WO2020121379A1 - Adhesive for semiconductor, cured product, and semiconductor component - Google Patents

Adhesive for semiconductor, cured product, and semiconductor component Download PDF

Info

Publication number
WO2020121379A1
WO2020121379A1 PCT/JP2018/045327 JP2018045327W WO2020121379A1 WO 2020121379 A1 WO2020121379 A1 WO 2020121379A1 JP 2018045327 W JP2018045327 W JP 2018045327W WO 2020121379 A1 WO2020121379 A1 WO 2020121379A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
adhesive
component
less
semiconductor
Prior art date
Application number
PCT/JP2018/045327
Other languages
French (fr)
Japanese (ja)
Inventor
健太 奥山
石井 学
賢 藤田
名取 美智子
慶子 小林
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020558815A priority Critical patent/JP7222400B2/en
Priority to CN201880100672.6A priority patent/CN113396471A/en
Priority to PCT/JP2018/045327 priority patent/WO2020121379A1/en
Publication of WO2020121379A1 publication Critical patent/WO2020121379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor adhesive, a cured product, and a semiconductor component.
  • Semiconductor components used in semiconductor devices are generally manufactured by bonding a semiconductor element such as a semiconductor chip to a supporting member such as a lead frame with an adhesive (die bonding material).
  • an adhesive die bonding material
  • gold-silicon eutectic, solder, paste resin composition, etc. have been known as semiconductor adhesives, but in recent years, paste resin compositions have been widely used from the viewpoint of workability and cost. Has been done.
  • ⁇ Semiconductor elements such as semiconductor chips tend to have higher integration density with higher integration and miniaturization, and the amount of heat generated per unit area tends to increase. Therefore, in a semiconductor component mounted with a semiconductor element, it is necessary to efficiently dissipate the heat generated from the semiconductor element to the outside.
  • solder bonding has been the mainstream for the bonding of power device package elements, but from the perspective of environmental issues, there is a growing trend toward deleading solder.
  • semiconductor adhesives containing resin components as adhesives that replace solder.
  • the present invention aims to provide an adhesive for semiconductors having excellent thermal conductivity and a cured product thereof.
  • An object of the present invention is to provide a semiconductor component using the adhesive for semiconductors or a cured product thereof.
  • An adhesive for semiconductors contains (A) silver particles and (B) a monomer having a (meth)acryloyl group, and the (A) component is the first silver particle.
  • the BET specific surface area of the first silver particles is 0.3 m 2 /g or less, and the average particle diameter of the first silver particles is 7.0 ⁇ m or more.
  • the heat generated from the semiconductor element can be efficiently dissipated to the outside.
  • a semiconductor component according to another aspect of the present invention includes a support member, a semiconductor element, and an adhesive layer arranged between the support member and the semiconductor element, and the adhesive layer is the above-mentioned adhesive for semiconductors. Alternatively, it includes a cured product thereof.
  • the present invention it is possible to provide a semiconductor adhesive having excellent thermal conductivity and a cured product thereof. According to the present invention, the heat generated from the semiconductor element can be efficiently dissipated to the outside. According to the present invention, it is possible to provide a semiconductor component using the semiconductor adhesive or a cured product thereof.
  • an application of a semiconductor adhesive or a cured product thereof to a semiconductor component or its manufacture.
  • an application of an adhesive for semiconductors or a cured product thereof to adhesion between a semiconductor element and a support member.
  • an application of a semiconductor adhesive to a die bonding material can be provided.
  • FIG. 1 is a schematic sectional view showing an example of a semiconductor component.
  • FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor component.
  • the numerical range indicated by using “to” indicates the range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • “A or B” may include either one of A and B, or may include both.
  • the materials exemplified in the present specification can be used alone or in combination of two or more kinds.
  • the use amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified.
  • the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a partly formed shape when observed as a plan view.
  • the term “process” is included in this term as long as the intended action of the process is achieved not only when it is an independent process but also when it cannot be clearly distinguished from other processes. .. “(Meth)acrylate” means at least one of acrylate and corresponding methacrylate. The same applies to other similar expressions such as “(meth)acryloyl”.
  • the adhesive for semiconductors according to the present embodiment is a single particle having (A) silver particles (hereinafter, sometimes referred to as “(A) component”. Particles containing silver, for example, silver powder) and (B) (meth)acryloyl group. And (B) a BET specific surface area of the first silver particles is 0.3 m 2 /g. And the average particle size of the first silver particles is 7.0 ⁇ m or more.
  • the semiconductor adhesive according to the present embodiment is a conductive composition, and can be used as a conductive composition for bonding a semiconductor element to a supporting member.
  • the semiconductor adhesive according to the present embodiment is, for example, a curable (for example, thermosetting) composition.
  • the semiconductor adhesive according to the present embodiment can be used as a paste resin composition.
  • the cured product according to this embodiment is a cured product of the semiconductor adhesive according to this embodiment.
  • the semiconductor adhesive and the cured product thereof according to the present embodiment have excellent thermal conductivity, the heat generated from the semiconductor element can be efficiently dissipated to the outside.
  • the reason why the adhesive for semiconductors and the cured product thereof according to the present embodiment have excellent thermal conductivity is not clear, but the present inventors presume as follows.
  • the cause is not limited to the following contents. That is, when the first silver particles having a small BET specific surface area and a large average particle diameter are used, it is easy to prevent the number of contact points between silver particles from increasing excessively. It is presumed that excellent heat conductivity can be obtained because the loss is easily suppressed.
  • the adhesive for semiconductors contains many silver particles
  • the coating workability becomes low due to the increase in viscosity, or the cured product of the adhesive for semiconductors becomes brittle and the adhesion between the semiconductor element and the supporting member is increased.
  • the strength may be low.
  • the adhesive for semiconductors of the present embodiment even when the adhesive for semiconductors contains many silver particles, it is easy to suppress the increase in viscosity, so that the coating workability is kept high.
  • the cured product of the semiconductor adhesive can be easily prevented from becoming brittle, the adhesive strength between the semiconductor element and the supporting member can be kept high. That is, according to the present embodiment, it is possible to provide a semiconductor adhesive having excellent thermal conductivity, coating workability, and adhesive strength, and a cured product thereof.
  • the component (A) is a first silver particle having a BET specific surface area of 0.3 m 2 /g or less and an average particle size of 7.0 ⁇ m or more (hereinafter, depending on the case). "(A1) component”) is included. From the viewpoint of easily obtaining excellent adhesive strength, the component (A) further contains second silver particles having a BET specific surface area of more than 0.3 m 2 /g (hereinafter, sometimes referred to as “component (A2)”). Good.
  • component (A) one type may be used alone, or two or more types may be used in combination.
  • the content of silver in at least one particle of the component (A1) or the component (A2) is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more. , 99 mass% or more is extremely preferable.
  • At least one particle of the component (A1) or the component (A2) may be a mode in which the particle is substantially composed of silver (substantially 100% by mass of the particle is silver).
  • Examples of the shape of the component (A1) include scaly, spherical, lumpy, dendritic, and plate-like shapes, but scaly shape is preferable from the viewpoint of easily obtaining excellent thermal conductivity.
  • Examples of the shape of the component (A2) include a scaly shape, a spherical shape, a lump shape, a dendritic shape, and a plate shape, but the scaly shape is preferable from the viewpoint of easily obtaining excellent thermal conductivity.
  • Examples of the component (A2) include AgC-271B (BET specific surface area: 0.50 m 2 /g), AgC-221Q3 (BET specific surface area: 0.35 m 2 /g) and AgC- manufactured by Fukuda Metal Foil & Powder Co., Ltd. 212DH (BET specific surface area: 1m 2 / g); CO., LTD Tokuriki chemical Laboratory, Ltd. of the TC-88 (BET specific surface area: 1.05m 2 / g), TC -505C (BET specific surface area: 0.65m 2 / g ) and TC-87 (BET specific surface area: 0.25m 2 / g); Co. ferro Japan in SF-125 (BET specific surface area: 0.17 m 2 / g), and the like.
  • (A1) BET surface area of the component is preferably less than 0.3 m 2 / g, more preferably 0.275M 2 / g or less, still is 0.25 m 2 / g or less preferably, particularly preferably 0.225 m 2 / g or less, very preferably 0.2 m 2 / g.
  • (A1) BET surface area of the component the easier the viewpoint of give excellent viscosity semiconductor adhesive (viscosity when the paste used), preferably at least 0.1 m 2 / g, more preferably at least 0.125 m 2 / g , more preferably not less than 0.15m 2 / g, 0.175m 2 / g or more is particularly preferable. From these viewpoints, the BET surface area of the component (A1) is preferably 0.1 ⁇ 0.3m 2 / g, more preferably 0.1 ⁇ 0.25m 2 / g.
  • (A2) BET surface area of the component the easier the viewpoint of give excellent viscosity semiconductor adhesive (viscosity when the paste used), preferably at least 0.35 m 2 / g, more preferably at least 0.375 M 2 / g , more preferably at least 0.4 m 2 / g, particularly preferably not less than 0.425m 2 / g, very preferably more than 0.45 m 2 / g, very preferably at least 0.475m 2 / g, 0.5m 2 /G or more is even more preferable.
  • the BET surface area of the component (A2) is preferably more than 0.3 m 2 /g and 1 m 2 /g or less, and more preferably 0.35 to 1 m 2 /g.
  • the average particle size of the component (A1) is such that excellent thermal conductivity is easily obtained (excessive heat loss at the contact points of the silver particles is suppressed by easily suppressing an excessive increase in the contact points between the silver particles. From the viewpoint of (easy to do), it is preferably 7.0 ⁇ m or more, more preferably more than 7.0 ⁇ m, further preferably 7.25 ⁇ m or more, and particularly preferably 7.5 ⁇ m or more.
  • the average particle size of the component (A1) is preferably 10 ⁇ m or less, more preferably 9.5 ⁇ m or less, and further preferably 9 ⁇ m or less, from the viewpoint of easily obtaining excellent dischargeability (dischargeability during dispensing) of the adhesive for semiconductors.
  • the average particle size of the component (A1) is preferably 7.0 to 10 ⁇ m, more preferably 7.0 to 8.5 ⁇ m, and further preferably 7.5 to 8.0 ⁇ m.
  • the average particle size of the component (A1) can be measured by a laser diffraction type particle size distribution measuring device (laser diffraction method).
  • the average particle size of the component (A2) is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 2 ⁇ m or more, from the viewpoint of easily obtaining excellent thermal conductivity.
  • the average particle diameter of the component (A2) is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, particularly preferably 8 ⁇ m or less, and particularly preferably 5 ⁇ m or less, from the viewpoint of easily obtaining excellent thermal conductivity. 4 ⁇ m or less is very preferable, and 3 ⁇ m or less is even more preferable. From these viewpoints, the average particle diameter of the component (A2) is preferably 1 to 20 ⁇ m, more preferably 2 to 5 ⁇ m.
  • the average particle size of the component (A2) can be measured by a laser diffraction type particle size distribution measuring device (laser diffraction method).
  • the content of component (A1) is preferably in the following range based on the total amount of component (A).
  • the content of the component (A1) is preferably 40% by mass or more, more preferably 50% by mass or more, and more than 50% by mass from the viewpoint of easily obtaining excellent thermal conductivity and easily reducing the viscosity. Is more preferable, 60% by mass or more is particularly preferable, and 70% by mass or more is extremely preferable.
  • the content of the component (A1) is 100% by mass or less, preferably less than 100% by mass, more preferably 95% by mass or less, still more preferably 90% by mass or less, from the viewpoint of easily obtaining excellent adhesive strength. Particularly preferably, it is 80% by mass or less, very preferably 75% by mass or less. From these viewpoints, the content of the component (A1) is preferably 40 to 100% by mass, more preferably 50 to 95% by mass.
  • the content of the component (A2) is preferably in the following range based on the total amount of the component (A).
  • the content of the component (A2) is preferably more than 0% by mass, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 15% by mass or more, from the viewpoint of easily obtaining excellent adhesive strength. It is preferably 20% by mass or more and very preferably 25% by mass or more.
  • the content of the component (A2) is preferably 60% by mass or less, more preferably 50% by mass or less, and further less than 50% by mass from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. It is preferably 40% by mass or less, particularly preferably 30% by mass or less. From these viewpoints, the content of the component (A2) is preferably more than 0% by mass and 60% by mass or less, and more preferably 5 to 50% by mass.
  • the content of the component (A1) is preferably in the following range based on the total amount of the adhesive for semiconductors (total amount of solids. The same applies below).
  • the content of the component (A1) is preferably 30% by mass or more, more preferably 35% by mass or more, further preferably 40% by mass or more from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. 50% by mass or more is particularly preferable, 55% by mass or more is extremely preferable, and 60% by mass or more is very preferable.
  • the content of the component (A1) is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, particularly preferably less than 85% by mass, 80 mass% or less is very preferable, 75 mass% or less is very preferable, 70 mass% or less is still more preferable, and 65 mass% or less is further preferable. From these viewpoints, the content of the component (A1) is preferably 30 to 95% by mass, more preferably 50 to 90% by mass, further preferably 55 to 85% by mass, and particularly preferably 60 to 80% by mass.
  • the content of the component (A2) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent adhesive strength, the content of the component (A2) is preferably 2% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 15% by mass or more, 20 mass% or more is extremely preferable.
  • the content of the component (A2) is preferably 50% by mass or less, more preferably less than 50% by mass, and further preferably 45% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. It is particularly preferably 40% by mass or less, very preferably 35% by mass or less, and very preferably 30% by mass or less. From these viewpoints, the content of the component (A2) is preferably 2 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 35% by mass.
  • the mass ratio of the content of the (A1) component to the content of the (A2) component is preferably in the following range.
  • the mass ratio is preferably 0.1 or more, more preferably 0.5 or more, further preferably 1.0 or more, particularly preferably 1.5 or more, and very preferably 2.0 or more.
  • the mass ratio is preferably 5.0 or less, more preferably 4.0 or less, further preferably 3.0 or less, particularly preferably 2.0 or less, and 1.5 or less. Is extremely preferable, and 1.0 or less is very preferable. From these viewpoints, the mass ratio is preferably 0.1 to 5.0.
  • the content of the component (A) (the total amount of the components (A1) and (A2)) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (A) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, particularly preferably 60% by mass or more. , 70 mass% or more is extremely preferable, 80 mass% or more is very preferable, and 85 mass% or more is even more preferable.
  • the content of the component (A) is preferably less than 100 mass%, more preferably 98 mass% or less, further preferably 95 mass% or less, and 92 mass% or less. Particularly preferable, and 90% by mass or less is extremely preferable. From these viewpoints, the content of the component (A) is preferably 30% by mass or more and less than 100% by mass, more preferably 80 to 92% by mass, and further preferably 85 to 90% by mass.
  • the content of silver particles having an average particle size of 1 ⁇ m or more and less than 4 ⁇ may be 2% by mass or less, may be less than 2% by mass, or may be 1% by mass or less, based on the total amount of the adhesive for semiconductors. Well, it may be less than 1% by mass.
  • the component (A) may not include silver particles having an average particle size of 1 ⁇ m or more and less than 4 ⁇ m.
  • Component (B) monomer having a (meth)acryloyl group
  • (meth)acrylic acid, (meth)acrylic acid ester or the like can be used.
  • the component (B) may not include an imide skeleton and/or a siloxane skeleton.
  • the number of (meth)acryloyl groups in the component (B) is preferably 3 or less, more preferably 2 or less, and even more preferably 1 from the viewpoint of easily obtaining excellent adhesive strength.
  • the number of (meth)acryloyl groups in the component (B) is 1 or more, and may be 2 or more.
  • the molecular weight of the component (B) may be 2000 or less, 1500 or less, 1000 or less, 800 or less, or 600 or less. When the component (B) has two (meth)acryloyl groups, the molecular weight of the component (B) may be 400 or less and 300 or less.
  • the component (B) preferably contains a compound represented by the following general formula (b1) from the viewpoint of easily obtaining excellent adhesive strength.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents a group represented by the following formula
  • X represents an alkylene group having 1 to 5 carbon atoms
  • n 1 represents 0 to 10 Indicates an integer.
  • Examples of the compound represented by the formula (b1) include dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate and dicyclopentanyl (meth)acrylate.
  • Dicyclopentenyl acrylate as FA-511A dicyclopentenyloxyethyl acrylate as FA-512A
  • dicyclopentenyloxyethyl methacrylate as FA-512M dicyclopentanyl methacrylate
  • dicyclopentanyl methacrylate Are commercially available as FA-513M from Hitachi Chemical Co., Ltd.
  • the content of the compound represented by the formula (b1) is preferably within the following range based on the total amount of the component (B).
  • the content of the compound represented by the formula (b1) is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, and 30% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is particularly preferable, and 35% by mass or more is extremely preferable.
  • the content of the compound represented by the formula (b1) is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, and 80% by mass. % Or less is particularly preferable, and 75% by mass or less is extremely preferable. From these viewpoints, the content of the compound represented by the formula (b1) is preferably 10 to 95% by mass, more preferably 20 to 90% by mass.
  • the content of the compound represented by the formula (b1) is preferably within the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the compound represented by the formula (b1) is preferably 0.5% by mass or more, more preferably 1% by mass or more, further 1.2% by mass or more. It is particularly preferably 1.5% by mass or more, and particularly preferably 1.8% by mass or more. The content of the compound represented by the formula (b1) is preferably 10% by mass or less, more preferably 8% by mass or less, further preferably 6% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. % Or less is particularly preferable, and 4% by mass or less is extremely preferable. From these viewpoints, the content of the compound represented by the formula (b1) is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass.
  • the component (B) is represented by the following general formula (b22) as a compound represented by the following general formula (b21) as a (meth)acrylic acid ester from the viewpoint of easily obtaining excellent coating workability and adhesive strength. And a compound represented by the following general formula (b23).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or a methyl group, and n 22 and n 23 each independently represent an integer of 1 to 3.
  • Benzyl (meth)acrylate is commercially available as FA-BZA (manufactured by Hitachi Chemical Co., Ltd.)
  • phenoxyethyl acrylate is SR-339A (manufactured by Sartomer)
  • phenoxyethyl methacrylate is commercially available as CD9087 (manufactured by Sartomer).
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably within the following range based on the total amount of the component (B).
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 30% by mass or more, particularly preferably 35% by mass or more.
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 50% by mass or less, particularly preferably 40% by mass or less. From these viewpoints, the content of the compounds represented by the formulas (b21) to (b23) is preferably 10 to 80% by mass, and more preferably 20 to 70% by mass.
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably within the following range based on the total amount of the adhesive for semiconductors.
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 1.2% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is more preferable, 1.5% by mass or more is particularly preferable, and 1.8% by mass or more is extremely preferable.
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity.
  • the content of the compounds represented by the formulas (b21) to (b23) is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass.
  • the component (B) is different from the compound represented by the formula (b1), the compound represented by the formula (b21), the compound represented by the formula (b22), and the compound represented by the formula (b23). It may include a monofunctional (meth)acrylic acid ester. Examples of such monofunctional (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate.
  • the component (B) may or may not contain the compound represented by the following general formula (b3).
  • the content of the compound represented by the formula (b3) may be 1% by mass or less, 0.1% by mass or less, and 0.01% by mass or less based on the total amount of the component (B).
  • the content of the compound represented by the formula (b3) may be 1% by mass or less, 0.1% by mass or less, and 0.01% by mass or less based on the total amount of the adhesive for semiconductors. May be
  • R 31 represents a hydrogen atom or a methyl group
  • Y represents an alkylene group having 1 to 5 carbon atoms
  • R 32 to R 36 represent an alkyl group having 1 to 20 carbon atoms
  • n3 represents , An integer of 0 to 10 is shown.
  • the component (B) may include a polyfunctional (meth)acrylic acid ester.
  • the component (B) preferably contains, as a polyfunctional (meth)acrylic acid ester, a compound having two (meth)acryloyloxy groups in one molecule. In this case, it is easy to reduce the generation of bubbles in the adhesive, which causes a reduction in reflow resistance during thermosetting.
  • Examples of compounds having two (meth)acryloyloxy groups in one molecule include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • the component (B) may contain a compound represented by the following general formula (b4) as a compound having two (meth)acryloyloxy groups in one molecule from the viewpoint of easily obtaining excellent adhesive strength. preferable.
  • R 41 , R 42 , R 43 and R 44 each independently represent a hydrogen atom or a methyl group
  • Z 41 and Z 42 each independently represent an alkylene group having 1 to 5 carbon atoms
  • n 41 And n42 each independently represent an integer of 1 to 20.
  • a compound having three or more (meth)acryloyloxy groups in one molecule can be used as a polyfunctional (meth)acrylic acid ester.
  • the compound having three or more (meth)acryloyloxy groups in one molecule include trimethylolpropane tri(meth)acrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, and propylene oxide-modified trimethylolpropane tri(meth).
  • Acrylate ethylene oxide/propylene oxide modified trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth) Examples thereof include acrylate and pentaerythritol tri(meth)acrylate.
  • the content of the polyfunctional (meth)acrylic acid ester is preferably in the following range based on the total amount of the component (B).
  • the content of the polyfunctional (meth)acrylic acid ester is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and 20% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is particularly preferable, and 25% by mass or more is extremely preferable.
  • the content of the polyfunctional (meth)acrylic acid ester is preferably 50% by mass or less, more preferably 45% by mass or less, further preferably 40% by mass or less, and 35% by mass, from the viewpoint of easily obtaining excellent thermal conductivity. % Or less is particularly preferable, and 30% by mass or less is extremely preferable. From these viewpoints, the content of the polyfunctional (meth)acrylic acid ester is preferably 5 to 50% by mass, more preferably 10 to 45% by mass.
  • the content of polyfunctional (meth)acrylic acid ester is preferably in the following range based on the total amount of the adhesive for semiconductors.
  • the content of the polyfunctional (meth)acrylic acid ester is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, still more preferably 1% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 1.2% by mass or more, particularly preferably 1.4% by mass or more.
  • the content of the polyfunctional (meth)acrylic acid ester is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity.
  • the content of the polyfunctional (meth)acrylic acid ester is preferably 0.5 to 3% by mass, more preferably 0.8 to 2.5% by mass.
  • the content of the component (B) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and particularly preferably 4% by mass or more. 5% by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 10% by mass or less, more preferably less than 10% by mass, further preferably 9% by mass or less, particularly preferably 8% by mass or less. , 7 mass% or less is very preferable, and 6 mass% or less is very preferable. From these viewpoints, the content of the component (B) is preferably 1 to 10% by mass, more preferably 2 to 9% by mass.
  • the content of the component (B) is preferably in the following range with respect to 100 parts by mass of the component (A). From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, further preferably 4 parts by mass or more, particularly preferably 5 parts by mass or more. , 6 parts by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 8 parts by mass or less. , 7 parts by mass or less is extremely preferable. From these viewpoints, the content of the component (B) is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass.
  • the adhesive for semiconductors according to this embodiment may contain a radical polymerization initiator (hereinafter, sometimes referred to as “component (C)”).
  • component (C) preferably contains a peroxide from the viewpoint of easily suppressing the generation of voids and the like.
  • the decomposition temperature of the peroxide in the rapid heating test is preferably 70 to 170° C. from the viewpoint of easily obtaining excellent curability and viscosity stability of the adhesive for semiconductors.
  • component (C) examples include 1,1,3,3-tetramethylperoxy 2-ethylhexanoate, 1,1-bis(t-butylperoxy)cyclohexane and 1,1-bis(t-butylperoxy).
  • the content of the component (C) is preferably in the following range with respect to 100 parts by mass of the component (B). From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (C) is preferably 3 parts by mass or more, more preferably 4 parts by mass or more, further preferably 5 parts by mass or more, particularly preferably 8 parts by mass or more. 10 parts by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (C) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 15 parts by mass or less. From these viewpoints, the content of the component (C) is preferably 3 to 30 parts by mass, more preferably 4 to 20 parts by mass, still more preferably 5 to 15 parts by mass.
  • the semiconductor adhesive according to the present embodiment may contain a softening agent (hereinafter sometimes referred to as “component (D)”, excluding compounds corresponding to components (A) to (C)).
  • component (D) preferably contains at least one selected from the group consisting of liquid rubber and thermoplastic resins (excluding compounds corresponding to liquid rubber).
  • liquid rubber examples include polybutadiene, epoxidized polybutadiene, maleated polybutadiene, acrylonitrile butadiene rubber, acrylonitrile butadiene rubber having a carboxy group (for example, acrylonitrile polybutadiene copolymer having a carboxy group), amino-terminated acrylonitrile-butadiene rubber, vinyl-terminated acrylonitrile-butadiene rubber.
  • resins having a polybutadiene skeleton such as rubber and styrene-butadiene rubber.
  • the liquid rubber preferably contains at least one selected from the group consisting of epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxy group, from the viewpoint of easily reducing the elastic modulus of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent coating workability and adhesive strength, it is preferable to use epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxy group together.
  • Epoxidized polybutadiene can be easily obtained by epoxidizing commercially available polybutadiene with hydrogen peroxide solution or peracids.
  • the epoxidized polybutadiene is, for example, B-1000, B-3000, G-1000, G-3000 (or more, manufactured by Nippon Soda Co., Ltd.), B-1000, B-2000, B-3000, B-4000 (or more, Nippon Oil Co., Ltd.), R-15HT, R-45HT, R-45M (above, Idemitsu Petroleum Co., Ltd.), Epolide PB-3600, Epolide PB-4700 (above, Daicel Chemical Industries Ltd.), etc. are commercially available. Available as a product.
  • the oxirane oxygen concentration of the epoxidized polybutadiene is preferably 3 to 18%, more preferably 6 to 12%.
  • the acrylonitrile butadiene rubber having a carboxy group preferably contains a compound represented by the following general formula (d1) from the viewpoint of easily obtaining excellent adhesive strength.
  • x and y are each independently a number of 0 or more indicating the average value of the number of repetitions, x/y is 95/5 to 50/50, and m is an integer of 5 to 50. .. ]
  • Hycar CTBN-2009 ⁇ 162, CTBN-1300 ⁇ 31, CTBN-1300 ⁇ 8, CTBN-1300 ⁇ 13, CTBN-1009SP-S, CTBNX-1300 ⁇ 9 are available as commercial products.
  • the number average molecular weight of the liquid rubber is preferably 500 or more, more preferably 1000 or more, from the viewpoint of easily obtaining a sufficient flexibility effect.
  • the number average molecular weight of the liquid rubber is preferably 10,000 or less, more preferably 5,000 or less, from the viewpoint of suppressing an excessive increase in the viscosity of the adhesive for semiconductors and easily obtaining excellent coating workability. From these viewpoints, the number average molecular weight of the liquid rubber is preferably 500 to 10000, more preferably 1000 to 5000.
  • the number average molecular weight of the liquid rubber can be measured by gel permeation chromatography (GPC) under the following conditions and converted from a calibration curve using standard polystyrene.
  • the liquid rubber content is preferably in the following range based on the total amount of component (D).
  • the content of the liquid rubber is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. It is preferably 14% by mass or more and particularly preferably.
  • the content of the liquid rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. It is preferably 30% by mass or less, and particularly preferably 30% by mass or less. From these viewpoints, the content of the liquid rubber is preferably 5 to 50% by mass, more preferably 8 to 40% by mass.
  • thermoplastic resin examples include polyvinyl acetate, polymethyl acrylate, ⁇ -caprolactone modified polyester, phenoxy resin, polyimide, and the copolymer represented by the following general formula (d2).
  • R 51 and R 52 are each independently a hydrogen atom or a methyl group
  • r, s, t, and u are each independently a number of 0 or more indicating the average value of the number of repetitions
  • r+t is It is 0.1 or more (preferably 0.3 to 5)
  • s+u is 1 or more (preferably 1 to 100).
  • the number average molecular weight of the thermoplastic resin is preferably 10,000 or more, and more preferably 20,000 or more from the viewpoint that a sufficient flexibility effect is easily obtained.
  • the number average molecular weight of the thermoplastic resin is preferably 300,000 or less, and more preferably 200,000 or less from the viewpoint that an excessive increase in the viscosity of the adhesive for semiconductors is suppressed and excellent coating workability is easily obtained. From these viewpoints, the number average molecular weight of the thermoplastic resin is preferably 10,000 to 300,000, and more preferably 20,000 to 200,000.
  • the number average molecular weight of the thermoplastic resin can be measured by the same method as the number average molecular weight of liquid rubber.
  • the thermoplastic resin content is preferably in the following range based on the total amount of component (D).
  • the content of the thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and 65% by mass or more from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily obtaining excellent adhesive strength. More preferably, 70% by mass or more is particularly preferable.
  • the content of the thermoplastic resin is preferably 95% by mass or less, more preferably 92% by mass or less, and 90% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. More preferably, 86% by mass or less is particularly preferable. From these viewpoints, the content of the thermoplastic resin is preferably 50 to 95% by mass, more preferably 60 to 92% by mass.
  • the content of the component (D) is preferably in the following range with respect to 100 parts by mass of the component (B).
  • the content of the component (D) is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, further preferably 50 parts by mass or more, and 60 parts by mass or more from the viewpoint that a sufficient softening effect is easily obtained.
  • the content of the component (D) is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, from the viewpoint that an excessive increase in viscosity of the semiconductor adhesive is suppressed and excellent coating workability is easily obtained. It is more preferably 70 parts by mass or less. From these viewpoints, the content of the component (D) is preferably 30 to 100 parts by mass, more preferably 40 to 80 parts by mass, and further preferably 50 to 70 parts by mass.
  • the adhesive for semiconductors according to the present embodiment may contain a coupling agent (hereinafter, sometimes referred to as “(E) component”).
  • a coupling agent hereinafter, sometimes referred to as “(E) component”.
  • the component (E) include a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate coupling agent, and a zircoaluminate coupling agent.
  • silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyl-tris(2-methoxyethoxy).
  • Silane ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, methyltri(methacryloxyethoxy)silane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyl Triethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -(N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ -ureidopropyltrie
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraisopropyl bis(dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate.
  • Tetra(2,2-diallyloxymethyl-1-butyl)bis(di-tridecyl)phosphite titanate bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyl trioctanoyl titanate, Examples thereof include isopropyl dimethacryl isostearoyl titanate, isopropyl (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, isopropyl tri(N-aminoethyl aminoethyl) titanate, dicumyl phenyloxyacetate titanate, and diisostearoyl ethylene titanate.
  • Examples of the aluminum-based coupling agent include acetoalkoxyaluminum diisopropionate.
  • the zirconate coupling agent include tetrapropyl zirconate, tetrabutyl zirconate, tetra(triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate, acetylacetone zirconium butyrate, zirconium stearate butyrate. ..
  • the content of the component (E) is preferably in the following range with respect to 100 parts by mass of the component (B).
  • the content of the component (E) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 8 parts by mass or more, from the viewpoint of easily obtaining excellent adhesive strength.
  • the content of the component (E) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less, from the viewpoint of easily obtaining excellent adhesive strength. From these viewpoints, the content of the component (E) is preferably 3 to 30 parts by mass, more preferably 5 to 20 parts by mass.
  • the semiconductor adhesive according to the present embodiment is, if necessary, a moisture absorbent such as calcium oxide or magnesium oxide; a fluorosurfactant, a nonionic surfactant, a wettability improver such as a higher fatty acid; a silicone oil or the like. Defoaming agent; an ion trap agent such as an inorganic ion exchanger; a solvent and the like.
  • the viscosity may be adjusted by using a solvent.
  • the content of the solvent is preferably 3% by mass or less based on the total amount of the adhesive for semiconductors, from the viewpoint of easily suppressing the generation of voids and the like.
  • the semiconductor adhesive according to the present embodiment does not need to contain a solvent from the viewpoint of easily suppressing the generation of outgas and easily obtaining good wettability of the adhesive with respect to the supporting member (there is no solvent. Good).
  • the viscosity (25° C.) of the semiconductor adhesive according to the present embodiment at a rotation speed of 0.5 rpm is preferably 300 Pa ⁇ s or less, more preferably 200 Pa ⁇ s or less, from the viewpoint of easily obtaining excellent coating workability. It is more preferably 150 Pa ⁇ s or less, particularly preferably 100 Pa ⁇ s or less, extremely preferably 80 Pa ⁇ s or less, very preferably 70 Pa ⁇ s or less, and even more preferably 65 Pa ⁇ s or less.
  • the viscosity (25° C.) at a rotation speed of 0.5 rpm of the adhesive for a semiconductor according to the present embodiment is 30 Pa from the viewpoint that it is easy to obtain the excellent storage stability of the adhesive for a semiconductor because the sedimentation of silver particles is easily suppressed.
  • the viscosity (25° C.) of the adhesive for semiconductors at a rotation speed of 0.5 rpm is preferably 30 to 300 Pa ⁇ s.
  • the viscosity (25° C.) at the rotation speed of 5 rpm of the adhesive for a semiconductor according to the present embodiment is preferably 40 Pa ⁇ s or less, more preferably 35 Pa ⁇ s or less, and 30 Pa ⁇ s from the viewpoint of easily obtaining excellent coating workability. s or less is more preferable, and 25 Pa ⁇ s or less is particularly preferable.
  • the viscosity (25° C.) of the adhesive for semiconductors according to the present embodiment at a rotation speed of 5 rpm is 10 Pa ⁇ s from the viewpoint that it is easy to suppress sedimentation of silver particles, and thus it is easy to obtain excellent storage stability of the adhesive for semiconductors.
  • the above is preferable, 15 Pa ⁇ s or more is more preferable, and 20 Pa ⁇ s or more is further preferable.
  • the viscosity (25° C.) of the semiconductor adhesive at a rotation speed of 5 rpm is preferably 10 to 40 Pa ⁇ s.
  • the viscosity can be measured using a Brookfield viscometer.
  • the semiconductor component according to the present embodiment includes a support member, a semiconductor element, and an adhesive layer disposed between the support member and the semiconductor element, and the adhesive layer is the semiconductor adhesive according to the present embodiment. Alternatively, it includes a cured product thereof.
  • the semiconductor element is mounted on the support member via the adhesive layer.
  • the adhesive layer is in contact with the support member and the semiconductor element.
  • the semiconductor device according to this embodiment includes the semiconductor component according to this embodiment.
  • a lead frame such as 42 alloy lead frame, copper lead frame, palladium PPF lead frame; glass epoxy substrate (substrate made of glass fiber reinforced epoxy resin), BT substrate (cyanate monomer) And an organic substrate such as a BT resin substrate comprising an oligomer thereof and bismaleimide).
  • semiconductor elements include ICs, LSIs, LED chips and the like.
  • the thickness of the semiconductor element may be 600 ⁇ m or less, 500 ⁇ m or less, and 400 ⁇ m or less.
  • the semiconductor component according to the present embodiment may include a sealing portion that seals a part or all of the semiconductor element.
  • a transparent resin can be used as a constituent material of the sealing portion.
  • the sealing portion may seal a part or all of the support member.
  • the method for manufacturing a semiconductor component according to this embodiment includes an adhesive layer forming step of disposing the semiconductor adhesive according to this embodiment between a support member and a semiconductor element to form an adhesive layer.
  • the adhesive for semiconductors according to the present embodiment can be obtained by collectively or dividing the constituent components and mixing them using a stirrer, a hybrid mixer, a liquor machine, a three-roll, a planetary mixer or the like.
  • the method for manufacturing a semiconductor component according to the present embodiment may include a step of curing (thermosetting, etc.) the adhesive layer to obtain a cured product after the adhesive layer forming step.
  • the method for manufacturing a semiconductor component according to this embodiment may include a wire bonding step of wire bonding a semiconductor element after the adhesive layer forming step.
  • the method for manufacturing a semiconductor component according to this embodiment may include a step of sealing the semiconductor element after the adhesive layer forming step.
  • the semiconductor adhesive for example, first, apply the semiconductor adhesive on the support member by a dispensing method, a screen printing method, a stamping method, or the like, and then press-bond the semiconductor element. Then, the adhesive for semiconductors is heated and cured using a heating device (oven, heat block, etc.). Furthermore, after the wire bonding step, the semiconductor element can be sealed by a usual method.
  • the temperature of the above-mentioned heat curing varies depending on the conditions such as long-time curing at low temperature and fast curing at high temperature, but is, for example, 150 to 220° C. (preferably 180 to 200° C.) for 30 seconds to 2 hours (preferably 1 hour to 1 hour 30 minutes).
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor component according to this embodiment.
  • the semiconductor component 10 includes a support member 11, a semiconductor element 13, an adhesive layer 15, and a sealing portion 17.
  • the adhesive layer 15 is disposed between the support member 11 and the semiconductor element 13, and contains the semiconductor adhesive according to the present embodiment or a cured product thereof.
  • the sealing portion 17 seals the support member 11, the semiconductor element 13, and the adhesive layer 15.
  • the semiconductor element 13 is connected to the lead frame 19b via the wire 19a.
  • FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor component according to this embodiment.
  • the semiconductor component 20 includes a support member 21, a semiconductor element (LED chip) 23, an adhesive layer 25, and a sealing portion 27.
  • the support member 21 has a substrate 21a and a lead frame 21b formed so as to surround the substrate 21a.
  • the adhesive layer 25 is disposed between the support member 21 and the semiconductor element 23, and includes the semiconductor adhesive according to the present embodiment or a cured product thereof.
  • the sealing portion 27 seals the semiconductor element 23 and the adhesive layer 25.
  • the semiconductor element 23 is connected to the lead frame 21b via a wire 29.
  • Trigonox 22-70E (1,1-bis(t-butylperoxy)cyclohexane, manufactured by Kayaku Akzo Co., Ltd.
  • EPORIDE PB-4700 Epoxidized polybutadiene, manufactured by Daicel Chemical Industries, Ltd., trade name, epoxy equivalent: 152.4 to 177.8, number average molecular weight: 3500
  • CTBN-1009SP-S acrylonitrile polybutadiene copolymer having a carboxy group, Ube Industries, Ltd., trade name, number average molecular weight: 3600
  • KBM-403 ( ⁇ -glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
  • thermo conductivity A cured product was obtained by heating the adhesive for semiconductors to 180° C. for 1 hour using an oven and then holding it at 180° C. for 1 hour. Then, after measuring the thermal diffusivity, the specific gravity and the specific heat using the following measuring device, the thermal conductivity was calculated by the following formula.
  • Thermal diffusivity Laser flash method thermal constant measurement device (Netzsch, LFA 467 HyperFlash)
  • Specific heat DSC (QA-200, manufactured by TA Instruments Japan Co., Ltd.)
  • viscosity Using a Brookfield viscometer (manufactured by Brookfield Engineering Laboratories, HADV-III U CP), the amount of the adhesive was 0.5 mL, the temperature was 25° C., the rotation speed was 0.5 rpm or 5 rpm. The viscosity was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is an adhesive for a semiconductor which comprises (A) silver particles and (B) a monomer having a (meth)acryloyl group, wherein the component (A) includes first silver particles, the first silver particles having a BET specific surface area of 0.3 m2/g or less and an average particle size of 7.0 μm or more.

