EP2984658A1 - Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereof - Google Patents
Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereofInfo
- Publication number
- EP2984658A1 EP2984658A1 EP14728860.9A EP14728860A EP2984658A1 EP 2984658 A1 EP2984658 A1 EP 2984658A1 EP 14728860 A EP14728860 A EP 14728860A EP 2984658 A1 EP2984658 A1 EP 2984658A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanoparticles
- matrix
- magnetic
- coating
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 13
- 239000002105 nanoparticle Substances 0.000 claims abstract description 47
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 238000007493 shaping process Methods 0.000 claims abstract description 6
- 238000005234 chemical deposition Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 39
- 230000001681 protective effect Effects 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 230000005294 ferromagnetic effect Effects 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 5
- 238000000231 atomic layer deposition Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 238000000608 laser ablation Methods 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 238000005566 electron beam evaporation Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000002798 polar solvent Substances 0.000 claims description 3
- 238000006068 polycondensation reaction Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 150000002118 epoxides Chemical class 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 claims description 2
- 150000004756 silanes Chemical class 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 238000007751 thermal spraying Methods 0.000 claims description 2
- 239000011258 core-shell material Substances 0.000 claims 1
- 238000007735 ion beam assisted deposition Methods 0.000 claims 1
- 238000001659 ion-beam spectroscopy Methods 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 description 48
- 239000002122 magnetic nanoparticle Substances 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 150000002910 rare earth metals Chemical class 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000006249 magnetic particle Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000002114 nanocomposite Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- ZPZDIFSPRVHGIF-UHFFFAOYSA-N 3-aminopropylsilicon Chemical compound NCCC[Si] ZPZDIFSPRVHGIF-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910005335 FePt Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/061—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/083—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
Definitions
- Anisotropic rare earth-free matrix-bonded high-performance permanent magnet with nanocrystalline structure and method for its production isotropic rare earth-free matrix-bonded high-performance permanent magnet with nanocrystalline structure and method for its production
- the invention relates to a method according to the main claim and a corresponding product.
- rare earths Due to supply risks and high prices for rare earths, new rare earth-free solutions for the production of permanent magnets are being sought. Rare earths are used in particular for the production of permanent magnets. Conventional rare earth-free permanent magnet materials have an energy density which is too low for high-tech applications, for example using iron, cobalt, nickel or ferrites, or are too expensive from an economic point of view, such as FePt.
- the permanent magnetic properties of magnetic materials are determined decisively by the microstructure or the microstructure in addition to the alloy composition. According to the micromagnetic theory as well as on the basis of experimental findings, it is known that high coercive field strengths can be achieved by a microstructural structure of single-domain, nano-scale structures. This enables the construction of a rare earth-free high-performance magnet made of nanoscale magnetic components. New nano-technological synthetic methods allow monocrystalline one-domain magnetic nanoparticles to be produced by combining shape and crystal anisotropy.
- the magnetic nanoparticles In order to build up a macroscopic magnet, the magnetic nanoparticles must be embedded in organic or inorganic insulating matrices in order to protect them against environmental influences and the resulting corrosion processes as well as to produce permanent magnets with corresponding mechanical, electrical and thermal properties.
- a high electrical resistance is advantageous for the reduction of eddy currents.
- the resulting high-performance magnets can be used advantageously in high-efficiency drives and generators.
- Conventional permanent magnets are produced for example by means of a sintering technique (1) or by means of a plastic bond (2).
- the conventional method of sintering technology enables production of anisotropic magnets by means of alignment of powder particles in the magnetic field before a pressing and sintering process.
- the coercivity is limited due to the microcrystalline grain size, which is in the range of a few ym, and must be compensated by alloying very expensive and scarce heavy rare earth metals such as Dy or Tb. Due to the unfavorable temperature coefficient of the coercive field, this proportion must be additionally increased, the higher the working temperature. The heating of the magnet due to eddy current losses thus requires the use of a larger proportion of expensive heavy rare earth metals.
- plastic-bonded magnets are conventionally also produced.
- a mixture which can also be called a compound is generated from the highest possible proportion of magnetic particles and the matrix.
- the mixture is then processed by injection molding, which is also called injection molding, which allows for a magnetic component of up to 60 vol%, or compression molding, which is called compression molding and allows up to 80% by volume of magnetic component, to form a volume magnet.
- injection molding which is also called injection molding, which allows for a magnetic component of up to 60 vol%, or compression molding, which is called compression molding and allows up to 80% by volume of magnetic component, to form a volume magnet.
- compression molding which is called compression molding and allows up to 80% by volume of magnetic component
- nanocomposite formulations which may also be referred to as a compound
- a matrix for the production of nanocomposite formulations, which may also be referred to as a compound, by embedding nanoparticles in a matrix, conventionally no high fill levels are required. On the contrary, due to the difficult processing, it is traditionally attempted to maximize the effect at a minimum
- Nanoparticles in an organic matrix reaches a filling level of up to 15 vol%. Since high fill levels are required for high-performance permanent magnets, use of such conventional standard methods is not expedient for magnets based on nanoparticles.
- WO 2013/010173 A1 discloses a nanostructured magnetic alloy composition used to make magnetic nanocomposite material for permanent magnets for electromechanical and electronic devices and comprising an iron-nickel alloy.
- CN 102610346A discloses a rare earth-free nanocomposite permanent magnetic material comprising alloys of manganese, aluminum, bismuth and aluminum with manganese, aluminum and bismuth producing permanent magnetic phase and an alpha-iron-forming soft magnetic phase.
- magnetically and electrically optimized volume magnets are to be able to be produced, which in particular fulfill the following criteria: a high degree of filling, a homogeneous particle distribution with parallel alignment along the magnetic axis, a stationary binding of the magnetic particles after orientation like a magnetic and electrical decoupling.
- a manufacturing process management should handle a large surface-to-surface ratio of nanoparticles. The object is achieved by a method according to the main claim and a product according to the independent claim.
- a method for producing a permanent magnet is proposed with the following steps: synthesizing rare earth-free ferromagnetic anisotropic nanoparticles; coating the synthesized nanoparticles with a matrix by physical or physical-chemical deposition; Orientation and shaping of the matrix-coated nanoparticles introduced into an external magnetic field and into a mold.
- a permanent magnet which has been produced by means of a method according to the main claim.
- ferromagnetic means a very large permeability number and having a positive magnetic susceptibility and significantly enhancing a magnetic field.
- Anisotropic means in particular a direction-dependent property, in particular magnetic property, having.
- Nanoparticles have dimensions that are nanoscale and in particular enforce a one-domain behavior and are one-crystalline.
- the invention involves the construction of a rare earth permanent magnet whose magnetic properties, such as magnetization, coercive force and energy product, surpass those of conventional rare earth permanent magnets.
- the improvement in the magnetic properties of the rare earth free magnets proposed here allows replacement to be used conventionally rare earth based permanent magnets in electric motors and generators too.
- the magnet is made of nanoscale
- Eindomänenteilchen which can also be referred to as nanoparticles constructed.
- This magnetically optimized microstructure maximizes the coercive field to be achieved and also allows a large magnetization by means of a suitable choice of material.
- An advantageously thin matrix layer is deposited on the magnetic nanoparticles. The thickness of the matrix layer is in particular in the nanometer range.
- the deposition of a matrix by means of laser ablation, atomic layer deposition, chemical vapor deposition, ion beam deposition, molecular beam epitaxy or electron beam evaporation can take place, for example by means of physical vapor deposition, in particular laser ablation, ion beam-assisted disposition (also sputtering), molecular beam epitaxy, electron beam evaporation, chemical vapor deposition, in particular atomic layer deposition, plasma assisted deposition, at atmospheric pressure or low pressure, or thermal spraying.
- the matrix may consist of organic material, in particular a plastic.
- the plastic may be a thermoplastic or a thermosetting plastic.
- the plastic may be polyphenylsulfide, a polyamide or an epoxide.
- ferromagnetic anisotropic nanoparticles can be industrially simple be synthesized.
- Anisotropy is particularly in terms of shape or crystal structure.
