WO2015090964A1 - Elektrospule und verwendung einer elektrospule - Google Patents

Elektrospule und verwendung einer elektrospule Download PDF

Info

Publication number
WO2015090964A1
WO2015090964A1 PCT/EP2014/076381 EP2014076381W WO2015090964A1 WO 2015090964 A1 WO2015090964 A1 WO 2015090964A1 EP 2014076381 W EP2014076381 W EP 2014076381W WO 2015090964 A1 WO2015090964 A1 WO 2015090964A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wire
aluminum
electric coil
electric
Prior art date
Application number
PCT/EP2014/076381
Other languages
English (en)
French (fr)
Inventor
Bernd Stuke
Martin Koehne
Robert Giezendanner-Thoben
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US15/106,278 priority Critical patent/US20160336103A1/en
Priority to CN201480069575.7A priority patent/CN106104716B/zh
Priority to RU2016129242A priority patent/RU2659563C1/ru
Priority to EP14806274.8A priority patent/EP3084781B1/de
Publication of WO2015090964A1 publication Critical patent/WO2015090964A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips

Definitions

  • the invention relates to an electric coil according to the preamble of claim 1. Furthermore, the invention relates to the use of an inventive
  • An electric coil according to the preamble of claim 1 is part of a fuel! Njektors for injecting fuel into the combustion chamber of an internal combustion engine from practice already known.
  • the electric coil serves to actuate an injection member, for example in the form of a nozzle needle, indirectly or directly in order to close or release injection openings formed in the fuel injector.
  • the coil wire usually consists of a wire core made of copper, which is surrounded by an insulator layer, for example, baked enamel.
  • an insulator layer for example, baked enamel.
  • an injector at high temperatures can be critical. For this reason, it is common to have the packing or power density of such Increase electric coils. This is done for example by a profile wire, with which it is possible, the degree of filling of the wire windings on a
  • the invention has the object, an electric coil according to the preamble of claim 1 such that the strong in the prior art
  • Temperature-dependent resistance characteristic of the electric coil is reduced.
  • the highest possible power density i.
  • the highest possible magnetic actuation force can be achieved.
  • This object is achieved in an electric coil with the features of claim 1, characterized in that the wire core of the coil wire made of aluminum and arranged with the aluminum in electrically conductive contact graphene.
  • Such a material mix has the advantage that it has a combination of the relatively low change in resistance over the course of temperature known from aluminum and an overall relatively low specific resistance, similar to the use of copper.
  • Graphene at least substantially homogeneous in cross section of the wire core in Distributed aluminum and arranged oriented in the power line direction.
  • graphene is usually formed in the form of platelets, ie a very thin cross-section having elements, so that it is essential that the orientation of the graph in the power line direction.
  • the individual graphene elements may be spatially separated from one another in the direction of the current line, or, particularly advantageously, to be overlapping one another so that a continuous conductive graphene layer is achieved in the current line direction.
  • the individual Graphen elements are separated in the power line direction, finds an electrical line between the
  • the power line reducing effects such as air inclusions or the like, are present.
  • the graphene in an alternative embodiment of the invention, it is also possible for the graphene to be formed as a layer which is separate from the aluminum and electrically conductively connected to the aluminum, preferably in the direction of flow, preferably on a surface of the wire core.
  • the two components serving the power line, the aluminum and the graphene may optionally be formed in separate manufacturing processes or manufacturing steps, which are subsequently connected to one another in an electrically conductive manner.
  • the aluminum serves as a carrier material for arranging or training of graphene.
  • the commonly used insulating layers of plastic eg baked enamel
  • the insulating layer does not serve the power line, a decreasing packing density or performance of the electric coil results with an increasing thickness of the insulating layer.
  • the insulating layer it is particularly preferred according to the invention for the insulating layer to have an aluminum oxide layer with a thickness of between 1 ⁇ m and 10 ⁇ m. preferably between 2 ⁇ and 5 ⁇ .
  • An oxide layer has the advantage over the use of plastic in particular that it has a high thermal conductivity and thus also allows a relatively effective dissipation of the heat of the coil wire.
  • the performance of the electric coil is increased by an increased filling factor by the particularly thin design of the insulating layer compared to an insulating layer made of plastic.
  • Aluminum oxide takes place in particular by anodic oxidation (anodizing process).
  • the anodic oxidation is an electrolytic process by which an oxide layer is produced on a surface which is reinforced by about a factor of 100 compared with a naturally formed (oxide) layer, so that in practice a 4 ⁇ thick insulating layer is sufficient with sufficient voltage breakdown.
  • a particular embodiment of the insulating layer provides that the insulating layer only partially covers the graphene. This is especially true
  • Power line is used and has a very low electrical resistance, it is essential that each covers an insulating layer overlying the underlying, partially exposed graphene layer when winding over the coil wire.
