with each other. As a result, eddy currents flow in the gaps between the flat sendust powders. As a result, the value of the imaginary part of the complex permeability of the powder magnetic core published in Non-Patent Document 8 was 0.6 times the value of the imaginary part of the complex permeability of the powder magnetic core in Example 3. In addition, in the dust core disclosed in Non-Patent Document 8, all the flat sendust powders were deformed in an undulating manner, and many gaps were formed in the gaps between the flat sendust powders. On the other hand, in the dust core of Example 3, all the flat sendust powders were aligned in the flat plane direction, which is the easy axis direction of magnetization. was 1.4 times the value of the real part of the complex permeability of the dust core.
Next, the powder magnetic core was dropped from a height of 2 m onto the floor in the same manner as in Example 1, but the powder magnetic core was not destroyed. Therefore, the dust core has the required mechanical strength. The reason for this is that the extremely large number of aluminum oxide fine particles are bonded to each other by frictional heat.
Furthermore, in the same manner as in Example 1, the produced powder magnetic core was cut into two in the thickness direction, and the cut surfaces were observed with an electron microscope. As in Example 1, it was confirmed that the granular fine particles of aluminum oxide evenly filled the gaps between the flat sendust powders overlapping the flat surfaces.
As described above, the powder magnetic core produced using the flat sendust powder has a higher compression density, an increased insulation resistance, and a higher eddy current than the powder magnetic core produced by the conventional manufacturing method using the flat sendust powder. The loss was small, the initial magnetic permeability increased, the holding force of flat atomized iron powder did not increase, and the required mechanical strength was obtained.

