WO2015087966A1 - Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface - Google Patents
Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface Download PDFInfo
- Publication number
- WO2015087966A1 WO2015087966A1 PCT/JP2014/082820 JP2014082820W WO2015087966A1 WO 2015087966 A1 WO2015087966 A1 WO 2015087966A1 JP 2014082820 W JP2014082820 W JP 2014082820W WO 2015087966 A1 WO2015087966 A1 WO 2015087966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- unit
- copolymer
- vinyl
- containing olefin
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/06—Use of macromolecular materials
- A61L33/064—Use of macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/041—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
Definitions
- the present invention relates to an antithrombotic material, an antithrombotic article, an antibacterial material, an antibacterial article, and a method for inhibiting the growth of E. coli on the article surface.
- Patent Document 1 discloses a polymer capable of maintaining a mixed phase of 2-methoxyethyl polyacrylate and glass at room temperature and 2-methoxyethyl polyacrylate.
- the biocompatible material is characterized in that the mixture has a gradient structure in which the 2-methoxyethyl polyacrylate is segregated on the surface side.
- At least a part of the surface is composed of a hydrophobic fluorine resin, a fluorine-containing monomer, a hydrophilic monomer, or a hydrophilic fluorine resin made of a copolymer of a hydrophilic monomer or a monomer that can be made hydrophilic after polymerization.
- a biocompatible substrate characterized by is described.
- Patent Document 3 includes a medical article that includes a coating disposed on at least a portion of an implantable medical device, the coating including (a) a fluorinated polymer, and (b) a biobeneficial polymer. Medical articles are described.
- Patent Document 4 as a film used for water treatment or medical use, a copolymer of tetrafluoroethylene (TFE) and vinyl acetate (VAc) or at least a part of an acetate group contained in the copolymer is described. There is described a fluorine-containing copolymer film comprising a saponified copolymer and having a tetrafluoroethylene content of 1 to 70 mol% contained in the copolymer.
- Example 3 of Patent Document 4 describes a fluorine-containing copolymer having a saponification degree of 82% obtained by hydrolyzing a TFE / VAc copolymer having a TFE: VAc molar ratio of 23:77. .
- Patent Document 5 describes a copolymer obtained by deprotecting a copolymer of tetrafluoroethylene and t-butyl vinyl ether or vinyl acetate as a hydrophilizing material used for an aqueous liquid separation membrane. .
- JP 2013-121430 A Japanese Patent No. 2957023 Special table 2007-515208 JP-A-5-261256 International Publication No. 2012/165503
- the present invention has been made in view of the above circumstances, and antithrombotic materials and antithrombotic articles with improved antithrombogenicity and heat resistance, antimicrobial materials and antimicrobial articles with improved antimicrobial and heat resistance, Another object of the present invention is to provide a novel method for inhibiting the growth of E. coli on the surface of an article.
- the inventors of the present invention have a heat resistance, antithrombogenicity (antiplatelet adhesion), I found that antibacterial properties improved. Moreover, it has been found that when a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of an article, the growth of E. coli can be inhibited, and the present invention has been achieved.
- the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 30 to 60 mol%. Antithrombotic material.
- the alternating ratio of the fluorinated olefin unit and the vinyl alcohol unit in the fluorinated copolymer is preferably 10 to 100%.
- the fluorine-containing olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
- the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
- the fluorine-containing copolymer is preferably a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- the antithrombogenic material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
- the antithrombogenic material of the present invention is preferably a coating film.
- the present invention is also an antithrombotic article made of the above antithrombotic material, which is a vial, an artificial blood vessel, a stent, a catheter, an artificial heart, an artificial lung, an artificial heart valve, or a blood storage bag. .
- the present invention is an antibacterial characterized in that it comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%. It is also a sex material.
- the alternating ratio of the fluorine-containing olefin unit and the vinyl alcohol unit in the fluorine-containing copolymer is 10 to 100%.
- the fluorine-containing olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
- the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
- the fluorine-containing copolymer is preferably a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- the antibacterial material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
- the antibacterial material of the present invention is preferably a coating film.
- the present invention is also an antibacterial article made of the above antibacterial material, which is a contact lens, toiletry product, kitchen watering device, air conditioner, food factory facility, sewage treatment plant facility, or drain pipe.
- the present invention is a method for inhibiting the growth of Escherichia coli on the surface of an article, characterized in that a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of the article.
- an antithrombotic material and an antithrombotic article having improved antithrombogenicity an antimicrobial material and antimicrobial article having improved antimicrobial properties, and a novel method for inhibiting the growth of Escherichia coli on the surface of the article.
- the antithrombotic material and the antithrombotic article having high heat resistance and high durability against the heating and heat sterilization treatment during molding, the temperature rise during use, and the antibacterial property Materials and antimicrobial articles can be provided.
- FIG. 1 is a scanning electron microscope (SEM) photograph of the coating film surface in the evaluation of the adhesion of Escherichia coli in Example 6.
- FIG. 2 is a scanning electron microscope (SEM) photograph of the PET film surface in the evaluation of the adhesion of Escherichia coli of Comparative Example 6.
- the antithrombotic material of the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit (—CH 2 —CH (OH) —), and the fluorine-containing olefin unit in the fluorine-containing copolymer
- the content is 30 to 60 mol%.
- the fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group).
- the antithrombotic material of the present invention is one in which the adhesion of platelets is strongly suppressed.
- Conventionally used ethylene / vinyl alcohol copolymers do not have the above-mentioned fluoroalcohol structure and cannot sufficiently suppress platelet adhesion.
- it is a fluorine-containing copolymer which has a fluorine-containing olefin unit and a vinyl alcohol unit, that whose content rate of a fluorine-containing olefin unit is lower than the said range is inferior to heat resistance.
- the fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
- a hydrophobic fluorine-containing olefin for example, —CF 2 CF 2 —
- the fluorine-containing copolymer used in the antithrombogenic material of the present invention preferably contains 30 to 60 mol% of fluorine-containing olefin units and 40 to 70 mol% of vinyl alcohol units.
- the content of each monomer unit is in such a range, the material made of the above-mentioned fluorine-containing copolymer becomes more excellent in antithrombogenicity and heat resistance.
- the fluorine-containing olefin unit is 35 to 60 mol%
- the vinyl alcohol unit is more preferably 65 to 40 mol%
- the fluorine-containing olefin unit is 45 to 55 mol%. More preferably, the vinyl alcohol unit is 55 to 45 mol%.
- the said fluorine-containing olefin unit represents the polymerization unit based on a fluorine-containing olefin.
- the fluorine-containing olefin is a monomer having a fluorine atom.
- PAVE perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), and the like.
- At least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
- the fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 10 to 100%.
- the alternating rate is in such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, and thus the adhesion of platelets to the antithrombotic material of the present invention is further strongly suppressed. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the alternating rate of the fluorinated olefin unit and the vinyl alcohol unit was determined by performing 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone is dissolved, It can be calculated as the alternating rate of chaining.
- Alternating rate (%) C / (A + B + C) ⁇ 100
- the number of V units of A, B and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR.
- the estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was carried out on the fluorine-containing copolymer before saponification.
- fluorine-containing copolymer —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that at least one of X and Y Is F or a fluoroalkyl group).
- the fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
- the fluorine-containing copolymer preferably contains 10 to 50 mol% of vinyl alcohol units constituting the fluorine alcohol structure based on all monomer units.
- the content of vinyl alcohol units constituting the fluoroalcohol structure is more preferably 15 to 50 mol%, and further preferably 30 to 50 mol%.
- the fluorine-containing copolymer is further represented by —CH 2 —CH (O (C ⁇ O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit.
- R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms.
- the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
- fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
- the vinyl ester monomer unit is a monomer represented by —CH 2 —CH (O (C ⁇ O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). Although it is a unit, R in the above formula is preferably an alkyl group having 1 to 11 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. Particularly preferred is an alkyl group having 1 to 3 carbon atoms.
- vinyl ester monomer unit examples include monomer units derived from the following vinyl esters. Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, vinyl pelargonate, vinyl caprate, Vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu KK) )), Vinyl benzoate, vinyl versatate.
- monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferable. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
- the content of each monomer unit is 30 to 60 mol% of the fluorine-containing olefin unit, and vinyl alcohol
- the units are greater than 0 mol% and less than 70 mol%
- the vinyl ester monomer units are greater than 0 mol% and less than 70 mol%.
- each monomer unit is such that the fluorinated olefin unit is 30 to 60 mol%, the vinyl alcohol unit is 70 to 40 mol%, and the vinyl ester monomer unit is 0.1 to 20 mol%. More preferably, the fluorine-containing olefin unit is 35 to 60 mol%, the vinyl alcohol unit is 75 to 40 mol%, and the vinyl ester monomer unit is further preferably 0.5 to 10 mol%.
- the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 10 to 100%. It is preferable. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorinated copolymer is further increased, so that the adhesion of platelets to the material comprising the fluorinated copolymer is more strongly suppressed. . More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved, It can be calculated as an alternating rate of three chains from the following formula.
- Alternating rate (%) C / (A + B + C) ⁇ 100
- T- fluorine-containing olefin unit
- V vinyl alcohol unit or vinyl ester monomer unit
- the number of V units in A, B, and C is the vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ester monomer unit (—CH 2 —CH (O (C ⁇ O)) measured by 1 H-NMR.
- the said fluorine-containing copolymer may have other monomer units other than a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit in the range which does not impair the effect of this invention.
- Examples of the other monomer include monomers not containing a fluorine atom (excluding vinyl alcohol and vinyl ester monomers) such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride, Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of vinylidene chloride, vinyl ether monomers and unsaturated carboxylic acids.
- monomers not containing a fluorine atom such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride
- the total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
- each monomer unit constituting the fluorine-containing copolymer can be calculated by appropriately combining NMR, FT-IR, and elemental analysis depending on the type of monomer.
- the weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
- the weight average molecular weight can be determined by gel permeation chromatography (GPC).
- the fluorine-containing copolymer can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- the manufacturing method of the fluorine-containing copolymer in this invention is demonstrated.
- the fluorine-containing copolymer in the present invention is produced by copolymerizing a fluorine-containing olefin such as tetrafluoroethylene and a vinyl ester monomer such as vinyl acetate, and then saponifying the obtained copolymer. can do.
- a method for polymerizing the fluorine-containing copolymer it is preferable to carry out the polymerization under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept substantially constant.
- the above-mentioned fluorine-containing copolymer is polymerized under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept almost constant to obtain a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
- vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargon.
- vinyl acetate, vinyl propionate, and vinyl versatate are preferably used because they are easily available and inexpensive.
- 1 type of these may be used and 2 or more types may be mixed and used.
- Examples of the method of copolymerizing the fluorinated olefin and the vinyl ester monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like, and emulsion polymerization is easy because it is industrially easy to implement. However, it is preferable to produce by solution polymerization or suspension polymerization, but not limited thereto.
- a polymerization initiator In emulsion polymerization, solution polymerization, or suspension polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant, and the like can be used, and those usually used can be used.
- the solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ester monomer, and the fluorine-containing copolymer to be synthesized.
- n-butyl acetate, t-butyl acetate, ethyl acetate Esters such as methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol and ethanol Alcohols such as tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, di
- polymerization initiator examples include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation).
- Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
- a commonly used surfactant can be used.
- a nonionic surfactant an anionic surfactant, a cationic surfactant and the like can be used.
- dispersant used in suspension polymerization examples include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin.
- the suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by weight, and the dispersant is 0.01 to 0 with respect to 100 parts by weight of the monomer. 1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
- Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
- the addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
- the polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 100 ° C.
- the polymerization pressure may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 10 MPaG.
- Saponification of an acetate group derived from vinyl acetate is well known in the art, and can be performed by a conventionally known method such as alcoholysis or hydrolysis. By this saponification, the acetate group (—OCOCH 3 ) is converted to a hydroxyl group (—OH). Similarly, other vinyl ester monomers can be saponified by a conventionally known method to obtain a hydroxyl group.
- the degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is within the above-mentioned range, specifically, 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
- the fluorine-containing copolymer in the present invention is a vinyl ether monomer (CH 2 ⁇ CH—OR) (hereinafter simply referred to as a vinyl ether monomer) to which a fluorine-containing olefin and a protecting group (R) that can be converted to vinyl alcohol by deprotection reaction are bonded. And a fluorine-containing olefin / vinyl alcohol copolymer by deprotecting the fluorine-containing olefin / vinyl ether copolymer. It can obtain also by the manufacturing method which consists of a process of obtaining.
- a method for copolymerizing the fluorinated olefin and the vinyl ether monomer and a method for deprotecting the fluorinated olefin / vinyl ether copolymer are well known in the art. It can be carried out. By deprotecting the fluorinated olefin / vinyl ether copolymer, the protecting group alkoxy group is converted to a hydroxyl group, and a fluorinated olefin / vinyl alcohol copolymer is obtained.
- the fluorine-containing olefin / vinyl ether copolymer obtained by copolymerizing the fluorine-containing olefin and the vinyl ether monomer is a molar ratio of the fluorine-containing olefin and the vinyl ether monomer (fluorine-containing olefin) / (vinyl ether unit
- the (mer) is preferably (30 to 60) / (70 to 40), more preferably (45 to 55) / (55 to 45).
- the vinyl ether monomer preferably does not contain a fluorine atom.
- the vinyl ether monomer is not particularly limited as long as it is deprotected, but tertiary butyl vinyl ether is preferable from the viewpoint of availability.
- the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ether unit is preferably 10 to 100%.
- the content of the fluoroalcohol structure in the fluorinated copolymer is further increased, so that the adhesion of platelets to the material comprising the fluorinated copolymer is more strongly suppressed.
- it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ether unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved. It can be calculated as an alternating rate of three chains from the equation.
- Alternating rate (%) C / (A + B + C) ⁇ 100
- T- fluorine-containing olefin unit
- V vinyl alcohol unit or vinyl ether unit
- the number of V units of A, B, and C is the same as the tertiary carbon of vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ether unit (—CH 2 —CH (OR)) measured by 1 H-NMR. It calculates from the intensity ratio of H of the main chain to couple
- Examples of the method for copolymerizing the fluorine-containing olefin and the vinyl ether monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, and the like, which are industrially easy to implement. Although it is preferable to manufacture by emulsion polymerization, solution polymerization, or suspension polymerization, it is not this limitation.
- solution polymerization or suspension polymerization a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant and the like can be used, and those usually used can be used.
- the solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ether monomer, and the fluorine-containing copolymer to be synthesized.
- a solvent capable of dissolving the fluorine-containing olefin, the vinyl ether monomer, and the fluorine-containing copolymer to be synthesized for example, n-butyl acetate, t-butyl acetate, Esters such as ethyl acetate, methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol Alcohols such as ethanol, tert-butanol and 2-propanol;
- polymerization initiator examples include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation).
- Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
- a commonly used surfactant can be used.
- a nonionic surfactant an anionic surfactant, a cationic surfactant and the like can be used.
- dispersant used in suspension polymerization examples include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin.
- the suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by weight, and the dispersant is 0.01 to 0 with respect to 100 parts by weight of the monomer. 1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
- Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
- the addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
- the polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ether monomer is substantially constant, and may be 0 to 100 ° C.
- the polymerization pressure is not particularly limited as long as the composition ratio during the reaction of the fluorinated olefin and the vinyl ether monomer is substantially constant, and may be 0 to 10 MPaG.
- the deprotection of the vinyl ether monomer can be performed by a conventionally known method such as acid, heat or light.
- the leaving group for example, —C (CH 3 ) 3
- the leaving group can be replaced with hydrogen to obtain a hydroxyl group.
- the degree of deprotection in the case of obtaining the fluorine-containing copolymer in the present invention by deprotecting the copolymer having the above-mentioned fluorine-containing olefin unit and vinyl ether monomer unit is determined according to each monomer of the fluorine-containing copolymer in the present invention.
- the unit content may be in the range as described above, specifically 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
- the degree of deprotection is calculated from the following equation by IR measurement or 1 H-NMR measurement of the fluorine-containing copolymer.
- Deprotection degree (%) D / (D + E) ⁇ 100
- D Number of vinyl alcohol units in the fluorinated copolymer
- E Number of vinyl ether monomer units in the fluorinated copolymer
- the antithrombogenic material of the present invention may further contain other components other than the above-mentioned fluorinated copolymer as long as the effects of the present invention are not impaired.
- hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
- the blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
- the antithrombogenic material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
- an aqueous solution containing an organic solvent By this surface treatment, the hydroxyl structure further increases on the surface of the antithrombotic material, so that platelet adhesion is more strongly suppressed.
- the organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer.
- Examples of the treatment method using the aqueous solution containing the organic solvent include a method of wetting the surface of the antithrombogenic material with the aqueous solution.
- the antithrombogenic material of the present invention is provided by being molded into various shapes depending on the application.
- the molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method.
- Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
- the antithrombogenic material of the present invention is preferably a coating film because it can be applied to articles having various shapes.
- a coating film means the film
- the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
- the coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent.
- the organic solvent methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used.
- 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained.
- methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
- the film thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and 1.0 to 20 ⁇ m. Further preferred.
- the antithrombotic material of the present invention has excellent antithrombogenicity, it can be applied to various articles that require antithrombogenicity.
- Preferred examples of the article include vials, artificial blood vessels, stents, catheters, artificial hearts, artificial lungs, artificial heart valves, blood storage bags, and the like.
- An antithrombotic article comprising the antithrombotic material of the present invention, which is a vial, an artificial blood vessel, a stent, a catheter, an artificial heart, an artificial lung, an artificial heart valve, or a blood storage bag, is also provided. It is one of the inventions.
- antithrombogenic material of this invention is not specifically limited, The antithrombotic material of this invention is fully demonstrated in the point which exhibits the antithrombotic effect of the antithrombotic material of this invention. Is preferably applied so as to constitute at least the surface of the antithrombogenic article.
- the present invention is an antibacterial characterized in that it comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%. It is also a sex material.
- the antibacterial material of the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%, It is preferably ⁇ 60 mol%.
- the fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group).
- the antibacterial material of this invention can exhibit the outstanding antibacterial property.
