JP2012115861A - Method for manufacturing solder powder and solder powder obtained by the same - Google Patents

Method for manufacturing solder powder and solder powder obtained by the same Download PDF

Info

Publication number
JP2012115861A
JP2012115861A JP2010266288A JP2010266288A JP2012115861A JP 2012115861 A JP2012115861 A JP 2012115861A JP 2010266288 A JP2010266288 A JP 2010266288A JP 2010266288 A JP2010266288 A JP 2010266288A JP 2012115861 A JP2012115861 A JP 2012115861A
Authority
JP
Japan
Prior art keywords
powder
metal
tin
solder powder
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010266288A
Other languages
Japanese (ja)
Inventor
Yosuke Kawamura
洋輔 川村
Hiroki Muraoka
弘樹 村岡
Susumu Nakagawa
将 中川
Kanji Hisayoshi
完治 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010266288A priority Critical patent/JP2012115861A/en
Publication of JP2012115861A publication Critical patent/JP2012115861A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing solder powder capable of simply and efficiently manufacturing fine solder powder allowing an average particle diameter to be controlled within 1-5 μm that is capable of dealing with fine pitching, and also to provide the solder powder obtained by the same.SOLUTION: In the method for manufacturing the solder powder where a tin ion-containing aqueous solution and a reducing agent aqueous solution are mixed and the powder is reduced and precipitated in the mixture solution, when the powder is reduced and precipitated, one or more metal fine powders comprised of elements other than tin constituting the powder in the mixture solution and one or more metal ions thereof are added.

Description

本発明は、電子部品の実装等に用いられるハンダ用ペーストの材料として好適なハンダ粉末を製造する方法に関する。更に詳しくは、ファインピッチ化に対応し得る1〜5μmの範囲内の微細なハンダ粉末を、いわゆる湿式還元法により、簡便、かつ効率よく製造する方法及び該方法により得られたハンダ粉末に関するものである。   The present invention relates to a method for producing a solder powder suitable as a material for a solder paste used for mounting electronic components and the like. More specifically, the present invention relates to a method for easily and efficiently producing a fine solder powder in a range of 1 to 5 μm that can cope with fine pitch formation by a so-called wet reduction method, and a solder powder obtained by the method. is there.

電子部品の接合に用いられるハンダは環境の面から鉛フリー化が進められ、現在では、錫を主成分としたハンダ粉末が採用されている。ハンダ粉末のような微細な金属粉末を得る方法としては、ガスアトマイズ法や回転ディスク法などのアトマイズ法の他に、メルトスピニング法、回転電極法、機械的プロセス、化学的プロセス等が知られている。ガスアトマイズ法は、誘導炉やガス炉で金属を溶融した後、タンディッシュの底のノズルから溶融金属を流下させ、その周囲より高圧ガスを吹き付けて粉化する方法である。また回転ディスク法は、遠心力アトマイズ法とも呼ばれ、溶融した金属を高速で回転するディスク上に落下させて、接線方向に剪断力を加えて破断して微細粉を作る方法である。   Solder used for joining electronic parts has been made lead-free from the viewpoint of the environment, and at present, solder powder mainly composed of tin is used. As a method for obtaining a fine metal powder such as a solder powder, in addition to an atomizing method such as a gas atomizing method or a rotating disk method, a melt spinning method, a rotating electrode method, a mechanical process, a chemical process, or the like is known. . The gas atomization method is a method in which after melting a metal in an induction furnace or a gas furnace, the molten metal is caused to flow down from a nozzle at the bottom of the tundish, and high pressure gas is sprayed from the surrounding area to pulverize. The rotating disk method is also called a centrifugal force atomizing method, and is a method in which molten metal is dropped on a rotating disk at high speed, and a shearing force is applied in a tangential direction to break and make a fine powder.

一方、電子部品の微細化とともに接合部品のファインピッチ化も進んでおり、より微細な粒径のハンダ粉末が求められているため、こうしたファインピッチ化に向けた技術の改良も盛んに行われている。例えば、ガスアトマイズ法を改良した技術として、ガスを巻き込ませた状態の金属溶湯をノズルから噴出させ、このノズルの周囲から高圧ガスを吹き付ける金属微粉末の製造方法が開示されている(例えば、特許文献1参照。)。この特許文献1に記載の方法では、溶湯がノズルを通過する際にガスを巻き込ませることによって、ノズルから出湯した時点で溶湯がすでに分断され、より小さな粉末を製造することができる。   On the other hand, the fine pitch of joining parts is progressing along with the miniaturization of electronic parts, and there is a demand for solder powder with a finer particle size. Therefore, the technology for fine pitch is being actively improved. Yes. For example, as a technique for improving the gas atomization method, a method for producing a metal fine powder is disclosed in which a molten metal in a gas state is ejected from a nozzle and a high-pressure gas is blown from the periphery of the nozzle (for example, a patent document). 1). In the method described in Patent Document 1, by introducing gas when the molten metal passes through the nozzle, the molten metal is already divided when the molten metal is discharged from the nozzle, and a smaller powder can be manufactured.

また、錫化合物溶液として塩化第一錫溶液を用い、還元剤として2価クロムイオン溶液を用いて、ポリビニルピロリドン等の保護剤の存在下、非酸化性雰囲気下で上記2価クロムイオン溶液と錫化合物溶液とを混合して錫を還元析出させる金属錫の製造方法が開示されている(例えば、特許文献2参照。)。この特許文献2に記載の方法は、従来の湿式還元法における課題を克服し、100nmレベルの超微粒子金属錫、及びサブミクロンからナノメータレベルの超微粒子金属錫を湿式還元法で簡単、かつ効率よく製造できる方法である。   In addition, a stannous chloride solution is used as a tin compound solution, a divalent chromium ion solution is used as a reducing agent, and the divalent chromium ion solution and tin are added in a non-oxidizing atmosphere in the presence of a protective agent such as polyvinylpyrrolidone. A method for producing metallic tin, in which tin is reduced and precipitated by mixing with a compound solution, is disclosed (for example, see Patent Document 2). The method described in Patent Document 2 overcomes the problems in the conventional wet reduction method, and easily and efficiently converts ultrafine metal tin of 100 nm level and ultrafine metal tin of submicron to nanometer level by the wet reduction method. It is a method that can be manufactured.

また、銀イオン溶液に還元剤を添加して銀微粒子を還元析出させる方法において、ハロゲン化物イオンの存在下で銀イオンを還元させることによって、微細な銀微粒子を析出させることを特徴とする銀微粒子の製造方法が開示されている(例えば、特許文献3参照)。   Further, in a method for reducing and precipitating silver fine particles by adding a reducing agent to a silver ion solution, silver fine particles are precipitated by reducing silver ions in the presence of halide ions. Is disclosed (for example, see Patent Document 3).