以上の3つの実施例における圧粉磁心の性能と、従来の製造方法で作成した圧粉磁心の性能とを比較した。実施例における圧粉磁心は、従来の製造方法で作成した圧粉磁心より下記の項目で優れる。
第一に、実施例における圧粉磁心の密度が、従来の製造方法で作成した圧粉磁心の密度より高い。この理由は、全ての扁平軟磁性粉を扁平面同士で重ね合わせ、扁平軟磁性粉同士の間隙を狭め、また、酸化アルミニウム微粒子が、扁平軟磁性粉の集まりの空隙を埋め尽くし、さらに、扁平軟磁性粉の集まりを圧縮した際に、酸化アルミニウム微粒子が移動し、該微粒子の移動に伴って、扁平軟磁性粉の集積度がさらに高まったことに依る。これによって、実施例における圧粉磁心の飽和磁束密度が、従来の製造方法で作成した圧粉磁心の飽和磁束密度より高くなり、磁化された圧粉磁心の磁気エネルギーは大きい。
第二に、実施例における圧粉磁心の透磁率が、従来の製造方法で作成した圧粉磁心の透磁率より高い値を持った。この理由は、全ての扁平軟磁性粉を、磁化容易軸方向である扁平面方向に揃え、また、絶縁抵抗が極めて高い酸化アルミニウム微粒子と微細な空孔との集まりが、扁平軟磁性粉同士の間隙を埋め尽くし、間隙を流れる渦電流が減少したことに依る。これによって、実施例における圧粉磁心は、従来の製造方法で作成した圧粉磁心より磁化されやすくなる。
第三に、実施例における圧粉磁心の鉄損が、従来の製造方法で作成した圧粉磁心の鉄損より少ない。この理由は、圧粉磁心を製造する際に、扁平軟磁性粉を塑性変形させないため、扁平軟磁性粉のヒステリシス損失が増大せず、また、扁平軟磁性粉同士の間隙を流れる渦電流が減少したことに依る。これによって、実施例における圧粉磁心は、従来の製造方法で作成した圧粉磁心より発熱しにくい。つまり、実施例における圧粉磁心は、極めて多数の酸化アルミニウム微粒子同士が摩擦接合することで、圧粉磁心に機械的強度をもたらした。これに対し、従来の製造方法における圧粉磁心は、扁平軟磁性粉を十分に塑性変形させ、塑性変形した扁平軟磁性粉同士が絡み合うことで、圧粉磁心に機械的強度をもたせた。さらに、従来の製造方法における圧粉磁心は、耐熱性が低い絶縁物で扁平軟磁性粉を絶縁したため、圧粉磁心を磁気焼鈍し、塑性変形した扁平軟磁性粉の保持力を元に戻すことができない。
以上に説明したように、本発明における圧粉磁心の製造方法は、第一に、軟磁性粉の硬度に関わらず、全ての軟磁性粉を用い、第二に、絶縁性の高い酸化アルミニウム微粒子の集まりで軟磁性粉を絶縁化し、第三に、軟磁性粉の集まりを面同士で重なり合うように高密度に集積させ、第四に、軟磁性粉の集まりを圧縮すると、酸化アルミニウム微粒子同士が摩擦熱で接合し、また、酸化アルミニウム微粒子同士の摩擦熱の接合で、軟磁性粉同士が結合する、画期的な圧粉磁心の製造方法である。
A comparison was made between the performance of the powder magnetic cores in the above three examples and the performance of the powder magnetic core produced by the conventional manufacturing method. The powder magnetic cores in the examples are superior to the powder magnetic cores produced by the conventional manufacturing method in the following items.
First, the density of the powder magnetic cores in the examples is higher than the density of the powder magnetic cores produced by the conventional manufacturing method. The reason for this is that all the flat soft magnetic powders are superimposed with their flat surfaces to narrow the gaps between the flat soft magnetic powders, and the aluminum oxide fine particles fill the gaps in the clusters of the flat soft magnetic powders. This is because when the soft magnetic powder mass was compressed, the aluminum oxide microparticles moved, and the movement of the microparticles further increased the degree of accumulation of the flat soft magnetic powder. As a result, the saturation magnetic flux density of the powder magnetic core in the example becomes higher than the saturation magnetic flux density of the powder magnetic core produced by the conventional manufacturing method, and the magnetic energy of the magnetized powder magnetic core is large.
Secondly, the magnetic permeability of the powder magnetic core in the example had a higher value than the magnetic permeability of the powder magnetic core produced by the conventional manufacturing method. The reason for this is that all the flat soft magnetic powders are aligned in the direction of the flat surface, which is the direction of the easy axis of magnetization, and the aggregation of aluminum oxide fine particles with extremely high insulation resistance and fine holes is the basis for the separation of the flat soft magnetic powders. This is due to filling the gap and reducing eddy currents flowing through the gap. As a result, the powder magnetic cores in the examples are easier to magnetize than the powder magnetic cores produced by the conventional manufacturing method.
Third, the iron loss of the powder magnetic cores in the examples is smaller than that of the powder magnetic cores produced by the conventional manufacturing method. The reason for this is that the flat soft magnetic powder is not plastically deformed when manufacturing the dust core, so the hysteresis loss of the flat soft magnetic powder does not increase, and the eddy current flowing through the gap between the flat soft magnetic powders is reduced. Depends on what you did. As a result, the powder magnetic cores in the examples generate less heat than the powder magnetic cores produced by the conventional manufacturing method. In other words, in the dust cores of Examples, a large number of fine aluminum oxide particles are frictionally bonded to each other, thereby imparting mechanical strength to the dust cores. On the other hand, in the dust core produced by the conventional manufacturing method, the flat soft magnetic powder is sufficiently plastically deformed, and the plastically deformed flat soft magnetic powder is entangled with each other, thereby imparting mechanical strength to the dust core. Furthermore, since the powder magnetic core in the conventional manufacturing method insulates the flat soft magnetic powder with an insulator with low heat resistance, magnetic annealing is performed on the powder magnetic core to restore the holding power of the plastically deformed flat soft magnetic powder. can't
As described above, the method for producing a powder magnetic core in the present invention firstly uses all soft magnetic powders regardless of the hardness of the soft magnetic powders, and secondly, aluminum oxide fine particles with high insulating properties. Third, the groups of soft magnetic powder are densely accumulated so that their surfaces overlap each other. Fourth, when the groups of soft magnetic powder are compressed, the aluminum oxide fine particles are This is an epoch-making method for producing a powder magnetic core, in which the soft magnetic powders are bonded together by frictional heat, and by frictional heat bonding between aluminum oxide fine particles.