Description

半導体用接着剤、硬化物及び半導体部品Adhesives for semiconductors, cured products and semiconductor parts
 本発明は、半導体用接着剤、硬化物及び半導体部品に関する。 The present invention relates to a semiconductor adhesive, a cured product, and a semiconductor component.
 半導体装置に用いられる半導体部品は、一般に、半導体チップ等の半導体素子を接着剤(ダイボンディング材)によりリードフレーム等の支持部材に接着して製造されている。従来、半導体用接着剤としては、金-シリコン共晶、はんだ、ペースト状の樹脂組成物等が知られているが、近年、作業性及びコストの観点から、ペースト状の樹脂組成物が広く使用されている。 Semiconductor components used in semiconductor devices are generally manufactured by bonding a semiconductor element such as a semiconductor chip to a supporting member such as a lead frame with an adhesive (die bonding material). Heretofore, gold-silicon eutectic, solder, paste resin composition, etc. have been known as semiconductor adhesives, but in recent years, paste resin compositions have been widely used from the viewpoint of workability and cost. Has been done.
 半導体チップ等の半導体素子は、高集積化及び微細化に伴い集積密度が高くなり、単位面積当たりの発熱量が増加する傾向にある。そのため、半導体素子が搭載された半導体部品においては、半導体素子から発生した熱を外部に効率的に放散する必要がある。 ▽Semiconductor elements such as semiconductor chips tend to have higher integration density with higher integration and miniaturization, and the amount of heat generated per unit area tends to increase. Therefore, in a semiconductor component mounted with a semiconductor element, it is necessary to efficiently dissipate the heat generated from the semiconductor element to the outside.
 また、従来、パワーデバイス用パッケージの素子の接着では、はんだ接合が主流であるが、環境問題の観点から、はんだの脱鉛化の動きが盛んである。これに伴い、実装用途又はダイボンディング用途においては、はんだに代わる接着剤として、樹脂成分を含有する半導体用接着剤の要求が高まってきている。 Also, conventionally, solder bonding has been the mainstream for the bonding of power device package elements, but from the perspective of environmental issues, there is a growing trend toward deleading solder. Along with this, in mounting applications or die bonding applications, there is an increasing demand for semiconductor adhesives containing resin components as adhesives that replace solder.
 しかしながら、樹脂成分を含有する従来の半導体用接着剤では、熱伝導率がはんだに比べて小さく、高熱伝導化が望まれている。これに対し、半導体用接着剤の構成成分として銀粒子を用いることが提案されている(例えば、下記特許文献1参照)。 However, conventional semiconductor adhesives containing resin components have a smaller thermal conductivity than solder, and high thermal conductivity is desired. On the other hand, it has been proposed to use silver particles as a constituent component of an adhesive for semiconductors (see, for example, Patent Document 1 below).
特開2006-73812号公報JP, 2006-73812, A
 ところで、半導体素子を支持部材に接着させるための半導体用接着剤に対しては、半導体素子から発生した熱を外部に更に効率的に放散する観点から、熱伝導性を向上させることが求められている。 By the way, for a semiconductor adhesive for adhering a semiconductor element to a supporting member, it is required to improve thermal conductivity from the viewpoint of more efficiently dissipating heat generated from the semiconductor element to the outside. There is.
 本発明は、優れた熱伝導性を有する半導体用接着剤及びその硬化物を提供することを目的とする。本発明は、前記半導体用接着剤又はその硬化物を用いた半導体部品を提供することを目的とする。 The present invention aims to provide an adhesive for semiconductors having excellent thermal conductivity and a cured product thereof. An object of the present invention is to provide a semiconductor component using the adhesive for semiconductors or a cured product thereof.
 本発明の一態様に係る半導体用接着剤は、(A)銀粒子と、(B)(メタ)アクリロイル基を有する単量体と、を含有し、前記(A)成分が第1の銀粒子を含み、前記第1の銀粒子のBET比表面積が0.3m/g以下であり、前記第1の銀粒子の平均粒径が7.0μm以上である。 An adhesive for semiconductors according to an aspect of the present invention contains (A) silver particles and (B) a monomer having a (meth)acryloyl group, and the (A) component is the first silver particle. The BET specific surface area of the first silver particles is 0.3 m 2 /g or less, and the average particle diameter of the first silver particles is 7.0 μm or more.
 上述の半導体用接着剤及びその硬化物は、優れた熱伝導性を有していることから、半導体素子から発生した熱を外部に効率的に放散することができる。 Since the above-mentioned adhesive for semiconductors and its cured product have excellent thermal conductivity, the heat generated from the semiconductor element can be efficiently dissipated to the outside.
 本発明の他の態様に係る半導体部品は、支持部材と、半導体素子と、支持部材及び半導体素子の間に配置された接着剤層と、を備え、接着剤層が、上述の半導体用接着剤又はその硬化物を含む。 A semiconductor component according to another aspect of the present invention includes a support member, a semiconductor element, and an adhesive layer arranged between the support member and the semiconductor element, and the adhesive layer is the above-mentioned adhesive for semiconductors. Alternatively, it includes a cured product thereof.
 本発明によれば、優れた熱伝導性を有する半導体用接着剤及びその硬化物を提供することができる。本発明によれば、半導体素子から発生した熱を外部に効率的に放散することができる。本発明によれば、前記半導体用接着剤又はその硬化物を用いた半導体部品を提供することができる。 According to the present invention, it is possible to provide a semiconductor adhesive having excellent thermal conductivity and a cured product thereof. According to the present invention, the heat generated from the semiconductor element can be efficiently dissipated to the outside. According to the present invention, it is possible to provide a semiconductor component using the semiconductor adhesive or a cured product thereof.
 本発明によれば、半導体用接着剤又はその硬化物の、半導体部品又はその製造への応用を提供することができる。本発明によれば、半導体用接着剤又はその硬化物の、半導体素子と支持部材との接着への応用を提供することができる。本発明によれば、半導体用接着剤の、ダイボンディング材への応用を提供することができる。 According to the present invention, it is possible to provide an application of a semiconductor adhesive or a cured product thereof to a semiconductor component or its manufacture. According to the present invention, it is possible to provide an application of an adhesive for semiconductors or a cured product thereof to adhesion between a semiconductor element and a support member. According to the present invention, an application of a semiconductor adhesive to a die bonding material can be provided.
図1は、半導体部品の一例を示す模式断面図である。FIG. 1 is a schematic sectional view showing an example of a semiconductor component. 図2は、半導体部品の他の例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor component.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の使用量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」等の他の類似の表現においても同様である。 In the present specification, the numerical range indicated by using "to" indicates the range including the numerical values before and after "to" as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of the numerical range of a certain stage can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another stage. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” may include either one of A and B, or may include both. Unless otherwise specified, the materials exemplified in the present specification can be used alone or in combination of two or more kinds. In the present specification, the use amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified. Means In the present specification, the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a partly formed shape when observed as a plan view. In the present specification, the term “process” is included in this term as long as the intended action of the process is achieved not only when it is an independent process but also when it cannot be clearly distinguished from other processes. .. “(Meth)acrylate” means at least one of acrylate and corresponding methacrylate. The same applies to other similar expressions such as “(meth)acryloyl”.
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be carried out within the scope of the gist thereof.
<半導体用接着剤及び硬化物>
 本実施形態に係る半導体用接着剤は、(A)銀粒子(以下、場合により「(A)成分」という。銀を含む粒子。例えば銀粉)と、(B)(メタ)アクリロイル基を有する単量体(以下、場合により「(B)成分」という)と、を含有し、(A)成分が第1の銀粒子を含み、第1の銀粒子のBET比表面積が0.3m/g以下であり、第1の銀粒子の平均粒径が7.0μm以上である。
<Semiconductor adhesives and cured products>
The adhesive for semiconductors according to the present embodiment is a single particle having (A) silver particles (hereinafter, sometimes referred to as “(A) component”. Particles containing silver, for example, silver powder) and (B) (meth)acryloyl group. And (B) a BET specific surface area of the first silver particles is 0.3 m 2 /g. And the average particle size of the first silver particles is 7.0 μm or more.
 本実施形態に係る半導体用接着剤は、導電性組成物であり、半導体素子を支持部材に接着させるための導電性組成物として用いることができる。本実施形態に係る半導体用接着剤は、例えば硬化性(例えば熱硬化性)の組成物である。本実施形態に係る半導体用接着剤は、ペースト状の樹脂組成物として用いることができる。本実施形態に係る硬化物は、本実施形態に係る半導体用接着剤の硬化物である。 The semiconductor adhesive according to the present embodiment is a conductive composition, and can be used as a conductive composition for bonding a semiconductor element to a supporting member. The semiconductor adhesive according to the present embodiment is, for example, a curable (for example, thermosetting) composition. The semiconductor adhesive according to the present embodiment can be used as a paste resin composition. The cured product according to this embodiment is a cured product of the semiconductor adhesive according to this embodiment.
 本実施形態に係る半導体用接着剤及びその硬化物は、優れた熱伝導性を有していることから、半導体素子から発生した熱を外部に効率的に放散することができる。本実施形態に係る半導体用接着剤及びその硬化物が優れた熱伝導性を有する原因は明らかではないが、本発明者は下記のように推察している。但し、原因は下記の内容に限定されない。すなわち、BET比表面積が小さいと共に平均粒径が大きい第1の銀粒子を用いると、銀粒子同士の接触点が過剰に多くなることが抑制されやすいことにより、銀粒子の接触点における過剰な熱損失が抑制されやすいため、優れた熱伝導性が得られると推察される。 Since the semiconductor adhesive and the cured product thereof according to the present embodiment have excellent thermal conductivity, the heat generated from the semiconductor element can be efficiently dissipated to the outside. The reason why the adhesive for semiconductors and the cured product thereof according to the present embodiment have excellent thermal conductivity is not clear, but the present inventors presume as follows. However, the cause is not limited to the following contents. That is, when the first silver particles having a small BET specific surface area and a large average particle diameter are used, it is easy to prevent the number of contact points between silver particles from increasing excessively. It is presumed that excellent heat conductivity can be obtained because the loss is easily suppressed.
 ところで、半導体用接着剤が多くの銀粒子を含有すると、粘度が高くなることに伴い塗布作業性が低くなる場合、又は、半導体用接着剤の硬化物が脆くなり半導体素子と支持部材との接着強度が低くなる場合がある。一方、本実施形態に係る半導体用接着剤によれば、半導体用接着剤が多くの銀粒子を含有する場合であっても、粘度が高くなることが抑制されやすいことから塗布作業性を高く維持することができると共に、半導体用接着剤の硬化物が脆くなることが抑制されやすいことから半導体素子と支持部材との接着強度を高く維持することができる。すなわち、本実施形態によれば、優れた熱伝導性、塗布作業性及び接着強度を有する半導体用接着剤及びその硬化物を提供することができる。 By the way, when the adhesive for semiconductors contains many silver particles, the coating workability becomes low due to the increase in viscosity, or the cured product of the adhesive for semiconductors becomes brittle and the adhesion between the semiconductor element and the supporting member is increased. The strength may be low. On the other hand, according to the adhesive for semiconductors of the present embodiment, even when the adhesive for semiconductors contains many silver particles, it is easy to suppress the increase in viscosity, so that the coating workability is kept high. In addition, since the cured product of the semiconductor adhesive can be easily prevented from becoming brittle, the adhesive strength between the semiconductor element and the supporting member can be kept high. That is, according to the present embodiment, it is possible to provide a semiconductor adhesive having excellent thermal conductivity, coating workability, and adhesive strength, and a cured product thereof.
((A)成分:銀粒子)
 (A)成分は、優れた熱伝導性を得る観点から、BET比表面積が0.3m/g以下であると共に平均粒径が7.0μm以上である第1の銀粒子(以下、場合により「(A1)成分」という)を含む。(A)成分は、優れた接着強度を得やすい観点から、BET比表面積が0.3m/gを超える第2の銀粒子(以下、場合により「(A2)成分」という)を更に含んでよい。(A)成分は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Component (A): silver particles)
From the viewpoint of obtaining excellent thermal conductivity, the component (A) is a first silver particle having a BET specific surface area of 0.3 m 2 /g or less and an average particle size of 7.0 μm or more (hereinafter, depending on the case). "(A1) component") is included. From the viewpoint of easily obtaining excellent adhesive strength, the component (A) further contains second silver particles having a BET specific surface area of more than 0.3 m 2 /g (hereinafter, sometimes referred to as “component (A2)”). Good. As the component (A), one type may be used alone, or two or more types may be used in combination.
 (A1)成分又は(A2)成分の少なくとも一粒子における銀の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましく、99質量%以上が極めて好ましい。(A1)成分又は(A2)成分の少なくとも一粒子は、実質的に銀からなる(実質的に粒子の100質量%が銀である)態様であってよい。 The content of silver in at least one particle of the component (A1) or the component (A2) is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more. , 99 mass% or more is extremely preferable. At least one particle of the component (A1) or the component (A2) may be a mode in which the particle is substantially composed of silver (substantially 100% by mass of the particle is silver).
 (A1)成分の形状としては、鱗片状、球状、塊状、樹枝状、板状等が挙げられるが、優れた熱伝導性を得やすい観点から、鱗片状が好ましい。(A2)成分の形状としては、鱗片状、球状、塊状、樹枝状、板状等が挙げられるが、優れた熱伝導性を得やすい観点から、鱗片状が好ましい。 Examples of the shape of the component (A1) include scaly, spherical, lumpy, dendritic, and plate-like shapes, but scaly shape is preferable from the viewpoint of easily obtaining excellent thermal conductivity. Examples of the shape of the component (A2) include a scaly shape, a spherical shape, a lump shape, a dendritic shape, and a plate shape, but the scaly shape is preferable from the viewpoint of easily obtaining excellent thermal conductivity.
 (A2)成分としては、福田金属箔粉工業株式社製のAgC-271B(BET比表面積:0.50m/g)、AgC-221Q3(BET比表面積:0.35m/g)及びAgC-212DH(BET比表面積:1m/g);株式会社徳力化学研究所製のTC-88(BET比表面積:1.05m/g)、TC-505C(BET比表面積:0.65m/g)及びTC-87(BET比表面積:0.25m/g);株式会社フェロ・ジャパン製のSF-125(BET比表面積:0.17m/g)等が挙げられる。 Examples of the component (A2) include AgC-271B (BET specific surface area: 0.50 m 2 /g), AgC-221Q3 (BET specific surface area: 0.35 m 2 /g) and AgC- manufactured by Fukuda Metal Foil & Powder Co., Ltd. 212DH (BET specific surface area: 1m 2 / g); CO., LTD Tokuriki chemical Laboratory, Ltd. of the TC-88 (BET specific surface area: 1.05m 2 / g), TC -505C (BET specific surface area: 0.65m 2 / g ) and TC-87 (BET specific surface area: 0.25m 2 / g); Co. ferro Japan in SF-125 (BET specific surface area: 0.17 m 2 / g), and the like.
 (A1)成分のBET表面積は、優れた熱伝導性を得やすい観点から、0.3m/g未満が好ましく、0.275m/g以下がより好ましく、0.25m/g以下が更に好ましく、0.225m/g以下が特に好ましく、0.2m/g以下が極めて好ましい。(A1)成分のBET表面積は、半導体用接着剤の優れた粘度(ペースト使用時の粘度)を得やすい観点から、0.1m/g以上が好ましく、0.125m/g以上がより好ましく、0.15m/g以上が更に好ましく、0.175m/g以上が特に好ましい。これらの観点から、(A1)成分のBET表面積は、0.1~0.3m/gが好ましく、0.1~0.25m/gがより好ましい。 (A1) BET surface area of the component, from easily obtained excellent thermal conductivity standpoint, is preferably less than 0.3 m 2 / g, more preferably 0.275M 2 / g or less, still is 0.25 m 2 / g or less preferably, particularly preferably 0.225 m 2 / g or less, very preferably 0.2 m 2 / g. (A1) BET surface area of the component, the easier the viewpoint of give excellent viscosity semiconductor adhesive (viscosity when the paste used), preferably at least 0.1 m 2 / g, more preferably at least 0.125 m 2 / g , more preferably not less than 0.15m 2 / g, 0.175m 2 / g or more is particularly preferable. From these viewpoints, the BET surface area of the component (A1) is preferably 0.1 ~ 0.3m 2 / g, more preferably 0.1 ~ 0.25m 2 / g.
 (A2)成分のBET表面積は、半導体用接着剤の優れた粘度(ペースト使用時の粘度)を得やすい観点から、0.35m/g以上が好ましく、0.375m/g以上がより好ましく、0.4m/g以上が更に好ましく、0.425m/g以上が特に好ましく、0.45m/g以上が極めて好ましく、0.475m/g以上が非常に好ましく、0.5m/g以上がより一層好ましい。(A2)成分のBET表面積は、優れた熱伝導性を得やすい観点から、1m/g以下が好ましく、0.9m/g以下がより好ましく、0.8m/g以下が更に好ましく、0.7m/g以下が特に好ましく、0.6m/g以下が極めて好ましい。これらの観点から、(A2)成分のBET表面積は、0.3m/gを超え1m/g以下が好ましく、0.35~1m/gがより好ましい。 (A2) BET surface area of the component, the easier the viewpoint of give excellent viscosity semiconductor adhesive (viscosity when the paste used), preferably at least 0.35 m 2 / g, more preferably at least 0.375 M 2 / g , more preferably at least 0.4 m 2 / g, particularly preferably not less than 0.425m 2 / g, very preferably more than 0.45 m 2 / g, very preferably at least 0.475m 2 / g, 0.5m 2 /G or more is even more preferable. (A2) BET surface area of the component, from easily obtained excellent thermal conductivity standpoint, preferably 1 m 2 / g or less, more preferably 0.9 m 2 / g, still more preferably 0.8 m 2 / g or less, 0.7 m 2 /g or less is particularly preferable, and 0.6 m 2 /g or less is extremely preferable. From these viewpoints, the BET surface area of the component (A2) is preferably more than 0.3 m 2 /g and 1 m 2 /g or less, and more preferably 0.35 to 1 m 2 /g.