特開2004−18956号公報(請求項1、段落[0014])JP 2004-18956 A (Claim 1, paragraph [0014]) 特開2003−306707号公報(請求項2〜4、段落[0006])JP 2003-306707 A (Claims 2 to 4, paragraph [0006]) 特開2008−274423号公報(請求項3、請求項4)JP 2008-274423 A (Claim 3 and Claim 4)

しかしながら、上記従来の特許文献1に示された、いわゆるアトマイズ法により微細な粉末を得るためには、この方法によって得られた金属粉末を更に分級して、ファインピッチ化に対応する5μm以下の微細なものを採取する必要がある。このため、歩留まりが非常に悪くなる。一方、7μm程度の粉末であれば、この方法でも歩留まりは良くなるものの、この程度の粒径のものでは、近年のファインピッチ化には十分に対応できない。また、上記特許文献2に示された方法では、ナノメータレベルの粒子を得るには非常に効果的であるが、錫粒子の凝集や粒度分布の幅が比較的広いことから、粒径制御の精度について課題が残されている。更に、上記特許文献3に示された方法のように、微細な粒径に制御するために、ハロゲン化物イオンの存在下で還元析出させる場合、得られる粉末に目的とする組成以外の元素が混入し、組成ズレを起こすことがある。組成ズレが生じた粉末を用いると、ハンダバンプ等の抵抗値にバラツキが生じたり、接合性が低下するといった不具合が生じる。   However, in order to obtain a fine powder by the so-called atomization method shown in the above-mentioned conventional Patent Document 1, the metal powder obtained by this method is further classified to have a fineness of 5 μm or less corresponding to fine pitch formation. It is necessary to collect some things. For this reason, a yield will become very bad. On the other hand, if the powder is about 7 μm, the yield is improved even with this method, but a particle having this particle size cannot sufficiently cope with the recent fine pitch. The method disclosed in Patent Document 2 is very effective for obtaining nanometer-level particles. However, since the range of tin particle agglomeration and particle size distribution is relatively wide, the accuracy of particle size control is high. There are still issues about. Furthermore, in the case of reducing and precipitating in the presence of halide ions in order to control to a fine particle size as in the method described in Patent Document 3, elements other than the target composition are mixed in the obtained powder. However, composition deviation may occur. When the powder in which the composition deviation has occurred is used, there arises a problem that the resistance value of the solder bump or the like varies and the bonding property is lowered.

本発明の目的は、ファインピッチ化に対応し得る1〜5μmの範囲内に粒径制御された微細なハンダ粉末を簡便、かつ効率よく製造できるハンダ粉末の製造方法及び該方法により得られたハンダ粉末を提供することにある。   An object of the present invention is to provide a method for producing a solder powder capable of easily and efficiently producing a fine solder powder whose particle size is controlled within a range of 1 to 5 μm which can cope with fine pitch, and a solder obtained by the method. It is to provide a powder.

本発明の第1の観点は、錫イオンを含む水溶液と還元剤水溶液とを混合し、混合液中で粉末を還元析出させるハンダ粉末の製造方法において、上記粉末を還元析出させる際に、上記混合液中に上記粉末を構成する錫以外の元素から構成された金属微粉末及びその金属イオンを一種以上添加することを特徴とする。   A first aspect of the present invention is a method for producing a solder powder in which an aqueous solution containing tin ions and an aqueous reducing agent solution are mixed, and the powder is reduced and precipitated in the mixed solution. One or more metal fine powders composed of elements other than tin constituting the powder and one or more metal ions thereof are added to the liquid.

本発明の第2の観点は、第1の観点に基づく発明であって、更に金属微粉末及び金属イオンがコバルト、ビスマス、ゲルマニウム、ニッケル、インジウム、銀、銅又は金のいずれかであることを特徴とする。   The second aspect of the present invention is the invention based on the first aspect, wherein the metal fine powder and the metal ion are any one of cobalt, bismuth, germanium, nickel, indium, silver, copper or gold. Features.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、更に金属微粉末の平均粒径が0.1〜4μmであることを特徴とする。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the metal fine powder has an average particle size of 0.1 to 4 μm.

本発明の第4の観点は、第1ないし第3の観点に基づく発明であって、更に金属微粉末の添加量と金属イオンの添加量との和が製造するハンダ粉末100質量%に対して0.01〜20質量%であることを特徴とする。   A fourth aspect of the present invention is an invention based on the first to third aspects, and further to 100% by mass of solder powder produced by the sum of the addition amount of metal fine powder and the addition amount of metal ions. It is 0.01 to 20% by mass.

本発明の第5の観点は、第1ないし第4の観点に基づく発明であって、更に金属微粉末の添加量と金属イオンの添加量との質量比が1〜300であることを特徴とする。   A fifth aspect of the present invention is an invention based on the first to fourth aspects, wherein the mass ratio of the addition amount of the metal fine powder and the addition amount of the metal ions is 1 to 300. To do.

本発明の第6の観点は、第1ないし第5の観点の製造方法により得られた平均粒径が1〜5μmのハンダ粉末である。   A sixth aspect of the present invention is a solder powder having an average particle size of 1 to 5 μm obtained by the production method according to the first to fifth aspects.

本発明の第1の観点の製造方法では、錫イオンを含む水溶液と還元剤水溶液とを混合し、混合液中で粉末を還元析出させるハンダ粉末の製造方法において、上記粉末を還元析出させる際に、上記混合液中に上記粉末を構成する錫以外の元素から構成された金属微粉末及びその金属イオンを一種以上添加する。このように、錫イオンが還元剤によって還元される際に、その混合液中に錫以外の元素から構成された金属イオンを存在させることにより、この金属イオンが錫イオンよりも先に還元されて自己核形成し、錫イオンの還元反応においてその核を中心として錫が成長する。また、混合液中に錫以外の元素から構成された金属微粉末を存在させることにより、錫イオンの還元反応において金属微粉末を核としてこの核を中心に錫が成長する。そして、単位体積あたりの核の数を制御する、具体的には、添加する金属微粉末の粒径並びに金属微粉末と金属イオンの比率を制御することによって、得られるハンダ粉末の粒径を自由に制御することができる。これにより、平均粒径が1〜5μmの範囲内に粒径制御された微細なハンダ粉末を、湿式還元法による簡便な方法で歩留まり良く製造することができる。   In the manufacturing method according to the first aspect of the present invention, in the method of manufacturing a solder powder in which an aqueous solution containing tin ions and a reducing agent aqueous solution are mixed and the powder is reduced and precipitated in the mixed solution, the powder is reduced and precipitated. One or more metal fine powders composed of elements other than tin constituting the powder and the metal ions thereof are added to the mixed solution. In this way, when tin ions are reduced by the reducing agent, the metal ions are reduced before the tin ions by making the mixed solution contain metal ions composed of elements other than tin. Self-nucleation forms and tin grows around the nucleus in the reduction reaction of tin ions. In addition, by allowing a metal fine powder composed of an element other than tin to be present in the mixed solution, tin grows around the nucleus using the metal fine powder as a nucleus in the reduction reaction of tin ions. The number of nuclei per unit volume is controlled. Specifically, by controlling the particle size of the metal fine powder to be added and the ratio of metal fine powder to metal ions, the particle size of the obtained solder powder can be freely set. Can be controlled. Thereby, the fine solder powder in which the average particle diameter is controlled within the range of 1 to 5 μm can be manufactured with a high yield by a simple method using a wet reduction method.

