JPH0195170A - Conductive paint - Google Patents

Conductive paint

Info

Publication number
JPH0195170A
JPH0195170A JP25200887A JP25200887A JPH0195170A JP H0195170 A JPH0195170 A JP H0195170A JP 25200887 A JP25200887 A JP 25200887A JP 25200887 A JP25200887 A JP 25200887A JP H0195170 A JPH0195170 A JP H0195170A
Authority
JP
Japan
Prior art keywords
metal particles
diameter
particle size
metallic particles
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25200887A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamuki
川向 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP25200887A priority Critical patent/JPH0195170A/en
Publication of JPH0195170A publication Critical patent/JPH0195170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the title paint excellent in electromagnetic wave shielding performance by increasing the contact points among metallic particles, by dispersing mixed metallic particles comprising both of large- and small-diameter metallic particles of different mean particle diameters. CONSTITUTION:Mixed metal particles 1 (A) having a particle diameter distribution having two peaks, obtained by mixing large-diameter metallic particles 1a having a mean particle diameter of 2-20mu and comprising silver, copper, Ni or the like with small-diameter metallic particles 1b of a mean particle diameter of 0.1-1mu are mixed with and dispersed in a resin (B) for paint such as an acrylic resin, a urethane resin or ethylcellulose and a solvent (C) such as a ketone or toluene in such a mixing ratio that 45-65wt.% component A, 5-15wt.% component B and 30-40wt.% component C are present. The obtained title paint is applied to a substrate and baked at 20-150 deg.C to obtain a conductive paint film.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、プリント配線材料や帯電防止材料などに利
用される導電性塗料に関し、特に電磁波ンールドが向上
し、高い導電性が得られるようにしたしのである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive paint used for printed wiring materials, antistatic materials, etc. This is Shishino.

[従来の技術] 従来より導電性塗料は、その施工性の容易さから、化学
メツキ、電解メツキあるいはアルミ蒸着や金属箔などの
代替として使用が試みられている。
[Prior Art] Conventionally, conductive paints have been used as a substitute for chemical plating, electrolytic plating, aluminum vapor deposition, metal foil, etc. because of their ease of application.

このような導電性塗料は一般に、塗料用樹脂に顔料とし
て導電性の金属粒子を分散させてなるものである。ここ
で、塗料用樹脂としてはアクリル系やウレタン系のもの
が、また金属粒子としては、例えば銀、銅、ニッケル等
からなる球状、樹枝状あるいはフレーク状のものが広く
使用されている。
Such conductive paints are generally made by dispersing conductive metal particles as pigments in paint resin. Acrylic and urethane resins are widely used as paint resins, and spherical, dendritic, or flake metal particles made of, for example, silver, copper, nickel, etc. are widely used.

そして、これらの金属粒子相互の接触により導電性が発
現するようになっている。
Conductivity is developed by contact between these metal particles.

ここで従来より一般に使用されている金属粒子としては
、2〜20μm程変の平均粒子径を有する金属粒子であ
り、このような金属粒子の粒径分布は例えば第5図に示
すようなものである。そしてこのような金属粒子にあっ
ては、導電性塗料中に分散された場合、第6図に示すよ
うな分散形態をとる。第6図中符号lが、上記金属粒子
である。
Here, the metal particles commonly used heretofore are metal particles having an average particle size varying from 2 to 20 μm, and the particle size distribution of such metal particles is, for example, as shown in Figure 5. be. When such metal particles are dispersed in a conductive paint, they take a dispersion form as shown in FIG. The symbol l in FIG. 6 is the metal particle.

[発明が解決しようとする問題点] ところが、従来の導電性塗料にあっては、同一の用途に
用いられている化学メツキ、電解メッキあるいはアルミ
蒸着や金属箔などに比べ、その施工は手軽であるが、そ
の半面、電磁波シールド性能が低く、導電性が不良であ
る問題があった。
[Problems to be solved by the invention] However, conventional conductive paints are easier to apply than chemical plating, electrolytic plating, aluminum vapor deposition, metal foil, etc., which are used for the same purpose. However, on the other hand, there were problems with low electromagnetic shielding performance and poor conductivity.