1 扁平アトマイズ鉄粉 2 酸化アルミニウムの微粒子
1 flat atomized iron powder 2 fine particles of aluminum oxide

Claims (2)

軟磁性扁平粉の扁平面同士の間隙に析出させるとともに、該軟磁性扁平粉を覆う酸化アルミニウム微粒子の集まりを圧縮し、該酸化アルミニウム微粒子同士が摩擦熱で接合されることで前記軟磁性扁平粉同士が結合された該軟磁性扁平粉の集まりからなる圧粉磁心の製造方法は、
熱分解で酸化アルミニウム微粒子を析出するアルミニウム化合物を、該酸化アルミニウム微粒子が析出する重量が、軟磁性扁平粉の集まりの重量の1/100より少ない重量として析出する該アルミニウム化合物をメタノールに分散し、該アルミニウム化合物のメタノール分散液を作成し、メタノールに溶解ないしは混和する第一の性質と、粘度がメタノールの粘度より高い第二の性質と、沸点がメタノールの沸点より高く、かつ、前記アルミニウム化合物の熱分解温度より低い第三の性質を兼備する有機化合物を、前記メタノール分散液に混合して混合液を作成する、この後、加熱機能が併設された混合機を加振台の上に配置し、該混合機に前記混合液と前記軟磁性扁平粉の集まりを充填し、該混合機を回転および揺動させ、前記軟磁性扁平粉の集まりを前記混合液中に分散させる、さらに、加振機によって上下、左右、前後の3方向の振動を繰り返し発生させ、最後に上下方向の振動を発生させ、該加振機に依る振動を、前記加振台を介して前記混合機に伝え、該混合機内の前記軟磁性扁平粉の集まりを、前記混合液中で前記振動方向に繰り返し移動させ、該混合液中で前記軟磁性扁平粉の配列を進め、最後に上下方向の振動が加わることで、該軟磁性扁平粉の扁平面同士が前記混合液を介して重なり合い、前記混合機の底面に該底面の形状からなる前記軟磁性扁平粉の集まりが形成される、この後、前記混合機をメタノールの沸点に昇温する、これによって、前記アルミニウム化合物の微細結晶の集まりが前記有機化合物中に一斉に析出し、該アルミニウム化合物の微細結晶が析出した有機化合物が前記軟磁性扁平粉に付着し、該アルミニウム化合物の微細結晶が析出した有機化合物を介して前記軟磁性扁平粉の扁平面同士が重なり合った該軟磁性扁平粉の集まりが、前記混合機の底面に該底面の形状として形成される第一の工程と、
前記第一の工程で作成した軟磁性扁平粉の集まりを金型に充填し、該金型を前記アルミニウム化合物が熱分解する温度に昇温する、これによって、最初に、前記有機化合物が気化し、次に、前記アルミニウム化合物の微細結晶が熱分解し、前記軟磁性扁平粉の表面に酸化アルミニウム微粒子の集まりが一斉に析出し、該酸化アルミニウム微粒子の集まりが前記軟磁性扁平粉を覆う、この後、連続的に増大する加圧圧力を、プレス機によって前記軟磁性扁平粉の集まりに加え、該プレス機が受ける反発力が継続して増大した時点で該プレス機に依る加圧圧力を停止する、これによって、最初に、前記軟磁性扁平粉の集まりが前記金型の形状に成形され、次に、該軟磁性扁平粉の扁平面同士の間隙に酸化アルミニウム微粒子の集まりが析出し、さらに、前記酸化アルミニウム微粒子が継続して移動し、前記軟磁性扁平粉の集まりにおける空隙を埋め、該酸化アルミニウム微粒子が移動できなくなると、前記軟磁性扁平粉の表面と接触する前記酸化アルミニウム微粒子が該軟磁性扁平粉の表面に摩擦熱で接合し、また、互いに接触する前記酸化アルミニウム微粒子同士が接触部位で摩擦熱によって接合し、該酸化アルミニウム微粒子同士の接合で前記軟磁性扁平粉同士が結合され、該結合された軟磁性扁平粉の集まりからなる圧粉磁心が前記金型内に製造される第二の工程とからなり、
前記2つの工程を連続して実施することで、軟磁性扁平粉の扁平面同士の間隙に析出させるとともに、該軟磁性扁平粉を覆う酸化アルミニウム微粒子同士の接合で軟磁性扁平粉同士が結合された該軟磁性扁平粉の集まりからなる圧粉磁心が製造される、圧粉磁心の製造方法。
The soft magnetic flat powder is precipitated in the gaps between the flat surfaces of the soft magnetic flat powder, the aluminum oxide fine particles covering the soft magnetic flat powder are compressed, and the aluminum oxide fine particles are bonded to each other by frictional heat. A method for producing a powder magnetic core consisting of a collection of soft magnetic flat powders bonded together,
dispersing an aluminum compound that deposits aluminum oxide fine particles by thermal decomposition in methanol, wherein the weight of the aluminum oxide fine particles deposited is less than 1/100 of the weight of the aggregate of the soft magnetic flat powder; A methanol dispersion liquid of the aluminum compound is prepared, and the first property of dissolving or being miscible in methanol, the second property of having a viscosity higher than that of methanol, and the boiling point of the aluminum compound being higher than the boiling point of methanol. An organic compound having a third property lower than the thermal decomposition temperature is mixed with the methanol dispersion to prepare a mixed liquid. After that, a mixer equipped with a heating function is placed on a shaking table. , the mixer is filled with the mixed liquid and the cluster of the soft magnetic flat powder, the mixer is rotated and oscillated to disperse the cluster of the soft magnetic flat powder in the mixed liquid, and further vibrating Vibration in three directions, i.e., up and down, left and right, and back and forth, is repeatedly generated by the machine, and finally vibration in the vertical direction is generated. A collection of the soft magnetic flat powder in the mixer is repeatedly moved in the mixed liquid in the vibration direction, the soft magnetic flat powder is arranged in the mixed liquid, and finally a vertical vibration is applied. , the flat surfaces of the soft magnetic flat powder overlap each other through the mixed liquid, and a collection of the soft magnetic flat powder having the shape of the bottom surface is formed on the bottom surface of the mixer. By raising the temperature to the boiling point of methanol, a collection of fine crystals of the aluminum compound precipitates in the organic compound all at once, and the organic compound with the precipitated fine crystals of the aluminum compound adheres to the soft magnetic flat powder. , a collection of the soft magnetic flat powder, in which the flat surfaces of the soft magnetic flat powder overlap each other through the organic compound in which the fine crystals of the aluminum compound are precipitated, is formed on the bottom surface of the mixer in the shape of the bottom surface. a first step;
