WO2015092463A1 - Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé - Google Patents

Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé Download PDF

Info

Publication number
WO2015092463A1
WO2015092463A1 PCT/IB2013/002954 IB2013002954W WO2015092463A1 WO 2015092463 A1 WO2015092463 A1 WO 2015092463A1 IB 2013002954 W IB2013002954 W IB 2013002954W WO 2015092463 A1 WO2015092463 A1 WO 2015092463A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
sensor unit
electric motor
speed error
repetitive
Prior art date
Application number
PCT/IB2013/002954
Other languages
English (en)
Inventor
Mathieu Hubert
Yi Yuan
François AUGER
Original Assignee
Aktiebolaget Skf
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiebolaget Skf, Universite De Nantes filed Critical Aktiebolaget Skf
Priority to PCT/IB2013/002954 priority Critical patent/WO2015092463A1/fr
Priority to DE112013007715.9T priority patent/DE112013007715T5/de
Publication of WO2015092463A1 publication Critical patent/WO2015092463A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the invention concerns a method for controlling a permanent magnets electric motor and to a sensor unit suitable for implementing such a method.
  • WO-A-03/026105 to deliver harmonic control currents, generated on the basis of the magnetic characteristics of the motor, to the control system of the electric motor.
  • This technique needs the knowledge of the torque ripple harmonic profile of the motor, and more generally the knowledge of the working principle of the electric motor and its control system.
  • the repetitive control technique consists in measuring, thanks to a sensor and during a turn of the motor, a rotation speed error between the rotation speed detected by the sensor and a rotation speed request, and to deliver at the next turn of the motor, a corrective current computed through the controller algorithm and based on the inverse of the error.
  • This technique is a satisfying way to mitigate the torque ripple and especially the cogging torque.
  • this technique also needs the knowledge of the working principle of the control system of the motor and of the repetitive controller, which means this technique can not be implemented without the intervention of a high skilled engineer and a deep analysis of the working principle of the control system.
  • the aim of the invention is to provide a new method and sensor unit for controlling a permanent magnet electric motor, which permits to more easily implement control methods such as the repetitive control technique, without specific knowledge of the working principle of the control system.
  • the invention concerns a method for controlling a permanent magnets electric motor, comprising steps consisting in:
  • steps b) and c) are performed in the sensor unit.
  • the repetitive control system can be applied to any type of electric motor or conventional control system.
  • such a method may incorporate one or several of the following features:
  • the repetitive control signal is a repetitive control rotation speed.
  • the method further comprises steps consisting in:
  • the rotation speed error computations are spaced by a predetermined angular position interval.
  • the predetermined angular position interval is is comprised between 0,036° and
  • the rotation speed error computations are spaced by a predetermined time interval.
  • the predetermined time interval is comprised between 1e-5 and to 1e-4 seconds.
  • the rotation speed error is computed as the difference between the rotation speed sensed at step a) and the rotation speed request, whereas the rotation speed request is delivered to the sensor unit by an electric line connecting the sensor unit to a piloting device which sets the rotation speed request.
  • the rotation speed error is estimated by the sensor unit on the basis of the rotation speed measured at step a).
  • the rotation speed error is estimated as the difference between the rotation speed sensed at step a) and an estimation of the rotation speed request computed on the basis of a mean value of the rotation speed measured at step a).
  • the rotation speed error is estimated on a number of the last measured values of the rotation speed equal or superior to 5.
  • the invention also concerns a sensor unit for sensing the rotation speed a permanent magnets electric motor, comprising a sensing element.
  • This sensor unit is characterized in that it includes a repetitive controller adapted to compute a rotation speed error between a rotation speed request and the rotation speed sensed by the sensing element, and to deliver, to a control system for the electric motor, a repetitive control signal generated on the basis of the inverse of the rotation speed error.
  • such a sensor unit may incorporate one or several of the following features:
  • the sensing element is adapted to sense the angular position of the rotor of the motor, whereas the repetitive controller is adapted to, on the basis of the angular position delivered by the sensing element, compute the rotation speed error at predetermined angular positions of the rotor.