これは、上記従来例の導電性塗料においては、導電性の
発現が金属粒子間の接触点によるものであるが、上述の
ように、この導電性塗料の場合には上記のような粒子径
および粒径分布を有する金属粒子を使用しているため、
第6図に示したように金属粒子同士の接触点数が少なく
なり、高い導電性が得られないためとされている。これ
に対し、化学メツキ、電解メツキあるいはアルミ蒸着や
金属箔などの場合は、その導電性の発現が完全な連続面
によるものであるために、高い導電性が得られるとされ
ている。
This is because, in the conventional conductive paint mentioned above, conductivity is due to the contact points between metal particles, but as mentioned above, in the case of this conductive paint, the above particle diameter and Because we use metal particles with a particle size distribution,
This is said to be because the number of contact points between metal particles decreases, as shown in FIG. 6, and high conductivity cannot be obtained. On the other hand, in the case of chemical plating, electrolytic plating, aluminum vapor deposition, metal foil, etc., high conductivity is said to be obtained because the conductivity is achieved through a completely continuous surface.

そこで、この発明は上述の問題点を解消し、電磁波シー
ルドを向上し、高い導電性を得ることができるような導
電性塗料を提供することを目的としている。
Therefore, an object of the present invention is to provide a conductive paint that can solve the above-mentioned problems, improve electromagnetic shielding, and provide high conductivity.

[問題点を解決するための手段] この発明では、平均粒子径が2〜20μmである大径金
属粒子と、平均粒子径が0.1〜171mである小径金
属粒子とを混合してなる混合金属粒子を分散させたこと
をその解決手段とする。
[Means for solving the problem] In the present invention, a mixture formed by mixing large-diameter metal particles with an average particle diameter of 2 to 20 μm and small-diameter metal particles with an average particle diameter of 0.1 to 171 m. The solution is to disperse metal particles.

以下この発明の一例を、図面に基いて詳細に説明する。An example of the present invention will be explained in detail below based on the drawings.

第1図は、この発明の導電性塗料に使用される混合金属
粒子の粒径分布の一例を示すグラフであって、特に2つ
のピークを有する粒径分布の一例を示したものである。
FIG. 1 is a graph showing an example of the particle size distribution of mixed metal particles used in the conductive paint of the present invention, and particularly shows an example of the particle size distribution having two peaks.

第1図中ピークAは、主に平均粒子径が2〜20μmで
ある大径の金属粒子の粒径分布を示しており、またピー
クBは、主に平均粒子径が0.1〜1μmである小径の
金属粒子の粒径分布を示している。そして、これらの大
径金属粒子と小径金属粒子とを混合してなる混合金属粒
子の粒径分布の一例が、第1図に示したように2つのピ
ークを有する粒径分布となる。そして、このような金属
粒子は、導電性塗料とされた際、第2図のような分散形
態を示すものである。第2図中符号1は金属粒子を示し
、laおよびlbはそれぞれ大径金属粒子および小径金
属粒子を示す。図より明らかなように、大径の金属粒子
1a同士の分散によって形成された空隙部分に、この空
隙部分を埋めるごとく小径の金属粒子1bが介入されて
なる分散形態をとっている。
In Fig. 1, peak A mainly indicates the particle size distribution of large metal particles with an average particle size of 2 to 20 μm, and peak B mainly shows a particle size distribution of large metal particles with an average particle size of 0.1 to 1 μm. The particle size distribution of certain small-sized metal particles is shown. An example of the particle size distribution of mixed metal particles obtained by mixing these large-diameter metal particles and small-diameter metal particles is a particle size distribution having two peaks, as shown in FIG. When such metal particles are made into a conductive paint, they exhibit a dispersion form as shown in FIG. In FIG. 2, the reference numeral 1 indicates a metal particle, and la and lb indicate a large-diameter metal particle and a small-diameter metal particle, respectively. As is clear from the figure, the dispersion form is such that small-diameter metal particles 1b are interposed to fill the voids formed by the dispersion of large-diameter metal particles 1a.

