WO2015092918A1 - インバータ制御装置 - Google Patents

インバータ制御装置 Download PDF

Info

Publication number
WO2015092918A1
WO2015092918A1 PCT/JP2013/084271 JP2013084271W WO2015092918A1 WO 2015092918 A1 WO2015092918 A1 WO 2015092918A1 JP 2013084271 W JP2013084271 W JP 2013084271W WO 2015092918 A1 WO2015092918 A1 WO 2015092918A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
current command
inverter
system voltage
voltage
Prior art date
Application number
PCT/JP2013/084271
Other languages
English (en)
French (fr)
Inventor
フィゲロア ルベン アレクシス インスンサ
岳士 角屋
達明 安保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to ES13899883T priority Critical patent/ES2924764T3/es
Priority to PCT/JP2013/084271 priority patent/WO2015092918A1/ja
Priority to JP2015553302A priority patent/JP6220895B2/ja
Priority to EP13899883.6A priority patent/EP3086457B1/en
Priority to CN201380080867.6A priority patent/CN105706347B/zh
Publication of WO2015092918A1 publication Critical patent/WO2015092918A1/ja
Priority to US15/187,096 priority patent/US9948207B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an inverter control device that controls an inverter connected to an AC power system.
  • an AC capacitor may be provided on the AC side of the inverter connected to the grid.
  • An object of the present invention is to provide an inverter control device that suppresses overcurrent caused by a sudden change in system voltage.
  • An inverter control device is an inverter control device that controls an inverter connected to an AC power system and provided with a capacitor on the AC side, and detects a system voltage of the AC power system Based on the voltage detection means, the differential calculation means for calculating the differential value of the grid voltage detected by the grid voltage detection means, and the output of the inverter based on the differential value of the grid voltage calculated by the differential calculation means Based on the corrected current command value calculated by the corrected current command value calculating means, a corrected current command value calculating means for calculating a corrected current command value for correcting a current command value that is a current command value, A current command value correcting means for correcting the value, and a control means for controlling the inverter based on the current command value corrected by the current command value correcting means.
  • a corrected current command value calculating means for calculating a corrected current command value for correcting a current command value that is a current command value
  • a current command value correcting means for correcting the value
  • a control means for controlling the invert
  • FIG. 1 is a configuration diagram showing the configuration of the photovoltaic power generation system according to the first embodiment of the present invention.
  • FIG. 2 is a waveform diagram showing a change in output current when the system voltage is decreased under the control of the control device according to the first embodiment.
  • FIG. 3 is a waveform diagram showing a change in the output current when the system voltage rises under the control of the control device according to the first embodiment.
  • FIG. 4 is a waveform diagram showing changes in the output current of the inverter under the control of the control device according to the second embodiment of the present invention.
  • FIG. 5 is a waveform diagram showing changes in the output current of the inverter under the control of the control device according to the third embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a configuration of a photovoltaic power generation system 10 according to the first embodiment of the present invention.
  • symbol is attached
  • the solar power generation system 10 is a distributed power system that is connected to a three-phase AC power system 9.
  • the solar power generation system 10 is connected to the power system 9 at the connection point Pc.
  • the photovoltaic power generation system 10 includes an inverter 1, a control device 2, a PV (photovoltaic) array 3, a smoothing capacitor 4, a reactor 5, a capacitor 6, a DC voltage detector 11, a DC current detector 12, an AC current detector 13, and an AC A voltage detector 14 and an overcurrent protection relay 15 are provided.
  • the overcurrent protection relay 15 is provided on the AC side (output side) of the inverter 1.
  • the overcurrent protection relay 15 may be provided anywhere in the solar power generation system 10 or may be provided in the power system 9.
  • the overcurrent protection relay 15 detects that the output current (system current) Iiv of the inverter 1 exceeds the set value and becomes an overcurrent, the overcurrent protection relay 15 trips a circuit breaker that cuts off the output current Iiv. Therefore, when the overcurrent protection relay 15 operates, the solar power generation system 10 stops the power supply to the power system 9.
  • the PV array 3 is an aggregate of PV cells that generate power by the energy of sunlight.
  • the PV array 3 supplies the generated DC power to the inverter 1.
  • the inverter 1 is an inverter controlled by PWM (Pulse Width Modulation).
  • PWM Pulse Width Modulation