- Conventionally used ethylene / vinyl alcohol copolymers do not have the above-mentioned fluorine alcohol structure and are not sufficiently antibacterial. Further, even in the case of a fluorinated copolymer having a fluorinated olefin unit and a vinyl alcohol unit, those having a fluorinated olefin unit content lower than the above range have a low content of the fluoroalcohol structure, Antibacterial property is not enough.
- the antibacterial action of the fluorine-containing copolymer is considered to be derived not only from the fluorine alcohol structure but also from a hydrophilic / hydrophobic phase separation structure or a sea-island structure.
- the fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
- the fluorine-containing copolymer used in the antibacterial material of the present invention preferably contains 10 to 60 mol% of fluorine-containing olefin units and 40 to 90 mol% of vinyl alcohol units.
- the content of each monomer unit is preferably 30 to 60 mol% of the fluorinated olefin unit, more preferably 70 to 40 mol% of the vinyl alcohol unit, and 35 to 55 mol% of the fluorinated olefin unit. More preferably, the vinyl alcohol unit is 65 to 45 mol%, the fluorinated olefin unit is 45 to 55 mol%, and the vinyl alcohol unit is 55 to 45 mol%.
- fluorine-containing olefin constituting the fluorine-containing olefin unit examples include the fluorine-containing olefins exemplified for the fluorine-containing copolymer used in the antithrombogenic material of the present invention.
- fluorine-containing olefin at least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
- the fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 10 to 100%.
- the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the calculation method of the alternating rate of a fluorine-containing olefin unit and a vinyl alcohol unit is as having mentioned above.
- fluorine-containing copolymer —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that at least one of X and Y Is F or a fluoroalkyl group).
- the fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
- the fluorine-containing copolymer preferably contains 30 to 50 mol% of vinyl alcohol units constituting the fluorine alcohol structure represented above in the total monomer units.
- the content of vinyl alcohol units constituting the fluoroalcohol structure is more preferably 35 to 50 mol%, and still more preferably 40 to 50 mol%.
- the fluorine-containing copolymer is further represented by —CH 2 —CH (O (C ⁇ O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit.
- R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms.
- the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
- fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
- vinyl ester monomer unit examples include monomer units derived from the vinyl ester monomer exemplified for the fluorine-containing copolymer used in the antithrombogenic material of the present invention. Of these, monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferred. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
- the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit
- the content of each monomer unit is 10 to 60 mol% of the fluorine-containing olefin unit, and vinyl alcohol
- the units are greater than 0 mol% and less than 90 mol%
- the vinyl ester monomer units are greater than 0 mol% and less than 70 mol%.
- each monomer unit is such that the fluorine-containing olefin unit is 10 to 60 mol%, the vinyl alcohol unit is 90 to 40 mol%, and the vinyl ester monomer unit is 0.1 to 20 mol%. More preferably, the fluorine-containing olefin unit is 30 to 60 mol%, the vinyl alcohol unit is 70 to 40 mol%, and the vinyl ester monomer unit is further preferably 0.1 to 20 mol%. It is particularly preferred that the units are 35 to 60 mol%, the vinyl alcohol units are 75 to 40 mol%, and the vinyl ester monomer units are 0.5 to 10 mol%.
- the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 10 to 100%. It is preferable. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, and thus the material comprising the fluorine-containing copolymer is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit is as having mentioned above.
- the fluorine-containing copolymer used for the antibacterial material of the present invention has a monomer unit other than the fluorine-containing olefin unit, vinyl alcohol unit and vinyl ester monomer unit within the range not impairing the effects of the present invention. It may be.
- the other monomer the other monomer illustrated about the fluorine-containing copolymer used for the antithrombogenic material of this invention can be mentioned.
- the total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
- the weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
- the weight average molecular weight can be determined by gel permeation chromatography (GPC).
- the fluorine-containing copolymer used for the antibacterial material of the present invention can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- a specific production method is the same as the production method described for the fluorine-containing copolymer used for the antithrombotic material of the present invention.
- the degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is within the above-mentioned range, specifically, 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
- the method for calculating the saponification degree is as described above.
- a vinyl ether monomer to obtain a fluorine-containing olefin / vinyl ether copolymer, and by deprotecting the fluorine-containing olefin / vinyl ether copolymer, It can also be obtained by a production method comprising the step of obtaining a vinyl alcohol copolymer.
- a specific method for copolymerizing the fluorine-containing olefin and the vinyl ether monomer and a specific method for deprotecting the fluorine-containing olefin / vinyl ether copolymer are used for the antithrombogenic material of the present invention. This is the same as the method described for the fluorine-containing copolymer.
- the fluorine-containing olefin / vinyl ether copolymer obtained by copolymerizing the fluorine-containing olefin and the vinyl ether monomer is a molar ratio of the fluorine-containing olefin and the vinyl ether monomer (fluorine-containing olefin) / (vinyl ether unit
- the (mer) is preferably (30 to 60) / (70 to 40), more preferably (45 to 55) / (55 to 45).
- the deprotection of the fluorine-containing olefin / vinyl ether copolymer is preferably performed so that the degree of deprotection is 1 to 100%, and more preferably 30 to 100%.
- the degree of deprotection is more preferably 50% or more, still more preferably 60% or more, and particularly preferably 70% or more.
- the method for calculating the degree of deprotection is as described above.
- the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ether unit is preferably 10 to 100%.
- the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
- the calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit is as having mentioned above.
- the antibacterial material of the present invention may further contain other components other than the fluorine-containing copolymer as long as the effects of the present invention are not impaired.
- hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
- the blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
- the antibacterial material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
- a hydroxyl group structure is further increased on the surface of the antibacterial material, so that more excellent antibacterial properties are exhibited.
- the organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer.
- Examples of the treatment method using an aqueous solution containing the organic solvent include a method of wetting the surface with the aqueous solution.
- the antibacterial material of the present invention is provided by being molded into various shapes depending on the application.
- the molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method.
- Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
- the antibacterial material of the present invention is preferably a coating film because it can be applied to articles having various shapes.
- a coating film means the film
- the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
- the coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent.
- the organic solvent methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used.
- 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained.
- methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
- the film thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, and further preferably 1.0 to 20 ⁇ m. preferable.
- the antibacterial material of the present invention Since the antibacterial material of the present invention has excellent antibacterial properties, it can be applied to various articles that require antibacterial properties.
- As the article contact lenses, toiletries, kitchen utensils, air conditioners, food factory equipment, sewage treatment plant equipment, drain pipes and the like are preferable.
- An antibacterial article comprising the antibacterial material of the present invention, which is a contact lens, toiletry product, kitchen watering device, air conditioner, food factory facility, sewage treatment plant facility, or drain pipe, is also provided in the present invention. It is one of.
- the antibacterial material of this invention is at least the said antibacterial property at the point which fully exhibits the antibacterial effect of the antibacterial material of this invention It is preferable to apply so as to constitute the surface of the article.
- the present invention is a method for inhibiting the growth of Escherichia coli on the surface of an article, characterized in that a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of the article.
- the fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group). For this reason, by applying the fluorine-containing copolymer to the surface of the article, the growth of E. coli on the surface of the article can be inhibited.
- the E. coli growth inhibitory action of the fluorinated copolymer is derived not only from the fluoroalcohol structure but also from a hydrophilic / hydrophobic phase separation structure or a sea-island structure.
- the fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
- the fluorine-containing copolymer is not particularly limited as long as it has a fluorine-containing olefin unit and a vinyl alcohol unit, but the fluorine-containing copolymer described as the fluorine-containing copolymer used in the antibacterial material of the present invention is not limited. It is preferable to use it.
- Examples of the article include various articles that require antibacterial properties against Escherichia coli. Specifically, contact lenses, toiletries, kitchen watering devices, air conditioners, food factory equipment, sewage treatment plant equipment, drain pipes, and the like are preferable.
- the location to which the fluorine-containing copolymer is applied is not particularly limited as long as it is the surface of the article, but is preferably a location where E. coli is more likely to grow.
- the method for applying the fluorine-containing copolymer to the surface of the article is not particularly limited, and the article may be produced by molding the fluorine-containing copolymer. You may form the coating film which consists of the said fluorine-containing copolymer on the surface of the article
- the average molecular weight was calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min by gel permeation chromatography (GPC). RI was used for the detector, and a polystyrene standard sample was used for the calibration curve sample, and the measurement was performed at a flow rate of 1 ml / min and a sample injection amount of 200 ⁇ L.
- THF tetrahydrofuran
- GPC gel permeation chromatography
- Tm Melting point
- the decomposition temperature was the temperature at the inflection point that showed a significant weight loss in the thermal decomposition curve in the TGA (calorimeter) measurement. Specifically, in the TGA curve, the decomposition temperature was obtained by a method (intersection method) in which an auxiliary line was drawn before and after a large weight loss to obtain an intersection point.
- Example 1 A 0.1 wt% methanol solution of polymer P-1 was spin coated onto a PET film (1 cm ⁇ 1 cm) at room temperature. Specifically, 10 ⁇ L of the above solution was dropped on a PET film and rotated at 700 rpm for 10 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature, and obtained the coating film (coating film formed in the surface of PET film).
- the obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 ⁇ 10 5 / ⁇ L) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. For 30 minutes. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C.
- PBS platelet-rich plasma
- the sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight.
- the obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted.
- the case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
- a coating film was obtained in the same manner as in Comparative Example 1 except that Example 3) was used. About the obtained coating film
- Comparative Example 4 Antithrombogenicity (30 minutes) was evaluated in the same manner as in Example 1 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 2.
- Example 2 A coating film was obtained in the same manner as in Example 1 except that the amount of the solution dropped onto the PET film was changed to 30 ⁇ L.
- the obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 ⁇ 10 5 / ⁇ L) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. And left for 1 hour. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C.
- PBS platelet-rich plasma
- the sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight.
- the obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted.
- the case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
- Examples 3-5 In the same manner as in Example 2 except that instead of polymer P-1, polymer P-2 (Example 3), polymer P-3 (Example 4) or polymer P-4 (Example 5) was used. A coating film was obtained. About the obtained coating film
- Example 6 A coating film was obtained in the same manner as in Example 1.
- PBS phosphate buffered saline
- PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize E. coli adhering to the coating membrane surface.
- the sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight.
- the obtained sample was coated with gold using a gold sputtering apparatus, and the coating film surface was observed arbitrarily at three magnifications of 400 times and 2500 times using a scanning electron microscope to evaluate the adhesion and colony formation amount of E. coli.
- Comparative Example 6 The adhesion of Escherichia coli was evaluated in the same manner as in Example 6 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 4. A scanning electron microscope (SEM) photograph at a magnification of 2500 times on the surface of the PET film in the evaluation of the adhesion of Escherichia coli is shown in FIG.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Surgery (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Materials For Medical Uses (AREA)
Abstract
The purpose of the present invention is to provide an antithrombotic material and an antithrombotic article having improved antithrombotic properties and improved heat resistance, an antibacterial material and an antibacterial article having improved antibacterial properties and improved heat resistance, and a novel method for inhibiting the growth of Escherichia coli on the surface of an article.
The antithrombotic material comprises a fluorocopolymer having a fluoroolefin unit and a vinyl alcohol unit, characterized in that the content ratio of the fluoroolefin unit to the fluorocopolymer is 30-60 mol%.
Description
本発明は、抗血栓性材料、抗血栓性物品、抗菌性材料、抗菌性物品、及び、物品表面の大腸菌の増殖を阻害する方法に関する。
The present invention relates to an antithrombotic material, an antithrombotic article, an antibacterial material, an antibacterial article, and a method for inhibiting the growth of E. coli on the article surface.
人工材料を生体成分と接触させると、タンパク質や血小板などが表面に付着し、材料の性能低下や生体反応への悪影響等の問題が生じるおそれがある。そのため、生体成分と接触させる用途に用いられる人工材料には表面の生体適合性が強く求められる。
When an artificial material is brought into contact with a biological component, proteins, platelets, and the like adhere to the surface, which may cause problems such as deterioration in material performance and adverse effects on biological reactions. Therefore, surface biocompatibility is strongly required for an artificial material used for contact with a biological component.
従来、生体適合性を有する材料として、エチレン/ビニルアルコール共重合体が使用されてきた。しかし、抗血栓性を改善する余地があった。
Conventionally, ethylene / vinyl alcohol copolymers have been used as biocompatible materials. However, there was room for improving antithrombogenicity.
エチレン/ビニルアルコール共重合体以外の材料も検討されており、特許文献1には、室温においてポリアクリル酸2-メトキシエチルとガラス状態の混合相を維持しうるポリマーとポリアクリル酸2-メトキシエチルとの混合物を含み、前記混合物は、前記ポリアクリル酸2-メトキシエチルが表面側に偏析した傾斜構造を有する、ことを特徴とする生体適合性材料が記載されている。
Materials other than the ethylene / vinyl alcohol copolymer have been studied, and Patent Document 1 discloses a polymer capable of maintaining a mixed phase of 2-methoxyethyl polyacrylate and glass at room temperature and 2-methoxyethyl polyacrylate. The biocompatible material is characterized in that the mixture has a gradient structure in which the 2-methoxyethyl polyacrylate is segregated on the surface side.
特許文献2には、表面の少なくとも一部が疎水性弗素樹脂と含弗素モノマーと親水性モノマー又は重合後に親水性にし得るモノマーとの共重合体からなる親水性弗素樹脂とから構成されていることを特徴とする生体親和性基材が記載されている。
In Patent Document 2, at least a part of the surface is composed of a hydrophobic fluorine resin, a fluorine-containing monomer, a hydrophilic monomer, or a hydrophilic fluorine resin made of a copolymer of a hydrophilic monomer or a monomer that can be made hydrophilic after polymerization. A biocompatible substrate characterized by is described.
特許文献3には、医療用物品であって、埋め込み型医療用具の少なくとも一部に配置されるコーティングを含み、前記コーティングが(a)フッ素化ポリマー、及び(b)生体有益性のポリマーを含む医療用物品が記載されている。
Patent Document 3 includes a medical article that includes a coating disposed on at least a portion of an implantable medical device, the coating including (a) a fluorinated polymer, and (b) a biobeneficial polymer. Medical articles are described.
特許文献4には、水処理用や医療用に用いられる膜として、テトラフルオロエチレン(TFE)と酢酸ビニル(VAc)との共重合体又は該共重合体に含まれるアセテート基の少なくとも一部をケン化した共重合体からなり、該共重合体中に含まれるテトラフルオロエチレン含有率が1~70モル%であることを特徴とする含フッ素共重合体膜が記載されている。特許文献4の実施例3には、TFE:VAcのモル比が23:77のTFE/VAc共重合体を加水分解して得られるケン化度82%の含フッ素共重合体が記載されている。
In Patent Document 4, as a film used for water treatment or medical use, a copolymer of tetrafluoroethylene (TFE) and vinyl acetate (VAc) or at least a part of an acetate group contained in the copolymer is described. There is described a fluorine-containing copolymer film comprising a saponified copolymer and having a tetrafluoroethylene content of 1 to 70 mol% contained in the copolymer. Example 3 of Patent Document 4 describes a fluorine-containing copolymer having a saponification degree of 82% obtained by hydrolyzing a TFE / VAc copolymer having a TFE: VAc molar ratio of 23:77. .
特許文献5には、水系液体の分離膜に用いられる親水化材料として、テトラフルオロエチレンとt-ブチルビニルエーテル又は酢酸ビニルとの共重合体を脱保護して得られる共重合体が記載されている。
Patent Document 5 describes a copolymer obtained by deprotecting a copolymer of tetrafluoroethylene and t-butyl vinyl ether or vinyl acetate as a hydrophilizing material used for an aqueous liquid separation membrane. .
本発明は、上記現状に鑑みてなされたものであり、抗血栓性及び耐熱性が向上した抗血栓性材料及び抗血栓性物品、抗菌性及び耐熱性が向上した抗菌性材料及び抗菌性物品、並びに、物品表面の大腸菌の増殖を阻害する新規な方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and antithrombotic materials and antithrombotic articles with improved antithrombogenicity and heat resistance, antimicrobial materials and antimicrobial articles with improved antimicrobial and heat resistance, Another object of the present invention is to provide a novel method for inhibiting the growth of E. coli on the surface of an article.
本発明者らは、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体において、含フッ素オレフィン単位の含有率を特定の範囲とすると、耐熱性、抗血栓性(抗血小板粘着性)や抗菌性が向上することを見いだした。また、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体を物品の表面に適用すると、大腸菌の増殖を阻害できることも見いだし、本発明に到達した。
In the fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, the inventors of the present invention have a heat resistance, antithrombogenicity (antiplatelet adhesion), I found that antibacterial properties improved. Moreover, it has been found that when a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of an article, the growth of E. coli can be inhibited, and the present invention has been achieved.
すなわち本発明は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、上記含フッ素共重合体における含フッ素オレフィン単位の含有率が30~60モル%であることを特徴とする抗血栓性材料である。
That is, the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 30 to 60 mol%. Antithrombotic material.
本発明の抗血栓性材料において、上記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%であることが好ましい。
In the antithrombogenic material of the present invention, the alternating ratio of the fluorinated olefin unit and the vinyl alcohol unit in the fluorinated copolymer is preferably 10 to 100%.
本発明の抗血栓性材料において、上記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種であることが好ましい。
In the antithrombogenic material of the present invention, the fluorine-containing olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
本発明の抗血栓性材料において、上記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することが好ましい。
In the antithrombogenic material of the present invention, the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
本発明の抗血栓性材料において、上記含フッ素共重合体は、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体であることが好ましい。
In the antithrombogenic material of the present invention, the fluorine-containing copolymer is preferably a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
本発明の抗血栓性材料は、表面が有機溶剤を含む水溶液により処理されていることが好ましい。
The antithrombogenic material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
本発明の抗血栓性材料は、コーティング膜であることが好ましい。
The antithrombogenic material of the present invention is preferably a coating film.
本発明は、上記抗血栓性材料からなり、バイアル瓶、人工血管、ステント、カテーテル、人工心臓、人工肺、人工心弁、又は、血液保存バッグであることを特徴とする抗血栓性物品でもある。
The present invention is also an antithrombotic article made of the above antithrombotic material, which is a vial, an artificial blood vessel, a stent, a catheter, an artificial heart, an artificial lung, an artificial heart valve, or a blood storage bag. .