また、この金属粒子1には、銀、銅、ニッケル等の金属
粉や酸化銀、硝酸銀などが好適に使用され、塗料用樹脂
、溶剤と混合されて、この発明の導電性塗料とされる。
Further, metal powders such as silver, copper, and nickel, silver oxide, silver nitrate, and the like are suitably used as the metal particles 1, and are mixed with a paint resin and a solvent to form the conductive paint of the present invention.

ここで、塗料用樹脂としてはアクリル系やウレタン系あ
るいはエチルセルロースやフェノール樹脂などが好適に
使用され、また上記溶剤にはケトン類やベンゼン、トル
エン、塩化エヂレンなどが主に使用されろ。この際の混
合比は、金属粒子45〜65重量%、塗料用樹脂5〜1
5重量%、さらに溶剤30〜40重量%程シンされるの
が好ましい。
Here, as the coating resin, acrylic, urethane, ethyl cellulose, phenol resin, etc. are preferably used, and as the solvent, ketones, benzene, toluene, ethylene chloride, etc. are mainly used. The mixing ratio at this time is 45 to 65% by weight of metal particles and 5 to 1% of paint resin.
It is preferable that the solvent be reduced by 5% by weight, and more preferably by about 30 to 40% by weight.

こうして得られた導電性塗料は、陶磁器、ガラス、合成
樹脂などの板、紙、布などよりなる種々の基板の上にス
ピンコード法、はけ塗りあるいは吹付は等の方法により
塗布され、次いで温度20〜150℃程度の条件により
焼き付けを行って導電性塗膜とされ、使用に供仕られる
The conductive paint thus obtained is applied onto various substrates made of ceramics, glass, synthetic resin boards, paper, cloth, etc. by a spin cord method, brushing, spraying, etc., and then heated at a temperature. Baking is performed under conditions of approximately 20 to 150°C to form a conductive coating film, which is ready for use.

以上ここでは、導電性塗料中に分散されて使用される金
属粒子か、大径金属粒子と小径金属粒子とを混合してな
る混合金属粒子であって、その粒径分布か特に2つのピ
ークを有する場合について述べたが、この粒径分布につ
いては、上記のように2つのピークを有するものに限ら
れる乙のではない。すなわち、例えば第3図に示したよ
うに、2つのピーク間の谷間が埋まってあたかも平坦状
の1つのピークを持つような粒径分布を有する金属粒子
が用いられても良い。またさらに、大径粒子あるいは小
径粒子が、それ自身2つ以上のピークを有するような粒
径分布を持つ場合には、これらの混合物である金属粒子
は、不可避的に、例えば第4図に示したような3つ以上
のピークを有する粒径分布を示すことがあるが、このよ
うな3つ以上のピークを持つ粒径分布を存する金属粒子
が使用されても、同等支障はない。
Above, here, we will discuss metal particles that are used dispersed in a conductive paint, or mixed metal particles that are a mixture of large-diameter metal particles and small-diameter metal particles, and whose particle size distribution has two peaks in particular. However, this particle size distribution is not limited to having two peaks as described above. That is, for example, as shown in FIG. 3, metal particles may be used that have a particle size distribution that fills the valley between two peaks and has one flat peak. Furthermore, if the large-diameter particles or small-diameter particles themselves have a particle size distribution that has two or more peaks, the metal particles that are a mixture of these particles will inevitably have the shape shown in FIG. 4, for example. Although metal particles may exhibit a particle size distribution having three or more peaks, there is no problem even if metal particles having a particle size distribution having three or more peaks are used.