 (A1)成分の平均粒径は、優れた熱伝導性を得やすい(銀粒子同士の接触点が過剰に多くなることを抑制しやすいことにより、銀粒子の接触点における過剰な熱損失を抑制しやすい)観点から、7.0μm以上が好ましく、7.0μmを超えることがより好ましく、7.25μm以上が更に好ましく、7.5μm以上が特に好ましい。(A1)成分の平均粒径は、半導体用接着剤の優れた吐出性(ディスペンス時の吐出性)を得やすい観点から、10μm以下が好ましく、9.5μm以下がより好ましく、9μm以下が更に好ましく、8.5μm以下が特に好ましく、8.25μm以下が極めて好ましく、8.0μm以下が非常に好ましい。これらの観点から、(A1)成分の平均粒径は、7.0~10μmが好ましく、7.0~8.5μmがより好ましく、7.5~8.0μmが更に好ましい。(A1)成分の平均粒径は、レーザー回析式粒度分布測定装置(レーザー回析法)により測定することができる。 The average particle size of the component (A1) is such that excellent thermal conductivity is easily obtained (excessive heat loss at the contact points of the silver particles is suppressed by easily suppressing an excessive increase in the contact points between the silver particles. From the viewpoint of (easy to do), it is preferably 7.0 μm or more, more preferably more than 7.0 μm, further preferably 7.25 μm or more, and particularly preferably 7.5 μm or more. The average particle size of the component (A1) is preferably 10 μm or less, more preferably 9.5 μm or less, and further preferably 9 μm or less, from the viewpoint of easily obtaining excellent dischargeability (dischargeability during dispensing) of the adhesive for semiconductors. , 8.5 μm or less is particularly preferable, 8.25 μm or less is extremely preferable, and 8.0 μm or less is very preferable. From these viewpoints, the average particle size of the component (A1) is preferably 7.0 to 10 μm, more preferably 7.0 to 8.5 μm, and further preferably 7.5 to 8.0 μm. The average particle size of the component (A1) can be measured by a laser diffraction type particle size distribution measuring device (laser diffraction method).
 (A2)成分の平均粒径は、優れた熱伝導性を得やすい観点から、1μm以上が好ましく、1.5μm以上がより好ましく、2μm以上が更に好ましい。(A2)成分の平均粒径は、優れた熱伝導性を得やすい観点から、20μm以下が好ましく、15μm以下がより好ましく、10μm以下が更に好ましく、8μm以下が特に好ましく、5μm以下が極めて好ましく、4μm以下が非常に好ましく、3μm以下がより一層好ましい。これらの観点から、(A2)成分の平均粒径は、1~20μmが好ましく、2~5μmがより好ましい。(A2)成分の平均粒径は、レーザー回析式粒度分布測定装置(レーザー回析法)により測定することができる。 The average particle size of the component (A2) is preferably 1 μm or more, more preferably 1.5 μm or more, still more preferably 2 μm or more, from the viewpoint of easily obtaining excellent thermal conductivity. The average particle diameter of the component (A2) is preferably 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, particularly preferably 8 μm or less, and particularly preferably 5 μm or less, from the viewpoint of easily obtaining excellent thermal conductivity. 4 μm or less is very preferable, and 3 μm or less is even more preferable. From these viewpoints, the average particle diameter of the component (A2) is preferably 1 to 20 μm, more preferably 2 to 5 μm. The average particle size of the component (A2) can be measured by a laser diffraction type particle size distribution measuring device (laser diffraction method).
 (A1)成分の含有量は、(A)成分の総量を基準として下記の範囲が好ましい。(A1)成分の含有量は、優れた熱伝導性を得やすい観点、及び、粘度を低減させやすい観点から、40質量%以上が好ましく、50質量%以上がより好ましく、50質量%を超えることが更に好ましく、60質量%以上が特に好ましく、70質量%以上が極めて好ましい。(A1)成分の含有量は、優れた接着強度を得やすい観点から、100質量%以下であり、100質量%未満が好ましく、95質量%以下がより好ましく、90質量%以下が更に好ましく、85質量%以下が特に好ましく、80質量%以下が極めて好ましく、75質量%以下が非常に好ましい。これらの観点から、(A1)成分の含有量は、40~100質量%が好ましく、50~95質量%がより好ましい。 The content of component (A1) is preferably in the following range based on the total amount of component (A). The content of the component (A1) is preferably 40% by mass or more, more preferably 50% by mass or more, and more than 50% by mass from the viewpoint of easily obtaining excellent thermal conductivity and easily reducing the viscosity. Is more preferable, 60% by mass or more is particularly preferable, and 70% by mass or more is extremely preferable. The content of the component (A1) is 100% by mass or less, preferably less than 100% by mass, more preferably 95% by mass or less, still more preferably 90% by mass or less, from the viewpoint of easily obtaining excellent adhesive strength. Particularly preferably, it is 80% by mass or less, very preferably 75% by mass or less. From these viewpoints, the content of the component (A1) is preferably 40 to 100% by mass, more preferably 50 to 95% by mass.
 (A2)成分の含有量は、(A)成分の総量を基準として下記の範囲が好ましい。(A2)成分の含有量は、優れた接着強度を得やすい観点から、0質量%を超えることが好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が特に好ましく、20質量%以上が極めて好ましく、25質量%以上が非常に好ましい。(A2)成分の含有量は、優れた熱伝導性を得やすい観点、及び、粘度を低減させやすい観点から、60質量%以下が好ましく、50質量%以下がより好ましく、50質量%未満が更に好ましく、40質量%以下が特に好ましく、30質量%以下が極めて好ましい。これらの観点から、(A2)成分の含有量は、0質量%を超え60質量%以下が好ましく、5~50質量%がより好ましい。 The content of the component (A2) is preferably in the following range based on the total amount of the component (A). The content of the component (A2) is preferably more than 0% by mass, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 15% by mass or more, from the viewpoint of easily obtaining excellent adhesive strength. It is preferably 20% by mass or more and very preferably 25% by mass or more. The content of the component (A2) is preferably 60% by mass or less, more preferably 50% by mass or less, and further less than 50% by mass from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. It is preferably 40% by mass or less, particularly preferably 30% by mass or less. From these viewpoints, the content of the component (A2) is preferably more than 0% by mass and 60% by mass or less, and more preferably 5 to 50% by mass.
 (A1)成分の含有量は、半導体用接着剤の総量(固形分の総量。以下同様)を基準として下記の範囲が好ましい。(A1)成分の含有量は、優れた熱伝導性を得やすい観点、及び、粘度を低減させやすい観点から、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が特に好ましく、55質量%以上が極めて好ましく、60質量%以上が非常に好ましい。(A1)成分の含有量は、優れた接着強度を得やすい観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、85質量%未満が特に好ましく、80質量%以下が極めて好ましく、75質量%以下が非常に好ましく、70質量%以下がより一層好ましく、65質量%以下が更に好ましい。これらの観点から、(A1)成分の含有量は、30~95質量%が好ましく、50~90質量%がより好ましく、55~85質量%が更に好ましく、60~80質量%が特に好ましい。 The content of the component (A1) is preferably in the following range based on the total amount of the adhesive for semiconductors (total amount of solids. The same applies below). The content of the component (A1) is preferably 30% by mass or more, more preferably 35% by mass or more, further preferably 40% by mass or more from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. 50% by mass or more is particularly preferable, 55% by mass or more is extremely preferable, and 60% by mass or more is very preferable. From the viewpoint of easily obtaining excellent adhesive strength, the content of the component (A1) is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, particularly preferably less than 85% by mass, 80 mass% or less is very preferable, 75 mass% or less is very preferable, 70 mass% or less is still more preferable, and 65 mass% or less is further preferable. From these viewpoints, the content of the component (A1) is preferably 30 to 95% by mass, more preferably 50 to 90% by mass, further preferably 55 to 85% by mass, and particularly preferably 60 to 80% by mass.
 (A2)成分の含有量は、半導体用接着剤の総量を基準として下記の範囲が好ましい。(A2)成分の含有量は、優れた接着強度を得やすい観点から、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が特に好ましく、20質量%以上が極めて好ましい。(A2)成分の含有量は、優れた熱伝導性を得やすい観点、及び、粘度を低減させやすい観点から、50質量%以下が好ましく、50質量%未満がより好ましく、45質量%以下が更に好ましく、40質量%以下が特に好ましく、35質量%以下が極めて好ましく、30質量%以下が非常に好ましい。これらの観点から、(A2)成分の含有量は、2~50質量%が好ましく、10~40質量%がより好ましく、20~35質量%が更に好ましい。 The content of the component (A2) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent adhesive strength, the content of the component (A2) is preferably 2% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 15% by mass or more, 20 mass% or more is extremely preferable. The content of the component (A2) is preferably 50% by mass or less, more preferably less than 50% by mass, and further preferably 45% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily reducing the viscosity. It is particularly preferably 40% by mass or less, very preferably 35% by mass or less, and very preferably 30% by mass or less. From these viewpoints, the content of the component (A2) is preferably 2 to 50% by mass, more preferably 10 to 40% by mass, and further preferably 20 to 35% by mass.
 (A2)成分の含有量に対する(A1)成分の含有量の質量比((A1)成分の含有量/(A2)成分の含有量)は、下記の範囲が好ましい。前記質量比は、粘度を低減させやすい観点から、0.1以上が好ましく、0.5以上がより好ましく、1.0以上が更に好ましく、1.5以上が特に好ましく、2.0以上が極めて好ましく、2.5以上が非常に好ましい。前記質量比は、優れた接着強度を得やすい観点から、5.0以下が好ましく、4.0以下がより好ましく、3.0以下が更に好ましく、2.0以下が特に好ましく、1.5以下が極めて好ましく、1.0以下が非常に好ましい。これらの観点から、前記質量比は、0.1~5.0が好ましい。 The mass ratio of the content of the (A1) component to the content of the (A2) component (content of the (A1) component/content of the (A2) component) is preferably in the following range. From the viewpoint of easily reducing the viscosity, the mass ratio is preferably 0.1 or more, more preferably 0.5 or more, further preferably 1.0 or more, particularly preferably 1.5 or more, and very preferably 2.0 or more. Preferably, 2.5 or more is very preferable. From the viewpoint of easily obtaining excellent adhesive strength, the mass ratio is preferably 5.0 or less, more preferably 4.0 or less, further preferably 3.0 or less, particularly preferably 2.0 or less, and 1.5 or less. Is extremely preferable, and 1.0 or less is very preferable. From these viewpoints, the mass ratio is preferably 0.1 to 5.0.
 (A)成分の含有量((A1)成分及び(A2)成分の総量)は、半導体用接着剤の総量を基準として下記の範囲が好ましい。(A)成分の含有量は、優れた熱伝導性を得やすい観点から、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましく、60質量%以上が特に好ましく、70質量%以上が極めて好ましく、80質量%以上が非常に好ましく、85質量%以上がより一層好ましい。(A)成分の含有量は、半導体用接着剤の粘度を低減させやすい観点から、100質量%未満が好ましく、98質量%以下がより好ましく、95質量%以下が更に好ましく、92質量%以下が特に好ましく、90質量%以下が極めて好ましい。これらの観点から、(A)成分の含有量は、30質量%以上100質量%未満が好ましく、80~92質量%がより好ましく、85~90質量%が更に好ましい。 The content of the component (A) (the total amount of the components (A1) and (A2)) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (A) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, particularly preferably 60% by mass or more. , 70 mass% or more is extremely preferable, 80 mass% or more is very preferable, and 85 mass% or more is even more preferable. From the viewpoint of easily reducing the viscosity of the adhesive for semiconductors, the content of the component (A) is preferably less than 100 mass%, more preferably 98 mass% or less, further preferably 95 mass% or less, and 92 mass% or less. Particularly preferable, and 90% by mass or less is extremely preferable. From these viewpoints, the content of the component (A) is preferably 30% by mass or more and less than 100% by mass, more preferably 80 to 92% by mass, and further preferably 85 to 90% by mass.
 平均粒径1μm以上4μ未満の銀粒子の含有量は、半導体用接着剤の総量を基準として、2質量%以下であってよく、2質量%未満であってよく、1質量%以下であってよく、1質量%未満であってよい。(A)成分は、平均粒径1μm以上4μ未満の銀粒子を含まなくてよい。 The content of silver particles having an average particle size of 1 μm or more and less than 4 μ may be 2% by mass or less, may be less than 2% by mass, or may be 1% by mass or less, based on the total amount of the adhesive for semiconductors. Well, it may be less than 1% by mass. The component (A) may not include silver particles having an average particle size of 1 μm or more and less than 4 μm.
((B)成分:(メタ)アクリロイル基を有する単量体)
 (B)成分としては、(メタ)アクリル酸、(メタ)アクリル酸エステル等を用いることができる。(B)成分は、イミド骨格及び/又はシロキサン骨格を含まなくてよい。(B)成分における(メタ)アクリロイル基の数は、優れた接着強度が得られやすい観点から、3以下が好ましく、2以下がより好ましく、1が更に好ましい。(B)成分における(メタ)アクリロイル基の数は、1以上であり、2以上であってよい。(B)成分の分子量は、2000以下であってよく、1500以下であってよく、1000以下であってよく、800以下であってよく、600以下であってよい。(B)成分が2つの(メタ)アクリロイル基を有する場合、(B)成分の分子量は、400以下であってよく、300以下であってよい。
(Component (B): monomer having a (meth)acryloyl group)
As the component (B), (meth)acrylic acid, (meth)acrylic acid ester or the like can be used. The component (B) may not include an imide skeleton and/or a siloxane skeleton. The number of (meth)acryloyl groups in the component (B) is preferably 3 or less, more preferably 2 or less, and even more preferably 1 from the viewpoint of easily obtaining excellent adhesive strength. The number of (meth)acryloyl groups in the component (B) is 1 or more, and may be 2 or more. The molecular weight of the component (B) may be 2000 or less, 1500 or less, 1000 or less, 800 or less, or 600 or less. When the component (B) has two (meth)acryloyl groups, the molecular weight of the component (B) may be 400 or less and 300 or less.
 (B)成分は、優れた接着強度が得られやすい観点から、下記一般式(b1)で表される化合物を含むことが好ましい。 The component (B) preferably contains a compound represented by the following general formula (b1) from the viewpoint of easily obtaining excellent adhesive strength.
Figure JPOXMLDOC01-appb-C000002
[式中、R11は、水素原子又はメチル基を示し、R12は、下記式で表される基を示し、Xは、炭素数1~5のアルキレン基を示し、n1は、0~10の整数を示す。]
Figure JPOXMLDOC01-appb-C000002
[In the formula, R 11 represents a hydrogen atom or a methyl group, R 12 represents a group represented by the following formula, X represents an alkylene group having 1 to 5 carbon atoms, and n 1 represents 0 to 10 Indicates an integer. ]
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(b1)で表される化合物としては、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。ジシクロペンテニルアクリレートはFA-511Aとして、ジシクロペンテニルオキシエチルアクリレートはFA-512Aとして、ジシクロペンタニルアクリレートはFA-513Aとして、ジシクロペンテニルオキシエチルメタクリレートはFA-512Mとして、ジシクロペンタニルメタクリレートはFA-513Mとして、それぞれ商業的に日立化成株式会社より入手できる。 Examples of the compound represented by the formula (b1) include dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, dicyclopentenyl (meth)acrylate and dicyclopentanyl (meth)acrylate. Is mentioned. Dicyclopentenyl acrylate as FA-511A, dicyclopentenyloxyethyl acrylate as FA-512A, dicyclopentanyl acrylate as FA-513A, dicyclopentenyloxyethyl methacrylate as FA-512M, dicyclopentanyl methacrylate Are commercially available as FA-513M from Hitachi Chemical Co., Ltd.
 式(b1)で表される化合物の含有量は、(B)成分の総量を基準として下記の範囲が好ましい。式(b1)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましく、30質量%以上が特に好ましく、35質量%以上が極めて好ましい。式(b1)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましく、80質量%以下が特に好ましく、75質量%以下が極めて好ましい。これらの観点から、式(b1)で表される化合物の含有量は、10~95質量%が好ましく、20~90質量%がより好ましい。 The content of the compound represented by the formula (b1) is preferably within the following range based on the total amount of the component (B). The content of the compound represented by the formula (b1) is preferably 10% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, and 30% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is particularly preferable, and 35% by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the compound represented by the formula (b1) is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 85% by mass or less, and 80% by mass. % Or less is particularly preferable, and 75% by mass or less is extremely preferable. From these viewpoints, the content of the compound represented by the formula (b1) is preferably 10 to 95% by mass, more preferably 20 to 90% by mass.
 式(b1)で表される化合物の含有量は、半導体用接着剤の総量を基準として下記の範囲が好ましい。式(b1)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、0.5質量%以上が好ましく、1質量%以上がより好ましく、1.2質量%以上が更に好ましく、1.5質量%以上が特に好ましく、1.8質量%以上が極めて好ましい。式(b1)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、10質量%以下が好ましく、8質量%以下がより好ましく、6質量%以下が更に好ましく、5質量%以下が特に好ましく、4質量%以下が極めて好ましい。これらの観点から、式(b1)で表される化合物の含有量は、0.5~10質量%が好ましく、1~8質量%がより好ましい。 The content of the compound represented by the formula (b1) is preferably within the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the compound represented by the formula (b1) is preferably 0.5% by mass or more, more preferably 1% by mass or more, further 1.2% by mass or more. It is particularly preferably 1.5% by mass or more, and particularly preferably 1.8% by mass or more. The content of the compound represented by the formula (b1) is preferably 10% by mass or less, more preferably 8% by mass or less, further preferably 6% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. % Or less is particularly preferable, and 4% by mass or less is extremely preferable. From these viewpoints, the content of the compound represented by the formula (b1) is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass.
 (B)成分は、優れた塗布作業性及び接着強度が得られやすい観点から、(メタ)アクリル酸エステルとして、下記一般式(b21)で表される化合物、下記一般式(b22)で表される化合物、及び、下記一般式(b23)で表される化合物からなる群より選ばれる少なくとも一種を含むことが好ましい。 The component (B) is represented by the following general formula (b22) as a compound represented by the following general formula (b21) as a (meth)acrylic acid ester from the viewpoint of easily obtaining excellent coating workability and adhesive strength. And a compound represented by the following general formula (b23).
