JP3082864B2 - Electrodeposition coating member and method of manufacturing the same - Google Patents

Electrodeposition coating member and method of manufacturing the same

Info

Publication number
JP3082864B2
JP3082864B2 JP03081352A JP8135291A JP3082864B2 JP 3082864 B2 JP3082864 B2 JP 3082864B2 JP 03081352 A JP03081352 A JP 03081352A JP 8135291 A JP8135291 A JP 8135291A JP 3082864 B2 JP3082864 B2 JP 3082864B2
Authority
JP
Japan
Prior art keywords
electrodeposition
film
powder
coating
electrodeposition coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03081352A
Other languages
Japanese (ja)
Other versions
JPH04218697A (en
Inventor
進 角倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03081352A priority Critical patent/JP3082864B2/en
Publication of JPH04218697A publication Critical patent/JPH04218697A/en
Application granted granted Critical
Publication of JP3082864B2 publication Critical patent/JP3082864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電着塗装部材に関し、特
にカメラ等の光学機器、家電製品、OA機器、事務機あ
るいは計測機器等に用いられる筐体を形成するシールド
性を有する電着膜で外装塗装を施した電着塗装部材及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposition coating member, and more particularly to an electrodeposition film having a shielding property for forming a housing used for optical equipment such as a camera, home electric appliances, OA equipment, office equipment or measuring equipment. And to a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年電子回路はより小型化し、また複
雑,精密になってきており、他の部品、回路から発生す
る電磁波による誤動作やノイズが重要な問題となってき
ている。また、電子回路自身も電磁波を発生し周囲へ与
える影響も重要な問題であり、これらを防ぐために電子
回路への電磁波の侵入、放射をシールドすることが求め
られている。
2. Description of the Related Art In recent years, electronic circuits have become smaller, more complicated and more precise, and malfunctions and noise due to electromagnetic waves generated from other components and circuits have become important problems. In addition, the electronic circuit itself also generates an electromagnetic wave and its influence on the surroundings is also an important problem, and in order to prevent such a problem, it is required to shield the penetration and radiation of the electromagnetic wave into the electronic circuit.

【0003】電磁波をシールドする方法としては、従来
回路基板を導電性材料である金属の筐体で囲む方法が知
られている。しかしながら、最近製品の小型、軽量化に
伴ないプラスチック材料からなる筐体が主流となってい
る。このプラスチック筐体の導電化法としては、導電化
塗料による吹付塗装が主流で、その他亜鉛溶射、無電解
めっき、真空蒸着、導電プラスチックの使用等の方法が
挙げられる。
[0003] As a method of shielding electromagnetic waves, there is conventionally known a method of surrounding a circuit board with a metal casing made of a conductive material. However, housings made of plastic materials have recently become mainstream as products become smaller and lighter. As a method for making the plastic casing conductive, spray coating with a conductive paint is the mainstream, and other methods include zinc spraying, electroless plating, vacuum deposition, and use of a conductive plastic.

【0004】しかしながら、従来の方法は、次の様な欠
点があった。吹付用の導電性塗料は、導電性フィラーの
含有量が60重量%以上、さらには塗膜厚が銅系フィラ
ーで30μm以上、ニッケル系フィラーで50μm以上
に厚く形成しないと電磁シールド効果がないため、筐体
の外装となる化粧塗装として好ましくない。
[0004] However, the conventional method has the following disadvantages. Since the conductive paint for spraying has a conductive filler content of 60% by weight or more and a coating thickness of 30 μm or more for a copper filler and 50 μm or more for a nickel filler, there is no electromagnetic shielding effect. However, this is not preferable as a decorative coating for the exterior of the housing.

【0005】また、金属粉末をフィラーに用いた場合、
金属粉末の比重が大きいため塗料の使用時には再分散さ
せる必要があるが容易でない。これらを解決する為に、
例えば特開昭59−223763号公報には、ニッケル
をコートした雲母粉末を導電フィラーとして用いた電磁
シールド用導電塗料が知られている。しかし、この塗料
も50μm以上に塗膜を厚く形成しなければ十分な電磁
シールド効果が得られない。また、複雑な形状の筐体で
は塗膜厚が不均一となり易く、その結果、シールド効果
が不十分となることがある。
When metal powder is used as a filler,
Due to the large specific gravity of the metal powder, it is necessary to redisperse when using the paint, but this is not easy. To solve these,
For example, JP-A-59-223763 discloses a conductive paint for electromagnetic shielding using a mica powder coated with nickel as a conductive filler. However, even with this coating material, a sufficient electromagnetic shielding effect cannot be obtained unless the coating film is formed thicker than 50 μm. Further, in a case having a complicated shape, the coating film thickness tends to be non-uniform, and as a result, the shielding effect may be insufficient.

【0006】つぎに、亜鉛溶射はシールド性確保の為に
は膜厚を50〜100μmと厚くする必要があり、さら
には基材への密着性に難があり、ブラスト加工等の工程
が必要となる。また、亜鉛蒸気ガスに伴い、作業環境の
悪化など量産性に問題がある。
[0006] Next, in order to ensure shielding properties, zinc spraying needs to have a thick film thickness of 50 to 100 µm, and further has difficulty in adhesion to a substrate, and requires a step such as blasting. Become. In addition, there is a problem in mass productivity such as deterioration of working environment due to the zinc vapor gas.

【0007】また、無電界めっきに関しては、例えば銅
めっきを厚さ1.0〜1.5μm以上に形成した場合、
電磁シールド効果はあるものの、筐体全体にめっきが施
されるので、製品を筐体として用いる場合、外観上の見
映えを良好にするため、めっき面に塗装膜を形成し、商
品価値を高めることが不可欠となる。しかし、この場
合、めっき面と塗装面との密着不良が発生する問題があ
る。
[0007] Regarding electroless plating, for example, when copper plating is formed to a thickness of 1.0 to 1.5 µm or more,
Although it has an electromagnetic shielding effect, plating is applied to the entire housing, so when using the product as a housing, a coating film is formed on the plating surface to improve the appearance and enhance commercial value. It becomes essential. However, in this case, there is a problem that poor adhesion between the plated surface and the painted surface occurs.

【0008】特に、銅めっきのみを施した場合では、経
時変化によって腐蝕が生じ性能が低下するため、この表
面にニッケルめっきを施して品質の低下を防止する必要
がある。更に、このニッケルめっきが塗装膜との密着性
を大きく阻害するため、特殊塗料、例えばオリジプレー
トZ(商品名、オリジン電気社製)のように非常に限ら
れたものを用いて塗装しなければならず、コスト面に大
きな影響を与え、また量産性がない。
In particular, when only copper plating is applied, corrosion occurs due to aging and the performance is deteriorated. Therefore, it is necessary to apply nickel plating to this surface to prevent deterioration in quality. Further, since this nickel plating greatly impairs the adhesion to the coating film, it is necessary to apply a very limited coating such as a special coating, for example, Origin Plate Z (trade name, manufactured by Origin Electric Co., Ltd.). In addition, it has a significant effect on cost and has no mass productivity.

【0009】一方、粒径数10μm以上の金属粉体ある
いは金属繊維などの導電性フィラーを樹脂と混合して成
形した導電性プラスチック筐体が知られている。しか
し、このプラスチック筐体は表面の凹凸が著しく、成形
したままの状態では外装として用いることができず、商
品価値を出すためには化粧塗装を施さなければならない
問題がある。また、導電性が悪いために、完全な電磁波
シールドのために2次加工が必要となり量産的ではな
い。さらに、導電性プラスチック材料自身も高価であ
り、やはり実用上の限界がある。
On the other hand, there is known a conductive plastic housing formed by mixing a resin with a conductive filler such as a metal powder or a metal fiber having a particle size of several tens μm or more. However, this plastic housing has a remarkable unevenness on the surface, and cannot be used as an exterior when it is in a molded state, so that there is a problem that a cosmetic coating must be applied in order to obtain commercial value. In addition, because of poor conductivity, secondary processing is required for complete electromagnetic wave shielding, which is not mass-produced. In addition, the conductive plastic material itself is expensive, which also has practical limitations.

【0010】また、筐体の外装塗装としては、その外観
においても高品質な外観への志向が強くなってきてお
り、梨地状の外観に対するニーズが高い。その為、現在
塗装前にブラスト加工等の処理を行なった後に外装塗装
を行なっているが、段差または頂角を有する形状の筐体
へ塗装する場合には、平面部と段差または頂角部との膜
厚に差が生じ、スケ等の不良が発生し高品質な梨地状の
外観が得られない。
[0010] Further, as for the exterior coating of the housing, there is a strong desire for a high quality external appearance, and there is a high need for a satin-like external appearance. For this reason, exterior coating is currently performed after blast processing etc. is performed before painting, but when coating on a case with a step or vertex angle, the flat part and the step or vertex A difference occurs in the film thickness of the film, defects such as invisibility occur, and a high-quality satin-like appearance cannot be obtained.

【0011】[0011]

【発明が解決しようとする課題】本発明は、この様な従
来技術の欠点を改善するためになされたものであり、筐
体を形成する部材で、特に筐体の段差のある稜線部また
は頂角部と平面部とを、塗装膜の厚さの差がほとんどな
く均一に外装塗装した電着塗装部材およびその製造方法
を提供することを目的とするものである。また、本発明
は、高品質な梨地状の外観を有し、且つ電磁波シールド
性に優れた電着塗装部材およびその製造方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and is a member for forming a housing, particularly a stepped ridge or a top of a housing. An object of the present invention is to provide an electrodeposition coating member in which a corner portion and a flat portion are externally and uniformly coated with almost no difference in the thickness of a coating film, and a method for manufacturing the same. Another object of the present invention is to provide an electrodeposition coating member having a high-quality satin-like appearance and having excellent electromagnetic wave shielding properties, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】即ち、本発明の電着塗装
部材は、表面に段差もしくは頂角又はその両方を有する
筐体であって、該筐体の少なくとも段差の稜線部又は頂
角部又はその両方が金属化セラミック粉体及び金属化天
然マイカ粉体から選ばれる少なくとも一方を含有してな
導電性粒子を含有する電着塗装被膜で被覆され外装塗
装されていることを特徴とするものである。
That is, an electrodeposition coating member of the present invention is a casing having a step or a vertex or both on the surface, and at least a ridge or a vertex of the step of the casing. Or both are metallized ceramic powder and metallized
Naturally, do not contain at least one selected from mica powder.
And coated with an electrodeposition coating film containing conductive particles.

【0013】又、本発明の電着塗装部材の製造方法は、
表面に段差もしくは頂角又はその両方を有する筐体の少
なくとも段差の稜線部又は頂角部又はその両方が導電性
粒子を含有する電着塗装被膜で被膜されてなる電着塗装
部材の製造方法であって、金属化セラミック粉体及び金
属化天然マイカ粉体から選ばれる1種又は2種の粉体を
含有してなる導電性粒子を含有する電着塗料中に、前記
筐体を浸漬して電着を行なって表面粗さが中心線平均粗
さ(Ra)で0.3〜5μmの値を有し、且つ電磁波シ
ールド性を有する電着塗装被膜を該筐体表面に形成する
ことを特徴とするものである。
[0013] The method for producing an electrodeposition coated member of the present invention comprises:
A method for producing an electrodeposition coated member in which at least a ridge portion or an apex portion or both of the steps of a housing having a step or an apex angle or both on the surface is coated with an electrodeposition coating film containing conductive particles. Metallized ceramic powder and gold
One or two kinds of powders selected from genus mica powder
The casing is immersed in an electrodeposition coating material containing conductive particles to perform electrodeposition, and the surface roughness has a center line average roughness (Ra) of 0.3 to 5 μm. In addition, an electrodeposition coating film having an electromagnetic wave shielding property is formed on the surface of the housing.

【0014】即ち、本発明者は導電性粒子を含有する電
着膜について種々検討を行なった結果、電着塗料中の導
電性粒子の粒径と、電着時の印加電圧に対する電着塗装
部材表面の表面粗さとの関係を見出し本発明をなしたも
のである。
That is, as a result of various studies on the electrodeposition film containing conductive particles, the present inventors have found that the particle size of the conductive particles in the electrodeposition paint and the electrodeposition coating member with respect to the applied voltage at the time of electrodeposition. The present invention is based on the finding of the relationship with the surface roughness of the surface.

【0015】以下、本発明を詳細に説明する。本発明の
電着塗装部材は、表面に段差または頂角を有する筐体を
形成する部材であって、筐体の平面部および段差の稜線
部または頂角部を導電性粒子を含有する電着塗装被膜で
被覆することにより、筐体の段差のある稜線部または頂
角部と平面部との塗装膜の厚さに差がほとんどなく均一
に外装塗装してなるものである。
Hereinafter, the present invention will be described in detail. The electrodeposition coating member of the present invention is a member for forming a housing having a step or a vertex on the surface, and the electrodeposition coating member having a flat portion and a ridge portion or a vertex of the step containing conductive particles. By coating with a coating film, the exterior is evenly coated with almost no difference in the thickness of the coating film between the stepped ridge or vertex and the flat portion of the housing.

【0016】図1は本発明の電着塗装部材の構成の一例
を示す部分断面図である。本発明の電着塗装部材は、表
面に段差または頂角を有する筐体を形成する部材であっ
て、少なくとも前記段差の稜線部または頂角部を、図1
に示すように、非金属部材1の上に金属銅薄膜等の金属
薄膜2が形成され、その上に化学着色被膜3を設けてな
る下地層5の化学着色被膜3の上に導電性粒子を含有す
る電着塗装被膜4を設けて外装塗装した構成からなるも
のである。
FIG. 1 is a partial sectional view showing an example of the configuration of the electrodeposition coating member of the present invention. The electrodeposition coating member of the present invention is a member forming a casing having a step or a vertex on the surface, and at least a ridge portion or a vertex of the step is formed as shown in FIG.
As shown in FIG. 1, a metal thin film 2 such as a metal copper thin film is formed on a non-metallic member 1, and conductive particles are formed on a chemically colored film 3 of an underlayer 5 having a chemically colored film 3 provided thereon. It has a configuration in which the electrodeposition coating film 4 to be contained is provided and exterior coating is performed.

【0017】図2は本発明の電着塗装部材を用いた筐体
の一例を示す部分説明図である。同図に示す様に、筐体
の平面部8,段差の稜線部6および頂角部7は、導電性
粒子を含有する電着塗装被膜(以下、ED膜と記す)を
用いて外装塗装されており、段差の稜線部6または頂角
部7と平面部8との塗装膜の厚さは差がほとんどなく均
一に塗装されてなるものである。
FIG. 2 is a partial explanatory view showing an example of a housing using the electrodeposition coating member of the present invention. As shown in the figure, a flat portion 8, a ridge portion 6 and a vertex portion 7 of a step are exteriorly coated with an electrodeposition coating film containing conductive particles (hereinafter referred to as an ED film). The thickness of the coating film at the ridge line portion 6 or the apex angle portion 7 of the step and the flat portion 8 is substantially uniform with little difference in thickness.