  • the repetitive controller comprises at least two memories to which the angular position of the rotor is delivered.
  • the sensing element is an analogic sensing element.
  • the sensing element is a digital sensing element.
  • the repetitive controller is adapted to compute the rotation speed error at times spaced by a predetermined time interval.
  • the sensor is adapted to be connected to a piloting device of the electric motor by a line which transmits the rotation speed request to the sensor unit.
  • the repetitive controller comprises means to estimate the rotation speed error on the basis of the rotation speed measured by the sensing element.
  • the means to estimate the rotation speed error comprise a high-pass filter.
  • Figures 1 , 2 and 3 are electrical schemes of a sensor unit according to a first, a second and a third embodiments of the invention.
  • Figure 1 shows a system S for controlling a permanent magnets electric motor M.
  • a non-shown load is connected to the output shaft of motor M.
  • Control System S is adapted to deliver, to electric motor M, an electric control current C, via an inverter 4.
  • Control system S elaborates control current C on the basis of a rotation speed request R.
  • Control system S includes a proportional integral speed controller 10 which delivers a proportional integral current Cp.
  • Control current C is delivered, via an electric line L1 , to a calculator 13 which computes the difference d between Cp and control current C.
  • This difference d is delivered to a proportional integral current controller 12 of control system S, which delivers a control tension V to a pulse width modulation module 14.
  • the output V of pulse width modulation module 14 is delivered to inverter 4.
  • a sensor unit 2 senses the angular position Ps of the rotor of electric motor M thanks to a sensing element 20.
  • Sensor unit 2 also includes a repetitive controller 22, which delivers a repetitive control signal to control system S.
  • repetitive control signal is a repetitive control rotation speed Rrc.
  • the input of proportional integral speed controller 10 is the difference between rotation speed request R and a modified feedback signal F obtained by computation of the difference between sensed rotation speed Rs and repetitive control speed Rrc.
  • repetitive control speed Rrc may be directly delivered to control system S (to be confirmed by SKF).
  • the repetitive control signal may be of another type (to be confirmed by SKF).
  • Repetitive controller 22 elaborates control speed Rrc on the basis of a rotation speed error e, which is theoretically computed as the difference between rotation speed request R and a sensed rotation speed Rs.
  • the repetitive control technique which is capable of automatically improving its performance by learning from its previous tasks, tracks a repetitive reference or rejects a periodical disturbance. Since the cogging torque component of the torque ripple of the electric motor is function of the angular position, the cogging torque reduction can be considered as a periodical disturbance rejection.
  • repetitive controller 22 is a time-based repetitive controller, in which the rotation speed error computations are spaced by a predetermined time interval T. Each time a rotation speed error computation is made, a new repetitive control current speed Rrc is computed on the basis of the rotation speed error e and repetitive control speed Rrc computed at the previous error computation.
  • Time interval T depends on the hardware capabilities of control system S, such as memory size and frequency.
  • Predetermined time interval T is preferably comprised between 1e-5 and1e-4 seconds.
  • Repetitive controller 22 comprises a first computation block B1 and a second computation block B2, each of computation blocks B1 and B2 being connected to a memory M1 and M2.
  • the input of computation block B1 is rotation speed error e
  • the input of computation block B2 is repetitive control speed Rrc.
  • Repetitive controller 22 makes an addition between the output of computation block B1 and the output of computation block B2, to obtain repetitive control speed Rrc based on the previous rotation speed error computations of rotation speed error e and repetitive control speed Rrc, which are respectively stored in memories M1 and M2.
  • repetitive controller 22 In order to compute the rotation speed error e, repetitive controller 22 must theoretically know rotation speed request R. In the embodiment of figure 1 , repetitive controller 22 comprises means to estimate rotation speed error e, and does not need to know rotation speed request R. Repetitive controller 22 therefore comprises a high-pass filter 24, which is connected between sensing element 20 and computation block B1.
  • rotation speed error e is preferably estimated on the basis of a predetermined number of the last measured values of rotation speed Rs, for example five or more values .