  • the inverter 1 converts the power generated by the PV array 3 into AC power synchronized with the system voltage of the power system 9 and supplies the AC power to the power system 9.
  • the inverter 1 is controlled by the control device 2. Specifically, the output of the inverter 1 is controlled by the switching elements constituting the power conversion circuit of the inverter 1 being driven by the gate signal Gt received from the control device 2.
  • the smoothing capacitor 4 is provided on the DC side of the inverter 1. Smoothing capacitor 4 smoothes the DC power supplied from PV array 3 to inverter 1.
  • Reactor 5 and capacitor 6 constitute an AC filter.
  • the AC filter suppresses ripple components output from the inverter 1.
  • the DC voltage detector 11 is a detector for measuring the DC voltage Vdc applied to the DC side of the inverter 1.
  • the DC voltage detector 11 outputs the detected DC voltage Vdc to the control device 2 as a detection signal.
  • the direct current detector 12 is a detector for measuring the direct current Idc input to the direct current side of the inverter 1.
  • the DC current detector 12 outputs the detected DC current Idc to the control device 2 as a detection signal.
  • the alternating current detector 13 is a detector for measuring the output current Iiv of the inverter 1.
  • the alternating current detector 13 outputs the detected output current Iiv to the control device 2 as a detection signal.
  • the AC voltage detector 14 is a detector for measuring the system voltage Vr of the power system 9.
  • the AC voltage detector 14 outputs the detected system voltage Vr to the control device 2 as a detection signal.
  • the control device 2 is a device that controls the inverter 1. Specifically, the control device 2 controls the output current Iiv of the inverter 1 so as to follow a predetermined current command value Ir.
  • the control device 2 includes a power amount calculation unit 21, an MPPT (maximum power point tracker) 22, a DC voltage control unit 23, a current control unit 24, a PWM control unit 25, a corrected current command value calculation unit 26, and an adder 27. .
  • the electric energy calculation unit 21 calculates the DC electric energy Pdc generated by the PV array 3 based on the DC voltage Vdc detected by the DC voltage detector 11 and the DC current Idc detected by the DC current detector 12. The electric energy calculation unit 21 outputs the calculated DC electric energy Pdc to the MPPT 22.
  • the MPPT 22 outputs a voltage increase / decrease signal Vn indicating either increase or decrease of the DC voltage to the DC voltage control unit 23 based on the DC power amount Pdc calculated by the power amount calculation unit 21.
  • the MPPT 22 controls the DC voltage Vdc of the inverter 1 (maximum power point tracking control) so as to track the voltage (maximum power point voltage) that is always the maximum power.
  • the DC voltage controller 23 receives the DC voltage Vdc detected by the DC voltage detector 11 and the voltage increase / decrease signal Vn determined by the MPPT 22.
  • the DC voltage control unit 23 calculates a DC voltage command value Vdcr serving as a command for the DC voltage Vdc in accordance with the voltage increase / decrease signal Vn.
  • the DC voltage control unit 23 outputs the calculated DC voltage command value Vdcr to the current control unit 24.
  • the corrected current command value calculation unit 26 receives the output current Iiv detected by the AC current detector 13 and the system voltage Vr detected by the AC voltage detector 14. The corrected current command value calculation unit 26 calculates a corrected current command value Ic by the following equation. The corrected current command value calculation unit 26 outputs the calculated corrected current command value Ic to the adder 27.
  • Ic Vr ⁇ C ⁇ s (1)
  • 'C' is the capacitance of the capacitor 6 and 's' is a Laplace operator.
  • 'Vr' is an effective value of the system voltage.
  • the correction current command value calculation unit 26 is obtained by the product of the value obtained by differentiating the system voltage Vr and the capacitance C of the capacitor 6.
  • the corrected current command value Ic may be obtained by multiplying the above equation by a gain or the like.
  • the capacitance C is set in the correction current command value calculation unit 26 in advance.
  • the system voltage Vr is a value obtained by converting a sampling value (instantaneous value) of the system voltage Vr detected from the power system 9 into an effective value in the arithmetic processing by the computer of the control device 2.
  • the control device 2 can correct the current command value Ir when the system voltage Vr starts to change by obtaining the corrected current command value Ic based on the value obtained by differentiating the system voltage Vr. If the system voltage Vr is in a steady state (a state where the effective value of the system voltage Vr is constant), the differential value of the effective value of the system voltage Vr is zero, so that the correction current command value Ic is also zero. Further, by obtaining the corrected current command value Ic using the capacitance C of the capacitor 6, the current command value Ir can be corrected so as to cancel the increase / decrease in the output current Iiv due to charging / discharging of the capacitor 6.