Figure JPOXMLDOC01-appb-C000004
[式中、R21、R22及びR23は、それぞれ独立に水素原子又はメチル基を示し、n22及びn23は、それぞれ独立に1~3の整数を示す。]
Figure JPOXMLDOC01-appb-C000004
[In the formula, R 21 , R 22 and R 23 each independently represent a hydrogen atom or a methyl group, and n 22 and n 23 each independently represent an integer of 1 to 3. ]
 式(b21)~(b23)で表される化合物(式(b21)で表される化合物、式(b22)で表される化合物、又は、式(b23)で表される化合物。以下同様)としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。ベンジルアクリレートはFA-BZA(日立化成株式会社製)として、フェノキシエチルアクリレートはSR-339A(サートマー社製)として、フェノキシエチルメタクリレートはCD9087(サートマー社製)として、それぞれ商業的に入手できる。 As a compound represented by the formula (b21) to (b23) (a compound represented by the formula (b21), a compound represented by the formula (b22), or a compound represented by the formula (b23). The same applies hereinafter) Examples include benzyl (meth)acrylate and phenoxyethyl (meth)acrylate. Benzyl acrylate is commercially available as FA-BZA (manufactured by Hitachi Chemical Co., Ltd.), phenoxyethyl acrylate is SR-339A (manufactured by Sartomer), and phenoxyethyl methacrylate is commercially available as CD9087 (manufactured by Sartomer).
 式(b21)~(b23)で表される化合物の含有量は、(B)成分の総量を基準として下記の範囲が好ましい。式(b21)~(b23)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましく、30質量%以上が特に好ましく、35質量%以上が極めて好ましい。式(b21)~(b23)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましく、40質量%以下が極めて好ましい。これらの観点から、式(b21)~(b23)で表される化合物の含有量は、10~80質量%が好ましく、20~70質量%がより好ましい。 The content of the compounds represented by the formulas (b21) to (b23) is preferably within the following range based on the total amount of the component (B). The content of the compounds represented by the formulas (b21) to (b23) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 30% by mass or more, particularly preferably 35% by mass or more. The content of the compounds represented by the formulas (b21) to (b23) is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 50% by mass or less, particularly preferably 40% by mass or less. From these viewpoints, the content of the compounds represented by the formulas (b21) to (b23) is preferably 10 to 80% by mass, and more preferably 20 to 70% by mass.
 式(b21)~(b23)で表される化合物の含有量は、半導体用接着剤の総量を基準として下記の範囲が好ましい。式(b21)~(b23)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、0.5質量%以上が好ましく、1質量%以上がより好ましく、1.2質量%以上が更に好ましく、1.5質量%以上が特に好ましく、1.8質量%以上が極めて好ましい。式(b21)~(b23)で表される化合物の含有量は、優れた熱伝導性を得やすい観点から、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2.5質量%以下が特に好ましく、2質量%以下が極めて好ましい。これらの観点から、式(b21)~(b23)で表される化合物の含有量は、0.5~5質量%が好ましく、1~4質量%がより好ましい。 The content of the compounds represented by the formulas (b21) to (b23) is preferably within the following range based on the total amount of the adhesive for semiconductors. The content of the compounds represented by the formulas (b21) to (b23) is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 1.2% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is more preferable, 1.5% by mass or more is particularly preferable, and 1.8% by mass or more is extremely preferable. The content of the compounds represented by the formulas (b21) to (b23) is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. It is particularly preferably 2.5% by mass or less, particularly preferably 2% by mass or less. From these viewpoints, the content of the compounds represented by the formulas (b21) to (b23) is preferably 0.5 to 5% by mass, more preferably 1 to 4% by mass.
 (B)成分は、式(b1)で表される化合物、式(b21)で表される化合物、式(b22)で表される化合物、及び、式(b23)で表される化合物とは異なる単官能の(メタ)アクリル酸エステルを含んでよい。このような単官能の(メタ)アクリル酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ダイマージオールモノ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-ベンゾイルオキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリロキシエチルホスフェート、(メタ)アクリロキシエチルフェニルアシッドホスフェート、β-(メタ)アクリロイルオキシエチルハイドロジェンフタレート、β-(メタ)アクリロイルオキシエチルハイドロジェンサクシネート等が挙げられる。 The component (B) is different from the compound represented by the formula (b1), the compound represented by the formula (b21), the compound represented by the formula (b22), and the compound represented by the formula (b23). It may include a monofunctional (meth)acrylic acid ester. Examples of such monofunctional (meth)acrylic acid esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate. ) Acrylate, t-butyl(meth)acrylate, amyl(meth)acrylate, isoamyl(meth)acrylate, hexyl(meth)acrylate, heptyl(meth)acrylate, octyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, nonyl (Meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, hexadecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl ( (Meth)acrylate, isobornyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, dimer diol mono (meth)acrylate, diethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene Glycol (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, phenoxydiethylene glycol (Meth)acrylate, phenoxy polyethylene glycol (meth)acrylate, 2-benzoyloxyethyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-cyanoethyl (meth)acrylate, γ-(meth)acry Roxypropyltrimethoxysilane, glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, tetrahydropyranyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, (meth)acryloxyethyl phosphate , (Meth)acryloxyethyl phenyl acid phosphate, β-(meth)acryloyloxyethyl hydrogen phthalate, β-(meth)acryloyloxyethyl hydrogen succinate, and the like. Be done.
 (B)成分は、下記一般式(b3)で表される化合物を含んでいてよく、含んでいなくてもよい。式(b3)で表される化合物の含有量は、(B)成分の総量を基準として、1質量%以下であってよく、0.1質量%以下であってよく、0.01質量%以下であってよい。式(b3)で表される化合物の含有量は、半導体用接着剤の総量を基準として、1質量%以下であってよく、0.1質量%以下であってよく、0.01質量%以下であってよい。 The component (B) may or may not contain the compound represented by the following general formula (b3). The content of the compound represented by the formula (b3) may be 1% by mass or less, 0.1% by mass or less, and 0.01% by mass or less based on the total amount of the component (B). May be The content of the compound represented by the formula (b3) may be 1% by mass or less, 0.1% by mass or less, and 0.01% by mass or less based on the total amount of the adhesive for semiconductors. May be
Figure JPOXMLDOC01-appb-C000005
[式中、R31は、水素原子又はメチル基を示し、Yは、炭素数1~5のアルキレン基を示し、R32~R36は、炭素数1~20のアルキル基を示し、n3は、0~10の整数を示す。]
Figure JPOXMLDOC01-appb-C000005
[Wherein R 31 represents a hydrogen atom or a methyl group, Y represents an alkylene group having 1 to 5 carbon atoms, R 32 to R 36 represent an alkyl group having 1 to 20 carbon atoms, and n3 represents , An integer of 0 to 10 is shown. ]
 (B)成分は、多官能の(メタ)アクリル酸エステルを含んでよい。(B)成分は、多官能の(メタ)アクリル酸エステルとして、1分子中に2個の(メタ)アクリロイルオキシ基を有する化合物を含むことが好ましい。この場合、熱硬化時において耐リフロー性の低下の原因となる接着剤中の気泡の発生を低減しやすい。 The component (B) may include a polyfunctional (meth)acrylic acid ester. The component (B) preferably contains, as a polyfunctional (meth)acrylic acid ester, a compound having two (meth)acryloyloxy groups in one molecule. In this case, it is easy to reduce the generation of bubbles in the adhesive, which causes a reduction in reflow resistance during thermosetting.
 1分子中に2個の(メタ)アクリロイルオキシ基を有する化合物としては、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ダイマージオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジル(メタ)アクリレート2モルとの反応物;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジ(メタ)アクリレート;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジ(メタ)アクリレート;ビス(アクリロキシプロピル)ポリジメチルシロキサン、ビス(アクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマー、ビス(メタクリロキシプロピル)ポリジメチルシロキサン、ビス(メタクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマー等のシロキサン化合物などが挙げられる。 Examples of compounds having two (meth)acryloyloxy groups in one molecule include ethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. , 1,9-nonanediol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dimer diol di(meth)acrylate, dimethylol tricyclodecane di(meth) ) Acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth ) A di(meth)acrylate compound such as an acrylate; a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl (meth)acrylate; a di(meth)polyethylene oxide adduct of bisphenol A, bisphenol F or bisphenol AD. ) Acrylate; di(meth)acrylate of polypropylene oxide adduct of bisphenol A, bisphenol F or bisphenol AD; bis(acryloxypropyl)polydimethylsiloxane, bis(acryloxypropyl)methylsiloxane-dimethylsiloxane copolymer, bis(methacryloxy) Examples thereof include a siloxane compound such as propyl)polydimethylsiloxane and bis(methacryloxypropyl)methylsiloxane-dimethylsiloxane copolymer.
 (B)成分は、優れた接着強度が得られやすい観点から、1分子中に2個の(メタ)アクリロイルオキシ基を有する化合物として、下記一般式(b4)で表される化合物を含むことが好ましい。 The component (B) may contain a compound represented by the following general formula (b4) as a compound having two (meth)acryloyloxy groups in one molecule from the viewpoint of easily obtaining excellent adhesive strength. preferable.
Figure JPOXMLDOC01-appb-C000006
[式中、R41、R42、R43及びR44は、それぞれ独立に水素原子又はメチル基を示し、Z41及びZ42は、それぞれ独立に炭素数1~5のアルキレン基を示し、n41及びn42は、それぞれ独立に1~20の整数を示す。]
Figure JPOXMLDOC01-appb-C000006
[In the formula, R 41 , R 42 , R 43 and R 44 each independently represent a hydrogen atom or a methyl group, Z 41 and Z 42 each independently represent an alkylene group having 1 to 5 carbon atoms, and n 41 And n42 each independently represent an integer of 1 to 20. ]
 (B)成分は、多官能の(メタ)アクリル酸エステルとして、1分子中に3個以上の(メタ)アクリロイルオキシ基を有する化合物を用いることができる。1分子中に3個以上の(メタ)アクリロイルオキシ基を有する化合物としては、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド・プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 As the component (B), a compound having three or more (meth)acryloyloxy groups in one molecule can be used as a polyfunctional (meth)acrylic acid ester. Examples of the compound having three or more (meth)acryloyloxy groups in one molecule include trimethylolpropane tri(meth)acrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, and propylene oxide-modified trimethylolpropane tri(meth). Acrylate, ethylene oxide/propylene oxide modified trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth) Examples thereof include acrylate and pentaerythritol tri(meth)acrylate.
 多官能の(メタ)アクリル酸エステルの含有量は、(B)成分の総量を基準として下記の範囲が好ましい。多官能の(メタ)アクリル酸エステルの含有量は、優れた熱伝導性を得やすい観点から、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が更に好ましく、20質量%以上が特に好ましく、25質量%以上が極めて好ましい。多官能の(メタ)アクリル酸エステルの含有量は、優れた熱伝導性を得やすい観点から、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましく、35質量%以下が特に好ましく、30質量%以下が極めて好ましい。これらの観点から、多官能の(メタ)アクリル酸エステルの含有量は、5~50質量%が好ましく、10~45質量%がより好ましい。 The content of the polyfunctional (meth)acrylic acid ester is preferably in the following range based on the total amount of the component (B). The content of the polyfunctional (meth)acrylic acid ester is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and 20% by mass from the viewpoint of easily obtaining excellent thermal conductivity. % Or more is particularly preferable, and 25% by mass or more is extremely preferable. The content of the polyfunctional (meth)acrylic acid ester is preferably 50% by mass or less, more preferably 45% by mass or less, further preferably 40% by mass or less, and 35% by mass, from the viewpoint of easily obtaining excellent thermal conductivity. % Or less is particularly preferable, and 30% by mass or less is extremely preferable. From these viewpoints, the content of the polyfunctional (meth)acrylic acid ester is preferably 5 to 50% by mass, more preferably 10 to 45% by mass.
 多官能の(メタ)アクリル酸エステルの含有量は、半導体用接着剤の総量を基準として下記の範囲が好ましい。多官能の(メタ)アクリル酸エステルの含有量は、優れた熱伝導性を得やすい観点から、0.5質量%以上が好ましく、0.8質量%以上がより好ましく、1質量%以上が更に好ましく、1.2質量%以上が特に好ましく、1.4質量%以上が極めて好ましい。多官能の(メタ)アクリル酸エステルの含有量は、優れた熱伝導性を得やすい観点から、3質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましく、1.8質量%以下が特に好ましく、1.5質量%以下が極めて好ましい。これらの観点から、多官能の(メタ)アクリル酸エステルの含有量は、0.5~3質量%が好ましく、0.8~2.5質量%がより好ましい。 The content of polyfunctional (meth)acrylic acid ester is preferably in the following range based on the total amount of the adhesive for semiconductors. The content of the polyfunctional (meth)acrylic acid ester is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, still more preferably 1% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity. It is preferably 1.2% by mass or more, particularly preferably 1.4% by mass or more. The content of the polyfunctional (meth)acrylic acid ester is preferably 3% by mass or less, more preferably 2.5% by mass or less, still more preferably 2% by mass or less, from the viewpoint of easily obtaining excellent thermal conductivity. 1.8% by mass or less is particularly preferable, and 1.5% by mass or less is extremely preferable. From these viewpoints, the content of the polyfunctional (meth)acrylic acid ester is preferably 0.5 to 3% by mass, more preferably 0.8 to 2.5% by mass.
 (B)成分の含有量は、半導体用接着剤の総量を基準として下記の範囲が好ましい。(B)成分の含有量は、優れた熱伝導性を得やすい観点から、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましく、4質量%以上が特に好ましく、5質量%以上が極めて好ましい。(B)成分の含有量は、優れた熱伝導性を得やすい観点から、10質量%以下が好ましく、10質量%未満がより好ましく、9質量%以下が更に好ましく、8質量%以下が特に好ましく、7質量%以下が極めて好ましく、6質量%以下が非常に好ましい。これらの観点から、(B)成分の含有量は、1~10質量%が好ましく、2~9質量%がより好ましい。 The content of the component (B) is preferably in the following range based on the total amount of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and particularly preferably 4% by mass or more. 5% by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 10% by mass or less, more preferably less than 10% by mass, further preferably 9% by mass or less, particularly preferably 8% by mass or less. , 7 mass% or less is very preferable, and 6 mass% or less is very preferable. From these viewpoints, the content of the component (B) is preferably 1 to 10% by mass, more preferably 2 to 9% by mass.
 (B)成分の含有量は、(A)成分100質量部に対して下記の範囲が好ましい。(B)成分の含有量は、優れた熱伝導性を得やすい観点から、1質量部以上が好ましく、3質量部以上がより好ましく、4質量部以上が更に好ましく、5質量部以上が特に好ましく、6質量部以上が極めて好ましい。(B)成分の含有量は、優れた熱伝導性を得やすい観点から、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましく、8質量部以下が特に好ましく、7質量部以下が極めて好ましい。これらの観点から、(B)成分の含有量は、1~20質量部が好ましく、3~15質量部がより好ましい。 The content of the component (B) is preferably in the following range with respect to 100 parts by mass of the component (A). From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 1 part by mass or more, more preferably 3 parts by mass or more, further preferably 4 parts by mass or more, particularly preferably 5 parts by mass or more. , 6 parts by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (B) is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 8 parts by mass or less. , 7 parts by mass or less is extremely preferable. From these viewpoints, the content of the component (B) is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass.
((C)成分:ラジカル重合開始剤)
 本実施形態に係る半導体用接着剤は、ラジカル重合開始剤(以下、場合により「(C)成分」という)を含有してよい。(C)成分は、ボイド等の発生を抑制しやすい観点から、過酸化物を含むことが好ましい。急速加熱試験における過酸化物の分解温度は、半導体用接着剤の優れた硬化性及び粘度安定性が得られやすい観点から、70~170℃が好ましい。
(Component (C): radical polymerization initiator)
The adhesive for semiconductors according to this embodiment may contain a radical polymerization initiator (hereinafter, sometimes referred to as “component (C)”). The component (C) preferably contains a peroxide from the viewpoint of easily suppressing the generation of voids and the like. The decomposition temperature of the peroxide in the rapid heating test is preferably 70 to 170° C. from the viewpoint of easily obtaining excellent curability and viscosity stability of the adhesive for semiconductors.
 (C)成分としては、1,1,3,3-テトラメチルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、クメンハイドロパーオキサイド等が挙げられる。 Examples of the component (C) include 1,1,3,3-tetramethylperoxy 2-ethylhexanoate, 1,1-bis(t-butylperoxy)cyclohexane and 1,1-bis(t-butylperoxy). (Oxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperbenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy) ) Hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, cumene hydroperoxide and the like.
 (C)成分の含有量は、(B)成分100質量部に対して下記の範囲が好ましい。(C)成分の含有量は、優れた熱伝導性を得やすい観点から、3質量部以上が好ましく、4質量部以上がより好ましく、5質量部以上が更に好ましく、8質量部以上が特に好ましく、10質量部以上が極めて好ましい。(C)成分の含有量は、優れた熱伝導性を得やすい観点から、30質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下が更に好ましい。これらの観点から、(C)成分の含有量は、3~30質量部が好ましく、4~20質量部がより好ましく、5~15質量部が更に好ましい。 The content of the component (C) is preferably in the following range with respect to 100 parts by mass of the component (B). From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (C) is preferably 3 parts by mass or more, more preferably 4 parts by mass or more, further preferably 5 parts by mass or more, particularly preferably 8 parts by mass or more. 10 parts by mass or more is extremely preferable. From the viewpoint of easily obtaining excellent thermal conductivity, the content of the component (C) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 15 parts by mass or less. From these viewpoints, the content of the component (C) is preferably 3 to 30 parts by mass, more preferably 4 to 20 parts by mass, still more preferably 5 to 15 parts by mass.
