WO2015093072A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2015093072A1 WO2015093072A1 PCT/JP2014/061053 JP2014061053W WO2015093072A1 WO 2015093072 A1 WO2015093072 A1 WO 2015093072A1 JP 2014061053 W JP2014061053 W JP 2014061053W WO 2015093072 A1 WO2015093072 A1 WO 2015093072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- converter
- converter cell
- voltage
- power conversion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
Definitions
- the present invention relates to a power converter that performs power conversion between a plurality of phases of alternating current and direct current, and more particularly to a large-capacity power converter that multiplexes converters.
- a plurality of converter cells are cascaded to form each arm.
- a voltage converter connected to an AC voltage source such as a power system
- the AC voltage output from the power converter is significantly different from the voltage of the AC voltage source.
- Overcurrent flows through the voltage type power converter. Therefore, when connecting the MMC, which is a voltage type power converter, to an AC voltage source, it is necessary not only to charge the DC capacitor of each converter cell, but also to output a voltage substantially equal to the system voltage ( For example, see Patent Document 1).
- initial charging to the DC capacitor of each converter cell is generally performed at the time of startup.
- a method of initial charging to a DC capacitor there is a method of charging a DC capacitor from an AC system via a charging resistor (see, for example, Patent Document 2 and Patent Document 3).
- the present invention has been made to solve the above problems, and it is an object of the present invention to obtain a power conversion device that can easily initially charge a DC capacitor of each converter cell to a required voltage level at the time of startup. Objective.
- the power converter according to the present invention includes a plurality of leg circuits in which a positive arm and a negative arm are connected in series, and a connection point thereof is connected to an AC circuit via each phase AC line, between positive and negative DC buses. Are connected in parallel to perform power conversion between multiple-phase AC and DC.
- Each of the positive arm and the negative arm of each leg circuit includes at least one first converter cell connected in series.
- Each of the first converter cells has two series bodies composed of a plurality of semiconductor switching elements connected in series to each other in parallel, and further connected to the series body in parallel with a DC capacitor, One connection portion of the semiconductor switching element is defined as an output end.
- Each of the first converter cells has an element driving unit that drives one semiconductor switching element as a starting element, and the element driving unit turns on the starting element when the DC capacitor is initially charged. is there.
- the DC capacitor of each first converter cell can be easily initially charged to a required voltage level when the power converter is started. For this reason, when connecting a power converter device to an alternating current circuit, the voltage requested
- FIG. 1 is a circuit diagram showing a configuration example of a power conversion apparatus according to Embodiment 1 of the present invention.
- the power conversion device 1 performs power conversion between a plurality of phases of alternating current, in this case, a three-phase alternating current and a direct current, and the alternating current side converts a plurality of phases via respective phase alternating current lines 8u to 8w. It is connected to an AC power supply 11 which is a system as an AC circuit.
- the AC circuit breaker 12, the interconnection transformer 13, the charging resistor 14, and the charging resistor 14 are connected in parallel from the AC power source 11 side.
- a charging circuit 16 comprising a connected bypass switch 15 is connected. That is, the power converter 1 is connected to the AC power supply 11 via the circuit breaker 12, the interconnection transformer 13, and the charging circuit 16.
- the DC side of the power converter 1 is connected to a DC power source 18 through an impedance 17.
- an interconnection reactor may be provided instead of the interconnection transformer 13.
- the DC side of the power conversion device 1 may be connected to a DC load or may be connected to another power conversion device that performs DC output.
- Each phase of the power conversion device 1 is a leg in which positive-side arms 4u to 4w and negative-side arms 5u to 5w are connected in series, and AC terminals 7u to 7w that are connection points thereof are connected to the respective phase AC lines 8u to 8w.
- the three leg circuits are connected in parallel between the positive and negative DC buses 2 and 3.
- Each of the positive side arms 4u to 4w and the negative side arms 5u to 5w of each leg circuit includes a cell group 10a in which one or more first converter cells (hereinafter referred to as converter cells 10) are connected in series.
- the side reactor 6p and the negative side reactor 6n are respectively inserted in series.
- the positive side reactor 6p and the negative side reactor 6n are inserted on the AC terminals 7u to 7w side from the cell group 10a, but may be located at any position within each arm 4u to 4w, 5u to 5w, and a plurality of them are provided. There may be.
- each converter cell 10 has a full bridge configuration, that is, two series bodies 22a and 22b are connected in parallel, and further connected in parallel to the series bodies 22a and 22b. It is configured with.
- the low-voltage series body 22a is configured by connecting in series a plurality (two in this case) of semiconductor switching elements (hereinafter referred to as switching elements) 20A and 21B to which diodes 21A and 21B are connected in antiparallel.
- the high-voltage series body 22b is configured by connecting in series a plurality of (in this case, two) switching elements 20C and 20D to which diodes 21C and 21D are connected in antiparallel.
- the switching elements 20A to 20D are composed of self-extinguishing switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and GCTs (Gate Commutated Turn-off thyristors), and diodes 21A to 21D are connected in antiparallel.
- IGBTs Insulated Gate Bipolar Transistors
- GCTs Gate Commutated Turn-off thyristors
- Each converter cell 10 has an intermediate connection point between the series bodies 22a and 22b as an output end, and when the power conversion device 1 is operated, the switching elements 20A to 20D are turned on and off, and from this output end, The positive voltage, negative voltage, and zero voltage across the DC capacitor 23 are output.
- the output terminal of the low-voltage-side series body 22a is a connection portion between the switching elements 20A and 21B and is connected to the output line 24N.
- the output terminal of the series body 22b on the high voltage side is a connection part of the switching elements 20C and 21D and is connected to the output line 24P.
- each converter cell 10 includes an element driving unit 30 for initially charging the DC capacitor 23, and the element driving unit 30 constitutes a charge control unit.
- the element drive unit 30 turns on one switching element 20B in the converter cell 10 as an activation element at the time of initial charging of the DC capacitor 23 of each converter cell 10, and from the DC capacitor 23 via the feeder line 31. Power is supplied.
- the element driving unit 30 When the voltage of the DC capacitor 23 (hereinafter referred to as the capacitor voltage Vc) exceeds the starting voltage Vsh determined from the specifications of the element driving unit 30, the element driving unit 30 turns on the starting element (switching element 20B). can do.
- the starting element may be another switching element 20A, 20C, or 20D, and can be arbitrarily determined. In this case, since the switching element 20B is used as a starting element, it is hereinafter referred to as a starting element 20B.
- the element driving unit 30 detects the capacitor voltage Vc of the DC capacitor 23 as a power source. When the capacitor voltage Vc rises and exceeds the starting voltage Vsh set in the element driving unit 30 (s2), the element driving unit 30 Turns on the activation element 20B (s3).
