JP2005203304A - Mixed conductive powder - Google Patents

Mixed conductive powder Download PDF

Info

Publication number
JP2005203304A
JP2005203304A JP2004010407A JP2004010407A JP2005203304A JP 2005203304 A JP2005203304 A JP 2005203304A JP 2004010407 A JP2004010407 A JP 2004010407A JP 2004010407 A JP2004010407 A JP 2004010407A JP 2005203304 A JP2005203304 A JP 2005203304A
Authority
JP
Japan
Prior art keywords
spherical particles
substantially spherical
particles
conductive powder
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010407A
Other languages
Japanese (ja)
Inventor
秀次 ▲桑島▼
Hideji Kuwajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004010407A priority Critical patent/JP2005203304A/en
Publication of JP2005203304A publication Critical patent/JP2005203304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mixed conductive powder which is highly packed and is excellent in fluidity while having particles in good contact with one another, and which is capable of high thixotropy when it is made pasty. <P>SOLUTION: This mixed conductive powder contains particles obtained by combining two kinds of almost spherical silver, gold, platinum, palladium, or the alloys of them roughly mono-dispersed while having different particle diameters, and its relative packing density is 68%-80%. It is preferable that among particles obtained by combining two or more kinds of them, the average particle diameter of one particle is 5-25 times the average diameter of the other particle, the aspect ratio of the particles obtained by combining the above two kinds is 1-1.5, and among the particles obtained by combining the above two kinds, the primary particle diameter of the almost spherical particle on the side where the particle diameter is small is 0. 3-1.8 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性ペーストなどに使用される高充填化された混合導電粉に関する。   The present invention relates to a highly filled mixed conductive powder used for conductive paste and the like.

従来、導電性ペーストなどに使用される高充填化された混合導電粉は、球状又は略球状粒子を組み合わせて作製していた(例えば、非特許文献1参照)。特に高導電性又は高熱伝導性が要求される分野では、金粉、銀粉、銅粉、アルミニウム粉、パラジウム粉又はこれらの合金粉が導電粉として用いられており、特に、導電性や熱伝導性を高くするために、導電粉の配合量を多くしていた。   Conventionally, highly filled mixed conductive powders used for conductive pastes and the like have been produced by combining spherical or substantially spherical particles (see, for example, Non-Patent Document 1). Particularly in fields where high conductivity or high thermal conductivity is required, gold powder, silver powder, copper powder, aluminum powder, palladium powder or alloy powders thereof are used as conductive powder. In order to make it high, the compounding quantity of the electroconductive powder was increased.

日刊工業新聞社刊、粉体工学会編、粉体工学便覧、初版1刷、昭和61年2月号(第101〜107頁)。Published by Nikkan Kogyo Shimbun, edited by the Society of Powder Engineering, Handbook of Powder Engineering, First Edition, 1st Edition, February 1986 (pages 101-107).

上記の非特許文献1に記載されている高充填化された混合導電粉の作製法は、球状の粒子を組み合わせて均一に混合する方法である。即ち、球状の粒子を規則的に配列させ、さらに小さな粒径の球状粒子をその隙間に充填することで、理論的には80%以上の相対充填密度が得られると記載されている。   The method for producing a highly filled mixed conductive powder described in Non-Patent Document 1 is a method in which spherical particles are combined and mixed uniformly. That is, it is described that a relative packing density of 80% or more is theoretically obtained by regularly arranging spherical particles and filling the gaps with spherical particles having a smaller particle diameter.

しかしながら、実際に販売されている球状の銀粉では、粒子は一部凝集しており、粒径が5〜20μmの銀粉の相対充填密度は高々60%前後であり、粒径が1μm前後の銀微粉では相対充填密度は高々50%前後であり、これらを単純に組み合わせて混合しても、混合導電粉の相対充填密度は60%未満である。   However, in the spherical silver powder actually sold, the particles are partially agglomerated, the relative packing density of the silver powder having a particle size of 5 to 20 μm is at most about 60%, and the silver fine powder having a particle size of about 1 μm. Then, the relative packing density is around 50% at most. Even if these are simply combined and mixed, the relative packing density of the mixed conductive powder is less than 60%.

一般的に、孔埋め導電性ペーストをスルーホール内に充填して層間接続を行う場合、小さい孔でありながら高導電性を必要とするため、孔にできる限り導電性ペーストを充填し、すき間なく導電性ペーストを埋め込む必要がある。そのため、従来の孔埋め導電性ペーストでは、導電粉の配合量を多くして導電性を高めていた。   Generally, when inter-layer connection is performed by filling a hole-filled conductive paste into a through hole, high conductivity is required despite being a small hole, so the hole is filled with a conductive paste as much as possible, and there is no gap It is necessary to embed a conductive paste. Therefore, in the conventional hole-filling conductive paste, the amount of conductive powder is increased to increase the conductivity.

しかし、導電粉の配合量を多くすると導電性ペーストの粘度が高くなり孔への充填性が悪化してしまう。一方、導電性ペースト中のバインダの比率を高くすると粘度が低くなり孔への充填性は向上するが、導電性が低下してしまうという欠点が生じる。
また、導電性ペーストを熱伝導性接着剤として使用し、貫層方向の熱伝導性を高くする場合、導電粉が球状粒子のみからなるペーストでも充填密度が低いと、熱伝導率も低くなってしまう欠点があった。
However, when the blending amount of the conductive powder is increased, the viscosity of the conductive paste is increased and the filling property into the holes is deteriorated. On the other hand, when the ratio of the binder in the conductive paste is increased, the viscosity is decreased and the filling property into the holes is improved, but there is a disadvantage that the conductivity is lowered.
In addition, when using conductive paste as a heat conductive adhesive to increase the heat conductivity in the penetration direction, even if the conductive powder is a paste consisting only of spherical particles, if the packing density is low, the thermal conductivity is also low. There was a drawback.

さらに、導電性ペーストを導電性接着剤として使用する場合、自動機で注射器状のシリンジを押して導電性接着剤を所望の位置に所望量供給し、次いで別の位置に移動して、繰り返しシリンジから供給することが行われている。この場合、導電性接着剤のチキソ性が低いと、ペーストが糸引き状態になり、不要な部分に導電性接着剤を塗布してしまうトラブルも生じる。   Furthermore, when using a conductive paste as a conductive adhesive, the syringe-like syringe is pushed by an automatic machine to supply a desired amount of the conductive adhesive to a desired position, then moved to another position, and repeatedly from the syringe. Supply is done. In this case, if the thixotropy of the conductive adhesive is low, the paste is in a stringing state, and there is a problem that the conductive adhesive is applied to unnecessary portions.

一般に、導電性接着剤のチキソ性を高くするには、微粉の鱗片状粒子を混合している。しかし、鱗片状の微粉粒子を併用すると粘度上昇が大きく、高充填化された導電性接着剤が製造できないという欠点があった。また相対充填密度の低い混合導電粉を使用してペーストを製造する場合、混合導電粉を高い含有率で含有するペーストを製造しようとしても、バインダに混合導電粉を添加すると粘度が極めて高くぼさぼさの状態になり、3本ロールミル、らいかい機等の混合、分散装置を使用しても分散させてペーストにすることができないという問題点がある。   Generally, in order to increase the thixotropy of the conductive adhesive, fine powder-like particles are mixed. However, when scale-like fine powder particles are used in combination, there is a drawback that the viscosity increase is large and a highly filled conductive adhesive cannot be produced. In addition, when producing a paste using mixed conductive powder having a low relative packing density, even when trying to produce a paste containing mixed conductive powder at a high content, the addition of mixed conductive powder to the binder results in extremely high viscosity. There is a problem that even if using a mixing / dispersing device such as a three-roll mill or a raking machine, it cannot be dispersed into a paste.