【0018】本発明に於いて、化学着色被膜3として
は、例えば基材上に形成されてなる金属薄膜2を表面処
理することにより得られる化学着色被膜は、この上に形
成する電着塗膜との密着性が良好な為好ましい。この化
学着色被膜が電着塗膜と良好な密着性を示す理由は明ら
かでないが、この化学着色被膜は非常に微細な穴(po
ur)を多数有し、ED膜との間で物理的な吸着が生じ
ると共にED膜中のポリマーの官能基及び導電性粒子の
表面の活性点と化学着色被膜との間で化学的な吸着が生
じる為に格段に優れた密着性が生じるものと考えられ
る。
In the present invention, as the chemical colored film 3, for example, a chemically colored film obtained by subjecting a metal thin film 2 formed on a substrate to a surface treatment is an electrodeposition coating film formed thereon. This is preferred because of good adhesion to the polymer. It is not clear why this chemically colored film shows good adhesion to the electrodeposition film, but the chemically colored film has very fine holes (po).
ur), a physical adsorption occurs between the ED film and the chemical adsorption between the functional groups of the polymer in the ED film and the active sites on the surface of the conductive particles and the chemical coloring film. Therefore, it is considered that extremely excellent adhesion occurs.

【0019】また、本発明に於いて、銅の表面処理によ
って得られる化学着色被膜、例えば酸化銅、亜酸化銅、
炭酸銅、硫化銅、水酸化銅アンモニウム等はED膜の密
着性に優れ、特に酸化銅はED膜の基材への密着性、金
属薄膜2の耐食性、ED膜の均一性の点で特に好適に用
いられる。従って、本発明に於て、金属薄膜2としては
銅を用いるのが好ましく、また金属基材として銅以外の
材料を用いる場合、その周囲に銅めっきを施すことが好
ましい。
Further, in the present invention, a chemically colored film obtained by surface treatment of copper, for example, copper oxide, cuprous oxide,
Copper carbonate, copper sulfide, copper ammonium hydroxide and the like have excellent adhesion of the ED film, and copper oxide is particularly suitable in terms of the adhesion of the ED film to the substrate, the corrosion resistance of the metal thin film 2, and the uniformity of the ED film. Used for Therefore, in the present invention, it is preferable to use copper as the metal thin film 2, and when a material other than copper is used as the metal substrate, it is preferable to apply copper plating around the material.

【0020】また、この時、金属薄膜2は、ED膜形成
の為の電極及び表面に化学着色被膜を形成するためのも
ので、その膜厚は0.05以上0.2μm以下、特に
0.1〜0.15μmが好ましい。膜厚が0.2μmを
越えると金属薄膜の形成に時間がかかり、また電着塗装
部材の重量の増加と共に作業能率が低下するので好まし
くない。
At this time, the metal thin film 2 is for forming a chemically colored film on an electrode and a surface for forming an ED film, and has a film thickness of 0.05 to 0.2 μm, especially 0.1 μm. 1 to 0.15 μm is preferred. When the film thickness exceeds 0.2 μm, it takes a long time to form the metal thin film, and the work efficiency decreases with an increase in the weight of the electrodeposition coating member, which is not preferable.

【0021】また、上記の化学着色被膜の形成方法とし
ては、例えば、硫酸銅+塩素酸カリウム混液、塩化銅+
酢酸銅+ミョウバン混液等に銅めっき層が形成された基
材を浸漬することによって銅の酸化物層を形成できる。
銅の硫化物層を形成する方法としては、硫化カリウム+
塩化アンモニウム混液、次亜硫酸ソーダ+酢酸鉛混液等
に浸漬する方法が挙げられる。銅の水酸化物層を形成す
る方法としては、硝酸銅+塩化アンモニウム+酢酸混液
等に浸漬する方法が挙げられる。また、酸化物層の1つ
である銅の亜酸化物層を形成する方法としては、硫酸銅
+塩化ナトリウム混液、硫酸銅+塩化アンモニウム混液
等に浸漬する方法が挙げられる。
As a method of forming the above-mentioned chemically colored film, for example, a mixed solution of copper sulfate + potassium chlorate, copper chloride +
A copper oxide layer can be formed by immersing the substrate on which the copper plating layer is formed in a mixed solution of copper acetate and alum.
As a method of forming a copper sulfide layer, potassium sulfide +
A method of dipping in a mixed solution of ammonium chloride, a mixed solution of sodium hyposulfite and lead acetate, or the like can be given. As a method of forming a copper hydroxide layer, a method of dipping in a mixed solution of copper nitrate + ammonium chloride + acetic acid or the like can be mentioned. In addition, as a method for forming a copper suboxide layer which is one of the oxide layers, a method of immersing in a mixed solution of copper sulfate and sodium chloride, a mixed solution of copper sulfate and ammonium chloride, or the like is given.

【0022】次に、本発明の導電性電着塗装被膜4は、
化学着色被膜上に電着可能な樹脂と共に導電性の粒子が
高密度に共析されてなり、薄膜であっても導電性を有
し、電磁シールド用の塗膜として機能するものである。
Next, the conductive electrodeposition coating film 4 of the present invention comprises:
The conductive particles are co-deposited with a resin capable of being electrodeposited on the chemically colored film at a high density. Even if it is a thin film, it has conductivity and functions as a coating film for electromagnetic shielding.

【0023】本発明に於いて、電着膜に共析させる導電
性粒子としては、電着膜に導電性を付与することのでき
るものであれば特に限定されず、例えばセラミック粉体
の表面に金属めっきした粉体(金属化セラミック粉体)
や天然マイカ粉体の表面に金属めっきした粉体(金属化
天然マイカ)、平均粒子径0.01〜5μmの超微粒金
属粉体、表面に金属被覆を有する樹脂粉体等、或いはこ
れらの混合物を用いることができる。
In the present invention, the conductive particles to be codeposited on the electrodeposited film are not particularly limited as long as they can impart conductivity to the electrodeposited film. Metal plated powder (metallized ceramic powder)
Powder (metallized natural mica), metal powder on the surface of natural mica powder, ultrafine metal powder having an average particle diameter of 0.01 to 5 μm, resin powder having a metal coating on the surface, or a mixture thereof Can be used.

【0024】特に、上記の導電性粒子の中で金属化セラ
ミック粉体や金属化天然マイカは、共析させた場合、電
着終了後に加熱処理を行なって電着膜を硬化させる際
に、加熱温度として、通常は130〜180℃必要なと
ころを90℃〜100℃の低温で完全に硬化させること
ができ、且つ基材への密着性を一層強固にすることがで
き、このED膜を化粧塗膜として適用する場合に特に好
ましい。
In particular, when the metallized ceramic powder and the metallized natural mica among the above-mentioned conductive particles are co-deposited, a heating treatment is performed after the completion of the electrodeposition to cure the electrodeposited film. As for the temperature, a temperature of 130 to 180 ° C. is required to be completely cured at a low temperature of 90 to 100 ° C., and the adhesion to the substrate can be further strengthened. Particularly preferred when applied as a coating.

【0025】これらの金属化セラミック粉体や金属化天
然マイカ粉体或いはその混合物を含有する電着膜が優れ
た密着性を有し、低温で硬化する理由については明らか
でないが、これらの金属化セラミック粉体や金属化天然
マイカ粉体は表面がすぐに酸化されてしまう金属粒子と
異なり、粉体の表面と金属被覆の相互作用により粉体表
面の活性点がある程度安定な状態で維持されるため、硬
化時にその活性な粉体表面が架橋点となり電着膜の硬化
を促進し、又化学着色層との化学結合をより多く形成で
きるためと考えられる。
It is not clear why electrodeposited films containing these metallized ceramic powders or metallized natural mica powders or mixtures thereof have excellent adhesion and cure at low temperatures. Unlike ceramic particles and metalized natural mica powder, whose surface is oxidized quickly, the interaction between the powder surface and the metal coating maintains the active points on the powder surface to some extent stable Therefore, it is considered that the active powder surface becomes a cross-linking point at the time of curing to accelerate the curing of the electrodeposited film, and that more chemical bonds with the chemically colored layer can be formed.

【0026】本発明に於て用いられる金属化セラミック
粉体及び金属化天然マイカ粉体としては、セラミック粉
体或いは天然マイカ粉体の表面をCu,Ni,Ag,A
u,Sn等でめっきしたものが用いられる。これらの粉
体表面のめっきはシールド性やコストの点から、Cu,
Ag及びNiを好適に用いることができ、粉体表面への
形成方法としては無電解めっきが適している。
As the metallized ceramic powder and the metallized natural mica powder used in the present invention, the surface of the ceramic powder or the natural mica powder is Cu, Ni, Ag, A
Those plated with u, Sn or the like are used. The plating on the surface of these powders requires Cu,
Ag and Ni can be suitably used, and electroless plating is suitable as a forming method on the powder surface.

【0027】また、粉体表面のめっき厚としては、0.
05〜3μm、特に0.15〜2μmとした場合、優れ
たシールド性と低温硬化時の良好な塗膜物性を与えるこ
とができ、3μmより厚くめっきを形成した場合、表面
特性が金属粒子と類似してしまい表面が極めて活性なた
め、空気中で酸化されて架橋に寄与する活性点が減少
し、低温焼付け時の電着膜の硬化が不十分となり易い。
The plating thickness on the surface of the powder is 0.1 mm.
When the thickness is 0.05 to 3 μm, particularly 0.15 to 2 μm, excellent shielding properties and good coating film properties at the time of low-temperature curing can be provided. When the plating is formed thicker than 3 μm, the surface characteristics are similar to metal particles. As a result, the surface is extremely active, and active sites that are oxidized in the air and contribute to cross-linking are reduced, so that the electrodeposited film tends to be insufficiently cured during low-temperature baking.

【0028】また、粉体へのNiめっきの形成に於て、
例えば特開昭61−276979号公報に開示されてい
る様に、粉体の水性懸濁液を作製し、次いでこの懸濁液
に無電解ニッケルめっき老化液を添加して粉体表面にニ
ッケルめっきを形成させて、りん含有率の低い、例えば
5%以下としたNiめっきを施した場合、導電性が向上
し、Cuめっき粉体とほぼ同等のシールド性を有する電
着膜を形成できる。
In the formation of Ni plating on the powder,
For example, as disclosed in Japanese Patent Application Laid-Open No. 61-2767979, an aqueous suspension of powder is prepared, and then an electroless nickel plating aging solution is added to this suspension to form a nickel plating on the powder surface. When Ni plating is performed with a low phosphorus content, for example, 5% or less, the conductivity is improved, and an electrodeposition film having shielding properties almost equivalent to Cu plating powder can be formed.

【0029】そして、セラミック粉体及び天然マイカ粉
体の平均粒径はその表面活性に寄与する表面積及び電着
塗料中での分散性を考慮した場合、0.1〜5μm、特
に0.3〜3μm、更には0.5〜2μmの範囲が好ま
しい。
The average particle size of the ceramic powder and the natural mica powder is from 0.1 to 5 μm, especially from 0.3 to 5 μm, in consideration of the surface area contributing to the surface activity and the dispersibility in the electrodeposition paint. 3 μm, more preferably in the range of 0.5 to 2 μm.

【0030】また、本発明に用いられるセラミックとし
ては、例えば酸化アルミニウム,窒化チタン,窒化マン
ガン,窒化タングステン,タングステンカーバイト,窒
化ランタン,けい酸アルミニウム,二硫化モリブデン,
酸化チタン,けい酸等が挙げられ、又天然マイカとして
はフロゴバイトマイカ,セリサイトマイカ,マスコバイ
トマイカ等が挙げられる。
The ceramic used in the present invention includes, for example, aluminum oxide, titanium nitride, manganese nitride, tungsten nitride, tungsten carbide, lanthanum nitride, aluminum silicate, molybdenum disulfide,
Examples include titanium oxide and silicic acid, and examples of natural mica include phlogovite mica, sericite mica, and muscobite mica.

【0031】次に、導電性粒子として、他に前述した様
に、平均粒径0.01〜5μmの超微粒金属粉体や平均
粒径0.1〜5μmの表面を金属化した樹脂粉体も用い
ることができる。例えば、超微粒金属粉体としては、熱
プラズマ蒸発法によって得られるAg,Co,Cu,F
e,Mn,Ni,Pd,Sn,Te等の粉体が挙げら
れ、その平均粒径は0.01〜5μm、特に0.01〜
0.1μm、更には0.03〜0.07μmの範囲のも
のが好ましい。0.01μm未満では二次凝集作用を生
じ、5μmを越えると電着塗料中で沈降してしまい、又
塗装部材が金属光沢を生じ所望の色の塗装に支障とな
る。
Next, as the conductive particles, as described above, an ultrafine metal powder having an average particle size of 0.01 to 5 μm or a resin powder having a surface metalized with an average particle size of 0.1 to 5 μm, as described above. Can also be used. For example, as the ultrafine metal powder, Ag, Co, Cu, F obtained by a thermal plasma evaporation method can be used.
e, Mn, Ni, Pd, Sn, Te and the like, and the average particle size thereof is 0.01 to 5 μm, particularly 0.01 to 5 μm.
The thickness is preferably 0.1 μm, more preferably 0.03 to 0.07 μm. If it is less than 0.01 μm, a secondary coagulation effect occurs, and if it exceeds 5 μm, it precipitates in the electrodeposition paint, and the coating member gives a metallic luster and hinders painting of a desired color.

【0032】また、本発明の金属化樹脂粉体としては、
例えばフッ素樹脂,ポリエチレン樹脂,アクリル樹脂,
ポリスチレン樹脂,ナイロン等の樹脂粉体表面に、セラ
ミックの場合と同様にCuやNiを厚さ0.05〜3μ
mに形成して得られる。又この樹脂粉体の平均粒径も約
0.1〜5μm程度が好ましい。
The metallized resin powder of the present invention includes
For example, fluorine resin, polyethylene resin, acrylic resin,
On the surface of a resin powder such as polystyrene resin or nylon, Cu or Ni is coated in a thickness of 0.05 to 3 μm as in the case of ceramic.
m. The average particle size of the resin powder is preferably about 0.1 to 5 μm.

【0033】上記の導電性粒子は各々単独で電着膜中に
含有させることにより電磁波シールド性及び良好な塗膜
物性の電着塗装部材を得ることができるが、金属化セラ
ミック粉体や金属化マイカ粉体或いはその混合物1に対
して超微粒金属粉体や金属化樹脂粉体或いはその混合物
を重量比で0.2〜3の割合で添加した場合、図3に示
す様に電着膜中の金属化セラミック粉体及び/又は金属
化天然マイカ粉体31の空隙を該超微粒金属粉体及び/
又は金属化樹脂粉体32が満たし各粉体間の接触面積が
増大するためシールド性が一層向上し、金属化セラミッ
ク粉体及び/又は金属化天然マイカ粉体の作用により低
温での加熱処理でも優れた塗膜物性を有し、且つ基材へ
の密着性の良好な電着塗装部材を得ることができる。
When the above-mentioned conductive particles are individually contained in an electrodeposition film, an electrodeposition coating member having electromagnetic wave shielding properties and good coating physical properties can be obtained. When the ultrafine metal powder, the metallized resin powder or the mixture thereof is added to the mica powder or the mixture 1 at a weight ratio of 0.2 to 3 as shown in FIG. Of the metallized ceramic powder and / or the metallized natural mica powder 31
Alternatively, the metallized resin powder 32 fills and the contact area between the powders increases, so that the shielding property is further improved, and the heat treatment at a low temperature is performed by the action of the metallized ceramic powder and / or the metallized natural mica powder. An electrodeposition coating member having excellent coating film properties and good adhesion to a substrate can be obtained.