- the charging control operation for initially charging the DC capacitor 23 of each converter cell 10 is a two-stage operation in which the capacitor voltage Vc is equal to or lower than the starting voltage Vsh and the capacitor voltage Vc exceeds the starting voltage Vsh.
- the path of the charging current i in each period is shown in FIGS.
- the charging current i flows through the two-phase (UV, VW, WU) positive side arms 4u to 4w, or the two-phase (UV, VW, WU) negative side arms 5u to 5w.
- FIG. 4 shows the charging current i flowing through the U-phase positive arm 4u and the V-phase positive arm 4v.
- the number of converter cells 10 in each of the positive side arms 4u and 4v is 1.
- the bypass switch 15 is in an off state, and the charging current i flows through the charging resistor 14.
- the switching elements 20A to 20D in each converter cell 10 are all in the off state, and the charging current i flows as shown in FIG.
- the charging current i from the AC power supply 11 is AC power supply 11 ⁇ V phase AC terminal 7v ⁇ V phase positive arm 4v ⁇ positive DC bus 2 ⁇ U phase positive arm 4u ⁇ U phase AC terminal 7u ⁇ AC power supply 11 And flow.
- this charging current i is Diode 21A ⁇ DC capacitor 23 ⁇ Diode 21D To charge the DC capacitor 23 in the positive arm 4v.
- the charging current i is within the converter cell 10 of the U-phase positive arm 4u.
- Diode 21C ⁇ DC capacitor 23 ⁇ Diode 21B To charge the DC capacitor 23 in the positive arm 4u.
- the charging current i flows through the path connecting the DC capacitors 23 in the two-phase positive arms 4u and 4v in series, and the DC capacitors 23 in the U-phase and V-phase positive arms 4u and 4v are charged simultaneously. To do. During this period, each DC capacitor 23 can be charged regardless of the power supply voltage polarity, and the capacitor voltage Vc gradually increases.
- the charging current i from the AC power supply 11 is AC power supply 11 ⁇ V phase AC terminal 7v ⁇ V phase positive arm 4v ⁇ positive DC bus 2 ⁇ U phase positive arm 4u ⁇ U phase AC terminal 7u ⁇ AC power supply 11 And flow.
- this charging current i is Starting element 20B ⁇ diode 21D To bypass the DC capacitor 23 in the positive arm 4v.
- the charging current i is within the converter cell 10 of the U-phase positive arm 4u. Diode 21C ⁇ DC capacitor 23 ⁇ Diode 21B To charge the DC capacitor 23 in the positive arm 4u.
- the DC capacitor 23 is charged through a path connecting the DC capacitors 23 in the two-phase positive arms 4u and 4v in series. For this reason, the power supply voltage is divided by the DC capacitors 23 in the two-phase positive arms 4u and 4v, and the capacitor voltage Vc cannot be increased further.
- the capacitor voltage Vc can be charged only up to about half of the power supply voltage peak value. In this embodiment, when the capacitor voltage Vc exceeds the starting voltage Vsh set in the element driving unit 30, the element driving unit 30 turns on the starting element 20B.
- the path of the charging current i is changed and only the DC capacitor 23 in the U-phase positive arm 4u is charged, so that the power supply voltage is not divided into two phases.
- the capacitor voltage Vc can be charged to the same level as the power supply voltage peak value.
- the DC capacitor 23 can be charged to a desired voltage when the power conversion device 1 is started, and the power conversion device 1 can quickly output a desired AC voltage. For this reason, troubles, such as generation
- Embodiment 2 a power converter according to Embodiment 2 of the present invention will be described with reference to FIG.
- the main circuit configuration of the power converter 1 is the same as that shown in FIG. 1 of the first embodiment, and the DC capacitor 23 of each converter cell 10 is initially set when the power converter 1 is started.
- the charge control unit for charging is different.
- N is the number of converter cells 10 in the power conversion device 1.
- the charge control unit is configured for the element driving unit 30a provided for each converter cell 10 to initially charge the DC capacitor 23 of each converter cell 10, and for all (N) element driving units 30a.
- a centralized control unit 32 is provided that outputs an ignition command 33 for instructing start-up of the start elements 20B all at once.
- the element driving unit 30a turns on one switching element 20B in the converter cell 10 as an activation element when the DC capacitor 23 of each converter cell 10 is initially charged. Power is supplied from the DC capacitor 23 via the feeder line 31. When the capacitor voltage Vc exceeds the starting voltage Vsh, the element driving unit 30a can turn on the starting element 20B.
- the activation element may be another switching element 20A, 20C, or 20D.
- the central control unit 32 may be either a power supply from the main circuit of the power conversion device 1 or a power supply from the outside.
- the central control unit 32 measures the elapsed time Ta from the turning on of the circuit breaker 12, and when the elapsed time Ta exceeds a preset time (set time Tb) (S2), for all the element drive units 30a. Then, an ignition command 33 for instructing start of the on-controls of the activation elements 20B all at once is output (S3). Each element drive unit 30a turns on the activation element 20B when receiving the firing command 33 (S4).
- the central control unit 32 holds, as the preset time Tb, a time that is the same as or slightly longer than the time required for the capacitor voltage Vc to exceed the starting voltage Vsh of the element driving unit 30a after the circuit breaker 12 is turned on. To do.
- the set time Tb is variable.
- the charging control operation for initially charging the DC capacitor 23 of each converter cell 10 is performed by setting the period when the switching elements 20A to 20D are all in the OFF state and the elapsed time Ta since the circuit breaker 12 is turned on. A two-stage operation is performed with the period when the activation element 20B is turned on beyond the time Tb.
- the path of the charging current i in each period is the same as that shown in FIGS. 4 and 5 of the first embodiment.
- the element driving unit 30a turns on the activation element 20B, the path of the charging current i is changed and the power supply voltage is not divided into two phases.
- the DC capacitor 23 can be charged to a desired voltage when the power conversion device 1 is started, and the power conversion device 1 can quickly output a desired AC voltage.
- troubles such as generation
- the element driver 30a does not need to detect the capacitor voltage Vc, and the device configuration can be reduced in size and simplified.
- the central control unit 32 outputs the firing command 33 only by comparing the elapsed time Ta from the turning on of the circuit breaker 12 and the set time Tb, a simple arithmetic process is sufficient, and the apparatus configuration can be reduced in size and simplified. Can be achieved.
- the element driving unit 30a When the element driving unit 30a receives the firing command 33, if the capacitor voltage Vc of the DC capacitor 23 is equal to or lower than the starting voltage Vsh, the starting element 20B is turned on in the converter cell 10 having the DC capacitor 23. do not do. However, the charging current i flows through the diodes 21A to 21D, charges the DC capacitor 23, and the capacitor voltage Vc rises. There is no problem because the starting element 20B is turned on when the capacitor voltage Vc exceeds the starting voltage Vsh.