  • the correction current command value Ic calculated by the correction current command value calculation unit 26 is input to the adder 27.
  • the adder 27 adds the corrected current command value Ic to the preset current command value Ir0 and outputs a corrected current command value Ir1 to the current control unit 24.
  • the preset current command value Ir0 is a current value that is output from the inverter 1 when the system voltage Vr is in a steady state (a state in which current correction is not performed).
  • the current control unit 24 receives the DC power amount Pdc calculated by the power amount calculation unit 21, the DC voltage command value Vdcr calculated by the DC voltage control unit 23, and the current command value Ir1 corrected by the adder 27.
  • the current control unit 24 calculates a voltage command value Vivr for controlling the output voltage of the inverter 1 based on the DC power amount Pdc, the DC voltage command value Vdcr, and the current command value Ir1.
  • the current control unit 24 obtains the voltage command value Vivr so that the DC voltage Vdc of the inverter 1 follows the DC voltage command value Vdcr and the output current Iiv of the inverter 1 follows the current command value Ir1.
  • the current control unit 24 outputs the calculated voltage command value Vivr to the PWM control unit 25.
  • the voltage command value Vivr calculated by the current control unit 24 is input to the PWM control unit 25.
  • the PWM control unit 25 generates the gate signal Gt so as to control the output voltage of the inverter 1 to the voltage command value Vivr.
  • the gate signal Gt drives the switching element that constitutes the power conversion circuit of the inverter 1. Thereby, the inverter 1 is PWM-controlled.
  • FIG. 2 is a waveform diagram showing changes in the output current Iiv when the system voltage Vr decreases.
  • FIG. 3 is a waveform diagram showing changes in the output current Iiv when the system voltage Vr rises.
  • the horizontal axis represents the time axis. 2 and 3, times tc1 and tc2 indicate times when the system voltage Vr suddenly changes.
  • the output current Iiv of the inverter 1 can be corrected when the system voltage Vr starts to change suddenly. Thereby, the unnecessary operation
  • FIG. 4 is a configuration diagram showing a configuration of a photovoltaic power generation system 10A according to the second embodiment of the present invention.
  • the photovoltaic power generation system 10A is a photovoltaic power generation system 10 according to the first embodiment shown in FIG. 1, in which a connected reactor 7 is provided for grid connection to the power system 9 side rather than the reactor 5. . Others are the same as that of the solar power generation system 10 according to the first embodiment.
  • the photovoltaic power generation system 10A can be connected to the power system 9 in which no interconnection reactor or the like is provided.
  • FIG. 5 is a configuration diagram showing a configuration of a photovoltaic power generation system 10B according to the third embodiment of the present invention.
  • the solar power generation system 10B is a solar power generation system 10 according to the first embodiment shown in FIG. 1, in which an interconnection transformer 8 is provided for grid connection to the power system 9 side from the reactor 5. is there. Others are the same as that of the solar power generation system 10 according to the first embodiment.
  • the solar power generation system 10B can be connected to the power system 9 in which no interconnection transformer or the like is provided.
  • each embodiment demonstrated the structure of the solar power generation system, it is not restricted to this.
  • Other distributed power supply systems such as wind power generation or hydropower generation can be configured in the same manner as in each embodiment.
  • control device 2 may separately control the output current Iiv of the inverter 1 using an active power component and a reactive power component.
  • the controller 2 can be configured in the same manner as in each embodiment by setting the command value Ir0 separately for the active power component and reactive power component and setting the power factor for the current command value Ir0.
  • the correction current command value Ic is obtained using the equation (1), but the present invention is not limited to this. Any correction current command value Ic may be obtained based on the differential value of the system voltage Vr. As a result, it is possible to prevent the output current Iiv of the inverter 1 from becoming an overcurrent in response to a rapid change in the system voltage Vr.
  • the inverter 1 is assumed to be a voltage source inverter, but may be a current source inverter.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • General Induction Heating (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 交流電力系統(9)と連系し、交流側にコンデンサ(6)が設けられたインバータ(1)を制御するインバータ制御装置(2)であって、交流電力系統(9)の系統電圧(Vr)を検出し、検出した系統電圧(Vr)の微分値を演算し、演算した系統電圧(Vr)の微分値に基づいて、インバータ(1)の出力電流(Iiv)の指令値である電流指令値(Ir0)を補正する補正電流指令値(Ic)を演算し、演算した補正電流指令値(Ic)に基づいて、電流指令値(Ir0)を補正し、補正した電流指令値(Ir1)に基づいて、インバータ(1)を制御する。