請求項1記載の発明は、高充填化された混合導電粉を提供するものである。
請求項2記載の発明は、請求項1記載の発明に加えて、流動性に優れた混合導電粉を提供するものである。
請求項3及び4記載の発明は、請求項1及び2記載の発明に加えて、粒子同士の接触が良く、ペースト化した場合に高いチキソ性の得られる混合導電粉を提供するものである。
The invention according to claim 1 provides a mixed conductive powder that is highly filled.
The invention according to claim 2 provides a mixed conductive powder excellent in fluidity in addition to the invention according to claim 1.
In addition to the inventions described in claims 1 and 2, the inventions described in claims 3 and 4 provide mixed conductive powders that have good contact between particles and can be obtained with high thixotropy when formed into a paste.

本発明者は、概略単分散された粒径の異なる略球状の銀、パラジウム又はこれらの合金の2種類を組み合わせた粒子を用いることにより、相対充填密度が68〜80%の高充填化された混合導電粉が得られることを見いだした。このような高充填化された混合導電粉を使用すると、作業性に優れ、また使用する材料が銀、パラジウム又はこれらの合金であるので、導電性、熱伝導性も良好な導電性ペーストが得られる。   The present inventor has achieved a high packing with a relative packing density of 68 to 80% by using particles obtained by combining two kinds of substantially spherical silver, palladium, or an alloy thereof having a substantially monodispersed particle size. It was found that mixed conductive powder was obtained. When such highly filled mixed conductive powder is used, workability is excellent, and since the material used is silver, palladium, or an alloy thereof, a conductive paste with good conductivity and thermal conductivity is obtained. It is done.

本発明は、概略単分散された粒径の異なる略球状の銀、パラジウム又はこれらの合金の2種類を組み合わせた粒子を含み、かつ相対充填密度が68〜80%である混合導電粉に関する。
また、本発明は、上記の2種類を組み合わせた粒子が、一方の平均粒径が他方の平均粒径の5〜25倍である混合導電粉に関する。
また、本発明は、上記の2種類を組み合わせた粒子が、アスペクト比が1〜1.5である混合導電粉に関する。
さらに、本発明は、上記の2種類を組み合わせた粒子が、粒径の小さい側の略球状の粒子の一次粒径が0.3〜1.8μmである混合導電粉に関する。
The present invention relates to a mixed conductive powder that includes particles obtained by combining two types of substantially spherical silver, palladium, or an alloy thereof having a substantially monodispersed particle diameter and a relative packing density of 68 to 80%.
Moreover, this invention relates to the mixed electroconductive powder whose particle | grains which combined said 2 types have one average particle diameter 5 to 25 times the other average particle diameter.
Moreover, this invention relates to the mixed electroconductive powder whose particle | grains which combined said 2 types are aspect ratios 1-1.5.
Furthermore, the present invention relates to a mixed conductive powder in which the particles having a combination of the above two types have a primary particle size of 0.3 to 1.8 μm on the side of a substantially spherical particle having a smaller particle size.

請求項1記載の混合導電粉は、高充填化され、導電性ペースト及び熱伝導性ペーストに最適である。
請求項2記載の混合導電粉は、請求項1記載の発明に加えて、流動性に優れる。
請求項3及び4記載の混合導電粉は、請求項1及び2記載の発明に加えて、粒子同士の接触が良く、ペースト化した場合に高いチキソ性が得られる。
The mixed conductive powder according to claim 1 is highly filled, and is most suitable for conductive paste and heat conductive paste.
The mixed conductive powder according to claim 2 is excellent in fluidity in addition to the invention according to claim 1.
In addition to the inventions of the first and second aspects, the mixed conductive powder according to the third and fourth aspects has good contact between particles, and high thixotropy can be obtained when it is made into a paste.

本発明において、相対充填密度が高い混合導電粉を使用して、バインダと混合した場合、粒子同士を混合する必要がなく、バインダと混合導電粉を混合するだけでよいので混合分散に要する時間が短くて済む。そして、混合導電粉の相対充填密度が高いため、少量のバインダでペースト化することができ、またバインダと混合する際、混合を開始した直後の粘度も低いので、容易に均一に混合することができる。   In the present invention, when mixed conductive powder having a high relative packing density is used and mixed with a binder, it is not necessary to mix the particles, and it is only necessary to mix the binder and mixed conductive powder. It's short. And since the relative filling density of the mixed conductive powder is high, it can be made into a paste with a small amount of binder, and when mixed with the binder, the viscosity immediately after starting mixing is also low, so it can be easily and uniformly mixed it can.

概略単分散された粒径の異なる略球状粒子を別個にバインダに添加する場合、一般に略球状粒子の相対充填密度は高いものでも約63%、微小な略球状粒子の相対充填密度は高いものでも約55%であるので、バインダと混合した両者の粘度は比較的高くなる。さらに、これらを一つにまとめてペースト化しようとすると、混合物の粘度がさらに高くなり均一に混合させることが極めて難しい。   In the case of adding substantially spherical particles having different particle sizes, which are substantially monodispersed, to the binder separately, generally, even if the relative packing density of the substantially spherical particles is high, it is about 63%, and the relative packing density of the minute spherical particles is high. Since it is about 55%, the viscosity of both mixed with the binder is relatively high. Further, when these are combined into a paste, the viscosity of the mixture becomes higher and it is extremely difficult to mix them uniformly.

例えば、無溶剤のバインダを使用して、概略単分散された粒径の異なる銀粉の略球状粒子からなる高充填化(相対充填密度:74%)された混合導電粉を使用すれば、これをペースト化する場合、92重量%になるような割合でバインダに混合導電粉を添加しても均一に混合することができる。しかし、相対充填密度が63%の混合導電粉を使用した場合、バインダが不足してしまい、同じ割合でバインダに添加すると、ばさばさの状態になりペースト状にはならず均一に混合することができない。即ち、本発明のように高充填化された混合導電粉を使用することで、初めて高純度化されたペーストを安定にかつ容易に生産することができる。   For example, if a mixed conductive powder having a high packing (relative packing density: 74%) made of substantially spherical particles of silver powder having different particle diameters, which are approximately monodispersed using a solvent-free binder, is used. In the case of forming a paste, even if the mixed conductive powder is added to the binder at a ratio of 92% by weight, it can be mixed uniformly. However, when mixed conductive powder having a relative filling density of 63% is used, the binder is insufficient, and when added to the binder at the same rate, it becomes bulky and does not become a paste and cannot be mixed uniformly. . That is, by using the highly conductive mixed conductive powder as in the present invention, a highly purified paste can be produced stably and easily for the first time.