- the charge control unit for initially charging the DC capacitor 23 of each converter cell 10 at the time of starting the power conversion apparatus 1 includes, for each converter cell 10, an element driving unit 30 a and a voltage for detecting the capacitor voltage Vc. And a centralized control unit 32a that outputs an ignition command 33a that instructs all (N) element driving units 30a to simultaneously start the on-control of the activation elements 20B.
- the element driving unit 30a is the same as that of the second embodiment, and turns on one switching element 20B in the converter cell 10 as a starting element when the DC capacitor 23 of each converter cell 10 is initially charged. The power is supplied from the DC capacitor 23 via the feeder line 31. When the capacitor voltage Vc exceeds the starting voltage Vsh, the element driving unit 30a can turn on the starting element 20B. Also in this embodiment, the activation element may be another switching element 20A, 20C, or 20D.
- the central control unit 32a and the voltage detection unit 34 may be either a power supply from the main circuit of the power conversion device 1 or a power supply from the outside.
- the central control unit 32a acquires and monitors all (N) capacitor voltages Vc (SS2), and when the average value ( ⁇ Vc / N) exceeds the starting voltage Vsh (SS3), all the element driving units 30a. In response to this, an ignition command 33a for instructing start-up of the start-up elements 20B all at once is output (SS4). Each element drive unit 30a turns on the activation element 20B when receiving the firing command 33a (SS5).
- the charge control operation for initially charging the DC capacitor 23 of each converter cell 10 is performed when the switching elements 20A to 20D are all in the OFF state and the average value of all the capacitor voltages Vc is the starting voltage Vsh. And a two-stage operation with a period during which the activation element 20B is turned on. The path of the charging current i in each period is the same as that shown in FIGS. 4 and 5 of the first embodiment.
- the path of the charging current i is changed and the power supply voltage is not divided into two phases.
- the DC capacitor 23 can be charged to a desired voltage when the power conversion device 1 is started, and the power conversion device 1 can quickly output a desired AC voltage.
- troubles such as generation
- the element driving unit 30a when the element driving unit 30a receives the ignition command 33a, there is a DC capacitor 23 whose capacitor voltage Vc is equal to or lower than the starting voltage Vsh.
- the activation element 20B In the converter cell 10 having the DC capacitor 23, the activation element 20B is not turned on immediately after receiving the ignition command 33a. However, the charging current i flows through the diodes 21A to 21D, charges the DC capacitor 23, and the capacitor voltage Vc rises. And since the starting element 20B is turned on when the capacitor voltage Vc exceeds the starting voltage Vsh, there is no problem.
- Embodiment 4 FIG.
- the central control unit 32a outputs the firing command 33a when the average value ( ⁇ Vc / N) of the capacitor voltage Vc exceeds the starting voltage Vsh, but in this embodiment, all the capacitor voltages When Vc exceeds the starting voltage Vsh, an ignition command 33a is output.
- a charge control operation for initially charging the DC capacitor 23 of each converter cell 10 when the power conversion device 1 is started will be described based on a flowchart shown in FIG. Before the power conversion device 1 is connected to the AC power source (system) 11, all the switching elements 20A to 20D in each converter cell 10 are in the off state.
- the charging current i flows from the AC power supply 11 through the charging circuit 16 when the circuit breaker 12 is connected.
- an operation of initially charging the DC capacitor 23 of each converter cell 10 is started (SS1).
- the capacitor voltage Vc of the DC capacitor 23 of each converter cell 10 is detected by the voltage detector 34.
- the central control unit 32a acquires and monitors all (N) capacitor voltages Vc (SS2), and when the minimum capacitor voltage Min (Vc) among them exceeds the starting voltage Vsh (SS3a), all element drives
- An ignition command 33a for instructing start-up of the start-up elements 20B all at once is output to the unit 30a (SS4).
- Each element drive unit 30a turns on the activation element 20B when receiving the firing command 33a (SS5).
- step SS3a only the operation of step SS3a is different from that of the third embodiment, but other configurations are the same as those of the third embodiment, and the same effects as those of the third embodiment are obtained.
- the capacitor voltage Vc when the element driving unit 30a receives the ignition command 33a, the capacitor voltage Vc always exceeds the starting voltage Vsh. Can be charged. For this reason, generation
- highly reliable initial charging can be realized while maintaining the uniformity of the capacitor voltage Vc.
- Embodiment 5 a power conversion device according to embodiment 5 of the present invention will be described below.
- the element driving units 30 and 30a for driving the activation elements 20B in each converter cell 10 are provided for all phases.
- only two phases of the three-phase power conversion device 1 are provided with element drive units 30 and 30a that drive the activation elements 20B in each converter cell 10.
- the power conversion apparatus 1 including the element driving unit 30 similar to that of the first embodiment will be described only for the V phase and the W phase. In this case, each U-phase converter cell 10 does not have the element driving unit 30.
- the charge control operation for initially charging the DC capacitor 23 of each converter cell 10 when the power conversion device 1 is started is the same as that shown in the flowchart of FIG. 3 of the first embodiment for the V phase and the W phase. .
- the switching elements 20A to 20D in all the converter cells 10 of all phases are all in the off state.
- the current i flows (see FIG. 4).
- the V-phase and W-phase element driving unit 30 detects the capacitor voltage Vc of the DC capacitor 23 that is a power source. When the capacitor voltage Vc rises and exceeds the starting voltage Vsh set in the element driving unit 30, the activation is started.
- the device 20B is turned on. At this time, the activation element 20B in each of the V-phase and W-phase converter cells 10 is turned on, and the DC capacitor 23 in the U-phase is connected to another one phase, for example, the V-phase converter cell 10. A charging current i flows. Then, the V-phase DC capacitor 23 is bypassed in accordance with the power supply polarity, and only the DC capacitor 23 in the U-phase is charged without dividing the power supply voltage in two phases (see FIG. 5).
- the charging current i flowing between the two phases of the V phase and the W phase bypasses one of the DC capacitors 23 according to the polarity of the power source, and the DC capacitor 23 in the V phase and the W phase supplies the power source voltage of 2 It is charged without dividing by phase.
- the charging current i flows through the two-phase (UV, VW, WU) positive side arms 4u to 4w or the two-phase (UV, VW, WU) negative side arms 5u to 5w. Therefore, even if the switching elements 20A to 20D in the converter cell 10 are all turned off for one phase, as described above, the DC capacitor 23 of each phase can be charged to a desired voltage. The same effect as in the first embodiment can be obtained. Moreover, since the element drive unit 30 is provided for only two phases of the three-phase power conversion device 1, the device configuration can be reduced in size and simplified.
- the device driving unit 30a may be provided for only two phases of the three-phase power conversion device 1 by applying the second to fourth embodiments. The same effect can be obtained.