Description

インバータ制御装置
 本発明は、交流電力系統と連系するインバータを制御するインバータ制御装置に関する。
 一般に、交流電力系統と連系するインバータが知られている。系統連系するインバータの交流側には、インバータから出力されるリプル成分を抑制するために、交流コンデンサを設けることがある。
 一方、系統電圧が低下すると、インバータから出力されるリプル電流の振幅は大きくなる。従って、インバータの出力電流の基本波成分が保護動作を必要とするレベルに達していなくても、過電流継電器が保護動作し、遮断器がトリップする可能性がある。この対策としては、系統電圧の低下を検出した場合、搬送波の周波数を高くして、インバータを制御することが開示されている(特許文献1参照)。また、系統電圧の低下を検出した場合、インバータの電流指令値を制限するリミット値を小さくすることが開示されている(特許文献2参照)。さらに、系統電圧の低下を検出した場合、インバータの直流電圧を昇圧することが開示されている(特許文献3参照)。
 しかしながら、電力系統の故障などにより、系統電圧が急激に変動すると、この変動に合わせて交流コンデンサが充放電することで、インバータから出力される電流が過電流となることがある。インバータ制御装置がこのような過電流を検出してからインバータを制御しても、過電流の抑制が間に合わずに、遮断器がトリップする可能性がある。
国際公開第2012/114467号 国際公開第2012/114468号 国際公開第2012/114469号
 本発明の目的は、系統電圧の急変による過電流を抑制するインバータ制御装置を提供することにある。
 本発明の観点に従ったインバータ制御装置は、交流電力系統と連系し、交流側にコンデンサが設けられたインバータを制御するインバータ制御装置であって、前記交流電力系統の系統電圧を検出する系統電圧検出手段と、前記系統電圧検出手段により検出された前記系統電圧の微分値を演算する微分演算手段と、前記微分演算手段により演算された前記系統電圧の微分値に基づいて、前記インバータの出力電流の指令値である電流指令値を補正する補正電流指令値を演算する補正電流指令値演算手段と、前記補正電流指令値演算手段により演算された前記補正電流指令値に基づいて、前記電流指令値を補正する電流指令値補正手段と、前記電流指令値補正手段により補正された前記電流指令値に基づいて、前記インバータを制御する制御手段とを備える。
図1は、本発明の第1の実施形態に係る太陽光発電システムの構成を示す構成図である。 図2は、第1の実施形態に係る制御装置の制御による系統電圧の低下時の出力電流の変化を示す波形図である。 図3は、第1の実施形態に係る制御装置の制御による系統電圧の上昇時の出力電流の変化を示す波形図である。 図4は、本発明の第2の実施形態に係る制御装置の制御によるインバータの出力電流の変化を示す波形図である。 図5は、本発明の第3の実施形態に係る制御装置の制御によるインバータの出力電流の変化を示す波形図である。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る太陽光発電システム10の構成を示す構成図である。なお、図面における同一部分には同一符号を付して重複する説明を適宜省略し、異なる部分について主に述べる。
 太陽光発電システム10は、三相交流の電力系統9と連系する分散型電源システムである。太陽光発電システム10は、電力系統9と連系点Pcで接続されている。
 太陽光発電システム10は、インバータ1、制御装置2、PV(photovoltaic)アレイ3、平滑コンデンサ4、リアクトル5、コンデンサ6、直流電圧検出器11、直流電流検出器12、交流電流検出器13、交流電圧検出器14、及び過電流保護リレー15を備える。
 過電流保護リレー15は、インバータ1の交流側(出力側)に設けられている。なお、過電流保護リレー15は、太陽光発電システム10の何処に設けられていてもよいし、電力系統9に設けられていてもよい。過電流保護リレー15は、インバータ1の出力電流(系統電流)Iivが整定値を超えて過電流になったことを検出すると、出力電流Iivを遮断する遮断器をトリップさせる。従って、過電流保護リレー15が動作すると、太陽光発電システム10は、電力系統9への電力供給を停止する。
 PVアレイ3は、太陽光のエネルギーにより発電するPVセルの集合体である。PVアレイ3は、発電した直流電力をインバータ1に供給する。
 インバータ1は、PWM(パルス幅変調, Pulse Width Modulation)制御されるインバータである。インバータ1は、PVアレイ3により発電された電力を電力系統9の系統電圧と同期する交流電力に変換して、電力系統9に供給する。インバータ1は、制御装置2により制御される。具体的には、インバータ1の電力変換回路を構成するスイッチング素子が制御装置2から受信するゲート信号Gtにより駆動することで、インバータ1の出力が制御される。
 平滑コンデンサ4は、インバータ1の直流側に設けられている。平滑コンデンサ4は、PVアレイ3からインバータ1に供給される直流電力を平滑化する。
 リアクトル5及びコンデンサ6は、交流フィルタを構成する。交流フィルタは、インバータ1から出力されるリプル成分を抑制する。
 直流電圧検出器11は、インバータ1の直流側に印加される直流電圧Vdcを計測するための検出器である。直流電圧検出器11は、検出した直流電圧Vdcを制御装置2に検出信号として出力する。
 直流電流検出器12は、インバータ1の直流側に入力される直流電流Idcを計測するための検出器である。直流電流検出器12は、検出した直流電流Idcを制御装置2に検出信号として出力する。
 交流電流検出器13は、インバータ1の出力電流Iivを計測するための検出器である。交流電流検出器13は、検出した出力電流Iivを制御装置2に検出信号として出力する。
 交流電圧検出器14は、電力系統9の系統電圧Vrを計測するための検出器である。交流電圧検出器14は、検出した系統電圧Vrを制御装置2に検出信号として出力する。
 制御装置2は、インバータ1を制御する装置である。具体的には、制御装置2は、予め決められた電流指令値Irに追従するように、インバータ1の出力電流Iivを制御する。制御装置2は、電力量演算部21、MPPT(maximum power point tracker)22、直流電圧制御部23、電流制御部24、PWM制御部25、補正電流指令値演算部26、及び加算器27を備える。
 電力量演算部21は、直流電圧検出器11により検出された直流電圧Vdc及び直流電流検出器12により検出された直流電流Idcに基づいて、PVアレイ3により発電された直流電力量Pdcを演算する。電力量演算部21は、演算した直流電力量PdcをMPPT22に出力する。
 MPPT22は、電力量演算部21により演算された直流電力量Pdcに基づいて、直流電圧の増加又は減少のいずれか一方を示す電圧増減信号Vnを直流電圧制御部23に出力する。これにより、MPPT22は、常に最大電力となる電圧(最大電力点電圧)を追従するように、インバータ1の直流電圧Vdcを制御(最大電力点追従制御)する。
 直流電圧制御部23には、直流電圧検出器11により検出された直流電圧Vdc、及びMPPT22により決定された電圧増減信号Vnが入力される。直流電圧制御部23は、電圧増減信号Vnに従って、直流電圧Vdcに対する指令となる直流電圧指令値Vdcrを演算する。直流電圧制御部23は、演算した直流電圧指令値Vdcrを電流制御部24に出力する。
 補正電流指令値演算部26には、交流電流検出器13により検出された出力電流Iiv及び交流電圧検出器14により検出された系統電圧Vrが入力される。補正電流指令値演算部26は、次式により補正電流指令値Icを演算する。補正電流指令値演算部26は、演算した補正電流指令値Icを加算器27に出力する。
 Ic=Vr・C・s        …(1)
 ここで、‘C’は、コンデンサ6のキャパシタンス、‘s’は、ラプラス演算子である。また、‘Vr’は、系統電圧の実効値である。
 即ち、補正電流指令値演算部26は、系統電圧Vrを微分した値とコンデンサ6のキャパシタンスCとの積により求まる。なお、補正電流指令値Icは、上式にゲインなどを掛けて求めてもよい。キャパシタンスCは、予め補正電流指令値演算部26に設定されている。系統電圧Vrは、制御装置2のコンピュータによる演算処理では、電力系統9から検出した系統電圧Vrのサンプリング値(瞬時値)を実効値に換算した値である。
 制御装置2は、系統電圧Vrを微分した値に基づいて、補正電流指令値Icを求めることで、系統電圧Vrが変化し始める時点で、電流指令値Irに補正を加えることができる。系統電圧Vrが定常状態(系統電圧Vrの実効値が一定である状態)であれば、系統電圧Vrの実効値の微分値はゼロであるため、補正電流指令値Icもゼロになる。また、コンデンサ6のキャパシタンスCを用いて、補正電流指令値Icを求めることで、コンデンサ6の充放電による出力電流Iivの増減を打ち消すように、電流指令値Irに補正を加えることができる。
 加算器27には、補正電流指令値演算部26により演算された補正電流指令値Icが入力される。加算器27は、予め設定されている電流指令値Ir0に補正電流指令値Icを加えて補正した電流指令値Ir1を電流制御部24に出力する。予め設定されている電流指令値Ir0は、系統電圧Vrが定常状態(電流補正しない状態)のときに、インバータ1から出力させる電流値である。
 電流制御部24には、電力量演算部21により演算された直流電力量Pdc、直流電圧制御部23により演算された直流電圧指令値Vdcr、及び加算器27により補正された電流指令値Ir1が入力される。電流制御部24は、直流電力量Pdc、直流電圧指令値Vdcr、及び電流指令値Ir1に基づいて、インバータ1の出力電圧を制御するための電圧指令値Vivrを演算する。電流制御部24は、インバータ1の直流電圧Vdcが直流電圧指令値Vdcrに追従し、インバータ1の出力電流Iivが電流指令値Ir1に追従するように電圧指令値Vivrを求める。電流制御部24は、演算した電圧指令値VivrをPWM制御部25に出力する。
 PWM制御部25には、電流制御部24により演算された電圧指令値Vivrが入力される。PWM制御部25は、インバータ1の出力電圧を電圧指令値Vivrに制御するようにゲート信号Gtを生成する。ゲート信号Gtは、インバータ1の電力変換回路を構成するスイッチング素子を駆動させる。これにより、インバータ1は、PWM制御される。
 図2及び図3を参照して、系統電圧Vrが急変したときの制御装置2の制御によるインバータ1の出力電流Iivの変化について説明する。図2は、系統電圧Vrの低下時の出力電流Iivの変化を示す波形図である。図3は、系統電圧Vrの上昇時の出力電流Iivの変化を示す波形図である。横軸は、時間軸を示している。図2及び図3において、時刻tc1,tc2は、それぞれ系統電圧Vrが急変した時点を示している。
 図2に示すように、時刻tc1で、系統電圧Vrが急激に低下した場合、補正電流指令値Icによる補正がされなければ、コンデンサ6の放電により、点線で示すように、出力電流Iiv0が急激に増加する。一方、補正電流指令値Icによる補正がされれば、コンデンサ6が放電しても、実線で示すように、時刻tc1の前後で、出力電流Iivはほとんど変わらない。
 図3に示すように、時刻tc2で、系統電圧Vrが急激に上昇した場合、補正電流指令値Icによる補正がされなければ、コンデンサ6の充電により、点線で示すように、出力電流Iiv0が急激に増加する。一方、補正電流指令値Icによる補正がされれば、コンデンサ6が充電しても、実線で示すように、時刻tc2の前後で、出力電流Iivはほとんど変わらない。
 本実施形態によれば、系統電圧Vrの微分値に基づいて、インバータ1を制御することで、系統電圧Vrが急変し始める時点で、インバータ1の出力電流Iivを補正することができる。これにより、系統電圧Vrの急変による過電流保護リレー15の不要動作を防止することができる。
 また、コンデンサ6のキャパシタンスCに基づいて、インバータ1の出力電流Iivを補正する補正電流指令値Icを求めることで、系統電圧Vrの急変に応じて行われるコンデンサ6の充放電により変動するインバータ1の出力電流Iivをより効果的に抑制することができる。
(第2の実施形態)
 図4は、本発明の第2の実施形態に係る太陽光発電システム10Aの構成を示す構成図である。
 太陽光発電システム10Aは、図1に示す第1の実施形態に係る太陽光発電システム10において、リアクトル5よりも電力系統9側に系統連系するための連系リアクトル7を設けたものである。その他は、第1の実施形態に係る太陽光発電システム10と同様である。
 本実施形態によれば、第1の実施形態に係る作用効果に加え、太陽光発電システム10Aは、連系リアクトル等が設けられていない電力系統9にも接続することができる。
(第3の実施形態)
 図5は、本発明の第3の実施形態に係る太陽光発電システム10Bの構成を示す構成図である。
 太陽光発電システム10Bは、図1に示す第1の実施形態に係る太陽光発電システム10において、リアクトル5よりも電力系統9側に系統連系するための連系変圧器8を設けたものである。その他は、第1の実施形態に係る太陽光発電システム10と同様である。
 本実施形態によれば、第1の実施形態に係る作用効果に加え、太陽光発電システム10Bは、連系変圧器等が設けられていない電力系統9にも接続することができる。
 なお、各実施形態では、太陽光発電システムの構成について説明したが、これに限らない。風力発電又は水力発電などの他の分散型電源システムでも、各実施形態と同様に構成することができる。
 各実施形態において、制御装置2は、インバータ1の出力電流Iivを有効電力成分と無効電力成分で別々に制御してもよい。この場合、制御装置2に、電流指令値Ir0を有効電力成分と無効電力成分で別々に指令値を設定し、力率を設定することで、各実施形態と同様に構成することができる。
 各実施形態では、式(1)を用いて補正電流指令値Icを求めたが、これに限らない。系統電圧Vrの微分値に基づいて、補正電流指令値Icを求めるのであれば、どのように求めてもよい。これにより、系統電圧Vrの急変に迅速に反応して、インバータ1の出力電流Iivが過電流となることを防止することができる。
 各実施形態では、インバータ1は、電圧形インバータを想定しているが、電流形インバータでもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (6)