本発明に用いられる略球状の粒子としては、銀、パラジウム又はこれらの合金の粒子である。
本発明において粒径の異なる略球状の銀、パラジウム又はこれらの合金の2種類を組み合わせるとは、同一材質で粒径の異なる粒子の組み合わせでも良く、また異質な材質で粒径の異なる粒子の組み合わせのいずれでも良い。
本発明において、概略単分散されているとは、粒子の凝集の大部分が解粒されている状態を指す。
The substantially spherical particles used in the present invention are particles of silver, palladium, or an alloy thereof.
In the present invention, the combination of two types of substantially spherical silver, palladium or alloys thereof having different particle sizes may be a combination of particles of the same material and different particle sizes, or a combination of particles of different materials and different particle sizes. Either of these is acceptable.
In the present invention, being substantially monodispersed refers to a state in which most of the particles are agglomerated.

本発明における相対充填密度(%)とは、測定した充填密度を、その粒子の真密度で除した値を%で表示したものである。なお、本発明で粒子の相対充填密度を求める方法は、25mmのストロークでタッピングを1,000回行い、その体積と質量から算出したタップ密度を充填密度とし、これをその粒子の真密度又は理論密度で除することで算出した。   The relative packing density (%) in the present invention is a value obtained by dividing the measured packing density by the true density of the particles in%. The method for determining the relative packing density of particles in the present invention is that tapping is performed 1,000 times with a stroke of 25 mm, the tap density calculated from the volume and mass is taken as the packing density, and this is the true density or theory of the particles. Calculated by dividing by density.

また、アスペクト比とは粒子の長径と短径の比率(長径/短径)をいう。本発明においては、粘度の低い硬化性樹脂中に粒子をよく混合し、静置して粒子を沈降させると共にそのまま樹脂を硬化させ、得られた硬化物を垂直方向に切断し、その切断面に現れる粒子の形状を電子顕微鏡で拡大して観察し、少なくとも100個の粒子について一つ一つの粒子の長径/短径を求め、それらの平均値をもってアスペクト比とする。   The aspect ratio refers to the ratio of the major axis to the minor axis of the particle (major axis / minor axis). In the present invention, the particles are mixed well in a curable resin having a low viscosity, and the particles are allowed to settle, and the resin is cured as it is. The shape of the appearing particles is magnified and observed with an electron microscope, and the major axis / minor axis of each particle is determined for at least 100 particles, and the average value thereof is taken as the aspect ratio.

上記における短径とは、前記切断面に現れる粒子について、その粒子の外側に接する二つの平行線の組み合わせで粒子を挟むように選択し、それらの組み合わせのうち最短間隔になる二つの平行線の距離である。一方、長径とは、前記短径を決する平行線に直角方向の二つの平行線であって、粒子の外側に接する二つの平行線の組み合わせのうち、最長間隔になる二つの平行線の距離である。これらの四つの線で形成される長方形は、粒子がちょうどその中に納まる大きさとなる。   The minor axis in the above is selected so that the particles appearing on the cut surface sandwich the particles by a combination of two parallel lines in contact with the outside of the particles, and the two parallel lines having the shortest distance among those combinations are selected. Distance. On the other hand, the major axis is the distance between two parallel lines that are the longest interval among the two parallel lines that are perpendicular to the parallel line that determines the minor axis, and that is in contact with the outside of the particle. is there. The rectangle formed by these four lines is the size that the particles just fit within.

本発明において、概略単分散された略球状の粒子のアスペクト比は、SEM写真からも測定することができる。即ち、略球状の粒子を希薄な濃度で観察用ステージ上に貼り付け、これを拡大して観察し、その長径と短径を個々の粒子について測定し、アスペクト比を個々の粒子について計算し、その平均値を算出すれば良い。また凝集している略球状の粒子の一次粒径は、同様に希薄な濃度で観察用ステージ上に貼り付け、これを拡大して観察し、その長径と短径を個々の粒子について測定し、幾何平均径を計算し。これらの平均を算出すれば良い   In the present invention, the aspect ratio of roughly monodispersed substantially spherical particles can also be measured from SEM photographs. That is, a substantially spherical particle is affixed on a stage for observation at a dilute concentration, this is magnified and observed, its major axis and minor axis are measured for each individual particle, and the aspect ratio is calculated for each individual particle, What is necessary is just to calculate the average value. Also, the primary particle size of the agglomerated substantially spherical particles is similarly pasted on the observation stage at a dilute concentration, and this is enlarged and observed, and the major and minor diameters of each particle are measured. Calculate the geometric mean diameter. Calculate the average of these

なお、本発明における平均粒径は、レーザー散乱型粒度分布測定装置により測定することができる。本発明においては、測定装置としてマスターサイザー(マルバン社製)を用いて測定した。
本発明において、略球状の粒子とは、その形状が概略球状と見なせる粒子で、その長径と短径の比(アスペクト比)は、1〜1.5であることが好ましく、1〜1.3であることがより好ましく、1〜1.1であることがさらに好ましい。
In addition, the average particle diameter in this invention can be measured with a laser scattering type particle size distribution measuring apparatus. In this invention, it measured using the master sizer (made by Malvern company) as a measuring apparatus.
In the present invention, the substantially spherical particles are particles whose shape can be regarded as approximately spherical, and the ratio of the major axis to the minor axis (aspect ratio) is preferably 1 to 1.5, and preferably 1 to 1.3. It is more preferable that it is 1 and 1.1.

また、本発明において、粒径の小さい側の略球状の粒子の一次粒径は、0.3〜1.8μmが好ましく、0.5〜1.8μmがより好ましく、0.8〜1.5μmがさらに好ましい。粒径の小さい側の略球状の粒子の一次粒径が0.3μm未満であると粒子同士の凝集が強く解粒不足を起こす場合がある。一方、1.8μmを超えると高充填化することが難しくなる。なお、一次粒径とは、粒子が凝集している場合、凝集体を構成する個々の粒子の粒径を指す。   In the present invention, the primary particle size of the substantially spherical particles on the smaller particle size side is preferably 0.3 to 1.8 μm, more preferably 0.5 to 1.8 μm, and 0.8 to 1.5 μm. Is more preferable. When the primary particle size of the substantially spherical particles on the smaller particle size side is less than 0.3 μm, the particles are strongly agglomerated and may cause insufficient deflation. On the other hand, if it exceeds 1.8 μm, it becomes difficult to achieve high filling. The primary particle diameter refers to the particle diameter of individual particles constituting the aggregate when the particles are aggregated.

本発明で用いられる概略単分散された略球状の粒子の平均粒径は、一方の略球状の粒子の平均粒径が、他方の小さい粒子の一次粒径の5〜25倍が好ましく、10〜25倍がより好ましい。この倍率が小さいと高充填化が困難となる傾向があり、またこの倍率が大きすぎると、大きい方の略球状の粒子の粒径が大きくなりすぎて、ペースト化した場合、流動性を損ねたり、接着剤として使用する場合、作業性が悪くなるなどの傾向がある。   The average particle size of the substantially monodispersed substantially spherical particles used in the present invention is preferably 5 to 25 times the primary particle size of one of the substantially spherical particles. 25 times is more preferable. If this magnification is small, high filling tends to be difficult, and if this magnification is too large, the particle size of the larger spherical particles will be too large, and if it is made into a paste, fluidity will be impaired. When used as an adhesive, the workability tends to deteriorate.