- the nanoparticles may have a core or a core / shell structure and optionally cumulatively a protective cover.
- the shell can be soft magnetic.
- the protective cover which is as thin as possible, especially in the nanometer range, protects the nanoparticles against corrosion and oxidation.
- the shell reduces the agglomeration of the individual particles, which on the one hand reduces unfavorable contacts between the particles for the coercive field and, on the other hand, increases the anisotropy of the volume magnet to be achieved.
- the protective cover may for example consist of C and / or SiO 2.
- these can be spatially distributed by means of a distribution device, in particular a fluidized bed.
- the synthesized nanoparticles after coating of the synthesized nanoparticles, they may be present in powder form.
- the orientation and shaping can be performed simultaneously.
- the matrix coatings may solidify or harden or form a crosslinked or polymerized matrix coating.
- the solidification or hardening can be activated, in particular thermally activated.
- the nanoparticles Co, Fe, Ni or Mn have.
- the nanoparticles can be synthesized wet-chemically, from the gas phase or by means of Millings.
- the core of a soft magnetic and the shell may consist of a hard magnetic material, or be formed vice versa.
- the protective layer may consist of carbon and be produced by means of storage of the nanoparticles for a period of a few hours and temperatures in the range of about 250 ° C to 350 ° C in an organic liquid.
- the protective layer can consist of silicon dioxide and be produced by means of hydrolysis and polycondensation of silane bonds in a polar solvent.
- Figure 1 shows a first embodiment according to the invention ver used nanoscale magnetic components
- FIG. 2 shows a second embodiment of nano-scale magnetic components used according to the invention
- Figure 3 shows an embodiment of an inventive
- FIG. 4 shows a further embodiment of a method according to the invention
- Figure 5 shows an embodiment of an inventive
- FIG. 1 shows an exemplary embodiment of nanoscale magnetic components 1 according to the invention.
- ferromagnetic anisotropic nanoparticles 1 are synthesized by means of suitable, for example, wet-chemical synthesis methods, which have a high magnetization and coercive field strength. These particles may be, for example, Co, Fe, Ni, Mn-based.
- a core / shell structure is possible, wherein a core of a soft magnetic material and a shell may consist of a heartmag genetic material.
- Figure 1 shows a length L of nano-particles ⁇ 1000 nm, wherein a thickness D is smaller than the length L and the ratio L: D is approximately between 5: 1 to 100: 1.
- the arrow inside the magnetic module indicates a preferred magnetic direction.
- FIG. 2 shows a further exemplary embodiment of nanoscale magnetic components or nanoparticles 1 used according to the invention.
- each nanoparticle is or is additionally provided with a nanoparticle
- these nanoscale magnetic components or nanoparticles 1 can be provided with a thin protective layer, for example of carbon or silica. These are these nanoscale magnetic components, for example, either by storage for several hours at high temperature, for example at temperatures between 250 ° C and 350 ° C, coated in an organic liquid with carbon or by hydrolysis and polycondensation of silane compounds in a polar solvent with SiC> 2 coated. For example, silane bonds can be used
- APS Aminopropylsilane
- TEOS tetraethyl orthosilicate
- Formation of agglomerates by reducing the strength of a magnetic interaction The formation of agglomerates has a negative influence on the magnetic properties to be achieved.
- FIG. 3 shows an exemplary embodiment of a method according to the invention.
- FIG. 3 shows a coating method of the magnetic components according to FIG. 1 or FIG. 2 with a matrix, which consists in particular of plastic.
- a matrix which consists in particular of plastic.
- sintering methods which are conventionally used in rare earth-based magnets are not suitable for the production of bulk magnets from protective nanoparticles 1, since the nanoscale structure is destroyed due to the high thermal energy input.
- further processing by embedding in a matrix 3 at suitable temperatures is proposed.
- isolated magnetic components according to FIG. 1 or FIG. 2, which are nanoparticles 1 are coated with a matrix in a fluidized bed and further processed.
- a protective sheath-containing nanoparticles 1 are coated, preferably in an inert gas atmosphere, by means of a physical or physical-chemical deposition method A with a suitable, in particular thermoplastic, matrix.
- Suitable deposition methods A are, for example, laser ablation (PLD, LA), atomic layer deposition (ALD), chemical vapor deposition (CVD), ion beam-assisted disposition (sputtering), molecular beam epitaxy (MBE) or electron beam evaporation.
- comparable Procedures are basically possible as well.
- PPS polyphenylene sulfide
- PA polyamide
- a PPS or PA target or target can be selected for the laser ablation, so that according to the invention a very thin matrix layer in the nanometer range of the corresponding material can be deposited on the surface of the nanoparticles or magnetic components.
- the degree of filling can be effectively increased because the degree of filling is inversely proportional to the layer thickness.
- the magnetic nanoparticles 1 are finely distributed during the process or the process. This can be realized for example by means of a fluidized bed. After the coating process, a powder of isolated matrix-coated magnetic nanoparticles 5 is obtained.
- the nanoscale magnetic components or nanoscale magnetic particles or nanoparticles 1 are coated with a matrix material 3, so that the nanoparticles 5 produced are completely encased by a thin matrix layer.
- FIG. 4 shows further method steps of a method according to the invention.
- the powder consisting of matrix-coated magnetic nanoparticles 5 is transferred to a mold, this is shown in FIG. 4 on the left-hand side, and corresponding to the right-hand illustration in FIG. 4 under an external, for example, magnetic field M, preferably transversely to FIG a pressing direction of a pressure P oriented and pressed.
- Used pressures P are in a range of several MPa to GPa.
- solidification or hardening of the matrix 3 is activated thermally or chemically. The result is bulk specimens with a high degree of filling of oriented, homogeneously distributed magnetic nanoparticles in a matrix.
- FIG. 4 shows a compacting according to the invention of the coated nanoparticles 5 in the magnetic field M.
- FIG. 4 shows concluding process steps for the production of a volume magnet.
- FIG. 5 shows an exemplary embodiment of a permanent magnet PM according to the invention.
- FIG. 5 shows an anisotropic plastic-bonded volume magnet, which consists of nanoscale magnetic components 1.
- the physical or physicochemical deposition method A claimed in the invention for coating and embedding magnetic nanoparticles 1 in a matrix 3 with subsequent compaction and curing in the magnetic field M leads to the greatest possible filling factor combined with homogeneous distribution and almost complete orientation in order to obtain the best possible magnetic field. to achieve table properties. This is in contrast to conventional methods of embedding nanostructures that are optimized only for lower fill factors.
- Another advantage of the embedding in a matrix 3 according to the invention lies in the low processing temperature in comparison to conventional sintering methods. Thus, from the magnetic point of view, unfavorable particle growth is avoided according to the invention.
- a method according to the invention makes it possible to produce close to the final shape, which can also be referred to as a near net shape.
- the matrix coating performs three functions, firstly the connection of the individual nanomagnets or nanoparticles to a volume magnet, secondly the avoidance of direct contact of the individual nanomagnets, that is to say the magnetic insulation is formed and, thirdly, an electrical insulation for the suppression of eddy currents.
- the invention relates to a method for producing a permanent magnet PM, by means of a physical or physical-chemical deposition A performed coating of synthesized nanoparticles 1 with a tikstoffgebun which matrix 3 and orienting and shaping the introduced into a ex-far magnetic field M and in a form matrix-coated nanoparticles 5. High degrees of filling can be obtained in this way.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Patentanmeldung Patent application
Anisotroper seltenerdfreier matrixgebundener hochperformanter Permanentmagnet mit nanokristalliner Struktur und Verfahren zu dessen Herstellung Anisotropic rare earth-free matrix-bonded high-performance permanent magnet with nanocrystalline structure and method for its production
Die Erfindung betrifft ein Verfahren gemäß dem Hauptanspruch und ein entsprechendes Erzeugnis. The invention relates to a method according to the main claim and a corresponding product.