本発明は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、上記含フッ素共重合体における含フッ素オレフィン単位の含有率が10~60モル%であることを特徴とする抗菌性材料でもある。
The present invention is an antibacterial characterized in that it comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%. It is also a sex material.
本発明の抗菌性材料において、上記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%であることが好ましい。
In the antibacterial material of the present invention, it is preferable that the alternating ratio of the fluorine-containing olefin unit and the vinyl alcohol unit in the fluorine-containing copolymer is 10 to 100%.
本発明の抗菌性材料において、上記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種であることが好ましい。
In the antibacterial material of the present invention, the fluorine-containing olefin is preferably at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
本発明の抗菌性材料において、上記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することが好ましい。
In the antibacterial material of the present invention, the fluorine-containing copolymer preferably has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit.
本発明の抗菌性材料において、上記含フッ素共重合体は、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体であることが好ましい。
In the antibacterial material of the present invention, the fluorine-containing copolymer is preferably a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
本発明の抗菌性材料は、表面が有機溶剤を含む水溶液により処理されていることが好ましい。
The antibacterial material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent.
本発明の抗菌性材料は、コーティング膜であることが好ましい。
The antibacterial material of the present invention is preferably a coating film.
本発明は、上記抗菌性材料からなり、コンタクトレンズ、トイレタリー用品、キッチン水回り器具、エアコン、食品工場設備、下水処理場設備、又は、排水管であることを特徴とする抗菌性物品でもある。
The present invention is also an antibacterial article made of the above antibacterial material, which is a contact lens, toiletry product, kitchen watering device, air conditioner, food factory facility, sewage treatment plant facility, or drain pipe.
本発明は、物品表面の大腸菌の増殖を阻害する方法であって、物品の表面に含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体を適用することを特徴とする方法でもある。
The present invention is a method for inhibiting the growth of Escherichia coli on the surface of an article, characterized in that a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of the article.
本発明によれば、抗血栓性が向上した抗血栓性材料及び抗血栓性物品、抗菌性が向上した抗菌性材料及び抗菌性物品、並びに、物品表面の大腸菌の増殖を阻害する新規な方法を提供することができる。また、本発明によれば、耐熱性が高く、成形加工時の加熱や加熱殺菌処理、使用中の温度上昇などに対して耐久性が高い抗血栓性材料及び抗血栓性物品、並びに、抗菌性材料及び抗菌性物品を提供することができる。
According to the present invention, an antithrombotic material and an antithrombotic article having improved antithrombogenicity, an antimicrobial material and antimicrobial article having improved antimicrobial properties, and a novel method for inhibiting the growth of Escherichia coli on the surface of the article. Can be provided. Further, according to the present invention, the antithrombotic material and the antithrombotic article having high heat resistance and high durability against the heating and heat sterilization treatment during molding, the temperature rise during use, and the antibacterial property Materials and antimicrobial articles can be provided.
以下、本発明を具体的に説明する。
Hereinafter, the present invention will be specifically described.
本発明の抗血栓性材料は、含フッ素オレフィン単位及びビニルアルコール単位(-CH2-CH(OH)-)を有する含フッ素共重合体からなり、該含フッ素共重合体における含フッ素オレフィン単位の含有率が30~60モル%である。含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体は、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有している。このため、本発明の抗血栓性材料は、血小板の粘着が強く抑制されたものとなる。従来用いられてきたエチレン/ビニルアルコール共重合体は上記フッ素アルコール構造を有しておらず、血小板の粘着を充分に抑制できない。また、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体であっても、含フッ素オレフィン単位の含有率が上記範囲より低いものは、耐熱性に劣る。
The antithrombotic material of the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit (—CH 2 —CH (OH) —), and the fluorine-containing olefin unit in the fluorine-containing copolymer The content is 30 to 60 mol%. The fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group). For this reason, the antithrombotic material of the present invention is one in which the adhesion of platelets is strongly suppressed. Conventionally used ethylene / vinyl alcohol copolymers do not have the above-mentioned fluoroalcohol structure and cannot sufficiently suppress platelet adhesion. Moreover, even if it is a fluorine-containing copolymer which has a fluorine-containing olefin unit and a vinyl alcohol unit, that whose content rate of a fluorine-containing olefin unit is lower than the said range is inferior to heat resistance.
また、上記含フッ素共重合体の抗血栓作用は、上記フッ素アルコール構造のみならず、親水疎水性の相分離構造又は海島構造にも由来すると考えられる。当該含フッ素共重合体は、疎水性の含フッ素オレフィンに由来する構造(例えば-CF2CF2-)と親水性の水酸基構造とを有しており、疎水性構造と親水性構造とがそれぞれ互いに集まり親水疎水性の相分離構造又は海島構造が形成されていると推定される。
Moreover, it is thought that the antithrombotic action of the said fluorine-containing copolymer originates not only in the said fluoroalcohol structure but also in a hydrophilic / hydrophobic phase separation structure or a sea-island structure. The fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
本発明の抗血栓性材料に使用する含フッ素共重合体は、含フッ素オレフィン単位が30~60モル%であり、ビニルアルコール単位が40~70モル%であることが好ましい。各モノマー単位の含有率がこのような範囲であることによって、上記含フッ素共重合体からなる材料が一層抗血栓性及び耐熱性に優れたものとなる。各モノマー単位の含有率としては、含フッ素オレフィン単位が35~60モル%であり、ビニルアルコール単位が65~40モル%であることがより好ましく、含フッ素オレフィン単位が45~55モル%であり、ビニルアルコール単位が55~45モル%であることが更に好ましい。
The fluorine-containing copolymer used in the antithrombogenic material of the present invention preferably contains 30 to 60 mol% of fluorine-containing olefin units and 40 to 70 mol% of vinyl alcohol units. When the content of each monomer unit is in such a range, the material made of the above-mentioned fluorine-containing copolymer becomes more excellent in antithrombogenicity and heat resistance. As the content of each monomer unit, the fluorine-containing olefin unit is 35 to 60 mol%, the vinyl alcohol unit is more preferably 65 to 40 mol%, and the fluorine-containing olefin unit is 45 to 55 mol%. More preferably, the vinyl alcohol unit is 55 to 45 mol%.
上記含フッ素オレフィン単位とは、含フッ素オレフィンに基づく重合単位を表している。該含フッ素オレフィンは、フッ素原子を有する単量体である。
The said fluorine-containing olefin unit represents the polymerization unit based on a fluorine-containing olefin. The fluorine-containing olefin is a monomer having a fluorine atom.
上記含フッ素オレフィンとしては、テトラフルオロエチレン〔TFE〕、フッ化ビニリデン〔VdF〕、クロロトリフルオロエチレン〔CTFE〕、フッ化ビニル、へキサフルオロプロピレン〔HFP〕、へキサフルオロイソブテン、CH2=CZ1(CF2)n1Z2(式中、Z1はH、F又はCl、Z2はH、F又はCl、n1は1~10の整数である。)で示される単量体、CF2=CF-ORf1(式中、Rf1は、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕、及び、CF2=CF-OCH2-Rf2(式中、Rf2は、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種の含フッ素オレフィンであることが好ましい。
Examples of the fluorine-containing olefin include tetrafluoroethylene [TFE], vinylidene fluoride [VdF], chlorotrifluoroethylene [CTFE], vinyl fluoride, hexafluoropropylene [HFP], hexafluoroisobutene, CH 2 = CZ. 1 (CF 2 ) n1 Z 2 , wherein Z 1 is H, F or Cl, Z 2 is H, F or Cl, and n1 is an integer of 1 to 10, CF 2 = CF-ORf 1 (wherein Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms) and CF 2 = CF-OCH 2 -rf 2 (wherein, Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms) selected from the group consisting of alkyl perfluorovinyl ether derivative represented by the It is preferably be at least one kind of fluorine-containing olefin.
上記CH2=CZ1(CF2)n1Z2で示される単量体としては、CH2=CFCF3、CH2=CHCF3、CH2=CFCHF2、CH2=CClCF3等が挙げられる。
Examples of the monomer represented by CH 2 = CZ 1 (CF 2 ) n1 Z 2 include CH 2 = CFCF 3 , CH 2 = CHCF 3 , CH 2 = CFCHF 2 and CH 2 = CClCF 3 .
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)等が挙げられる。
Examples of the PAVE include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro (butyl vinyl ether), and the like.
上記含フッ素オレフィンとしては、TFE、CTFE及びHFPからなる群より選択される少なくとも1種がより好ましく、TFEが更に好ましい。
As said fluorine-containing olefin, at least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
上記含フッ素共重合体は、含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、本発明の抗血栓性材料への血小板の粘着が一層強く抑制される。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
The fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 10 to 100%. When the alternating rate is in such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, and thus the adhesion of platelets to the antithrombotic material of the present invention is further strongly suppressed. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
含フッ素オレフィン単位とビニルアルコール単位との交互率は、重アセトン等の含フッ素共重合体が溶解する溶媒を用いて、含フッ素共重合体の1H-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit and the vinyl alcohol unit was determined by performing 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone is dissolved, It can be calculated as the alternating rate of chaining.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T like T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit)
The number of V units of A, B and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR. The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was carried out on the fluorine-containing copolymer before saponification.
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit and the vinyl alcohol unit was determined by performing 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone is dissolved, It can be calculated as the alternating rate of chaining.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T like T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit)
The number of V units of A, B and C is calculated from the intensity ratio of H of the main chain bonded to the tertiary carbon of the vinyl alcohol unit (—CH 2 —CH (OH) —) measured by 1 H-NMR. The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was carried out on the fluorine-containing copolymer before saponification.
上記含フッ素共重合体は、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有する。上記含フッ素共重合体は、中でも、-CH(OH)-CF2-で表されるフッ素アルコール構造を有することが好ましい。
In the above-mentioned fluorine-containing copolymer, —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that at least one of X and Y Is F or a fluoroalkyl group). The fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
上記含フッ素共重合体は、上記フッ素アルコール構造を構成するビニルアルコール単位を全単量体単位の10~50モル%含有することが好ましい。フッ素アルコール構造を構成するビニルアルコール単位の含有率は、15~50モル%であることがより好ましく、30~50モル%であることが更に好ましい。
The fluorine-containing copolymer preferably contains 10 to 50 mol% of vinyl alcohol units constituting the fluorine alcohol structure based on all monomer units. The content of vinyl alcohol units constituting the fluoroalcohol structure is more preferably 15 to 50 mol%, and further preferably 30 to 50 mol%.
上記含フッ素共重合体は、更に、-CH2-CH(O(C=O)R)-(式中、Rは、水素原子又は炭素数1~17の炭化水素基を表す。)で表されるビニルエステルモノマー単位を有するものであってもよい。このように、本発明における含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することもまた、本発明の好適な実施形態の1つである。そして更には、実質的に含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位のみからなる含フッ素オレフィン/ビニルアルコール/ビニルエステルモノマー共重合体であることもまた、本発明の好適な実施形態の1つである。
The fluorine-containing copolymer is further represented by —CH 2 —CH (O (C═O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit. Thus, it is also one of the preferred embodiments of the present invention that the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit. Furthermore, it is a fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit. One.
上記ビニルエステルモノマー単位は、-CH2-CH(O(C=O)R)-(式中、Rは、水素原子又は炭素数1~17の炭化水素基を表す。)で表されるモノマー単位であるが、上記式中のRとしては、炭素数1~11のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましい。特に好ましくは、炭素数1~3のアルキル基である。
The vinyl ester monomer unit is a monomer represented by —CH 2 —CH (O (C═O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). Although it is a unit, R in the above formula is preferably an alkyl group having 1 to 11 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. Particularly preferred is an alkyl group having 1 to 3 carbon atoms.
上記ビニルエステルモノマー単位としては、中でも、以下のビニルエステルに由来するモノマー単位などが例示される。
ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル。
これらの中でも、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルに由来するモノマー単位が好ましい。より好ましくは、酢酸ビニルモノマー単位、プロピオン酸ビニルモノマー単位であり、更に好ましくは、酢酸ビニルモノマー単位である。 Examples of the vinyl ester monomer unit include monomer units derived from the following vinyl esters.
Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, vinyl pelargonate, vinyl caprate, Vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu KK) )), Vinyl benzoate, vinyl versatate.
Among these, monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferable. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル。
これらの中でも、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルに由来するモノマー単位が好ましい。より好ましくは、酢酸ビニルモノマー単位、プロピオン酸ビニルモノマー単位であり、更に好ましくは、酢酸ビニルモノマー単位である。 Examples of the vinyl ester monomer unit include monomer units derived from the following vinyl esters.
Vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valelate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, vinyl pelargonate, vinyl caprate, Vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova-10 (Showa Shell Sekiyu KK) )), Vinyl benzoate, vinyl versatate.
Among these, monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferable. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合の、各モノマー単位の含有率としては、含フッ素オレフィン単位が30~60モル%であり、ビニルアルコール単位が0モル%より多く70モル%未満であり、ビニルエステルモノマー単位が0モル%より多く70モル%未満であることが好ましい。各モノマー単位の含有率がこのような範囲であることによって、上記含フッ素共重合体からなる材料が一層抗血栓性及び耐熱性に優れたものとなる。各モノマー単位の含有率としては、含フッ素オレフィン単位が30~60モル%であり、ビニルアルコール単位が70~40モル%であり、ビニルエステルモノマー単位が0.1~20モル%であることがより好ましく、含フッ素オレフィン単位が35~60モル%であり、ビニルアルコール単位が75~40モル%であり、ビニルエステルモノマー単位が0.5~10モル%であることが更に好ましい。
When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the content of each monomer unit is 30 to 60 mol% of the fluorine-containing olefin unit, and vinyl alcohol Preferably, the units are greater than 0 mol% and less than 70 mol%, and the vinyl ester monomer units are greater than 0 mol% and less than 70 mol%. When the content of each monomer unit is in such a range, the material made of the above-mentioned fluorine-containing copolymer becomes more excellent in antithrombogenicity and heat resistance. The content of each monomer unit is such that the fluorinated olefin unit is 30 to 60 mol%, the vinyl alcohol unit is 70 to 40 mol%, and the vinyl ester monomer unit is 0.1 to 20 mol%. More preferably, the fluorine-containing olefin unit is 35 to 60 mol%, the vinyl alcohol unit is 75 to 40 mol%, and the vinyl ester monomer unit is further preferably 0.5 to 10 mol%.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合、含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率は、10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、上記含フッ素共重合体からなる材料への血小板の粘着が一層強く抑制される。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 10 to 100%. It is preferable. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorinated copolymer is further increased, so that the adhesion of platelets to the material comprising the fluorinated copolymer is more strongly suppressed. . More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率は、重アセトン等の含フッ素共重合体が溶解する溶媒を用いて、含フッ素共重合体の1H-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位又はビニルエステルモノマー単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)及びビニルエステルモノマー単位(-CH2-CH(O(C=O)R)-)の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved, It can be calculated as an alternating rate of three chains from the following formula.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T's such as T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit or vinyl ester monomer unit)
The number of V units in A, B, and C is the vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ester monomer unit (—CH 2 —CH (O (C═O)) measured by 1 H-NMR. Calculated from the strength ratio of H of the main chain bonded to the tertiary carbon of R)-). The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was carried out on the fluorine-containing copolymer before saponification.
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位又はビニルエステルモノマー単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)及びビニルエステルモノマー単位(-CH2-CH(O(C=O)R)-)の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、ケン化前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved, It can be calculated as an alternating rate of three chains from the following formula.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T's such as T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit or vinyl ester monomer unit)
The number of V units in A, B, and C is the vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ester monomer unit (—CH 2 —CH (O (C═O)) measured by 1 H-NMR. Calculated from the strength ratio of H of the main chain bonded to the tertiary carbon of R)-). The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was carried out on the fluorine-containing copolymer before saponification.
上記含フッ素共重合体は、本発明の効果を損なわない範囲で、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位以外の他の単量体単位を有していてもよい。
The said fluorine-containing copolymer may have other monomer units other than a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit in the range which does not impair the effect of this invention.
上記他の単量体としては、フッ素原子を含まない単量体(但し、ビニルアルコール及びビニルエステル単量体を除く)として、例えば、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、塩化ビニリデン、ビニルエーテル単量体、及び、不飽和カルボン酸からなる群より選択される少なくとも1種のフッ素非含有エチレン性単量体が好ましい。
Examples of the other monomer include monomers not containing a fluorine atom (excluding vinyl alcohol and vinyl ester monomers) such as ethylene, propylene, 1-butene, 2-butene, vinyl chloride, Preference is given to at least one fluorine-free ethylenic monomer selected from the group consisting of vinylidene chloride, vinyl ether monomers and unsaturated carboxylic acids.
上記他の単量体単位の合計含有率は、含フッ素共重合体の全単量体単位の0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましい。
The total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
本明細書において、含フッ素共重合体を構成する各単量体単位の含有量は、NMR、FT-IR、元素分析を単量体の種類によって適宜組み合わせることで算出できる。
In the present specification, the content of each monomer unit constituting the fluorine-containing copolymer can be calculated by appropriately combining NMR, FT-IR, and elemental analysis depending on the type of monomer.
上記含フッ素共重合体の重量平均分子量は、特に制限されないが、10,000以上であることが好ましい。より好ましくは、12,000~2,000,000であり、更に好ましくは、12,000~1,000,000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。 The weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
The weight average molecular weight can be determined by gel permeation chromatography (GPC).
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。 The weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
The weight average molecular weight can be determined by gel permeation chromatography (GPC).
上記含フッ素共重合体は、後述するように、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化することにより製造することができる。すなわち、本発明における含フッ素共重合体が、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体であることもまた、本発明の好適な実施形態の1つである。
As described later, the fluorine-containing copolymer can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. One.