((D)成分:可とう化剤)
 本実施形態に係る半導体用接着剤は、可とう化剤(以下、場合により「(D)成分」という。(A)~(C)成分に該当する化合物を除く)を含有してよい。(D)成分は、液状ゴム及び熱可塑性樹脂(液状ゴムに該当する化合物を除く)からなる群より選ばれる少なくとも一種を含むことが好ましい。
(Component (D): softening agent)
The semiconductor adhesive according to the present embodiment may contain a softening agent (hereinafter sometimes referred to as “component (D)”, excluding compounds corresponding to components (A) to (C)). The component (D) preferably contains at least one selected from the group consisting of liquid rubber and thermoplastic resins (excluding compounds corresponding to liquid rubber).
 液状ゴムとしては、ポリブタジエン、エポキシ化ポリブタジエン、マレイン化ポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシ基を有するアクリロニトリルブタジエンゴム(例えば、カルボキシ基を有するアクリロニトリルポリブタジエン共重合体)、アミノ末端アクリロニトリルブタジエンゴム、ビニル末端アクリロニトリルブタジエンゴム、スチレンブタジエンゴム等の、ポリブタジエン骨格を有する樹脂などが挙げられる。 Examples of the liquid rubber include polybutadiene, epoxidized polybutadiene, maleated polybutadiene, acrylonitrile butadiene rubber, acrylonitrile butadiene rubber having a carboxy group (for example, acrylonitrile polybutadiene copolymer having a carboxy group), amino-terminated acrylonitrile-butadiene rubber, vinyl-terminated acrylonitrile-butadiene rubber. Examples thereof include resins having a polybutadiene skeleton such as rubber and styrene-butadiene rubber.
 液状ゴムは、半導体用接着剤の弾性率を低減させやすい観点から、エポキシ化ポリブタジエン、及び、カルボキシ基を有するアクリロニトリルブタジエンゴムからなる群より選ばれる少なくとも一種を含むことが好ましい。優れた塗布作業性及び接着強度を得やすい観点から、エポキシ化ポリブタジエン、及び、カルボキシ基を有するアクリロニトリルブタジエンゴムを併用することが好ましい。 The liquid rubber preferably contains at least one selected from the group consisting of epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxy group, from the viewpoint of easily reducing the elastic modulus of the adhesive for semiconductors. From the viewpoint of easily obtaining excellent coating workability and adhesive strength, it is preferable to use epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxy group together.
 エポキシ化ポリブタジエンは、市販されているポリブタジエンを過酸化水素水又は過酸類によりエポキシ化することによって容易に得ることができる。エポキシ化ポリブタジエンは、例えば、B-1000、B-3000、G-1000、G-3000(以上、日本曹達株式会社製)、B-1000、B-2000、B-3000、B-4000(以上、日本石油株式会社製)、R-15HT、R-45HT、R-45M(以上、出光石油株式会社製)、エポリードPB-3600、エポリードPB-4700(以上、ダイセル化学工業株式会社製)等が市販品として入手できる。エポキシ化ポリブタジエンのオキシラン酸素濃度は、3~18%が好ましく、6~12%がより好ましい。 Epoxidized polybutadiene can be easily obtained by epoxidizing commercially available polybutadiene with hydrogen peroxide solution or peracids. The epoxidized polybutadiene is, for example, B-1000, B-3000, G-1000, G-3000 (or more, manufactured by Nippon Soda Co., Ltd.), B-1000, B-2000, B-3000, B-4000 (or more, Nippon Oil Co., Ltd.), R-15HT, R-45HT, R-45M (above, Idemitsu Petroleum Co., Ltd.), Epolide PB-3600, Epolide PB-4700 (above, Daicel Chemical Industries Ltd.), etc. are commercially available. Available as a product. The oxirane oxygen concentration of the epoxidized polybutadiene is preferably 3 to 18%, more preferably 6 to 12%.
 カルボキシ基を有するアクリロニトリルブタジエンゴムを用いることにより、優れた接着強度が得られやすい。カルボキシ基を有するアクリロニトリルブタジエンゴムは、優れた接着強度が得られやすい観点から、下記一般式(d1)で表される化合物を含むことが好ましい。 By using an acrylonitrile butadiene rubber having a carboxy group, it is easy to obtain excellent adhesive strength. The acrylonitrile butadiene rubber having a carboxy group preferably contains a compound represented by the following general formula (d1) from the viewpoint of easily obtaining excellent adhesive strength.
Figure JPOXMLDOC01-appb-C000007
[式中、x及びyは、それぞれ独立に、繰り返し数の平均値を示す0以上の数であり、x/yは95/5~50/50であり、mは5~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000007
[Wherein, x and y are each independently a number of 0 or more indicating the average value of the number of repetitions, x/y is 95/5 to 50/50, and m is an integer of 5 to 50. .. ]
 カルボキシ基を有するアクリロニトリルポリブタジエンとしては、Hycar CTBN-2009×162,CTBN-1300×31,CTBN-1300×8、CTBN-1300×13、CTBN-1009SP-S、CTBNX-1300×9(いずれも宇部興産株式会社製)等が市販品として入手できる。 As acrylonitrile polybutadiene having a carboxy group, Hycar CTBN-2009×162, CTBN-1300×31, CTBN-1300×8, CTBN-1300×13, CTBN-1009SP-S, CTBNX-1300×9 (all are Ube Industries Etc.) are available as commercial products.
 液状ゴムの数平均分子量は、充分な可とう化効果が得られやすい観点から、500以上が好ましく、1000以上がより好ましい。液状ゴムの数平均分子量は、半導体用接着剤の粘度の過剰な上昇が抑制されて優れた塗布作業性が得られやすい観点から、10000以下が好ましく、5000以下がより好ましい。これらの観点から、液状ゴムの数平均分子量は、500~10000が好ましく、1000~5000がより好ましい。液状ゴムの数平均分子量は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレンを用いた検量線から換算して得ることができる。
[GPC条件]
 ポンプ:日立 L-6000型(株式会社日立製作所製)
 検出器:日立 L-3300 RI(株式会社日立製作所製)
 カラム:Gelpack GL-R420+Gelpack GL-R430+Gelpack GL-R430(計3本)(日立化成株式会社製、商品名)
 溶離液:THF
 試料濃度:250mg/5mL
 注入量:50μL
 圧力:441Pa(45kgf/cm
 流量:1.75mL/分
The number average molecular weight of the liquid rubber is preferably 500 or more, more preferably 1000 or more, from the viewpoint of easily obtaining a sufficient flexibility effect. The number average molecular weight of the liquid rubber is preferably 10,000 or less, more preferably 5,000 or less, from the viewpoint of suppressing an excessive increase in the viscosity of the adhesive for semiconductors and easily obtaining excellent coating workability. From these viewpoints, the number average molecular weight of the liquid rubber is preferably 500 to 10000, more preferably 1000 to 5000. The number average molecular weight of the liquid rubber can be measured by gel permeation chromatography (GPC) under the following conditions and converted from a calibration curve using standard polystyrene.
[GPC conditions]
Pump: Hitachi L-6000 (manufactured by Hitachi, Ltd.)
Detector: Hitachi L-3300 RI (manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R420 + Gelpack GL-R430 + Gelpack GL-R430 (3 in total) (Hitachi Chemical Co., Ltd., trade name)
Eluent: THF
Sample concentration: 250mg/5mL
Injection volume: 50 μL
Pressure: 441 Pa (45 kgf/cm 2 )
Flow rate: 1.75 mL/min
 液状ゴムの含有量は、(D)成分の総量を基準として下記の範囲が好ましい。液状ゴムの含有量は、優れた熱伝導性を得やすい観点、及び、優れた接着強度を得やすい観点から、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上が更に好ましく、14質量%以上が特に好ましい。液状ゴムの含有量は、優れた熱伝導性を得やすい観点、及び、優れた接着強度を得やすい観点から、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下が更に好ましく、30質量%以下が特に好ましい。これらの観点から、液状ゴムの含有量は、5~50質量%が好ましく、8~40質量%がより好ましい。 The liquid rubber content is preferably in the following range based on the total amount of component (D). The content of the liquid rubber is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more, from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. It is preferably 14% by mass or more and particularly preferably. The content of the liquid rubber is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. It is preferably 30% by mass or less, and particularly preferably 30% by mass or less. From these viewpoints, the content of the liquid rubber is preferably 5 to 50% by mass, more preferably 8 to 40% by mass.
 熱可塑性樹脂としては、ポリ酢酸ビニル、ポリアクリル酸メチル、ε-カプロラクトン変性ポリエステル、フェノキシ樹脂、ポリイミド、下記一般式(d2)で表される共重合体等が挙げられる。 Examples of the thermoplastic resin include polyvinyl acetate, polymethyl acrylate, ε-caprolactone modified polyester, phenoxy resin, polyimide, and the copolymer represented by the following general formula (d2).
Figure JPOXMLDOC01-appb-C000008
[式中、R51及びR52、それぞれ独立に水素原子又はメチル基であり、r、s、t及びuは、それぞれ独立に、繰り返し数の平均値を示す0以上の数であり、r+tは0.1以上(好ましくは0.3~5)であり、s+uは1以上(好ましくは1~100)である。]
Figure JPOXMLDOC01-appb-C000008
[In the formula, R 51 and R 52 are each independently a hydrogen atom or a methyl group, r, s, t, and u are each independently a number of 0 or more indicating the average value of the number of repetitions, and r+t is It is 0.1 or more (preferably 0.3 to 5), and s+u is 1 or more (preferably 1 to 100). ]
 熱可塑性樹脂の数平均分子量は、充分な可とう化効果が得られやすい観点から、10000以上が好ましく、20000以上がより好ましい。熱可塑性樹脂の数平均分子量は、半導体用接着剤の粘度の過剰な上昇が抑制されて優れた塗布作業性が得られやすい観点から、300000以下が好ましく、200000以下がより好ましい。これらの観点から、熱可塑性樹脂の数平均分子量は、10000~300000が好ましく、20000~200000がより好ましい。熱可塑性樹脂の数平均分子量は、液状ゴムの数平均分子量と同様の方法により測定できる。 The number average molecular weight of the thermoplastic resin is preferably 10,000 or more, and more preferably 20,000 or more from the viewpoint that a sufficient flexibility effect is easily obtained. The number average molecular weight of the thermoplastic resin is preferably 300,000 or less, and more preferably 200,000 or less from the viewpoint that an excessive increase in the viscosity of the adhesive for semiconductors is suppressed and excellent coating workability is easily obtained. From these viewpoints, the number average molecular weight of the thermoplastic resin is preferably 10,000 to 300,000, and more preferably 20,000 to 200,000. The number average molecular weight of the thermoplastic resin can be measured by the same method as the number average molecular weight of liquid rubber.
 熱可塑性樹脂の含有量は、(D)成分の総量を基準として下記の範囲が好ましい。熱可塑性樹脂の含有量は、優れた熱伝導性を得やすい観点、及び、優れた接着強度を得やすい観点から、50質量%以上が好ましく、60質量%以上がより好ましく、65質量%以上が更に好ましく、70質量%以上が特に好ましい。熱可塑性樹脂の含有量は、優れた熱伝導性を得やすい観点、及び、優れた接着強度を得やすい観点から、95質量%以下が好ましく、92質量%以下がより好ましく、90質量%以下が更に好ましく、86質量%以下が特に好ましい。これらの観点から、熱可塑性樹脂の含有量は、50~95質量%が好ましく、60~92質量%がより好ましい。 The thermoplastic resin content is preferably in the following range based on the total amount of component (D). The content of the thermoplastic resin is preferably 50% by mass or more, more preferably 60% by mass or more, and 65% by mass or more from the viewpoint of easily obtaining excellent thermal conductivity and the viewpoint of easily obtaining excellent adhesive strength. More preferably, 70% by mass or more is particularly preferable. The content of the thermoplastic resin is preferably 95% by mass or less, more preferably 92% by mass or less, and 90% by mass or less from the viewpoint of easily obtaining excellent thermal conductivity and easily obtaining excellent adhesive strength. More preferably, 86% by mass or less is particularly preferable. From these viewpoints, the content of the thermoplastic resin is preferably 50 to 95% by mass, more preferably 60 to 92% by mass.
 (D)成分の含有量は、(B)成分100質量部に対して下記の範囲が好ましい。(D)成分の含有量は、充分な可とう化効果が得られやすい観点から、30質量部以上が好ましく、40質量部以上がより好ましく、50質量部以上が更に好ましく、60質量部以上が特に好ましい。(D)成分の含有量は、半導体用接着剤の粘度の過剰な上昇が抑制されて優れた塗布作業性が得られやすい観点から、100質量部以下が好ましく、80質量部以下がより好ましく、70質量部以下が更に好ましい。これらの観点から、(D)成分の含有量は、30~100質量部が好ましく、40~80質量部がより好ましく、50~70質量部が更に好ましい。 The content of the component (D) is preferably in the following range with respect to 100 parts by mass of the component (B). The content of the component (D) is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, further preferably 50 parts by mass or more, and 60 parts by mass or more from the viewpoint that a sufficient softening effect is easily obtained. Particularly preferred. The content of the component (D) is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, from the viewpoint that an excessive increase in viscosity of the semiconductor adhesive is suppressed and excellent coating workability is easily obtained. It is more preferably 70 parts by mass or less. From these viewpoints, the content of the component (D) is preferably 30 to 100 parts by mass, more preferably 40 to 80 parts by mass, and further preferably 50 to 70 parts by mass.
((E)成分:カップリング剤)
 本実施形態に係る半導体用接着剤は、カップリング剤(以下、場合により「(E)成分」という)を含有してよい。(E)成分としては、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコネート系カップリング剤、ジルコアルミネート系カップリング剤等が挙げられる。
(Component (E): coupling agent)
The adhesive for semiconductors according to the present embodiment may contain a coupling agent (hereinafter, sometimes referred to as “(E) component”). Examples of the component (E) include a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate coupling agent, and a zircoaluminate coupling agent.
 シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、3-(4,5-ジヒドロイミダゾリル)プロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、エトキシシラントリイソシアネート等が挙げられる。チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピル(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピオネート等が挙げられる。ジルコネート系カップリング剤としては、テトラプロピルジルコネート、テトラブチルジルコネート、テトラ(トリエタノールアミン)ジルコネート、テトライソプロピルジルコネート、ジルコニウムアセチルアセトネート、アセチルアセトンジルコニウムブチレート、ステアリン酸ジルコニウムブチレート等が挙げられる。 Examples of silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyl-tris(2-methoxyethoxy). ) Silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, methyltri(methacryloxyethoxy)silane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyl Triethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, N-β-(N-vinylbenzylaminoethyl) -Γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, 3-(4,5-dihydroimidazolyl)propyltriethoxysilane, β -(3,4-Epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, methyltrigly Sidoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, trimethylsilylisocyanate, dimethylsilylisocyanate, phenylsilyltriisocyanate, tetraisocyanatesilane, methylsilyltriisocyanate, vinyl Examples thereof include silyl triisocyanate and ethoxysilane triisocyanate. Examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, tetraisopropyl bis(dioctyl phosphite) titanate, tetraoctyl bis(ditridecyl phosphite) titanate. , Tetra(2,2-diallyloxymethyl-1-butyl)bis(di-tridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyl trioctanoyl titanate, Examples thereof include isopropyl dimethacryl isostearoyl titanate, isopropyl (dioctyl phosphate) titanate, isopropyl tricumyl phenyl titanate, isopropyl tri(N-aminoethyl aminoethyl) titanate, dicumyl phenyloxyacetate titanate, and diisostearoyl ethylene titanate. Examples of the aluminum-based coupling agent include acetoalkoxyaluminum diisopropionate. Examples of the zirconate coupling agent include tetrapropyl zirconate, tetrabutyl zirconate, tetra(triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate, acetylacetone zirconium butyrate, zirconium stearate butyrate. ..
 (E)成分の含有量は、(B)成分100質量部に対して下記の範囲が好ましい。(E)成分の含有量は、優れた接着強度を得やすい観点から、3質量部以上が好ましく、5質量部以上がより好ましく、8質量部以上が更に好ましい。(E)成分の含有量は、優れた接着強度を得やすい観点から、30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が更に好ましい。これらの観点から、(E)成分の含有量は、3~30質量部が好ましく、5~20質量部がより好ましい。 The content of the component (E) is preferably in the following range with respect to 100 parts by mass of the component (B). The content of the component (E) is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 8 parts by mass or more, from the viewpoint of easily obtaining excellent adhesive strength. The content of the component (E) is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less, from the viewpoint of easily obtaining excellent adhesive strength. From these viewpoints, the content of the component (E) is preferably 3 to 30 parts by mass, more preferably 5 to 20 parts by mass.
(その他の成分)
 本実施形態に係る半導体用接着剤は、必要に応じて、酸化カルシウム、酸化マグネシウム等の吸湿剤;フッ素系界面活性剤、ノニオン系界面活性剤、高級脂肪酸等の濡れ性向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤;溶剤などを含有してよい。溶剤を用いることにより粘度を調整してもよい。溶剤を用いる場合、溶剤の含有量は、ボイド等の発生を抑制しやすい観点から、半導体用接着剤の総量を基準として3質量%以下が好ましい。本実施形態に係る半導体用接着剤は、アウトガスの発生を抑制しやすいと共に、支持部材に対する接着剤の良好な濡れ性が得られやすい観点から、溶剤を含有しなくてよい(無溶剤であってよい)。
(Other ingredients)
The semiconductor adhesive according to the present embodiment is, if necessary, a moisture absorbent such as calcium oxide or magnesium oxide; a fluorosurfactant, a nonionic surfactant, a wettability improver such as a higher fatty acid; a silicone oil or the like. Defoaming agent; an ion trap agent such as an inorganic ion exchanger; a solvent and the like. The viscosity may be adjusted by using a solvent. When a solvent is used, the content of the solvent is preferably 3% by mass or less based on the total amount of the adhesive for semiconductors, from the viewpoint of easily suppressing the generation of voids and the like. The semiconductor adhesive according to the present embodiment does not need to contain a solvent from the viewpoint of easily suppressing the generation of outgas and easily obtaining good wettability of the adhesive with respect to the supporting member (there is no solvent. Good).