Aufgrund von Versorgungsrisiken und hoher Preise bei den seltenen Erden werden neue seltenerdfreie Lösungen zur Herstellung von Permanentmagneten gesucht. Seltene Erden werden insbesondere zur Herstellung von Permanentmagneten verwendet. Herkömmliche seltenerdfreie Permanentmagnetwerkstoffe zeigen eine für High-Tech-Anwendungen zu geringe Energiedichte auf, beispielsweise unter Verwendung von Eisen, Kobalt, Nickel oder Ferriten, beziehungsweise sind aus wirtschaftlichen Gesichtspunkten zu teuer, wie es beispielsweise FePt ist. Due to supply risks and high prices for rare earths, new rare earth-free solutions for the production of permanent magnets are being sought. Rare earths are used in particular for the production of permanent magnets. Conventional rare earth-free permanent magnet materials have an energy density which is too low for high-tech applications, for example using iron, cobalt, nickel or ferrites, or are too expensive from an economic point of view, such as FePt.
Die dauermagnetischen Eigenschaften von Magnetmaterialien werden neben der Legierungszusammensetzung entscheidend durch das Gefüge beziehungsweise die Mikrostruktur bestimmt. Entsprechend der Mikromagnetischen Theorie sowie aufgrund von experimentellen Befunden ist es bekannt, dass durch einen mikrostrukturellen Aufbau aus ein-domänigen, nano-skaligen Strukturen hohe Koerzitivfeidstärken erzielt werden können. Dies ermöglicht den Aufbau eines seltenerdfreien Hochleistungsmagneten aus nanoskaligen Magnetbausteinen. Neue nano- technologische Syntheseverfahren ermöglichen monokristalline eindomänige magnetische Nanopartikel mit einer Kombination von Form- und Kristallanisotropie herzustellen. Zum Aufbau eines makroskopischen Magneten müssen die magnetischen Nanopartikel in organischen oder anorganischen isolierenden Matrizen eingebettet werden, um diese sowohl gegen Umwelteinflüsse und daraus entstehende Korrosionsvorgänge zu schützen als auch Dauermagneten mit entsprechenden mechanischen, elektrischen und thermischen Eigenschaften herzustellen. Insbesondere ist ein hoher elektrischer Widerstand vorteilhaft zur Reduzierung von Wirbelströmen. Die daraus entstehenden Hochleistungsmagneten können sich vorteilhaft in hocheffizienten Antrieben und Generatoren einsetzen lassen. The permanent magnetic properties of magnetic materials are determined decisively by the microstructure or the microstructure in addition to the alloy composition. According to the micromagnetic theory as well as on the basis of experimental findings, it is known that high coercive field strengths can be achieved by a microstructural structure of single-domain, nano-scale structures. This enables the construction of a rare earth-free high-performance magnet made of nanoscale magnetic components. New nano-technological synthetic methods allow monocrystalline one-domain magnetic nanoparticles to be produced by combining shape and crystal anisotropy. In order to build up a macroscopic magnet, the magnetic nanoparticles must be embedded in organic or inorganic insulating matrices in order to protect them against environmental influences and the resulting corrosion processes as well as to produce permanent magnets with corresponding mechanical, electrical and thermal properties. In particular, a high electrical resistance is advantageous for the reduction of eddy currents. The resulting high-performance magnets can be used advantageously in high-efficiency drives and generators.
Für eine Herstellung dieser magnetisch und elektrisch optimierten Volumenmagneten muss eine Vielzahl von Kriterien erfüllt sein. For the production of these magnetically and electrically optimized volume magnets a variety of criteria must be met.
Herkömmliche Permanentmagneten werden beispielsweise mittels einer Sintertechnik (1) oder mittels einer Kunststoffbindung (2) hergestellt. Conventional permanent magnets are produced for example by means of a sintering technique (1) or by means of a plastic bond (2).
Das herkömmliche Verfahren der Sintertechnik ermöglicht eine Herstellung anisotroper Magnete mittels Ausrichtung von Pulverteilchen im Magnetfeld vor einem Press- und Sintervorgang. Für die so hergestellten seltenerdbasierten Magneten ist die Koerzitivfeidstärke infolge der mikrokristallinen Korngröße, die im Bereich von einigen ym liegt, begrenzt und muss durch Zulegierung von sehr teuren und knappen schweren Seltenerdmetallen wie Dy oder Tb ausgeglichen werden. Aufgrund des ungünstigen Temperaturkoeffizienten des Koerzitivfeldes muss dieser Anteil zusätzlich erhöht werden, je größer die Arbeitstemperatur ist. Die Erwärmung des Magneten infolge von Wirbelstromverlusten erfordert demnach den Einsatz eines größeren Anteils an teuren schweren Seltenerdmetallen. Alternativ zu diesem sogenannten Sintermagneten werden herkömmlicherweise ebenso kunststoffgebundene Magneten hergestellt. Hierfür werden mehrere zehn bis mehrere hundert Mikrometer große magnetische Partikel auf Basis seltener Erden in eine duroplastische oder thermoplastische Matrix eingebettet. Dabei wird ein Gemisch, das ebenso Compound genannt werden kann, aus einem möglichst hohen Anteil an magnetischen Partikeln und der Matrix erzeugt. Das Gemisch wird anschließend mittels Spritzgießen, das auch injection molding genannt wird, was zu einem Magnetanteil von bis zu 60 vol% ermöglicht, oder Formpressen, das compression molding bezeichnet wird und bis zu 80 vol% Magnetanteil ermöglicht, zu einem Volumenmagnet verarbeitet. Im Vergleich zu den vorstehend be- schriebenen Sintermagneten ist die magnetische Energiedichte von kunststoffgebundenen Magneten aufgrund der Verdünnung durch die verwendete Matrix reduziert. The conventional method of sintering technology enables production of anisotropic magnets by means of alignment of powder particles in the magnetic field before a pressing and sintering process. For the rare earth based magnets thus produced, the coercivity is limited due to the microcrystalline grain size, which is in the range of a few ym, and must be compensated by alloying very expensive and scarce heavy rare earth metals such as Dy or Tb. Due to the unfavorable temperature coefficient of the coercive field, this proportion must be additionally increased, the higher the working temperature. The heating of the magnet due to eddy current losses thus requires the use of a larger proportion of expensive heavy rare earth metals. As an alternative to this so-called sintered magnet, plastic-bonded magnets are conventionally also produced. For this purpose, several ten to several hundred micrometers magnetic particles based on rare earths embedded in a thermoset or thermoplastic matrix. In this case, a mixture which can also be called a compound is generated from the highest possible proportion of magnetic particles and the matrix. The mixture is then processed by injection molding, which is also called injection molding, which allows for a magnetic component of up to 60 vol%, or compression molding, which is called compression molding and allows up to 80% by volume of magnetic component, to form a volume magnet. Compared to the above The sintered magnets described reduce the magnetic energy density of plastic-bonded magnets due to the dilution of the matrix used.
Für die Herstellung von Nanokomposite-Formulierungen, die ebenso als Compound bezeichnet werden können, durch die Einbettung von Nanopartikeln in eine Matrix sind herkömmlicherweise keine hohen Füllgrade erforderlich. Aufgrund der schwierigen Verarbeitung wird im Gegenteil herkömmlicherweise versucht, den maximalen Effekt bei minimaler For the production of nanocomposite formulations, which may also be referred to as a compound, by embedding nanoparticles in a matrix, conventionally no high fill levels are required. On the contrary, due to the difficult processing, it is traditionally attempted to maximize the effect at a minimum
Nanopartikelmenge zu erreichen. Beispielsweise wird herkömmlicherweise für Kohlenstoffnanoröhrchen oder SiC>2_ To reach nanoparticle amount. For example, conventionally for carbon nanotubes or SiC> 2 _
Nanopartikel in einer organischen Matrix ein Füllgrad von bis zu 15 vol% erreicht. Da für hochperformante Permanentmagnete hohe Füllgrade erforderlich sind, ist eine Verwendung derartiger herkömmlicher Standardverfahren nicht für Magneten auf Basis von Nanopartikeln zielführend. Nanoparticles in an organic matrix reaches a filling level of up to 15 vol%. Since high fill levels are required for high-performance permanent magnets, use of such conventional standard methods is not expedient for magnets based on nanoparticles.