本発明になる混合導電粉は、概略単分散された略球状の粒子を含み、その相対充填密度は68〜80%、好ましくは70〜80%とされ、相対充填密度が68%未満であると、混合導電粉の配合割合を多くした場合、導電ペーストの粘度が高くなり、反面、混合導電粉の配合割合を少なくすると、十分な導電性、熱伝導性及び信頼性が得られなくなる。一方、相対充填密度を80%以上にすることは極めて困難である。   The mixed conductive powder according to the present invention includes substantially monodispersed substantially spherical particles, the relative packing density is 68 to 80%, preferably 70 to 80%, and the relative packing density is less than 68%. When the blending ratio of the mixed conductive powder is increased, the viscosity of the conductive paste increases. On the other hand, when the blending ratio of the mixed conductive powder is decreased, sufficient conductivity, thermal conductivity and reliability cannot be obtained. On the other hand, it is extremely difficult to make the relative packing density 80% or more.

本発明において、概略単分散された粒径の異なる略球状の粒子の組成比は、体積比で粒径の大きい略球状の粒子:粒径の小さい略球状の粒子が85:15〜55:45であることが好ましく、80:20〜60:40であることがより好ましい。この範囲以外では高充填化することが困難となる傾向がある。上記に示す範囲にすることにより、相対充填密度が68%以上のものが得られ易い。しかし、相対充填密度を80%以上にすることは極めて困難である。   In the present invention, the composition ratio of substantially monodispersed substantially spherical particles having different particle diameters is substantially spherical particles having a large particle diameter by volume ratio: substantially spherical particles having a small particle diameter of 85:15 to 55:45. It is preferable that it is 80: 20-60: 40. Outside this range, high filling tends to be difficult. By setting it as the range shown above, a relative filling density of 68% or more can be easily obtained. However, it is extremely difficult to make the relative packing density 80% or more.

本発明において、略球状の粒子は概略単分散されていれば良い。特に、小さい側の略球状の粒子の凝集が完全に解粒されるまで単分散を行うことは多大な時間を必要とするばかりでなく、極めて困難である。従って、本発明においては、概略単分散された略球状の粒子と凝集している略球状の粒子を一緒に混合しながら、概略単分散された粒径の大きい側の略球状の粒子で凝集した略球状の粒子を解粒すると、粒径の小さい側の略球状の粒子の変形が防止できるので好ましい。特に略球状の粒子として銀粉を使用すると、銀は導電性及び熱伝導性に優れているが、柔らかいため、凝集をビーズなどで解粒しようとすると、微小な銀粉が変形してしまうが、上記の方法で解粒を行えば、微小で凝集している銀の略球状の粒子の変形を防止しながら、解粒と均一に分散を行うことができる。   In the present invention, the substantially spherical particles may be substantially monodispersed. In particular, it is extremely difficult to perform monodispersion until the aggregation of the substantially spherical particles on the small side is completely pulverized, as well as requiring a lot of time. Accordingly, in the present invention, the substantially monodispersed substantially spherical particles and the agglomerated substantially spherical particles are mixed together, and the substantially monodispersed substantially spherical particles are agglomerated with the substantially spherical particles on the larger particle size side. It is preferable to break up substantially spherical particles because deformation of the substantially spherical particles on the smaller particle size side can be prevented. In particular, when silver powder is used as substantially spherical particles, silver is excellent in conductivity and thermal conductivity, but since it is soft, when trying to break up the agglomeration with beads, the fine silver powder is deformed. If the pulverization is performed by this method, the pulverization and the uniform dispersion can be performed while preventing the deformation of the finely agglomerated silver substantially spherical particles.

略球状の粒子同士を均一に混合すると共に、凝集した粒径の小さい側の略球状の粒子を解粒する方法は、例えば、両者をボールミル、ロッキングミル、Vブレンダー、振動ミル等の混合機に入れ、その混合粉のみで混合することにより、凝集を解粒することができる。分散及び混合を行う方法は、上記したボールミル、ロッキングミル、Vブレンダー、振動ミル等の回転又は振動エネルギーを使用する方法が容易である。これらと類似の方法で、解粒した概略単分散された鱗片状粒子を、分散用ビーズの代わりに使用して、一部が凝集した略球状の粒子の解粒と同時に分散、混合させることができれば、その装置、方法については特に制限はない。   A method for uniformly mixing substantially spherical particles and pulverizing the substantially spherical particles on the smaller aggregated particle size side is, for example, a mixing machine such as a ball mill, a rocking mill, a V blender, and a vibration mill. By adding and mixing only with the mixed powder, aggregation can be pulverized. As a method for performing dispersion and mixing, a method using rotation or vibration energy such as the above-described ball mill, rocking mill, V blender, vibration mill or the like is easy. In a similar manner, pulverized roughly monodispersed flaky particles can be used instead of dispersing beads to disperse and mix at the same time as pulverization of partially agglomerated substantially spherical particles. If possible, there are no particular restrictions on the apparatus and method.

但し、略球状の粒子同士の混合時に、ジルコニア、アルミナ、ガラス等の分散用ビーズを使用すると、粒径の小さな物を使用しても、粒子が変形する場合がある。また0.2mm未満の粒径の分散用ビーズを使用すると、該ビーズと混合導電粉を分離する操作が大変で、篩い分けの作業中にもビーズと略球状の粒子がぶつかりあい、凝集している微細な略球状の粒子は変形又は粉砕してしまう。特に微細な略球状の粒子が銀粉のように柔らかい金属粉の場合には、容易に変形を起こすので好ましくない。   However, when dispersing beads such as zirconia, alumina, and glass are used during mixing of substantially spherical particles, the particles may be deformed even if a small particle size is used. In addition, when dispersing beads having a particle diameter of less than 0.2 mm are used, it is difficult to separate the mixed conductive powder from the beads, and the beads and the substantially spherical particles collide and aggregate during the sieving operation. The fine, substantially spherical particles that are present are deformed or crushed. In particular, when the fine, substantially spherical particles are a soft metal powder such as silver powder, deformation is easily caused, which is not preferable.

ここで、略球状の粒子の解粒に分散用ビーズを使用した場合と、概略単分散している大きめの略球状の粒子を使用した場合の衝突エネルギーを比較する。粒子の運動エネルギーは運動する粒子の質量に比例する。例えば、分散用ビーズの直径が0.2mm、本発明において使用する略球状の粒子の平均粒径が0.01mm(10μm)、アスペクト比が1とすると、分散用ビーズと略球状の粒子の体積比は約8000倍になる。また微粉の落下速度は分散用ビーズの落下速度より小さく、衝突エネルギーは運動速度の2乗に比例するので、分散用ビーズ同士の衝突エネルギーは微粉同士に比べて8000倍以上になる。   Here, the collision energy is compared between the case where the dispersing beads are used for pulverization of the substantially spherical particles and the case where large spherical particles that are substantially monodispersed are used. The kinetic energy of a particle is proportional to the mass of the moving particle. For example, when the diameter of the dispersing beads is 0.2 mm, the average particle diameter of the substantially spherical particles used in the present invention is 0.01 mm (10 μm), and the aspect ratio is 1, the volume of the dispersing beads and the substantially spherical particles is The ratio is about 8000 times. Further, since the falling speed of the fine powder is smaller than the falling speed of the dispersing beads and the collision energy is proportional to the square of the movement speed, the collision energy between the dispersing beads is 8000 times or more compared to the fine powders.