A mass of soft magnetic flat powder prepared in the first step is filled in a mold, and the mold is heated to a temperature at which the aluminum compound thermally decomposes, thereby first vaporizing the organic compound. Next, the fine crystals of the aluminum compound are thermally decomposed, and a group of aluminum oxide fine particles precipitates on the surface of the soft magnetic flat powder all at once, and the group of aluminum oxide fine particles covers the soft magnetic flat powder. After that, a presser applies a continuously increasing pressure to the aggregate of the soft magnetic flat powder, and when the repulsive force received by the press continues to increase, the pressurization by the press is stopped. As a result, first, the cluster of soft magnetic flat powder is molded into the shape of the mold, then the cluster of aluminum oxide fine particles precipitates in the gap between the flat surfaces of the soft magnetic flat powder, and further , the aluminum oxide fine particles continue to move to fill the gaps in the aggregate of the soft magnetic flat powder, and when the aluminum oxide fine particles become unable to move, the aluminum oxide fine particles in contact with the surface of the soft magnetic flat powder The surface of the soft magnetic flat powder is bonded by frictional heat, and the aluminum oxide fine particles that are in contact with each other are bonded by frictional heat at the contact portion, and the soft magnetic flat powder is bonded by the bonding of the aluminum oxide fine particles. and a second step in which a powder magnetic core composed of a collection of bonded soft magnetic flat powders is manufactured in the mold,
By continuously performing the above two steps, the soft magnetic flat powder is precipitated in the gaps between the flat surfaces of the soft magnetic flat powder, and the soft magnetic flat powder is bonded to each other by joining the aluminum oxide fine particles that cover the soft magnetic flat powder . and a method for producing a powder magnetic core, in which a powder magnetic core is produced from a collection of soft magnetic flat powders.
請求項1に記載した圧粉磁心の製造方法において、求項1に記載したアルミニウム化合物が、安息香酸アルミニウムないしはナフテン酸アルミニウムであり、請求項1に記載した有機化合物が、カルボン酸ビニルエステル類、アクリル酸エステル類、メタクリル酸エステル類からなるいずれか1種類のエステル類、ないしは、グリコール類、グリコールエーテル類のいずれか1種類の有機化合物、ないしは、スチレンモノマーからなる液状モノマーであり、これらの物質を用い、請求項1に記載した圧粉磁心の製造方法に従って圧粉磁心を製造する、圧粉磁心の製造方法。
In the method for producing a dust core according to claim 1, the aluminum compound according to claim 1 is aluminum benzoate or aluminum naphthenate, and the organic compound according to claim 1 is carboxylic acid vinyl esters. , acrylic esters, or methacrylic esters, or organic compounds of glycols or glycol ethers, or liquid monomers consisting of styrene monomers. A method for manufacturing a dust core, comprising using a substance and manufacturing a dust core according to the method for manufacturing a dust core according to claim 1.
JP2019209199A 2019-11-19 2019-11-19 A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles. Active JP7253202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209199A JP7253202B2 (en) 2019-11-19 2019-11-19 A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209199A JP7253202B2 (en) 2019-11-19 2019-11-19 A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles.