【0034】本発明に於て、電着可能な樹脂としては、
従来より電着塗料に用いられる樹脂を用いることがで
き、例えばアニオン型電着塗料の場合樹脂の電着に必要
な、負の電荷と親水性を与えるためにカルボキシル基の
様なアニオン性官能基を持った樹脂、具体的にはアニオ
ン性官能基を導入したアクリル・メラミン樹脂,アクリ
ル樹脂,アルキド樹脂,マレイン化ポリブタジエンやそ
れらのハーフエステル,ハーフアミドなどが挙げられ
る。
In the present invention, the electrodepositable resin includes:
Conventionally, resins used for electrodeposition coatings can be used.For example, in the case of anion-type electrodeposition coatings, anionic functional groups such as carboxyl groups for imparting a negative charge and hydrophilicity necessary for electrodeposition of the resin. Resin, specifically, an acrylic / melamine resin, an acrylic resin, an alkyd resin, a maleated polybutadiene, a half ester and a half amide thereof, into which an anionic functional group is introduced.

【0035】又カチオン型電着塗料の場合、正の電荷と
親水性を与えるために、アミノ基のようなカチオン性官
能基を持った樹脂、具体的にはカチオン性官能基を導入
したエポキシ樹脂,ウレタン樹脂,ポリエステル系樹
脂,ポリエーテル系樹脂などが挙げられる。又、これら
の樹脂の中で自己架橋性でないものは、硬化剤として、
例えばメラミン樹脂やブロックポリイソシアネート化合
物との混合物と共に用いられる。
In the case of a cationic electrodeposition paint, a resin having a cationic functional group such as an amino group in order to impart a positive charge and hydrophilicity, specifically, an epoxy resin having a cationic functional group introduced therein , Urethane resin, polyester resin, polyether resin and the like. Also, among these resins, those that are not self-crosslinkable are, as curing agents,
For example, it is used together with a mixture with a melamine resin or a blocked polyisocyanate compound.

【0036】そして本発明の電着塗膜の導電性粒子の含
有量(共析量)としては、電磁波シールド性に於て減衰
量が、例えば70dB以上を満たし、また化粧塗膜とし
ての基材への密着性、更には膜の柔軟性を考慮した場
合、硬化後の電着膜に於て5〜50重量%、特に10〜
30重量%、更には15〜25重量%が好ましい。50
重量%を越えると塗膜が脆化して外装塗膜としては不適
であり、5重量%未満では十分なシールド性が得られな
い。
As the content (eutectoid content) of the conductive particles in the electrodeposition coating film of the present invention, the amount of attenuation in electromagnetic shielding properties satisfies, for example, 70 dB or more, and the base material as a decorative coating film In consideration of the adhesiveness to the film and the flexibility of the film, the cured electrodeposited film has a content of 5 to 50% by weight, especially 10 to 50% by weight.
30% by weight, more preferably 15 to 25% by weight. 50
If the amount exceeds 5% by weight, the coating film becomes brittle and is unsuitable as an exterior coating film. If the amount is less than 5% by weight, sufficient shielding properties cannot be obtained.

【0037】なお、導電性粒子はX線マイクロアナライ
ザーにより同定でき、共析量は熱重量分析で解析するこ
とにより測定することができる。
The conductive particles can be identified by an X-ray microanalyzer, and the amount of eutectoid can be measured by analyzing by thermogravimetric analysis.

【0038】このように、本発明によれば導電性粒子を
電着樹脂中に分散し、電気泳動作用によって電着塗装被
膜中に共析させることによって、筐体の段差の稜線部ま
たは頂角部と平面部との塗装膜の厚さは差がほとんどな
く、膜厚が均一に塗装され、且つ外装塗膜によって筐体
に電磁波シールド性を付与することができる。更に、導
電性粒子として金属化セラミック粉体や金属化天然マイ
カを含有させた場合には、塗膜物性面でも低温での加熱
処理(100℃)にもかかわらず硬化反応が十分に行な
われ、高温硬化膜と同一又はそれ以上の物性が得られ
る。
As described above, according to the present invention, the conductive particles are dispersed in the electrodeposition resin and are co-deposited in the electrodeposition coating film by the electrophoretic action, whereby the ridge or the apex of the step of the housing is obtained. There is almost no difference in the thickness of the coating film between the portion and the flat portion, the coating is uniformly applied, and the casing can be provided with electromagnetic wave shielding properties by the outer coating film. Furthermore, when metallized ceramic powder or metallized natural mica is contained as the conductive particles, the curing reaction is sufficiently performed in spite of the heat treatment at a low temperature (100 ° C.) even in the physical properties of the coating film, The same or higher physical properties as the high-temperature cured film can be obtained.

【0039】また、電着塗装被膜の表面の粗さは、中心
線平均粗さ(Ra)で0.3〜5μm、好ましくは0.
5〜4.0μm、更には0.7〜3.0μmであること
が望ましい。0.3μm未満では化粧性に問題があり、
即ち梨地状の外観が得られにくく、5μmを越えると外
装面で商品価値が低下し、又塗膜物性も低下し易い為好
ましくない。
The surface roughness of the electrodeposition coating film is 0.3 to 5 μm in center line average roughness (Ra), preferably 0.1 to 0.5 μm.
It is preferably from 5 to 4.0 μm, more preferably from 0.7 to 3.0 μm. If it is less than 0.3 μm, there is a problem in the cosmetic properties,
That is, it is difficult to obtain a satin-like appearance, and if it exceeds 5 μm, the commercial value on the exterior surface is reduced, and the physical properties of the coating film are apt to be deteriorated.

【0040】次に、図2の本発明の電着塗装部材の製造
方法について説明する。まず、非金属基材にめっきを施
し、さらに化学着色被膜を形成する。非金属基材として
は、特に制限することはなく、OA機器、家電製品等の
プラスチック材料が用いられ、例えばABS樹脂,ポリ
カーボネート樹脂,ポリエーテルイミド樹脂,ガラス繊
維充填ABS樹脂,ガラス繊維充填ポリカーボネートポ
リフェニレンオキサイド樹脂等が挙げられる。
Next, a method for manufacturing the electrodeposition coated member of the present invention shown in FIG. 2 will be described. First, a non-metallic substrate is plated, and a chemically colored film is formed. The non-metallic base material is not particularly limited, and plastic materials such as OA equipment and home electric appliances are used. For example, ABS resin, polycarbonate resin, polyetherimide resin, glass fiber-filled ABS resin, glass fiber-filled polycarbonate polyphenylene Oxide resins and the like are listed.

【0041】非金属基材には、一般に知られているプラ
スチック上のめっき法で行なわれているように、エッチ
ングし触媒処理、例えばパラジウム処理をした後、金属
薄膜を形成する。
On a non-metallic substrate, a metal thin film is formed after etching and catalytic treatment, for example, palladium treatment, as performed by a generally known plating method on plastic.

【0042】前記非金属基材に金属薄膜を形成する方法
は、無電解銅めっき、あるいは電解めっき等により行な
うことが好ましい。
The method of forming a metal thin film on a nonmetallic substrate is preferably performed by electroless copper plating, electrolytic plating, or the like.

【0043】次に、金属銅薄膜の上に化学着色被膜を形
成する。この化学着色被膜の形成方法としては、金属薄
膜の表面を化学処理して形成する。
Next, a chemically colored film is formed on the metal copper thin film. As a method for forming the chemically colored film, the surface of the metal thin film is chemically treated.

【0044】即ち金属薄膜として銅を用いた場合、公知
の銅の表面処理方法によって酸化銅,炭酸銅,硫酸銅,
水酸化銅アンモニウムや亜酸化銅等からなる化学着色膜
を形成でき、例えば前記した様に電着膜の密着性に優れ
る酸化銅を化学着色被覆として用いる場合、銅薄膜を有
する基材を水酸化ナトリウム水溶液に浸漬する等のアル
カリ処理によって得ることができる。
That is, when copper is used as the metal thin film, copper oxide, copper carbonate, copper sulfate,
A chemically colored film made of copper hydroxide ammonium, cuprous oxide, or the like can be formed.For example, as described above, when copper oxide having excellent adhesion of an electrodeposition film is used as a chemically colored coating, a substrate having a copper thin film is hydroxylated. It can be obtained by alkali treatment such as immersion in a sodium aqueous solution.

【0045】また、金属銅薄膜上に直接電着塗装被膜を
形成すると、銅が電着塗料中に溶解して蓄積され塗膜物
性に悪影響を与えるが、化学着色被膜の酸化銅被膜上に
電着塗膜を形成すれば銅の溶解は防止され、電着塗料中
に銅イオンの存在は認められない。
When an electrodeposition coating film is formed directly on a metallic copper thin film, copper dissolves and accumulates in the electrodeposition coating material and adversely affects the physical properties of the coating film. If a coating film is formed, dissolution of copper is prevented, and the presence of copper ions in the electrodeposition paint is not recognized.

【0046】更にこの化学着色層は薄い被膜とすること
が望ましい。本発明に於て基材として非金属基材以外に
金属の基材も用いることができ、かかる材料としては、
例えば銅,鉄,Ni,亜鉛,スズ等が挙げられる。この
場合、基材を直接表面処理することで化学着色被膜を形
成できるが、銅以外の金属基材を用いる場合、表面に銅
めっきを施した後に酸化処理をすることで酸化銅の化学
着色被膜を得ることができ、ED膜との密着性が向上す
る点において好ましい態様である。
Further, it is desirable that the chemical coloring layer is a thin film. In the present invention, a metal substrate other than a non-metal substrate can also be used as the substrate, and such a material includes
For example, copper, iron, Ni, zinc, tin and the like can be mentioned. In this case, a chemically colored film can be formed by directly treating the surface of the substrate, but when using a metal substrate other than copper, a chemically colored film of copper oxide can be formed by performing an oxidation treatment after applying copper plating to the surface. This is a preferred embodiment in that the following can be obtained, and the adhesion to the ED film is improved.

【0047】次に、化学着色被膜を施した基材を電着塗
料中に浸漬して電着を行ない化学着色被膜被膜上に電着
膜を形成する。この電着工程は、通常の電着塗装の方法
に従って行なえばよく、例えば電着樹脂がアニオン性の
場合には基材を陽極とし、カチオン性の場合には基材側
を陰極として、液温20〜25℃の範囲で、印加電圧5
0〜200V,電流密度0.5〜3A/dm2 ,処理時
間1〜5分の範囲で電着を行ない、化学着色膜上に樹脂
及び導電性粒子を析出させる。
Next, the substrate provided with the chemically colored film is immersed in an electrodeposition paint to perform electrodeposition to form an electrodeposited film on the chemically colored film. This electrodeposition step may be performed according to a normal electrodeposition coating method. For example, when the electrodeposition resin is anionic, the base material is used as an anode, and when the electrodeposition resin is cationic, the base material side is used as a cathode. In the range of 20 to 25 ° C, the applied voltage 5
Electrodeposition is performed within a range of 0 to 200 V, a current density of 0.5 to 3 A / dm 2 , and a processing time of 1 to 5 minutes to deposit resin and conductive particles on the chemically colored film.

【0048】このとき樹脂と導電性粒子が共に析出する
理由は以下の様に考えられる。即ち、電着可能な樹脂は
塗料中にて該樹脂に結合している官能基がイオン化して
おり、直流電圧を被塗物と対極の間に印加することで樹
脂は被塗物へ引かれて析出する。そして、この樹脂は電
着塗料中では導電性粒子の周囲に吸着しているため、樹
脂の被塗物への移動に伴なって導電性粒子も移動して、
被塗物上で樹脂と共に析出するものである。
The reason why the resin and the conductive particles are precipitated together at this time is considered as follows. That is, in the electrodepositable resin, the functional group bonded to the resin in the paint is ionized, and the resin is drawn to the object by applying a DC voltage between the object and the counter electrode. Precipitates. And since this resin is adsorbed around the conductive particles in the electrodeposition paint, the conductive particles also move with the movement of the resin to the object to be coated,
It precipitates together with the resin on the substrate.

【0049】次いで、水洗いした後、加熱処理して電着
膜を硬化させる。このとき硬化温度としては、例えば導
電性粒子として金属化セラミック粉体,金属天然マイカ
或はその混合物を用いた場合、オーブン中で90℃〜1
00℃の低温で20〜180分硬化させることで十分に
硬化させることができる。
Next, after washing with water, heat treatment is performed to cure the electrodeposited film. At this time, the curing temperature is, for example, 90 ° C. to 1 ° C. in an oven when metallized ceramic powder, metal natural mica or a mixture thereof is used as the conductive particles.
By curing at a low temperature of 00 ° C. for 20 to 180 minutes, sufficient curing can be achieved.

【0050】また、通常の金属粉体や金属化樹脂粉体或
は超微粒金属粉体を用いた場合には、約120℃〜18
0℃で加熱処理を行なうことが望ましい。
When ordinary metal powder, metallized resin powder or ultrafine metal powder is used, the
It is desirable to perform the heat treatment at 0 ° C.

【0051】このようにして電磁波シールド性の付与と
共に外装塗装を同時に施した電着部材を得る。
In this way, an electrodeposited member is obtained which has been provided with an electromagnetic wave shielding property and an exterior coating simultaneously.

【0052】本発明に於いて電着塗膜の厚さとしてはシ
ールド性が確保できる範囲内で薄く形成することが塗膜
の均一性、付着性、化粧性の点で好ましく、具体的には
7〜40μm、特に10〜25μmが好ましい。
In the present invention, it is preferable that the thickness of the electrodeposition coating film is formed as thin as possible within a range where the shielding property can be ensured, from the viewpoint of uniformity, adhesion and cosmetic properties of the coating film. It is preferably from 7 to 40 μm, particularly preferably from 10 to 25 μm.

【0053】また、図4は平均粒子径0.5μm、1μ
m、3μm、及び5μmのアルミナ粉体表面に0.1μ
mの厚さに無電解銅めっきを施した粉体を、電着用アク
リル・メラミン樹脂(ハニブライトC−IL;ハニー化
成(株)製)100重量部に対し15重量部添加し、固
形分濃度15重量%に希釈した電着塗料中に下地層5を
形成した筐体を浸漬し、印加電圧を種々変化させて3分
間電着を行なったときの電着塗装部材の中心線平均粗さ
(Ra/μm)と電圧との関係、及び電着膜の膜厚と電
圧との関係について示したグラフである。
FIG. 4 shows an average particle diameter of 0.5 μm and 1 μm.
0.1μm on the surface of alumina powder of 3m, 3μm and 5μm
m of electroless copper plating was added to 15 parts by weight of 100 parts by weight of an acrylic melamine resin for electrodeposition (Hanibright C-IL; manufactured by Honey Chemical Co., Ltd.), and the solid content concentration was 15%. The center line average roughness (Ra) of the electrodeposition-coated member when the housing on which the base layer 5 was formed was immersed in the electrodeposition coating material diluted to a weight percent and electrodeposition was performed for 3 minutes while varying the applied voltage. / Μm) and the voltage, and the relationship between the thickness of the electrodeposited film and the voltage.

【0054】同図から同一粒径であれば、印加電圧の上
昇に伴なって表面粗さが粗くなることが分る。一方、こ
のときの導電性粒子の電着膜中の共析量は粒径にかかわ
らず、例えば電圧100Vのとき約25重量%であっ
た。
It can be seen from the figure that if the particle diameters are the same, the surface roughness increases as the applied voltage increases. On the other hand, the amount of eutectoid in the electrodeposited film of the conductive particles at this time was, for example, about 25% by weight at a voltage of 100 V regardless of the particle size.