このような導電性塗料にあっては、平均粒子径が2〜2
0μmである大径金属粒子と、平均粒子径が0.1〜1
μmである小径金属粒子とを混合してなる混合金属粒子
を分散させたものであるので、これらの金属粒子1間の
接触点数が増加し、このために導電性が良好となり、電
磁波シールド性能も向上する効果がある。
In such conductive paint, the average particle size is 2 to 2
Large-diameter metal particles having a diameter of 0 μm and an average particle diameter of 0.1 to 1
Since it is a mixture of mixed metal particles mixed with small-diameter metal particles (μm), the number of contact points between these metal particles 1 increases, resulting in good conductivity and electromagnetic shielding performance. It has an improving effect.

[実施例] 平均粒子径が5μである大径の銀粒子と、平均粒子径が
0.5μmである小径の銀粒子とを混合して粒径分布が
2つのピークを持つ混合銀粉を作成した。この混合銀粉
と、メタクリル酸メチルエステルとを、それぞれの濃度
が55重量%、10重量%となるように、ベンゼン溶媒
中に分散させた。
[Example] A mixed silver powder having two peaks in particle size distribution was created by mixing large silver particles with an average particle size of 5 μm and small silver particles with an average particle size of 0.5 μm. . This mixed silver powder and methacrylic acid methyl ester were dispersed in a benzene solvent so that the respective concentrations were 55% by weight and 10% by weight.

こうして得られた導電性塗料を実施例1とした。The conductive paint thus obtained was designated as Example 1.

これに対し、平均粒子径が5μmであって、その粒径分
布がピークを1つだけ持つような銀粉、および平均粒子
径が0.5μmであって、その粒径分布がピークを1つ
だけ持つような銀粉を、それぞれ同様にしてメタクリル
酸メチルエステルとともに、ベンゼン溶媒中に分散させ
て導電性塗料を作成し、これをそれぞれ比較例2および
比較例3とした。
On the other hand, silver powder has an average particle size of 5 μm and its particle size distribution has only one peak, and silver powder has an average particle size of 0.5 μm and its particle size distribution has only one peak. Conductive paints were prepared by dispersing such silver powders in a benzene solvent together with methacrylic acid methyl ester in the same manner as Comparative Example 2 and Comparative Example 3, respectively.

こうしてなる実施例(1例)および比較例(2例)の導
電性塗料を、それぞれ熱可塑性合成基板上に20μmの
厚さに塗布して通・電し、それぞれの導電性を測定した
ところ、以下の表に示すような結果が得られた。
The conductive paints of Example (Example 1) and Comparative Example (Example 2) were each applied to a thickness of 20 μm on a thermoplastic synthetic substrate, and the conductivity of each was measured by applying electricity. The results shown in the table below were obtained.

表 表より明らかなように、この発明の実施例では、比較例
(2例)に比べ、電気抵抗が小さく、その導電性が良好
である。これに比べて、大径粒子のみからなる銀粉を用
いた比較例2では、電磁波シールド性能が低く、導電性
も不良であった。また、小径粒子のみからなる銀粉を使
用した比較例3にあっても同様に、高い導電性を得るこ
とはできなかった。
As is clear from the table, the examples of the present invention have lower electrical resistance and better conductivity than the comparative examples (2 examples). In comparison, in Comparative Example 2 using silver powder consisting only of large-diameter particles, the electromagnetic shielding performance was low and the conductivity was also poor. Furthermore, even in Comparative Example 3 in which silver powder consisting only of small-diameter particles was used, high conductivity could not be obtained.