以下に、本発明における含フッ素共重合体の製造方法について説明する。
通常、本発明における含フッ素共重合体は、テトラフルオロエチレン等の含フッ素オレフィンと酢酸ビニル等のビニルエステルモノマーとを共重合して、その後、得られた共重合体をケン化することにより製造することができる。上記含フッ素共重合体の重合方法としては、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合を行うことが好ましい。すなわち、上記含フッ素共重合体は、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合して、含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体を得る工程、及び、得られた共重合体をケン化して、含フッ素オレフィン単位及びビニルアルコール単位を有する共重合体を得る工程、からなる製造方法により得られたものであることが好ましい。 Below, the manufacturing method of the fluorine-containing copolymer in this invention is demonstrated.
Usually, the fluorine-containing copolymer in the present invention is produced by copolymerizing a fluorine-containing olefin such as tetrafluoroethylene and a vinyl ester monomer such as vinyl acetate, and then saponifying the obtained copolymer. can do. As a method for polymerizing the fluorine-containing copolymer, it is preferable to carry out the polymerization under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept substantially constant. That is, the above-mentioned fluorine-containing copolymer is polymerized under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept almost constant to obtain a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
通常、本発明における含フッ素共重合体は、テトラフルオロエチレン等の含フッ素オレフィンと酢酸ビニル等のビニルエステルモノマーとを共重合して、その後、得られた共重合体をケン化することにより製造することができる。上記含フッ素共重合体の重合方法としては、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合を行うことが好ましい。すなわち、上記含フッ素共重合体は、含フッ素オレフィンとビニルエステルモノマーの組成比を、ほぼ一定に保つ条件下で重合して、含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体を得る工程、及び、得られた共重合体をケン化して、含フッ素オレフィン単位及びビニルアルコール単位を有する共重合体を得る工程、からなる製造方法により得られたものであることが好ましい。 Below, the manufacturing method of the fluorine-containing copolymer in this invention is demonstrated.
Usually, the fluorine-containing copolymer in the present invention is produced by copolymerizing a fluorine-containing olefin such as tetrafluoroethylene and a vinyl ester monomer such as vinyl acetate, and then saponifying the obtained copolymer. can do. As a method for polymerizing the fluorine-containing copolymer, it is preferable to carry out the polymerization under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept substantially constant. That is, the above-mentioned fluorine-containing copolymer is polymerized under a condition in which the composition ratio of the fluorine-containing olefin and the vinyl ester monomer is kept almost constant to obtain a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. It is preferably obtained by a production method comprising a step and a step of saponifying the obtained copolymer to obtain a copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit.
上記ビニルエステルモノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、バレリン酸ビニル、イソバレリン酸ビニル、カプロン酸ビニル、へプチル酸ビニル、カプリル酸ビニル、ピバリン酸ビニル、ペラルゴン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、ペンタデシル酸ビニル、パルチミン酸ビニル、マルガリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル、ベオバ-9(昭和シェル石油(株)製)、ベオバ-10(昭和シェル石油(株)製)、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、中でも入手が容易で安価である点から、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルが好ましく用いられる。
上記ビニルエステルモノマーとしてはこれらの1種を用いてもよいし、2種以上を混合して用いてもよい。 Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargon. Vinyl acetate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova 10 (manufactured by Showa Shell Sekiyu KK), vinyl benzoate, vinyl versatate, and the like. Of these, vinyl acetate, vinyl propionate, and vinyl versatate are preferably used because they are easily available and inexpensive.
As said vinyl ester monomer, 1 type of these may be used and 2 or more types may be mixed and used.
上記ビニルエステルモノマーとしてはこれらの1種を用いてもよいし、2種以上を混合して用いてもよい。 Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl isovalerate, vinyl caproate, vinyl heptylate, vinyl caprylate, vinyl pivalate, pelargon. Vinyl acetate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl pentadecylate, vinyl palmitate, vinyl margarate, vinyl stearate, vinyl octylate, Veova-9 (manufactured by Showa Shell Sekiyu KK), Veova 10 (manufactured by Showa Shell Sekiyu KK), vinyl benzoate, vinyl versatate, and the like. Of these, vinyl acetate, vinyl propionate, and vinyl versatate are preferably used because they are easily available and inexpensive.
As said vinyl ester monomer, 1 type of these may be used and 2 or more types may be mixed and used.
含フッ素オレフィンとビニルエステルモノマーとを共重合させる方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等の重合方法を挙げることができ、工業的に実施が容易であることから乳化重合、溶液重合又は懸濁重合により製造することが好ましいが、この限りではない。
Examples of the method of copolymerizing the fluorinated olefin and the vinyl ester monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like, and emulsion polymerization is easy because it is industrially easy to implement. However, it is preferable to produce by solution polymerization or suspension polymerization, but not limited thereto.
乳化重合、溶液重合又は懸濁重合においては、重合開始剤、溶媒、連鎖移動剤、界面活性剤、分散剤等を使用することができ、それぞれ通常用いられるものを使用することができる。
In emulsion polymerization, solution polymerization, or suspension polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant, and the like can be used, and those usually used can be used.
溶液重合において使用する溶媒は、含フッ素オレフィンとビニルエステルモノマー、及び、合成される含フッ素共重合体を溶解することができるものが好ましく、例えば、酢酸n-ブチル、酢酸t-ブチル、酢酸エチル、酢酸メチル、酢酸プロピル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、tert-ブタノール、2-プロパノール等のアルコール類;テトラヒドロフラン、ジオキサン等の環状エーテル類;HCFC-225等の含フッ素溶媒;ジメチルスルホキシド、ジメチルホルムアミド、又はこれらの混合物等が挙げられる。
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。 The solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ester monomer, and the fluorine-containing copolymer to be synthesized. For example, n-butyl acetate, t-butyl acetate, ethyl acetate Esters such as methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol and ethanol Alcohols such as tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, and mixtures thereof.
Examples of the solvent used in the emulsion polymerization include water, a mixed solvent of water and alcohol, and the like.
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。 The solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ester monomer, and the fluorine-containing copolymer to be synthesized. For example, n-butyl acetate, t-butyl acetate, ethyl acetate Esters such as methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol and ethanol Alcohols such as tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, and mixtures thereof.
Examples of the solvent used in the emulsion polymerization include water, a mixed solvent of water and alcohol, and the like.
上記重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート(IPP)、ジ-n-プロピルパーオキシジカーボネート(NPP)等のパーオキシカーボネート類やt-ブチルパーオキシピバレート(例えば日油株式会社製のパーブチルPV)等のパーオキシエステル類に代表される油溶性ラジカル重合開始剤や、例えば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩等の水溶性ラジカル重合開始剤等を使用できる。特に乳化重合においては、過硫酸アンモニウム、過硫酸カリウムが好ましい。
Examples of the polymerization initiator include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation). Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
上記界面活性剤としては、通常用いられる界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。また、含フッ素系界面活性剤を用いてもよい。
As the surfactant, a commonly used surfactant can be used. For example, a nonionic surfactant, an anionic surfactant, a cationic surfactant and the like can be used. Moreover, you may use a fluorine-containing surfactant.
懸濁重合において用いられる上記分散剤としては、通常の懸濁重合に用いられる部分鹸化ポリ酢酸ビニル、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどの水溶性セルロースエーテル、アクリル酸系重合体、ゼラチンなどの水溶性ポリマーを例示できる。懸濁重合は、水/単量体の比率が通常重量比で1.5/1~3/1である条件下で行なわれ、分散剤は単量体100重量部に対し0.01~0.1重量部が用いられる。また、必要に応じて、ポリリン酸塩のようなpH緩衝剤を用いることもできる。
Examples of the dispersant used in suspension polymerization include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin. The suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by weight, and the dispersant is 0.01 to 0 with respect to 100 parts by weight of the monomer. 1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。
上記連鎖移動剤の添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。 Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
The addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
上記連鎖移動剤の添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。 Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
The addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
重合温度としては、含フッ素オレフィンとビニルエステルモノマーの反応中の組成比がほぼ一定になる範囲であればよく、0~100℃であってよい。
The polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 100 ° C.
重合圧力としては、含フッ素オレフィンとビニルエステルモノマーの反応中の組成比がほぼ一定になる範囲であればよく、0~10MPaGであってよい。
The polymerization pressure may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ester monomer is substantially constant, and may be 0 to 10 MPaG.
酢酸ビニルに由来するアセテート基のケン化は従来よく知られており、アルコリシスや加水分解等の従来公知の方法によって行うことができる。このケン化によって、アセテート基(-OCOCH3)は、水酸基(-OH)に変換される。他のビニルエステルモノマーにおいても同様に、従来公知の方法によってケン化され、水酸基を得ることができる。
Saponification of an acetate group derived from vinyl acetate is well known in the art, and can be performed by a conventionally known method such as alcoholysis or hydrolysis. By this saponification, the acetate group (—OCOCH 3 ) is converted to a hydroxyl group (—OH). Similarly, other vinyl ester monomers can be saponified by a conventionally known method to obtain a hydroxyl group.
含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体をケン化して本発明における含フッ素共重合体を得る場合のケン化度は、本発明における含フッ素共重合体の各モノマー単位の含有率が上述した範囲となるような範囲であればよく、具体的には50%以上が好ましく、60%以上がより好ましく、70%以上が更に好ましい。
The degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is within the above-mentioned range, specifically, 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
上記ケン化度は、含フッ素共重合体のIR測定又は1H-NMR測定により、以下の式から算出される。
ケン化度(%)=D/(D+E)×100
D:含フッ素共重合体中のビニルアルコール単位数
E:含フッ素共重合体中のビニルエステルモノマー単位数 The degree of saponification is calculated from the following formula by IR measurement or 1 H-NMR measurement of a fluorine-containing copolymer.
Saponification degree (%) = D / (D + E) × 100
D: number of vinyl alcohol units in the fluorinated copolymer E: number of vinyl ester monomer units in the fluorinated copolymer
ケン化度(%)=D/(D+E)×100
D:含フッ素共重合体中のビニルアルコール単位数
E:含フッ素共重合体中のビニルエステルモノマー単位数 The degree of saponification is calculated from the following formula by IR measurement or 1 H-NMR measurement of a fluorine-containing copolymer.
Saponification degree (%) = D / (D + E) × 100
D: number of vinyl alcohol units in the fluorinated copolymer E: number of vinyl ester monomer units in the fluorinated copolymer
本発明における含フッ素共重合体は、含フッ素オレフィンと脱保護反応によりビニルアルコールに変換されうる保護基(R)が結合したビニルエーテル単量体(CH2=CH-OR)(以下、単にビニルエーテル単量体と記述する)とを共重合させて含フッ素オレフィン/ビニルエーテル共重合体を得る工程、及び、上記含フッ素オレフィン/ビニルエーテル共重合体を脱保護することにより含フッ素オレフィン/ビニルアルコール共重合体を得る工程、からなる製造方法によっても得ることができる。
The fluorine-containing copolymer in the present invention is a vinyl ether monomer (CH 2 ═CH—OR) (hereinafter simply referred to as a vinyl ether monomer) to which a fluorine-containing olefin and a protecting group (R) that can be converted to vinyl alcohol by deprotection reaction are bonded. And a fluorine-containing olefin / vinyl alcohol copolymer by deprotecting the fluorine-containing olefin / vinyl ether copolymer. It can obtain also by the manufacturing method which consists of a process of obtaining.
上記含フッ素オレフィンとビニルエーテル単量体とを共重合させる方法、及び、上記含フッ素オレフィン/ビニルエーテル共重合体を脱保護する方法は、従来からよく知られており、従来公知の方法を本発明でも行うことができる。含フッ素オレフィン/ビニルエーテル共重合体を脱保護反応させることによって、保護基アルコキシ基が水酸基に変換され、含フッ素オレフィン/ビニルアルコール共重合体が得られる。
A method for copolymerizing the fluorinated olefin and the vinyl ether monomer and a method for deprotecting the fluorinated olefin / vinyl ether copolymer are well known in the art. It can be carried out. By deprotecting the fluorinated olefin / vinyl ether copolymer, the protecting group alkoxy group is converted to a hydroxyl group, and a fluorinated olefin / vinyl alcohol copolymer is obtained.
上記含フッ素オレフィンとビニルエーテル単量体とを共重合させて得られる含フッ素オレフィン/ビニルエーテル共重合体は、含フッ素オレフィンとビニルエーテル単量体とのモル比である(含フッ素オレフィン)/(ビニルエーテル単量体)が(30~60)/(70~40)であることが好ましく、(45~55)/(55~45)であることがより好ましい。モル比が上記範囲内にあって、かつ、脱保護度が後述の範囲内にあることにより、各重合単位のモル比が上述した範囲にある含フッ素共重合体を製造することができる。
The fluorine-containing olefin / vinyl ether copolymer obtained by copolymerizing the fluorine-containing olefin and the vinyl ether monomer is a molar ratio of the fluorine-containing olefin and the vinyl ether monomer (fluorine-containing olefin) / (vinyl ether unit The (mer) is preferably (30 to 60) / (70 to 40), more preferably (45 to 55) / (55 to 45). When the molar ratio is within the above range and the degree of deprotection is within the range described later, it is possible to produce a fluorinated copolymer in which the molar ratio of each polymerized unit is within the above range.
上記ビニルエーテル単量体は、フッ素原子を含まないことが好ましい。当該ビニルエーテル単量体としては、脱保護されるものであれば特に制限はないが、入手の容易さから、ターシャルブチルビニルエーテルが好ましい。
The vinyl ether monomer preferably does not contain a fluorine atom. The vinyl ether monomer is not particularly limited as long as it is deprotected, but tertiary butyl vinyl ether is preferable from the viewpoint of availability.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエーテル単位を有する場合、含フッ素オレフィン単位とビニルアルコール単位及びビニルエーテル単位との交互率は、10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、上記含フッ素共重合体からなる材料への血小板の粘着が一層強く抑制される。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ether unit is preferably 10 to 100%. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorinated copolymer is further increased, so that the adhesion of platelets to the material comprising the fluorinated copolymer is more strongly suppressed. . More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
含フッ素オレフィン単位とビニルアルコール単位及びビニルエーテル単位との交互率は、重アセトン等の含フッ素共重合体が溶解する溶媒を用いて、含フッ素共重合体の1H-NMR測定を行い、以下の式より3連鎖の交互率として算出できる。
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位又はビニルエーテル単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)及びビニルエーテル単位(-CH2-CH(OR))の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、脱保護前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ether unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved. It can be calculated as an alternating rate of three chains from the equation.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T's such as T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit or vinyl ether unit)
The number of V units of A, B, and C is the same as the tertiary carbon of vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ether unit (—CH 2 —CH (OR)) measured by 1 H-NMR. It calculates from the intensity ratio of H of the main chain to couple | bond. The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was performed on the fluorine-containing copolymer before deprotection.
交互率(%)=C/(A+B+C)×100
A:-V-V-V-のように2つのVと結合したVの個数
B:-V-V-T-のようにVとTとに結合したVの個数
C:-T-V-T-のように2つのTに結合したVの個数
(T:含フッ素オレフィン単位、V:ビニルアルコール単位又はビニルエーテル単位)
A、B、CのV単位の数は、1H-NMR測定のビニルアルコール単位(-CH2-CH(OH)-)及びビニルエーテル単位(-CH2-CH(OR))の3級炭素に結合する主鎖のHの強度比より算出する。1H-NMR測定による主鎖のHの強度比の見積もりは、脱保護前の含フッ素共重合体で実施した。 The alternating rate of the fluorinated olefin unit, the vinyl alcohol unit, and the vinyl ether unit was measured by 1 H-NMR measurement of the fluorinated copolymer using a solvent in which the fluorinated copolymer such as heavy acetone was dissolved. It can be calculated as an alternating rate of three chains from the equation.
Alternating rate (%) = C / (A + B + C) × 100
A: The number of V bonded to two Vs as in -VVVV- B: The number of Vs bonded to V and T as in -VVVT- C: -TVV- Number of V bonded to two T's such as T- (T: fluorine-containing olefin unit, V: vinyl alcohol unit or vinyl ether unit)
The number of V units of A, B, and C is the same as the tertiary carbon of vinyl alcohol unit (—CH 2 —CH (OH) —) and vinyl ether unit (—CH 2 —CH (OR)) measured by 1 H-NMR. It calculates from the intensity ratio of H of the main chain to couple | bond. The estimation of the strength ratio of H in the main chain by 1 H-NMR measurement was performed on the fluorine-containing copolymer before deprotection.
上記含フッ素オレフィンとビニルエーテル単量体とを共重合させる方法としては、溶液重合、塊状重合、乳化重合、懸濁重合等の重合方法を挙げることができ、工業的に実施が容易であることから乳化重合、溶液重合又は懸濁重合により製造することが好ましいが、この限りではない。
Examples of the method for copolymerizing the fluorine-containing olefin and the vinyl ether monomer include solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, and the like, which are industrially easy to implement. Although it is preferable to manufacture by emulsion polymerization, solution polymerization, or suspension polymerization, it is not this limitation.
上記乳化重合、溶液重合又は懸濁重合においては、重合開始剤、溶媒、連鎖移動剤、界面活性剤、分散剤等を使用することができ、それぞれ通常用いられるものを使用することができる。
In the above emulsion polymerization, solution polymerization or suspension polymerization, a polymerization initiator, a solvent, a chain transfer agent, a surfactant, a dispersant and the like can be used, and those usually used can be used.
上記溶液重合において使用する溶媒は、含フッ素オレフィンとビニルエーテル単量体、及び、合成される含フッ素共重合体を溶解することができるものが好ましく、例えば、酢酸n-ブチル、酢酸t-ブチル、酢酸エチル、酢酸メチル、酢酸プロピル等のエステル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、tert-ブタノール、2-プロパノール等のアルコール類;テトラヒドロフラン、ジオキサン等の環状エーテル類;HCFC-225等の含フッ素溶媒;ジメチルスルホキシド、ジメチルホルムアミド、又はこれらの混合物等が挙げられる。
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。 The solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ether monomer, and the fluorine-containing copolymer to be synthesized. For example, n-butyl acetate, t-butyl acetate, Esters such as ethyl acetate, methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol Alcohols such as ethanol, tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, and mixtures thereof.
Examples of the solvent used in the emulsion polymerization include water, a mixed solvent of water and alcohol, and the like.
乳化重合において使用する溶媒としては、例えば、水、水とアルコールとの混合溶媒等が挙げられる。 The solvent used in the solution polymerization is preferably a solvent capable of dissolving the fluorine-containing olefin, the vinyl ether monomer, and the fluorine-containing copolymer to be synthesized. For example, n-butyl acetate, t-butyl acetate, Esters such as ethyl acetate, methyl acetate and propyl acetate; Ketones such as acetone, methyl ethyl ketone and cyclohexanone; Aliphatic hydrocarbons such as hexane, cyclohexane and octane; Aromatic hydrocarbons such as benzene, toluene and xylene; Methanol Alcohols such as ethanol, tert-butanol and 2-propanol; cyclic ethers such as tetrahydrofuran and dioxane; fluorine-containing solvents such as HCFC-225; dimethyl sulfoxide, dimethylformamide, and mixtures thereof.
Examples of the solvent used in the emulsion polymerization include water, a mixed solvent of water and alcohol, and the like.
上記重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート(IPP)、ジ-n-プロピルパーオキシジカーボネート(NPP)等のパーオキシカーボネート類やt-ブチルパーオキシピバレート(例えば日油株式会社製のパーブチルPV)等のパーオキシエステル類に代表される油溶性ラジカル重合開始剤や、例えば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩等の水溶性ラジカル重合開始剤等を使用できる。特に乳化重合においては、過硫酸アンモニウム、過硫酸カリウムが好ましい。
Examples of the polymerization initiator include peroxycarbonates such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP), and t-butyl peroxypivalate (for example, NOF Corporation). Oil-soluble radical polymerization initiators typified by peroxyesters such as perbutyl PV), for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium Water-soluble radical polymerization initiators such as salts can be used. Particularly in emulsion polymerization, ammonium persulfate and potassium persulfate are preferred.
上記界面活性剤としては、通常用いられる界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤等が使用できる。また、含フッ素系界面活性剤を用いてもよい。
As the surfactant, a commonly used surfactant can be used. For example, a nonionic surfactant, an anionic surfactant, a cationic surfactant and the like can be used. Moreover, you may use a fluorine-containing surfactant.
懸濁重合において用いられる上記分散剤としては、通常の懸濁重合に用いられる部分鹸化ポリ酢酸ビニル、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性セルロースエーテル、アクリル酸系重合体、ゼラチン等の水溶性ポリマーを例示できる。懸濁重合は、水/単量体の比率が通常重量比で1.5/1~3/1である条件下で行なわれ、分散剤は単量体100重量部に対し0.01~0.1重量部が用いられる。また、必要に応じて、ポリリン酸塩のようなpH緩衝剤を用いることもできる。
Examples of the dispersant used in suspension polymerization include partially saponified polyvinyl acetate, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, and other water-soluble cellulose ethers used in ordinary suspension polymerization, and acrylic acid polymers. And water-soluble polymers such as gelatin. The suspension polymerization is carried out under the condition that the ratio of water / monomer is usually 1.5 / 1 to 3/1 by weight, and the dispersant is 0.01 to 0 with respect to 100 parts by weight of the monomer. 1 part by weight is used. If necessary, a pH buffer such as polyphosphate can be used.
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素等が挙げられる。
上記連鎖移動剤の添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。 Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
The addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
上記連鎖移動剤の添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.001~10質量%の範囲で使用される。 Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
The addition amount of the chain transfer agent may vary depending on the chain transfer constant of the compound used, but is usually used in the range of 0.001 to 10% by mass with respect to the polymerization solvent.
重合温度としては、含フッ素オレフィンとビニルエーテル単量体の反応中の組成比がほぼ一定になる範囲であればよく、0~100℃であってよい。
The polymerization temperature may be in a range in which the composition ratio during the reaction of the fluorinated olefin and the vinyl ether monomer is substantially constant, and may be 0 to 100 ° C.
重合圧力としては、含フッ素オレフィンとビニルエーテル単量体の反応中の組成比がほぼ一定になる範囲であればよく、0~10MPaGであってよい。
The polymerization pressure is not particularly limited as long as the composition ratio during the reaction of the fluorinated olefin and the vinyl ether monomer is substantially constant, and may be 0 to 10 MPaG.
上記ビニルエーテル単量体の脱保護は、酸、熱、光等の従来公知の方法によって行うことができる。この脱保護によって、脱離基(例えば、-C(CH3)3)は、水素に置換され、水酸基を得ることができる。
The deprotection of the vinyl ether monomer can be performed by a conventionally known method such as acid, heat or light. By this deprotection, the leaving group (for example, —C (CH 3 ) 3 ) can be replaced with hydrogen to obtain a hydroxyl group.
上記含フッ素オレフィン単位とビニルエーテル単量体単位とを有する共重合体を脱保護して本発明における含フッ素共重合体を得る場合の脱保護度は、本発明における含フッ素共重合体の各モノマー単位の含有率が上述した範囲となるような範囲であればよく、具体的には50%以上が好ましく、60%以上がより好ましく、70%以上が更に好ましい。
The degree of deprotection in the case of obtaining the fluorine-containing copolymer in the present invention by deprotecting the copolymer having the above-mentioned fluorine-containing olefin unit and vinyl ether monomer unit is determined according to each monomer of the fluorine-containing copolymer in the present invention. The unit content may be in the range as described above, specifically 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
上記脱保護度は、含フッ素共重合体のIR測定又は前述の1H-NMR測定により、以下の式から算出される。
脱保護度(%)=D/(D+E)×100
D:含フッ素共重合体中のビニルアルコール単位数
E:含フッ素共重合体中のビニルエーテル単量体単位数 The degree of deprotection is calculated from the following equation by IR measurement or 1 H-NMR measurement of the fluorine-containing copolymer.
Deprotection degree (%) = D / (D + E) × 100
D: Number of vinyl alcohol units in the fluorinated copolymer E: Number of vinyl ether monomer units in the fluorinated copolymer
脱保護度(%)=D/(D+E)×100
D:含フッ素共重合体中のビニルアルコール単位数
E:含フッ素共重合体中のビニルエーテル単量体単位数 The degree of deprotection is calculated from the following equation by IR measurement or 1 H-NMR measurement of the fluorine-containing copolymer.
Deprotection degree (%) = D / (D + E) × 100
D: Number of vinyl alcohol units in the fluorinated copolymer E: Number of vinyl ether monomer units in the fluorinated copolymer
本発明の抗血栓性材料は、本発明の効果を損なわない範囲で、上記含フッ素共重合体以外の他の成分を更に含んでもよい。
The antithrombogenic material of the present invention may further contain other components other than the above-mentioned fluorinated copolymer as long as the effects of the present invention are not impaired.
上記他の成分としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール等の親水性高分子等が挙げられる。
Examples of the other components include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
上記他の成分の配合量は、上記含フッ素共重合体100質量%に対して、1~30質量%であることが好ましく、1~10質量%であることがより好ましい。
The blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
本発明の抗血栓性材料は、表面が有機溶剤を含む水溶液により処理されていることが好ましい。この表面処理により、抗血栓性材料の表面に更に水酸基構造が増加するため、血小板の粘着がより強く抑制される。
The antithrombogenic material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent. By this surface treatment, the hydroxyl structure further increases on the surface of the antithrombotic material, so that platelet adhesion is more strongly suppressed.
上記表面処理で使用することが可能な有機溶剤としては、水に可溶で上記含フッ素共重合体を溶解する有機溶剤であれば特に限定されないが、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられる。中でもメタノール、エタノール、2-プロパノール、テトラヒドロフランが好ましい。
The organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer. However, methanol, ethanol, 2-propanol, acetone, tetrahydrofuran , Methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like. Of these, methanol, ethanol, 2-propanol and tetrahydrofuran are preferred.
上記有機溶剤を含む水溶液による処理の方法としては、当該水溶液で抗血栓性材料の表面を濡らす方法が挙げられる。
Examples of the treatment method using the aqueous solution containing the organic solvent include a method of wetting the surface of the antithrombogenic material with the aqueous solution.
本発明の抗血栓性材料は、用途に応じて種々の形状に成形されて提供される。成形方法は特に限定されず、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、インクジェットプリント法、静電塗装法、圧縮成形法、押出成形法、カレンダー成形法、トランスファー成形法、射出成形法、ロト成形法、ロトライニング成形法、熱誘起相分離法、非溶媒誘起相分離法等が採用できる。
The antithrombogenic material of the present invention is provided by being molded into various shapes depending on the application. The molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method. Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
多様な形状の物品に適用できることから、本発明の抗血栓性材料は、コーティング膜であることが好ましい。コーティング膜とは、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することにより得られる膜をいう。コーティング膜の製膜方法としては、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、静電塗装法、インクジェットプリント法等が挙げられる。中でも、簡便性の点で、スピンコート法、ドロップキャスト法、浸漬法が好ましい。
The antithrombogenic material of the present invention is preferably a coating film because it can be applied to articles having various shapes. A coating film means the film | membrane obtained by apply | coating the coating composition containing the said fluorine-containing copolymer or the said fluorine-containing copolymer. Examples of the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
上記コーティング膜は、上記含フッ素共重合体及び有機溶剤を含む塗料組成物を塗布することにより得られることが好ましい。有機溶剤としては、メタノール、エタノール、2-プロパノール、2-ブタノール、1-ブタノール、1-ヘキサノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が使用できる。なかでも、透明で均一なコーティング膜が容易に得られる点で、2-ブタノール、1-ブタノール、1-ヘキサノール、テトラヒドロフランが好ましい。また、含フッ素共重合体の溶解性の観点からは、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドが好ましい。
The coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent. As the organic solvent, methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used. Of these, 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained. From the viewpoint of solubility of the fluorinated copolymer, methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
本発明の抗血栓性材料がコーティング膜である場合、その膜厚は0.1~50μmであることが好ましく、0.5~30μmであることがより好ましく、1.0~20μmであることが更に好ましい。
When the antithrombogenic material of the present invention is a coating film, the film thickness is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and 1.0 to 20 μm. Further preferred.
本発明の抗血栓性材料は、優れた抗血栓性を有するため、抗血栓性が要求される種々の物品に適用できる。上記物品としては、バイアル瓶、人工血管、ステント、カテーテル、人工心臓、人工肺、人工心弁、血液保存バッグ等が好ましい。本発明の抗血栓性材料からなり、バイアル瓶、人工血管、ステント、カテーテル、人工心臓、人工肺、人工心弁、又は、血液保存バッグであることを特徴とする抗血栓性物品もまた、本発明の1つである。
Since the antithrombotic material of the present invention has excellent antithrombogenicity, it can be applied to various articles that require antithrombogenicity. Preferred examples of the article include vials, artificial blood vessels, stents, catheters, artificial hearts, artificial lungs, artificial heart valves, blood storage bags, and the like. An antithrombotic article comprising the antithrombotic material of the present invention, which is a vial, an artificial blood vessel, a stent, a catheter, an artificial heart, an artificial lung, an artificial heart valve, or a blood storage bag, is also provided. It is one of the inventions.
本発明の抗血栓性材料を上記抗血栓性物品に適用する態様は特に限定されないが、本発明の抗血栓性材料の抗血栓性効果を充分に発揮させる点で、本発明の抗血栓性材料が少なくとも上記抗血栓性物品の表面を構成するように適用することが好ましい。
Although the aspect which applies the antithrombogenic material of this invention to the said antithrombogenic article is not specifically limited, The antithrombotic material of this invention is fully demonstrated in the point which exhibits the antithrombotic effect of the antithrombotic material of this invention. Is preferably applied so as to constitute at least the surface of the antithrombogenic article.
本発明は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、上記含フッ素共重合体における含フッ素オレフィン単位の含有率が10~60モル%であることを特徴とする抗菌性材料でもある。
The present invention is an antibacterial characterized in that it comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%. It is also a sex material.
本発明の抗菌性材料は、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、該含フッ素共重合体における含フッ素オレフィン単位の含有率が10~60モル%であり、30~60モル%であることが好ましい。含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体は、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有している。このため、本発明の抗菌性材料は、優れた抗菌性を発揮することができる。従来用いられてきたエチレン/ビニルアルコール共重合体は上記フッ素アルコール構造を有しておらず、抗菌性が充分でない。また、含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体であっても、含フッ素オレフィン単位の含有率が上記範囲より低いものは、フッ素アルコール構造の含有率が低いため、耐熱性及び抗菌性が充分でない。
The antibacterial material of the present invention comprises a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, and the content of the fluorine-containing olefin unit in the fluorine-containing copolymer is 10 to 60 mol%, It is preferably ˜60 mol%. The fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group). For this reason, the antibacterial material of this invention can exhibit the outstanding antibacterial property. Conventionally used ethylene / vinyl alcohol copolymers do not have the above-mentioned fluorine alcohol structure and are not sufficiently antibacterial. Further, even in the case of a fluorinated copolymer having a fluorinated olefin unit and a vinyl alcohol unit, those having a fluorinated olefin unit content lower than the above range have a low content of the fluoroalcohol structure, Antibacterial property is not enough.
また、上記含フッ素共重合体の抗菌作用は、上記フッ素アルコール構造のみならず、親水疎水性の相分離構造又は海島構造にも由来すると考えられる。当該含フッ素共重合体は、疎水性の含フッ素オレフィンに由来する構造(例えば-CF2CF2-)と親水性の水酸基構造とを有しており、疎水性構造と親水性構造とがそれぞれ互いに集まり親水疎水性の相分離構造又は海島構造が形成されていると推定される。
Further, the antibacterial action of the fluorine-containing copolymer is considered to be derived not only from the fluorine alcohol structure but also from a hydrophilic / hydrophobic phase separation structure or a sea-island structure. The fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
本発明の抗菌性材料に使用する含フッ素共重合体は、含フッ素オレフィン単位が10~60モル%であり、ビニルアルコール単位が40~90モル%であることが好ましい。各モノマー単位の含有率がこのような範囲であることによって、上記含フッ素共重合体からなる材料が一層抗菌性及び耐熱性に優れたものとなる。各モノマー単位の含有率としては、含フッ素オレフィン単位が30~60モル%であり、ビニルアルコール単位が70~40モル%であることがより好ましく、含フッ素オレフィン単位が35~55モル%であり、ビニルアルコール単位が65~45モル%であることが更に好ましく、含フッ素オレフィン単位が45~55モル%であり、ビニルアルコール単位が55~45モル%であることが特に好ましい。
The fluorine-containing copolymer used in the antibacterial material of the present invention preferably contains 10 to 60 mol% of fluorine-containing olefin units and 40 to 90 mol% of vinyl alcohol units. When the content of each monomer unit is in such a range, the material made of the above-mentioned fluorine-containing copolymer becomes more excellent in antibacterial properties and heat resistance. The content of each monomer unit is preferably 30 to 60 mol% of the fluorinated olefin unit, more preferably 70 to 40 mol% of the vinyl alcohol unit, and 35 to 55 mol% of the fluorinated olefin unit. More preferably, the vinyl alcohol unit is 65 to 45 mol%, the fluorinated olefin unit is 45 to 55 mol%, and the vinyl alcohol unit is 55 to 45 mol%.
上記含フッ素オレフィン単位を構成する含フッ素オレフィンとしては、本発明の抗血栓性材料に使用する含フッ素共重合体について例示した含フッ素オレフィンを挙げることができる。上記含フッ素オレフィンとしては、TFE、CTFE及びHFPからなる群より選択される少なくとも1種がより好ましく、TFEが更に好ましい。
Examples of the fluorine-containing olefin constituting the fluorine-containing olefin unit include the fluorine-containing olefins exemplified for the fluorine-containing copolymer used in the antithrombogenic material of the present invention. As said fluorine-containing olefin, at least 1 sort (s) selected from the group which consists of TFE, CTFE, and HFP is more preferable, and TFE is still more preferable.
上記含フッ素共重合体は、含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、本発明の抗菌性材料が一層抗菌性に優れたものとなる。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
含フッ素オレフィン単位とビニルアルコール単位との交互率の算出方法は、上述したとおりである。 The fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 10 to 100%. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit and a vinyl alcohol unit is as having mentioned above.
含フッ素オレフィン単位とビニルアルコール単位との交互率の算出方法は、上述したとおりである。 The fluorine-containing copolymer preferably has an alternating ratio of fluorine-containing olefin units and vinyl alcohol units of 10 to 100%. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit and a vinyl alcohol unit is as having mentioned above.
上記含フッ素共重合体は、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有する。上記含フッ素共重合体は、中でも、-CH(OH)-CF2-で表されるフッ素アルコール構造を有することが好ましい。
In the above-mentioned fluorine-containing copolymer, —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that at least one of X and Y Is F or a fluoroalkyl group). The fluorine-containing copolymer preferably has a fluorine alcohol structure represented by —CH (OH) —CF 2 —.
上記含フッ素共重合体は、上記で表されるフッ素アルコール構造を構成するビニルアルコール単位を全単量体単位の30~50モル%含有することが好ましい。フッ素アルコール構造を構成するビニルアルコール単位の含有率は、35~50モル%であることがより好ましく、40~50モル%であることが更に好ましい。
The fluorine-containing copolymer preferably contains 30 to 50 mol% of vinyl alcohol units constituting the fluorine alcohol structure represented above in the total monomer units. The content of vinyl alcohol units constituting the fluoroalcohol structure is more preferably 35 to 50 mol%, and still more preferably 40 to 50 mol%.
上記含フッ素共重合体は、更に、-CH2-CH(O(C=O)R)-(式中、Rは、水素原子又は炭素数1~17の炭化水素基を表す。)で表されるビニルエステルモノマー単位を有するものであってもよい。このように、本発明における含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有することもまた、本発明の好適な実施形態の1つである。そして更には、実質的に含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位のみからなる含フッ素オレフィン/ビニルアルコール/ビニルエステルモノマー共重合体であることもまた、本発明の好適な実施形態の1つである。
The fluorine-containing copolymer is further represented by —CH 2 —CH (O (C═O) R) — (wherein R represents a hydrogen atom or a hydrocarbon group having 1 to 17 carbon atoms). It may have a vinyl ester monomer unit. Thus, it is also one of the preferred embodiments of the present invention that the fluorinated copolymer in the present invention has a fluorinated olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit. Furthermore, it is a fluorine-containing olefin / vinyl alcohol / vinyl ester monomer copolymer consisting essentially of a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit. One.