Publications (2)

Publication Number Publication Date
JP2021082717A JP2021082717A (en) 2021-05-27
JP7253202B2 true JP7253202B2 (en) 2023-04-06

Family

ID=75965991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209199A Active JP7253202B2 (en) 2019-11-19 2019-11-19 A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles.

Country Status (1)

Country Link
JP (1) JP7253202B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057675A1 (en) 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, powder magnetic core, and their production methods
JP2009188270A (en) 2008-02-07 2009-08-20 Toda Kogyo Corp Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder
JP2019041068A (en) 2017-08-29 2019-03-14 小林 博 Method of manufacturing dust core not requiring annealing treatment
JP2019087621A (en) 2017-11-06 2019-06-06 小林 博 Manufacturing method of dust core not requiring annealing treatment
JP2019129046A (en) 2018-01-23 2019-08-01 小林 博 Method for forming conductive coated film in which flat surfaces of conductive flat powder overlap each other
JP2019137882A (en) 2018-02-07 2019-08-22 小林 博 Method for joining joint surface of substrate or component on joint layer where flat surfaces of metal flat powder are overlapped

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057675A1 (en) 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Powder for magnetic core, powder magnetic core, and their production methods
JP2009188270A (en) 2008-02-07 2009-08-20 Toda Kogyo Corp Soft magnetic particle powder, manufacturing method thereof, and powder magnetic core containing the powder
JP2019041068A (en) 2017-08-29 2019-03-14 小林 博 Method of manufacturing dust core not requiring annealing treatment
JP2019087621A (en) 2017-11-06 2019-06-06 小林 博 Manufacturing method of dust core not requiring annealing treatment
JP2019129046A (en) 2018-01-23 2019-08-01 小林 博 Method for forming conductive coated film in which flat surfaces of conductive flat powder overlap each other
JP2019137882A (en) 2018-02-07 2019-08-22 小林 博 Method for joining joint surface of substrate or component on joint layer where flat surfaces of metal flat powder are overlapped

Also Published As

Publication number Publication date
JP2021082717A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
KR101838825B1 (en) Dust core, coil component using same and process for producing dust core
JP6277426B2 (en) Composite magnetic body and method for producing the same
Shokrollahi et al. The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites
JP4618553B2 (en) Method for producing RTB-based sintered magnet
KR102250098B1 (en) Temperature-stable soft-magnetic powder
EP2472530A1 (en) Iron-based soft magnetic powder for dust core, preparation process thereof, and dust core
EP2984658A1 (en) Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereof
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
KR101639960B1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
JP7253202B2 (en) A method for producing a powder magnetic core, in which soft magnetic flat powder is insulated with a group of aluminum oxide fine particles, and the soft magnetic flat powder is bonded by friction bonding of the aluminum oxide fine particles.
US9224526B1 (en) Magnet construction by combustion driven high compaction
KR101804313B1 (en) Method Of rare earth sintered magnet
JP4784173B2 (en) Rare earth magnet and manufacturing method thereof
JP6896231B2 (en) Manufacturing method of dust core that does not require annealing
KR102045394B1 (en) Manufacturing method Of rare earth sintered magnet
JP6918617B2 (en) Manufacturing method of anisotropic rare earth magnet
KR102643789B1 (en) Improved temperature-stability soft magnetic powders
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
KR102059533B1 (en) Manufacturing method of rare earth sintered magnet
JP7387528B2 (en) Powder magnetic core and its manufacturing method
JP2002164238A5 (en)
JP2002164238A (en) Manufacturing method of rare earth sintered magnet and ring magnet
JP7197836B2 (en) dust core
JPH06507676A (en) Magnetostrictive powder composite material and its manufacturing method
JP2013038133A (en) Magnetic circuit component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230316

R150 Certificate of patent or registration of utility model

Ref document number: 7253202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150