  1.  交流電力系統と連系し、交流側にコンデンサが設けられたインバータを制御するインバータ制御装置であって、
     前記交流電力系統の系統電圧を検出する系統電圧検出手段と、
     前記系統電圧検出手段により検出された前記系統電圧の微分値を演算する微分演算手段と、
     前記微分演算手段により演算された前記系統電圧の微分値に基づいて、前記インバータの出力電流の指令値である電流指令値を補正する補正電流指令値を演算する補正電流指令値演算手段と、
     前記補正電流指令値演算手段により演算された前記補正電流指令値に基づいて、前記電流指令値を補正する電流指令値補正手段と、
     前記電流指令値補正手段により補正された前記電流指令値に基づいて、前記インバータを制御する制御手段と
    を備えることを特徴とするインバータ制御装置。
  2.  前記補正電流指令値演算手段は、前記コンデンサのキャパシタンスに基づいて、前記補正電流指令値を演算すること
    を特徴とする請求項1に記載のインバータ制御装置。
  3.  交流電力系統と連系するインバータと、
     前記インバータの交流側に設けられたコンデンサと、
     前記交流電力系統の系統電圧を検出する系統電圧検出手段と、
     前記系統電圧検出手段により検出された前記系統電圧の微分値を演算する微分演算手段と、
     前記微分演算手段により演算された前記系統電圧の微分値に基づいて、前記インバータの出力電流の指令値である電流指令値を補正する補正電流指令値を演算する補正電流指令値演算手段と、
     前記補正電流指令値演算手段により演算された前記補正電流指令値に基づいて、前記電流指令値を補正する電流指令値補正手段と、
     前記電流指令値補正手段により補正された前記電流指令値に基づいて、前記インバータを制御する制御手段と
    を備えることを特徴とする分散型電源システム。
  4.  前記補正電流指令値演算手段は、前記コンデンサのキャパシタンスに基づいて、前記補正電流指令値を演算すること
    を特徴とする請求項3に記載の分散型電源システム。
  5.  交流電力系統と連系し、交流側にコンデンサが設けられたインバータを制御するインバータの制御方法であって、
     前記交流電力系統の系統電圧を検出し、
     検出した前記系統電圧の微分値を演算し、
     演算した前記系統電圧の微分値に基づいて、前記インバータの出力電流の指令値である電流指令値を補正する補正電流指令値を演算し、
     演算した前記補正電流指令値に基づいて、前記電流指令値を補正し、
     補正した前記電流指令値に基づいて、前記インバータを制御すること
    を含むことを特徴とするインバータの制御方法。
  6.  前記補正電流指令値は、前記コンデンサのキャパシタンスに基づいて、演算されること
    を特徴とする請求項5に記載のインバータの制御方法。
PCT/JP2013/084271 2013-12-20 2013-12-20 インバータ制御装置 WO2015092918A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES13899883T ES2924764T3 (es) 2013-12-20 2013-12-20 Dispositivo de control de inversor
PCT/JP2013/084271 WO2015092918A1 (ja) 2013-12-20 2013-12-20 インバータ制御装置
JP2015553302A JP6220895B2 (ja) 2013-12-20 2013-12-20 インバータ制御装置
EP13899883.6A EP3086457B1 (en) 2013-12-20 2013-12-20 Inverter control device
CN201380080867.6A CN105706347B (zh) 2013-12-20 2013-12-20 逆变器控制装置
US15/187,096 US9948207B2 (en) 2013-12-20 2016-06-20 Inverter control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084271 WO2015092918A1 (ja) 2013-12-20 2013-12-20 インバータ制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/187,096 Continuation US9948207B2 (en) 2013-12-20 2016-06-20 Inverter control apparatus