上記ビニルエステルモノマー単位としては、本発明の抗血栓性材料に使用する含フッ素共重合体について例示したビニルエステルモノマーに由来するモノマー単位を挙げることができる。中でも、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルに由来するモノマー単位が好ましい。より好ましくは、酢酸ビニルモノマー単位、プロピオン酸ビニルモノマー単位であり、更に好ましくは、酢酸ビニルモノマー単位である。
Examples of the vinyl ester monomer unit include monomer units derived from the vinyl ester monomer exemplified for the fluorine-containing copolymer used in the antithrombogenic material of the present invention. Of these, monomer units derived from vinyl acetate, vinyl propionate, and vinyl versatate are preferred. More preferred are vinyl acetate monomer units and vinyl propionate monomer units, and even more preferred are vinyl acetate monomer units.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合の、各モノマー単位の含有率としては、含フッ素オレフィン単位が10~60モル%であり、ビニルアルコール単位が0モル%より多く90モル%未満であり、ビニルエステルモノマー単位が0モル%より多く70モル%未満であることが好ましい。各モノマー単位の含有率がこのような範囲であることによって、上記含フッ素共重合体からなる材料が一層抗菌性及び耐熱性に優れたものとなる。各モノマー単位の含有率としては、含フッ素オレフィン単位が10~60モル%であり、ビニルアルコール単位が90~40モル%であり、ビニルエステルモノマー単位が0.1~20モル%であることがより好ましく、含フッ素オレフィン単位が30~60モル%であり、ビニルアルコール単位が70~40モル%であり、ビニルエステルモノマー単位が0.1~20モル%であることが更に好ましく、含フッ素オレフィン単位が35~60モル%であり、ビニルアルコール単位が75~40モル%であり、ビニルエステルモノマー単位が0.5~10モル%であることが特に好ましい。
When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the content of each monomer unit is 10 to 60 mol% of the fluorine-containing olefin unit, and vinyl alcohol Preferably, the units are greater than 0 mol% and less than 90 mol%, and the vinyl ester monomer units are greater than 0 mol% and less than 70 mol%. When the content of each monomer unit is in such a range, the material made of the above-mentioned fluorine-containing copolymer becomes more excellent in antibacterial properties and heat resistance. The content of each monomer unit is such that the fluorine-containing olefin unit is 10 to 60 mol%, the vinyl alcohol unit is 90 to 40 mol%, and the vinyl ester monomer unit is 0.1 to 20 mol%. More preferably, the fluorine-containing olefin unit is 30 to 60 mol%, the vinyl alcohol unit is 70 to 40 mol%, and the vinyl ester monomer unit is further preferably 0.1 to 20 mol%. It is particularly preferred that the units are 35 to 60 mol%, the vinyl alcohol units are 75 to 40 mol%, and the vinyl ester monomer units are 0.5 to 10 mol%.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する場合、含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率は、10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、上記含フッ素共重合体からなる材料が一層抗菌性に優れたものとなる。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率の算出方法は、上述したとおりである。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 10 to 100%. It is preferable. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, and thus the material comprising the fluorine-containing copolymer is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit is as having mentioned above.
含フッ素オレフィン単位とビニルアルコール単位及びビニルエステルモノマー単位との交互率の算出方法は、上述したとおりである。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ester monomer unit is 10 to 100%. It is preferable. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, and thus the material comprising the fluorine-containing copolymer is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ester monomer unit is as having mentioned above.
本発明の抗菌性材料に使用する含フッ素共重合体は、本発明の効果を損なわない範囲で、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位以外の他の単量体単位を有していてもよい。上記他の単量体としては、本発明の抗血栓性材料に使用する含フッ素共重合体について例示した他の単量体を挙げることができる。
The fluorine-containing copolymer used for the antibacterial material of the present invention has a monomer unit other than the fluorine-containing olefin unit, vinyl alcohol unit and vinyl ester monomer unit within the range not impairing the effects of the present invention. It may be. As said other monomer, the other monomer illustrated about the fluorine-containing copolymer used for the antithrombogenic material of this invention can be mentioned.
上記他の単量体単位の合計含有率は、含フッ素共重合体の全単量体単位の0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましい。
The total content of the other monomer units is preferably 0 to 50 mol%, more preferably 0 to 40 mol%, and more preferably 0 to 40 mol% of the total monomer units of the fluorine-containing copolymer. More preferably, it is 30 mol%.
上記含フッ素共重合体の重量平均分子量は、特に制限されないが、10,000以上であることが好ましい。より好ましくは、12,000~2,000,000であり、更に好ましくは、12,000~1,000,000である。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。 The weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
The weight average molecular weight can be determined by gel permeation chromatography (GPC).
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。 The weight average molecular weight of the fluorine-containing copolymer is not particularly limited, but is preferably 10,000 or more. More preferably, it is 12,000 to 2,000,000, and still more preferably 12,000 to 1,000,000.
The weight average molecular weight can be determined by gel permeation chromatography (GPC).
本発明の抗菌性材料に使用する含フッ素共重合体は、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化することにより製造することができる。すなわち、本発明における含フッ素共重合体が、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体であることもまた、本発明の好適な実施形態の1つである。具体的な製造方法は、本発明の抗血栓性材料に使用する含フッ素共重合体について説明した製造方法と同様である。
The fluorine-containing copolymer used for the antibacterial material of the present invention can be produced by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. That is, the fluorine-containing copolymer in the present invention is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit. One. A specific production method is the same as the production method described for the fluorine-containing copolymer used for the antithrombotic material of the present invention.
含フッ素オレフィン単位とビニルエステルモノマー単位とを有する共重合体をケン化して本発明における含フッ素共重合体を得る場合のケン化度は、本発明における含フッ素共重合体の各モノマー単位の含有率が上述した範囲となるような範囲であればよく、具体的には50%以上が好ましく、60%以上がより好ましく、70%以上が更に好ましい。
上記ケン化度の算出方法は、上述したとおりである。 The degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is within the above-mentioned range, specifically, 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
The method for calculating the saponification degree is as described above.
上記ケン化度の算出方法は、上述したとおりである。 The degree of saponification in the case of obtaining a fluorine-containing copolymer in the present invention by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit is the content of each monomer unit of the fluorine-containing copolymer in the present invention. It is sufficient that the rate is within the above-mentioned range, specifically, 50% or more is preferable, 60% or more is more preferable, and 70% or more is still more preferable.
The method for calculating the saponification degree is as described above.
本発明の抗菌性材料に使用する含フッ素共重合体は、含フッ素オレフィンと脱保護反応によりビニルアルコールに変換されうる保護基(R)が結合したビニルエーテル単量体(CH2=CH-OR)(以下、単にビニルエーテル単量体と記述する)とを共重合させて含フッ素オレフィン/ビニルエーテル共重合体を得る工程、及び、上記含フッ素オレフィン/ビニルエーテル共重合体を脱保護することにより含フッ素オレフィン/ビニルアルコール共重合体を得る工程、からなる製造方法によっても得ることができる。
The fluorine-containing copolymer used for the antibacterial material of the present invention is a vinyl ether monomer (CH 2 = CH-OR) in which a fluorine-containing olefin and a protecting group (R) that can be converted to vinyl alcohol by a deprotection reaction are bonded. (Hereinafter simply referred to as a vinyl ether monomer) to obtain a fluorine-containing olefin / vinyl ether copolymer, and by deprotecting the fluorine-containing olefin / vinyl ether copolymer, It can also be obtained by a production method comprising the step of obtaining a vinyl alcohol copolymer.
上記含フッ素オレフィンとビニルエーテル単量体とを共重合させる具体的な方法、及び、上記含フッ素オレフィン/ビニルエーテル共重合体を脱保護する具体的な方法は、本発明の抗血栓性材料に使用する含フッ素共重合体について説明した方法と同様である。
A specific method for copolymerizing the fluorine-containing olefin and the vinyl ether monomer and a specific method for deprotecting the fluorine-containing olefin / vinyl ether copolymer are used for the antithrombogenic material of the present invention. This is the same as the method described for the fluorine-containing copolymer.
上記含フッ素オレフィンとビニルエーテル単量体とを共重合させて得られる含フッ素オレフィン/ビニルエーテル共重合体は、含フッ素オレフィンとビニルエーテル単量体とのモル比である(含フッ素オレフィン)/(ビニルエーテル単量体)が(30~60)/(70~40)であることが好ましく、(45~55)/(55~45)であることがより好ましい。モル比が上記範囲内にあって、かつ、脱保護度が後述の範囲内にあることにより、各重合単位のモル比が上述した範囲にある含フッ素共重合体を製造することができる。
The fluorine-containing olefin / vinyl ether copolymer obtained by copolymerizing the fluorine-containing olefin and the vinyl ether monomer is a molar ratio of the fluorine-containing olefin and the vinyl ether monomer (fluorine-containing olefin) / (vinyl ether unit The (mer) is preferably (30 to 60) / (70 to 40), more preferably (45 to 55) / (55 to 45). When the molar ratio is within the above range and the degree of deprotection is within the range described later, it is possible to produce a fluorinated copolymer in which the molar ratio of each polymerized unit is within the above range.
上記含フッ素オレフィン/ビニルエーテル共重合体の脱保護は、脱保護度が1~100%になるように行うことが好ましく、30~100%になるように行うことがより好ましい。脱保護度は、50%以上が更に好ましく、60%以上が更により好ましく、70%以上が特に好ましい。脱保護度の算出方法は、上述したとおりである。
The deprotection of the fluorine-containing olefin / vinyl ether copolymer is preferably performed so that the degree of deprotection is 1 to 100%, and more preferably 30 to 100%. The degree of deprotection is more preferably 50% or more, still more preferably 60% or more, and particularly preferably 70% or more. The method for calculating the degree of deprotection is as described above.
上記含フッ素共重合体が、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエーテル単位を有する場合、含フッ素オレフィン単位とビニルアルコール単位及びビニルエーテル単位との交互率は、10~100%であることが好ましい。交互率がこのような範囲であると、含フッ素共重合体中のフッ素アルコール構造の含有率が一層高くなるため、本発明の抗菌性材料が一層抗菌性に優れたものとなる。より好ましくは25~100%であり、更に好ましくは50~100%であり、特に好ましくは50~94%である。
含フッ素オレフィン単位とビニルアルコール単位及びビニルエーテル単位との交互率の算出方法は、上述したとおりである。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ether unit is preferably 10 to 100%. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit is as having mentioned above.
含フッ素オレフィン単位とビニルアルコール単位及びビニルエーテル単位との交互率の算出方法は、上述したとおりである。 When the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit, the alternating rate of the fluorine-containing olefin unit, the vinyl alcohol unit, and the vinyl ether unit is preferably 10 to 100%. When the alternating rate is within such a range, the content of the fluoroalcohol structure in the fluorine-containing copolymer is further increased, so that the antibacterial material of the present invention is further excellent in antibacterial properties. More preferably, it is 25 to 100%, still more preferably 50 to 100%, and particularly preferably 50 to 94%.
The calculation method of the alternating rate of a fluorine-containing olefin unit, a vinyl alcohol unit, and a vinyl ether unit is as having mentioned above.
本発明の抗菌性材料は、本発明の効果を損なわない範囲で、上記含フッ素共重合体以外の他の成分を更に含んでもよい。
The antibacterial material of the present invention may further contain other components other than the fluorine-containing copolymer as long as the effects of the present invention are not impaired.
上記他の成分としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコールなどの親水性高分子等が挙げられる。
Examples of the other components include hydrophilic polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.
上記他の成分の配合量は、上記含フッ素共重合体100質量%に対して、1~30質量%であることが好ましく、1~10質量%であることがより好ましい。
The blending amount of the other component is preferably 1 to 30% by mass, and more preferably 1 to 10% by mass with respect to 100% by mass of the fluorine-containing copolymer.
本発明の抗菌性材料は、表面が有機溶剤を含む水溶液により処理されていることが好ましい。この表面処理により、抗菌性材料の表面に更に水酸基構造が増加するため、より優れた抗菌性が発揮される。
The antibacterial material of the present invention is preferably treated on the surface with an aqueous solution containing an organic solvent. By this surface treatment, a hydroxyl group structure is further increased on the surface of the antibacterial material, so that more excellent antibacterial properties are exhibited.
上記表面処理で使用することが可能な有機溶剤としては、水に可溶で上記含フッ素共重合体を溶解する有機溶剤であれば特に限定されないが、メタノール、エタノール、2-プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられる。中でもメタノール、エタノール、2-プロパノール、テトラヒドロフランが好ましい。
The organic solvent that can be used for the surface treatment is not particularly limited as long as it is soluble in water and can dissolve the fluorine-containing copolymer. However, methanol, ethanol, 2-propanol, acetone, tetrahydrofuran , Methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like. Of these, methanol, ethanol, 2-propanol and tetrahydrofuran are preferred.
上記有機溶剤を含む水溶液による処理の方法としては、当該水溶液で表面を濡らす方法が挙げられる。
Examples of the treatment method using an aqueous solution containing the organic solvent include a method of wetting the surface with the aqueous solution.
本発明の抗菌性材料は、用途に応じて種々の形状に成形されて提供される。成形方法は特に限定されず、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、インクジェットプリント法、静電塗装法、圧縮成形法、押出成形法、カレンダー成形法、トランスファー成形法、射出成形法、ロト成形法、ロトライニング成形法、熱誘起相分離法、非溶媒誘起相分離法等が採用できる。
The antibacterial material of the present invention is provided by being molded into various shapes depending on the application. The molding method is not particularly limited, and spin coating method, drop casting method, dip nip method, spray coating method, brush coating method, dipping method, ink jet printing method, electrostatic coating method, compression molding method, extrusion molding method, calendar molding method. Methods, transfer molding methods, injection molding methods, lotto molding methods, lotining molding methods, thermally induced phase separation methods, non-solvent induced phase separation methods, and the like can be employed.
多様な形状の物品に適用できることから、本発明の抗菌性材料は、コーティング膜であることが好ましい。コーティング膜とは、上記含フッ素共重合体又は上記含フッ素共重合体を含む塗料組成物を塗布することにより得られる膜をいう。コーティング膜の製膜方法としては、スピンコート法、ドロップキャスト法、ディップニップ法、スプレーコート法、刷毛塗り法、浸漬法、静電塗装法、インクジェットプリント法等が挙げられる。中でも、簡便性の点で、スピンコート法、ドロップキャスト法、浸漬法が好ましい。
The antibacterial material of the present invention is preferably a coating film because it can be applied to articles having various shapes. A coating film means the film | membrane obtained by apply | coating the coating composition containing the said fluorine-containing copolymer or the said fluorine-containing copolymer. Examples of the method for forming the coating film include spin coating, drop casting, dip nip, spray coating, brush coating, dipping, electrostatic coating, and inkjet printing. Of these, spin coating, drop casting, and dipping are preferred from the standpoint of simplicity.
上記コーティング膜は、上記含フッ素共重合体及び有機溶剤を含む塗料組成物を塗布することにより得られることが好ましい。有機溶剤としては、メタノール、エタノール、2-プロパノール、2-ブタノール、1-ブタノール、1-ヘキサノール、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルアセトアミド、ジメチルホルムアミド等が使用できる。なかでも、透明で均一なコーティング膜が容易に得られる点で、2-ブタノール、1-ブタノール、1-ヘキサノール、テトラヒドロフランが好ましい。また、含フッ素共重合体の溶解性の観点からは、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドが好ましい。
The coating film is preferably obtained by applying a coating composition containing the fluorine-containing copolymer and an organic solvent. As the organic solvent, methanol, ethanol, 2-propanol, 2-butanol, 1-butanol, 1-hexanol, acetone, tetrahydrofuran, methyl ethyl ketone, dimethylacetamide, dimethylformamide and the like can be used. Of these, 2-butanol, 1-butanol, 1-hexanol and tetrahydrofuran are preferred in that a transparent and uniform coating film can be easily obtained. From the viewpoint of solubility of the fluorinated copolymer, methanol, ethanol, 2-propanol, tetrahydrofuran, and dimethylformamide are preferable.
本発明の抗菌性材料がコーティング膜である場合、その膜厚は0.1~50μmであることが好ましく、0.5~30μmであることがより好ましく、1.0~20μmであることが更に好ましい。
When the antibacterial material of the present invention is a coating film, the film thickness is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and further preferably 1.0 to 20 μm. preferable.
本発明の抗菌性材料は、優れた抗菌性を有するため、抗菌性が要求される種々の物品に適用できる。上記物品としては、コンタクトレンズ、トイレタリー用品、キッチン水回り器具、エアコン、食品工場設備、下水処理場設備、排水管等が好ましい。本発明の抗菌性材料からなり、コンタクトレンズ、トイレタリー用品、キッチン水回り器具、エアコン、食品工場設備、下水処理場設備、又は、排水管であることを特徴とする抗菌性物品もまた、本発明の1つである。
Since the antibacterial material of the present invention has excellent antibacterial properties, it can be applied to various articles that require antibacterial properties. As the article, contact lenses, toiletries, kitchen utensils, air conditioners, food factory equipment, sewage treatment plant equipment, drain pipes and the like are preferable. An antibacterial article comprising the antibacterial material of the present invention, which is a contact lens, toiletry product, kitchen watering device, air conditioner, food factory facility, sewage treatment plant facility, or drain pipe, is also provided in the present invention. It is one of.
本発明の抗菌性材料を上記抗菌性物品に適用する態様は特に限定されないが、本発明の抗菌性材料の抗菌性効果を充分に発揮させる点で、本発明の抗菌性材料が少なくとも上記抗菌性物品の表面を構成するように適用することが好ましい。
Although the aspect which applies the antibacterial material of this invention to the said antibacterial article is not specifically limited, The antibacterial material of this invention is at least the said antibacterial property at the point which fully exhibits the antibacterial effect of the antibacterial material of this invention It is preferable to apply so as to constitute the surface of the article.