[発明の効果] 以上説明したように、この発明の導電性塗料は、平均粒
子径が2〜20μmである大径金属粒子と、平均粒子径
が0.1−1μmである小径金属粒子とを混合してなる
混合金属粒子を分散させたものであるので、金属粒子間
の接触点数が増加するために、電磁波シールド性能が向
上して高い導電性を有する導電性塗料を得ることができ
る効果がある。
[Effects of the Invention] As explained above, the conductive paint of the present invention comprises large metal particles having an average particle size of 2 to 20 μm and small metal particles having an average particle size of 0.1 to 1 μm. Since the mixed metal particles are dispersed, the number of contact points between the metal particles increases, which improves the electromagnetic shielding performance and makes it possible to obtain a conductive paint with high conductivity. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の導電性塗料に使用される金属粒子
の粒径分布の一例を表すグラフであり、第2図は、この
金属粒子の塗膜中での分散形態を示す平面図であり、 第3図および第4図は、それぞれこの発明において使用
される金属粒子の粒径分布の他の2例を示すグラフであ
り、 第5図は、従来の導電性塗料に使用されている金属粒子
の粒径分布の一例を表すグラフであり、第6図は、この
従来の金属粒子の塗膜中での分散形態を示す平面図であ
る。 l・・・・・・金属粒子。 1a・・・・・・大径金属粒子、  Ib・・・・・・
小径金属粒子。
FIG. 1 is a graph showing an example of the particle size distribution of metal particles used in the conductive paint of the present invention, and FIG. 2 is a plan view showing the dispersion form of the metal particles in the coating film. 3 and 4 are graphs showing two other examples of the particle size distribution of metal particles used in this invention, respectively, and FIG. 5 is a graph showing two other examples of particle size distribution of metal particles used in the present invention, and 6 is a graph showing an example of the particle size distribution of metal particles, and FIG. 6 is a plan view showing the dispersion form of the conventional metal particles in a coating film. l...Metal particles. 1a... Large diameter metal particles, Ib...
Small diameter metal particles.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒子径が2〜20μmである大径金属粒子と
、平均粒子径が0.1〜1μmである小径金属粒子とを
混合してなる混合金属粒子を分散させたことを特徴とす
る導電性塗料。
(1) It is characterized by dispersing mixed metal particles formed by mixing large-diameter metal particles with an average particle diameter of 2 to 20 μm and small-diameter metal particles with an average particle diameter of 0.1 to 1 μm. conductive paint.
(2)前記混合金属粒子の粒径分布が2つのピークを有
することを特徴とする特許請求の範囲第1項記載の導電
性塗料。
(2) The conductive paint according to claim 1, wherein the particle size distribution of the mixed metal particles has two peaks.
JP25200887A 1987-10-06 1987-10-06 Conductive paint Pending JPH0195170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25200887A JPH0195170A (en) 1987-10-06 1987-10-06 Conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25200887A JPH0195170A (en) 1987-10-06 1987-10-06 Conductive paint

Publications (1)

Publication Number Publication Date
JPH0195170A true JPH0195170A (en) 1989-04-13

Family

ID=17231286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25200887A Pending JPH0195170A (en) 1987-10-06 1987-10-06 Conductive paint

Country Status (1)

Country Link
JP (1) JPH0195170A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190071A (en) * 1996-12-20 1998-07-21 Aisin Seiki Co Ltd Multistage electronic cooling device
JP2005203304A (en) * 2004-01-19 2005-07-28 Hitachi Chem Co Ltd Mixed conductive powder
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
WO2010109541A1 (en) * 2009-03-27 2010-09-30 株式会社日立製作所 Conductive paste and electronic part equipped with electrode wiring formed from same
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
JP2013168369A (en) * 2013-02-28 2013-08-29 Hitachi Ltd Conductive paste and electronic component having electrode wiring line using the same
KR20150061580A (en) * 2013-11-27 2015-06-04 닛토덴코 가부시키가이샤 Electro-conductive pressure-sensitive adhesive tape, an electronic member, and a pressure-sensitive adhesive
JP2017066407A (en) * 2013-11-27 2017-04-06 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
JPWO2017033374A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material
JPWO2017033375A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material
JP2021002446A (en) * 2019-06-20 2021-01-07 積水化学工業株式会社 Electroconductive material, connection structure, and method for manufacturing connection structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145601A (en) * 1985-12-19 1987-06-29 住友ベークライト株式会社 Conductive resin paste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145601A (en) * 1985-12-19 1987-06-29 住友ベークライト株式会社 Conductive resin paste