- FIG. 11 is a circuit diagram showing a configuration example of a power conversion device according to Embodiment 6 of the present invention.
- the power conversion device 1a performs power conversion between a multi-phase alternating current, in this case, a three-phase alternating current and a direct current.
- each phase of the power conversion device 1a includes positive-side arms 40u to 40w and negative-side arms 50u to 50w connected in series, and AC terminals 7u to 7w that are connection points thereof are connected to the respective phase AC lines 8u.
- Each of the positive side arms 40u to 40w and the negative side arms 50u to 50w of each leg circuit includes a cell group 10b in which one or more converter cells 10 and a second converter cell 100 are connected in series, and includes a positive side reactor 6p, Negative reactor 6n is inserted in series.
- the positive side reactor 6p and the negative side reactor 6n are inserted on the AC terminals 7u to 7w side from the cell group 10a, but may be located at any position within the arms 40u to 40w and 50u to 50w, respectively. There may be.
- the power conversion device 1a is connected to the AC power supply 11 through the circuit breaker 12, the interconnection transformer 13, and the charging circuit 16. .
- the DC side of the power converter 1a is connected to a DC power source 18 through an impedance 17.
- each converter cell 10 is the same as that of the first embodiment, and the configuration of each second converter cell 100 is shown in FIG.
- Each second converter cell 100 has a half-bridge configuration, that is, a series body 27 of a plurality of (in this case, two) switching elements 25A and 25B each having diodes 26A and 26B connected in antiparallel, and A DC capacitor 28 is connected in parallel to smooth the DC voltage.
- the switching elements 25A and 25B are self-extinguishing switching elements such as IGBTs and GCTs, and are configured by connecting diodes 26A and 26B in antiparallel.
- the 2nd converter cell 100 makes both terminals of switching element 25B used as the connection part of switching elements 25A and 25B an output end, and makes switching elements 25A and 25B turn on and off at the time of operation of power converter 1.
- the voltage across the DC capacitor 28 and the zero voltage are output from the output terminal via the output lines 29P and 29N.
- Each of the positive side arms 40u to 40w and the negative side arms 50u to 50w of each leg circuit includes one or more converter cells 10 and a second converter cell 100 connected in series as described above.
- the converter cell 10 and the second converter cell 100 may each be one or more.
- the power converter device 1a is provided with the charge control part for carrying out initial charge of the DC capacitors 23 and 27 at the time of starting of the power converter device 1a.
- the same element driving unit 30 as that of the first embodiment is provided for each converter cell 10, and this element driving unit 30 constitutes a charge control unit.
- the element drive unit 30 turns on one switching element 20B in each converter cell 10 as a starting element when the DC capacitor 23 of the converter cell 10 and the DC capacitor 28 of the second converter cell 100 are initially charged. Thus, power is supplied from the DC capacitor 23 via the feeder line 31.
- the charge control operation for initially charging the DC capacitors 23 and 27 when the power conversion device 1a is started is the same as that shown in the flowchart of FIG. 3 of the first embodiment. Also in this embodiment, the charge control operation is performed when the switching elements 20A to 20D in the converter cell 10 are all in the OFF state and the capacitor voltage Vc of the converter cell 10 exceeds the starting voltage Vsh, and the starting element This is a two-stage operation with a period for turning on 20B. Note that the switching elements 25A and 25B in the second converter cell 100 are all turned off throughout both periods.
- the DC capacitor 23 of the converter cell 10 is initially charged as in the first embodiment.
- the charging current i flowing through the converter cell 10 also flows through the second converter cell 100 connected in series with the converter cell 10.