  • a geometrical configuration of the coil wire in which the latter has at least essentially a rectangular cross section, is very particularly preferred.
  • Such a design increases the fill factor and thus the power density of the electric coil to a particularly high degree and therefore allows for a certain performance particularly small or compact electrical coils.
  • the coil wire has a width has, which corresponds to the width of the bobbin in the longitudinal direction thereof.
  • the same effect can alternatively be achieved by having the coil wire having a width 1 / n times the width of the coil
  • Coil in the longitudinal direction corresponds, and if two in
  • Such an electric coil according to the invention therefore finds particular use as part of a motor vehicle injection component, in particular one
  • the electric coil according to the invention can be used in all applications in which a particularly high performance and / or a small installation space for the electric coil is desired.
  • FIG. 4 shows a cross section through a comparison with FIG. 3 Modified
  • Fig. 5 is a representation of the resistance curve different
  • an electric coil 10 according to the invention is shown, as used for example as part of a motor vehicle injection component in the form of a fuel injector.
  • the electric coil 10 serves for the at least indirect actuation of an injection valve member (nozzle needle) into the fuel! njektor.
  • the electric coil 10 comprises a plastic, in the
  • Injection molding process produced bobbin 11 in the form of a sleeve with two laterally arranged, the bobbin 11 longitudinally delimiting, radially circumferential flanges 12, 13 and concentric with the longitudinal axis 14 of the bobbin 11 arranged in this recess 15. Between the two flanges 12, 13 forms the Bobbin 11 a particular circular peripheral surface 16 for the arrangement of at least one
  • Coil wire unit 20 off are in
  • Axial direction of the longitudinal axis 14 considered two coil wire units 20 provided on the bobbin 11, which are electrically conductively connected to each other (not shown) by a wire end of a coil wire unit 20 is connected to a wire end of the other coil wire unit 20.
  • the coil wire 25, 25 a of the coil wire unit 20, which is wound in the form of a plurality of turns on the bobbin 11, consists of two
  • the coil wire 25 is provided with a
  • Wire core 23 consisting of aluminum 21st In the power line direction, i.
  • 21 plates of graphene 22 are arranged in the aluminum, wherein the platelets are perpendicular to the plane of Fig. 3 either all directly electrically connected in the form of a band, or arranged at intervals to each other.
  • the distribution of the graphene 22 within the wire core 23 or the aluminum 21 is at least substantially homogeneous.
  • the coil wire 25 having a rectangular cross-section of the width b is of a particularly uniform wall thickness a
  • Insulation layer 26 over the entire cross section of the coil wire 25 surrounded.
  • the insulating layer 26 is formed as an aluminum oxide layer 27 and produced, for example, in the anodizing process.
  • the wall thickness a of the insulating layer 26 is between 1 ⁇ and 10 ⁇ , preferably between 2 ⁇ and 5 ⁇ , most preferably 4 ⁇ .
  • Such a manufactured coil wire 25 can be stored in accordance with the representation of FIG. 2 in the form of a wound-up belt 28 or processed by machine.
  • FIG. 4 a comparison with FIG. 3 modified coil wire 25a is shown.
  • the wire core 23 of the coil wire 25a is made of aluminum 21 without
  • the graphene 22 is applied as a band-shaped layer on the surface or on the upper side 29 of the wire core 23 and connected to it in an electrically conductive manner.
  • the insulating layer 26 also consists of an aluminum oxide layer 27, which completely surrounds the wire core 23 in the area outside of the graphene 22. In the field of graphene 22 reaches the
  • Insulation layer 26 side up to the graphene 22 zoom, but the graph 22 is not on the wire core 23 facing away from the top of the
  • Insulating layer 26 surrounded or covered.
  • the specific resistance R s (Y-axis) of various materials is shown above the temperature T (x-axis).
  • the reference numeral 31 shows the course of the specific resistance R s of aluminum, while the reference numeral 32 illustrates the course of the resistivity R s of copper.
  • the reference number 33 shows the specific resistance R s of the material combination according to the invention, consisting of aluminum 21 and graphene 22. It can be seen that such a combination of materials has an almost constant or only slightly increasing specific resistance R s as the temperature rises, which with respect to its
  • the electric coil 10 according to the invention can be modified or modified in many ways, without departing from the spirit of the invention. It is conceivable, for example, instead of a substantially rectangular cross-section for the coil wire 25, 25a to form this cross-section square or, in the case of the graphite 22 arranged in the aluminum 21, roundly. It should also be noted that the use of the invention should not be limited to electric coils 10, which serve as part of a fuel injection component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electromagnets (AREA)
  • Insulating Of Coils (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Die Erfindung betrifft eine Elektrospule (10), umfassend zumindest einen Spulenkörper (11) und einem den Spulenkörper (11) an einer Umfangsfläche (16) des Spulenkörpers (11) in Form wenigstens einer Windung umgebenen Spulendraht (25; 25a), wobei der Spulendraht (25; 25a) aus einem elektrisch leitenden Drahtkern (23) und einer den Drahtkern (23) zumindest bereichsweise umgebenden Isolationsschicht (26) besteht. Erfindungsgemäß ist es vorgesehen, dass der Drahtkern (23) aus Aluminium (21) und mit dem Aluminium (21) in elektrisch leitendem Kontakt angeordneten Graphen (22) besteht.