Publications (1)

Publication Number Publication Date
WO2015092918A1 true WO2015092918A1 (ja) 2015-06-25

Family

ID=53402310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084271 WO2015092918A1 (ja) 2013-12-20 2013-12-20 インバータ制御装置

Country Status (6)

Country Link
US (1) US9948207B2 (ja)
EP (1) EP3086457B1 (ja)
JP (1) JP6220895B2 (ja)
CN (1) CN105706347B (ja)
ES (1) ES2924764T3 (ja)
WO (1) WO2015092918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10797589B2 (en) * 2017-09-28 2020-10-06 Texas Instruments Incorporated Methods and apparatus to compensate for power factor loss using a phasor cancellation based compensation scheme

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248371A (ja) * 1991-01-21 1992-09-03 Toshiba Corp 三相インバータの過電流保護装置
JPH09294380A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 偏磁抑制制御装置
JP2001309561A (ja) * 2000-04-24 2001-11-02 Mitsubishi Electric Corp 連系装置
JP2003333753A (ja) * 2002-05-16 2003-11-21 Mitsubishi Electric Corp 系統連系電力変換装置
JP2005210823A (ja) * 2004-01-22 2005-08-04 Canon Inc 電力変換装置、発電装置、それらの制御方法
WO2012114469A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 太陽光発電システム
WO2012114468A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 電力変換装置
WO2012114467A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 電力変換装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382434B2 (ja) * 1995-09-22 2003-03-04 キヤノン株式会社 電池電源の電圧制御装置および電圧制御方法
US7193872B2 (en) * 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
US7479774B2 (en) * 2006-04-07 2009-01-20 Yuan Ze University High-performance solar photovoltaic (PV) energy conversion system
US7660135B2 (en) * 2007-05-23 2010-02-09 Hamilton Sundstrand Corporation Universal AC high power inveter with galvanic isolation for linear and non-linear loads
CA2655007C (en) * 2009-02-20 2017-06-27 Queen's University At Kingston Photovoltaic cell inverter
US8406022B2 (en) * 2010-04-16 2013-03-26 Samsung Electro-Mechanics Co., Ltd. Apparatus and method for controling power quality of power generation system
JP5316514B2 (ja) * 2010-11-02 2013-10-16 株式会社日本自動車部品総合研究所 電力変換装置
US9065354B2 (en) * 2011-04-27 2015-06-23 Sunpower Corporation Multi-stage power inverter for power bus communication
US8611107B2 (en) * 2011-04-27 2013-12-17 Solarbridge Technologies, Inc. Method and system for controlling a multi-stage power inverter
TW201246775A (en) * 2011-05-13 2012-11-16 Inno Tech Co Ltd Power converting module
CN102904272B (zh) * 2011-07-29 2015-07-29 通用电气公司 具有改善的瞬态事件穿越能力的能量转换系统和方法
US20130057236A1 (en) * 2011-09-06 2013-03-07 Che-Wei Hsu Low voltage ride-through control method for grid-connected converter of distributed energy resources
JP5712987B2 (ja) * 2012-09-27 2015-05-07 ダイキン工業株式会社 電力変換装置の制御方法
CN103338000A (zh) * 2013-05-08 2013-10-02 河南科技大学 基于新型磁链观测器的npc三电平逆变器矢量控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248371A (ja) * 1991-01-21 1992-09-03 Toshiba Corp 三相インバータの過電流保護装置
JPH09294380A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 偏磁抑制制御装置
JP2001309561A (ja) * 2000-04-24 2001-11-02 Mitsubishi Electric Corp 連系装置
JP2003333753A (ja) * 2002-05-16 2003-11-21 Mitsubishi Electric Corp 系統連系電力変換装置
JP2005210823A (ja) * 2004-01-22 2005-08-04 Canon Inc 電力変換装置、発電装置、それらの制御方法
WO2012114469A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 太陽光発電システム
WO2012114468A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 電力変換装置
WO2012114467A1 (ja) 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086457A4

Also Published As

Publication number Publication date
ES2924764T3 (es) 2022-10-10
CN105706347B (zh) 2018-06-29
EP3086457B1 (en) 2022-06-15
EP3086457A4 (en) 2017-08-16
US20160308464A1 (en) 2016-10-20
JPWO2015092918A1 (ja) 2017-03-16
EP3086457A1 (en) 2016-10-26
US9948207B2 (en) 2018-04-17
CN105706347A (zh) 2016-06-22
JP6220895B2 (ja) 2017-10-25

Similar Documents

Publication Publication Date Title
EP3026775B1 (en) Control device for solar power generation inverter
US8988906B2 (en) Power conversion apparatus
JP5608809B2 (ja) 電力変換装置
JP6762680B2 (ja) 太陽光発電システム
JP2012120285A (ja) 単独運転検出装置および単独運転検出方法
JP2016010203A (ja) インバータ制御装置、そのインバータ制御装置を用いた分散型電源系統連系システム、及びインバータの制御方法、並びにプログラム。
EP2515430A2 (en) Electric generating system using solar cell
US9300226B2 (en) Solar power generation system
JP5398233B2 (ja) インバータの単独運転検出装置および単独運転検出方法
WO2016113838A1 (ja) インバータの制御装置
JP6220895B2 (ja) インバータ制御装置
JP6258806B2 (ja) 系統連系用電力変換装置
JP2014127081A (ja) 太陽光発電用パワーコンディショナ
JP2012231606A (ja) 系統連系電力変換装置
JP5169396B2 (ja) 電力変換装置の制御回路
JP6110093B2 (ja) インバータ装置、および制御方法
WO2018066070A1 (ja) 電力変換装置及び電力変換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899883

Country of ref document: EP