- the DC capacitor 28 is charged by the charging current i inputted from the output line 29P and outputted from the output line 29N, and the direct current is inputted by the charging current i inputted from the output line 29N and outputted from the output line 29P.
- Capacitor 28 is bypassed.
- charging and bypassing of the DC capacitor 28 are repeated according to the power supply polarity, that is, the operation is the same as that of each converter cell 10 during the period in which the activation element 20B is turned on. .
- the DC capacitor 28 of the second converter cell 100 can also be charged to a desired voltage in the same manner as the DC capacitor 23 of the converter cell 10, and the same effect as in the first embodiment can be obtained. Further, since the second converter cell 100 having a simple cell configuration is used in combination with the converter cell 10 and the element driving unit 30 is provided only in the converter cell 10, the device configuration can be reduced in size and simplified.
- the present invention can be freely combined with each other, or can be modified or omitted as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
電力系統など交流電圧源に接続する電圧型変換器は、該電圧型変換器を系統に連系する際に、該電力変換器の出力する交流電圧が交流電圧源の電圧と大きく異なると、該電圧型電力変換器に過電流が通流してしまう。したがって、電圧型電力変換器であるMMCを交流電圧源に接続する際は、各変換器セルの直流コンデンサを充電するだけでなく、該MMCは系統電圧とほぼ等しい電圧を出力する必要がある(例えば、特許文献1参照)。
以下、この発明の実施の形態1による電力変換装置を図に基づいて以下に説明する。図1は、この発明の実施の形態1による電力変換装置の構成例を示す回路図である。
図1に示すように、電力変換装置1は、複数相交流この場合三相交流と直流との間で電力変換を行うもので、交流側は各相交流線8u~8wを介して複数相を有する交流回路としての系統である交流電源11に接続される。この場合、交流電源11と電力変換装置1との間には、交流電源11側から、系統連系用の遮断器12と、連系変圧器13と、充電抵抗14およびこの充電抵抗14に並列接続されたバイパススイッチ15から成る充電回路16とが接続される。即ち電力変換装置1は、遮断器12、連系変圧器13および充電回路16を介して交流電源11に接続される。また電力変換装置1の直流側はインピーダンス17を介して直流電源18に接続される。
なお、連系変圧器13の代わりに連系リアクトルを設けても良い。また、電力変換装置1の直流側は、直流負荷に接続されてもよいし、直流出力を行う他の電力変換装置に接続されても良い。
各レグ回路の正側アーム4u~4w、負側アーム5u~5wのそれぞれは、1以上の第1変換器セル(以下、変換器セル10と称す)を直列接続したセル群10aを備え、正側リアクトル6p、負側リアクトル6nがそれぞれ直列に挿入される。この場合、正側リアクトル6p、負側リアクトル6nはセル群10aより交流端7u~7w側に挿入されるが、各アーム4u~4w、5u~5w内のいずれの位置でも良く、それぞれ複数個であっても良い。
なお、起動用素子は、他のスイッチング素子20A、20C、20Dでも良く任意に決定できる。この場合、スイッチング素子20Bを起動用素子とするため、以下、起動用素子20Bと称す。
電力変換装置1が交流電源(系統)11に連系される前は、各変換器セル10内の全てのスイッチング素子20A~20Dはオフ状態である。
電力変換装置1の起動時に、系統連系用の遮断器12が投入されると、交流電源11から充電回路16を介して充電電流iが流れ、これにより各変換器セル10の直流コンデンサ23を初期充電する動作が開始される。この時、充電回路16のバイパススイッチ15はオフ状態で、充電電流iは充電抵抗14を流れる(s1)。
素子駆動部30では、電源である直流コンデンサ23のコンデンサ電圧Vcを検出し、このコンデンサ電圧Vcが上昇して素子駆動部30に設定された起動電圧Vshを超えると(s2)、素子駆動部30は起動用素子20Bをオンする(s3)。
この場合、交流電源11からの充電電流iは、
交流電源11→V相の交流端7v→V相の正側アーム4v→正側の直流母線2→U相の正側アーム4u→U相の交流端7u→交流電源11
と流れる。
この充電電流iは、V相の正側アーム4vの変換器セル10内では、
ダイオード21A→直流コンデンサ23→ダイオード21D
と流れて正側アーム4v内の直流コンデンサ23を充電する。また充電電流iは、U相の正側アーム4uの変換器セル10内では、
ダイオード21C→直流コンデンサ23→ダイオード21B
と流れて正側アーム4u内の直流コンデンサ23を充電する。
この期間では電源電圧極性に拘わらず各直流コンデンサ23を充電でき、コンデンサ電圧Vcは徐々に上昇する。
この場合、交流電源11からの充電電流iは、
交流電源11→V相の交流端7v→V相の正側アーム4v→正側の直流母線2→U相の正側アーム4u→U相の交流端7u→交流電源11
と流れる。
この充電電流iは、V相の正側アーム4vの変換器セル10内では、
起動用素子20B→ダイオード21D
と流れて正側アーム4v内の直流コンデンサ23をバイパスする。また充電電流iは、U相の正側アーム4uの変換器セル10内では、
ダイオード21C→直流コンデンサ23→ダイオード21B
と流れて正側アーム4u内の直流コンデンサ23を充電する。
この期間では、電源電圧極性が逆になると、V相の正側アーム4v内の直流コンデンサ23のみを充電する。
この実施の形態では、コンデンサ電圧Vcが素子駆動部30に設定された起動電圧Vshを超えると、素子駆動部30は起動用素子20Bをオンする。これにより、充電電流iの経路が変更され、U相の正側アーム4u内の直流コンデンサ23のみを充電するため、電源電圧が2相で分圧されることがない。各正側アーム4u、4v内の変換器セル10の個数を1とすると、コンデンサ電圧Vcは電源電圧ピーク値と同程度まで充電できる。
また、素子駆動部30は自身に電源として供給されるコンデンサ電圧Vcに基づいて起動用素子20Bをオンするため、高速応答が可能で初期充電が速やかに行える。
次に、この発明の実施の形態2による電力変換装置を図6に基づいて以下に説明する。
この実施の形態では、電力変換装置1の主回路構成は上記実施の形態1の図1で示したものと同様であり、電力変換装置1の起動時に各変換器セル10の直流コンデンサ23を初期充電するための充電制御部が異なる。この場合、電力変換装置1内の変換器セル10の個数をNとする。充電制御部は、各変換器セル10の直流コンデンサ23を初期充電するために各変換器セル10毎に設けられた素子駆動部30aと、全て(N個)の素子駆動部30aに対して、各起動用素子20Bのオン制御開始を一斉に指令する点弧指令33を出力する集中制御部32を備える。
集中制御部32は、電力変換装置1の主回路からの電源供給、あるいは外部からの電源供給のいずれでも良い。
電力変換装置1が交流電源(系統)11に連系される前は、各変換器セル10内の全てのスイッチング素子20A~20Dはオフ状態である。
電力変換装置1の起動時に、系統連系用の遮断器12が投入されると、交流電源11から充電回路16を介して充電電流iが流れる。これにより上記実施の形態1と同様に、各変換器セル10の直流コンデンサ23を初期充電する動作が開始される(S1)。
直流コンデンサ23のコンデンサ電圧Vcは時間経過と共に上昇する。集中制御部32は、遮断器12の投入からの経過時間Taを計測し、経過時間Taが予め設定された時間(設定時間Tb)を超えると(S2)、全ての素子駆動部30aに対して、各起動用素子20Bのオン制御開始を一斉に指令する点弧指令33を出力する(S3)。
各素子駆動部30aは、点弧指令33を受信すると起動用素子20Bをオンする(S4)。
この実施の形態においても、各変換器セル10の直流コンデンサ23を初期充電する充電制御動作は、スイッチング素子20A~20Dが全てオフ状態の期間と、遮断器12の投入からの経過時間Taが設定時間Tbを超えて、起動用素子20Bをオンする期間との2段階動作となる。各期間での充電電流iの経路は、上記実施の形態1の図4、図5で示すものと同様である。
また、素子駆動部30aはコンデンサ電圧Vcを検出する必要が無く、装置構成の小型化、簡素化が図れる。
さらに、集中制御部32は、遮断器12の投入からの経過時間Taと設定時間Tbとを比較するのみで点弧指令33を出力するため、簡素な演算処理で良く装置構成の小型化、簡素化が図れる。