本発明は、物品表面の大腸菌の増殖を阻害する方法であって、物品の表面に含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体を適用することを特徴とする方法でもある。含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体は、-CH(OH)-CXY-(式中、X及びYは、同一又は異なり、それぞれH、F又はフルオロアルキル基を表す。ただし、X及びYのうち少なくとも一つはF又はフルオロアルキル基である。)で表されるフッ素アルコール構造を有している。このため、上記含フッ素共重合体を物品の表面に適用することにより、該物品の表面における大腸菌の増殖を阻害することができる。
The present invention is a method for inhibiting the growth of Escherichia coli on the surface of an article, characterized in that a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of the article. The fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is —CH (OH) —CXY— (wherein X and Y are the same or different and each represents H, F or a fluoroalkyl group, provided that , At least one of X and Y is F or a fluoroalkyl group). For this reason, by applying the fluorine-containing copolymer to the surface of the article, the growth of E. coli on the surface of the article can be inhibited.
また、上記含フッ素共重合体の大腸菌増殖阻害作用は、上記フッ素アルコール構造のみならず、親水疎水性の相分離構造又は海島構造にも由来すると考えられる。当該含フッ素共重合体は、疎水性の含フッ素オレフィンに由来する構造(例えば-CF2CF2-)と親水性の水酸基構造とを有しており、疎水性構造と親水性構造とがそれぞれ互いに集まり親水疎水性の相分離構造又は海島構造が形成されていると推定される。
Moreover, it is thought that the E. coli growth inhibitory action of the fluorinated copolymer is derived not only from the fluoroalcohol structure but also from a hydrophilic / hydrophobic phase separation structure or a sea-island structure. The fluorine-containing copolymer has a structure derived from a hydrophobic fluorine-containing olefin (for example, —CF 2 CF 2 —) and a hydrophilic hydroxyl structure, and the hydrophobic structure and the hydrophilic structure each have It is presumed that they gathered together to form a hydrophilic / hydrophobic phase separation structure or sea-island structure.
含フッ素共重合体としては、含フッ素オレフィン単位及びビニルアルコール単位を有するものであれば特に限定されないが、本発明の抗菌性材料に使用する含フッ素共重合体として説明した含フッ素共重合体を使用することが好ましい。
The fluorine-containing copolymer is not particularly limited as long as it has a fluorine-containing olefin unit and a vinyl alcohol unit, but the fluorine-containing copolymer described as the fluorine-containing copolymer used in the antibacterial material of the present invention is not limited. It is preferable to use it.
上記物品としては、大腸菌に対する抗菌性が要求される種々の物品を挙げることができる。具体的には、コンタクトレンズ、トイレタリー用品、キッチン水回り器具、エアコン、食品工場設備、下水処理場設備、排水管等が好ましい。
Examples of the article include various articles that require antibacterial properties against Escherichia coli. Specifically, contact lenses, toiletries, kitchen watering devices, air conditioners, food factory equipment, sewage treatment plant equipment, drain pipes, and the like are preferable.
本発明の方法において、上記含フッ素共重合体を適用する箇所は、上記物品の表面であれば特に限定されないが、より大腸菌の増殖しやすい箇所であることが好ましい。
In the method of the present invention, the location to which the fluorine-containing copolymer is applied is not particularly limited as long as it is the surface of the article, but is preferably a location where E. coli is more likely to grow.
本発明の方法において、上記含フッ素共重合体を上記物品の表面に適用する方法としては特に限定されず、上記含フッ素共重合体を成形して上記物品を製造してもよく、他の材料からなる物品の表面に上記含フッ素共重合体からなるコーティング膜を形成してもよい。
In the method of the present invention, the method for applying the fluorine-containing copolymer to the surface of the article is not particularly limited, and the article may be produced by molding the fluorine-containing copolymer. You may form the coating film which consists of the said fluorine-containing copolymer on the surface of the article | item consisting of.
次に本発明を実施例を挙げて説明するが、本発明はかかる実施例のみに限定されるものではない。
Next, the present invention will be described with reference to examples. However, the present invention is not limited to such examples.
実施例の各数値は以下の方法により測定した。
Each numerical value of the examples was measured by the following method.
〔フッ素含有率による含フッ素オレフィン単位の含有率の測定〕
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法で測定することにより求めた(質量%)。ポリマー中の含フッ素オレフィン単位の含有率(モル%)は、ケン化前のポリマーのフッ素含有率から計算した。 [Measurement of fluorine-containing olefin unit content by fluorine content]
A 10 mg sample was burned by the oxygen flask combustion method, the decomposition gas was absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorbing solution was measured by the fluorine selective electrode method (mass%). The content (mol%) of the fluorine-containing olefin unit in the polymer was calculated from the fluorine content of the polymer before saponification.
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法で測定することにより求めた(質量%)。ポリマー中の含フッ素オレフィン単位の含有率(モル%)は、ケン化前のポリマーのフッ素含有率から計算した。 [Measurement of fluorine-containing olefin unit content by fluorine content]
A 10 mg sample was burned by the oxygen flask combustion method, the decomposition gas was absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorbing solution was measured by the fluorine selective electrode method (mass%). The content (mol%) of the fluorine-containing olefin unit in the polymer was calculated from the fluorine content of the polymer before saponification.
〔NMR(核磁気共鳴法)による交互率の測定〕
1H-NMR測定条件:400MHz(テトラメチルシラン=0ppm) [Measurement of alternating rate by NMR (nuclear magnetic resonance)]
1 H-NMR measurement conditions: 400 MHz (tetramethylsilane = 0 ppm)
1H-NMR測定条件:400MHz(テトラメチルシラン=0ppm) [Measurement of alternating rate by NMR (nuclear magnetic resonance)]
1 H-NMR measurement conditions: 400 MHz (tetramethylsilane = 0 ppm)
〔分子量及び分子量分布〕
ゲルパーミエーションクロマトグラフィー(GPC)により、溶媒としてテトラヒドロフラン(THF)を流速1ml/分で流して測定したデータより、平均分子量を算出した。
検出器にはRI、検量線サンプルはポリスチレン標準サンプルを使用し、流速1ml/分、サンプル打込量200μLで測定を行った。 [Molecular weight and molecular weight distribution]
The average molecular weight was calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min by gel permeation chromatography (GPC).
RI was used for the detector, and a polystyrene standard sample was used for the calibration curve sample, and the measurement was performed at a flow rate of 1 ml / min and a sample injection amount of 200 μL.
ゲルパーミエーションクロマトグラフィー(GPC)により、溶媒としてテトラヒドロフラン(THF)を流速1ml/分で流して測定したデータより、平均分子量を算出した。
検出器にはRI、検量線サンプルはポリスチレン標準サンプルを使用し、流速1ml/分、サンプル打込量200μLで測定を行った。 [Molecular weight and molecular weight distribution]
The average molecular weight was calculated from data measured by flowing tetrahydrofuran (THF) as a solvent at a flow rate of 1 ml / min by gel permeation chromatography (GPC).
RI was used for the detector, and a polystyrene standard sample was used for the calibration curve sample, and the measurement was performed at a flow rate of 1 ml / min and a sample injection amount of 200 μL.
〔IR分析によるケン化度の測定〕
フーリエ変換赤外分光光度計で室温にて測定した。 [Measurement of degree of saponification by IR analysis]
Measurements were made at room temperature with a Fourier transform infrared spectrophotometer.
フーリエ変換赤外分光光度計で室温にて測定した。 [Measurement of degree of saponification by IR analysis]
Measurements were made at room temperature with a Fourier transform infrared spectrophotometer.
〔融点(Tm)〕
DSC(示差走査熱量計)を用いて、10℃/分の条件で昇温(セカンドラン)したときの融解熱曲線における極大値に対応する温度をTm(℃)とした。 [Melting point (Tm)]
Using DSC (differential scanning calorimeter), the temperature corresponding to the maximum value in the heat of fusion curve when the temperature was raised (second run) at 10 ° C./min was defined as Tm (° C.).
DSC(示差走査熱量計)を用いて、10℃/分の条件で昇温(セカンドラン)したときの融解熱曲線における極大値に対応する温度をTm(℃)とした。 [Melting point (Tm)]
Using DSC (differential scanning calorimeter), the temperature corresponding to the maximum value in the heat of fusion curve when the temperature was raised (second run) at 10 ° C./min was defined as Tm (° C.).
〔分解温度〕
分解温度は、TGA(熱量測定装置)の測定における熱分解曲線において大きく重量減少を示す変曲点の温度とした。具体的には、TGA曲線において、大きな重量減少の前後で補助線を引いて交点を求める方法(交点法)により分解温度を求めた。 [Decomposition temperature]
The decomposition temperature was the temperature at the inflection point that showed a significant weight loss in the thermal decomposition curve in the TGA (calorimeter) measurement. Specifically, in the TGA curve, the decomposition temperature was obtained by a method (intersection method) in which an auxiliary line was drawn before and after a large weight loss to obtain an intersection point.
分解温度は、TGA(熱量測定装置)の測定における熱分解曲線において大きく重量減少を示す変曲点の温度とした。具体的には、TGA曲線において、大きな重量減少の前後で補助線を引いて交点を求める方法(交点法)により分解温度を求めた。 [Decomposition temperature]
The decomposition temperature was the temperature at the inflection point that showed a significant weight loss in the thermal decomposition curve in the TGA (calorimeter) measurement. Specifically, in the TGA curve, the decomposition temperature was obtained by a method (intersection method) in which an auxiliary line was drawn before and after a large weight loss to obtain an intersection point.
〔SEM測定法〕
走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍及び2500倍で3視野任意に観察した。 [SEM measurement method]
Using a scanning electron microscope, the surface of the coating film was observed arbitrarily at three magnifications at 400 times and 2500 times.
走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍及び2500倍で3視野任意に観察した。 [SEM measurement method]
Using a scanning electron microscope, the surface of the coating film was observed arbitrarily at three magnifications at 400 times and 2500 times.
実施例で使用したポリマーを表1に示す。
The polymers used in the examples are shown in Table 1.
実施例1
ポリマーP-1の0.1重量%メタノール溶液を室温でPETフィルム(1cm×1cm)上へスピンコートした。具体的には、上記溶液10μLをPETフィルム上に滴下し700rpmで10秒間回転した。その後、室温にて、ロータリー真空ポンプにて減圧乾燥し、コーティング膜(PETフィルムの表面に形成されたコーティング膜)を得た。 Example 1
A 0.1 wt% methanol solution of polymer P-1 was spin coated onto a PET film (1 cm × 1 cm) at room temperature. Specifically, 10 μL of the above solution was dropped on a PET film and rotated at 700 rpm for 10 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature, and obtained the coating film (coating film formed in the surface of PET film).
ポリマーP-1の0.1重量%メタノール溶液を室温でPETフィルム(1cm×1cm)上へスピンコートした。具体的には、上記溶液10μLをPETフィルム上に滴下し700rpmで10秒間回転した。その後、室温にて、ロータリー真空ポンプにて減圧乾燥し、コーティング膜(PETフィルムの表面に形成されたコーティング膜)を得た。 Example 1
A 0.1 wt% methanol solution of polymer P-1 was spin coated onto a PET film (1 cm × 1 cm) at room temperature. Specifically, 10 μL of the above solution was dropped on a PET film and rotated at 700 rpm for 10 seconds. Then, it dried under reduced pressure with the rotary vacuum pump at room temperature, and obtained the coating film (coating film formed in the surface of PET film).
得られたコーティング膜について、以下の方法で抗血栓性(30分間)を評価した。結果を表2に示す。
About the obtained coating film | membrane, the antithrombogenicity (30 minutes) was evaluated with the following method. The results are shown in Table 2.
〔血小板粘着性及び血小板の活性化(30分間)〕
得られたコーティング膜を直径3.3cmの秤量瓶の底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、PBSで3倍希釈した0.1%クエン酸ナトリウムを含む多血小板血漿(PRP、血小板数:2×105個/μL)を上記秤量瓶に2.0mL加え、37℃で30分間静置した。PRPを除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に粘着した血小板を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍で3視野任意に観察し、粘着した血小板数をカウントした。粘着した血小板が球状の場合を活性化なし、凝集、扁平化又は偽足が認められた場合を活性化ありとした。 [Platelet adhesion and platelet activation (30 minutes)]
The obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 × 10 5 / μL) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. For 30 minutes. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize platelets adhered to the coating film surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted. The case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
得られたコーティング膜を直径3.3cmの秤量瓶の底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、PBSで3倍希釈した0.1%クエン酸ナトリウムを含む多血小板血漿(PRP、血小板数:2×105個/μL)を上記秤量瓶に2.0mL加え、37℃で30分間静置した。PRPを除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に粘着した血小板を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍で3視野任意に観察し、粘着した血小板数をカウントした。粘着した血小板が球状の場合を活性化なし、凝集、扁平化又は偽足が認められた場合を活性化ありとした。 [Platelet adhesion and platelet activation (30 minutes)]
The obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 × 10 5 / μL) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. For 30 minutes. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize platelets adhered to the coating film surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted. The case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
比較例1
株式会社クラレ製のエチレン-ビニルアルコール共重合体(EVOH)であるL104B(エチレン/ビニルアルコールモル比率=27/73)をジメチルスルホキシドに60℃で溶解させた。上記溶液10μLをPETフィルム上に滴下し700rpmで10秒間回転した。その後、40℃にて6時間、ロータリー真空ポンプにて加熱減圧乾燥し、コーティング膜を得た。得られたコーティング膜について、実施例1と同様の方法で抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Example 1
L104B (ethylene / vinyl alcohol molar ratio = 27/73), an ethylene-vinyl alcohol copolymer (EVOH) manufactured by Kuraray Co., Ltd., was dissolved in dimethyl sulfoxide at 60 ° C. 10 μL of the above solution was dropped on a PET film and rotated at 700 rpm for 10 seconds. Thereafter, the coating film was obtained by drying under reduced pressure with a rotary vacuum pump at 40 ° C. for 6 hours. About the obtained coating film | membrane, the antithrombogenicity (30 minutes) was evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
株式会社クラレ製のエチレン-ビニルアルコール共重合体(EVOH)であるL104B(エチレン/ビニルアルコールモル比率=27/73)をジメチルスルホキシドに60℃で溶解させた。上記溶液10μLをPETフィルム上に滴下し700rpmで10秒間回転した。その後、40℃にて6時間、ロータリー真空ポンプにて加熱減圧乾燥し、コーティング膜を得た。得られたコーティング膜について、実施例1と同様の方法で抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Example 1
L104B (ethylene / vinyl alcohol molar ratio = 27/73), an ethylene-vinyl alcohol copolymer (EVOH) manufactured by Kuraray Co., Ltd., was dissolved in dimethyl sulfoxide at 60 ° C. 10 μL of the above solution was dropped on a PET film and rotated at 700 rpm for 10 seconds. Thereafter, the coating film was obtained by drying under reduced pressure with a rotary vacuum pump at 40 ° C. for 6 hours. About the obtained coating film | membrane, the antithrombogenicity (30 minutes) was evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
比較例2~3
L104Bの代わりに株式会社クラレ製のエチレン-ビニルアルコール共重合体であるE105B(エチレン/ビニルアルコールモル比率=44/56、比較例2)又はG156B(エチレン/ビニルアルコールモル比率=48/52、比較例3)を使用したこと以外は比較例1と同様にして、コーティング膜を得た。得られたコーティング膜について、実施例1と同様の方法で抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Examples 2-3
E105B (ethylene / vinyl alcohol molar ratio = 44/56, Comparative Example 2) or G156B (ethylene / vinyl alcohol molar ratio = 48/52), which is an ethylene-vinyl alcohol copolymer manufactured by Kuraray Co., Ltd. instead of L104B A coating film was obtained in the same manner as in Comparative Example 1 except that Example 3) was used. About the obtained coating film | membrane, the antithrombogenicity (30 minutes) was evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
L104Bの代わりに株式会社クラレ製のエチレン-ビニルアルコール共重合体であるE105B(エチレン/ビニルアルコールモル比率=44/56、比較例2)又はG156B(エチレン/ビニルアルコールモル比率=48/52、比較例3)を使用したこと以外は比較例1と同様にして、コーティング膜を得た。得られたコーティング膜について、実施例1と同様の方法で抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Examples 2-3
E105B (ethylene / vinyl alcohol molar ratio = 44/56, Comparative Example 2) or G156B (ethylene / vinyl alcohol molar ratio = 48/52), which is an ethylene-vinyl alcohol copolymer manufactured by Kuraray Co., Ltd. instead of L104B A coating film was obtained in the same manner as in Comparative Example 1 except that Example 3) was used. About the obtained coating film | membrane, the antithrombogenicity (30 minutes) was evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.
比較例4
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例1と同様にして、抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Example 4
Antithrombogenicity (30 minutes) was evaluated in the same manner as in Example 1 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 2.
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例1と同様にして、抗血栓性(30分間)を評価した。結果を表2に示す。 Comparative Example 4
Antithrombogenicity (30 minutes) was evaluated in the same manner as in Example 1 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 2.
実施例2
PETフィルムに滴下した溶液の量を30μLに変更したこと以外は、実施例1と同様の方法でコーティング膜を得た。 Example 2
A coating film was obtained in the same manner as in Example 1 except that the amount of the solution dropped onto the PET film was changed to 30 μL.
PETフィルムに滴下した溶液の量を30μLに変更したこと以外は、実施例1と同様の方法でコーティング膜を得た。 Example 2
A coating film was obtained in the same manner as in Example 1 except that the amount of the solution dropped onto the PET film was changed to 30 μL.
得られたコーティング膜について、以下の方法で抗血栓性(1時間)を評価した。結果を表3に示す。
About the obtained coating film | membrane, the antithrombogenicity (1 hour) was evaluated with the following method. The results are shown in Table 3.