また、添加する金属微粉末は、イオンの還元反応において形成される金属粒子の核に比べ、その粒径が安定しているため、結果として、得られるハンダ粉末の平均粒径が安定する。また、添加する金属微粉末の添加量を変えることにより、得られるハンダ粉末の組成比率を自由に制御することができる。また、添加する金属イオンの添加量を変えることにより、得られるハンダ粉末の粒径を自由に制御することができる。また、添加する金属微粉末の添加量及び金属イオンの添加量を変えることにより、任意の組成比率で任意の粒径のハンダ粉末を作製することができる。また、添加する金属微粉末の金属種及び金属イオンの金属種を変えることにより、様々な組成を持つハンダ粉末を作製することができる。更に、湿式還元法であるため、イニシャルコストが多大にかかる特殊な装置を必要としない。   In addition, since the metal fine powder to be added has a stable particle size as compared with the core of the metal particles formed in the ion reduction reaction, as a result, the average particle size of the obtained solder powder is stabilized. Further, the composition ratio of the obtained solder powder can be freely controlled by changing the amount of the metal fine powder to be added. Moreover, the particle size of the obtained solder powder can be freely controlled by changing the amount of the metal ions to be added. Further, by changing the addition amount of the metal fine powder to be added and the addition amount of the metal ion, it is possible to produce a solder powder having an arbitrary particle size at an arbitrary composition ratio. Further, by changing the metal species of the metal fine powder to be added and the metal species of the metal ions, solder powders having various compositions can be produced. Furthermore, since it is a wet reduction method, a special apparatus that requires a large initial cost is not required.

本発明の第6の観点のハンダ粉末は、平均粒径が1〜5μmと微細であるため、このハンダ用ペーストを用いれば、基板等にファインピッチパターンで印刷でき、より微細な電子部品を実装できる。   Since the solder powder according to the sixth aspect of the present invention has a fine average particle size of 1 to 5 μm, if this solder paste is used, a fine pitch pattern can be printed on a substrate or the like, and a finer electronic component can be mounted. it can.

実施例1〜4の銀微粉末添加量と銀イオン添加量との質量比と得られたハンダ粉末の平均粒径の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of the silver fine powder addition amount of Examples 1-4, and the silver ion addition amount, and the average particle diameter of the obtained solder powder.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

本発明のハンダ粉末の製造方法は、錫イオンを含む水溶液と、これを還元剤して析出させる還元剤を含有する水溶液とを混合し、混合液中で粉末を還元析出させる、いわゆる湿式還元法による金属粉末の製造方法を改良した発明である。その特徴ある構成は、上記粉末を還元析出させる際に、上記混合液中に上記粉末を構成する錫以外の元素から構成された金属微粉末及びその金属イオンを一種以上添加することにある。   The solder powder manufacturing method of the present invention is a so-called wet reduction method in which an aqueous solution containing tin ions and an aqueous solution containing a reducing agent that precipitates the same are mixed and the powder is reduced and precipitated in the mixed solution. It is the invention which improved the manufacturing method of the metal powder by this. The characteristic structure is to add one or more metal fine powders composed of elements other than tin constituting the powder and one or more metal ions to the mixed solution when the powder is reduced and precipitated.

錫イオンが還元剤によって還元される際に、その混合液中に錫以外の元素から構成された金属イオンを存在させることにより、この金属イオンが錫イオンよりも先に還元されて自己核形成し、錫イオンの還元反応においてその核を中心として錫が成長する。また、混合液中に錫以外の元素から構成された金属微粉末を存在させることにより、錫イオンの還元反応において金属微粉末を核として錫が成長する。そして、単位体積あたりの核の数を制御する、具体的には、添加する金属微粉末の粒径並びに金属微粉末と金属イオンの比率を制御することによって、得られるハンダ粉末の粒径を自由に制御することができる。これにより、平均粒径が1〜5μmの範囲内に粒径制御された微細なハンダ粉末を、湿式還元法による簡便な方法で歩留まり良く製造することができる。なお、本明細書において、粉末の平均粒径とは、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて測定した体積累積中位径(Median径、D50)をいう。なお、添加した金属イオンは還元反応時において、その殆どが自己核形成に費やされるため、金属微粉末の周囲にはごく一部が析出するに留まる。 When tin ions are reduced by a reducing agent, the presence of metal ions composed of elements other than tin in the mixture causes the metal ions to be reduced prior to tin ions to form self nuclei. In the reduction reaction of tin ions, tin grows around the nucleus. In addition, by allowing a metal fine powder composed of an element other than tin to be present in the mixed solution, tin grows using the metal fine powder as a nucleus in the reduction reaction of tin ions. The number of nuclei per unit volume is controlled. Specifically, by controlling the particle size of the metal fine powder to be added and the ratio of metal fine powder to metal ions, the particle size of the obtained solder powder can be freely set. Can be controlled. Thereby, the fine solder powder in which the average particle diameter is controlled within the range of 1 to 5 μm can be manufactured with a high yield by a simple method using a wet reduction method. In the present specification, the average particle size of the powder was measured by a particle size distribution measuring device using a laser diffraction scattering method (Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950). Volume cumulative median diameter (Median diameter, D 50 ). In addition, since most of the added metal ions are spent for self-nucleation during the reduction reaction, only a small portion is deposited around the metal fine powder.

また、添加する金属微粉末は、イオンの還元反応において形成される金属粒子の核に比べ、その粒径が安定しているため、結果として、得られるハンダ粉末の平均粒径が安定する。また、混合液中に添加する金属微粉末は、得られるハンダ粉末中に核として存在するため、金属微粉末添加量を変えることにより、得られるハンダ粉末の組成比率を自由に制御することができる。また、添加する金属イオンの添加量を変えることにより、得られるハンダ粉末の粒径を自由に制御することができる。また、添加する金属微粉末の添加量及び金属イオンの添加量を変えることにより、任意の組成比率で任意の粒径のハンダ粉末を作製することができる。また、添加する金属微粉末の金属種及び金属イオンの金属種を変えることにより、様々な組成を持つハンダ粉末を作製することができる。例えば、コバルト微粉末及びコバルトイオンの添加であれば、錫とコバルトから構成されたハンダ粉末が得られ、ビスマス微粉末及びビスマスイオンの添加であれば、錫とビスマスから構成されたハンダ粉末が得られ、ゲルマニウム微粉末及びゲルマニウムイオンの添加であれば、錫とゲルマニウムから構成されたハンダ粉末が得られ、ニッケル微粉末及びニッケルイオンの添加であれば、錫とニッケルから構成されたハンダ粉末が得られ、インジウム微粉末及びインジウムイオンの添加であれば、錫とインジウムから構成されたハンダ粉末が得られ、銀微粉末及び銀イオンの添加であれば、錫と銀から構成されたハンダ粉末が得られ、銅微粉末及び銅イオンの添加であれば、錫と銀から構成されたハンダ粉末が得られ、金微粉末及び金イオンの添加であれば、錫と金から構成されたハンダ粉末が得られる。更に、湿式還元法であるため、イニシャルコストが多大にかかる特殊な装置を必要としない。添加する金属微粉末及びその金属イオンの金属種の数は好ましくは1種類から3種類である。   In addition, since the metal fine powder to be added has a stable particle size as compared with the core of the metal particles formed in the ion reduction reaction, as a result, the average particle size of the obtained solder powder is stabilized. Moreover, since the metal fine powder added to the mixed solution exists as a nucleus in the obtained solder powder, the composition ratio of the obtained solder powder can be freely controlled by changing the amount of metal fine powder added. . Moreover, the particle size of the obtained solder powder can be freely controlled by changing the amount of the metal ions to be added. Further, by changing the addition amount of the metal fine powder to be added and the addition amount of the metal ion, it is possible to produce a solder powder having an arbitrary particle size at an arbitrary composition ratio. Further, by changing the metal species of the metal fine powder to be added and the metal species of the metal ions, solder powders having various compositions can be produced. For example, if cobalt fine powder and cobalt ions are added, a solder powder composed of tin and cobalt is obtained. If bismuth fine powder and bismuth ions are added, a solder powder composed of tin and bismuth is obtained. If a germanium fine powder and germanium ions are added, a solder powder composed of tin and germanium is obtained. If a nickel fine powder and nickel ions are added, a solder powder composed of tin and nickel is obtained. If indium fine powder and indium ions are added, a solder powder composed of tin and indium is obtained. If silver fine powder and silver ions are added, a solder powder composed of tin and silver is obtained. If copper fine powder and copper ions are added, a solder powder composed of tin and silver is obtained, and gold fine powder and gold ion are obtained. If the addition of the solder powder composed of tin and gold is obtained. Furthermore, since it is a wet reduction method, a special apparatus that requires a large initial cost is not required. The number of the metal fine powder to be added and the number of metal species of the metal ion is preferably one to three.