 本実施形態に係る半導体用接着剤の回転数0.5rpmにおける粘度(25℃)は、優れた塗布作業性が得られやすい観点から、300Pa・s以下が好ましく、200Pa・s以下がより好ましく、150Pa・s以下が更に好ましく、100Pa・s以下が特に好ましく、80Pa・s以下が極めて好ましく、70Pa・s以下が非常に好ましく、65Pa・s以下がより一層好ましい。本実施形態に係る半導体用接着剤の回転数0.5rpmにおける粘度(25℃)は、銀粒子の沈降を抑制しやすいことから半導体用接着剤の優れた保管安定性を得やすい観点から、30Pa・s以上が好ましく、40Pa・s以上がより好ましく、50Pa・s以上が更に好ましい。これらの観点から、半導体用接着剤の回転数0.5rpmにおける粘度(25℃)は、30~300Pa・sが好ましい。本実施形態に係る半導体用接着剤の回転数5rpmにおける粘度(25℃)は、優れた塗布作業性が得られやすい観点から、40Pa・s以下が好ましく、35Pa・s以下がより好ましく、30Pa・s以下が更に好ましく、25Pa・s以下が特に好ましい。本実施形態に係る半導体用接着剤の回転数5rpmにおける粘度(25℃)は、銀粒子の沈降を抑制しやすいことから半導体用接着剤の優れた保管安定性を得やすい観点から、10Pa・s以上が好ましく、15Pa・s以上がより好ましく、20Pa・s以上が更に好ましい。これらの観点から、半導体用接着剤の回転数5rpmにおける粘度(25℃)は、10~40Pa・sが好ましい。粘度は、ブルックフィールド型粘度計を用いて測定できる。 The viscosity (25° C.) of the semiconductor adhesive according to the present embodiment at a rotation speed of 0.5 rpm is preferably 300 Pa·s or less, more preferably 200 Pa·s or less, from the viewpoint of easily obtaining excellent coating workability. It is more preferably 150 Pa·s or less, particularly preferably 100 Pa·s or less, extremely preferably 80 Pa·s or less, very preferably 70 Pa·s or less, and even more preferably 65 Pa·s or less. The viscosity (25° C.) at a rotation speed of 0.5 rpm of the adhesive for a semiconductor according to the present embodiment is 30 Pa from the viewpoint that it is easy to obtain the excellent storage stability of the adhesive for a semiconductor because the sedimentation of silver particles is easily suppressed. ·S or more is preferable, 40 Pa·s or more is more preferable, and 50 Pa·s or more is further preferable. From these viewpoints, the viscosity (25° C.) of the adhesive for semiconductors at a rotation speed of 0.5 rpm is preferably 30 to 300 Pa·s. The viscosity (25° C.) at the rotation speed of 5 rpm of the adhesive for a semiconductor according to the present embodiment is preferably 40 Pa·s or less, more preferably 35 Pa·s or less, and 30 Pa·s from the viewpoint of easily obtaining excellent coating workability. s or less is more preferable, and 25 Pa·s or less is particularly preferable. The viscosity (25° C.) of the adhesive for semiconductors according to the present embodiment at a rotation speed of 5 rpm is 10 Pa·s from the viewpoint that it is easy to suppress sedimentation of silver particles, and thus it is easy to obtain excellent storage stability of the adhesive for semiconductors. The above is preferable, 15 Pa·s or more is more preferable, and 20 Pa·s or more is further preferable. From these viewpoints, the viscosity (25° C.) of the semiconductor adhesive at a rotation speed of 5 rpm is preferably 10 to 40 Pa·s. The viscosity can be measured using a Brookfield viscometer.
<半導体部品>
 本実施形態に係る半導体部品は、支持部材と、半導体素子と、支持部材及び半導体素子の間に配置された接着剤層と、を備え、接着剤層が、本実施形態に係る半導体用接着剤又はその硬化物を含む。半導体素子は、接着剤層を介して支持部材上に搭載されている。接着剤層は、支持部材及び半導体素子に接している。本実施形態に係る半導体部品では、本実施形態に係る半導体用接着剤を用いることにより、半導体素子から発生した熱を外部に効率的に放散することができると共に、半導体素子と支持部材との高い接着強度を得ることができる。本実施形態に係る半導体装置は、本実施形態に係る半導体部品を備える。
<Semiconductor parts>
The semiconductor component according to the present embodiment includes a support member, a semiconductor element, and an adhesive layer disposed between the support member and the semiconductor element, and the adhesive layer is the semiconductor adhesive according to the present embodiment. Alternatively, it includes a cured product thereof. The semiconductor element is mounted on the support member via the adhesive layer. The adhesive layer is in contact with the support member and the semiconductor element. In the semiconductor component according to the present embodiment, by using the adhesive for a semiconductor according to the present embodiment, heat generated from the semiconductor element can be efficiently dissipated to the outside, and the semiconductor element and the supporting member are highly expensive. Adhesive strength can be obtained. The semiconductor device according to this embodiment includes the semiconductor component according to this embodiment.
 支持部材(半導体素子搭載用支持部材)としては、42アロイリードフレーム、銅リードフレーム、パラジウムPPFリードフレーム等のリードフレーム;ガラスエポキシ基板(ガラス繊維強化エポキシ樹脂からなる基板)、BT基板(シアネートモノマー及びそのオリゴマーとビスマレイミドからなるBTレジン使用基板)等の有機基板などが挙げられる。半導体素子としては、IC、LSI、LEDチップ等が挙げられる。半導体素子の厚さは、600μm以下であってよく、500μm以下であってよく、400μm以下であってよい。 As the supporting member (supporting member for mounting a semiconductor element), a lead frame such as 42 alloy lead frame, copper lead frame, palladium PPF lead frame; glass epoxy substrate (substrate made of glass fiber reinforced epoxy resin), BT substrate (cyanate monomer) And an organic substrate such as a BT resin substrate comprising an oligomer thereof and bismaleimide). Examples of semiconductor elements include ICs, LSIs, LED chips and the like. The thickness of the semiconductor element may be 600 μm or less, 500 μm or less, and 400 μm or less.
 本実施形態に係る半導体部品は、半導体素子の一部又は全部を封止する封止部を備えていてよい。封止部の構成材料としては、透光性樹脂を用いることができる。封止部は、支持部材の一部又は全部を封止していてもよい。 The semiconductor component according to the present embodiment may include a sealing portion that seals a part or all of the semiconductor element. A transparent resin can be used as a constituent material of the sealing portion. The sealing portion may seal a part or all of the support member.
 本実施形態に係る半導体部品の製造方法は、本実施形態に係る半導体用接着剤を支持部材と半導体素子との間に配置して接着剤層を形成する接着剤層形成工程を備える。本実施形態に係る半導体用接着剤は、構成成分を一括又は分割して攪拌機、ハイブリッドミキサー、ライカイ機、3本ロール、プラネタリーミキサー等を用いて混合することにより得ることができる。 The method for manufacturing a semiconductor component according to this embodiment includes an adhesive layer forming step of disposing the semiconductor adhesive according to this embodiment between a support member and a semiconductor element to form an adhesive layer. The adhesive for semiconductors according to the present embodiment can be obtained by collectively or dividing the constituent components and mixing them using a stirrer, a hybrid mixer, a liquor machine, a three-roll, a planetary mixer or the like.
 本実施形態に係る半導体部品の製造方法は、接着剤層形成工程の後に、接着剤層を硬化(熱硬化等)して硬化物を得る工程を備えてよい。本実施形態に係る半導体部品の製造方法は、接着剤層形成工程の後に、半導体素子をワイヤボンディングするワイヤボンド工程を備えていてよい。本実施形態に係る半導体部品の製造方法は、接着剤層形成工程の後に、半導体素子を封止する工程を備えていてよい。 The method for manufacturing a semiconductor component according to the present embodiment may include a step of curing (thermosetting, etc.) the adhesive layer to obtain a cured product after the adhesive layer forming step. The method for manufacturing a semiconductor component according to this embodiment may include a wire bonding step of wire bonding a semiconductor element after the adhesive layer forming step. The method for manufacturing a semiconductor component according to this embodiment may include a step of sealing the semiconductor element after the adhesive layer forming step.
 半導体用接着剤を用いて半導体素子を支持部材に接着させるには、例えば、まず、支持部材上に半導体用接着剤をディスペンス法、スクリーン印刷法、スタンピング法等により塗布した後、半導体素子を圧着し、その後、加熱装置(オーブン、ヒートブロック等)を用いて半導体用接着剤を加熱硬化することにより行うことができる。さらに、ワイヤボンド工程を経た後、通常の方法により半導体素子を封止することができる。 To bond the semiconductor element to the support member using the semiconductor adhesive, for example, first, apply the semiconductor adhesive on the support member by a dispensing method, a screen printing method, a stamping method, or the like, and then press-bond the semiconductor element. Then, the adhesive for semiconductors is heated and cured using a heating device (oven, heat block, etc.). Furthermore, after the wire bonding step, the semiconductor element can be sealed by a usual method.
 上述の加熱硬化の温度は、低温での長時間硬化、高温での速硬化等の条件により異なるが、例えば、150~220℃(好ましくは180~200℃)で30秒~2時間(好ましくは1時間~1時間30分)行うことができる。 The temperature of the above-mentioned heat curing varies depending on the conditions such as long-time curing at low temperature and fast curing at high temperature, but is, for example, 150 to 220° C. (preferably 180 to 200° C.) for 30 seconds to 2 hours (preferably 1 hour to 1 hour 30 minutes).
 図1は、本実施形態に係る半導体部品の一例を示す模式断面図である。図1に示すように、半導体部品10は、支持部材11、半導体素子13、接着剤層15、及び、封止部17を備える。接着剤層15は、支持部材11と半導体素子13との間に配置されており、本実施形態に係る半導体用接着剤又はその硬化物を含む。封止部17は、支持部材11、半導体素子13及び接着剤層15を封止している。半導体素子13は、ワイヤ19aを介してリードフレーム19bに接続されている。 FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor component according to this embodiment. As shown in FIG. 1, the semiconductor component 10 includes a support member 11, a semiconductor element 13, an adhesive layer 15, and a sealing portion 17. The adhesive layer 15 is disposed between the support member 11 and the semiconductor element 13, and contains the semiconductor adhesive according to the present embodiment or a cured product thereof. The sealing portion 17 seals the support member 11, the semiconductor element 13, and the adhesive layer 15. The semiconductor element 13 is connected to the lead frame 19b via the wire 19a.
 図2は、本実施形態に係る半導体部品の他の例を示す模式断面図である。図2に示すように、半導体部品20は、支持部材21、半導体素子(LEDチップ)23、接着剤層25、及び、封止部27を備える。支持部材21は、基板21aと、基板21aを囲むように形成されたリードフレーム21bと、を有している。接着剤層25は、支持部材21と半導体素子23との間に配置されており、本実施形態に係る半導体用接着剤又はその硬化物を含む。封止部27は、半導体素子23及び接着剤層25を封止している。半導体素子23は、ワイヤ29を介してリードフレーム21bに接続されている。 FIG. 2 is a schematic cross-sectional view showing another example of the semiconductor component according to this embodiment. As shown in FIG. 2, the semiconductor component 20 includes a support member 21, a semiconductor element (LED chip) 23, an adhesive layer 25, and a sealing portion 27. The support member 21 has a substrate 21a and a lead frame 21b formed so as to surround the substrate 21a. The adhesive layer 25 is disposed between the support member 21 and the semiconductor element 23, and includes the semiconductor adhesive according to the present embodiment or a cured product thereof. The sealing portion 27 seals the semiconductor element 23 and the adhesive layer 25. The semiconductor element 23 is connected to the lead frame 21b via a wire 29.
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.
<半導体用接着剤の構成成分>
(銀粒子)
 AgC-221PA(福田金属箔粉工業株式会社製、商品名、形状:鱗片状、BET比表面積:0.20m/g、平均粒径:7.5μm)
 AgC-271B(福田金属箔粉工業株式会社製、商品名、形状:鱗片状、BET比表面積:0.50m/g、平均粒径:2.1μm)
 AgC-221Q3(福田金属箔粉工業株式会社製、商品名、形状:鱗片状、BET比表面積:0.35m/g)
 TC-88(株式会社徳力化学研究所製、商品名、形状:鱗片状、BET比表面積:1.05m/g)
<Components of adhesive for semiconductors>
(Silver particles)
AgC-221PA (manufactured by Fukuda Metal Foil & Powder Co., Ltd., trade name, shape: scaly, BET specific surface area: 0.20 m 2 /g, average particle size: 7.5 μm)
AgC-271B (manufactured by Fukuda Metal Foil & Powder Co., Ltd., trade name, shape: scaly, BET specific surface area: 0.50 m 2 /g, average particle diameter: 2.1 μm)
AgC-221Q3 (manufactured by Fukuda Metal Foil & Powder Co., Ltd., trade name, shape: scaly, BET specific surface area: 0.35 m 2 /g)
TC-88 (manufactured by Tokuriki Kagaku Kenkyusho Co., Ltd., trade name, shape: scaly, BET specific surface area: 1.05 m 2 /g)
((メタ)アクリロイル基を有する単量体)
 FA-512A(ジシクロペンテニルオキシエチルアクリレート、日立化成株式会社製、商品名、下記式(b51)で表される化合物)
 SR-339A(2-フェノキシエチルアクリレート、サートマー社製、商品名、下記式(b52)で表される化合物)
 SR-349(EO変性ビスフェノールAジアクリレート、サートマー社製、商品名、下記式(b53)で表される化合物)
Figure JPOXMLDOC01-appb-C000009
(Monomer having (meth)acryloyl group)
FA-512A (dicyclopentenyloxyethyl acrylate, manufactured by Hitachi Chemical Co., Ltd., trade name, compound represented by the following formula (b51))
SR-339A (2-phenoxyethyl acrylate, manufactured by Sartomer Co., Ltd., trade name, compound represented by the following formula (b52))
SR-349 (EO-modified bisphenol A diacrylate, manufactured by Sartomer, trade name, compound represented by the following formula (b53))
Figure JPOXMLDOC01-appb-C000009
(ラジカル重合開始剤)
 トリゴノックス22-70E(1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、化薬アクゾ株式会社製、商品名)
(Radical polymerization initiator)
Trigonox 22-70E (1,1-bis(t-butylperoxy)cyclohexane, manufactured by Kayaku Akzo Co., Ltd.)
(可とう化剤)
 エポリードPB-4700(エポキシ化ポリブタジエン、ダイセル化学工業株式会社製、商品名、エポキシ当量:152.4~177.8、数平均分子量:3500)
 CTBN-1009SP-S(カルボキシ基を有するアクリロニトリルポリブタジエン共重合体、宇部興産株式会社製、商品名、数平均分子量:3600)
(Flexibility agent)
EPORIDE PB-4700 (Epoxidized polybutadiene, manufactured by Daicel Chemical Industries, Ltd., trade name, epoxy equivalent: 152.4 to 177.8, number average molecular weight: 3500)
CTBN-1009SP-S (acrylonitrile polybutadiene copolymer having a carboxy group, Ube Industries, Ltd., trade name, number average molecular weight: 3600)
(カップリング剤)
 KBM-403(γ-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製、商品名)
(Coupling agent)
KBM-403 (γ-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name)
<半導体用接着剤の調製>
 表1の各成分(配合量の単位:質量部)を混合した後、ハイブリットミキサを用いて混練した。次に、666.61Pa(5Torr)以下で3分間脱泡処理を行うことにより半導体用接着剤(導電性組成物)を得た。
<Preparation of adhesive for semiconductors>
The components shown in Table 1 (unit of blending amount: parts by mass) were mixed and then kneaded using a hybrid mixer. Next, defoaming treatment was performed at 666.61 Pa (5 Torr) or less for 3 minutes to obtain a semiconductor adhesive (conductive composition).
<評価>
 熱伝導率、粘度及びダイシェア強度(接着強度)を下記に示す方法で評価した。結果を表1に示す。ダイシェア強度は実施例についてのみ評価した。
<Evaluation>
The thermal conductivity, viscosity and die shear strength (adhesive strength) were evaluated by the methods shown below. The results are shown in Table 1. The die shear strength was evaluated only for the examples.
(熱伝導率)
 オーブンを用いて半導体用接着剤を180℃まで1時間で昇温した後に180℃で1時間保持することにより硬化物を得た。そして、下記測定装置を用いて熱拡散率、比重及び比熱を測定した後、下記式によって熱伝導率を算出した。
[測定装置]
 熱拡散率:レーザフラッシュ法熱定数測定装置(Netzsch製、LFA 467 HyperFlash)
 比熱:DSC(ティー・エイ・インスツルメント・ジャパン株式会社製、Q-200)
 比重:電子比重計(アルファミラージュ株式会社製、SD-200L)
[算出式]
 λ=α×ρ×C
  λ:熱伝導率(W/m/K)
  α:熱拡散率(mm/s)
  ρ:比重(g/cm
  C:比熱(J/g/K)
(Thermal conductivity)
A cured product was obtained by heating the adhesive for semiconductors to 180° C. for 1 hour using an oven and then holding it at 180° C. for 1 hour. Then, after measuring the thermal diffusivity, the specific gravity and the specific heat using the following measuring device, the thermal conductivity was calculated by the following formula.
[measuring device]
Thermal diffusivity: Laser flash method thermal constant measurement device (Netzsch, LFA 467 HyperFlash)
Specific heat: DSC (QA-200, manufactured by TA Instruments Japan Co., Ltd.)
Specific gravity: Electronic hydrometer (Alpha Mirage, SD-200L)
[Calculation formula]
λ=α×ρ×C p
λ: thermal conductivity (W/m/K)
α: thermal diffusivity (mm 2 /s)
ρ: Specific gravity (g/cm 3 )
C p : Specific heat (J/g/K)
(粘度)
 ブルックフィールド型粘度計(Brookfield Engineering Laboratories製、HADV-III U CP)を用いて、接着剤量0.5mL、温度25℃、回転数0.5rpm又は5rpmで3分間回転後の半導体用接着剤の粘度を得た。
(viscosity)
Using a Brookfield viscometer (manufactured by Brookfield Engineering Laboratories, HADV-III U CP), the amount of the adhesive was 0.5 mL, the temperature was 25° C., the rotation speed was 0.5 rpm or 5 rpm. The viscosity was obtained.
(ダイシェア強度)
 半導体用接着剤を銀リングめっき付き銅リードフレーム上に約1.5mg塗布した後、半導体用接着剤上に5mm×5mmのシリコンチップ(厚さ:400μm)を圧着した。さらに、オーブンを用いて180℃まで30分で昇温した後に180℃で1時間保持して半導体用接着剤を硬化させて半導体部品を得た。自動接着力試験装置(BT4000、Dage社製)を用いて、半導体部品の250℃における剪断接着強度(MPa)を測定した。10個の半導体部品の測定結果の平均値をダイシェア強度の測定結果として得た。
(Die shear strength)
About 1.5 mg of the adhesive for semiconductors was applied onto the copper lead frame with silver ring plating, and then a 5 mm×5 mm silicon chip (thickness: 400 μm) was pressure-bonded onto the adhesive for semiconductor. Further, the temperature was raised to 180° C. in 30 minutes using an oven, and the temperature was kept at 180° C. for 1 hour to cure the adhesive for semiconductors to obtain a semiconductor component. The shear adhesive strength (MPa) at 250° C. of the semiconductor component was measured using an automatic adhesive strength tester (BT4000, manufactured by Dage). The average value of the measurement results of 10 semiconductor components was obtained as the measurement result of the die shear strength.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1に示すように、実施例では、比較例と比較して熱伝導率が高いことが確認される。また、実施例では、優れた熱伝導性、塗布作業性(粘度)及び接着強度が得られることが確認される。 As shown in Table 1, it is confirmed that the example has higher thermal conductivity than the comparative example. In addition, in the examples, it is confirmed that excellent thermal conductivity, coating workability (viscosity) and adhesive strength are obtained.
 10,20…半導体部品、11,21…支持部材、13,23…半導体素子、15,25…接着剤層、17,27…封止部、19a,29…ワイヤ、19b,21b…リードフレーム、21a…基板。 10, 20... Semiconductor parts, 11, 21... Support member, 13, 23... Semiconductor element, 15, 25... Adhesive layer, 17, 27... Sealing part, 19a, 29... Wire, 19b, 21b... Lead frame, 21a... Substrate.