従って、比重差を考慮しても分散用ビーズ同士が衝突する場合の方が略球状の粒子同士が衝突する場合に比べ、衝突のエネルギーは2000倍大きくなる。すなわち、略球状の粒子が銀粉等の柔らかい金属の場合、解粒の際にビーズの衝突エネルギーで凝集している略球状の粒子を変形させてしまうので、変形無しの解粒はできず、混合導電粉の相対充填密度を高くすることはできなくなってしまう。   Therefore, even when the specific gravity difference is taken into consideration, the energy of collision is 2000 times larger when the beads for dispersion collide with each other than when the substantially spherical particles collide. That is, when the spherical particles are soft metals such as silver powder, the spherical particles that are aggregated by the collision energy of the beads are deformed at the time of granulation, so that the granulation without deformation cannot be performed and mixed. The relative packing density of the conductive powder cannot be increased.

本発明においては、概略単分散された略球状の粒子及び微細な略球状の粒子の表面は必要に応じて脂肪酸で被覆されていてもよい。本発明で用いることのできる脂肪酸の例としては、ステアリン酸、ラウリン酸、カプリン酸、パルミチン酸等の飽和脂肪酸又はオレイン酸、リノール酸、リノレン酸、ソルビン酸の不飽和脂肪酸等が挙げられる。   In the present invention, the surfaces of substantially monodispersed substantially spherical particles and fine substantially spherical particles may be coated with a fatty acid as necessary. Examples of fatty acids that can be used in the present invention include saturated fatty acids such as stearic acid, lauric acid, capric acid, and palmitic acid, or unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and sorbic acid.

これら粒子の表面への脂肪酸の被覆量は、粒子に対して0.02〜1.0重量%の範囲が好ましく、0.02〜0.5重量%の範囲がより好ましく、0.02〜0.3重量%の範囲がさらに好ましい。脂肪酸の被覆量が1.0重量%を超えると、粒子同士が脂肪酸によって凝集し易くなる場合もあり好ましくない。一方、0.02重量%未満では、凝集した粒径の小さい側の略球状の粒子を解粒することが困難となる。   The coating amount of the fatty acid on the surface of these particles is preferably in the range of 0.02 to 1.0% by weight, more preferably in the range of 0.02 to 0.5% by weight, and 0.02 to 0%. More preferred is a range of 3% by weight. If the coating amount of the fatty acid exceeds 1.0% by weight, the particles may be easily aggregated by the fatty acid, which is not preferable. On the other hand, if it is less than 0.02% by weight, it becomes difficult to break down the substantially spherical particles on the smaller aggregated particle size side.

以下、本発明を実施例により説明する。
実施例1
概略単分散された略球状の粒子として、平均粒径が10μm及び相対充填密度が62%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が1.1μmで、タップ密度から求めた相対充填密度が55%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は約9であった。
Hereinafter, the present invention will be described with reference to examples.
Example 1
Silver powder having an average particle diameter of 10 μm and a relative packing density of 62% was used as roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as the agglomerated substantially spherical particles, silver powder having a primary particle size of 1.1 μm and a relative packing density of 55% obtained from the tap density was used. The particle size ratio of the former silver powder and the latter silver powder at this time was about 9.

上記の概略単分散された略球状の粒子60重量部と凝集している略球状の粒子40重量部を内容積が2リットルのVブレンダで132時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が60:40であり、混合導電粉のタップ密度は7.78g/cmで、相対充填密度は74%であった。 60 parts by weight of the above substantially monodispersed substantially spherical particles and 40 parts by weight of the aggregated substantially spherical particles are mixed for 132 hours in a V blender having an internal volume of 2 liters, The pulverization and uniform dispersion of both were performed to obtain a mixed conductive powder in which both silver powders were approximately monodispersed. Note that the volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately 60:40. Yes, the mixed conductive powder had a tap density of 7.78 g / cm 3 and a relative packing density of 74%.

実施例2
概略単分散された略球状の粒子として、平均粒径が11μm及び相対充填密度が63%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が1.0μmで、タップ密度から求めた相対充填密度が48%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は11であった。
Example 2
Silver powder having an average particle diameter of 11 μm and a relative packing density of 63% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as agglomerated substantially spherical particles, silver powder having a primary particle size of 1.0 μm and a relative packing density determined from the tap density of 48% was used. The particle size ratio of the former silver powder and the latter silver powder at this time was 11.

上記の概略単分散された略球状の粒子55重量部と凝集している略球状の粒子45重量部を内容積が2リットルのVブレンダで196時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が55:45であり、混合導電粉のタップ密度は7.74g/cmで、相対充填密度は74%であった。 The above substantially monodispersed substantially spherical particles 55 parts by weight and 45 parts by weight of aggregated substantially spherical particles were mixed in a V blender having an internal volume of 2 liters for 196 hours, and the aggregated substantially spherical particles of The pulverization and uniform dispersion of both were performed to obtain a mixed conductive powder in which both silver powders were approximately monodispersed. The volume ratio of substantially monodispersed substantially spherical particles to agglomerated substantially spherical particles is approximately monodispersed substantially spherical particles: agglomerated substantially spherical particles are 55:45. Yes, the tap density of the mixed conductive powder was 7.74 g / cm 3 and the relative packing density was 74%.

実施例3
概略単分散された略球状の粒子として、平均粒径が12μm及び相対充填密度が64%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が0.9μmで、タップ密度から求めた相対充填密度が55%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は約13であった。
Example 3
Silver powder having an average particle size of 12 μm and a relative packing density of 64% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, silver powder having a primary particle size of 0.9 μm and a relative packing density of 55% determined from the tap density was used as the agglomerated substantially spherical particles. The particle size ratio of the former silver powder and the latter silver powder at this time was about 13.

上記の概略単分散された略球状の粒子80重量部と凝集している略球状の粒子20重量部を内径が200mmで長さが200mmのボールミルで160時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が80:20であり、混合導電粉のタップ密度は7.61g/cmで、相対充填密度は73%であった。 80 parts by weight of the above substantially monodispersed substantially spherical particles and 20 parts by weight of the aggregated substantially spherical particles are mixed for 160 hours in a ball mill having an inner diameter of 200 mm and a length of 200 mm, and agglomerated substantially spherical particles. Particles were pulverized and both were uniformly dispersed to obtain a mixed conductive powder in which both silver powders were approximately monodispersed. The volume ratio of substantially monodispersed substantially spherical particles to agglomerated substantially spherical particles is approximately 80:20 for the substantially monodispersed substantially spherical particles: aggregated substantially spherical particles. Yes, the tap density of the mixed conductive powder was 7.61 g / cm 3 and the relative packing density was 73%.

実施例4
概略単分散された略球状の粒子として、平均粒径が9μm及び相対充填密度が61%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が0.8μmで、タップ密度から求めた相対充填密度が45%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は約11であった。
Example 4
Silver powder having an average particle diameter of 9 μm and a relative packing density of 61% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as the agglomerated substantially spherical particles, silver powder having a primary particle size of 0.8 μm and a relative packing density of 45% obtained from the tap density was used. The particle size ratio of the former silver powder and the latter silver powder at this time was about 11.

上記の概略単分散された略球状の粒子75重量部と凝集している略球状の粒子25重量部を内容積が2リットルのロッキングミルで236時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が75:25であり、混合導電粉のタップ密度は7.541g/cmで、相対充填密度は72%であった。 The above substantially monodispersed substantially spherical particles 75 parts by weight and aggregated substantially spherical particles 25 parts by weight are mixed in a rocking mill having an internal volume of 2 liters for 236 hours, and the aggregated substantially spherical particles The pulverization and uniform dispersion of both were performed to obtain a mixed conductive powder in which both silver powders were approximately monodispersed. The volume ratio of the substantially monodispersed substantially spherical particles to the aggregated substantially spherical particles is 75:25 in which the substantially monodispersed substantially spherical particles: aggregated substantially spherical particles are 75:25. Yes, the tap density of the mixed conductive powder was 7.541 g / cm 3 and the relative packing density was 72%.