次に、本発明のハンダ粉末の製造方法について、詳細な手順とともに説明する。先ず、溶媒に、錫イオンとして溶解する錫化合物を添加し、スターラを用いて、好ましくは回転速度100〜500rpmにて10〜30分間攪拌することにより錫イオンを含む水溶液を調製する。溶媒としては、水又はpHを0.5〜2に調整した塩酸水溶液、硝酸水溶液、硫酸水溶液等が挙げられる。錫イオンとして溶解する錫化合物には、塩化錫(II)、硝酸錫(II)、硫酸錫(II)等が挙げられる。また、錫イオンを含む水溶液中の錫イオンの濃度は、0.05〜3モル/Lの範囲内とするのが好ましい。下限値未満では、錫イオンの濃度が希薄なため、反応が極めて遅くなり、定量的に反応が終了しないからである。一方、上限値を越えると、錫イオンを含む水溶液と還元剤水溶液の均一な混合に時間がかかるため、反応が局所的に進むことによって粒径が不均一になる傾向があることから好ましくない。上記調製した錫イオンを含む水溶液のpHを調整し、更に分散剤を添加する。錫イオンを含む水溶液のpHは、還元反応によって析出した金属等の再溶解を防ぐため、0.5〜2の範囲に調整するのが好ましい。分散剤としては、セルロース系、ビニル系の分散剤、或いは多価アルコール等が挙げられ、その他にゼラチン、カゼイン、ポリビニルピロリドン(PVP)等を用いることができる。分散剤の添加量は、好ましくは0.001〜15質量%の範囲である。分散剤を添加した後、更にスターラを用いて、好ましくは回転速度100〜500rpmにて1〜30分間攪拌する。   Next, the manufacturing method of the solder powder of this invention is demonstrated with a detailed procedure. First, a tin compound that dissolves as tin ions is added to a solvent, and an aqueous solution containing tin ions is prepared using a stirrer, preferably by stirring at a rotational speed of 100 to 500 rpm for 10 to 30 minutes. Examples of the solvent include water or a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution, etc. adjusted to a pH of 0.5-2. Examples of tin compounds that dissolve as tin ions include tin (II) chloride, tin (II) nitrate, and tin (II) sulfate. Moreover, it is preferable that the density | concentration of the tin ion in the aqueous solution containing a tin ion shall be in the range of 0.05-3 mol / L. This is because if the concentration is less than the lower limit, the concentration of tin ions is so dilute that the reaction becomes extremely slow and the reaction does not end quantitatively. On the other hand, if the upper limit is exceeded, uniform mixing of the aqueous solution containing tin ions and the reducing agent aqueous solution takes time, and therefore the particle size tends to become non-uniform due to local progress of the reaction, which is not preferable. The pH of the aqueous solution containing tin ions prepared above is adjusted, and a dispersant is further added. The pH of the aqueous solution containing tin ions is preferably adjusted to a range of 0.5 to 2 in order to prevent re-dissolution of the metal deposited by the reduction reaction. Examples of the dispersant include cellulose-based and vinyl-based dispersants, polyhydric alcohols, and the like. In addition, gelatin, casein, polyvinylpyrrolidone (PVP), and the like can be used. The amount of the dispersant added is preferably in the range of 0.001 to 15% by mass. After adding the dispersant, the mixture is further stirred with a stirrer, preferably at a rotational speed of 100 to 500 rpm for 1 to 30 minutes.

次に、金属イオンを溶解し、かつ金属微粉末を分散させた分散液を調製する。溶媒に、金属微粉末を添加し、超音波ホモジナイザを用いて分散させる。金属微粉末を構成する金属種は、コバルト、ビスマス、ゲルマニウム、ニッケル、インジウム、銀、銅又は金のいずれかである。金属微粉末の平均粒径は、0.1〜4μmの範囲が好ましい。添加する金属微粉末の平均粒径を上記範囲としたのは、0.1μm未満では、錫イオンの還元反応における核が小さくなり、得られるハンダ粉末の平均粒径が1μmを下回り、4μmを越えると、錫イオンの還元反応における核が大きくなり、得られるハンダ粉末の平均粒径が5μmを上回るためである。金属微粉末の添加量と金属イオンの添加量の和が、製造するハンダ粉末100質量%に対して、0.01〜20質量%の範囲となるように金属微粉末及び金属イオンを添加する。金属微粉末の添加量と金属イオンの添加量の和を上記範囲としたのは、0.01質量%未満では、還元反応時における単位体積当たりの核の数が少なくなり、得られるハンダ粉末の平均粒径が5μmを上回るためであり、20質量%を越えると、還元反応時の単位体積当たりの核の数が多くなり、得られるハンダ粉末の平均粒径が1μmを下回り、ハンダ粉末を粒径制御する効果がなくなるためである。そして、この分散液に錫以外の元素から構成された金属イオンとして溶解する金属化合物を溶解させる。金属イオンを構成する金属種は、上記金属微粉末を構成する金属種と同一元素であり、コバルト、ビスマス、ゲルマニウム、ニッケル、インジウム、銀、銅又は金のいずれかである。使用されるコバルト化合物としては、塩化コバルト(II)又は硝酸コバルト(II)又は硫酸コバルト(II)等が挙げられる。ビスマス化合物としては、塩化ビスマス(III)、硫酸ビスマス(III)又は硝酸ビスマス(III)等が挙げられる。ゲルマニウム化合物としては、塩化ゲルマニウム(II)又はβ−カルボキシエチルゲルマニウム等が挙げられる。ニッケル化合物としては、塩化ニッケル(II)、硫酸ニッケル(II)六水和物又は硝酸ニッケル(II)六水和物等が挙げられる。インジウム化合物としては、塩化インジウム、硝酸インジウム又は硫酸インジウム等が挙げられる。銀化合物としては、塩化銀又は硝酸銀等が挙げられる。銅化合物としては、塩化銅(II)、硫酸銅(II)又は酢酸銅等が挙げられる。金化合物としては、テトラクロロ金(III)酸等が挙げられる。また、金属微粉末の添加量と金属イオンの添加量との質量比が1〜300の範囲となるように金属微粉末及び金属イオンを添加する。金属微粉末の添加量と金属イオンの添加量の比率を上記範囲としたのは、上記比率が1未満では還元反応時における単位体積当たりの核の数が多くなり、得られるハンダ粉末が1μmを下回り、上記比率が300を越えると還元反応時の単位体積当たりの核の数が少なくなり、得られるハンダ粉末が5μmを上回り、ハンダ粉末を粒径制御する効果がなくなるためである。更に分散剤を添加することにより、金属イオンが溶解した金属微粉末分散液を調製する。分散剤は上記錫イオンを含む水溶液の説明で挙げた分散剤を使用することができる。分散剤の添加量は、好ましくは金属微粉末100質量%に対して、0.001〜15質量%の範囲である。分散剤を添加した後、更にスターラを用いて、好ましくは回転速度100〜500rpmにて1〜30分間攪拌する。   Next, a dispersion in which metal ions are dissolved and metal fine powder is dispersed is prepared. Metal fine powder is added to the solvent and dispersed using an ultrasonic homogenizer. The metal species constituting the metal fine powder is any one of cobalt, bismuth, germanium, nickel, indium, silver, copper or gold. The average particle diameter of the metal fine powder is preferably in the range of 0.1 to 4 μm. The reason why the average particle size of the metal fine powder to be added is within the above range is that if it is less than 0.1 μm, the core in the reduction reaction of tin ions becomes small, and the average particle size of the obtained solder powder is less than 1 μm and exceeds 4 μm. This is because the nucleus in the reduction reaction of tin ions becomes large, and the average particle size of the obtained solder powder exceeds 5 μm. The metal fine powder and the metal ion are added so that the sum of the addition amount of the metal fine powder and the addition amount of the metal ion is in a range of 0.01 to 20% by mass with respect to 100% by mass of the solder powder to be manufactured. The sum of the addition amount of the metal fine powder and the addition amount of the metal ion is in the above range. If the amount is less than 0.01% by mass, the number of nuclei per unit volume during the reduction reaction is reduced, and the resulting solder powder This is because the average particle size exceeds 5 μm. If it exceeds 20% by mass, the number of nuclei per unit volume during the reduction reaction will increase, and the average particle size of the resulting solder powder will be less than 1 μm. This is because the effect of controlling the diameter is lost. And the metal compound melt | dissolved as a metal ion comprised from elements other than tin is dissolved in this dispersion liquid. The metal species constituting the metal ion is the same element as the metal species constituting the metal fine powder, and is any of cobalt, bismuth, germanium, nickel, indium, silver, copper, or gold. Examples of the cobalt compound used include cobalt chloride (II), cobalt nitrate (II), and cobalt sulfate (II). Examples of the bismuth compound include bismuth (III) chloride, bismuth sulfate (III), and bismuth (III) nitrate. Examples of germanium compounds include germanium (II) chloride and β-carboxyethyl germanium. Examples of the nickel compound include nickel chloride (II), nickel sulfate (II) hexahydrate, nickel nitrate (II) hexahydrate, and the like. Examples of indium compounds include indium chloride, indium nitrate, and indium sulfate. Examples of the silver compound include silver chloride and silver nitrate. Examples of the copper compound include copper (II) chloride, copper (II) sulfate, and copper acetate. Examples of the gold compound include tetrachloroauric (III) acid. Further, the metal fine powder and the metal ion are added so that the mass ratio of the addition amount of the metal fine powder and the addition amount of the metal ion is in the range of 1 to 300. The ratio of the addition amount of the metal fine powder and the addition amount of the metal ion was set in the above range. If the above ratio exceeds 300, the number of nuclei per unit volume at the time of the reduction reaction decreases, and the resulting solder powder exceeds 5 μm, and the effect of controlling the particle size of the solder powder is lost. Further, a metal fine powder dispersion in which metal ions are dissolved is prepared by adding a dispersant. As the dispersant, the dispersants mentioned in the description of the aqueous solution containing tin ions can be used. The addition amount of the dispersant is preferably in the range of 0.001 to 15% by mass with respect to 100% by mass of the metal fine powder. After adding the dispersant, the mixture is further stirred with a stirrer, preferably at a rotational speed of 100 to 500 rpm for 1 to 30 minutes.

次に、還元剤を溶解した水溶液を調製する。還元剤としては、テトラヒドロホウ酸ナトリウム、ジメチルアミンボラン等のホウ素水素化物、ヒドラジン等の窒素化合物、三価のチタンイオンや2価クロムイオン等の金属イオン等が挙げられるが、酸化還元反応が可逆的であり、再利用が比較的容易であることから、2価クロムイオンを用いるのが特に好ましい。2価クロムイオンは不安定であるため、これを還元剤に用いる場合は、上記錫イオンを含む水溶液及び金属微粉末分散液と混合する直前にその都度調製するのが好ましい。例えば、錫イオンを含む水溶液及び金属微粉末分散液と混合する直前に、塩化第二クロム溶液を非酸化性雰囲気下、好ましくは窒素ガス雰囲気下で金属亜鉛に接触させて2価クロムイオンに還元し、塩化第一クロム溶液としたものを用いればよい。この水溶液のpHは、還元反応によって析出した金属等の再溶解を防ぐこと、及びクロムの水酸化物の生成を防ぐために、上記調製した錫イオンを含む水溶液と同程度、即ち0.5〜2の範囲に調整するのが好ましい。   Next, an aqueous solution in which the reducing agent is dissolved is prepared. Examples of the reducing agent include boron hydrides such as sodium tetrahydroborate and dimethylamine borane, nitrogen compounds such as hydrazine, metal ions such as trivalent titanium ions and divalent chromium ions, etc., but the redox reaction is reversible. It is particularly preferable to use a divalent chromium ion because it is relatively easy to reuse. Since divalent chromium ions are unstable, when they are used as a reducing agent, they are preferably prepared each time immediately before mixing with the aqueous solution containing tin ions and the metal fine powder dispersion. For example, just before mixing with an aqueous solution containing tin ions and a fine metal powder dispersion, the chromium chloride solution is reduced to divalent chromium ions by contacting with metal zinc in a non-oxidizing atmosphere, preferably in a nitrogen gas atmosphere. And what is used as the chromium chloride solution may be used. The pH of this aqueous solution is about the same as that of the aqueous solution containing tin ions prepared in order to prevent re-dissolution of metals and the like deposited by the reduction reaction and to prevent the formation of chromium hydroxide, that is, 0.5 to 2 It is preferable to adjust to this range.