  • rotation speed request R may be estimated by calculating a mean value of sensed rotation speed Rs, by example thanks to a low-pass filter.
  • Rotation speed error e may then be computed by making the difference between sensed rotation speed Rs and the mean value of sensed rotation speed Rs.
  • repetitive controller 22 is integrated in sensor unit 2 allows an operator to provide electric motor M with any type of dedicated conventional controller, and to implement a repetitive controller, which is highly efficient in reducing the cogging torque component of the torque ripple, in a very simple way.
  • the operator who integrates electric motor M in the desired applications does not need to analyze the working principle of control system of electric motor M, because the repetitive controller 22 of the sensor unit can be adapted, with simple electrical connection operations, to the existing control system.
  • the output of sensor unit 2 directly delivers a corrected feedback which can be processed by the conventional control system of the electric motor.
  • a second and a third embodiments of the invention are respectively represented on figures 2 and 3.
  • elements similar to the first embodiment have the same references and work in the same way. Only the differences from the first embodiment are detailed here-after.
  • repetitive controller 22 does not comprise a high-pass filter 24 for estimating rotation speed error e.
  • Rotation speed error e is computed by making the difference between sensed rotation speed Rs and rotation speed request R.
  • rotation speed request R is delivered to sensor unit 2 by connecting sensor unit 2 to a piloting device 30 which sets rotation speed request R, thanks to a line L2 which transmits rotation speed request R to sensor unit 2.
  • Sensor unit 2 may therefore be equipped with an input connection mean.
  • repetitive controller 22 is an angle-based repetitive controller, in which rotation speed error computations are spaced by a predetermined angular position interval A, instead of being spaced by a predetermined time interval T.
  • An angled based repetitive controller permits to avoid the inaccuracies due to the fact that, if the rotation speed of electric motor M changes, the angular distance run by the motor during the predetermined time interval T also changes, provoking artificial variations of rotation speed error e.
  • the angle-based repetitive control permits to obtain the actual rotation speed error e, even if the rotation speed of electric motor M changes.
  • the angle-based repetitive-control is an add-on control method of an existing control method, such as the repetitive control method.
  • angular position Ps is delivered to repetitive controller 22 by a line L3 which connects an output of sensing element 20 to memories M1 and M2 of repetitive controller 22.
  • rotation speed error computations are spaced by predetermined angular position interval A, which is preferably comprised between 1 ° and 10°.
  • sensing element 20 is an analogic sensing element.
  • sensing element 20 may be a digital sensing element, adapted to generate square signals and an absolute position signal such as an index signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Le procédé de commande d'un moteur électrique à aimants permanents (M) selon l'invention comprend les étapes suivantes : a) la détection de la vitesse de rotation (Rs) du rotor du moteur électrique (M) à l'aide d'une unité de détection (2), b) le calcul d'une erreur de vitesse de rotation (e) entre une requête de vitesse de rotation (R) et la vitesse de rotation (Rs) détectée à l'étape a), et c) le calcul d'un signal de commande répétitif (Rrc) sur la base de l'inverse de l'erreur de la vitesse de rotation (e) calculée à l'étape b), et la transmission dudit signal de commande répétitif (Rrc) à un système de commande (S) qui commande le moteur électrique (M). Les étapes b) et c) sont exécutées dans l'unité de détection (2). Cette unité de détection (2) destinée à détecter la vitesse de rotation (Rs) d'un moteur électrique à aimants permanents (M) comprend un élément de détection (20), et inclut un dispositif de commande répétitif (22) conçu pour calculer une erreur de vitesse de rotation (e) entre une requête de vitesse de rotation (R) et la vitesse de rotation (Rs) détectée par l'élément de détection (20), et pour transmettre, à un système de commande (S) du moteur électrique (M), un signal de commande répétitif (Rrc) généré sur la base de l'inverse de l'erreur de vitesse de rotation (e).
PCT/IB2013/002954 2013-12-20 2013-12-20 Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé WO2015092463A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2013/002954 WO2015092463A1 (fr) 2013-12-20 2013-12-20 Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé
DE112013007715.9T DE112013007715T5 (de) 2013-12-20 2013-12-20 Verfahren zum Steuern eines Elektromotors und Sensoreinheit zum Implementieren eines solchen Verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/002954 WO2015092463A1 (fr) 2013-12-20 2013-12-20 Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé

Publications (1)

Publication Number Publication Date
WO2015092463A1 true WO2015092463A1 (fr) 2015-06-25

Family

ID=50588740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002954 WO2015092463A1 (fr) 2013-12-20 2013-12-20 Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé

Country Status (2)

Country Link
DE (1) DE112013007715T5 (fr)
WO (1) WO2015092463A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208859A (zh) * 2016-08-15 2016-12-07 湘潭大学 基于干扰观测器与重复控制器的永磁同步电机调速控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298841A (en) * 1990-04-18 1994-03-29 Hitachi, Ltd. Apparatus for controlling the speed of a moving object
EP0805383A1 (fr) * 1996-04-30 1997-11-05 Samsung Electronics Co., Ltd. Dispositif de regulation de vitesse d'un moteur rotatif
US5994868A (en) * 1996-01-31 1999-11-30 Sharp Kabushiki Kaisha Motor control device
WO2003026105A1 (fr) 2001-09-14 2003-03-27 Delphi Technologies, Inc. Procede et appareil de reduction d'ondulation de couple dans des moteurs a aimant permanent, sans balai, sinusoidalement excites
US20130113408A1 (en) * 2011-11-04 2013-05-09 Kyungsung University Industry Cooperation Foundation Method for suppressing speed ripple by using torque compensator based on activation function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298841A (en) * 1990-04-18 1994-03-29 Hitachi, Ltd. Apparatus for controlling the speed of a moving object
US5994868A (en) * 1996-01-31 1999-11-30 Sharp Kabushiki Kaisha Motor control device
EP0805383A1 (fr) * 1996-04-30 1997-11-05 Samsung Electronics Co., Ltd. Dispositif de regulation de vitesse d'un moteur rotatif
WO2003026105A1 (fr) 2001-09-14 2003-03-27 Delphi Technologies, Inc. Procede et appareil de reduction d'ondulation de couple dans des moteurs a aimant permanent, sans balai, sinusoidalement excites
US20130113408A1 (en) * 2011-11-04 2013-05-09 Kyungsung University Industry Cooperation Foundation Method for suppressing speed ripple by using torque compensator based on activation function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208859A (zh) * 2016-08-15 2016-12-07 湘潭大学 基于干扰观测器与重复控制器的永磁同步电机调速控制方法
CN106208859B (zh) * 2016-08-15 2020-04-28 湘潭大学 基于干扰观测器与重复控制器的永磁同步电机控制方法

Also Published As

Publication number Publication date
DE112013007715T5 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
KR101298036B1 (ko) 전기모터제어
US10333445B2 (en) Torque ripple compensation with feedforward control in motor control systems
US10464594B2 (en) Model based driver torque estimation
US10270378B2 (en) Arrangement and method for monitoring a PSM-machine
EP2706659A1 (fr) Système pour corriger une position estimée d'un rotor d'une machine électrique
CN105322859A (zh) 电动机控制装置、电动机的磁通估计装置及磁通估计方法
US11404984B2 (en) Parameter learning for permanent magnet synchronous motor drives
KR101755831B1 (ko) 모터 제어 방법
US9263982B2 (en) Motor control system having common-mode voltage compensation
EP2493067B1 (fr) Procédé et appareil pour estimer l'angle de rotor d'un moteur à réluctance synchrone
KR101629059B1 (ko) 유도전동기의 파라미터 추정장치
CN104426439A (zh) 用于监测电机的旋转位置的方法和设备
US11056992B2 (en) Motor controller
CN111200384A (zh) 电流感测故障下永磁同步马达驱动的前馈控制
US20140253004A1 (en) Method and system to compensate for dynamic dc offset of measured phase current
WO2015092462A1 (fr) Procédé et système de commande d'un moteur électrique
JP4735439B2 (ja) 永久磁石式同期電動機の初期磁極位置推定装置
JP6241331B2 (ja) 電動機の制御装置
WO2015092463A1 (fr) Procédé de commande d'un moteur électrique et unité de détection pour mettre en œuvre un tel procédé
JP2013138548A (ja) 誘導電動機の回転速度制御装置および回転速度制御方法
US10530282B2 (en) Current capability limiting of DC machines
JP5167768B2 (ja) 電動機制御装置および電動機制御方法
JP5396754B2 (ja) 出力推定装置
JP6293972B2 (ja) 自動車ブレーキシステムの油圧ポンプの位置及び/又は位置変化を計測する方法及び自動車ブレーキシステム
JP2015173546A (ja) 電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013007715

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849981

Country of ref document: EP

Kind code of ref document: A1