実施例5
概略単分散された略球状の粒子として、平均粒径が12μm及び相対充填密度が63%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が1.0μmで、タップ密度から求めた相対充填密度が52%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は12であった。
Example 5
Silver powder having an average particle diameter of 12 μm and a relative packing density of 63% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as agglomerated substantially spherical particles, silver powder having a primary particle size of 1.0 μm and a relative packing density determined from the tap density of 52% was used. The particle size ratio of the former silver powder and the latter silver powder at this time was 12.

上記の概略単分散している略球状の粒子70重量部と凝集している略球状の粒子30重量部を内容積が2リットルのVブレンダで288時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が70:30であり、混合導電粉のタップ密度は7.84g/cmで、相対充填密度は75%であった。 70 parts by weight of the above substantially monodispersed substantially spherical particles and 30 parts by weight of the aggregated substantially spherical particles are mixed for 288 hours in a V blender having an internal volume of 2 liters, and agglomerated substantially spherical particles. The mixed conductive powder in which both silver powders were approximately monodispersed was obtained by pulverizing the particles and uniformly dispersing them. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 70:30. Yes, the tap density of the mixed conductive powder was 7.84 g / cm 3 and the relative packing density was 75%.

実施例6
概略単分散された略球状の粒子として、平均粒径が6μm及び相対充填密度が62%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子として、一次粒径が1.0μmで、タップ密度から求めた相対充填密度が52%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は6であった。
Example 6
Silver powder having an average particle diameter of 6 μm and a relative packing density of 62% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as agglomerated substantially spherical particles, silver powder having a primary particle size of 1.0 μm and a relative packing density determined from the tap density of 52% was used. The particle size ratio of the former silver powder and the latter silver powder at this time was 6.

上記の概略単分散している略球状の粒子70重量部と凝集している略球状の粒子30重量部を内容積が2リットルのVブレンダで240時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。なお、概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が70:30であり、混合導電粉のタップ密度は7.32g/cmで、相対充填密度は70%であった。 70 parts by weight of the above substantially monodispersed substantially spherical particles and 30 parts by weight of the aggregated substantially spherical particles are mixed in a V blender having an internal volume of 2 liters for 240 hours to aggregate the substantially spherical particles. The mixed conductive powder in which both silver powders were approximately monodispersed was obtained by pulverizing the particles and uniformly dispersing them. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 70:30. Yes, the mixed conductive powder had a tap density of 7.32 g / cm 3 and a relative packing density of 70%.

実施例7
概略単分散された略球状の粒子として、平均粒径が6μm及び相対充填密度が62%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子としては、一次粒径が0.8μmで、タップ密度から求めた相対充填密度が48%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は7.5であった。
Example 7
Silver powder having an average particle diameter of 6 μm and a relative packing density of 62% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as the agglomerated substantially spherical particles, silver powder having a primary particle size of 0.8 μm and a relative packing density determined from the tap density of 48% was used. The particle size ratio of the former silver powder and the latter silver powder at this time was 7.5.

上記の概略単分散している略球状の粒子75重量部と凝集している略球状の粒子25重量部を内容積が2リットルのVブレンダで192時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が75:25であり、混合導電粉のタップ密度は7.37g/cmで、相対充填密度は70%であった。 The above substantially monodispersed substantially spherical particles 75 parts by weight and the aggregated substantially spherical particles 25 parts by weight are mixed in a V blender having an internal volume of 2 liters for 192 hours, and aggregated substantially spherical particles. The mixed conductive powder in which both silver powders were approximately monodispersed was obtained by pulverizing the particles and uniformly dispersing them. The volume ratio of substantially monodispersed substantially spherical particles to agglomerated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 75:25, The mixed conductive powder had a tap density of 7.37 g / cm 3 and a relative packing density of 70%.

実施例8
概略単分散された略球状の粒子として、平均粒径が6μm及び相対充填密度が62%の銀粉を使用した。そのアスペクト比は1.0であった。また凝集している略球状の粒子としては、一次粒径が0.8μmで、タップ密度から求めた相対充填密度が48%の銀粉を使用した。このときの前者の銀粉と後者の銀粉の粒径比は7.5であった。
Example 8
Silver powder having an average particle diameter of 6 μm and a relative packing density of 62% was used as the roughly spherical particles that were substantially monodispersed. The aspect ratio was 1.0. Further, as the agglomerated substantially spherical particles, silver powder having a primary particle size of 0.8 μm and a relative packing density determined from the tap density of 48% was used. The particle size ratio of the former silver powder and the latter silver powder at this time was 7.5.

上記の概略単分散している略球状の粒子60重量部と凝集している略球状の粒子40重量部を内容積が2リットルのVブレンダで168時間混合し、凝集している略球状の粒子の解粒と両者の均一分散を行って両銀粉が概略単分散された混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が60:40であり、混合導電粉のタップ密度は4.28g/cmで、相対充填密度は69%であった。 60 parts by weight of the above substantially monodispersed substantially spherical particles and 40 parts by weight of aggregated substantially spherical particles are mixed in a V blender having an internal volume of 2 liters for 168 hours, and aggregated substantially spherical particles. The mixed conductive powder in which both silver powders were approximately monodispersed was obtained by pulverizing the particles and uniformly dispersing them. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 60:40, The tap density of the mixed conductive powder was 4.28 g / cm 3 and the relative packing density was 69%.

比較例1
実施例1で使用した概略単分散している略球状の粒子60重量部と実施例1で使用した凝集している略球状の粒子40重量部を内容積が2リットルのVブレンダで0.05時間混合して混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が60:40であり、混合導電粉のタップ密度は6.42g/cmで、相対充填密度は61%であった。
Comparative Example 1
60 parts by weight of substantially monodispersed substantially spherical particles used in Example 1 and 40 parts by weight of agglomerated substantially spherical particles used in Example 1 were 0.05 by a V blender having an internal volume of 2 liters. The mixed conductive powder was obtained by mixing for a period of time. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 60:40, The tap density of the mixed conductive powder was 6.42 g / cm 3 and the relative packing density was 61%.

比較例2
実施例2で使用した概略単分散している略球状の粒子30重量部と実施例2で使用した凝集している略球状の粒子70重量部を内容積が2リットルのVブレンダで0.1時間混合して混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が30:70であり、混合導電粉のタップ密度は5.77g/cmで、相対充填密度は55%であった。
Comparative Example 2
30 parts by weight of the substantially monodispersed substantially spherical particles used in Example 2 and 70 parts by weight of the agglomerated substantially spherical particles used in Example 2 were 0.1% in a V blender having an internal volume of 2 liters. The mixed conductive powder was obtained by mixing for a period of time. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 30:70, The tap density of the mixed conductive powder was 5.77 g / cm 3 and the relative packing density was 55%.