次に、上記錫イオンを含む水溶液、金属イオンが溶解した金属微粉末分散液及び還元剤水溶液を混合する。先ず、錫イオンを含む水溶液と金属イオンが溶解した金属微粉末分散液とをスタティックミキサー等を用いて混合する。続いて、上記錫イオンを含む水溶液と金属イオンが溶解した金属微粉末分散液との混合液と還元剤水溶液とを反応容器にそれぞれ送液する。スターラ及び攪拌子にて反応容器内に供給された錫イオンを含む水溶液と金属イオンが溶解した金属微粉末分散液と還元剤水溶液との混合液を一定時間、攪拌混合する。このとき、回転速度50〜500rpmにて5〜15分間攪拌するのが好ましい。上記撹拌混合で錫イオンの還元反応が生じるが、この還元反応時に、錫以外の元素から構成された金属イオンを存在させることにより、この金属イオンが錫イオンよりも先に還元されて自己核形成し、錫イオンの還元反応においてその核を中心として錫が成長する。また、混合液中に錫以外の元素から構成された金属微粉末を存在させることにより、錫イオンの還元反応において金属微粉末を核としてこの核を中心に錫が成長する。これにより、この還元反応により析出した粉末が分散する分散液が得られる。   Next, the aqueous solution containing tin ions, the metal fine powder dispersion in which metal ions are dissolved, and the reducing agent aqueous solution are mixed. First, an aqueous solution containing tin ions and a metal fine powder dispersion in which metal ions are dissolved are mixed using a static mixer or the like. Subsequently, a mixed solution of the aqueous solution containing tin ions and a metal fine powder dispersion in which metal ions are dissolved and a reducing agent aqueous solution are respectively sent to the reaction vessel. A mixed solution of an aqueous solution containing tin ions, a metal fine powder dispersion in which metal ions are dissolved, and an aqueous reducing agent solution supplied into the reaction vessel with a stirrer and a stirrer is stirred and mixed for a predetermined time. At this time, it is preferable to stir for 5 to 15 minutes at a rotational speed of 50 to 500 rpm. The stirring and mixing process causes a tin ion reduction reaction. During this reduction reaction, the presence of a metal ion composed of an element other than tin causes the metal ion to be reduced prior to the tin ion to form a self-nucleus. In the tin ion reduction reaction, tin grows around the nucleus. In addition, by allowing a metal fine powder composed of an element other than tin to be present in the mixed solution, tin grows around the nucleus using the metal fine powder as a nucleus in the reduction reaction of tin ions. Thereby, the dispersion liquid in which the powder precipitated by this reduction reaction is dispersed is obtained.

最後に、この分散液を、デカンテーション等によって固液分離し、回収した固形分を水又はpHを0.5〜2に調整した塩酸水溶液、硝酸水溶液、硫酸水溶液、或いはメタノール、エタノール、アセトン等で洗浄する。洗浄後は、再度固液分離して固形分を回収する。洗浄から固液分離までの工程を、好ましくは2〜5回繰り返した後、回収した固形分を真空乾燥させることにより、ハンダ粉末を得ることができる。   Finally, this dispersion is subjected to solid-liquid separation by decantation or the like, and the recovered solid content is water or a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution, or methanol, ethanol, acetone, etc., adjusted to a pH of 0.5-2. Wash with. After washing, the solid content is recovered by solid-liquid separation again. Solder powder can be obtained by repeating the steps from washing to solid-liquid separation, preferably 2 to 5 times, and then vacuum-drying the collected solid.

以上の工程により、ファインピッチ化に対応し得る平均粒径が1〜5μmの範囲内に粒径制御された微細なハンダ粉末を、湿式還元法による簡便な方法で歩留まり良く製造することができる。   Through the above steps, a fine solder powder whose particle size is controlled within the range of 1 to 5 μm, which can cope with fine pitch, can be produced with high yield by a simple method using a wet reduction method.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
先ず、水1000mlに塩化錫(II)1.2molを溶解させ、塩酸にてpHを0.2に調整した後、分散剤として更にセルロース系分散剤を4.5g加えて錫イオン溶液を得た。次いで、水1000mlに平均粒径0.40μmの銀微粉末0.041molを添加し、超音波ホモジナイザにて分散させた。この分散液に硝酸銀を6×10-4mol投入し溶解させた後、セルロース系分散剤4.5gを加え、銀イオンが溶解した銀微粉末分散液を得た。銀微粉末の添加量と硝酸銀の銀イオンの添加量との質量比は68であった。次に、塩化第二クロム溶液を還元し、更に塩酸にてpHを0.5に調整した1.58mol/Lの2価クロムイオン水溶液を得た。次に、錫イオン溶液、銀イオンが溶解した銀微粉末分散液及び2価クロムイオン水溶液をそれぞれ反応容器へ送液し、還元反応を進行させ、銀と錫から構成された粉末が分散する分散液を得た。還元反応終了後、分散液を60分間静置して銀と錫から構成された粉末を沈降させた後、上澄み液を捨て、ここに水1000mlを加えて回転速度300rpmにて10分間攪拌する操作を4回繰返し、洗浄を行った。最後に、これを真空乾燥機にて乾燥することによりハンダ粉末を得た。このハンダ粉末の質量から銀微粉末の添加量を算出すると3.0質量%であった。
<Example 1>
First, after dissolving 1.2 mol of tin (II) chloride in 1000 ml of water and adjusting the pH to 0.2 with hydrochloric acid, 4.5 g of a cellulose-based dispersant was further added as a dispersant to obtain a tin ion solution. . Next, 0.041 mol of silver fine powder having an average particle size of 0.40 μm was added to 1000 ml of water, and dispersed with an ultrasonic homogenizer. After adding 6 × 10 −4 mol of silver nitrate to this dispersion and dissolving it, 4.5 g of a cellulose-based dispersant was added to obtain a silver fine powder dispersion in which silver ions were dissolved. The mass ratio of the addition amount of fine silver powder and the addition amount of silver ions of silver nitrate was 68. Next, the dichromium chloride solution was reduced, and a 1.58 mol / L divalent chromium ion aqueous solution whose pH was adjusted to 0.5 with hydrochloric acid was obtained. Next, a tin ion solution, a silver fine powder dispersion in which silver ions are dissolved, and a divalent chromium ion aqueous solution are respectively sent to a reaction vessel, and the reduction reaction proceeds to disperse a powder composed of silver and tin. A liquid was obtained. After completion of the reduction reaction, the dispersion is allowed to stand for 60 minutes to settle the powder composed of silver and tin, and then the supernatant liquid is discarded, and 1000 ml of water is added thereto and stirred at a rotational speed of 300 rpm for 10 minutes. Was repeated 4 times for washing. Finally, this was dried with a vacuum dryer to obtain a solder powder. When the addition amount of the silver fine powder was calculated from the mass of the solder powder, it was 3.0% by mass.

<実施例2〜4,7〜9>
添加する銀微粉末及び銀イオンを次の表1に示す平均粒径、比率及び添加量に変更した以外は実施例1と同様の操作を行って銀と錫から構成されたハンダ粉末を得た。
<Examples 2-4, 7-9>
A solder powder composed of silver and tin was obtained by performing the same operation as in Example 1 except that the silver fine powder and silver ions to be added were changed to the average particle diameter, ratio and addition amount shown in Table 1 below. .