Die WO 2013/010173 AI offenbart eine nanostrukturierte magnetische Legierungszusammensetzung, die zur Herstellung von magnetischem Nanokompositmaterial für Permanentmagnete für elektromechanische und elektronische Vorrichtungen verwendet wird und eine Eisen-Nickel-Legierung aufweist. WO 2013/010173 A1 discloses a nanostructured magnetic alloy composition used to make magnetic nanocomposite material for permanent magnets for electromechanical and electronic devices and comprising an iron-nickel alloy.
Die CN 102610346A offenbart ein seltenerdfreies nanokomposit- permanentmagnetisches Material, das Legierungen mit Mangan, Aluminium, Bismut und Aluminium mit Mangan, Aluminium und Bismut erzeugender permanentmagnetischer Phase und eine Alphaeisen erzeugende weichmagnetische Phase aufweist. CN 102610346A discloses a rare earth-free nanocomposite permanent magnetic material comprising alloys of manganese, aluminum, bismuth and aluminum with manganese, aluminum and bismuth producing permanent magnetic phase and an alpha-iron-forming soft magnetic phase.
Es ist Aufgabe der Erfindung hochwirksame Permanentmagnete mit nanokristalliner Struktur auf einfache Weise zuverlässig herzustellen. Es sollen insbesondere magnetisch und elektrisch optimierte Volumenmagnete hergestellt werden können, die insbesondere folgende Kriterien erfüllen: einen hohen Füllgrad, eine homogene Partikelverteilung mit paralleler Ausrichtung entlang der magnetischen Achse, eine ortsfeste Bindung der magnetischen Partikel nach einer Ausrichtung so- wie eine magnetische und elektrische Entkopplung. Insbesondere soll eine Herstellungsprozessführung ein großes Oberflä- chen-zu- olumen- erhältnis von Nanopartikeln bewältigen. Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch und ein Erzeugnis gemäß dem Nebenanspruch gelöst. It is an object of the invention to produce highly effective permanent magnets with nanocrystalline structure in a simple manner reliably. In particular, magnetically and electrically optimized volume magnets are to be able to be produced, which in particular fulfill the following criteria: a high degree of filling, a homogeneous particle distribution with parallel alignment along the magnetic axis, a stationary binding of the magnetic particles after orientation like a magnetic and electrical decoupling. In particular, a manufacturing process management should handle a large surface-to-surface ratio of nanoparticles. The object is achieved by a method according to the main claim and a product according to the independent claim.
Gemäß einem ersten Aspekt wird ein Verfahren zur Herstellung eines Permanentmagneten mit den folgenden Schritten vorge- schlagen: Synthetisieren von seltenerdfreien ferromagneti- schen anisotropen Nanopartikeln; mittels eines physikalischen oder physikalisch-chemischen Abscheidens ausgeführtes Beschichten der synthetisierten Nanopartikel mit einer Matrix; Orientieren und Formgeben der in ein externes Magnetfeld und in eine Form eingebrachten matrixbeschichteten Nanopartikel. According to a first aspect, a method for producing a permanent magnet is proposed with the following steps: synthesizing rare earth-free ferromagnetic anisotropic nanoparticles; coating the synthesized nanoparticles with a matrix by physical or physical-chemical deposition; Orientation and shaping of the matrix-coated nanoparticles introduced into an external magnetic field and into a mold.
Gemäß einem zweiten Aspekt wird ein Permanentmagnet beansprucht, der mittels eines Verfahrens gemäß dem Hauptanspruch erzeugt wurde . According to a second aspect, a permanent magnet is claimed which has been produced by means of a method according to the main claim.
Ferromagnetisch heißt insbesondere eine sehr große Permeabilitätszahl und eine positive magnetische Suszeptibilität aufweisend und ein Magnetfeld erheblich verstärkend. Anisotrop bedeutet insbesondere eine richtungsabhängige Eigenschaft, insbesondere magnetische Eigenschaft, aufweisend. In particular, ferromagnetic means a very large permeability number and having a positive magnetic susceptibility and significantly enhancing a magnetic field. Anisotropic means in particular a direction-dependent property, in particular magnetic property, having.
Nanopartikel weisen Abmessungen auf, die nanoskalig sind und hier insbesondere ein ein-domäniges Verhalten erzwingen und ein-kristallin sind. Nanoparticles have dimensions that are nanoscale and in particular enforce a one-domain behavior and are one-crystalline.
Die Erfindung beinhaltet den Aufbau eines seltenerdfreien Permanentmagneten, dessen magnetische Eigenschaften, wie es beispielsweise die Magnetisierung, die Koerzitivkraft und das Energieprodukt sind, die Eigenschaften herkömmlicher selten- erdfreier Permanentmagnete übertrifft. Die Verbesserung der magnetischen Eigenschaften der hiermit vorgeschlagenen sel- tenerdfreien Magnete lässt den Ersatz herkömmlich verwendeter seltenerdbasierter Permanentmagnete in Elektromotoren und Generatoren zu. Hierzu wird der Magnet aus nanoskaligen The invention involves the construction of a rare earth permanent magnet whose magnetic properties, such as magnetization, coercive force and energy product, surpass those of conventional rare earth permanent magnets. The improvement in the magnetic properties of the rare earth free magnets proposed here allows replacement to be used conventionally rare earth based permanent magnets in electric motors and generators too. For this purpose, the magnet is made of nanoscale
Eindomänenteilchen, die ebenso als Nanopartikel bezeichnet werden können, aufgebaut. Diese magnetisch optimierte Mikro- struktur maximiert das zu erreichende Koerzitivfeld und ermöglicht zudem eine große Magnetisierung mittels einer geeigneten Materialwahl. Auf den magnetischen Nanopartikeln wird eine vorteilhaft dünne Matrixschicht abgeschieden. Die Dicke der Matrixschicht liegt insbesondere im Nanometerbereich . Eindomänenteilchen, which can also be referred to as nanoparticles constructed. This magnetically optimized microstructure maximizes the coercive field to be achieved and also allows a large magnetization by means of a suitable choice of material. An advantageously thin matrix layer is deposited on the magnetic nanoparticles. The thickness of the matrix layer is in particular in the nanometer range.
Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht. Further advantageous embodiments are claimed in conjunction with the subclaims.
Gemäß einer vorteilhaften Ausgestaltung kann das Abscheiden einer Matrix mittels Laserablation, Atomlagenabscheidung, chemische Gasphasenabscheidung, ionenstrahlgestützte Deposi- tion, Molekularstrahlepitaxie oder Elektronenstrahlverdampfen erfolgen, beispielweise mittels Abscheiden mittels physikalischer Gasphasenabscheidung, insbesondere Laserablation, Io- nenstrahlgestützte Desposition (auch Sputtern) , Molekularstrahlepitaxie, Elektronenstrahlverdampfen, chemischer Gasphasenabscheidung, insbesondere Atomlagenabscheidung, plasmagestützte Abscheidung, bei Atmosphärendruck oder Niederdruck, oder thermischen Spritzens. According to an advantageous embodiment, the deposition of a matrix by means of laser ablation, atomic layer deposition, chemical vapor deposition, ion beam deposition, molecular beam epitaxy or electron beam evaporation can take place, for example by means of physical vapor deposition, in particular laser ablation, ion beam-assisted disposition (also sputtering), molecular beam epitaxy, electron beam evaporation, chemical vapor deposition, in particular atomic layer deposition, plasma assisted deposition, at atmospheric pressure or low pressure, or thermal spraying.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Matrix aus organischem Material, insbesondere einem Kunststoff bestehen. Gemäß einer weiteren vorteilhaften Ausgestaltung kann der Kunststoff ein Thermoplast oder ein Duroplast sein. According to a further advantageous embodiment, the matrix may consist of organic material, in particular a plastic. According to a further advantageous embodiment, the plastic may be a thermoplastic or a thermosetting plastic.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann der Kunststoff Polyphenylsulfid, ein Polyamid oder ein Epoxid sein. According to a further advantageous embodiment, the plastic may be polyphenylsulfide, a polyamide or an epoxide.
Gemäß einer weiteren vorteilhaften Ausgestaltung können fer- romagnetische anisotrope Nanopartikel industriell einfach synthetisiert werden. Anisotropie ist insbesondere hinsichtlich der Form oder der Kristallstruktur. According to a further advantageous embodiment, ferromagnetic anisotropic nanoparticles can be industrially simple be synthesized. Anisotropy is particularly in terms of shape or crystal structure.
Gemäß einer weiteren vorteilhaften Ausgestaltung können die Nanopartikel einen Kern oder einen Kern/Schalenaufbau und optional kumulativ eine Schutzhülle aufweisen. Die Schale kann weichmagnetisch sein. Die möglichst dünne, insbesondere im Nanometerbereich sich erstreckende, Schutzhülle schützt die Nanopartikel vor Korrosion und Oxidation. Zudem reduziert die Hülle die Agglomeration der einzelnen Partikel wodurch einerseits für das Koerzitivfeld ungünstige Kontakte zwischen den Partikeln reduziert werden und andererseits die zu erreichende Anisotropie des Volumenmagneten erhöht wird. Die Schutzhülle kann beispielsweise aus C und/oder Si02 bestehen. According to a further advantageous embodiment, the nanoparticles may have a core or a core / shell structure and optionally cumulatively a protective cover. The shell can be soft magnetic. The protective cover, which is as thin as possible, especially in the nanometer range, protects the nanoparticles against corrosion and oxidation. In addition, the shell reduces the agglomeration of the individual particles, which on the one hand reduces unfavorable contacts between the particles for the coercive field and, on the other hand, increases the anisotropy of the volume magnet to be achieved. The protective cover may for example consist of C and / or SiO 2.
Gemäß einer weiteren vorteilhaften Ausgestaltung können, während des Beschichtens der synthetisierten Nanopartikel, diese mittels einer Verteilungseinrichtung, insbesondere eines Wirbelbetts, räumlich verteilt werden. According to a further advantageous embodiment, during the coating of the synthesized nanoparticles, these can be spatially distributed by means of a distribution device, in particular a fluidized bed.
Gemäß einer weiteren vorteilhaften Ausgestaltung können, nach dem Beschichten der synthetisierten Nanopartikel, diese in Pulverform vorliegen. According to a further advantageous embodiment, after coating of the synthesized nanoparticles, they may be present in powder form.
Gemäß einer weiteren vorteilhaften Ausgestaltung können das Orientieren und Formgeben gleichzeitig ausgeführt werden. According to a further advantageous embodiment, the orientation and shaping can be performed simultaneously.
Gemäß einer weiteren vorteilhaften Ausgestaltung können bei oder nach dem Formgeben die Matrixbeschichtungen erstarren oder aushärten oder eine vernetzte oder polymerisierte Mat- rixbeschichtung ausbilden. According to a further advantageous embodiment, during or after the molding, the matrix coatings may solidify or harden or form a crosslinked or polymerized matrix coating.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Erstarren oder Aushärten aktiviert werden, insbesondere thermisch aktiviert werden. According to a further advantageous embodiment, the solidification or hardening can be activated, in particular thermally activated.
Ein chemisches Aktivieren unter Verwendung von Katalysatoren ist ebenso möglich. Gemäß einer weiteren vorteilhaften Ausgestaltung können die Nanopartikel Co, Fe, Ni oder Mn aufweisen. Die Nanopartikel können nasschemisch, aus der Gasphase oder mittels Millings synthetisiert werden. Chemical activation using catalysts is also possible. According to a further advantageous embodiment, the nanoparticles Co, Fe, Ni or Mn have. The nanoparticles can be synthesized wet-chemically, from the gas phase or by means of Millings.
Gemäß einer weiteren vorteilhaften Ausgestaltung können der Kern aus einem weichmagnetischen und die Schale aus einem hartmagnetischen Material bestehen, oder dazu umgekehrt ausgebildet sein. According to a further advantageous embodiment, the core of a soft magnetic and the shell may consist of a hard magnetic material, or be formed vice versa.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Schutzschicht aus Kohlenstoff bestehen und mittels Lagerung der Nanopartikel für einen Zeitraum von einigen Stunden und Temperaturen im Bereich von ca. 250 °C bis 350 °C in einer organischen Flüssigkeit erzeugt worden sein. According to a further advantageous embodiment, the protective layer may consist of carbon and be produced by means of storage of the nanoparticles for a period of a few hours and temperatures in the range of about 250 ° C to 350 ° C in an organic liquid.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Schutzschicht aus Siliziumdioxid bestehen und mittels Hydrolyse und Polykondensation von Silan- erbindungen in einem po laren Lösungsmittel erzeugt worden sein. According to a further advantageous embodiment, the protective layer can consist of silicon dioxide and be produced by means of hydrolysis and polycondensation of silane bonds in a polar solvent.
Gemäß weiteren vorteilhaften Ausgestaltungen sind vom Schutz umfang dieser Anmeldung alle Permanentmagneten umfasst, die mittels eines Verfahrens gemäß der vorliegenden Erfindung er zeugt worden sind. According to further advantageous embodiments of the scope of protection of this application includes all permanent magnets, which he testify by means of a method according to the present invention.
Die Erfindung wird anhand von Ausführungsbeispielen in Verbindung mit den Figuren näher beschrieben. Es zeigen: The invention will be described in more detail by means of exemplary embodiments in conjunction with the figures. Show it:
Figur 1 ein erstes Ausführungsbeispiel erfindungsgemäß ver wendeter nanoskaliger Magnetbausteine; Figure 1 shows a first embodiment according to the invention ver used nanoscale magnetic components;
Figur 2 ein zweites Ausführungsbeispiel erfindungsgemäß verwendeter nanoskaliger Magnetbausteine; FIG. 2 shows a second embodiment of nano-scale magnetic components used according to the invention;
Figur 3 ein Ausführungsbeispiel eines erfindungsgemäßen Figure 3 shows an embodiment of an inventive
Verfahrens ; Figur 4 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Verfahrens; Method; FIG. 4 shows a further embodiment of a method according to the invention;
Figur 5 ein Ausführungsbeispiel eines erfindungsgemäßen Figure 5 shows an embodiment of an inventive
Permanentmagneten . Permanent magnets.
Figur 1 zeigt ein Ausführungsbeispiel erfindungsgemäß verwen deter nanoskaliger Magnetbausteine 1. Infolge eines strukturellen Aufbaus als nanoskalige Eindomänenteilchen mit einer Kombination von Form- und Kristallanisotropie werden erfindungsgemäß Permanentmagneteigenschaften begünstigt. Aus diesem Grund werden mittels geeigneter, beispielsweise nasschemischer, Syntheseverfahren ferromagnetische anisotrope Nano- partikel 1 synthetisiert, die eine hohe Magnetisierung und Koerzitivfeidstärke aufweisen. Diese Partikel können beispielsweise Co, Fe, Ni, Mn-basiert sein. Ebenso ist eine Kern-/Schale-Struktur möglich, wobei ein Kern aus einem weichmagnetischen Material und eine Schale aus einem hartmag netischen Material bestehen können. Eine umgekehrte Ausbildung ist ebenso möglich. Figur 1 zeigt eine Länge L von Nano Partikeln < 1000 nm, wobei eine Dicke D kleiner als die Läng L ist und das Verhältnis L : D ungefähr zwischen 5 : 1 bis 100 : 1 liegt. Der Pfeil innerhalb des Magnetbausteins kennzeichnet eine magnetische Vorzugsrichtung. FIG. 1 shows an exemplary embodiment of nanoscale magnetic components 1 according to the invention. As a result of a structural design as nanoscale one-domain particles having a combination of shape and crystal anisotropy, permanent magnet properties are favored according to the invention. For this reason, ferromagnetic anisotropic nanoparticles 1 are synthesized by means of suitable, for example, wet-chemical synthesis methods, which have a high magnetization and coercive field strength. These particles may be, for example, Co, Fe, Ni, Mn-based. Likewise, a core / shell structure is possible, wherein a core of a soft magnetic material and a shell may consist of a hartmag genetic material. A reverse training is also possible. Figure 1 shows a length L of nano-particles <1000 nm, wherein a thickness D is smaller than the length L and the ratio L: D is approximately between 5: 1 to 100: 1. The arrow inside the magnetic module indicates a preferred magnetic direction.
Figur 2 zeigt ein weiteres Ausführungsbeispiel erfindungsgemäß verwendeter nanoskaliger Magnetbausteine beziehungsweise Nanopartikeln 1. Gemäß dieser vorteilhaften Ausgestaltung is oder wird jedes Nanopartikel zusätzlich mit einer FIG. 2 shows a further exemplary embodiment of nanoscale magnetic components or nanoparticles 1 used according to the invention. According to this advantageous embodiment, each nanoparticle is or is additionally provided with a nanoparticle
nanoskaligen dünnen Schutzhülle umgeben. Die Schutzhülle ist als starke Umrandung eines einzelnen Magnetbausteins dargestellt. Eine magnetische Vorzugsrichtung zeigt wieder einen Pfeil in dem Magnetbaustein an. Als ein erster Schutz gegen Umwelteinflüsse beziehungsweise als Schutz vor Korrosion kön nen diese nanoskaligen Magnetbausteine beziehungsweise Nanopartikel 1 mit einer dünnen Schutzschicht beispielsweise aus Kohlenstoff oder Silica versehen werden. Dazu werden diese nanoskaligen Magnetbausteine beispielsweise jeweils entweder durch die Lagerung für einige Stunden bei hoher Temperatur, beispielsweise bei Temperaturen zwischen 250 °C und 350 °C, in einer organischen Flüssigkeit mit Kohlenstoff beschichtet oder mittels Hydrolyse und Polykondensation von Silan- Verbindungen in einem polaren Lösungsmittel mit SiC>2 beschichtet. Silan- erbindungen können beispielsweise surrounded by nanoscale thin protective cover. The protective cover is shown as a strong border of a single magnetic module. A preferred magnetic direction again indicates an arrow in the magnetic component. As a first protection against environmental influences or as protection against corrosion, these nanoscale magnetic components or nanoparticles 1 can be provided with a thin protective layer, for example of carbon or silica. These are these nanoscale magnetic components, for example, either by storage for several hours at high temperature, for example at temperatures between 250 ° C and 350 ° C, coated in an organic liquid with carbon or by hydrolysis and polycondensation of silane compounds in a polar solvent with SiC> 2 coated. For example, silane bonds can be used
Aminopropylsilan (APS) oder Tetraethylorthosilicat (TEOS) sein. Zusätzlich zur Schutzfunktion gegenüber Umwelteinflüs- sen gemäß Figur 2 unterdrückt eine Hülle gemäß Figur 1 dieAminopropylsilane (APS) or tetraethyl orthosilicate (TEOS). In addition to the protective function against environmental influences according to FIG. 2, an envelope according to FIG. 1 suppresses the effect
Ausbildung von Agglomeraten mittels der Reduktion der Stärke einer magnetischen Wechselwirkung. Die Ausbildung von Agglomeraten hat einen negativen Einfluss auf die zu erreichenden magnetischen Eigenschaften. Formation of agglomerates by reducing the strength of a magnetic interaction. The formation of agglomerates has a negative influence on the magnetic properties to be achieved.
Figur 3 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. Figur 3 zeigt ein Beschichtungsverfahren der Magnetbausteine gemäß Figur 1 oder Figur 2 mit einer Matrix, die insbesondere aus Kunststoff besteht. Erfindungsgemäß ist er- kannt worden, dass für die Herstellung von Volumenmagneten aus eine Schutzhülle aufweisenden Nanopartikeln 1 Sintermethoden, die herkömmlicherweise bei seltenerdbasierten Magneten verwendet werden, nicht geeignet sind, da aufgrund des hohen thermischen Energieeintrags die nanoskalige Struktur zerstört wird. Erfindungsgemäß wird eine Weiterverarbeitung durch Einbettung in eine Matrix 3 bei geeigneten Temperaturen vorgeschlagen. Hierfür werden vereinzelte Magnetbausteine gemäß Figur 1 oder Figur 2, die Nanopartikel 1 sind, in einem Wirbelbett mit einer Matrix beschichtet und weiterverarbei- tet . Insbesondere eine Schutzhülle aufweisende Nanopartikel 1 werden, vorzugsweise in einer Inertgasatmosphäre, mittels einer physikalischen oder physikalisch-chemischen Abscheidungs- methode A mit einer geeigneten, insbesondere thermoplastischen, Matrix beschichtet. Geeignete Abscheidungsverfahren A sind beispielsweise eine Laserablation (PLD, LA) , Atomlagen- abscheidung (ALD) , chemische Gasphasenabscheidung (CVD) , io- nenstrahlgestützte Desposition (Sputtern) , Molekularstrahlepitaxie (MBE) oder Elektronenstrahlverdampfen . Vergleichbare Verfahren sind grundsätzlich ebenso möglich. Für kunststoffgebundene Magneten werden beispielsweise Polyphenylensulfid (PPS) oder Polyamid (PA) -Matrizen verwendet. Beispielsweise kann für die Laser-Ablation ein PPS- oder PA-Ziel oder - Target ausgewählt werden, sodass erfindungsgemäß eine sehr dünne Matrixschicht im Nanometerbereich des entsprechenden Materials auf der Oberfläche der Nanopartikel beziehungsweise Magnetbausteine abgeschieden werden kann. Auf diese Weise kann der Füllgrad wirksam vergrößert werden, da der Füllgrad umgekehrt proportional zur Schichtdicke ist. Um eine homogene Beschichtung zu bewirken, ist es besonders vorteilhaft, wenn die magnetischen Nanopartikel 1 während des Verfahrens beziehungsweise des Prozesses fein verteilt vorliegen. Dies kann beispielsweise mittels eines Wirbelbetts realisiert werden. Nach dem Beschichtungsvorgang wird ein Pulver aus vereinzelten matrixbeschichteten magnetischen Nanopartikeln 5 gewonnen. Die Magnetbausteine gemäß Figur 1 oder Figur 2 sind von der Matrix 3 ummantelt und können nun als Compound bezeichnet werden. Gemäß Figur 3 werden die nanoskaligen Magnetbausteine beziehungsweise nanoskaligen Magnetpartikel beziehungsweise Nanopartikel 1 mit einem Matrixmaterial 3 beschichtet, sodass die erzeugten Nanopartikel 5 von einer dünnen Matrixschicht vollständig ummantelt sind. FIG. 3 shows an exemplary embodiment of a method according to the invention. FIG. 3 shows a coating method of the magnetic components according to FIG. 1 or FIG. 2 with a matrix, which consists in particular of plastic. According to the invention, it has been recognized that sintering methods which are conventionally used in rare earth-based magnets are not suitable for the production of bulk magnets from protective nanoparticles 1, since the nanoscale structure is destroyed due to the high thermal energy input. According to the invention, further processing by embedding in a matrix 3 at suitable temperatures is proposed. For this purpose, isolated magnetic components according to FIG. 1 or FIG. 2, which are nanoparticles 1, are coated with a matrix in a fluidized bed and further processed. In particular, a protective sheath-containing nanoparticles 1 are coated, preferably in an inert gas atmosphere, by means of a physical or physical-chemical deposition method A with a suitable, in particular thermoplastic, matrix. Suitable deposition methods A are, for example, laser ablation (PLD, LA), atomic layer deposition (ALD), chemical vapor deposition (CVD), ion beam-assisted disposition (sputtering), molecular beam epitaxy (MBE) or electron beam evaporation. comparable Procedures are basically possible as well. For plastic-bonded magnets, for example, polyphenylene sulfide (PPS) or polyamide (PA) matrices are used. For example, a PPS or PA target or target can be selected for the laser ablation, so that according to the invention a very thin matrix layer in the nanometer range of the corresponding material can be deposited on the surface of the nanoparticles or magnetic components. In this way, the degree of filling can be effectively increased because the degree of filling is inversely proportional to the layer thickness. In order to produce a homogeneous coating, it is particularly advantageous if the magnetic nanoparticles 1 are finely distributed during the process or the process. This can be realized for example by means of a fluidized bed. After the coating process, a powder of isolated matrix-coated magnetic nanoparticles 5 is obtained. The magnetic components according to FIG. 1 or FIG. 2 are encased by the matrix 3 and can now be referred to as a compound. According to FIG. 3, the nanoscale magnetic components or nanoscale magnetic particles or nanoparticles 1 are coated with a matrix material 3, so that the nanoparticles 5 produced are completely encased by a thin matrix layer.