【0055】また、図5は導電性粒子の平均粒径(μ
m)に対する電圧と50〜1000MHzの電磁波に対
する減衰量の平均値(dB)の関係について示したグラ
フである。同図5から電圧の上昇と共にシールド効果が
向上していることが分る。
FIG. 5 shows the average particle size (μ) of the conductive particles.
6 is a graph showing a relationship between a voltage with respect to m) and an average value (dB) of attenuation with respect to an electromagnetic wave of 50 to 1000 MHz. It can be seen from FIG. 5 that the shielding effect is improved as the voltage increases.

【0056】又、粒径に対してシールド効果が反比例し
ているが、これは同じ電圧であれば電着膜中の共析量は
粒径によらず一定な為、粒径が大きくなると電着膜中の
導電性粒子の相対的な数が減少し、各粒子間の接触面積
が減少するためと考えられる。
Further, the shielding effect is inversely proportional to the particle diameter. However, when the voltage is the same, the amount of eutectoid in the electrodeposited film is constant regardless of the particle diameter. It is considered that the relative number of the conductive particles in the deposited film was reduced, and the contact area between the particles was reduced.

【0057】上記図4及び図5から、例えば表面粗さR
a=1μmで、シールド性が70dBの電着塗装部材を
得る場合、先ず表面粗さとして図4より粒径5μmの場
合40V、3μmの場合77V、1μmで125V、
0.5μmで200Vの電圧が要求され、一方、図5よ
り70dB以上のシールド性は粒径5μmの場合170
V以上、粒径3μmの場合130V以上、粒径1μmの
場合95V以上、粒径0.5μmで65V以上の電圧が
必要であることから、粒径0.5μmの金属化セラミッ
ク粉体を用いて200Vの電圧を加えるか、或いは粒径
1μmの金属化セラミック粉体を用いて125Vの電圧
を加えれば良いことが分る。
From FIGS. 4 and 5, for example, the surface roughness R
In the case of obtaining an electrodeposition coating member with a = 1 μm and a shielding property of 70 dB, first, as shown in FIG. 4, the surface roughness is 40 V for a particle diameter of 5 μm, 77 V for 3 μm, 125 V for 1 μm,
A voltage of 200 V is required at 0.5 μm. On the other hand, as shown in FIG.
Since a voltage of 130 V or more for a particle size of 3 μm, a voltage of 95 V or more for a particle size of 1 μm, and a voltage of 65 V or more for a particle size of 0.5 μm is required, use a metallized ceramic powder having a particle size of 0.5 μm. It can be seen that a voltage of 200 V may be applied or a voltage of 125 V may be applied using metallized ceramic powder having a particle size of 1 μm.

【0058】また、導電性粒子として金属化セラミック
粉体や金属化天然マイカに加えて平均粒径が0.01〜
5μm程度の超微粒金属粉体が添加されている場合、得
られる電着塗装部材の表面粗さは粒径の大きい方の粉体
及びその共析量が支配的となる。
Further, in addition to metallized ceramic powder or metallized natural mica as conductive particles, an average particle diameter of 0.01 to
When an ultrafine metal powder of about 5 μm is added, the surface roughness of the obtained electrodeposition coating member is dominated by the powder having the larger particle size and the amount of eutectoid.

【0059】例えば、平均粒径1μmのアルミナ粉体表
面に0.1μmの厚さに銅めっきを施した粉体を8重量
部及び平均粒径0.03μmの銅粉体10重量部をアク
リル・メラミン樹脂100重量部に加えて、固形分濃度
を15重量%に稀釈し電着を3分間行なった場合、Ra
は電着膜の共析量中に占める金属化アルミナ粉体の割合
によって決まり、このときは金属化アルミナ粉体の析出
量が10重量%となり、図4の点線で示す様な表面粗さ
の電着塗装部材が得られる。
For example, 8 parts by weight of a powder obtained by plating a 0.1 μm-thick copper powder on the surface of an alumina powder having an average particle diameter of 1 μm, and 10 parts by weight of a copper powder having an average particle diameter of 0.03 μm, In addition to 100 parts by weight of the melamine resin, when the solid content concentration was diluted to 15% by weight and electrodeposition was performed for 3 minutes, Ra
Is determined by the ratio of the metallized alumina powder to the eutectoid amount of the electrodeposited film. In this case, the amount of the metallized alumina powder deposited is 10% by weight, and the surface roughness as shown by the dotted line in FIG. An electrodeposition coated member is obtained.

【0060】また、上記の様な混合粉体を用いた場合に
は、前述した様に、電磁波シールド性は向上し、例えば
平均粒径1μmのアルミナ粉体表面に0.1μmの厚さ
に銅めっきを施した粉体10重量部及び平均粒径0.0
5μmの銅粉体15重量部をアクリル・メラミン樹脂1
00重量部に加えて、固形分濃度を15重量%に稀釈
し、電着を3分間行なって膜厚20μm,共析量30重
量%の電着膜を有する電着塗装部材を形成したときのシ
ールド性は図6に示す通りであり、図5よりもシールド
効果が向上していることが分かる。
When the mixed powder as described above is used, as described above, the electromagnetic wave shielding property is improved, and for example, the copper powder having a thickness of 0.1 μm is coated on the surface of the alumina powder having an average particle diameter of 1 μm. 10 parts by weight of plated powder and average particle size of 0.0
Acrylic melamine resin 1
In addition to 00 parts by weight, the solid content concentration was diluted to 15% by weight, and electrodeposition was performed for 3 minutes to form an electrodeposition coating member having an electrodeposition film having a film thickness of 20 μm and an eutectoid amount of 30% by weight. The shielding performance is as shown in FIG. 6, and it can be seen that the shielding effect is improved as compared with FIG.

【0061】この様に、本発明によれば、要求される梨
地化の程度及び電磁波シールド性に対して導電性粒子の
粒径、印加電圧、電着塗料中の導電性粒子の含有量を変
化させることで対応することができるものである。
As described above, according to the present invention, the particle size of the conductive particles, the applied voltage, and the content of the conductive particles in the electrodeposition paint are changed with respect to the required degree of matte finish and the electromagnetic wave shielding property. This can be dealt with by doing this.

【0062】そして、例えば図7及び図8に示す様な電
子機器の筐体101の外装塗装に用いることにより、筐
体表面の化粧塗装を行なうと共に筐体への電磁波シール
ド性を付与することができる。
For example, as shown in FIG. 7 and FIG. 8, by using for exterior coating of a housing 101 of an electronic device, it is possible to perform decorative coating of the housing surface and to impart electromagnetic wave shielding to the housing. it can.

【0063】[0063]

【実施例】次に、実施例を用いて本発明を詳細に説明す
る。
Next, the present invention will be described in detail with reference to examples.

【0064】なお、以下の実施例中、粉体の粒径は遠心
沈降式粒度分布測定器(商品名:SACP−3;島津製
作所(株)社製)で測定したものであり、各粉体は同一
粒径の緻密な球とみなした。
In the following examples, the particle size of the powder was measured with a centrifugal sedimentation type particle size distribution analyzer (trade name: SACP-3; manufactured by Shimadzu Corporation). Were regarded as dense spheres of the same particle size.

【0065】また、電着膜中の導電性粒子の同定はX線
マイクロアナライザーで行ない、含有量は熱重量分析装
置(商品名:Thermal AnalysisSys
tem 7 series;PERKIN−ELMER
社製)で分析した。更に、電磁波シールド性はトランス
ミッションライン法(ASTM ES 7・83法)を
用いて行なった。
The conductive particles in the electrodeposited film were identified by an X-ray microanalyzer, and the content was determined by a thermogravimetric analyzer (trade name: Thermal Analysis Sys.).
tem 7 series; PERKIN-ELMER
(Made by the company). Further, the electromagnetic wave shielding was performed by using a transmission line method (ASTM ES 7.83 method).

【0066】実施例1−1 表面に段差および頂角を有する図2に示すABS樹脂製
筐体を、CrO3−H2 SO4 −H2 O系エッチング液
で1分間処理し、水洗後、センシタイザー液として塩化
第一スズ30g/l、塩酸20ml/lを用いて、室温
で2分間処理し、水洗した。次いで、アクチベータ液と
して、塩化パラジウム0.3g/l、塩酸3ml/lを
用いて、室温で2分間処理し、導通化した。その後、無
電解銅めっき液(奥野製薬工業社製)pH13.0を用
いて浴温70℃にて3分間めっきを施し、0.2μmの
厚さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である酸化銅被膜を形成した。
Example 1-1 The ABS resin case shown in FIG. 2 having a step and an apex angle on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And potassium persulfate 1% aqueous solution at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0067】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径1μmのアルミナの表面に無
電解ニッケルめっきを0.2μmの厚さに施したもの1
5重量部をボールミルで30時間分散した後、脱塩水に
て15重量%に希釈し、さらに着色のためにカーボンブ
ラックを2.0重量%添加した塗液を用いて、浴温25
℃、pH8〜9の条件で、被塗装物を陽極とし、対極と
して0.5tステンレス板を用いて、印加電圧120V
で3分間電着した。電着後に水洗し、97℃±1℃のオ
ーブンにて60分間加熱して硬化し、膜厚25μm,金
属化アルミナ粉体の含有量が20重量%の電着膜を有す
る電着塗装部材を得た。
Then, based on 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.), electroless nickel plating was applied to a surface of alumina having an average particle diameter of 1 μm to a thickness of 0.2 μm. What was given to 1
After dispersing 5 parts by weight in a ball mill for 30 hours, the mixture was diluted to 15% by weight with demineralized water, and further used a coating liquid containing 2.0% by weight of carbon black for coloring.
Under the conditions of ° C. and pH 8 to 9, an object to be coated is used as an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 120 V is used.
For 3 minutes. After electrodeposition, washed with water, cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes to prepare an electrodeposition coating member having an electrodeposition film having a film thickness of 25 μm and a metalized alumina powder content of 20% by weight. Obtained.

【0068】この電着塗装部材をJIS K6980に
準拠して、塗膜の目視による外観性の評価および塗膜物
性の測定を行なった。その結果を表1−2および表1−
3に示す。同表に示すように、全てJIS規格以上で、
外観及び塗膜物性に優れた電着塗装部材であった。
This electrodeposited member was visually evaluated for appearance and measured for physical properties in accordance with JIS K6980. The results are shown in Table 1-2 and Table 1
3 is shown. As shown in the table, all are JIS standard or higher,
The electrodeposition coating member was excellent in appearance and physical properties of the coating film.

【0069】また、電着塗装被膜の塗膜の厚さ分布を、
オリンパス光学社製、金属顕微鏡を用いて、図2に示す
a〜wの断面を測定した。その結果を表1−1に示す。
同表に示すように、膜厚は24.7〜26.0μmの範
囲内で電着塗装被膜は凹凸部に均一に形成されており、
平面部8とほとんど同一の膜厚であった。
The thickness distribution of the electrodeposition coating film was calculated as follows:
The sections a to w shown in FIG. 2 were measured using a metal microscope manufactured by Olympus Optical. The results are shown in Table 1-1.
As shown in the table, the electrodeposition coating film is uniformly formed on the uneven portion in the thickness range of 24.7 to 26.0 μm.
The film thickness was almost the same as that of the flat portion 8.

【0070】また、この電着塗装被膜の表面の中心線平
均粗さ(Ra)は1.0μmであった。表面の中心線平
均粗さの測定は、ランクテーラホブソン社製、タリサー
フ6型(RANK TAYLOR HOBSON K.
K.,Talysurf type6)を用いて行なっ
た。
The center line average roughness (Ra) of the surface of the electrodeposition coating film was 1.0 μm. The measurement of the center line average roughness of the surface was carried out by RANK TAYLOR HOBSON K. manufactured by Rank Taylor Hobson.
K. , Tallysurf type 6).

【0071】更に、周波数50〜1000MHzの電磁
波について、その電磁波シールド性をトランスミッショ
ンライン法に従って測定したところ、減衰量は約80d
Bと良好であった。この評価の結果、高品質な梨地状の
外装塗装及び電磁波シールド用の塗装に適用することが
出来るものと認められた。
Further, when the electromagnetic wave shielding property of an electromagnetic wave having a frequency of 50 to 1000 MHz was measured according to the transmission line method, the attenuation was about 80 d.
B was good. As a result of this evaluation, it was confirmed that the method can be applied to high-quality satin-like exterior coating and coating for electromagnetic wave shielding.

【0072】[0072]

【表1】 [Table 1]

【0073】実施例1−2 実施例1−1で用いたABS樹脂筐体表面に、厚さ0.
7μmの無電解銅めっきを施した後、実施例1−1と同
様にして、膜厚20μm、金属化アルミナ粉体の含有量
20wt%の電着膜を有する電着塗装部材を得た。この
電着塗装部材について、実施例1−1と同様に外観検
査、塗膜物性及び電磁シールド性について評価した。
Example 1-2 The thickness of the ABS resin housing used in Example 1-1 was reduced to 0.
After applying 7 μm of electroless copper plating, an electrodeposition coating member having an electrodeposition film having a film thickness of 20 μm and a metalized alumina powder content of 20 wt% was obtained in the same manner as in Example 1-1. About this electrodeposition coating member, appearance inspection, coating film physical properties, and electromagnetic shielding properties were evaluated in the same manner as in Example 1-1.

【0074】実施例1−3 実施例1−1で用いたABS樹脂筐体表面に厚さ0.7
μmの無電解銅めっきを施し、次いで無電解ニッケルめ
っきを厚さ0.3μmに施した後、実施例1−1と同様
にして膜厚20μm、金属化アルミナ粉体の含有量20
wt%の電着膜を有する電着塗装部材を得た。この電着
塗装部材について実施例1−1と同様に外観検査、塗膜
物性及び電磁シールド性について評価した。
Example 1-3 The ABS resin casing used in Example 1-1 had a thickness of 0.7
After applying an electroless copper plating of 0.3 μm and then applying an electroless nickel plating to a thickness of 0.3 μm, a film thickness of 20 μm and a content of metallized alumina powder of 20 in the same manner as in Example 1-1.
An electrodeposition coating member having a wt% electrodeposition film was obtained. This electrodeposited member was evaluated for appearance inspection, coating film properties and electromagnetic shielding properties in the same manner as in Example 1-1.

【0075】比較例1 実施例1−1に於て、金属アルミナを添加しない以外は
実施例1−1と同様にして電着塗装を行なった。
Comparative Example 1 An electrodeposition coating was performed in the same manner as in Example 1-1 except that no metal alumina was added.

【0076】この電着塗装部材について、実施例1−1
と同様に評価したところ電磁波シールド性については5
0dB未満であった。
With respect to this electrodeposition coating member, Example 1-1
When evaluated in the same manner as in
It was less than 0 dB.

【0077】また、塗膜の外観及び塗膜物性について
は、表1−2及び表1−3に示す通りであり、筐体表面
の梨地化は不可能であり、梨地状の化粧塗装及び電磁波
シールド用の塗装として不適であった。
The appearance and physical properties of the coating film are as shown in Tables 1-2 and 1-3, and it is impossible to make the surface of the casing matte. It was unsuitable as a shield coating.