次に、この発明の実施の形態3による電力変換装置を図8に基づいて以下に説明する。
この実施の形態においても、電力変換装置1の主回路構成は上記実施の形態1の図1で示したものと同様である。
また、電力変換装置1の起動時に各変換器セル10の直流コンデンサ23を初期充電するための充電制御部は、各変換器セル10毎に、素子駆動部30aと、コンデンサ電圧Vcを検出する電圧検出部34とを備え、さらに全て(N個)の素子駆動部30aに対して、各起動用素子20Bのオン制御開始を一斉に指令する点弧指令33aを出力する集中制御部32aを備える。
集中制御部32aおよび電圧検出部34は、電力変換装置1の主回路からの電源供給、あるいは外部からの電源供給のいずれでも良い。
電力変換装置1が交流電源(系統)11に連系される前は、各変換器セル10内の全てのスイッチング素子20A~20Dはオフ状態である。
電力変換装置1の起動時に、系統連系用の遮断器12が投入されると、交流電源11から充電回路16を介して充電電流iが流れる。これにより上記実施の形態1と同様に、各変換器セル10の直流コンデンサ23を初期充電する動作が開始される(SS1)。
各変換器セル10の直流コンデンサ23のコンデンサ電圧Vcは電圧検出部34により検出される。集中制御部32aは、全て(N個)のコンデンサ電圧Vcを取得して監視し(SS2)、その平均値(ΣVc/N)が起動電圧Vshを超えると(SS3)、全ての素子駆動部30aに対して、各起動用素子20Bのオン制御開始を一斉に指令する点弧指令33aを出力する(SS4)。
各素子駆動部30aは、点弧指令33aを受信すると起動用素子20Bをオンする(SS5)。
上記実施の形態3では、集中制御部32aは、コンデンサ電圧Vcの平均値(ΣVc/N)が起動電圧Vshを超えると点弧指令33aを出力したが、この実施の形態では、全てのコンデンサ電圧Vcが起動電圧Vshを超えると点弧指令33aを出力する。
電力変換装置1の起動時に各変換器セル10の直流コンデンサ23を初期充電する充電制御動作について、図10に示すフローチャートに基づいて説明する。
電力変換装置1が交流電源(系統)11に連系される前は、各変換器セル10内の全てのスイッチング素子20A~20Dはオフ状態である。
電力変換装置1の起動時に、系統連系用の遮断器12が投入されると、交流電源11から充電回路16を介して充電電流iが流れる。これにより上記実施の形態1と同様に、各変換器セル10の直流コンデンサ23を初期充電する動作が開始される(SS1)。
各変換器セル10の直流コンデンサ23のコンデンサ電圧Vcは電圧検出部34により検出される。集中制御部32aは、全て(N個)のコンデンサ電圧Vcを取得して監視し(SS2)、その中の最小コンデンサ電圧Min(Vc)が起動電圧Vshを超えると(SS3a)、全ての素子駆動部30aに対して、各起動用素子20Bのオン制御開始を一斉に指令する点弧指令33aを出力する(SS4)。
各素子駆動部30aは、点弧指令33aを受信すると起動用素子20Bをオンする(SS5)。
またこの実施の形態では、素子駆動部30aが点弧指令33aを受信したとき、コンデンサ電圧Vcは必ず起動電圧Vshを超えているため、全ての起動用素子20Bを確実にオンにして直流コンデンサ23を充電できる。このため異なる変換器セル10間でコンデンサ電圧Vcのアンバランスの発生が抑えられ、変換器セル10間の循環電流の発生も防止できる。このようにコンデンサ電圧Vcの均一性を保ちつつ信頼性の高い初期充電が実現できる。
次に、この発明の実施の形態5による電力変換装置を以下に説明する。
上記実施の形態1~4では、全相に対して各変換器セル10内の起動用素子20Bを駆動する素子駆動部30、30aを備えた。この実施の形態では、三相の電力変換装置1の2相のみに対して、各変換器セル10内の起動用素子20Bを駆動する素子駆動部30、30aを備える。
例えば、V相、W相に対してのみ上記実施の形態1と同様の素子駆動部30を備える電力変換装置1について示す。この場合、U相の各変換器セル10には素子駆動部30がない。
V相、W相のコンデンサ電圧Vcが起動電圧Vsh以下の期間では、全相の各変換器セル10内のスイッチング素子20A~20Dは全てオフ状態であるため、上記実施の形態1と同様に充電電流iは流れる(図4参照)。
このとき、V相、W相の各変換器セル10内の起動用素子20Bがオンし、U相内の直流コンデンサ23には、他の1相、例えばV相の変換器セル10を介した充電電流iが流れる。そして電源極性に応じてV相の直流コンデンサ23がバイパスされ、電源電圧を2相で分圧すること無く、U相内の直流コンデンサ23のみが充電される(図5参照)。
また、V相、W相の2相間を流れる充電電流iは、電源極性に応じていずれか1相の直流コンデンサ23をバイパスし、V相、W相内の直流コンデンサ23は、電源電圧を2相で分圧すること無く充電される。
また、三相の電力変換装置1の2相のみに対して素子駆動部30を備えるため、装置構成の小型化、簡素化が図れる。
次に、この発明の実施の形態6による電力変換装置を以下に説明する。図11は、この発明の実施の形態6による電力変換装置の構成例を示す回路図である。
電力変換装置1aは、複数相交流この場合三相交流と直流との間で電力変換を行うものである。図11に示すように、電力変換装置1aの各相は、正側アーム40u~40wと負側アーム50u~50wとが直列接続されその接続点である交流端7u~7wが各相交流線8u~8wに接続されるレグ回路で構成され、3つのレグ回路は正負の直流母線2、3間に並列接続される。
各レグ回路の正側アーム40u~40w、負側アーム50u~50wのそれぞれは、1以上の変換器セル10および第2変換器セル100を直列接続したセル群10bを備え、正側リアクトル6p、負側リアクトル6nがそれぞれ直列に挿入される。この場合、正側リアクトル6p、負側リアクトル6nはセル群10aより交流端7u~7w側に挿入されるが、各アーム40u~40w、50u~50w内のいずれの位置でも良く、それぞれ複数個であっても良い。
各第2変換器セル100はハーフブリッジ構成、即ち、それぞれダイオード26A、26Bが逆並列に接続された複数(この場合2個)のスイッチング素子25A、25Bの直列体27と、この直列体27に並列接続され直流電圧を平滑化する直流コンデンサ28とから構成される。スイッチング素子25A、25Bは、IGBTやGCT等の自己消弧型のスイッチング素子から成り、それぞれダイオード26A、26Bが逆並列に接続されて構成される。
そして、第2変換器セル100は、スイッチング素子25A、25Bの接続部となるスイッチング素子25Bの両端子を出力端とし、電力変換装置1の運転時にスイッチング素子25A、25Bをオン・オフさせることにより、この出力端から、直流コンデンサ28の両端電圧およびゼロ電圧を出力線29P、29Nを介して出力する。
また電力変換装置1aは、電力変換装置1aの起動時に直流コンデンサ23、27を初期充電するための充電制御部を備える。上記実施の形態1と同様の素子駆動部30が変換器セル10毎に備えられ、この素子駆動部30が充電制御部を構成する。
素子駆動部30は、変換器セル10の直流コンデンサ23および第2変換器セル100の直流コンデンサ28の初期充電時に、各変換器セル10内の1つのスイッチング素子20Bを起動用素子としてオンさせるもので、直流コンデンサ23から給電線31を介して電源供給される。
この実施の形態においても、充電制御動作は、変換器セル10内のスイッチング素子20A~20Dが全てオフ状態の期間と、変換器セル10のコンデンサ電圧Vcが起動電圧Vshを超えて、起動用素子20Bをオンする期間との2段階動作である。なお、双方の期間を通じて、第2変換器セル100内のスイッチング素子25A、25Bは全てオフ状態とする。
第2変換器セル100では、出力線29Pから入力して出力線29Nから出力する充電電流iにより直流コンデンサ28は充電され、出力線29Nから入力して出力線29Pから出力する充電電流iにより直流コンデンサ28はバイパスされる。
このように、第2変換器セル100では、電源極性に応じて直流コンデンサ28の充電とバイパスとを繰り返し、即ち、起動用素子20Bをオンする期間の各変換器セル10と同様の動作となる。
また、セル構成が簡略な第2変換器セル100を変換器セル10と組み合わせて用い、さらに変換器セル10のみに素子駆動部30を備えるため、装置構成の小型化、簡素化が図れる。
Claims (8)
- それぞれ正側アームと負側アームとが直列接続されその接続点が各相交流線を介して交流回路に接続される複数のレグ回路を、正負の直流母線間に並列接続して備えて、複数相交流と直流との間で電力変換を行う電力変換装置において、
上記各レグ回路の上記正側アーム、上記負側アームのそれぞれは、少なくとも1つの第1変換器セルを直列接続して備え、
上記各第1変換器セルは、互いに直列接続された複数の半導体スイッチング素子から成る2つの直列体が並列接続され、さらに該直列体に直流コンデンサが並列接続され、上記各直列体の上記複数の半導体スイッチング素子の1つの接続部を出力端とし、
上記各第1変換器セル内の上記直流コンデンサの初期充電を制御する充電制御部を備え、
上記充電制御部は、上記各第1変換器セル内の上記複数の半導体スイッチング素子の内、1つの半導体スイッチング素子を起動用素子として駆動する素子駆動部を該各第1変換器セル毎に有し、該素子駆動部は、上記直流コンデンサの初期充電時に上記起動用素子をオンさせる
電力変換装置。 - 上記各正側アーム、上記各負側アームは、上記第1変換器セルに、さらに少なくとも1つの第2変換器セルを直列接続して備え、
上記各第2変換器セルは、互いに直列接続された複数の半導体スイッチング素子から成る直列体に直流コンデンサが並列接続され、上記複数の半導体スイッチング素子の2つの接続部を出力端とし、