Description

Beschreibung
Titel
Elektrospule und Verwendung einer Elektrospule
Stand der Technik
Die Erfindung betrifft eine Elektrospule nach dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung die Verwendung einer erfindungsgemäßen
Elektrospule.
Eine Elektrospule nach dem Oberbegriff des Anspruchs 1 ist als Bestandteil eines Kraftstoff! njektors zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine aus der Praxis bereits bekannt. Insbesondere dient die Elektrospule dazu, mittel- oder unmittelbar ein Einspritzglied, beispielsweise in Form einer Düsennadel, zu betätigen, um im Kraftstoffinjektor ausgebildete Einspritzöffnungen zu verschließen bzw. freizugeben.
Übliche Elektrospulen weisen einen aus Kunststoff bestehenden Spulenkörper auf, auf den eine große Anzahl von Windungen eines Spulendrahts aufgewickelt ist. Der Spulendraht besteht üblicherweise aus einem Drahtkern aus Kupfer, der von einer Isolatorschicht, zum Beispiel Backlack, umgeben ist. Die Verwendung von Kupfer als Drahtkern hat zwar den Vorteil eines relativ niedrigen spezifischen Widerstandes, jedoch ist dieser Wderstand temperaturabhängig, derart, dass bei steigender Temperatur sich auch der Wderstand des Kupferdrahts erhöht. Dies hat zur Folge, dass bei einem Betrieb beispielsweise eines Kraftstoff! njektors, der in einem Zylinderkopf einer Brennkraftmaschine eingesetzt ist, sich die
Temperatur des Kraftstoff! njektors und somit auch die Temperatur der
Elektrospule erhöht, was zu einem erhöhten elektrischen Widerstand des Spulendrahts führt. Dies hat eine mit zunehmender Temperatur geringer werdende Magnetkraft zur Folge, so dass die einwandfreie Funktion
beispielsweise eines Einspritzglieds bei hohen Temperaturen kritisch sein kann. Aus diesem Grund ist es üblich, die Packungs- bzw. Leistungsdichte derartiger Elektrospulen zu erhöhen. Dies erfolgt beispielsweise durch einen Profildraht, mit dem es ermöglicht wird, den Füllgrad der Drahtwicklungen auf einen
Spulenkörper zu erhöhen.
Da die Tendenz bei zukünftigen Einspritzsystemen mehr und mehr zu hohen Systemdrücken und damit auch zu höheren erforderlichen Betätigungskräften für ein Einspritzglied geht, sind zukünftige Anforderungen ohne eine Erhöhung der Baugröße einer Elektrospule immer schwieriger mit konventionellen
Elektrospulen gemäß dem Stand der Technik zu erfüllen.
Offenbarung der Erfindung
Ausgehend von dem dargestellten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Elektrospule nach dem Oberbegriff des Anspruchs 1 derart weiterzubilden, dass die beim Stand der Technik stark
temperaturabhängige Widerstandcharakteristik der Elektrospule verringert wird. Darüber hinaus soll eine möglichst hohe Leistungsdichte, d.h. bei einer bestimmten Baugröße eines Spulenkörpers eine möglichst hohe magnetische Betätigungskraft erzielt werden können. Diese Aufgabe wird erfindungsgemäß bei einer Elektrospule mit den Merkmalen des Anspruchs 1 dadurch gelöst, dass der Drahtkern des Spulendrahts aus Aluminium sowie mit dem Aluminium in elektrisch leitendem Kontakt angeordneten Graphen besteht. Ein derartiger Materialmix hat den Vorteil, dass es eine Kombination aus der von Aluminium bekannten relativ geringen Wderstandsänderung über dem Temperaturverlauf und einem insgesamt gesehen relativ geringen spezifischen Widerstand, ähnlich der Verwendung von Kupfer, aufweist.
Vorteilhafte Weiterbildungen der erfindungsgemäßen Elektrospule sind in den Unteransprüchen aufgeführt. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in den Ansprüchen, der Beschreibung und/oder den Figuren offenbarten Merkmalen.
Um die angesprochene, erfindungsgemäße Materialkombination zu realisieren, ist es in einer ersten Ausgestaltung der Erfindung vorgesehen, dass das
Graphen zumindest im Wesentlichen homogen im Querschnitt des Drahtkerns im Aluminium verteilt und in Stromleitungsrichtung orientiert angeordnet ist. Hierzu sei angemerkt, dass Graphen üblicherweise in Form von Plättchen, d.h. einen sehr dünnen Querschnitt aufweisenden Elementen ausgebildet ist, so dass es wesentlich ist, dass die Orientierung des Graphen in Stromleitungsrichtung erfolgt. Dabei kann es möglich sein, dass in Stromleitungsrichtung betrachtet die einzelnen Graphenelemente örtlich voneinander getrennt sind, oder aber, besonders vorteilhaft, einander überlappend angeordnet sind, so dass in Stromleitungsrichtung eine durchgehend leitende Graphenschicht erzielt wird. Für den Fall, dass die einzelnen Graphenelemente in Stromleitungsrichtung voneinander getrennt sind, findet eine elektrische Leitung zwischen den
Graphenelementen durch das in elektrisch leitendem Kontakt mit dem Graphen angeordneten Aluminiums statt. Daher ist es auch von Bedeutung bzw.
wesentlich, dass innerhalb des Querschnitts zumindest im Wesentlichen keine, die Stromleitung reduzierende Effekte, wie beispielsweise Lufteinschlüsse oder ähnliches, vorhanden sind.
In alternativer Ausgestaltung der Erfindung ist es auch möglich, dass das Graphen als eine von dem Aluminium separate und mit dem Aluminium elektrisch leitend verbundene, in Stromrichtung vorzugsweise durchgehende Schicht, vorzugsweise an einer Oberfläche des Drahtkerns, ausgebildet ist. Bei einer derartigen Ausführungsform wird als vorteilhaft angesehen, dass die beiden der Stromleitung dienenden Bestandteile, das Aluminium und das Graphen, ggf. in separaten Herstellungsverfahren bzw. Herstellungsschritten ausgebildet werden können, die anschließend elektrisch leitend miteinander verbunden werden. Alternativ ist es auch möglich, auf eine bereits vorhandene
Aluminiumschicht bzw. einem Aluminiumträger das Graphen anzuordnen bzw. abzuscheiden. Somit dient das Aluminium als Trägermaterial zur Anordnung bzw. Ausbildung des Graphens. Beim Stand der Technik weisen die üblicherweise verwendeten Isolierschichten aus Kunststoff (z.B. Backlack) bei der Verwendung von Kupferdrähten eine Dicke von ca. 50μηι auf. Da die Isolationsschicht nicht der Stromleitung dient, ergibt sich mit einer zunehmenden Dicke der Isolationsschicht eine abnehmende Packungsdichte bzw. Leistungsfähigkeit der Elektrospule. Aus diesem Grund ist es erfindungsgemäß besonders bevorzugt vorgesehen, dass die Isolierschicht eine Aluminium-Oxidschicht mit einer Dicke zwischen 1 μηι und 10μηι, vorzugsweise zwischen 2μηι und 5μηι ist. Eine Oxidschicht hat gegenüber der Verwendung von Kunststoff insbesondere den Vorteil, dass diese eine hohe Wärmeleitfähigkeit aufweist und somit auch eine relativ effektive Abfuhr der Wärme des Spulendrahts ermöglicht. Darüber hinaus wird durch die besonders dünne Ausbildung der Isolierschicht im Vergleich zu einer aus Kunststoff bestehenden Isolierschicht die Leistungsfähigkeit der Elektrospule durch einen erhöhten Füllfaktor vergrößert. Die Beschichtung bzw. Ausbildung mit
Aluminiumoxid erfolgt insbesondere durch anodische Oxidation (Eloxal- Verfahren). Die anodische Oxidation ist ein elektrolytisches Verfahren, durch das eine Oxidschicht auf einer Oberfläche erzeugt wird, welche gegenüber einer natürlich gebildeten (Oxid-)Schicht um etwa das Hundertfache verstärkt ist, so dass bei ausreichender Spannungsdurchschlagsfestigkeit in der Praxis eine 4μηι dicke Isolierschicht ausreicht. Eine besonders Ausgestaltung der Isolierschicht sieht vor, dass die Isolierschicht das Graphen lediglich teilweise überdeckt. Dies ist insbesondere dann
vorgesehen, wenn Aluminiumbänder verwendet werden, bei denen das Graphen auf eine Seite als Beschichtung aufgebracht ist. Da das Graphen der
Stromleitung dient und einen sehr geringen elektrischen Wderstand aufweist, ist es dabei wesentlich, das beim Übereinanderwickeln des Spulendrahts jeweils eine Isolierschicht die darunter liegende, teilweise freiliegende Graphenschicht überdeckt.
Ganz besonders bevorzugt ist darüber hinaus eine geometrische Ausgestaltung des Spulendrahts, bei der dieser zumindest im Wesentlichen einen rechteckigen Querschnitt aufweist. Eine derartige Ausbildung erhöht den Füllfaktor und somit die Leistungsdichte der Elektrospule in besonders hohem Maße und ermöglicht daher bei einer bestimmten Leistung besonders klein bzw. kompakt bauende Elektrospulen.
Um einen Spulenkörper über dessen gesamte axiale Länge mit einem derartigen, einen rechteckigen Querschnitt aufweisenden Spulendraht bewickeln zu können, um eine möglichst hohe Leistungsdichte bzw. einen möglichst hohen Füllfaktor zu ermöglichen, ist es darüber hinaus in einer bevorzugten Ausgestaltung vorgesehen, dass der Spulendraht eine Breite aufweist, die der Breite des Spulenkörpers in dessen Längsrichtung entspricht. Der gleiche Effekt kann alternativ jedoch auch dadurch erzielt werden, wenn der Spulendraht eine Breite aufweist, die einem 1/n-fachen der Breite des
Spulenkörpers in dessen Längsrichtung entspricht, und wenn zwei in
Längsrichtung des Spulenkörpers einander anschließende Spulendrähte elektrisch leitend miteinander verbunden sind.
Die angesprochenen vorteilhaften Effekte der erfindungsgemäßen Elektrospule kommen immer dann besonders gut zur Geltung, wenn die Elektrospule zumindest zeitweise unterschiedlichen Temperaturen ausgesetzt sind, wobei bei Temperaturen von mehr als 150°C, insbesondere mehr als 200°C, die Vorteile gegenüber herkömmlichen Elektrospulen besonders groß sind.
Eine derartige erfindungsgemäße Elektrospule findet daher insbesondere als Bestandteil einer Kraftfahrtzeugspritzkomponente, insbesondere eines
Kraftstoffinjektors Verwendung, bei der der Kraftstoff! njektor bzw. dessen Elektrospule einerseits, beispielsweise bei einem Kaltstart, relativ tiefen
Temperaturen ausgesetzt ist, und andererseits während des Betriebs die angesprochenen hohen Temperaturen von bis zu über 200°C erreichen können. Grundsätzlich kann die erfindungsgemäße Elektrospule bei allen Anwendungen eingesetzt werden, bei denen eine besonders hohe Leistungsfähigkeit und/oder ein kleiner Bauraum für die Elektrospule erwünscht ist.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung.
Diese zeigt in:
Fig. 1 einen Längsschnitt durch eine Elektrospule, bei der in
Längsrichtung betrachtet zwei Spulendrahteinheiten nebeneinander angeordnet sind, eine perspektivische Darstellung eines in Form einer Rolle ausgebildeten Spulendrahtelements, Fig. 3 einen Querschnitt durch ein erstes erfindungsgemäßes
Spulendrahtelement
Fig. 4 einen Querschnitt durch ein gegenüber Fig. 3 modifiziertes
Spulendrahtelement und
Fig. 5 eine Darstellung des Widerstandsverlaufs unterschiedlicher
Materialien über der Temperatur. Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.
In der Fig. 1 ist eine erfindungsgemäße Elektrospule 10 dargestellt, wie Sie beispielsweise als Bestandteil einer Kraftfahrzeugeinspritzkomponente in Form eines Kraftstoffinjektors dient. Insbesondere dient die Elektrospule 10 dabei der zumindest mittelbaren Betätigung eines Einspritzventilglieds (Düsennadel) in den Kraftstoff! njektor.
Die Elektrospule 10 umfasst einen aus Kunststoff bestehenden, im
Spritzgussverfahren hergestellten Spulenkörper 11 in Form einer Hülse mit zwei seitlich angeordneten, den Spulenkörper 11 in Längsrichtung begrenzenden, radial umlaufenden Flanschen 12, 13 und einer konzentrisch zur Längsachse 14 des Spulenkörpers 11 in diesem angeordneten Ausnehmung 15. Zwischen den beiden Flanschen 12, 13 bildet der Spulenkörper 11 eine insbesondere kreisförmig ausgebildete Umfangsfläche 16 zur Anordnung wenigstens einer
Spulendrahteinheit 20 aus. Im dargestellten Ausführungsbeispiel sind in
Axialrichtung der Längsachse 14 betrachtet zwei Spulendrahteinheiten 20 auf dem Spulenkörper 11 vorgesehen, die elektrisch leitend miteinander verbunden sind (nicht dargestellt), indem ein Drahtende der einen Spulendrahteinheit 20 mit einem Drahtende der anderen Spulendrahteinheit 20 verbunden ist.
Insbesondere beträgt die Breite b der beiden identisch ausgebildeten
Spulendrahteinheiten 20 in etwa die Hälfte der Breite B des Spulenkörpers 11 zwischen den beiden Flanschen 12, 13, so dass der Bauraum zwischen den beiden Flanschen 12, 13 zumindest nahezu vollständig ausgefüllt ist. Wie anhand einer Zusammenschau der Fig. 2 bis 4 erkennbar ist, besteht der Spulendraht 25, 25a der Spulendrahteinheit 20, der in Form einer Vielzahl von Windungen auf dem Spulenkörper 11 aufgewickelt ist, aus zwei
unterschiedlichen Materialen, aus Aluminium 21 sowie aus Graphen 22. Bei der Ausführungsform gemäß der Fig. 3 besteht der Spulendraht 25 mit einem
Drahtkern 23, bestehend aus Aluminium 21 . In Stromleitungsrichtung, d.h.
senkrecht zur Zeichenebene der Fig. 3, sind in dem Aluminium 21 Plättchen aus Graphen 22 angeordnet, wobei die Plättchen senkrecht zur Zeichenebene der Fig. 3 entweder alle miteinander unmittelbar in Form eines Bandes elektrisch leitend verbunden sind, oder aber mit Abständen zueinander angeordnet sind.
Insbesondere ist die Verteilung des Graphens 22 innerhalb des Drahtkerns 23 bzw. des Aluminiums 21 zumindest im Wesentlichen homogen.
Der einen rechteckigen Querschnitt der Breite b aufweisende Spulendraht 25 ist von einer insbesondere eine gleichmäßige Wanddicke a aufweisenden
Isolationsschicht 26 über den gesamten Querschnitt des Spulendrahts 25 umgeben. Die Isolationsschicht 26 ist als Aluminium-Oxidschicht 27 ausgebildet und beispielsweise im Eloxalverfahren erzeugt. Insbesondere beträgt die Wanddicke a der Isolationsschicht 26 zwischen 1 μιη und 10μιη, vorzugsweise zwischen 2μιη und 5μιη, ganz besonders bevorzugt 4μηι. Ein derartig hergestellter Spulendraht 25 lässt sich entsprechend der Darstellung der Fig. 2 in Form eines aufgespulten Bandes 28 bevorraten bzw. maschinell verarbeiten.
In der Fig. 4 ist ein gegenüber Fig. 3 modifizierter Spulendraht 25a dargestellt. Der Drahtkern 23 des Spulendrahts 25a besteht aus Aluminium 21 ohne
Graphen 22. Das Graphen 22 ist als bandförmige Schicht auf der Oberfläche bzw. auf der Oberseite 29 des Drahtkerns 23 aufgebracht und mit diesem elektrisch leitend verbunden. Die Isolationsschicht 26 besteht ebenfalls aus einer Aluminium-Oxidschicht 27, die den Drahtkern 23 im Bereich außerhalb des Graphens 22 vollständig umgibt. Im Bereich des Graphens 22 reicht die
Isolationsschicht 26 seitlich bis an das Graphen 22 heran, das Graphen 22 ist jedoch auf der dem Drahtkern 23 abgewandten Oberseite nicht von der
Isolationsschicht 26 umgeben bzw. abgedeckt.
Beim Bewickeln des Spulenkörpers 1 1 mittels des Spulendrahts 25a ist es wesentlich, dass mehrere Lagen des Spulendrahts 25a derart übereinander angeordnet bzw. aufgewickelt werden, dass auf das Graphen 22 einer radial unteren Schicht jeweils eine Isolationsschicht 26 einer oberhalb angeordneten Windung gewickelt wird.
In der Fig. 5 ist über der Temperatur T (x-Achse) der spezifische Widerstand Rs (Y-Achse) verschiedener Materialien dargestellt. Mit der Bezugsziffer 31 ist der Verlauf des spezifischen Wderstands Rs von Aluminium dargestellt, während die Bezugsziffer 32 den Verlauf des spezifischen Widerstand Rs von Kupfer verdeutlicht. Mit der Bezugsziffer 33 ist der spezifische Wderstand Rs der erfindungsgemäßen Materialkombination, bestehend aus Aluminium 21 und Graphen 22 dargestellt. Man erkennt, dass eine derartige Materialkombination bei steigender Temperatur einen nahezu konstanten bzw. lediglich leicht steigenden spezifischen Wderstand Rs aufweist, der hinsichtlich seines
Absolutbetrages in der Größenordnung von Kupfer bei relativ kleinen
Temperaturen liegt.
Die erfindungsgemäße Elektrospule 10 kann in vielfältiger Art und Weise abgewandelt bzw. modifiziert werden, ohne vom Erfindungsgedanken abzuweichen. Es ist beispielsweise denkbar, anstelle eines im Wesentlichen rechteckförmigen Querschnitts für den Spulendraht 25, 25a diesen Querschnitt auch quadratisch oder im Falle des im Aluminium 21 angeordneten Graphens 22 rund auszubilden. Auch sei nochmals darauf hingewiesen, dass der Einsatz der Erfindung nicht auf Elektrospulen 10 begrenzt sein soll, die als Bestandteil einer Kraftstoffeinspritzkomponente dienen.

Claims

Elektrospule (10), umfassend zumindest einen Spulenkörper (11) und einem den Spulenkörper (1 1) an einer Umfangsfläche (16) des Spulenkörpers (11) in Form wenigstens einer Windung umgebenen Spulendraht (25; 25a), wobei der Spulendraht (25; 25a) aus einem elektrisch leitenden Drahtkern (23) und einer den Drahtkern (23) zumindest bereichsweise umgebenden
Isolationsschicht (26) besteht, dadurch gekennzeichnet, dass der Drahtkern (23) aus Aluminium (21) und mit dem Aluminium (21) in elektrisch leitendem Kontakt angeordneten Graphen (22) besteht.
Elektrospule nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Graphen (22) zumindest im Wesentlichen homogen im Querschnitt des Drahtkerns (23) im Aluminium (21) verteilt und in Stromleitungsrichtung orientiert angeordnet ist.
Elektrospule nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Graphen (22) als eine von dem Aluminium (21) separate und mit dem Aluminium (21) elektrisch leitend verbundene, in Stromrichtung vorzugsweise durchgehende Schicht, vorzugsweise an einer Oberseite (29) des Drahtkerns (23), ausgebildet ist.
Elektrospule nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Isolationsschicht (26) eine Aluminium-Oxyidschicht (27) mit einer Dicke (a) zwischen 1 μηι und 10μηι, vorzugsweise zwischen 2μηι und 5μηι ist.
5. Elektrospule nach Anspruch 3 oder 4,
dadurch gekennzeichnet,
dass die Isolationsschicht (26) das Graphen (22) lediglich teilweise überdeckt.
6. Elektrospule nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass der Spulendraht (25; 25a) einen zumindest im Wesentlichen rechteckförmigen Querschnitt aufweist.
7. Elektrospule nach Anspruch 6,
dadurch gekennzeichnet,
dass das Spulendraht (25; 25a) eine Breite (b) ausweist, die zumindest im Wesentlichen der axialen Breite (B) des Spulenkörpers (11) in dessen
Längsrichtung entspricht.
8. Elektrospule nach Anspruch 6,
dadurch gekennzeichnet,
dass das Spulendraht (25; 25a) eine Breite (b) ausweist, die zumindest im
Wesentlichen einem 1/n-fachen der Breite (B) des Spulenkörpers (11) in dessen Längsrichtung entspricht, und dass zwei in Längsrichtung des Spulenkörpers (11) einander anschließende Spulendrähte (25; 25a) elektrisch leitend miteinander verbunden sind.
9. Verwendung einer Elektrospule (10) nach einem der Ansprüche 1 bis 9, bei der die Elektrospule (10) einer Temperatur von mehr als 150°C, insbesondere mehr als 200°C ausgesetzt ist. 10. Verwendung einer Elektrospule (10) nach Anspruch 9 als Bestandteil einer
Kraftfahrzeugeinspritzkomponente, insbesondere eines Kraftstoff! njektors.
PCT/EP2014/076381 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule WO2015090964A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/106,278 US20160336103A1 (en) 2013-12-19 2014-12-03 Electric solenoid and use of an electric solenoid
CN201480069575.7A CN106104716B (zh) 2013-12-19 2014-12-03 电磁线圈和电磁线圈的使用
RU2016129242A RU2659563C1 (ru) 2013-12-19 2014-12-03 Электромагнитная катушка и ее применение
EP14806274.8A EP3084781B1 (de) 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226572.7A DE102013226572A1 (de) 2013-12-19 2013-12-19 Elektrospule und Verwendung einer Elektrospule
DE102013226572.7 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015090964A1 true WO2015090964A1 (de) 2015-06-25

Family

ID=52003781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/076381 WO2015090964A1 (de) 2013-12-19 2014-12-03 Elektrospule und verwendung einer elektrospule

Country Status (6)

Country Link
US (1) US20160336103A1 (de)
EP (1) EP3084781B1 (de)
CN (1) CN106104716B (de)
DE (1) DE102013226572A1 (de)
RU (1) RU2659563C1 (de)
WO (1) WO2015090964A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177767A1 (de) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Elektrischer leiter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202071A1 (de) 2016-02-11 2017-08-17 Siemens Aktiengesellschaft Elektrischer Leiter für eine elektrische Maschine mit erhöhtem Leistungsgewicht und elektrische Komponente für die elektrische Maschine
DE102017210441A1 (de) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Elektromagnetisch erregbare Spule
CN107726600B (zh) * 2017-09-27 2020-10-02 青岛海尔智能技术研发有限公司 一种磁能热水器
CN110491619A (zh) * 2019-09-04 2019-11-22 同济大学 一种磁浮列车用箔绕电磁铁
US20240047096A1 (en) * 2022-08-03 2024-02-08 Infineon Technologies Austria Ag Graphene in electromagnetic systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034408A1 (de) * 2008-07-23 2010-01-28 Kendrion Binder Magnete Gmbh Elektromagnetische Vorrichtung mit einem Bandwickel
US20130020877A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Graphene-coated coupling coil for ac resistance reduction
CN103021502A (zh) * 2012-12-25 2013-04-03 山东鑫汇铜材有限公司 一种铜包铝导线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU636691A1 (ru) * 1977-04-26 1978-12-05 Предприятие П/Я А-1216 Катушка индуктивности
ES2148642T3 (es) * 1995-08-25 2000-10-16 Denso Corp Bobina electromagnetica de arrollamiento inclinada y bobina de ignicion para motor de combustion interna que las usa.
CN1196140C (zh) * 2002-06-29 2005-04-06 太原理工大学 一种铝基混合碳纤维复合材料线芯传输电缆制备方法
JP4631951B2 (ja) * 2008-09-19 2011-02-16 パナソニック株式会社 巻線コイルと銅線との洗濯機用電気接続手段
ATE537352T1 (de) * 2009-06-15 2011-12-15 Delphi Tech Holding Sarl Kraftstoffeinspritzdüse
US8263843B2 (en) * 2009-11-06 2012-09-11 The Boeing Company Graphene nanoplatelet metal matrix
CN202307250U (zh) * 2011-11-04 2012-07-04 江苏中超电缆股份有限公司 含石墨烯的橡胶绝缘电缆
US20130140058A1 (en) * 2011-12-05 2013-06-06 Ki II Kim Graphene electrical wire and a method for manufacturing thereof
CN103123830A (zh) * 2013-03-14 2013-05-29 南京科孚纳米技术有限公司 一种制备石墨烯电线电缆的方法
NL2011129C2 (nl) * 2013-07-09 2015-01-12 Eco Logical Entpr B V Compacte elektrische inrichting en daarop gebaseerde elektrodynamische luidspreker, elektromotor, roerinrichting en instelbare koppeling.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034408A1 (de) * 2008-07-23 2010-01-28 Kendrion Binder Magnete Gmbh Elektromagnetische Vorrichtung mit einem Bandwickel
US20130020877A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Graphene-coated coupling coil for ac resistance reduction
CN103021502A (zh) * 2012-12-25 2013-04-03 山东鑫汇铜材有限公司 一种铜包铝导线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEPHEN F BARTOLUCCI ET AL: "Graphene-aluminum nanocomposites", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 528, no. 27, 22 July 2011 (2011-07-22), pages 7933 - 7937, XP028270055, ISSN: 0921-5093, [retrieved on 20110729], DOI: 10.1016/J.MSEA.2011.07.043 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177767A1 (de) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Elektrischer leiter

Also Published As

Publication number Publication date
US20160336103A1 (en) 2016-11-17
DE102013226572A1 (de) 2015-06-25
EP3084781B1 (de) 2017-09-20
RU2016129242A (ru) 2018-01-23
CN106104716A (zh) 2016-11-09
CN106104716B (zh) 2018-12-18
EP3084781A1 (de) 2016-10-26
RU2659563C1 (ru) 2018-07-03

Similar Documents

Publication Publication Date Title
EP3084781B1 (de) Elektrospule und verwendung einer elektrospule
DE102008022170A1 (de) Spule für eine elektrische Maschine und Herstellungsverfahren für eine Spule
EP2068426B1 (de) Elektrischer Wickelleiter mit rechteckigem Querschnitt
DE102019207665A1 (de) Isoliereinheit für eine elektrische Maschine
EP1958217B1 (de) Elektrische wicklung und herstellungsverfahren
AT521301A1 (de) Stator mit Isolationsschicht
EP2732452B1 (de) Elektrische vorrichtung
DE102009008405A1 (de) Stellantrieb
EP1722998B1 (de) Magnetpol für magnetschwebefahrzeuge
EP1722996B1 (de) Magnetpol für magnetschwebefahrzeuge
EP1722997B1 (de) Magnetpol für magnetschwebefahrzeug
EP2079604B1 (de) Magnetpol für magnetschwebefahrzeuge
WO2013163994A1 (de) Flüssigkeitsgekühlter widerstand
DE102017207663A1 (de) Verfahren zur Herstellung einer Spulenanordnung
WO2017041957A1 (de) Hohlleiter für eine elektrische maschine, elektrische maschine sowie herstellungsverfahren
DE102019202191B4 (de) Verwendung einer Spule in einem Elektromotor
DE202015105768U1 (de) Induktives Bauelement für Hochstromanwendungen
DE102012210802A1 (de) Spulenanordnung und Verfahren zur Herstellung sowie Verwendung der Spulenanordnung mit Kühlung
EP2401747B1 (de) Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils
WO2005059355A1 (de) Zündspule
DE102017114924A1 (de) Spulenanordnung
DE102015118533A1 (de) Induktives Bauelement für Hochstromanwendungen
EP4152352A1 (de) Spule
WO2021043765A1 (de) Verfahren und einrichtung zur herstellung einer elektrischen maschine, elektrische maschine und gruppe von elektrischen maschinen
DE102021112869A1 (de) Spulenanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806274

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014806274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014806274

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15106278

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016129242

Country of ref document: RU

Kind code of ref document: A