【0078】比較例2 実施例1−1で用いたABS樹脂筐体に対して、アクリ
ル塗料(No.2026;関西ペイント)50重量部中
に実施例1−1で用いた金属化アルミナを50重量部添
加してトルエン溶剤を用いて軽く混合した後、ホモミキ
サーで10分間撹拌して吹付用塗料を作製した。
Comparative Example 2 50 parts by weight of the metallized alumina used in Example 1-1 were added to 50 parts by weight of an acrylic paint (No. 2026; Kansai Paint) with respect to the ABS resin casing used in Example 1-1. After the addition by weight and light mixing with a toluene solvent, the mixture was stirred with a homomixer for 10 minutes to prepare a spray paint.

【0079】次に、実施例1−1で用いたABS樹脂筐
体に対して、上記吹付用塗料をスプレー塗布し、乾燥後
の膜厚が40μmの吹付塗膜を有する塗装部材を得た。
これについて実施例1−1と同様に評価したところ、段
差部や頂角部に於ける膜厚が平面部分8と比較して5μ
m以上薄く、又電磁波シールド性も50dB以下の減衰
量であった。
Next, the above-mentioned spray paint was spray-applied to the ABS resin casing used in Example 1-1 to obtain a paint member having a spray paint film having a dried film thickness of 40 μm.
When this was evaluated in the same manner as in Example 1-1, the film thickness at the step portion and the apex portion was 5 μm as compared with the plane portion 8.
m or more, and the electromagnetic wave shielding property was 50 dB or less.

【0080】なお、実施例1−1〜1−3及び比較例
1,2の塗膜の外観性(均一性、透け、しみ、つや・む
ら、流れ、異物及び梨地化)の評価及び塗膜物性(付着
性、耐湿性、促進耐光性、耐塩水噴霧性、鉛筆硬度、耐
アルカリ性及び耐溶剤性)及び電磁波シールド性の評価
の結果について表1−2及び表1−3に示す。
Evaluation of appearance (uniformity, see-through, stain, gloss / unevenness, flow, foreign matter and matte) of the coating films of Examples 1-1 to 1-3 and Comparative Examples 1 and 2, and coating films Tables 1-2 and 1-3 show the evaluation results of physical properties (adhesion, moisture resistance, accelerated light resistance, salt spray resistance, pencil hardness, alkali resistance and solvent resistance) and electromagnetic wave shielding properties.

【0081】[0081]

【表2】 [Table 2]

【0082】(注)評価結果は下記の通りである。 透け,しみ,つやむら, 均一性 流れ,異物 梨地化 ◎・・非常に良好 全く認められない。 極めて均一に梨地化 ○・・良好 殆んど認められない。 均一に梨地化 △・・やや悪い 部分的に認められる。 梨地化不均一 ×・・悪い 全面的に認められる。 梨地化されず(Note) The evaluation results are as follows. Sheer, stains, Tsuyamura, uniformity of flow, foreign matter satin of ◎ ·· not very good at all observed. Extremely uniform satining ○ ○ Good Almost no recognition. Uniform satin finish △ ・ ・ Slightly bad Partially recognized. Non-uniform satin × × bad Not matted

【0083】[0083]

【表3】 [Table 3]

【0084】 (注) *1:耐塩水噴霧試験 ・・・塗膜カット部の片側フクレ幅(mm) *2:RN・・・レィティングナンバー *3:電磁波シールド性 AA:減衰量90dB以上 A:減衰量80dB以上90dB未満 B:減衰量75dB以上80dB未満 C:減衰量70dB以上75dB未満 D:減衰量50dB以下 MEK:メチルエチルケトン(Note) * 1: Salt spray resistance test: One-side blister width (mm) of coating film cut part * 2: RN: Rating number * 3: Electromagnetic wave shielding AA: Attenuation of 90 dB or more A : Attenuation amount of 80 dB or more and less than 90 dB B: Attenuation amount of 75 dB or more and less than 80 dB C: Attenuation amount of 70 dB or more and less than 75 dB D: Attenuation amount of 50 dB or less MEK: Methyl ethyl ketone

【0085】実施例1−4 表面に段差または頂角を有する図2のABS樹脂製筐体
を、CrO3 −H2 SO4 −H2 O系エッチング液で1
分間処理し、水洗後、センシタイザー液として塩化第一
スズ30g/l、塩酸20ml/lを用いて、室温で2
分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2μmの厚
さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 1-4 The ABS resin case shown in FIG. 2 having a step or an apex angle on its surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etching solution.
After treating with water for 30 minutes and washing with water, 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid are used as a sensitizer solution at room temperature for 2 hours.
Treated for a minute and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0086】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径1μmの炭化ケイ素の表面に
無電解銅めっきを0.2μmの厚さに施したもの15重
量部をボールミルで30時間分散した後、脱塩水にて1
5重量%に希釈し、さらに着色のためにカーボンブラッ
クを2.0重量%添加した塗液を用いて、浴温25℃、
pH8〜9の条件で、被塗装物を陽極とし、対極として
0.5tステンレス板を用いて、印加電圧150Vで3
分間電着した。電着後に水洗し、97℃±1℃のオーブ
ンにて60分間加熱して硬化し、膜厚25μm,金属化
窒化ケイ素の含有量が30重量%の電着膜を有する電着
塗装部材を得た。
Then, an electroless copper plating of 0.2 μm was applied to the surface of silicon carbide having an average particle diameter of 1 μm with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.). After dispersing 15 parts by weight in a ball mill for 30 hours, the mixture
Using a coating solution diluted to 5% by weight and further added with 2.0% by weight of carbon black for coloring, a bath temperature of 25 ° C.
Under the condition of pH 8 to 9, the object to be coated is an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 150 V
Electrodeposited for minutes. After electrodeposition, it is washed with water and cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coated member having an electrodeposition film having a film thickness of 25 μm and a content of siliconized metal nitride of 30% by weight. Was.

【0087】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例1
−1と同様の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured for the electrodeposition-coated member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 1.
The same result as that of -1 was obtained.

【0088】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例1−
1と同様に、塗装膜は段差部および頂角部に均一に形成
されており、平面部8とほとんど同一の膜厚であった。
The thickness distribution of the electrodeposition coating film was calculated as follows:
As a result of measurement by the same method as in Example 1-1,
As in the case of No. 1, the coating film was formed uniformly on the step portion and the apex portion, and had almost the same thickness as the flat portion 8.

【0089】また、電着塗装被膜の表面の中心線平均粗
さは1.5μmであった。更に電磁波シールド性につい
て、実施例1−1と同様に測定したところ、減衰量は約
85dBであった。この評価の結果、高品質な梨地状の
外装塗装及び電磁波シールド用の塗装に適用することが
出来るものと認められた。
The center line average roughness of the surface of the electrodeposition coating film was 1.5 μm. Furthermore, when the electromagnetic wave shielding property was measured in the same manner as in Example 1-1, the attenuation was about 85 dB. As a result of this evaluation, it was confirmed that the method can be applied to high-quality satin-like exterior coating and coating for electromagnetic wave shielding.

【0090】実施例1−5 表面に段差または頂角を有する図2に示すABS樹脂製
筐体を、CrO3−H2 SO4 −H2 O系エッチング液
で1分間処理し、水洗後、センシタイザー液として塩化
第一スズ30g/l、塩酸20ml/lを用いて、室温
で2分間処理し、水洗した。次いで、アクチベータ液と
して、塩化パラジウム0.3g/l、塩酸3ml/lを
用いて、室温で2分間処理し、導通化した。その後、無
電解銅めっき液(奥野製薬工業社製)pH13.0を用
いて浴温70℃にて3分間めっきを施し、0.2μmの
厚さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 1-5 The ABS resin case shown in FIG. 2 having a step or a vertex on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0091】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.5μmのアルミナの表面
に無電解ニッケルめっきを0.2μmの厚さに施したも
の15重量部をボールミルで30時間分散した後、脱塩
水にて15重量%に希釈し、さらに着色のためにカーボ
ンブラックを2.0重量%添加した塗液を用いて、浴温
25℃、pH8〜9の条件で、被塗装物を陽極とし、対
極として0.5tステンレス板を用いて、印加電圧12
0Vで3分間電着した。電着後に水洗し、97℃±1℃
のオーブンにて60分間加熱して硬化し、膜厚20μ
m,金属化アルミナの共析量が22wt%の電着膜を有
する電着塗装部材を得た。
Then, electroless nickel plating was applied on the surface of alumina having an average particle diameter of 0.5 μm to 0.2 μm with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.). 15 parts by weight were dispersed in a ball mill for 30 hours, diluted with demineralized water to 15% by weight, and further used 2.0% by weight of carbon black for coloring. Under the conditions of a bath temperature of 25 ° C. and a pH of 8 to 9, an object to be coated is used as an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 12
Electrodeposition was performed at 0 V for 3 minutes. After electrodeposition, wash with water, 97 ℃ ± 1 ℃
Cured by heating in an oven for 60 minutes, film thickness 20μ
m, an electrodeposition coating member having an electrodeposition film in which the amount of eutectoid metallized alumina was 22 wt%.

【0092】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例1
−1と同様で、従来の金属上に形成した高温焼付塗装と
同一の品質またはそれ以上の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposited member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 1.
Same as -1, but with the same quality or better results as the conventional high temperature baking coating formed on metal.

【0093】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例1−
1と同様に、塗装膜は段差部及び頂角部に均一に形成さ
れており、平面とほとんど同一の膜厚であった。
The thickness distribution of the electrodeposition coating film was
As a result of measurement by the same method as in Example 1-1,
As in the case of No. 1, the coating film was formed evenly on the steps and the apical corners, and had almost the same thickness as the flat surface.

【0094】また、電着塗装被膜の表面の中心線平均粗
さは0.5μmであった。また、電磁波シールド性も減
衰量が約88dBであった。この結果、外装塗装及び電
磁波シールド用の塗装に適用することが出来るものと認
められた。
The center line average roughness of the surface of the electrodeposition coating film was 0.5 μm. Further, the attenuation of the electromagnetic wave shielding property was about 88 dB. As a result, it was recognized that the method can be applied to exterior coating and coating for electromagnetic wave shielding.

【0095】実施例1−6 表面に段差または頂角を有するABS樹脂製筐体を、C
rO3 −H2 SO4 −H2 O系エッチング液で1分間処
理し、水洗後、センシタイザー液として塩化第一スズ3
0g/l、塩酸20ml/lを用いて、室温で2分間処
理し、水洗した。次いで、アクチベータ液として、塩化
パラジウム0.3g/l、塩酸3ml/lを用いて、室
温で2分間処理し、導通化した。その後、無電解銅めっ
き液(奥野製薬工業社製)pH13.0を用いて浴温7
0℃にて3分間めっきを施し、0.2μmの厚さの銅薄
膜を形成した。次いで、水酸化ナトリウム5%、過硫酸
カリウム1%の水溶液で、70℃,30秒間処理し化学
着色被膜である銅の酸化被膜を形成した。
Example 1-6 An ABS resin case having a step or an apex angle on its surface was
Treated with an rO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, and then treated with stannous chloride 3 as a sensitizer solution.
The mixture was treated with 0 g / l and 20 ml / l hydrochloric acid at room temperature for 2 minutes and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, the bath temperature was adjusted to 7 using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) pH 13.0.
Plating was performed at 0 ° C. for 3 minutes to form a copper thin film having a thickness of 0.2 μm. Next, it was treated with an aqueous solution of 5% sodium hydroxide and 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0096】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径5μmの炭化ケイ素の表面に
無電解銅めっきを0.2μmの厚さに施したもの15重
量部をボールミルで30時間分散した後、脱塩水にて1
5重量%に希釈し、さらに着色のためにカーボンブラッ
クを2.0重量%添加した塗液を用いて、浴温25℃、
pH8〜9の条件で、被塗装物を陽極とし、対極として
0.5tステンレス板を用いて、印加電圧170Vで3
分間電着した。電着後に水洗し、97℃±1℃のオーブ
ンにて60分間加熱して硬化し、膜厚28μm,金属化
炭化ケイ素の含有量が35wt%の電着膜を有する電着
塗装部材を得た。
Then, electroless copper plating of 0.2 μm was applied to the surface of silicon carbide having an average particle diameter of 5 μm with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.). After dispersing 15 parts by weight in a ball mill for 30 hours, the mixture
Using a coating solution diluted to 5% by weight and further added with 2.0% by weight of carbon black for coloring, a bath temperature of 25 ° C.
Under the condition of pH 8 to 9, the object to be coated is used as an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 170 V
Electrodeposited for minutes. After electrodeposition, it was washed with water and cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coated member having an electrodeposition film having a film thickness of 28 μm and a metalized silicon carbide content of 35 wt%. .

【0097】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例1
−1と同様で、従来の金属上に形成した高温焼付塗装と
同一の品質またはそれ以上の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposited member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 1.
Same as -1, but with the same quality or better results as the conventional high temperature baking coating formed on metal.

【0098】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例1−
1と同様に、塗装膜は段差部及び頂角部に均一に形成さ
れており、平面とほとんど同一の膜厚であった。
The thickness distribution of the electrodeposition coating film was calculated as follows:
As a result of measurement by the same method as in Example 1-1,
As in the case of No. 1, the coating film was formed evenly on the steps and the apical corners, and had almost the same thickness as the flat surface.

【0099】また、電着塗装被膜の表面の中心線平均粗
さは5μmであった。また、電磁波シールド性は約70
dBであった。この結果、外装塗装及び電磁波シールド
用塗装に適用することが出来るものと認められた。
The center line average roughness of the surface of the electrodeposition coating film was 5 μm. The electromagnetic wave shielding property is about 70
dB. As a result, it was recognized that the composition can be applied to exterior coating and coating for electromagnetic wave shielding.

【0100】実施例2−1 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3 −H2 SO4 −H2 O系エッチング液で
1分間処理し、水洗後、センシタイザー液として塩化第
一スズ30g/l、塩酸20ml/lを用いて、室温で
2分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2μmの厚
さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 2-1 The ABS resin case shown in FIG. 2 having a step and an apex angle on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etching solution for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0101】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.03μmの銅粉体10重
量部と平均粒子径1μmのアルミナの表面に無電解銅め
っきを0.2μmの厚さに施したもの10重量部をボー
ルミルで30時間分散した後、脱塩水にて15重量%に
希釈し、さらに着色のためにカーボンブラックを2.0
重量%添加した塗液を用いて、浴温25℃、pH8〜9
の条件で、被塗装物を陽極とし、対極として0.5tス
テンレス板を用いて、印加電圧150Vで3分間電着し
た。電着後に水洗し、97℃±1℃のオーブンにて60
分間加熱して硬化し、膜厚25μm,金属化アルミナ粉
体及び銅粉体の含有量が30wt%の電着膜を有する電
着塗装部材を得た。
Then, 10 parts by weight of copper powder having an average particle diameter of 0.03 μm and 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.) 10 parts by weight of an electroless copper plating having a thickness of 0.2 μm on the surface of alumina was dispersed in a ball mill for 30 hours, then diluted with demineralized water to 15% by weight, and carbon black was further colored for coloring. 2.0
Bath temperature 25 ° C., pH 8-9
The electrode was electrodeposited at an applied voltage of 150 V for 3 minutes using an object to be coated as an anode and a 0.5 t stainless steel plate as a counter electrode under the conditions described in (1). After electrodeposition, wash with water and heat in an oven at 97 ° C ± 1 ° C for 60
The coating was cured by heating for about 1 minute to obtain an electrodeposition coating member having an electrodeposition film having a thickness of 25 μm and a content of metalized alumina powder and copper powder of 30 wt%.