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190071A (en) * 1996-12-20 1998-07-21 Aisin Seiki Co Ltd Multistage electronic cooling device
JP2005203304A (en) * 2004-01-19 2005-07-28 Hitachi Chem Co Ltd Mixed conductive powder
JP5215458B2 (en) * 2009-03-27 2013-06-19 株式会社日立製作所 ELECTRONIC COMPONENT HAVING CONDUCTIVE PASTE AND ELECTRODE WIRING USING THE SAME
WO2010109541A1 (en) * 2009-03-27 2010-09-30 株式会社日立製作所 Conductive paste and electronic part equipped with electrode wiring formed from same
JPWO2010109541A1 (en) * 2009-03-27 2012-09-20 株式会社日立製作所 ELECTRONIC COMPONENT HAVING CONDUCTIVE PASTE AND ELECTRODE WIRING USING THE SAME
US8945436B2 (en) 2009-03-27 2015-02-03 Hitachi, Ltd. Conductive paste and electronic part equipped with electrode wiring formed from same
DE112009004970B4 (en) * 2009-03-27 2018-05-03 Hitachi, Ltd. Conductive paste and electronic component provided with an electrode wiring formed therefrom
JP2010056092A (en) * 2009-11-30 2010-03-11 Hitachi Chem Co Ltd Mixed conductive powder
JP2011204688A (en) * 2011-06-08 2011-10-13 Hitachi Chem Co Ltd Mixed conductive powder
JP2013168369A (en) * 2013-02-28 2013-08-29 Hitachi Ltd Conductive paste and electronic component having electrode wiring line using the same
KR20150061580A (en) * 2013-11-27 2015-06-04 닛토덴코 가부시키가이샤 Electro-conductive pressure-sensitive adhesive tape, an electronic member, and a pressure-sensitive adhesive
JP2017066407A (en) * 2013-11-27 2017-04-06 日東電工株式会社 Conductive adhesive tape, electronic member and adhesive
JPWO2017033374A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material
JPWO2017033375A1 (en) * 2015-08-24 2018-05-24 パナソニックIpマネジメント株式会社 Conductive paint composition, conductive material, process for producing conductive paint composition, process for producing conductive material
JP2021002446A (en) * 2019-06-20 2021-01-07 積水化学工業株式会社 Electroconductive material, connection structure, and method for manufacturing connection structure

Similar Documents

Publication Publication Date Title
WO2014080754A1 (en) Electromagnetic wave absorption film and method for manufacturing same
US4711814A (en) Nickel particle plating system
JPH0195170A (en) Conductive paint
US5840432A (en) Electroconductive paste
US4490282A (en) Conductive paint composition
CN110027268A (en) Electromagnetic shielding film
US5158657A (en) Circuit substrate and process for its production
EP0453090B1 (en) Electro-deposition coated member, process for producing it, and electro-deposition coating composition
KR100296376B1 (en) Surface coating for insulative materials, method of obtaining it and its application to shielding insulative cases
JPS6060168A (en) Electrically conductive paint
JPS6241238A (en) Electroconductive filler
JPH1166956A (en) Conductive paste
JP3254044B2 (en) Electrodes for solar cells
JPH02168698A (en) Conductive resin film and manufacture thereof
JP4163278B2 (en) Method for producing flake copper powder for conductive paint
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPS60161467A (en) Electrically conductive electrodeposition coating material
JPH0473809A (en) Transparent conductiv film
CN110552000A (en) method for manufacturing ultrathin single-sided conductive polymer film
JPH0435920B2 (en)
JP2651919B2 (en) Metal powder
JPH07121384B2 (en) Method for producing glitter coated metal plate
JPS60260663A (en) Electrically conductive paste
JP3082864B2 (en) Electrodeposition coating member and method of manufacturing the same
JPH04756B2 (en)