Figur 4 zeigt weitere Verfahrensschritte eines erfindungsgemäßen Verfahrens. Nach dem Beschichtungsvorgang gemäß Figur 3 wird das aus matrixbeschichteten magnetischen Nanopartikeln 5 bestehende Pulver in eine Form umgefüllt, dies ist in Figur 4 auf der linken Seite dargestellt, und entsprechend der rechten Darstellung in Figur 4 unter einem externen beispielsweise magnetischen Feld M, vorzugsweise transversal zu einer Pressrichtung eines Druckes P orientiert und gepresst. Verwendete Drücke P liegen in einem Bereich von einigen MPa bis GPa . Gleichzeitig zum Orientieren und Formpressen oder nachgeschaltet wird ein Erstarren oder Aushärten der Matrix 3 thermisch oder chemisch aktiviert. Es entstehen Volumenprobekörper mit einem hohen Füllgrad von orientierten, homogen verteilten magnetischen Nanopartikeln in einer Matrix. Die einzelnen nanoskaligen Magnetbausteine oder Nanopartikel 1 werden in dem externen Magnetfeld, vorzugsweise transversal zur Pressrichtung eines Druckes P, ausgerichtet und verdichtet, ehe die Matrixhüllen 3 oder die Matrixbeschichtung, bei- spielsweise thermisch aktiviert, vernetzt werden. Figur 4 zeigt eine erfindungsgemäße Kompaktierung der beschichteten Nanopartikel 5 im Magnetfeld M. Figur 4 zeigt abschließende Verfahrensschritte zur Erzeugung eines Volumenmagneten. Figur 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Permanentmagneten PM. Figur 5 zeigt einen anisotropen kunst- stoffgebundenen Volumenmagneten, der aus nanoskaligen Magnetbausteinen 1 besteht. Die erfindungsgemäß beanspruchten physikalischen beziehungsweise physikalisch-chemischen Abschei- dungsverfahren A zur Beschichtung und Einbettung magnetischer Nanopartikel 1 in eine Matrix 3 mit anschließender Verdichtung und Aushärtung im magnetischen Feld M führt zu einem größtmöglichen Füllfaktor bei zugleich homogener Verteilung und nahezu vollständiger Orientierung, um bestmögliche magne- tische Eigenschaften zu erzielen. Dies steht im Gegensatz zu herkömmlichen Verfahren der Einbettung von Nanostrukturen, die lediglich auf geringere Füllfaktoren optimiert sind. Ein weiterer Vorteil der erfindungsgemäßen Einbettung in eine Matrix 3 liegt in der geringen Verarbeitungstemperatur im Vergleich zu herkömmlichen Sintermethoden. Somit wird aus magnetischer Sicht ein ungünstiges Partikelwachstum erfindungsgemäß vermieden. Zudem ermöglicht ein erfindungsgemäßes Verfahren eine endformnahe Fertigung, was ebenso als Near- Net-Shape bezeichnet werden kann. Aufgrund der elektrischen isolierenden Eigenschaften des Matrixmaterials wird die Ausbildung von Wirbelströmen beim Einsatz im magnetischen Wechselfeld, die zu einer Temperaturerhöhung führen, unterdrückt. Die Matrixbeschichtung übernimmt drei Funktionen, und zwar erstens die Verbindung der einzelnen Nanomagnete oder Nano- partikel zu einem Volumenmagneten, zweitens die Vermeidung von direktem Kontakt der einzelnen Nanomagnete, das heißt die magnetische Isolation wird ausgebildet und drittens eine elektrische Isolation zur Unterdrückung von Wirbelströmen. Die Erfindung betrifft ein Verfahren zur Herstellung eines Permanentmagneten PM, mittels eines physikalischen oder physikalisch-chemischen Abscheidens A ausgeführtes Beschichten von synthetisierten Nanopartikel 1 mit einer kunststoffgebun denen Matrix 3 sowie Orientieren und Formgeben der in ein ex fernes Magnetfeld M und in eine Form eingebrachten matrixbeschichteten Nanopartikel 5. Auf diese Weise können hohe Füll grade erhalten werden. FIG. 4 shows further method steps of a method according to the invention. After the coating process according to FIG. 3, the powder consisting of matrix-coated magnetic nanoparticles 5 is transferred to a mold, this is shown in FIG. 4 on the left-hand side, and corresponding to the right-hand illustration in FIG. 4 under an external, for example, magnetic field M, preferably transversely to FIG a pressing direction of a pressure P oriented and pressed. Used pressures P are in a range of several MPa to GPa. At the same time for orientation and compression molding or downstream, solidification or hardening of the matrix 3 is activated thermally or chemically. The result is bulk specimens with a high degree of filling of oriented, homogeneously distributed magnetic nanoparticles in a matrix. The Individual nanoscale magnetic components or nanoparticles 1 are aligned and compacted in the external magnetic field, preferably transversely to the pressing direction of a pressure P, before the matrix shells 3 or the matrix coating, for example thermally activated, are crosslinked. FIG. 4 shows a compacting according to the invention of the coated nanoparticles 5 in the magnetic field M. FIG. 4 shows concluding process steps for the production of a volume magnet. FIG. 5 shows an exemplary embodiment of a permanent magnet PM according to the invention. FIG. 5 shows an anisotropic plastic-bonded volume magnet, which consists of nanoscale magnetic components 1. The physical or physicochemical deposition method A claimed in the invention for coating and embedding magnetic nanoparticles 1 in a matrix 3 with subsequent compaction and curing in the magnetic field M leads to the greatest possible filling factor combined with homogeneous distribution and almost complete orientation in order to obtain the best possible magnetic field. to achieve table properties. This is in contrast to conventional methods of embedding nanostructures that are optimized only for lower fill factors. Another advantage of the embedding in a matrix 3 according to the invention lies in the low processing temperature in comparison to conventional sintering methods. Thus, from the magnetic point of view, unfavorable particle growth is avoided according to the invention. In addition, a method according to the invention makes it possible to produce close to the final shape, which can also be referred to as a near net shape. Due to the electrical insulating properties of the matrix material, the formation of eddy currents when used in the alternating magnetic field, which lead to an increase in temperature, is suppressed. The matrix coating performs three functions, firstly the connection of the individual nanomagnets or nanoparticles to a volume magnet, secondly the avoidance of direct contact of the individual nanomagnets, that is to say the magnetic insulation is formed and, thirdly, an electrical insulation for the suppression of eddy currents. The invention relates to a method for producing a permanent magnet PM, by means of a physical or physical-chemical deposition A performed coating of synthesized nanoparticles 1 with a kunststoffgebun which matrix 3 and orienting and shaping the introduced into a ex-far magnetic field M and in a form matrix-coated nanoparticles 5. High degrees of filling can be obtained in this way.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013213646.3A DE102013213646A1 (en) | 2013-07-12 | 2013-07-12 | Anisotropic rare earth-free matrix-bonded high-performance permanent magnet with nanocrystalline structure and method for its production |
PCT/EP2014/060778 WO2015003848A1 (en) | 2013-07-12 | 2014-05-26 | Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2984658A1 true EP2984658A1 (en) | 2016-02-17 |
Family
ID=50897548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14728860.9A Withdrawn EP2984658A1 (en) | 2013-07-12 | 2014-05-26 | Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160372243A1 (en) |
EP (1) | EP2984658A1 (en) |
CN (1) | CN105359229A (en) |
DE (1) | DE102013213646A1 (en) |
WO (1) | WO2015003848A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9849512B2 (en) | 2011-07-01 | 2017-12-26 | Attostat, Inc. | Method and apparatus for production of uniformly sized nanoparticles |
US9919363B2 (en) * | 2014-09-23 | 2018-03-20 | Attostat, Inc. | System and method for making non-spherical nanoparticles and nanoparticle compositions made thereby |
DE102015204617A1 (en) * | 2015-03-13 | 2016-09-15 | Siemens Aktiengesellschaft | Anisotropic high-performance permanent magnet with optimized nanostructural structure and method for its production |
DE102015104888B4 (en) * | 2015-03-30 | 2018-07-05 | Jopp Holding GmbH | Arrangement of a magnetic element with position sensor for position detection on a rotatable machine element |
US9839652B2 (en) | 2015-04-01 | 2017-12-12 | Attostat, Inc. | Nanoparticle compositions and methods for treating or preventing tissue infections and diseases |
CN107614629A (en) | 2015-04-13 | 2018-01-19 | 阿托斯塔特公司 | Anticorrosive Nanoparticulate compositions |
US11473202B2 (en) | 2015-04-13 | 2022-10-18 | Attostat, Inc. | Anti-corrosion nanoparticle compositions |
US10201571B2 (en) | 2016-01-25 | 2019-02-12 | Attostat, Inc. | Nanoparticle compositions and methods for treating onychomychosis |
US11018376B2 (en) | 2017-11-28 | 2021-05-25 | Attostat, Inc. | Nanoparticle compositions and methods for enhancing lead-acid batteries |
US11646453B2 (en) | 2017-11-28 | 2023-05-09 | Attostat, Inc. | Nanoparticle compositions and methods for enhancing lead-acid batteries |
US12115250B2 (en) | 2019-07-12 | 2024-10-15 | Evoq Nano, Inc. | Use of nanoparticles for treating respiratory infections associated with cystic fibrosis |
CN113690042B (en) * | 2021-09-12 | 2023-09-26 | 杨杭福 | Device and method for continuously preparing aluminum nickel cobalt nano particles |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB882712A (en) * | 1957-04-27 | 1961-11-15 | Baermann Max | Material with permanent magnetic properties |
US3849213A (en) * | 1966-09-01 | 1974-11-19 | M Baermann | Method of producing a molded anisotropic permanent magnet |
EP0540503B1 (en) * | 1988-02-29 | 1995-05-17 | Matsushita Electric Industrial Co., Ltd. | Method for making a resin bonded magnet article |
US5350558A (en) * | 1988-07-12 | 1994-09-27 | Idemitsu Kosan Co., Ltd. | Methods for preparing magnetic powder material and magnet, process for preparaton of resin composition and process for producing a powder molded product |
US6737451B1 (en) * | 2001-09-13 | 2004-05-18 | Arnold Engineering Co., Ltd. | Thermally stable, high temperature, samarium cobalt molding compound |
JP4706411B2 (en) * | 2005-09-21 | 2011-06-22 | 住友電気工業株式会社 | Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core |
WO2008021571A2 (en) * | 2006-08-18 | 2008-02-21 | Maglev Technologies, Llc. | Magnetic composites |
US20100054981A1 (en) * | 2007-12-21 | 2010-03-04 | Board Of Regents, The University Of Texas System | Magnetic nanoparticles, bulk nanocomposite magnets, and production thereof |
US8465855B2 (en) * | 2008-07-16 | 2013-06-18 | International Business Machines Corporation | Protective coating of magnetic nanoparticles |
DE102011050112A1 (en) * | 2010-05-05 | 2011-11-10 | Industrieanlagen-Betriebsgesellschaft Mbh | Producing coated particle, comprises evaporating a first starting material, and condensing below formation of particles, which are subsequently coated below supply of a second starting material |
EP2575772A4 (en) * | 2010-05-26 | 2014-03-19 | Gen Hospital Corp | Magnetic nanoparticles |
JP2012178539A (en) * | 2010-09-10 | 2012-09-13 | Hitachi Maxell Ltd | Functional particle with rough-surface polymer coating applied thereto |
US9076579B2 (en) * | 2010-11-15 | 2015-07-07 | The Board of Trustees of the University of Alabama for and on the behalf of the University of Alabama | Magnetic exchange coupled core-shell nanomagnets |
JP5858419B2 (en) * | 2011-04-27 | 2016-02-10 | 戸田工業株式会社 | Method for producing ferromagnetic particle powder, anisotropic magnet, bonded magnet, and dust magnet |
WO2013010173A1 (en) | 2011-07-14 | 2013-01-17 | Northeastern University | Rare earth-free permanent magnetic material |
CN102610346B (en) | 2011-12-01 | 2015-10-28 | 中国计量学院 | A kind of Novel rare-earth-free nanometer composite permanent magnet material and preparation method thereof |
-
2013
- 2013-07-12 DE DE102013213646.3A patent/DE102013213646A1/en not_active Withdrawn
-
2014
- 2014-05-26 WO PCT/EP2014/060778 patent/WO2015003848A1/en active Application Filing
- 2014-05-26 EP EP14728860.9A patent/EP2984658A1/en not_active Withdrawn
- 2014-05-26 CN CN201480038897.5A patent/CN105359229A/en active Pending
- 2014-05-26 US US14/901,792 patent/US20160372243A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2015003848A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20160372243A1 (en) | 2016-12-22 |
DE102013213646A1 (en) | 2015-01-15 |
WO2015003848A1 (en) | 2015-01-15 |
CN105359229A (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015003848A1 (en) | Anisotropic rare earths-free matrix-bonded high-performance permanent magnet having a nanocristalline structure, and method for production thereof | |
EP1444706B1 (en) | Inductive component and method for producing same | |
US20180122570A1 (en) | Bonded permanent magnets produced by big area additive manufacturing | |
DE102015105764A1 (en) | PERMANENT MAGNET AND ENGINE | |
CN104756203A (en) | Composite magnetic body and method for manufacturing same | |
KR20160040586A (en) | Dust core, coil component using same and process for producing dust core | |
DE69212569T2 (en) | Process for the production of alloy powders of the SE-Fe / Co-B-M type and bonded magnets with this alloy powder | |
WO2016020077A1 (en) | Anisotropic soft-magnetic composite material with high anisotropy of the permeability for the suppression of transverse flux and the production thereof | |
DE10310572B4 (en) | Permanent magnet, process for its manufacture, rotor and motor | |
WO2021103466A1 (en) | Method for preparing soft magnetic composite material with high magnetic conductivity and low loss, and magnet ring thereof | |
US9390845B2 (en) | Core shell superparamagnetic iron oxide nanoparticles with functional metal silicate core shell interface and a magnetic core containing the nanoparticles | |
DE102015107049A1 (en) | Method for producing hard / soft magnetic FeCo / SiO 2 / MnBi nanoparticles with magnetically induced morphology | |
DE102012204083A1 (en) | Nanoparticles, permanent magnet, motor and generator | |
EP3414768B1 (en) | Hybrid magnet and method for the production thereof | |
EP3105764B1 (en) | Magnetic material | |
DE19849781A1 (en) | Injection molded soft magnetic powder composite and process for its manufacture | |
JP2015135856A (en) | Method for manufacturing rare earth bond magnet | |
JP2006100292A (en) | Powder magnetic core manufacturing method and powder magnetic core using the same | |
DE102013213645A1 (en) | Highly filled matrix-bonded anisotropic high-performance permanent magnets and method for their production | |
JP3028337B2 (en) | Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same | |
DE102013213644A1 (en) | Anisotropic rare earth-free plastic-bonded high-performance permanent magnet with nanocrystalline structure and method for its production | |
WO2016034338A1 (en) | Anisotropic soft-magnetic material with average anisotropy and a low coercive field strength, and production method for said material | |
DE102016220094A1 (en) | Soft magnetic material, plastic-bonded composite material, actuator, magnetic core for power electronics, electric machine or solenoid valve, use and method for producing the soft magnetic material | |
WO2016146308A1 (en) | Anisotropic high-performance permanent magnet having optimised nanostructural design and method for production of same | |
US10984933B2 (en) | Superparamagnetic iron cobalt ternary alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151113 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170619 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171031 |