Claims (11)

  1.  (A)銀粒子と、(B)(メタ)アクリロイル基を有する単量体と、を含有し、
     前記(A)成分が第1の銀粒子を含み、
     前記第1の銀粒子のBET比表面積が0.3m/g以下であり、
     前記第1の銀粒子の平均粒径が7.0μm以上である、半導体用接着剤。
    Containing (A) silver particles and (B) a monomer having a (meth)acryloyl group,
    The component (A) contains first silver particles,
    The BET specific surface area of the first silver particles is 0.3 m 2 /g or less,
    An adhesive for semiconductors, wherein the average particle size of the first silver particles is 7.0 μm or more.
  2.  前記第1の銀粒子の形状が鱗片状である、請求項1に記載の半導体用接着剤。 The adhesive for a semiconductor according to claim 1, wherein the first silver particles have a scaly shape.
  3.  前記第1の銀粒子の平均粒径が7.0~8.5μmである、請求項1又は2に記載の半導体用接着剤。 The adhesive for a semiconductor according to claim 1 or 2, wherein the first silver particles have an average particle size of 7.0 to 8.5 μm.
  4.  前記第1の銀粒子の含有量が前記(A)成分の総量を基準として50質量%以上である、請求項1~3のいずれか一項に記載の半導体用接着剤。 The adhesive for semiconductors according to any one of claims 1 to 3, wherein the content of the first silver particles is 50% by mass or more based on the total amount of the component (A).
  5.  前記第1の銀粒子の含有量が、半導体用接着剤の総量を基準として30~95質量%である、請求項1~4のいずれか一項に記載の半導体用接着剤。 The adhesive for semiconductors according to any one of claims 1 to 4, wherein the content of the first silver particles is 30 to 95 mass% based on the total amount of the adhesive for semiconductors.
  6.  前記(A)成分が第2の銀粒子を更に含み、
     前記第2の銀粒子のBET比表面積が0.3m/gを超える、請求項1~5のいずれか一項に記載の半導体用接着剤。
    The component (A) further contains second silver particles,
    The adhesive for semiconductors according to any one of claims 1 to 5, wherein the BET specific surface area of the second silver particles exceeds 0.3 m 2 /g.
  7.  前記(B)成分が、下記一般式(b21)で表される化合物、下記一般式(b22)で表される化合物、及び、下記一般式(b23)で表される化合物からなる群より選ばれる少なくとも一種を含む、請求項1~6のいずれか一項に記載の半導体用接着剤。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R21、R22及びR23は、それぞれ独立に水素原子又はメチル基を示し、n22及びn23は、それぞれ独立に1~3の整数を示す。]
    The component (B) is selected from the group consisting of a compound represented by the following general formula (b21), a compound represented by the following general formula (b22), and a compound represented by the following general formula (b23). The semiconductor adhesive according to any one of claims 1 to 6, containing at least one kind.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R 21 , R 22 and R 23 each independently represent a hydrogen atom or a methyl group, and n 22 and n 23 each independently represent an integer of 1 to 3. ]
  8.  前記(B)成分の含有量が前記(A)成分100質量部に対して1~20質量部である、請求項1~7のいずれか一項に記載の半導体用接着剤。 The semiconductor adhesive according to any one of claims 1 to 7, wherein the content of the component (B) is 1 to 20 parts by mass relative to 100 parts by mass of the component (A).
  9.  ラジカル重合開始剤を更に含有し、
     前記ラジカル重合開始剤の含有量が、前記(B)成分100質量部に対して3~30質量部である、請求項1~8のいずれか一項に記載の半導体用接着剤。
    Further contains a radical polymerization initiator,
    The adhesive for semiconductors according to any one of claims 1 to 8, wherein the content of the radical polymerization initiator is 3 to 30 parts by mass with respect to 100 parts by mass of the component (B).
  10.  請求項1~9のいずれか一項に記載の半導体用接着剤の硬化物。 A cured product of the adhesive for semiconductors according to any one of claims 1 to 9.
  11.  支持部材と、半導体素子と、前記支持部材及び前記半導体素子の間に配置された接着剤層と、を備え、
     前記接着剤層が、請求項1~9のいずれか一項に記載の半導体用接着剤又はその硬化物を含む、半導体部品。
    A support member, a semiconductor element, and an adhesive layer disposed between the support member and the semiconductor element,
    A semiconductor component, wherein the adhesive layer contains the adhesive for semiconductors according to any one of claims 1 to 9 or a cured product thereof.
PCT/JP2018/045327 2018-12-10 2018-12-10 Adhesive for semiconductor, cured product, and semiconductor component WO2020121379A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020558815A JP7222400B2 (en) 2018-12-10 2018-12-10 Semiconductor adhesives, cured products and semiconductor parts
CN201880100672.6A CN113396471A (en) 2018-12-10 2018-12-10 Adhesive for semiconductor, cured product and semiconductor device
PCT/JP2018/045327 WO2020121379A1 (en) 2018-12-10 2018-12-10 Adhesive for semiconductor, cured product, and semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045327 WO2020121379A1 (en) 2018-12-10 2018-12-10 Adhesive for semiconductor, cured product, and semiconductor component