<実施例5,6>
銀微粉末に代えて銅微粉末を、銀イオンに代えて銅イオンをそれぞれ使用し、この銅微粉末及び銅イオンを次の表1に示す平均粒径、比率及び添加量とした以外は実施例1と同様の操作を行って銅と錫から構成されたハンダ粉末を得た。
<Examples 5 and 6>
The copper fine powder was used in place of the silver fine powder, the copper ion was used in place of the silver ion, and the copper fine powder and the copper ion were used except for the average particle diameter, ratio and addition amount shown in the following Table 1. The same operation as in Example 1 was performed to obtain a solder powder composed of copper and tin.

<比較例1,2>
銀微粉末を添加せず、かつ、添加する銀イオンを次の表1に示す添加量に変更した以外は実施例1と同様の操作を行って銀と錫から構成されたハンダ粉末を得た。
<Comparative Examples 1 and 2>
Solder powder composed of silver and tin was obtained by performing the same operation as in Example 1 except that the silver fine powder was not added and the silver ion to be added was changed to the addition amount shown in Table 1 below. .

<比較試験及び評価>
実施例1〜9及び比較例1,2で得られたハンダ粉末について、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA-950)にて粒径分布を測定し、その体積累積中位径(Median径、D50)をハンダ粉末の平均粒径とした。また、実施例1〜9及び比較例1,2で得られたハンダ粉末について、誘導結合プラズマ発光分光分析(Inductively Coupled Plasma - Atomic Emission Spectroscopy:ICP−AES)により各種金属含有量を測定した。これらの結果を次の表1に示す。また、実施例1〜4の銀微粉末添加量と銀イオン添加量との質量比と得られたハンダ粉末の平均粒径の関係を図1に示す。
<Comparison test and evaluation>
For the solder powders obtained in Examples 1 to 9 and Comparative Examples 1 and 2, a particle size distribution measuring device using a laser diffraction scattering method (manufactured by Horiba, Ltd., laser diffraction / scattering particle size distribution measuring device LA-950) Then, the particle size distribution was measured and the volume cumulative median diameter (Median diameter, D 50 ) was defined as the average particle diameter of the solder powder. Moreover, various metal content was measured about the solder powder obtained in Examples 1-9 and Comparative Examples 1 and 2 by the inductively coupled plasma emission spectroscopy (ICP-AES). These results are shown in Table 1 below. Moreover, the relationship between the mass ratio of the silver fine powder addition amount of Examples 1-4 and silver ion addition amount and the average particle diameter of the obtained solder powder is shown in FIG.

Figure 2012115861
表1から明らかなように、銀微粉末及び銀イオンを添加した実施例1〜4,実施例7〜9では、平均粒径が1.4〜3.5μmとファインピッチに対応可能な銀と錫から構成されたハンダ粉末が得られており、本発明の製造方法のように、混合液中に還元反応時に核となる所定の平均粒径を有する金属微粉末及びこの金属イオンを添加することで、ファインピッチ化に対応し得る範囲内の微細なハンダ粉末を簡便、かつ効率よく製造できることが確認された。
Figure 2012115861
As is apparent from Table 1, in Examples 1 to 4 and Examples 7 to 9 to which silver fine powder and silver ions were added, the average particle diameter was 1.4 to 3.5 μm, and silver capable of handling a fine pitch. A solder powder composed of tin is obtained, and, as in the production method of the present invention, a metal fine powder having a predetermined average particle diameter that becomes a nucleus during a reduction reaction and a metal ion are added to the mixed solution. Thus, it was confirmed that a fine solder powder within a range that can cope with fine pitch can be easily and efficiently produced.

また、図1から明らかなように、添加する銀イオン量が増加するに従って、得られるハンダ粉末の平均粒径が小さくなっており、この結果から、金属微粉末及び金属イオンの比率を制御することで、得られるハンダ粉末の平均粒径を自由に制御することができることが確認された。   Further, as apparent from FIG. 1, as the amount of silver ions to be added increases, the average particle size of the obtained solder powder becomes smaller. From this result, the ratio of the metal fine powder and the metal ions is controlled. Thus, it was confirmed that the average particle size of the obtained solder powder can be freely controlled.

また、銅微粉末及び銅イオンを添加した実施例5,6では、平均粒径が2.8μm,3.0μmとファインピッチに対応可能な銅と錫から構成されたハンダ粉末が得られており、実施例1〜4,実施例7〜9の銀微粉末及び銀イオンだけでなく、金属種の異なる銅微粉末及び銅イオンを添加した場合についても、ファインピッチに対応可能なハンダ粉末が得られ、また、添加する金属微粉末及び金属イオンの金属種を変えることにより、様々な組成を持つハンダ粉末が得られることが確認された。   Moreover, in Examples 5 and 6 to which copper fine powder and copper ions were added, solder powder composed of copper and tin capable of handling fine pitches with an average particle diameter of 2.8 μm and 3.0 μm was obtained. In addition to the silver fine powder and silver ions of Examples 1 to 4 and Examples 7 to 9, solder powder that can handle fine pitch is obtained when copper fine powder and copper ions of different metal types are added. It was also confirmed that solder powders having various compositions can be obtained by changing the metal fine powder to be added and the metal species of the metal ions.

更に、金属微粉末の添加量と金属イオンの添加量の和が3.0質量%前後の実施例1〜4,8,9では、得られるハンダ粉末の銀含有割合が3%前後であるのに対し、金属微粉末の添加量と金属イオンの添加量の和が0.5質量%前後の実施例5,6では、得られるハンダ粉末の銅含有割合が0.5%、金属微粉末の添加量が4.8質量%の実施例9では、得られるハンダ粉末の銀含有割合が4.9%であり、この結果から、金属微粉末の添加量を変えることによって、得られるハンダ粉末の組成比率を自由に制御することができることが確認された。   Furthermore, in Examples 1-4, 8, and 9 where the sum of the addition amount of the metal fine powder and the addition amount of the metal ions is around 3.0% by mass, the silver content of the obtained solder powder is around 3%. On the other hand, in Examples 5 and 6 in which the sum of the addition amount of metal fine powder and the addition amount of metal ions is around 0.5% by mass, the copper content of the obtained solder powder is 0.5%, In Example 9 in which the addition amount is 4.8% by mass, the silver content of the obtained solder powder is 4.9%. From this result, by changing the addition amount of the metal fine powder, It was confirmed that the composition ratio can be freely controlled.

一方、金属イオンのみを添加した比較例1,2では、平均粒径が0.95μm,0.80μmと微細過ぎるハンダ粉末が得られた。この結果から、金属イオンのみの添加では、ハンダ粉末の粒径制御が難しいことが判った。   On the other hand, in Comparative Examples 1 and 2 to which only metal ions were added, solder powders having an average particle size of 0.95 μm and 0.80 μm were too fine. From this result, it was found that it is difficult to control the particle size of the solder powder by adding only metal ions.

本発明は、特に、ファインピッチ化が進む電子部品実装の技術分野において、電子部品同士の接合に用いられるハンダ用ペーストの材料として好適なハンダ粉末及びその製造に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a solder powder suitable as a material for a solder paste used for joining electronic components in the technical field of electronic component mounting where fine pitches are being advanced, and the production thereof.