【0102】この電着塗装部材を、JIS K5980
に準拠して、塗膜の外観性および塗膜物性等の測定を行
なった。その結果を表2−1および表2−2に示す。同
表に示すように、全てJIS規格以上で、良好な外観及
び優れた塗膜物性を有する電着塗装部材であった。
This electrodeposition-coated member was made according to JIS K5980.
In accordance with, measurements of the appearance and physical properties of the coating film were performed. The results are shown in Tables 2-1 and 2-2. As shown in the table, all were electrodeposition coated members having a good appearance and excellent physical properties of the coating film, which were all JIS standard or higher.

【0103】また、電着塗膜の厚さ分布については、実
施例1−1と同様にして、オリンパス光学社製、金属顕
微鏡を用いて、図2に示すa〜wの断面を測定した。そ
の結果、膜厚のバラツキは±4%以内であった。また、
この電着塗装被膜の表面の中心線平均粗さ(Ra)は
1.0μmであった。
The thickness distribution of the electrodeposited coating film was measured in the same manner as in Example 1-1, using a metal microscope manufactured by Olympus Optical Co., Ltd., and measuring the cross sections a through w shown in FIG. As a result, the variation in the film thickness was within ± 4%. Also,
The center line average roughness (Ra) of the surface of the electrodeposition coating film was 1.0 μm.

【0104】更に、電磁波シールド性についても、実施
例1−1と同様に測定したところ、減衰量は90dB以
上の“AA”であった。この評価の結果、高品質な梨地
状外観を与える外装塗装及び電磁波シールド用塗装に適
用することが出来るものと認められた。
Further, when the electromagnetic wave shielding property was measured in the same manner as in Example 1-1, the attenuation was "AA" of 90 dB or more. As a result of this evaluation, it was recognized that the present invention can be applied to an exterior coating giving a high quality satin-like appearance and a coating for electromagnetic wave shielding.

【0105】[0105]

【表4】 [Table 4]

【0106】[0106]

【表5】 [Table 5]

【0107】実施例2−2 表面に段差または頂角を有するABS樹脂製筐体を、C
rO3 −H2 SO4 −H2 O系エッチング液で1分間処
理し、水洗後、センシタイザー液として塩化第一スズ3
0g/l、塩酸20ml/lを用いて、室温で2分間処
理し、水洗した。次いで、アクチベータ液として、塩化
パラジウム0.3g/l、塩酸3ml/lを用いて、室
温で2分間処理し、導通化した。その後、無電解銅めっ
き液(奥野製薬工業社製)pH13.0を用いて浴温7
0℃にて3分間めっきを施し、0.2μmの厚さの銅薄
膜を形成した。次いで、水酸化ナトリウム5%、過硫酸
カリウム1%の水溶液で、70℃,30秒間処理し化学
着色被膜である銅の酸化被膜を形成した。
Example 2-2 An ABS resin housing having a step or an apex angle on its surface was
Treated with an rO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, and then treated with stannous chloride 3 as a sensitizer solution.
The mixture was treated with 0 g / l and 20 ml / l hydrochloric acid at room temperature for 2 minutes and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, the bath temperature was adjusted to 7 using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) pH 13.0.
Plating was performed at 0 ° C. for 3 minutes to form a copper thin film having a thickness of 0.2 μm. Next, it was treated with an aqueous solution of 5% sodium hydroxide and 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0108】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.05μmの銅粉体7重量
部と平均粒子径1μmの炭化ケイ素の表面に無電解銅め
っきを0.2μmの厚さに施したもの8重量部をボール
ミルで30時間分散した後、脱塩水にて15重量%に希
釈し、さらに着色のためにカーボンブラックを2.0重
量%添加した塗液を用いて、浴温25℃、pH8〜9の
条件で、被塗装物を陽極とし、対極として0.5tステ
ンレス板を用いて、印加電圧120Vで3分間電着し
た。電着後に水洗し、97℃±1℃のオーブンにて60分
間加熱して硬化し、膜厚20μm,粉体混合物の含有量
が20wt%の電着膜を有する電着塗装部材を得た。
Then, with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Kasei Co., Ltd.), 7 parts by weight of copper powder having an average particle diameter of 0.05 μm and 1 part by weight of an average particle diameter of 1 μm were used. 8 parts by weight of an electroless copper plating having a thickness of 0.2 μm on the surface of silicon carbide is dispersed in a ball mill for 30 hours, and then diluted with deionized water to 15% by weight. Is applied at a bath temperature of 25 ° C. and a pH of 8 to 9 using a coating liquid containing 2.0% by weight of a coating material, a 0.5 t stainless steel plate as a counter electrode, and an applied voltage of 120 V for 3 minutes. Electrodeposited. After electrodeposition, the substrate was washed with water and cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coated member having an electrodeposition film having a film thickness of 20 μm and a powder mixture content of 20 wt%.

【0109】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例2
−1と同様の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposited member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 2.
The same result as that of -1 was obtained.

【0110】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例2−
1と同様に、塗装膜は段差部及び頂角部に均一に形成さ
れており、平面部8とほとんど同一の膜厚であった。ま
た、電着塗装被膜の表面の中心線平均粗さは0.7μm
であった。この結果、高品質な梨地状外観を与える外装
塗装及び電磁波シールド用塗装に適用することが出来る
ものと認められた。
Further, the thickness distribution of the electrodeposition coating film was calculated as follows.
As a result of measurement by the same method as in Example 1-1, Example 2-
As in the case of No. 1, the coating film was uniformly formed on the step portion and the apex corner portion, and had almost the same thickness as the flat portion 8. The center line average roughness of the surface of the electrodeposition coating film is 0.7 μm.
Met. As a result, it was recognized that the present invention can be applied to an exterior coating that gives a high-quality satin-like appearance and an electromagnetic shielding coating.

【0111】実施例2−3 表面に段差または頂角を有する図2に示すABS樹脂製
筐体を、CrO3−H2 SO4 −H2 O系エッチング液
で1分間処理し、水洗後、センシタイザー液として塩化
第一スズ30g/l、塩酸20ml/lを用いて、室温
で2分間処理し、水洗した。次いで、アクチベータ液と
して、塩化パラジウム0.3g/l、塩酸3ml/lを
用いて、室温で2分間処理し、導通化した。その後、無
電解銅めっき液(奥野製薬工業社製)pH13.0を用
いて浴温70℃にて3分間めっきを施し、0.2μmの
厚さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 2-3 An ABS resin case having a step or a vertex on its surface as shown in FIG. 2 was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0112】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.07μmの銀粉体3重量
部と平均粒子径0.2μmのアルミナの表面に無電解ニ
ッケルめっきを0.2μmの厚さに施したもの7重量部
をボールミルで30時間分散した後、脱塩水にて15重
量%に希釈し、さらに着色のためにカーボンブラックを
2.0重量%添加した塗液を用いて、浴温25℃、pH
8〜9の条件で、被塗装物を陽極とし、対極として0.
5tステンレス板を用いて、印加電圧120 Vで3分間電
着した。電着後に水洗し、97℃±1℃のオーブンにて
60分間加熱して硬化し、膜厚20μm,混合粉体の含有
量が30wt%の電着膜を有する電着塗装部材を得た。
Then, 3 parts by weight of silver powder having an average particle diameter of 0.07 μm and 0.3 part by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.) were added to 100 parts by weight. A 2 μm alumina surface coated with electroless nickel plating to a thickness of 0.2 μm, 7 parts by weight, dispersed in a ball mill for 30 hours, diluted with demineralized water to 15% by weight, and further carbonized for coloring Using a coating solution containing 2.0% by weight of black, a bath temperature of 25 ° C. and a pH of
Under the conditions of 8 to 9, the object to be coated was used as an anode, and as a counter electrode, 0.1% was used.
Using a 5t stainless steel plate, electrodeposition was performed at an applied voltage of 120 V for 3 minutes. After electrodeposition, wash with water and oven at 97 ℃ ± 1 ℃
The coating was cured by heating for 60 minutes to obtain an electrodeposition coating member having an electrodeposition film having a thickness of 20 μm and a mixed powder content of 30 wt%.

【0113】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例2
−1と同様の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured on this electrodeposition coated member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 2.
The same result as that of -1 was obtained.

【0114】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例2−
1と同様に、塗装膜は段差部及び頂角部に均一に形成さ
れており、平面部8とほとんど同一の膜厚であった。ま
た、電着塗装被膜の表面の中心線平均粗さは0.3μm
であった。更に、電磁波シールド性についても、実施例
1−1と同様に測定した結果、減衰量は90dB以上の
“AA”であった。この結果、細かい梨地状の外観を与
える外装塗装及び電磁波シールド用塗装に適用すること
が出来るものと認められた。
The thickness distribution of the electrodeposition coating film was calculated as follows:
As a result of measurement by the same method as in Example 1-1, Example 2-
As in the case of No. 1, the coating film was uniformly formed on the step portion and the apex corner portion, and had almost the same thickness as the flat portion 8. The center line average roughness of the surface of the electrodeposition coating film is 0.3 μm.
Met. Furthermore, the electromagnetic wave shielding property was measured in the same manner as in Example 1-1, and as a result, the attenuation was "AA" of 90 dB or more. As a result, it was recognized that the present invention can be applied to an exterior coating that gives a fine satin-like appearance and an electromagnetic shielding coating.

【0115】実施例2−4 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3 −H2 SO4 −H2 O系エッチング液で
1分間処理し、水洗後、センシタイザー液として塩化第
一スズ30g/l、塩酸20ml/lを用いて、室温で
2分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2 μmの厚さ
の銅薄膜を形成した。次いで、水酸化ナトリウム5%、
過硫酸カリウム1%の水溶液で、70℃,30秒間処理
し化学着色被膜である銅の酸化被膜を形成した。
Example 2-4 The ABS resin case shown in FIG. 2 having a step and an apex angle on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.), pH 13.0, to form a copper thin film having a thickness of 0.2 μm. Then 5% sodium hydroxide,
The resultant was treated with a 1% aqueous solution of potassium persulfate at 70 ° C. for 30 seconds to form a chemically oxidized copper oxide film.

【0116】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.03μmのニッケル粉体
5重量部と平均粒子径0.5μmの炭化ケイ素の表面に
無電解銅めっきを0.2μmの厚さに施したもの5重量
部をボールミルで30時間分散した後、脱塩水にて15
重量%に希釈し、さらに着色のためにカーボンブラック
を2.0重量%添加した塗液を用いて、浴温25℃、p
H8〜9の条件で、被塗装物を陽極とし、対極として
0.5tステンレス板を用いて、印加電圧200Vで3
分間電着した。電着後に水洗し、97℃±1℃のオーブ
ンにて60分間加熱して硬化し、膜厚30μm,混合粉
体の含有量が30wt%の電着膜を有する電着塗装部材
を得た。
Then, 5 parts by weight of nickel powder having an average particle diameter of 0.03 μm and 0. 5 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.) were added to 100 parts by weight. 5 μm of silicon carbide surface is electroless copper-plated to a thickness of 0.2 μm, and 5 parts by weight are dispersed in a ball mill for 30 hours.
Weight%, and using a coating solution to which 2.0% by weight of carbon black was added for coloring, a bath temperature of 25 ° C. and a p.
Under the conditions of H8 to H9, the object to be coated was used as an anode, a 0.5 t stainless steel plate was used as a counter electrode, and an applied voltage of 200 V was used.
Electrodeposited for minutes. After the electrodeposition, the substrate was washed with water and cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coated member having an electrodeposition film having a thickness of 30 μm and a mixed powder content of 30% by weight.

【0117】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、実施例2
−1と同様の結果が得られた。
The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposition-coated member in the same manner as in Example 1-1 in accordance with JIS K5980. The result is shown in Example 2.
The same result as that of -1 was obtained.

【0118】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例2−
1と同様に、塗装膜は段差部及び頂角部に均一に形成さ
れており、平面部8とほとんど同一の膜厚であった。ま
た、電着塗装被膜の表面の中心線平均粗さは0.5μm
であった。更に、電磁波シールド性について、実施例1
−1と同様にして評価したところ、100dB以上の減
衰量が得られた。この結果、梨地状の外観を与える外装
塗装及び電磁波シールド用塗装に適用することが出来る
ものと認められた。
The thickness distribution of the electrodeposition coating film was calculated as follows:
As a result of measurement by the same method as in Example 1-1, Example 2-
As in the case of No. 1, the coating film was uniformly formed on the step portion and the apex corner portion, and had almost the same thickness as the flat portion 8. The center line average roughness of the surface of the electrodeposition coating film is 0.5 μm.
Met. Further, with respect to the electromagnetic wave shielding property,
As a result of evaluation in the same manner as -1, an attenuation of 100 dB or more was obtained. As a result, it was recognized that the present invention can be applied to the exterior coating giving a satin appearance and the coating for electromagnetic wave shielding.

【0119】実施例3−1 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3 −H2 SO4 −H2 O系エッチング液で
1分間処理し、水洗後、センシタイザー液として塩化第
一スズ30g/l、塩酸20ml/lを用いて、室温で
2分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2μmの厚
さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 3-1 An ABS resin case having a step and a vertex on the surface shown in FIG. 2 was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0120】次に、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径2.0μmの天然マイカの表
面に無電解銅めっきを0.05μmの厚さに施したもの
15重量部をボールミルで30時間分散した後、脱塩水
にて15重量%に希釈し、さらに着色のためにカーボン
ブラックを2.0重量%添加した塗液を用いて、浴温2
5℃、pH8〜9の条件で、被塗装物を陽極とし、対極
として0.5tステンレス板を用いて、印加電圧120
Vで3分間電着した。電着後に水洗し、97℃±1℃の
オーブンにて60分間加熱して硬化し、膜厚20μm,
混合粉体の含有量が20wt%の電着膜を有する電着塗
装部材を得た。
Next, electroless copper plating was applied to the surface of natural mica having an average particle diameter of 2.0 μm with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Kasei Co., Ltd.). After dispersing 15 parts by weight in a thickness of 0.05 μm with a ball mill for 30 hours, the mixture was diluted to 15% by weight with demineralized water, and further coated with 2.0% by weight of carbon black for coloring. Using, bath temperature 2
Under conditions of 5 ° C. and pH 8 to 9, the object to be coated is used as an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 120 is used.
Electrodeposited at V for 3 minutes. After electrodeposition, washed with water and cured by heating in an oven at 97 ° C. ± 1 ° C. for 60 minutes.
An electrodeposition coating member having an electrodeposition film having a mixed powder content of 20 wt% was obtained.

【0121】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果は、表3−1
及び表3−2に示す通り実施例1−1と同様の結果が得
られた。
The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposition-coated member in the same manner as in Example 1-1 in accordance with JIS K5980. Table 3-1 shows the results.
As shown in Table 3-2, the same results as in Example 1-1 were obtained.

【0122】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、膜厚のバラ
ツキは±4%以内で、筐体の段差部及び頂角部にも均一
に形成されており、平面部8とほとんど同一の膜厚であ
った。
The thickness distribution of the electrodeposition coating film was
As a result of measurement by the same method as in Example 1-1, the variation in the film thickness was within ± 4%, and the film was formed evenly on the step portion and the apex corner portion of the housing. It was a film thickness.