比較例3
実施例6で使用した概略単分散している略球状の粒子35重量部と実施例6で使用した凝集している略球状の粒子65重量部を内容積が2リットルのVブレンダで1時間混合して混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が35:70であり、混合導電粉のタップ密度は5.65g/cmで、相対充填密度は53.9%であった。
Comparative Example 3
35 parts by weight of roughly monodispersed substantially spherical particles used in Example 6 and 65 parts by weight of agglomerated substantially spherical particles used in Example 6 were mixed for 1 hour in a V blender having an internal volume of 2 liters. Thus, mixed conductive powder was obtained. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 35:70, The tap density of the mixed conductive powder was 5.65 g / cm 3 and the relative packing density was 53.9%.

比較例4
実施例6で使用した概略単分散している略球状の粒子60重量部と実施例6で使用した凝集している略球状の粒子40重量部を内容積が2リットルのVブレンダで0.1時間混合して混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が60:40であり、混合導電粉のタップ密度は5.86g/cmで、相対充填密度は56%であった。
Comparative Example 4
60 parts by weight of the substantially monodispersed substantially spherical particles used in Example 6 and 40 parts by weight of the agglomerated substantially spherical particles used in Example 6 were 0.1% in a V blender having an internal volume of 2 liters. The mixed conductive powder was obtained by mixing for a period of time. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 60:40, The tap density of the mixed conductive powder was 5.86 g / cm 3 and the relative packing density was 56%.

比較例5
実施例6で使用した概略単分散している略球状の粒子90gと実施例2で使用した凝集している略球状の粒子210gを、直径が0.2mmのジルコニアビーズ2kgと共に内容積が2リットルのボールミルに入れ、50min−1の回転速度で2時間混合して混合導電粉を得た。概略単分散している略球状の粒子と凝集している略球状の粒子の体積比は、概略単分散している略球状の粒子:凝集している略球状の粒子が30:70であり、混合導電粉のタップ密度は5.92g/cmで、相対充填密度は56%であった。
Comparative Example 5
90 g of substantially monodispersed substantially spherical particles used in Example 6 and 210 g of agglomerated substantially spherical particles used in Example 2 were mixed with 2 kg of zirconia beads having a diameter of 0.2 mm and an internal volume of 2 liters. And mixed for 2 hours at a rotation speed of 50 min −1 to obtain mixed conductive powder. The volume ratio of substantially monodispersed substantially spherical particles to aggregated substantially spherical particles is approximately monodispersed substantially spherical particles: aggregated substantially spherical particles is 30:70, The tap density of the mixed conductive powder was 5.92 g / cm 3 and the relative packing density was 56%.

上記とは別に、エポキシ当量が170g/eqのビスフェノールF型エポキシ樹脂(三井化学(株)製、商品名エポミックR110)55重量部、モノエポキサイド(旭電化工業(株)製、商品名グリシロールED―509)40重量部、2−フェニル−4−メチル−イミダゾール(四国化成(株)製、商品名キュアゾール2P4MZ)5重量部を均一に混合してバインダを得た。   Separately from the above, 55 parts by weight of a bisphenol F type epoxy resin having an epoxy equivalent of 170 g / eq (trade name Epomic R110, manufactured by Mitsui Chemicals, Inc.), monoepoxide (product name: Glysilol ED-, manufactured by Asahi Denka Kogyo Co., Ltd.) 509) 40 parts by weight and 5 parts by weight of 2-phenyl-4-methyl-imidazole (manufactured by Shikoku Kasei Co., Ltd., trade name: Curazole 2P4MZ) were uniformly mixed to obtain a binder.

次に、上記で得たバインダ9gに、上記の実施例1〜8及び比較例1〜5で得た混合導電粉各91gを添加し、混合した。その結果、実施例1〜8で得た混合導電粉を用いたものは均一に混合でき、ペースト化することができたが、比較例1〜5で得た混合導電粉はペーストにならず、即ち、均一に混合することができず、粘度が極めて高いばさばさの固まりになってしまった。
Next, 91 g of the mixed conductive powders obtained in Examples 1 to 8 and Comparative Examples 1 to 5 were added to 9 g of the binder obtained above and mixed. As a result, those using the mixed conductive powder obtained in Examples 1-8 could be uniformly mixed and made into a paste, but the mixed conductive powder obtained in Comparative Examples 1-5 did not become a paste, In other words, the mixture could not be uniformly mixed, resulting in a bulky bulk with very high viscosity.

Claims (4)

概略単分散された粒径の異なる略球状の銀、パラジウム又はこれらの合金の2種類を組み合わせた粒子を含み、かつ相対充填密度が68〜80%である混合導電粉。   A mixed conductive powder comprising particles obtained by combining two kinds of substantially spherical silver, palladium, or an alloy thereof having a substantially monodispersed particle diameter, and having a relative packing density of 68 to 80%. 請求項1記載の2種類を組み合わせた粒子が、一方の平均粒径が他方の平均粒径の5〜25倍である請求項1記載の混合導電粉。   2. The mixed conductive powder according to claim 1, wherein one of the particles having a combination of the two types according to claim 1 has an average particle diameter of 5 to 25 times that of the other average particle diameter. 請求項1記載の2種類を組み合わせた粒子が、アスペクト比が1〜1.5である請求項1又は2記載の混合導電粉。   The mixed conductive powder according to claim 1 or 2, wherein the particles obtained by combining the two types according to claim 1 have an aspect ratio of 1 to 1.5. 請求項1記載の2種類を組み合わせた粒子が、粒径の小さい側の略球状の粒子の一次粒径が0.3〜1.8μmである請求項1、2又は3記載の混合導電粉。
The mixed conductive powder according to claim 1, 2 or 3, wherein the particles obtained by combining the two types according to claim 1 have a primary particle diameter of 0.3 to 1.8 µm on the side of the smaller spherical particle.
JP2004010407A 2004-01-19 2004-01-19 Mixed conductive powder Pending JP2005203304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010407A JP2005203304A (en) 2004-01-19 2004-01-19 Mixed conductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010407A JP2005203304A (en) 2004-01-19 2004-01-19 Mixed conductive powder

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2009272465A Division JP2010056092A (en) 2009-11-30 2009-11-30 Mixed conductive powder
JP2011128319A Division JP2011204688A (en) 2011-06-08 2011-06-08 Mixed conductive powder

Publications (1)

Publication Number Publication Date
JP2005203304A true JP2005203304A (en) 2005-07-28

Family

ID=34823138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010407A Pending JP2005203304A (en) 2004-01-19 2004-01-19 Mixed conductive powder

Country Status (1)

Country Link
JP (1) JP2005203304A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223058A (en) * 2007-03-09 2008-09-25 Alpha Scientific Kk Mixed conductive powder and its manufacturing method, and conductive paste and its manufacturing method
WO2011007442A1 (en) * 2009-07-16 2011-01-20 株式会社応用ナノ粒子研究所 Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
WO2011007608A1 (en) * 2009-07-16 2011-01-20 株式会社応用ナノ粒子研究所 Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
WO2015194536A1 (en) * 2014-06-16 2015-12-23 国立大学法人大阪大学 Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste
KR20200114890A (en) * 2019-03-29 2020-10-07 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same
KR20210105405A (en) 2018-12-26 2021-08-26 쇼에이 가가쿠 가부시키가이샤 silver paste
KR20210105404A (en) 2018-12-26 2021-08-26 쇼에이 가가쿠 가부시키가이샤 silver paste
KR20210107067A (en) 2018-12-26 2021-08-31 쇼에이 가가쿠 가부시키가이샤 silver paste