Publications (1)

Publication Number Publication Date
WO2020121379A1 true WO2020121379A1 (en) 2020-06-18

Family

ID=71077175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045327 WO2020121379A1 (en) 2018-12-10 2018-12-10 Adhesive for semiconductor, cured product, and semiconductor component

Country Status (3)

Country Link
JP (1) JP7222400B2 (en)
CN (1) CN113396471A (en)
WO (1) WO2020121379A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225312A (en) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd Resin paste composition and semiconductor device
JP2015135805A (en) * 2013-12-16 2015-07-27 日立化成株式会社 Resin paste composition and semiconductor device
WO2018034234A1 (en) * 2016-08-19 2018-02-22 住友ベークライト株式会社 Die attach paste and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225312A (en) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd Resin paste composition and semiconductor device
JP2015135805A (en) * 2013-12-16 2015-07-27 日立化成株式会社 Resin paste composition and semiconductor device
WO2018034234A1 (en) * 2016-08-19 2018-02-22 住友ベークライト株式会社 Die attach paste and semiconductor device

Also Published As

Publication number Publication date
JP7222400B2 (en) 2023-02-15
CN113396471A (en) 2021-09-14
JPWO2020121379A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP4752109B2 (en) Resin paste composition and semiconductor device using the same
US8749076B2 (en) Resin paste composition
WO2015093136A1 (en) Resin paste composition and semiconductor device
JP5664673B2 (en) Resin paste composition
JP2009102603A (en) Adhesive composition and semiconductor device
JP5625248B2 (en) Resin paste composition and semiconductor device
JP2010225312A (en) Resin paste composition and semiconductor device
JP3511129B2 (en) Resin paste composition and semiconductor device using the same
JP2013067673A (en) Resin paste composition and semiconductor device
JP2009102602A (en) Adhesive composition and semiconductor device
CN113632219A (en) Thermally conductive composition and semiconductor device
JP2009120826A (en) Adhesive composition and semiconductor device
JP2012188465A (en) Resin paste composition and semiconductor apparatus
WO2020121379A1 (en) Adhesive for semiconductor, cured product, and semiconductor component
US8722768B2 (en) Liquid resin composition and semiconductor device
JP2002012603A (en) Electroconductive resin paste composition and semiconductor device using the same
JP4600429B2 (en) Resin paste composition and semiconductor device using the same
WO2012124527A1 (en) Resin paste composition for bonding semiconductor element, and semiconductor device
JP3985433B2 (en) Resin paste composition and semiconductor device using the same
JP2012188622A (en) Resin paste composition for bonding semiconductor device, and semiconductor device
CN113631675A (en) Semiconductor package, method for manufacturing semiconductor package, and thermally conductive composition used therefor
JP4419227B2 (en) Resin paste composition and semiconductor device using the same
JP2010222452A (en) Resin paste composition, and semiconductor device using the same
TW201945502A (en) Pasty adhesive composition and semiconductor device
JPWO2019167824A1 (en) Paste adhesive composition and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942925

Country of ref document: EP

Kind code of ref document: A1