〔血小板粘着性及び血小板の活性化(1時間)〕
得られたコーティング膜を直径3.3cmの秤量瓶の底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、PBSで3倍希釈した0.1%クエン酸ナトリウムを含む多血小板血漿(PRP、血小板数:2×105個/μL)を上記秤量瓶に2.0mL加え、37℃で1時間静置した。PRPを除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に粘着した血小板を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍で3視野任意に観察し、粘着した血小板数をカウントした。粘着した血小板が球状の場合を活性化なし、凝集、扁平化又は偽足が認められた場合を活性化ありとした。 [Platelet adhesion and platelet activation (1 hour)]
The obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 × 10 5 / μL) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. And left for 1 hour. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize platelets adhered to the coating film surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted. The case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
得られたコーティング膜を直径3.3cmの秤量瓶の底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、PBSで3倍希釈した0.1%クエン酸ナトリウムを含む多血小板血漿(PRP、血小板数:2×105個/μL)を上記秤量瓶に2.0mL加え、37℃で1時間静置した。PRPを除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に粘着した血小板を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍で3視野任意に観察し、粘着した血小板数をカウントした。粘着した血小板が球状の場合を活性化なし、凝集、扁平化又は偽足が認められた場合を活性化ありとした。 [Platelet adhesion and platelet activation (1 hour)]
The obtained coating film was fixed to the bottom of a weighing bottle having a diameter of 3.3 cm with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After removing PBS, 2.0 mL of platelet-rich plasma (PRP, platelet count: 2 × 10 5 / μL) containing 0.1% sodium citrate diluted 3-fold with PBS was added to the weighing bottle at 37 ° C. And left for 1 hour. PRP was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize platelets adhered to the coating film surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was gold-coated with a gold sputtering apparatus, the surface of the coating film was observed arbitrarily at 3 magnifications using a scanning electron microscope at a magnification of 400 times, and the number of adhered platelets was counted. The case where the adherent platelets were spherical was regarded as not activated, and the case where aggregation, flattening or false feet were observed was regarded as activated.
実施例3~5
ポリマーP-1の代わりに、ポリマーP-2(実施例3)、ポリマーP-3(実施例4)又はポリマーP-4(実施例5)を使用したこと以外は実施例2と同様にして、コーティング膜を得た。得られたコーティング膜について、実施例2と同様の方法で抗血栓性(1時間)を評価した。結果を表3に示す。 Examples 3-5
In the same manner as in Example 2 except that instead of polymer P-1, polymer P-2 (Example 3), polymer P-3 (Example 4) or polymer P-4 (Example 5) was used. A coating film was obtained. About the obtained coating film | membrane, the antithrombogenicity (1 hour) was evaluated by the method similar to Example 2. FIG. The results are shown in Table 3.
ポリマーP-1の代わりに、ポリマーP-2(実施例3)、ポリマーP-3(実施例4)又はポリマーP-4(実施例5)を使用したこと以外は実施例2と同様にして、コーティング膜を得た。得られたコーティング膜について、実施例2と同様の方法で抗血栓性(1時間)を評価した。結果を表3に示す。 Examples 3-5
In the same manner as in Example 2 except that instead of polymer P-1, polymer P-2 (Example 3), polymer P-3 (Example 4) or polymer P-4 (Example 5) was used. A coating film was obtained. About the obtained coating film | membrane, the antithrombogenicity (1 hour) was evaluated by the method similar to Example 2. FIG. The results are shown in Table 3.
比較例5
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例2と同様にして、抗血栓性(1時間)を評価した。結果を表3に示す。 Comparative Example 5
Antithrombogenicity (1 hour) was evaluated in the same manner as in Example 2 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 3.
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例2と同様にして、抗血栓性(1時間)を評価した。結果を表3に示す。 Comparative Example 5
Antithrombogenicity (1 hour) was evaluated in the same manner as in Example 2 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 3.
実施例6
実施例1と同様の方法でコーティング膜を得た。 Example 6
A coating film was obtained in the same manner as in Example 1.
実施例1と同様の方法でコーティング膜を得た。 Example 6
A coating film was obtained in the same manner as in Example 1.
得られたコーティング膜について、以下の方法で大腸菌の接着性を評価した。結果を表4に示す。大腸菌の接着性の評価におけるコーティング膜表面の倍率2500倍の走査型電子顕微鏡(SEM)写真を図1に示す。
About the obtained coating film | membrane, the adhesiveness of colon_bacillus | E._coli was evaluated with the following method. The results are shown in Table 4. A scanning electron microscope (SEM) photograph at a magnification of 2500 times on the surface of the coating film in the evaluation of the adhesion of Escherichia coli is shown in FIG.
〔大腸菌の接着性〕
得られたコーティング膜を24穴細胞培養ディッシュの底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、対数増殖期にある大腸菌(E.coli ATCC(R) 25922TM)を含むMuller-Hinton II (MH)培地でOD600=0.003に調製した分散液を上記細胞培養ディッシュに2.0mL加え、37℃で20時間培養した。上清を除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に接着した大腸菌を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍及び2500倍で3視野任意に観察し、大腸菌の接着性、コロニー形成量を評価した。 [Adhesiveness of E. coli]
The obtained coating film was fixed to the bottom of a 24-well cell culture dish with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After the PBS was removed, a dispersion prepared to OD 600 = 0.003 in Muller-Hinton II (MH) medium containing Escherichia coli (E. coli ATCC® 25922 ™ ) in the logarithmic growth phase was added to the above cell culture dish. 2.0 mL was added and cultured at 37 ° C. for 20 hours. The supernatant was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize E. coli adhering to the coating membrane surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was coated with gold using a gold sputtering apparatus, and the coating film surface was observed arbitrarily at three magnifications of 400 times and 2500 times using a scanning electron microscope to evaluate the adhesion and colony formation amount of E. coli.
得られたコーティング膜を24穴細胞培養ディッシュの底に少量のシリコン接着剤で固定した。これを純水で3回洗浄後、リン酸塩緩衝生理食塩液(PBS)に12時間浸漬した。PBSを除いた後、対数増殖期にある大腸菌(E.coli ATCC(R) 25922TM)を含むMuller-Hinton II (MH)培地でOD600=0.003に調製した分散液を上記細胞培養ディッシュに2.0mL加え、37℃で20時間培養した。上清を除き、PBSでコーティング膜を3回洗浄した。2%グルタルアルデヒドを含むPBSを加え4℃で2時間静置し、コーティング膜表面に接着した大腸菌を固定化した。サンプルをPBSで3回、純水で1回洗浄し、1晩減圧乾燥を行った。得られたサンプルを金スパッタ装置で金コートし、走査型電子顕微鏡を用いてコーティング膜表面を倍率400倍及び2500倍で3視野任意に観察し、大腸菌の接着性、コロニー形成量を評価した。 [Adhesiveness of E. coli]
The obtained coating film was fixed to the bottom of a 24-well cell culture dish with a small amount of silicon adhesive. This was washed 3 times with pure water and then immersed in phosphate buffered saline (PBS) for 12 hours. After the PBS was removed, a dispersion prepared to OD 600 = 0.003 in Muller-Hinton II (MH) medium containing Escherichia coli (E. coli ATCC® 25922 ™ ) in the logarithmic growth phase was added to the above cell culture dish. 2.0 mL was added and cultured at 37 ° C. for 20 hours. The supernatant was removed and the coating membrane was washed 3 times with PBS. PBS containing 2% glutaraldehyde was added and allowed to stand at 4 ° C. for 2 hours to immobilize E. coli adhering to the coating membrane surface. The sample was washed 3 times with PBS and once with pure water, and dried under reduced pressure overnight. The obtained sample was coated with gold using a gold sputtering apparatus, and the coating film surface was observed arbitrarily at three magnifications of 400 times and 2500 times using a scanning electron microscope to evaluate the adhesion and colony formation amount of E. coli.
比較例6
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例6と同様にして、大腸菌の接着性を評価した。結果を表4に示す。大腸菌の接着性の評価におけるPETフィルム表面の倍率2500倍の走査型電子顕微鏡(SEM)写真を図2に示す。 Comparative Example 6
The adhesion of Escherichia coli was evaluated in the same manner as in Example 6 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 4. A scanning electron microscope (SEM) photograph at a magnification of 2500 times on the surface of the PET film in the evaluation of the adhesion of Escherichia coli is shown in FIG.
コーティング膜の代わりに市販のPETフィルムをそのまま使用したこと以外は実施例6と同様にして、大腸菌の接着性を評価した。結果を表4に示す。大腸菌の接着性の評価におけるPETフィルム表面の倍率2500倍の走査型電子顕微鏡(SEM)写真を図2に示す。 Comparative Example 6
The adhesion of Escherichia coli was evaluated in the same manner as in Example 6 except that a commercially available PET film was used as it was instead of the coating film. The results are shown in Table 4. A scanning electron microscope (SEM) photograph at a magnification of 2500 times on the surface of the PET film in the evaluation of the adhesion of Escherichia coli is shown in FIG.
Claims (15)
- 含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、前記含フッ素共重合体における含フッ素オレフィン単位の含有率が30~60モル%であることを特徴とする抗血栓性材料。 An antithrombotic material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, wherein the fluorine-containing olefin unit content in the fluorine-containing copolymer is 30 to 60 mol%.
- 前記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%である請求項1記載の抗血栓性材料。 The antithrombogenic material according to claim 1, wherein the alternating rate of the fluorine-containing olefin unit and the vinyl alcohol unit in the fluorine-containing copolymer is 10 to 100%.
- 前記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種である請求項1又は2記載の抗血栓性材料。 The antithrombogenic material according to claim 1 or 2, wherein the fluorine-containing olefin is at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
- 前記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する請求項1、2又は3記載の抗血栓性材料。 The antithrombogenic material according to claim 1, 2 or 3, wherein the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
- 前記含フッ素共重合体は、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体である請求項1、2、3又は4記載の抗血栓性材料。 5. The antithrombogenic material according to claim 1, wherein the fluorine-containing copolymer is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- コーティング膜である請求項1、2、3、4又は5記載の抗血栓性材料。 6. The antithrombotic material according to claim 1, which is a coating film.
- 請求項1、2、3、4、5又は6記載の抗血栓性材料からなり、
バイアル瓶、人工血管、ステント、カテーテル、人工心臓、人工肺、人工心弁、又は、血液保存バッグである
ことを特徴とする抗血栓性物品。 The antithrombotic material according to claim 1, 2, 3, 4, 5 or 6,
An antithrombotic article, which is a vial, an artificial blood vessel, a stent, a catheter, an artificial heart, an artificial lung, an artificial heart valve, or a blood storage bag. - 含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体からなり、前記含フッ素共重合体における含フッ素オレフィン単位の含有率が10~60モル%であることを特徴とする抗菌性材料。 An antibacterial material comprising a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit, wherein the fluorine-containing olefin unit content in the fluorine-containing copolymer is 10 to 60 mol%.
- 前記含フッ素共重合体における含フッ素オレフィン単位とビニルアルコール単位との交互率が10~100%である請求項8記載の抗菌性材料。 The antibacterial material according to claim 8, wherein the alternating ratio of the fluorine-containing olefin unit and the vinyl alcohol unit in the fluorine-containing copolymer is 10 to 100%.
- 前記含フッ素オレフィンは、テトラフルオロエチレン、クロロトリフルオロエチレン及びヘキサフルオロプロピレンからなる群より選択される少なくとも1種である請求項8又は9記載の抗菌性材料。 The antibacterial material according to claim 8 or 9, wherein the fluorine-containing olefin is at least one selected from the group consisting of tetrafluoroethylene, chlorotrifluoroethylene, and hexafluoropropylene.
- 前記含フッ素共重合体は、含フッ素オレフィン単位、ビニルアルコール単位及びビニルエステルモノマー単位を有する請求項8、9又は10記載の抗菌性材料。 The antibacterial material according to claim 8, 9 or 10, wherein the fluorine-containing copolymer has a fluorine-containing olefin unit, a vinyl alcohol unit and a vinyl ester monomer unit.
- 前記含フッ素共重合体は、含フッ素オレフィン単位及びビニルエステルモノマー単位を有する共重合体をケン化して得られた共重合体である請求項8、9、10又は11記載の抗菌性材料。 The antibacterial material according to claim 8, 9, 10, or 11, wherein the fluorine-containing copolymer is a copolymer obtained by saponifying a copolymer having a fluorine-containing olefin unit and a vinyl ester monomer unit.
- コーティング膜である請求項8、9、10、11又は12記載の抗菌性材料。 The antibacterial material according to claim 8, 9, 10, 11, or 12, which is a coating film.
- 請求項8、9、10、11、12又は13記載の抗菌性材料からなり、
コンタクトレンズ、トイレタリー用品、キッチン水回り器具、エアコン、食品工場設備、下水処理場設備、又は、排水管である
ことを特徴とする抗菌性物品。 The antibacterial material according to claim 8, 9, 10, 11, 12, or 13.
Antibacterial articles characterized by being contact lenses, toiletries, kitchen watering equipment, air conditioners, food factory equipment, sewage treatment plant equipment, or drain pipes. - 物品表面の大腸菌の増殖を阻害する方法であって、物品の表面に含フッ素オレフィン単位及びビニルアルコール単位を有する含フッ素共重合体を適用することを特徴とする方法。 A method for inhibiting the growth of Escherichia coli on the surface of an article, wherein a fluorine-containing copolymer having a fluorine-containing olefin unit and a vinyl alcohol unit is applied to the surface of the article.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015552507A JP6810376B2 (en) | 2013-12-12 | 2014-12-11 | Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article, and method of inhibiting the growth of Escherichia coli on the surface of the article. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013257258 | 2013-12-12 | ||
JP2013-257258 | 2013-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087966A1 true WO2015087966A1 (en) | 2015-06-18 |
Family
ID=53371265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082820 WO2015087966A1 (en) | 2013-12-12 | 2014-12-11 | Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6810376B2 (en) |
WO (1) | WO2015087966A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104596A1 (en) * | 2014-12-26 | 2016-06-30 | 国立大学法人 奈良先端科学技術大学院大学 | Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51125978A (en) * | 1975-03-18 | 1976-11-02 | Rikagaku Kenkyusho | Material for antiithrombus artificial human organ |
JPH04325160A (en) * | 1991-04-24 | 1992-11-13 | Japan Gore Tex Inc | Composite material for medical use |
JPH04336072A (en) * | 1991-05-10 | 1992-11-24 | Japan Gore Tex Inc | Living body affinity base material |
JPH05261256A (en) * | 1992-03-19 | 1993-10-12 | Japan Gore Tex Inc | Fluorine-containing copolymer film and separating membrane |
JPH06261641A (en) * | 1993-03-10 | 1994-09-20 | Japan Gore Tex Inc | Hollow structure for irrigation, its production and method for irrigation |
JP2008511733A (en) * | 2004-08-31 | 2008-04-17 | アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド | Polymers of fluorinated monomers and hydrophilic monomers |
-
2014
- 2014-12-11 JP JP2015552507A patent/JP6810376B2/en active Active
- 2014-12-11 WO PCT/JP2014/082820 patent/WO2015087966A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51125978A (en) * | 1975-03-18 | 1976-11-02 | Rikagaku Kenkyusho | Material for antiithrombus artificial human organ |
JPH04325160A (en) * | 1991-04-24 | 1992-11-13 | Japan Gore Tex Inc | Composite material for medical use |
JPH04336072A (en) * | 1991-05-10 | 1992-11-24 | Japan Gore Tex Inc | Living body affinity base material |
JPH05261256A (en) * | 1992-03-19 | 1993-10-12 | Japan Gore Tex Inc | Fluorine-containing copolymer film and separating membrane |
JPH06261641A (en) * | 1993-03-10 | 1994-09-20 | Japan Gore Tex Inc | Hollow structure for irrigation, its production and method for irrigation |
JP2008511733A (en) * | 2004-08-31 | 2008-04-17 | アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド | Polymers of fluorinated monomers and hydrophilic monomers |
Non-Patent Citations (1)
Title |
---|
TOSHIAKI TAKAMATSU ET AL.: "Hoshasen ni yoru Takoshitsu Polytetrafluoroethylene Graft Kyojugotai no Kyusuisei to Ko-Kessensei", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 37, no. 12, 1980, pages 781 - 787 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104596A1 (en) * | 2014-12-26 | 2016-06-30 | 国立大学法人 奈良先端科学技術大学院大学 | Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015087966A1 (en) | 2017-03-16 |
JP6810376B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2892225C (en) | Synthesis and use of trans-1,3,3,3-tetrafluoropropene/vinylidene fluoride copolymers | |
WO2019168183A1 (en) | Method for manufacturing fluoropolymer | |
JP6075452B2 (en) | Composition, polymeric porous membrane and hydrophilizing agent | |
JP5093418B1 (en) | Fluoropolymer, method for producing fluoropolymer, and polymer porous membrane | |
JP6810386B2 (en) | Low protein adsorptive material, low protein adsorptive article, low cell adhesion material and low cell adhesion article | |
JP5292367B2 (en) | Low reflection fluoropolymer layer for plastic lenses and devices | |
JP2011527373A (en) | Novel vinylidene fluoride copolymer | |
JP7408528B2 (en) | Membrane and substrate whose surface is coated with it | |
WO2020226178A1 (en) | Fluoropolymer production method and fluoropolymer | |
JP2016050266A (en) | Biocompatible copolymer, and antithrombotic coating agent and medical supply prepared using the same | |
TW201706405A (en) | Container for cell administration, storage or culturing | |
JP2016026520A (en) | Compound for prevention of protein deposition, coating liquid and medical device | |
WO2015087966A1 (en) | Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface | |
JP6889824B2 (en) | Biocompatible materials, coating compositions, coating films and articles | |
JP2005320500A (en) | Manufacturing method of fluorine-containing elastomer polymer | |
EP3794046A1 (en) | Flexible vdf polymers | |
TW201326322A (en) | Antifogging plastic lens | |
JP2007314723A (en) | Additive for use in surface segregation plastic, and use thereof | |
TWI840294B (en) | Zwitterionic polymer, method of making the same and antibacterial coating composition including the same | |
JP2015167537A (en) | Agricultural film and agricultural covering material | |
JP2010150478A (en) | Method of manufacturing fluorine-containing copolymer | |
JP6354449B2 (en) | Fluorine-containing copolymer, powder comprising fluorine-containing copolymer, fluorine-containing copolymer composition containing powder, and coated article | |
JP6492410B2 (en) | Organic device | |
WO2023074837A1 (en) | Resin composition, water-swellable film, article covered with water-swellable film, and method for producing water-swellable film | |
JP2022069292A (en) | Biological substance adhesion prevention base material and instrument comprising the base material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870120 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015552507 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14870120 Country of ref document: EP Kind code of ref document: A1 |