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195170A (en) * 1987-10-06 1989-04-13 Yamaha Corp Conductive paint
JPH07302510A (en) * 1994-05-10 1995-11-14 Sumitomo Metal Mining Co Ltd Conductive paste composition
JP2001273816A (en) * 2000-03-27 2001-10-05 Asahi Chem Res Lab Ltd Conductive paste
JP2002109959A (en) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd Conductive paste
JP2002245874A (en) * 2001-02-22 2002-08-30 Noritake Co Ltd Conductive paste and its manufacturing method
JP2002270035A (en) * 2001-03-14 2002-09-20 Noritake Co Ltd Conductor paste, powder material for preparing it, and manufacturing method for ceramic electronic component
JP2002298650A (en) * 2001-03-30 2002-10-11 Ngk Spark Plug Co Ltd Conductive paste and wiring board using the same and its manufacturing method
JP2003092024A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Via hole filling conductive paste, and circuit board using the same, and manufacturing method of the same
JP2003327943A (en) * 2002-05-15 2003-11-19 Matsushita Electric Ind Co Ltd Conductive adhesive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195170A (en) * 1987-10-06 1989-04-13 Yamaha Corp Conductive paint
JPH07302510A (en) * 1994-05-10 1995-11-14 Sumitomo Metal Mining Co Ltd Conductive paste composition
JP2001273816A (en) * 2000-03-27 2001-10-05 Asahi Chem Res Lab Ltd Conductive paste
JP2002109959A (en) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd Conductive paste
JP2002245874A (en) * 2001-02-22 2002-08-30 Noritake Co Ltd Conductive paste and its manufacturing method
JP2002270035A (en) * 2001-03-14 2002-09-20 Noritake Co Ltd Conductor paste, powder material for preparing it, and manufacturing method for ceramic electronic component
JP2002298650A (en) * 2001-03-30 2002-10-11 Ngk Spark Plug Co Ltd Conductive paste and wiring board using the same and its manufacturing method
JP2003092024A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Via hole filling conductive paste, and circuit board using the same, and manufacturing method of the same
JP2003327943A (en) * 2002-05-15 2003-11-19 Matsushita Electric Ind Co Ltd Conductive adhesive

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223058A (en) * 2007-03-09 2008-09-25 Alpha Scientific Kk Mixed conductive powder and its manufacturing method, and conductive paste and its manufacturing method
WO2011007442A1 (en) * 2009-07-16 2011-01-20 株式会社応用ナノ粒子研究所 Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
WO2011007608A1 (en) * 2009-07-16 2011-01-20 株式会社応用ナノ粒子研究所 Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
JP2011021255A (en) * 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
US20120107628A1 (en) * 2009-07-16 2012-05-03 Toyota Jidosha Kabushiki Kaisha Three-Metallic-Component Type Composite Nanometallic Paste, Method Of Bonding, And Electronic Component
US20120114972A1 (en) * 2009-07-16 2012-05-10 Shindengen Electric Manufacturing Co., Ltd. Composite Nanometal Paste of Two-Metallic-Component Type, Bonding Method, and Electronic Part
JPWO2011007442A1 (en) * 2009-07-16 2012-12-20 株式会社応用ナノ粒子研究所 Two kinds of metal component type composite nano metal paste, bonding method and electronic component
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
US10201852B2 (en) 2014-06-16 2019-02-12 Osaka University Silver particle synthesizing method, silver particles, conductive paste producing method, and conductive paste
JPWO2015194536A1 (en) * 2014-06-16 2017-05-18 国立大学法人大阪大学 Method for synthesizing silver particles, silver particles, method for producing conductive paste, and conductive paste
WO2015194536A1 (en) * 2014-06-16 2015-12-23 国立大学法人大阪大学 Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste
TWI653347B (en) 2014-06-16 2019-03-11 國立大學法人大阪大學 Silver particle synthesizing method, silver particle, conductive paste manufacturing method, and conductive paste
CN106660131A (en) * 2014-06-16 2017-05-10 国立大学法人大阪大学 Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste
KR20210105405A (en) 2018-12-26 2021-08-26 쇼에이 가가쿠 가부시키가이샤 silver paste
US11535767B2 (en) 2018-12-26 2022-12-27 Shoei Chemical Inc. Silver paste
KR20210107067A (en) 2018-12-26 2021-08-31 쇼에이 가가쿠 가부시키가이샤 silver paste
KR20210105404A (en) 2018-12-26 2021-08-26 쇼에이 가가쿠 가부시키가이샤 silver paste
KR20200114890A (en) * 2019-03-29 2020-10-07 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same
KR102263618B1 (en) * 2019-03-29 2021-06-10 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same
TWI725796B (en) * 2019-03-29 2021-04-21 南韓商大洲電子材料股份有限公司 Mixed silver powder and conductive paste comprising same
CN113677458A (en) * 2019-03-29 2021-11-19 大洲电子材料株式会社 Mixed silver powder and conductive paste containing the same
US11401200B2 (en) 2019-03-29 2022-08-02 Daejoo Electronic Materials Co., Ltd. Mixed silver powder and conductive paste comprising same
WO2020204450A1 (en) * 2019-03-29 2020-10-08 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same
US11713274B2 (en) 2019-03-29 2023-08-01 Daejoo Electronic Materials Co., Ltd. Mixed silver powder and conductive paste comprising same
CN113677458B (en) * 2019-03-29 2024-03-29 大洲电子材料株式会社 Mixed silver powder and conductive paste containing the same

Similar Documents

Publication Publication Date Title
JP4841987B2 (en) Flake silver powder and method for producing the same
US20090127518A1 (en) Electrically Conductive Powder and Production Thereof, Paste of Electrically Conductive Powder and Production of Paste of Electrically Conductive Powder
JP2004169155A (en) Flake copper powder, production method for the flake copper powder, and electrically conductive paste obtained by using the flake copper powder
JP3984534B2 (en) Copper powder for conductive paste and method for producing the same
JP2007042301A (en) Conductive composition, conductive paste, and conductive film
WO2014175417A1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
WO2011007442A1 (en) Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
JP2005203304A (en) Mixed conductive powder
US20180056448A1 (en) Liquid dispersion of metal nanoparticles for solder paste, method for producing the liquid dispersion, solder paste, method for producing the solder paste
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
US20060289837A1 (en) Silver salts of dicarboxcylic acids for precious metal powder and flakes
EP3674683B1 (en) Evaluation method of powder for laminate molding
JP2011204688A (en) Mixed conductive powder
Mohankumar et al. Nano-particle reinforced solders for fine pitch applications
JP2010056092A (en) Mixed conductive powder
JP2012115861A (en) Method for manufacturing solder powder and solder powder obtained by the same
CN105087977A (en) High-content iron metal additive used for producing aluminum alloy and preparation method of high-content iron metal additive
JP2012157869A (en) Solder powder and paste for solder using the same
CN110605385B (en) Preparation method of tungsten-based micro-nano composite powder and tungsten-based micro-nano composite powder
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
JP2004027246A (en) Copper powder for conductive paste, and its manufacturing method
JP6211758B2 (en) Blast furnace slag powder, cement admixture and cement composition containing the blast furnace slag powder
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
JP2011137189A (en) Silver particulate having high sphericity, and method for producing the same
JP2003123537A (en) Mixed copper powder, method of manufacturing the mixed copper powder, copper paste using the mixed copper powder and printed circuit board using the copper paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608