【0123】また、この電着塗装被膜の表面の中心線平
均粗さ(Ra)は1.4μmであった。更に、電磁波シ
ールド性は約75dBの減衰量を示した。この結果か
ら、高品質な梨地状外観を形成する外装塗装及び電磁波
シールド用塗装に適用することが出来るものと認められ
た。
Further, the center line average roughness (Ra) of the surface of the electrodeposition coating film was 1.4 μm. Further, the electromagnetic wave shielding property showed an attenuation of about 75 dB. From these results, it was confirmed that the present invention can be applied to exterior coating for forming a high-quality satin-like appearance and coating for electromagnetic wave shielding.

【0124】実施例3−2 表面に段差及び頂角を有する、図2に示すABS樹脂製
筐体に実施例4−1と同様の方法で、銅薄膜及び酸化銅
の被膜を形成し、電着塗液として、アクリル・メラミン
系樹脂(商品名:ハニブライトC−IL、ハニー化成社
製)100重量部に対して、平均粒子径0.03μmの
ニッケル粉体5重量部と平均粒子径1.5μmの天然マ
イカの表面に無電解ニッケルめっきを0.2μmの厚さ
に施したもの10重量部をボールミルで30時間分散し
た後、脱塩水にて15重量%に希釈し、さらに着色のた
めにカーボンブラックを2.0重量%添加した塗液を用
いて、浴温25℃、pH8〜9の条件で、被塗装物を陽
極とし、対極として0.5tステンレス板を用いて、印
加電圧150Vで3分間電着した。電着後に水洗し、9
7℃±1℃のオーブンにて60分間加熱して硬化し、膜
厚24μm,混合粉体の含有量が28wt%の電着膜を
有する電着塗装部材を得た。
Example 3-2 A copper thin film and a copper oxide film were formed on the ABS resin case shown in FIG. 2 having steps and apex angles on the surface in the same manner as in Example 4-1. As a coating solution, 5 parts by weight of nickel powder having an average particle diameter of 0.03 μm and 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.) and an average particle diameter of 1. 5 μm of natural mica is electroless nickel-plated to a thickness of 0.2 μm, and 10 parts by weight are dispersed in a ball mill for 30 hours, and then diluted with demineralized water to 15% by weight. Using a coating liquid to which 2.0% by weight of carbon black was added, at a bath temperature of 25 ° C. and a pH of 8 to 9, an object to be coated was used as an anode, a 0.5 t stainless steel plate was used as a counter electrode, and an applied voltage of 150 V was used. Electrodeposited for 3 minutes. After electrodeposition, wash with water, 9
The composition was cured by heating in an oven at 7 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coating member having an electrodeposition film having a thickness of 24 μm and a mixed powder content of 28 wt%.

【0125】この電着塗装部材について、実施例1−1
と同様にして塗膜の外観性および塗膜物性を評価した。
その結果を表3−1及び表3−2に示す。
With respect to this electrodeposition coating member, Example 1-1
The appearance and physical properties of the coating film were evaluated in the same manner as described above.
The results are shown in Table 3-1 and Table 3-2.

【0126】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、実施例3−
1と同様に、塗布膜は段差部及び頂角部に均一に形成さ
れており、平面部8とほとんど同一の膜厚であった。
Further, the thickness distribution of the electrodeposition coating film was calculated as follows.
As a result of measurement by the same method as in Example 1-1, Example 3-
As in the case of No. 1, the coating film was formed uniformly at the step portion and the apex portion, and had almost the same thickness as the flat portion 8.

【0127】また、この電着塗装被膜の表面の中心線平
均粗さ(Ra)は1.2μmであった。更に、電磁波シ
ールド性は100dB以上の減衰量であった。この結
果、高品質な梨地状外観を形成する外装塗装及び電磁波
シールド用塗装に適用することが出来るものと認められ
た。
[0127] The center line average roughness (Ra) of the surface of the electrodeposition coating film was 1.2 µm. Further, the electromagnetic wave shielding property was an attenuation of 100 dB or more. As a result, it was recognized that the present invention can be applied to exterior coating for forming a high-quality satin-like appearance and coating for electromagnetic wave shielding.

【0128】実施例3−3 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3 −H2 SO4 −H2 O系エッチング液で
1分間処理し、水洗後、センシタイザー液として塩化第
一スズ30g/l、塩酸20ml/lを用いて、室温で
2分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2μmの厚
さの銅薄膜を形成した。次いで、水酸化ナトリウム5
%、過硫酸カリウム1%の水溶液で、70℃,30秒間
処理し化学着色被膜である銅の酸化被膜を形成した。
Example 3-3 The ABS resin case shown in FIG. 2 having a step and an apex angle on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etching solution for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, sodium hydroxide 5
% And an aqueous solution of 1% potassium persulfate at 70 ° C. for 30 seconds to form a copper oxide film as a chemically colored film.

【0129】電着塗液として、アクリル・メラミン系樹
脂(商品名:ハニブライトC−IL、ハニー化成社製)
100重量部に対して、平均粒子径0.07μmの銀粉
体3重量部と、平均粒子径0.2μmのアルミナの表面
に無電解ニッケルめっきを0.2μmの厚さに施したも
の7重量部と、平均粒子径1.5μmの天然マイカの表
面に無電解ニッケルめっきを0.02μmの厚さに施し
たもの10重量部とをボールミルで30時間分散した
後、脱塩水にて15重量%に希釈し、さらに着色のため
にカーボンブラックを2.0重量%添加した塗液を用い
て、浴温25℃、pH8〜9の条件で、被塗装物を陽極
とし、対極として0.5tステンレス板を用いて、印加
電圧100Vで3分間電着した。電着後に水洗し、97
℃±1℃のオーブンにて60分間加熱して硬化し、膜厚
16μm,混合粉体の含有量15wt%の電着膜を有す
る電着塗装部材を得た。
An acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Kasei Co., Ltd.) was used as the electrodeposition coating liquid.
100 parts by weight, 3 parts by weight of silver powder having an average particle diameter of 0.07 μm, and 7% by weight of an electroless nickel plating having a thickness of 0.2 μm on the surface of alumina having an average particle diameter of 0.2 μm And 10 parts by weight of a surface of natural mica having an average particle diameter of 1.5 μm and electroless nickel plating having a thickness of 0.02 μm dispersed in a ball mill for 30 hours, and then 15% by weight with demineralized water. Using a coating liquid containing 2.0% by weight of carbon black for coloring, at a bath temperature of 25 ° C. and a pH of 8 to 9, the object to be coated was an anode, and a 0.5 t stainless steel was used as a counter electrode. Electrodeposition was performed using a plate at an applied voltage of 100 V for 3 minutes. After electrodeposition, wash with water, 97
The coating was cured by heating in an oven at a temperature of ± 1 ° C. for 60 minutes to obtain an electrodeposition coating member having an electrodeposition film having a thickness of 16 μm and a mixed powder content of 15 wt%.

【0130】この電着塗装部材を、実施例3−1と同様
に、JIS K5980に準拠して、塗膜の外観性およ
び塗膜物性等の測定を行なった。その結果を表3−1及
び表3−2に示す。
[0130] The appearance of the coating film and the physical properties of the coating film were measured on the electrodeposition-coated member in the same manner as in Example 3-1 in accordance with JIS K5980. The results are shown in Table 3-1 and Table 3-2.

【0131】また、電着塗装被膜の塗膜の厚さ分布を、
実施例1−1と同様の方法で測定した結果、塗布膜は段
差部及び頂角部に均一に形成されており、平面部8とほ
とんど同一の膜厚であった。
Further, the thickness distribution of the electrodeposition coating film was calculated as follows:
As a result of measurement by the same method as in Example 1-1, the coating film was formed uniformly at the step portion and the apex portion, and had almost the same thickness as the flat portion 8.

【0132】また、この電着塗装被膜の表面の中心線平
均粗さ(Ra)は0.8μmであった。更に、電磁波シ
ールド性は約90dBの減衰量を示した。この結果、高
品質な梨地状外観を形成する外装塗装及び電磁波シール
ド用塗装に適用することが出来るものと認められた。
Further, the center line average roughness (Ra) of the surface of the electrodeposition coating film was 0.8 μm. Further, the electromagnetic wave shielding property showed an attenuation of about 90 dB. As a result, it was recognized that the present invention can be applied to exterior coating for forming a high-quality satin-like appearance and coating for electromagnetic wave shielding.

【0133】実施例3−4 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3 −H2 SO4 −H2 O系エッチング液で
1分間処理し、水洗後、センシタイザー液として塩化第
一スズ30g/l、塩酸20ml/lを用いて、室温で
2分間処理し、水洗した。次いで、アクチベータ液とし
て、塩化パラジウム0.3g/l、塩酸3ml/lを用
いて、室温で2分間処理し、導通化した。その後、無電
解銅めっき液(奥野製薬工業社製)pH13.0を用い
て浴温70℃にて3分間めっきを施し、0.2μmの厚
さの銅薄膜を形成した。次いで、硝酸銅,塩化アンモニ
ウム及び酢酸混合液で、70℃,30秒間処理し水酸化
銅被膜を形成した。
Example 3-4 The ABS resin case shown in FIG. 2 having a step and an apex angle on its surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, The mixture was treated at room temperature for 2 minutes with 30 g / l of stannous chloride and 20 ml / l of hydrochloric acid as a sensitizer solution, and washed with water. Next, 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid were used as an activator solution at room temperature for 2 minutes to conduct. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Next, the mixture was treated with a mixed solution of copper nitrate, ammonium chloride and acetic acid at 70 ° C. for 30 seconds to form a copper hydroxide coating.

【0134】次に、電着塗液として、アクリル・メラミ
ン系樹脂(商品名:ハニブライトC−IL、ハニー化成
社製)100重量部に対して、平均粒子径0.5μmの
炭化ケイ素の表面に無電解銅めっきを0.2μmの厚さ
に施したもの15重量部と平均粒子径3μmの天然マイ
カの表面に無電解銅めっきを0.2μmの厚さに施した
もの15重量部をボールミルで30時間分散した後、脱
塩水にて15重量%に希釈し、さらに着色のためにカー
ボンブラックを2.0重量%添加した塗液を用いて、浴
温25℃、pH8〜9の条件で、被塗装物を陽極とし、
対極として0.5tステンレス板を用いて、印加電圧1
70Vで3分間電着した。電着後に水洗し、97℃±1
℃のオーブンにて60分間加熱して硬化し、膜厚27μ
m,混合粉体の含有量25wt%の電着塗膜を有する電
着塗装部材を得た。
Next, an electrodeposition coating liquid was applied to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Chemical Co., Ltd.) on the surface of silicon carbide having an average particle diameter of 0.5 μm. 15 parts by weight of electroless copper plating having a thickness of 0.2 μm and 15 parts by weight of electroless copper plating having a thickness of 0.2 μm on the surface of natural mica having an average particle diameter of 3 μm were subjected to ball milling. After dispersing for 30 hours, the mixture was diluted to 15% by weight with demineralized water, and further used a coating liquid containing 2.0% by weight of carbon black for coloring at a bath temperature of 25 ° C. and a pH of 8 to 9, The workpiece is the anode,
A 0.5t stainless steel plate was used as a counter electrode, and an applied voltage of 1
Electrodeposition was performed at 70 V for 3 minutes. Wash with water after electrodeposition, 97 ℃ ± 1
Cured by heating in an oven at 60 ° C for 60 minutes.
m, an electrodeposition coating member having an electrodeposition coating film having a mixed powder content of 25 wt% was obtained.

【0135】この電着塗装部材を、実施例1−1と同様
に、JIS K5980に準拠して、塗膜の外観性評価
および塗膜物性の測定を行なった。その結果は表3−1
および表3−2に示す通り、良好な外観及び優れた塗膜
物性の電着塗装部材であった。
The appearance of the coating film and the physical properties of the coating film were evaluated for the electrodeposited coating member in the same manner as in Example 1-1 in accordance with JIS K5980. Table 3-1 shows the results.
As shown in Table 3-2, the electrodeposition coating member had a good appearance and excellent coating film properties.

【0136】また、電着塗膜の厚さ分布について、実施
例1−1と同様の方法で測定した結果、その膜厚のバラ
ツキは±10%以内で、塗布膜は段差部及び頂角部に均
一に形成されており、平面部8とほとんど同一の膜厚で
あった。
The thickness distribution of the electrodeposited coating film was measured in the same manner as in Example 1-1. As a result, the variation in the film thickness was within ± 10%, and the thickness of the coating film was not more than ± 10%. And the film thickness was almost the same as that of the flat portion 8.

【0137】また、電着塗装被膜の表面の中心線平均粗
さ(Ra)は3μmであった。更に、電磁波シールド性
は100dBであった。
The center line average roughness (Ra) of the surface of the electrodeposition coating film was 3 μm. Further, the electromagnetic wave shielding property was 100 dB.

【0138】[0138]

【表6】 [Table 6]

【0139】[0139]

【表7】 [Table 7]

【0140】参照例1 表面に段差及び頂角を有する図2に示すABS樹脂製筐
体を、CrO3−H2SO4−H2O系エッチング液で1分
間処理し、水洗後、センシタイザー液として塩化第一ス
ズ30g/l、塩酸20ml/lを用いて、室温で2分
間処理し、水洗した。次いで、アクチベータ液として、
塩化パラジウム0.3g/l、塩酸3ml/lを用い
て、室温で2分間処理し、導通化した。その後、無電解
銅めっき液(奥野製薬工業社製)pH13.0を用いて
浴温70℃にて3分間めっきを施し、0.2μmの厚さ
の銅薄膜を形成した。次いで、硫酸銅と塩化ナトリウム
混合液中で、70℃で30秒間処理し亜酸化銅被膜を形
成した。
Reference Example 1 The ABS resin case shown in FIG. 2 having a step and an apex angle on the surface was treated with a CrO 3 —H 2 SO 4 —H 2 O-based etchant for 1 minute, washed with water, and then sensitized. The solution was treated with stannous chloride (30 g / l) and hydrochloric acid (20 ml / l) at room temperature for 2 minutes and washed with water. Then, as an activator liquid,
The mixture was treated with 0.3 g / l of palladium chloride and 3 ml / l of hydrochloric acid at room temperature for 2 minutes to make it conductive. Thereafter, plating was performed at a bath temperature of 70 ° C. for 3 minutes using an electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) at pH 13.0 to form a copper thin film having a thickness of 0.2 μm. Then, the mixture was treated at 70 ° C. for 30 seconds in a mixed solution of copper sulfate and sodium chloride to form a cuprous oxide coating.

【0141】そして、アクリル・メラミン系樹脂(商品
名:ハニブライトC−IL、ハニー化成社製)100重
量部に対して、平均粒子径0.02μmの銅粉体15重
量部をボールミルで30時間分散した後、脱塩水にて1
5重量%に希釈し、さらに着色のためにカーボンブラッ
クを2.0重量%添加した塗液を用いて、浴温25℃、
pH8〜9の条件で、被塗装物を陽極とし、対極として
0.5tステンレス板を用いて、印加電圧200Vで3
分間電着した。電着後に水洗し、145℃±1℃のオー
ブンにて60分間加熱して硬化し、膜厚27μm,粉体
の含有量が38wt%の電着膜を有する電着塗装部材を
得た。
Then, 15 parts by weight of a copper powder having an average particle diameter of 0.02 μm was dispersed in a ball mill for 30 hours with respect to 100 parts by weight of an acrylic / melamine resin (trade name: Hanibright C-IL, manufactured by Honey Kasei Co., Ltd.). And then add 1
Using a coating solution diluted to 5% by weight and further added with 2.0% by weight of carbon black for coloring, a bath temperature of 25 ° C.
Under the condition of pH 8 to 9, the object to be coated is used as an anode, a 0.5 t stainless steel plate is used as a counter electrode, and an applied voltage of 3
Electrodeposited for minutes. After the electrodeposition, the electrodeposition was washed with water and cured by heating in an oven at 145 ° C. ± 1 ° C. for 60 minutes to obtain an electrodeposition coated member having an electrodeposition film having a film thickness of 27 μm and a powder content of 38 wt%.

【0142】この電着塗装部材を、JIS K5980
に準拠して、塗膜の外観性および塗膜物性等の測定を行
なった。その結果を表4−1及び表4−2に示す。ま
た、電着塗装被膜の塗膜の厚さ分布を、オリンパス光学
社製、金属顕微鏡を用いて、図2に示すa〜wの断面を
測定した。その結果、電着塗装被膜は段差部及び頂角部
に均一に形成されており、平面部8とほとんど同一の膜
厚であった。また、この電着塗装被膜の表面の中心線平
均粗さ(Ra)は0.3μmであった。表面の中心線平
均粗さの測定は、テーラホブソン社製、タリサーフ6型
を用いて行なった。更に、電磁波シールド性は約70d
Bであった。
[0142] This electrodeposition coating member was made according to JIS K5980.
In accordance with, measurements of the appearance and physical properties of the coating film were performed. The results are shown in Table 4-1 and Table 4-2. Moreover, the thickness distribution of the coating film of the electrodeposition coating film was measured for the cross sections a to w shown in FIG. 2 using a metal microscope manufactured by Olympus Optical Co., Ltd. As a result, the electrodeposition coating film was uniformly formed on the step portion and the apex portion, and had almost the same thickness as the flat portion 8. The center line average roughness (Ra) of the surface of the electrodeposition coating film was 0.3 μm. The measurement of the center line average roughness of the surface was performed using Talysurf type 6 manufactured by Taylor Hobson. Furthermore, electromagnetic wave shielding is about 70d
B.

【0143】[0143]

【表8】 [Table 8]

【0144】[0144]

【表9】 [Table 9]

【0145】[0145]

【発明の効果】以上説明したように、本発明の電着塗装
部材によれば、表面に段差または頂角を有する筐体表面
を、導電性粒子を含有する電着塗装被膜で被覆すること
により、筐体の段差のある稜線部分または頂角部と平面
部との塗装膜の厚さに差がほとんどなく均一に外装塗装
することができ、また筐体表面を均一に梨地化された表
面に仕上げることができるため、装飾外観性が著しく向
上し、外装への適用、また経済的においても大きく寄与
することができる。
As described above, according to the electrodeposition coating member of the present invention, the surface of the casing having a step or an apex angle on the surface is covered with the electrodeposition coating film containing conductive particles. There is almost no difference in the thickness of the coating film between the stepped ridgeline or apex corner and the flat part of the casing, and the exterior can be coated uniformly, and the casing surface can be uniformly matted. Since it can be finished, the decorative appearance is remarkably improved, and it can greatly contribute to the application to the exterior and economically.

【0146】また、電着膜中に導電性粒子を析出させる
ことで電着膜に電磁波シールド性を付与することがで
き、筐体の電磁波シールド及び外装の塗装を1工程で行
なうことができる。
Further, by depositing conductive particles in the electrodeposited film, it is possible to impart an electromagnetic wave shielding property to the electrodeposited film, so that the electromagnetic wave shield of the housing and the exterior can be coated in one step.

【0147】更に、本発明によれば、電磁波シールド性
及び筐体表面の梨地化の程度を、電着膜中の導電性粒子
の含有量や粒径、印加電圧及び電着時間を変化させるこ
とにより任意に変化させることができ、被塗物の筐体の
用途に応じた塗装を行なうことができる。
Further, according to the present invention, the electromagnetic wave shielding property and the degree of matte finish on the casing surface are controlled by changing the content and particle size of the conductive particles in the electrodeposition film, the applied voltage and the electrodeposition time. Can be changed arbitrarily, and coating can be performed according to the use of the housing of the object to be coated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電着塗装部材の構成の一例を示す部分
断面図である。
FIG. 1 is a partial sectional view showing an example of the configuration of an electrodeposition coating member of the present invention.

【図2】本発明の電着塗装部材を用いた筐体の一例を示
す部分断面図である。
FIG. 2 is a partial sectional view showing an example of a housing using the electrodeposition coating member of the present invention.

【図3】図1の電着塗装部材の電着塗装被膜を模式的に
示した概略断面図である。
FIG. 3 is a schematic cross-sectional view schematically showing an electrodeposition coating film of the electrodeposition coating member of FIG.

【図4】金属化セラミック粉体の平均粒子径毎の電着塗
装被膜の表面の中心線平均粗さ(Ra)と印加電圧、及
び電着塗装被膜と印加電圧との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the center line average roughness (Ra) of the surface of the electrodeposition coating film and the applied voltage for each average particle size of the metallized ceramic powder, and the applied voltage and the applied voltage. .

【図5】種々の平均粒径の金属化セラミック粉体を含有
する電着膜を有する電着塗装部材の電磁シールド性と印
加電圧の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between an electromagnetic shielding property and an applied voltage of an electrodeposition coating member having an electrodeposition film containing metalized ceramic powders having various average particle sizes.

【図6】金属化セラミック粉体及び超微粒金属粉体の混
合粉体を含有する電着膜を有する電着塗装部材の電磁シ
ールド性と印加電圧との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between an electromagnetic shielding property and an applied voltage of an electrodeposition coating member having an electrodeposition film containing a mixed powder of a metallized ceramic powder and an ultrafine metal powder.

【図7】本発明の電着塗装部材を筐体に用いたコンピュ
ータの斜視図である。
FIG. 7 is a perspective view of a computer using the electrodeposition coating member of the present invention for a housing.

【図8】図7のコンピュータの筐体のA−A線部分断面
図である。
FIG. 8 is a partial cross-sectional view taken along the line AA of the housing of the computer in FIG. 7;

【符号の説明】[Explanation of symbols]

1 非金属部材 2 金属薄膜 3 化学着色被膜 4 電着塗装被膜 5 下地層 6 稜線部 7 頂角部 8 平面部 DESCRIPTION OF SYMBOLS 1 Non-metal member 2 Metal thin film 3 Chemical coloring film 4 Electrodeposition coating film 5 Underlayer 6 Ridge part 7 Apex corner part 8 Flat part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C09D 5/44 C09D 5/44 A B (31)優先権主張番号 特願平2−117498 (32)優先日 平成2年5月9日(1990.5.9) (33)優先権主張国 日本(JP) (58)調査した分野(Int.Cl.7,DB名) C25D 15/00 - 15/02 C25D 13/00 - 13/20 H05K 5/00,9/00 C09D 5/44 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 7 Identification symbol FI // C09D 5/44 C09D 5/44 AB (31) Priority claim number Japanese Patent Application No. 2-117498 (32) Priority date Heisei 2 May 9, 1990 (5.9.5.9) (33) Countries claiming priority Japan (JP) (58) Fields investigated (Int. Cl. 7 , DB name) C25D 15/00-15/02 C25D 13 / 00-13/20 H05K 5 / 00,9 / 00 C09D 5/44

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に段差もしくは頂角又はその両方を
有する筐体であって、該筐体の少なくとも段差の稜線部
又は頂角部又はその両方が金属化セラミック粉体及び金
属化天然マイカ粉体から選ばれる少なくとも一方を含有
してなる導電性粒子を含有する電着塗装被膜で被覆され
外装塗装されていることを特徴とする電着塗装部材。
1. A casing having a step or a vertex or both on a surface, wherein at least a ridge or a vertex of the step or both of the step has metalized ceramic powder and gold.
Contains at least one selected from genus mica powder
Electrodeposition coating member, characterized in that they are being coated with a conductive particles-containing to electrodeposition coating film formed by the outer coating.
【請求項2】 前記導電性粒子として、金属化セラミッ
ク粉体及び金属化天然マイカ粉体から選ばれる少なくと
も一方に加えて、金属化樹脂粉体及び超微粒金属粉体か
ら選ばれる少なくとも一方の混合粉体を含有する請求項
1記載の電着塗装部材。
2. A mixture of at least one selected from metalized resin powder and ultrafine metal powder in addition to at least one selected from metalized ceramic powder and metalized natural mica powder as the conductive particles. 2. The electrodeposition-coated member according to claim 1, containing a powder.
【請求項3】 前記筐体が電子機器の筐体である請求項
1記載の電着塗装部材。
3. The electrodeposition coating member according to claim 1, wherein said housing is a housing of an electronic device.
【請求項4】 表面に段差もしくは頂角又はその両方を
有する筐体の少なくとも段差の稜線部又は頂角部又はそ
の両方が導電性粒子を含有する電着塗装被膜で被膜され
てなる電着塗装部材の製造方法であって、金属化セラミ
ック粉体及び金属化天然マイカ粉体から選ばれる1種又
は2種の粉体を含有してなる導電性粒子を含有する電着
塗料中に、前記筐体を浸漬して電着を行なって表面粗さ
が中心線平均粗さ(Ra)で0.3〜5μmの値を有
し、且つ電磁波シールド性を有する電着塗装被膜を該筐
体表面に形成することを特徴とする電着塗装部材の製造
方法。
4. An electrodeposition coating in which a casing having a step or an apex angle or both on the surface is coated with an electrodeposition coating film containing conductive particles at least on a ridge or an apex or both of the step. A method for manufacturing a member , comprising:
Or one selected from natural powder and metalized natural mica powder
Is immersed in an electrodeposition coating material containing conductive particles containing two kinds of powders and subjected to electrodeposition to obtain a surface roughness having a center line average roughness (Ra) of 0. A method for producing an electrodeposition-coated member, comprising: forming an electrodeposition coating having a value of 3 to 5 μm and having an electromagnetic wave shielding property on a surface of the housing.
【請求項5】 前記導電性粒子が金属化セラミック粉体
及び金属化天然マイカ粉体から選ばれる1種又は2種の
粉体と、金属化樹脂粉体及び超微粒金属粉体から選ばれ
る1種又は2種の粉体の混合物である請求項4記載の電
着塗装部材の製造方法。
5. The method according to claim 1, wherein the conductive particles are one or two selected from metalized ceramic powder and metalized natural mica powder, and one selected from metalized resin powder and ultrafine metal powder. 5. The method for producing an electrodeposition-coated member according to claim 4 , which is a mixture of seeds or two kinds of powders.
【請求項6】 前記筐体が電子機器の筐体である請求項
記載の電着塗装部材の製造方法。
6. The method of claim wherein the housing is a housing of an electronic device
5. The method for producing an electrodeposition coated member according to 4 .
【請求項7】 前記筐体に電着を行なった後、加熱して
該電着塗装被膜を硬化させる工程を有する請求項4記載
の電着塗装部材の製造方法。
After performing 7. electrodeposition to the housing, the manufacturing method of electrodeposition coating member according to claim 4, further comprising a step of curing the electrodeposition coating film by heating.
【請求項8】 非金属筐体表面に金属めっき層を形成
し、次いで該めっき層を表面処理して化学着色層を形成
した後、該化学着色層上に該電着塗装被膜を形成する
求項4記載の電着塗装部材の製造方法。
8. forming a metal plating layer on the non-metallic housing surface and then after forming a chemically colored layer by surface treatment of the plating layer to form a electrodeposition coating film on the chemical coloring layer
The method for producing an electrodeposition coated member according to claim 4 .
【請求項9】 前記金属めっき層が銅めっきである請求
項8記載の電着塗装部材の製造方法。
9. claims wherein the metal plating layer is copper-plated
Item 9. The method for producing an electrodeposition coated member according to Item 8 .
【請求項10】 前記化学着色層が酸化銅の被膜である
請求項8記載の電着塗装部材の製造方法。
Wherein said chemical colored layer is coating of copper oxide
A method for producing an electrodeposition coated member according to claim 8 .
JP03081352A 1990-03-22 1991-03-22 Electrodeposition coating member and method of manufacturing the same Expired - Fee Related JP3082864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03081352A JP3082864B2 (en) 1990-03-22 1991-03-22 Electrodeposition coating member and method of manufacturing the same

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP6981790 1990-03-22
JP2-69818 1990-03-22
JP6981890 1990-03-22
JP6981990 1990-03-22
JP2-69819 1990-03-22
JP2-69817 1990-03-22
JP11749890 1990-05-09
JP2-117498 1990-05-09
JP03081352A JP3082864B2 (en) 1990-03-22 1991-03-22 Electrodeposition coating member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04218697A JPH04218697A (en) 1992-08-10
JP3082864B2 true JP3082864B2 (en) 2000-08-28

Family

ID=27524207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03081352A Expired - Fee Related JP3082864B2 (en) 1990-03-22 1991-03-22 Electrodeposition coating member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3082864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091969B1 (en) * 2019-03-29 2020-03-23 오현철 Conductive paint composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091969B1 (en) * 2019-03-29 2020-03-23 오현철 Conductive paint composition
US11401427B2 (en) 2019-03-29 2022-08-02 Hyeon Cheol OH Conductive paint composition

Also Published As

Publication number Publication date
JPH04218697A (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US5170009A (en) Electrically conductive covers and electrically conductive covers of electronic equipment
US5676812A (en) Electronic equipment with an adhesive member to intercept electromagnetic waves
CN108728835B (en) Preparation method of material with silver-plated surface
JPH06342653A (en) Coated metal plate for alkaline dry battery positive electrode can
JPH06506984A (en) Method for selectively coating a nonconductor with carbon particles and use of a copper-containing solution in the method
US5145733A (en) Electro-deposition coated member
JP2840471B2 (en) Method of manufacturing conductive cover
GB2169925A (en) Process for providing a metal coating on a polymer surface
US5186802A (en) Electro-deposition coated member and process for producing it
JP3082864B2 (en) Electrodeposition coating member and method of manufacturing the same
JP3478678B2 (en) Electrodeposition coating materials and electrodeposition coatings
JP2810554B2 (en) Circuit board manufacturing method
JPH04212498A (en) Conductive adhesive member, preparation of the same, and conductive component/electronic equipment using the same
US6159602A (en) Electrodeposition coated material
JP3236148B2 (en) Electroplated member and method of manufacturing electrodeposited member
JPS5941489A (en) Method for electroplating particulate material
EP0428995B1 (en) Electro-deposition coated member, process for producing electro-deposition coated member, and electro-deposition coating composition used therefor
JPH04218696A (en) Electrodeposition coated member and its production
JP2862366B2 (en) Electrodeposition coating member and method of manufacturing the same
JPH0448697A (en) Electromagnetic shielding material and manufacture thereof
JP6049362B2 (en) Black aluminum material and manufacturing method thereof
JP4047841B2 (en) Shielding material for electromagnetic wave shielding
JPH04211193A (en) Conductive circuit member and its manufacture, conductive paste, and electronic equipment
JP2003286586A (en) Process for forming electrodeposited film on article surface
JPH0672211B2 (en) Electrodeposition coating member and method for forming electrodeposition coating film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees