WO2015090266A2 - Générateur électrique à saturation magnétique variable - Google Patents

Générateur électrique à saturation magnétique variable Download PDF

Info

Publication number
WO2015090266A2
WO2015090266A2 PCT/DE2014/000635 DE2014000635W WO2015090266A2 WO 2015090266 A2 WO2015090266 A2 WO 2015090266A2 DE 2014000635 W DE2014000635 W DE 2014000635W WO 2015090266 A2 WO2015090266 A2 WO 2015090266A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
core
capacitive
electric generator
coil
Prior art date
Application number
PCT/DE2014/000635
Other languages
German (de)
English (en)
Other versions
WO2015090266A3 (fr
Inventor
Pavel Imris
Original Assignee
Pavel Imris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201320011233 external-priority patent/DE202013011233U1/de
Priority claimed from DE102013021483.1A external-priority patent/DE102013021483A1/de
Application filed by Pavel Imris filed Critical Pavel Imris
Priority to DE112014005978.1T priority Critical patent/DE112014005978A5/de
Publication of WO2015090266A2 publication Critical patent/WO2015090266A2/fr
Publication of WO2015090266A3 publication Critical patent/WO2015090266A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings

Definitions

  • the invention relates to an electric generator operated with variable magnetic saturation. According to the present invention, the generator is different in the entire technical design and in the structure and thereby has a higher efficiency.
  • the object of the invention is therefore to provide a high-power electrical generator with improved magnetic saturation, which in one magnetic core converts the reactive power into active power.
  • the present invention enables the magnetic path for saturation in the entire circumference of the magnetic core.
  • the solution of this object is achieved according to the invention by the characterizing features of the first claim.
  • an electric generator is provided in which the magnetic saturation varies in a toroidal core and in two magnetic path lengths, whereby electrical current is induced in the induction coil according to the law of induction.
  • the invention consists of a magnetic core of soft magnetic material, in the interior of which a channel is worked out in which coils of capacitive windings are mounted.
  • the capacitive windings are electrically arranged so that at each half period of the pulsating current, the magnetic poles act against each other with the same polarity.
  • This is the first closed magnetic path.
  • the second magnetic path consists of two coils wound on the outside of the magnetic core.
  • the first coil is an excitation coil and is supplied with magnetizing DC current.
  • the second coil is an induction coil. In the induction coil voltage is induced whose frequency is determined by the variation of the magnetic saturation.
  • the temporal change of the magnetic saturation in the magnetic core varies the saturation flux density, thereby varying the effective permeability of the magnetic core.
  • An electric generator designed in this way converts the reactive power into active power.
  • This constructive design significantly improves the efficiency and performance of the generator based on an oscillating reactive current.
  • the capacitive windings can be wound independently of the other components and then inserted into the channel.
  • the large radius of the capacitive winding also allows band capacitors with stiffer metal foils, insulators and dielectric.
  • the assembly of the excitation coil and the induction coil as is known, by a subsequent winding on the finished, closed ring core, or the core shape.
  • the magnetic ring core (1, 14) or the core mold (27) and the channel / inner channel (2, 23) arranged therein are designed as a closed ring with a rectangular to circular cross-section. This design allows an optimal magnetic flux density in the toroidal core, as well as easy fabrication and easy installation of the capacitive winding as a structural unit.
  • the toroidal core (1, 14) consists of soft ferrites which are divided into a plurality of segments (15) and in which these segments (15) an inner channel (16) is formed the capacitive winding (3) is arranged.
  • the division into segments has the advantage of a simple production and assembly, especially for large generators.
  • the magnetic core consists of a plurality of annular band cores (19, 20, 24) whose sides are cut at an angle and are bonded together in a technical core shape (27).
  • the magnetic core is tied together so as to have therein an inner channel (23) in which the capacitive windings (25, 26) are arranged.
  • a preferred embodiment according to claim 6 proposes that at least one capacitive winding (25) is connected to an oscillating voltage source (6) as a primary coil of a transformer.
  • the second capacitive winding (26) is then arranged as a secondary coil.
  • the induction coil 13 can be omitted.
  • the capacitive winding (3) is a known band capacitor consisting of the layer combination of an insulator, a metal foil of a dielectric, a metal foil and insulator. This is multilayered too a flat ring wound and in the channel (2, 16) during assembly of the segments (15) to arrange.
  • a further variant according to claim 8 proposes that the capacitive windings (25, 26) consist of a known insulated copper wire which is wound in several layers into two rings and in the inner channel (23) during assembly of the annular band cores (19, 20 , 24) are to be arranged.
  • Fig. 1 partly in cross-section and partly in side elevation a toroidal core having an inner channel and capacitive windings connected to the electrical circuit and an exciting coil and an induction coil wound on the toroidal core.
  • Fig. 2 partly in cross-section and partly in side view of a toroidal core, which consists of several segments and an inner channel.
  • Fig. 3 in cross section two toroidal cores with cut sides, which are parts of a technical core shape.
  • Fig. 4 in cross section a technical core shape with a
  • FIG. 1 The basic physical principle of the present invention is illustrated in FIG.
  • the conversion of reactive power into active power takes place in a toroidal core 1 with an inner channel 2, in which capacitive windings 3 are arranged.
  • the capacitive windings 3 are through the electrical connections 4, 5 connected to an oscillating voltage source 6.
  • the present electric generator belongs to a new and revolutionary technology. All building materials are commercially available.
  • the most important component is the magnetic ring core 1.
  • a simple production of the core 1 is feasible in two technical construction alternatives.
  • the first technical construction alternative is illustrated in FIG.
  • the ring core 14 in Fig. 2 consists of soft magnetic, low-loss, high permeable material.
  • Soft ferrite such as Manifer 104/108 or Manifer 196B is used to construct the toroidal core 14.
  • the performance factor for this material is defined as the product of frequency and peak maximum flux density. The saturation magnetization of these ferrites is optimal.
  • the structure of the ring core 14 in Fig. 2 consists of several segments 15.
  • the inner channel 16 is made in the middle of each segment 15 and all segments 15 have the same geometry.
  • half of the ring core 14 is glued together from six segments 15.
  • the second half of the ring core 14 is perfectly symmetrical, ie, the entire ring core 14 consists of twelve segments 15.
  • the capacitive windings 3 are to be inserted in the inner channel 16. Then the two halves are glued together.
  • Arrow 17 in FIG. 2 illustrates the effective path length of the magnetic field which is closed around the body of the ring core 14.
  • Arrow 18 illustrates the path length of the magnetic field that is closed around the core perimeter by the excitation current. Both magnetic path lengths 17, 18 are oriented perpendicular to each other.
  • the toroidal core 1 is a core mold 27 and consists of four toroidal cores 19, 19, 20, 24.
  • FIG. 3 two toroidal cores 19, 20 are illustrated .
  • ring band core 19 When ring band core 19, the outer side 21 and the inner side 22 are cut by laser technology. The cutting angle is 45 degrees.
  • Fig. 4 In order to provide an inner channel 23 in the technical core 27, Fig. 4, four annular band cores 19, 19, 20, 24 are fixedly connected together, which is shown in Fig. 4.
  • two capacitive windings 25, 26 are arranged and, as shown in FIG. 1, connected to a voltage source 6.
  • Such a built technical core mold 27 can be easily produced with known materials and with known technology.
  • the physical and technical function of the present generator can be easily explained with reference to FIGS. 1 and 2.
  • the electrical connections 4, 5 are connected to the oscillating voltage source 6.
  • the capacitive windings 3 are supplied with magnetizing reactive current.
  • the magnetic field strength oscillates around ring core 14, which is illustrated by arrow 17. This is an oscillation of the saturation magnetic flux density.
  • the excitation coil 11 is energized with direct current and the resulting magnetic field strength is closed in the entire magnetic circuit.
  • Arrow 18, Fig. 2 shows this magnetic circuit. Due to the oscillating magnetic saturation also the magnetic flux density oscillates in induction coil 13, whereby the active electric current is induced. This is a similar rather physical process as in classical rotary electric generators, where the magnetic flux density in the induction coils is forced to vary with kinetic energy.
  • the physical function of the present generator may also function sufficiently when the capacitive winding 25, Fig. 4, is connected as the primary coil of a transformer to voltage source 6, Fig. 1, and capacitive winding 26, Fig. 4, is used as the induction coil.
  • Table 1 The experimental data in Table 1 have been precisely measured and prove the physical and technical function of the present generator. Table 1 lists experimental data in seven columns and four rows.
  • g the active power absorbed by the capacitive windings 3, 25, 26.
  • the emitted electrical energy as documented in Table 1, belongs to types of energy that are not yet known and for many no energy quantity is defined yet, but that are there, exist in real life and are economically viable for the entire human race.
  • the economic advantages of the invention described herein are readily apparent to one of ordinary skill in the art.
  • the use of the present electric generator is possible anywhere in the economy where electrical energy is needed. Last but not least, this energy is clean, does not pollute the environment and is cheap.

Abstract

L'invention concerne un générateur électrique fonctionnant avec une saturation magnétique variable. L'invention vise à créer un générateur électrique à grande puissance présentant une saturation magnétique améliorée, lequel convertit la puissance réactive en puissance active dans un noyau magnétique. À cet effet, l'invention propose un générateur électrique dans lequel la saturation magnétique varie dans un noyau toroïdal et dans deux longueurs de chemin magnétique, de sorte qu'un courant électrique est induit dans la bobine d'induction d'après la loi de l'induction électromagnétique. L'invention comprend un noyau magnétique en matériau magnétique doux à l'intérieur duquel est ménagé un canal dans lequel sont logées des bobines constituées d'enroulements capacitifs. Les enroulements capacitifs sont agencés électriquement de sorte qu'à chaque demi-période du courant pulsé, les pôles magnétiques agissent l'un vis-à-vis de l'autre avec la même polarité. C'est le premier chemin magnétique fermé. Le deuxième chemin magnétique se compose de deux bobines qui sont enroulées extérieurement sur le noyau magnétique. La première bobine est une bobine d'excitation, parcourue par un courant continu magnétisant. La deuxième bobine est une bobine d'induction. Une tension électrique est induite dans la bobine d'induction, la fréquence de cette tension électrique étant déterminée d'après la variation de la saturation magnétique. Un générateur électrique de ce type convertit la puissance réactive en puissance active.
PCT/DE2014/000635 2013-12-17 2014-12-12 Générateur électrique à saturation magnétique variable WO2015090266A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014005978.1T DE112014005978A5 (de) 2013-12-17 2014-12-12 Elektrischer Generator mit variabler magnetischer Sättigung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102013021483.1 2013-12-17
DE201320011233 DE202013011233U1 (de) 2013-12-17 2013-12-17 Elektrischer Generator mit variabler magnetischer Sättigung
DE102013021483.1A DE102013021483A1 (de) 2013-12-17 2013-12-17 Elektrischer Generator mit variabler magnetischer Sättigung
DE202013011233.6 2013-12-17

Publications (2)

Publication Number Publication Date
WO2015090266A2 true WO2015090266A2 (fr) 2015-06-25
WO2015090266A3 WO2015090266A3 (fr) 2015-08-20

Family

ID=52396319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/000635 WO2015090266A2 (fr) 2013-12-17 2014-12-12 Générateur électrique à saturation magnétique variable

Country Status (2)

Country Link
DE (1) DE112014005978A5 (fr)
WO (1) WO2015090266A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597821A (zh) * 2018-06-01 2018-09-28 山东泰开互感器有限公司 一种内置无功补偿功能的试验变压器以及供电系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012397U1 (de) 2010-09-09 2010-11-11 Imris, Pavel, Dr. Elektrischer Generator
EP2429062A2 (fr) 2010-09-09 2012-03-14 Pavel Imris Générateur électrique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927355A1 (de) * 1999-06-16 2000-12-21 Pavel Imris Transformator mit kapazitivem Widerstand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012397U1 (de) 2010-09-09 2010-11-11 Imris, Pavel, Dr. Elektrischer Generator
EP2429062A2 (fr) 2010-09-09 2012-03-14 Pavel Imris Générateur électrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108597821A (zh) * 2018-06-01 2018-09-28 山东泰开互感器有限公司 一种内置无功补偿功能的试验变压器以及供电系统

Also Published As

Publication number Publication date
WO2015090266A3 (fr) 2015-08-20
DE112014005978A5 (de) 2016-10-13

Similar Documents

Publication Publication Date Title
EP2962383B1 (fr) Machine à flux axial légère
EP2523319B1 (fr) Moteur linéaire cylindrique à faible pulsation de couple
DE1763722C3 (de) Elektrischer Generator
DE2165152B2 (de) Elektrische synchronmaschine
DE102005045347A1 (de) Zahnmodul für Primärteile von permanentmagneterregten Synchronmotoren
DE3730615A1 (de) Elektrische maschine mit permanentmagnet-erregung
WO2010003394A2 (fr) Enroulement capacitif pour moteurs électriques, transformateurs et électroaimants
WO2018002128A1 (fr) Rotor, procédé de fabrication d'un rotor, machine à reluctance et machine de travail
WO2015090266A2 (fr) Générateur électrique à saturation magnétique variable
WO2014049007A1 (fr) Pièce active d'une machine électrique, palier magnétique radial et procédé pour produire un palier magnétique radial
WO2003073583A1 (fr) Generateur synchrone
DE102018113422A1 (de) Motor mit einer Einstrangluftspaltwicklung
WO2018054554A1 (fr) Machine électrique
DE202013011233U9 (de) Elektrischer Generator mit variabler magnetischer Sättigung
DE102013021483A1 (de) Elektrischer Generator mit variabler magnetischer Sättigung
DE102011103166A1 (de) Flusskonzentrierende Statoranordnung
EP2149963B1 (fr) Moteur à spin magnétique
WO2019150320A1 (fr) Générateur et procédé de génération de courant électrique
DE202010002424U1 (de) Vorrichtung zum Wandeln von elektrischer in mechanische Energie und/oder umgekehrt sowie Wickelkörper für eine solche Vorrichtung
DE4405308C2 (de) Radialschichtiger Eisenkern für elektrische Motoren und Generatoren
DE1638537C (de) Hochspannungs-Gleichstromgenerator
DE102010033960A1 (de) Elektrische Spule mit einseitig zum Spulenbündel liegendem Stromeingang und Stromausgang und deren Herstellungsverfahren II
DE1229181B (de) Magnetohydrodynamischer Generator
DE102012012095B3 (de) Elektromagnetischer Energiewandler mit transversalem Magnetkreis für rotierende oder lineare Bewegung
DE102014011690A1 (de) Spiral Torus Form zur Energieerzeugung , Erzeugung von Molekülen und zum Einsatz als Spule in elektromagnetischen Motoren und Generatoren. Feder Spiral Torus Baustein zu Erzeugung von Objekten und Maschinenteilen.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830500

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112014005978

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014005978

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830500

Country of ref document: EP

Kind code of ref document: A2