Claims (6)

錫イオンを含む水溶液と還元剤水溶液とを混合し、混合液中で粉末を還元析出させるハンダ粉末の製造方法において、
前記粉末を還元析出させる際に、
前記混合液中に前記粉末を構成する錫以外の元素から構成された金属微粉末及びその金属イオンを一種以上添加する
ことを特徴とするハンダ粉末の製造方法。
In the method for producing a solder powder in which an aqueous solution containing tin ions and a reducing agent aqueous solution are mixed, and the powder is reduced and precipitated in the mixed solution,
When reducing and precipitating the powder,
One or more metal fine powders composed of elements other than tin constituting the powder and one or more metal ions thereof are added to the mixed solution.
前記金属微粉末及び前記金属イオンを構成する金属種がコバルト、ビスマス、ゲルマニウム、ニッケル、インジウム、銀、銅又は金のいずれかである請求項1記載のハンダ粉末の製造方法。   The method for producing a solder powder according to claim 1, wherein the metal species constituting the metal fine powder and the metal ion are any one of cobalt, bismuth, germanium, nickel, indium, silver, copper or gold. 前記金属微粉末の平均粒径が0.1〜4μmである請求項1又は2記載のハンダ粉末の製造方法。   The method for producing a solder powder according to claim 1 or 2, wherein the metal fine powder has an average particle size of 0.1 to 4 µm. 前記金属微粉末の添加量と前記金属イオンの添加量との和が製造するハンダ粉末100質量%に対して0.01〜20質量%である請求項1ないし3いずれか1項に記載のハンダ粉末の製造方法。   The solder according to any one of claims 1 to 3, wherein the sum of the addition amount of the metal fine powder and the addition amount of the metal ion is 0.01 to 20% by mass with respect to 100% by mass of the solder powder produced. Powder manufacturing method. 前記金属微粉末の添加量と前記金属イオンの添加量との質量比が1〜300である請求項1ないし4いずれか1項に記載のハンダ粉末の製造方法。   The method for producing a solder powder according to any one of claims 1 to 4, wherein a mass ratio of the addition amount of the metal fine powder and the addition amount of the metal ion is 1 to 300. 請求項1ないし5いずれか1項に記載の製造方法により得られた平均粒径が1〜5μmのハンダ粉末。   Solder powder having an average particle size of 1 to 5 µm obtained by the production method according to any one of claims 1 to 5.
JP2010266288A 2010-11-30 2010-11-30 Method for manufacturing solder powder and solder powder obtained by the same Pending JP2012115861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266288A JP2012115861A (en) 2010-11-30 2010-11-30 Method for manufacturing solder powder and solder powder obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266288A JP2012115861A (en) 2010-11-30 2010-11-30 Method for manufacturing solder powder and solder powder obtained by the same

Publications (1)

Publication Number Publication Date
JP2012115861A true JP2012115861A (en) 2012-06-21

Family

ID=46499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266288A Pending JP2012115861A (en) 2010-11-30 2010-11-30 Method for manufacturing solder powder and solder powder obtained by the same

Country Status (1)

Country Link
JP (1) JP2012115861A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115695A1 (en) * 2013-01-28 2014-07-31 三菱マテリアル株式会社 Sn-ag-cu-based solder powder, and solder paste using said powder
JP2014167156A (en) * 2013-01-31 2014-09-11 Nippon Handa Kk Method of producing solder alloy fine particle, solder alloy particle, solder paste, and electronic apparatus
JP2015004121A (en) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2017100145A (en) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 Method for production of solder powder
CN110732678A (en) * 2019-11-04 2020-01-31 厦门银方新材料科技有限公司 Nano-micron tin-bismuth alloy spherical powder and wet chemical preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP2002120086A (en) * 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method
JP2006225692A (en) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP2008006499A (en) * 2006-05-30 2008-01-17 Matsushita Electric Ind Co Ltd Solder paste
JP2008138266A (en) * 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
JP2008149365A (en) * 2006-12-20 2008-07-03 Mitsubishi Materials Corp Solder powder, and soldering paste using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317022A (en) * 1997-05-22 1998-12-02 Daiken Kagaku Kogyo Kk Production of metallic particulate powder
JP2002120086A (en) * 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method
JP2006225692A (en) * 2005-02-15 2006-08-31 Mitsui Mining & Smelting Co Ltd Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP2008006499A (en) * 2006-05-30 2008-01-17 Matsushita Electric Ind Co Ltd Solder paste
JP2008138266A (en) * 2006-12-04 2008-06-19 Mitsubishi Materials Corp Solder powder, and solder paste using the same
JP2008149365A (en) * 2006-12-20 2008-07-03 Mitsubishi Materials Corp Solder powder, and soldering paste using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115695A1 (en) * 2013-01-28 2014-07-31 三菱マテリアル株式会社 Sn-ag-cu-based solder powder, and solder paste using said powder
JP2014144461A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp SnAgCu-BASED SOLDER POWDER AND PASTE FOR SOLDER USING THIS POWDER
JP2014167156A (en) * 2013-01-31 2014-09-11 Nippon Handa Kk Method of producing solder alloy fine particle, solder alloy particle, solder paste, and electronic apparatus
JP2015004121A (en) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2017100145A (en) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 Method for production of solder powder
CN110732678A (en) * 2019-11-04 2020-01-31 厦门银方新材料科技有限公司 Nano-micron tin-bismuth alloy spherical powder and wet chemical preparation method thereof
CN110732678B (en) * 2019-11-04 2022-08-05 厦门银方新材料科技有限公司 Nano-micron tin-bismuth alloy spherical powder and wet chemical preparation method thereof

Similar Documents

Publication Publication Date Title
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
WO2013031588A1 (en) Solder powder, and solder paste using solder powder
JP5355007B2 (en) Method for producing spherical silver powder
JP5895344B2 (en) Method for producing solder powder and method for producing solder paste using solder powder produced by this method
JP2008138266A (en) Solder powder, and solder paste using the same
CN107877029B (en) Method for producing solder powder, solder paste, and method for mounting electronic component
JP6168837B2 (en) Copper fine particles and method for producing the same
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
JP2012115861A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP4969794B2 (en) Method for producing tin powder
JP5927745B2 (en) SnAgCu solder powder and solder paste using this powder
JP5750913B2 (en) Solder powder and solder paste using this powder
JP2012076086A (en) Solder powder and paste for solder using the powder
JP5736799B2 (en) Solder powder and manufacturing method thereof
JP2012115860A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP4797968B2 (en) Solder powder and solder paste using this powder
JP2019178404A (en) Core shell particle and application thereof
JP2011177719A (en) Solder powder and paste for solder using the powder
JP6191143B2 (en) Method for producing SnAgCu-based solder powder and method for preparing solder paste using this powder
JP2011184766A (en) Method for producing solder powder, and solder powder obtained by the method
JP2008149366A (en) Solder powder, and soldering paste using the same
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
JP4826453B2 (en) Solder powder and solder paste using the powder
JP2009190072A (en) Solder powder, and solder paste using the same
JP5488553B2 (en) Solder powder and solder paste using this powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825