上記充電制御部が上記第1変換器セル内の上記直流コンデンサの初期充電を制御する際に、上記各第2変換器セル内の上記複数の半導体スイッチング素子は全てオフ状態で、上記各第2変換器セル内の上記直流コンデンサは初期充電される請求項1に記載の電力変換装置。 - 上記複数相交流は三相交流であり、
上記充電制御部は、三相の内、二相のみに対して、上記各第1変換器セル内の上記起動用素子を駆動する上記素子駆動部を備える請求項1または請求項2に記載の電力変換装置。 - 上記各素子駆動部は対応する上記第1変換器セル内の上記直流コンデンサから電源供給される請求項1または請求項2に記載の電力変換装置。
- 上記各素子駆動部は、上記各直流コンデンサの電圧に基づいて上記各起動用素子のオン制御を開始する請求項4に記載の電力変換装置。
- 上記充電制御部は、全ての上記素子駆動部に対して、上記各起動用素子のオン制御開始を一斉に指令する点弧指令を出力する集中制御部を備える請求項4に記載の電力変換装置。
- 上記集中制御部は、上記直流コンデンサの初期充電開始から設定時間経過後に、全ての上記素子駆動部に上記点弧指令を出力する請求項6に記載の電力変換装置。
- 上記集中制御部は、上記各第1変換器セル内の上記直流コンデンサの電圧を監視し、該各電圧に基づいて、全ての上記素子駆動部に上記点弧指令を出力する請求項6に記載の電力変換装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/035,575 US10128741B2 (en) | 2013-12-16 | 2014-04-18 | Power conversion device |
JP2015553385A JP6203289B2 (ja) | 2013-12-16 | 2014-04-18 | 電力変換装置 |
EP14871075.9A EP3086459B1 (en) | 2013-12-16 | 2014-04-18 | Power conversion device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013259049 | 2013-12-16 | ||
JP2013-259049 | 2013-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093072A1 true WO2015093072A1 (ja) | 2015-06-25 |
Family
ID=53402433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061053 WO2015093072A1 (ja) | 2013-12-16 | 2014-04-18 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10128741B2 (ja) |
EP (1) | EP3086459B1 (ja) |
JP (1) | JP6203289B2 (ja) |
WO (1) | WO2015093072A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018038202A (ja) * | 2016-09-01 | 2018-03-08 | 東芝三菱電機産業システム株式会社 | 電力変換装置及びその初期充電方法 |
KR20200125988A (ko) * | 2018-04-27 | 2020-11-05 | 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 | 하프 브리지와 풀 브리지가 혼합된 모듈형 멀티레벨 컨버터의 기동 방법 및 장치 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI125287B (en) * | 2013-02-04 | 2015-08-14 | Fortum Oyj | A system and method for connecting a single-phase power supply to a multi-phase transmission network |
US9866120B2 (en) * | 2014-06-30 | 2018-01-09 | Mitsubishi Electric Corporation | Power conversion device |
EP3273586B1 (en) * | 2015-03-17 | 2021-08-25 | Mitsubishi Electric Corporation | Power conversion device |
US10361624B2 (en) * | 2016-12-06 | 2019-07-23 | Infineon Technologies Austria Ag | Multi-cell power converter with improved start-up routine |
WO2018216208A1 (ja) * | 2017-05-26 | 2018-11-29 | 三菱電機株式会社 | 電力変換装置 |
EP3756273B1 (en) * | 2018-02-23 | 2023-07-05 | Hitachi Energy Switzerland AG | Energization of a converter including a mix of half-bridge and full-bridge submodules |
CN108539987B (zh) * | 2018-05-15 | 2020-04-10 | 南京理工大学 | 一种模块化多电平直流固态变压器及其充电控制方法 |
EP3654510A1 (en) * | 2018-11-19 | 2020-05-20 | Maschinenfabrik Reinhausen GmbH | Pre-charging a modular multilevel converter |
CN112564518B (zh) * | 2019-09-10 | 2022-03-29 | 南京南瑞继保电气有限公司 | 一种具备自我保护功能的功率模块及其控制方法 |
US20230087350A1 (en) * | 2020-02-14 | 2023-03-23 | Ecole De Technologie Superieure | Three-phase multilevel electric power converter |
CN111371302B (zh) * | 2020-03-11 | 2021-09-07 | 合肥科威尔电源系统股份有限公司 | 一种多电平直流固态变压器多阶段软充控制方法及系统 |
FR3122296A1 (fr) * | 2021-04-27 | 2022-10-28 | Supergrid Institute | Convertisseur de tension DC/DC non-isolé |
EP4383539A1 (en) * | 2022-12-08 | 2024-06-12 | Hitachi Energy Ltd | Method for energizing a modular multilevel converter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010512135A (ja) * | 2006-12-08 | 2010-04-15 | シーメンス アクチエンゲゼルシヤフト | 電圧形インバータの直流側短絡を制御するための半導体保護素子 |
JP2011024392A (ja) | 2009-07-21 | 2011-02-03 | Hitachi Ltd | 電力変換装置 |
JP2011142740A (ja) * | 2010-01-07 | 2011-07-21 | Mitsubishi Electric Corp | 電力変換装置 |
WO2012140008A2 (en) | 2011-04-15 | 2012-10-18 | Siemens Aktiengesellschaft | Multilevel converter and method of starting up a multilevel converter |
WO2012159668A1 (en) | 2011-05-24 | 2012-11-29 | Abb Technology Ag | Inrush current control in a cell-based voltage source converter |
WO2013071975A1 (en) * | 2011-11-17 | 2013-05-23 | Alstom Technology Ltd | Hybrid ac/dc converter for hvdc applications |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5294759B2 (ja) | 2008-08-29 | 2013-09-18 | 三菱電機株式会社 | 系統連系インバータ装置 |
DE102009033515A1 (de) * | 2009-07-15 | 2011-01-20 | Siemens Aktiengesellschaft | Statischer Umformer und Verfahren zum Anfahren des Umformers |
JP5378274B2 (ja) | 2010-03-15 | 2013-12-25 | 株式会社日立製作所 | 電力変換装置 |
CN101795057B (zh) * | 2010-04-07 | 2012-06-27 | 浙江大学 | 无需辅助直流电源的三相模块化多电平换流器启动方法 |
CN103140865A (zh) * | 2010-07-30 | 2013-06-05 | Abb研究有限公司 | 用于工业无线传感器网络中定位的方法和系统 |
CA2838775C (en) * | 2011-06-10 | 2016-08-16 | Abb Technology Ag | Method for energizing a chain-link converter, controller, computer programs and computer program products |
JP5881362B2 (ja) | 2011-10-04 | 2016-03-09 | 株式会社東芝 | 電力変換装置 |
JP5938202B2 (ja) | 2011-12-08 | 2016-06-22 | 東芝三菱電機産業システム株式会社 | 電力変換装置用部品 |
EP2795780B1 (en) * | 2011-12-19 | 2020-07-08 | ABB Schweiz AG | Black start of a modular multilevel voltage source converter |
US9219426B2 (en) | 2012-02-09 | 2015-12-22 | Hitachi, Ltd. | Switching element, power converter, direct current transmission system, current control device, method of controlling power converter, and method of controlling current in voltage source converter |
-
2014
- 2014-04-18 EP EP14871075.9A patent/EP3086459B1/en active Active
- 2014-04-18 WO PCT/JP2014/061053 patent/WO2015093072A1/ja active Application Filing
- 2014-04-18 US US15/035,575 patent/US10128741B2/en active Active
- 2014-04-18 JP JP2015553385A patent/JP6203289B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010512135A (ja) * | 2006-12-08 | 2010-04-15 | シーメンス アクチエンゲゼルシヤフト | 電圧形インバータの直流側短絡を制御するための半導体保護素子 |
JP2011024392A (ja) | 2009-07-21 | 2011-02-03 | Hitachi Ltd | 電力変換装置 |
JP2011142740A (ja) * | 2010-01-07 | 2011-07-21 | Mitsubishi Electric Corp | 電力変換装置 |
WO2012140008A2 (en) | 2011-04-15 | 2012-10-18 | Siemens Aktiengesellschaft | Multilevel converter and method of starting up a multilevel converter |
WO2012159668A1 (en) | 2011-05-24 | 2012-11-29 | Abb Technology Ag | Inrush current control in a cell-based voltage source converter |
WO2013071975A1 (en) * | 2011-11-17 | 2013-05-23 | Alstom Technology Ltd | Hybrid ac/dc converter for hvdc applications |
Non-Patent Citations (1)
Title |
---|
See also references of EP3086459A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018038202A (ja) * | 2016-09-01 | 2018-03-08 | 東芝三菱電機産業システム株式会社 | 電力変換装置及びその初期充電方法 |
KR20200125988A (ko) * | 2018-04-27 | 2020-11-05 | 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 | 하프 브리지와 풀 브리지가 혼합된 모듈형 멀티레벨 컨버터의 기동 방법 및 장치 |
JP2021516946A (ja) * | 2018-04-27 | 2021-07-08 | グアンジョウ パワー サプライ ビューロー オブ グァンドン パワー グリッド カンパニー リミテッド | ハーフブリッジとフルブリッジが混在するモジュラーマルチレベルコンバータの起動方法及び装置 |
JP7125504B2 (ja) | 2018-04-27 | 2022-08-24 | グアンジョウ パワー サプライ ビューロー オブ グァンドン パワー グリッド カンパニー リミテッド | ハーフブリッジとフルブリッジが混在するモジュラーマルチレベルコンバータの起動方法及び装置 |
KR102440726B1 (ko) * | 2018-04-27 | 2022-09-06 | 광저우 파워 서플라이 뷰로 오브 광동 파워 그리드 컴퍼니 리미티드 | 하프 브리지와 풀 브리지가 혼합된 모듈형 멀티레벨 컨버터의 기동 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
JP6203289B2 (ja) | 2017-09-27 |
US20160294276A1 (en) | 2016-10-06 |
EP3086459A4 (en) | 2017-08-09 |
JPWO2015093072A1 (ja) | 2017-03-16 |
EP3086459A1 (en) | 2016-10-26 |
US10128741B2 (en) | 2018-11-13 |
EP3086459B1 (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6203289B2 (ja) | 電力変換装置 | |
US9812990B1 (en) | Spare on demand power cells for modular multilevel power converter | |
US9240731B2 (en) | Power cell bypass method and apparatus for multilevel inverter | |
US7088073B2 (en) | Inverter drive system | |
US11075540B2 (en) | Uninterruptible power supply device | |
US10110110B2 (en) | Power conversion device | |
JP2016100926A (ja) | 電力変換装置 | |
US20170040999A1 (en) | Auxiliary commutated silicon-controlled rectifier circuit methods and systems | |
US20180019684A1 (en) | Power converter | |
KR20140118394A (ko) | 멀티 레벨 인버터 | |
WO2014056742A2 (en) | Controlling a mocular converter | |
JP5362657B2 (ja) | 電力変換装置 | |
US20180019685A1 (en) | Power converter | |
US10770962B2 (en) | Converter cell comprising an energy converter in parallel to a clamp inductor | |
JP5805118B2 (ja) | 電力変換装置 | |
JP5971685B2 (ja) | 電力変換装置 | |
WO2022003954A1 (ja) | 無停電電源システム | |
JP6666636B2 (ja) | 電力変換装置 | |
JP5097063B2 (ja) | 電力変換装置 | |
JP7421566B2 (ja) | マルチレベルインバータの交流出力に過渡電圧変動が発生した場合の電流制限のための方法及びマルチレベルインバータ | |
JP2002320390A (ja) | 蓄電装置 | |
WO2015114823A1 (ja) | 電力変換装置および電力変換装置の制御方法 | |
JP2024047905A (ja) | 電力変換装置 | |
JP2017112686A (ja) | 交流電源回路 | |
JP2014060853A (ja) | 電源変換用制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871075 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015553385 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15035575 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014871075 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014871075 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |