JPH04325160A - Composite material for medical use - Google Patents

Composite material for medical use

Info

Publication number
JPH04325160A
JPH04325160A JP3119044A JP11904491A JPH04325160A JP H04325160 A JPH04325160 A JP H04325160A JP 3119044 A JP3119044 A JP 3119044A JP 11904491 A JP11904491 A JP 11904491A JP H04325160 A JPH04325160 A JP H04325160A
Authority
JP
Japan
Prior art keywords
copolymer
tfe
blood
antithrombotic
voh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119044A
Other languages
Japanese (ja)
Other versions
JP2880319B2 (en
Inventor
Takahiro Oga
隆裕 大賀
Mari Sakai
酒井 マリ
Hiroyoshi Fujimoto
浩良 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP3119044A priority Critical patent/JP2880319B2/en
Publication of JPH04325160A publication Critical patent/JPH04325160A/en
Application granted granted Critical
Publication of JP2880319B2 publication Critical patent/JP2880319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the material for medical use which is extremely excellent in an antithrombotic property. CONSTITUTION:This composite material for medical use is a material which comes into direct contact with blood or is detained for a specified period of time within a living body and is constituted of a TFE/VOH copolymer or is constituted of this polymer in a part thereof or the entire surface or a part of its surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は医療分野において有用な
複合材料に関し、更に詳しくは、例えば、a)プラズマ
フェレーシス等、血漿分離を必要とする分野や、人工透
析或は人工肺に適用される血液用分離膜、b)輸血・体
外循環時の血液回路或は血液保存容器、c)人工血管、
人工弁、人工心臓又は人工関節等、生体機能を代行する
人工臓器、 d)カテーテルやドレーンの様に一時的に体内に留置さ
れる材料、 e)生体内に留置されることを目的とした各種センサ、
f)薬物のコントロールドリリースシステム及びg)バ
イオセパレータ、培養装置等 の医療材料の本体或はその表面に、血液適合性に優れた
特性を有する医療用材料の提供を目的とする。
[Industrial Application Field] The present invention relates to a composite material useful in the medical field, and more specifically, it can be applied to fields that require plasma separation such as a) plasmapheresis, artificial dialysis, and artificial lungs. blood separation membrane, b) blood circuit or blood storage container during blood transfusion/extracorporeal circulation, c) artificial blood vessel,
Artificial organs that perform biological functions, such as artificial valves, artificial hearts, or artificial joints; d) Materials that are temporarily placed in the body, such as catheters and drains; e) Various types of devices that are intended to be placed in the body. sensor,
The purpose of the present invention is to provide f) a drug controlled release system and g) a medical material having excellent blood compatibility on the body or surface of the medical material such as a bioseparator or culture device.

【0002】0002

【従来の技術】生体と接触する医療材料の生体適合性に
ついては、材料が生体のどの組織、どの構成要素に接触
するかによって互いに意味合いは異なっている。しかし
ながら、生体の反応の中でも血液の反応が非常にドラス
ティックである点や、治療及び診断用の人工デバイスの
多くが血液と接触する可能性が高い点等から、材料の血
液適合性或は抗血栓性が論じられる場合が多い。抗血栓
性材料はその作用メカニズムから偽内膜形成表面、血栓
形成抑制性表面、血栓溶解型表面の3種類に分類される
が、生体・血液と接触する人工デバイスの抗血栓性を高
める為に、夫々の分類において様々な試みがなされてき
た。
BACKGROUND OF THE INVENTION The biocompatibility of medical materials that come into contact with a living body has different meanings depending on which tissue or component of the living body the material comes into contact with. However, blood compatibility and anti-resistance of materials are important because blood reactions are extremely drastic among biological reactions, and many artificial devices for treatment and diagnosis are likely to come into contact with blood. Thrombotic potential is often discussed. Antithrombotic materials are classified into three types based on their mechanism of action: pseudointima-forming surfaces, antithrombotic surfaces, and thrombolytic surfaces. , various attempts have been made in each classification.

【0003】0003

【発明が解決しようとしている問題点】偽内膜形成表面
を持つ医療材料には、延伸PTFE(Gore−Tex
)やダクロン性の人工血管が含まれる。これらは材料表
面に宿主の内皮細胞を生着・増生させるもので、言わば
生体の助けをかりて抗血栓性を獲得するものであり、む
しろ材料表面そのものは適度に血栓形成性であることが
望まれる。又、当然内皮細胞の生着にはある程度の時間
が必要である為に、カテーテルの様な一時的に体内に留
置したり、人工透析器・血液処理器等、体外循環回路、
又、センサ表面や人工肺等の物質透過が重要な機能であ
る様なデバイスの材料としては採用出来ないという問題
がある。血栓溶解型表面は材料表面に血栓を溶解する機
能を持つものを指すが、代表的なものとして、線溶系賦
活化酵素であるウロキナーゼやストレプトキナーゼを固
定化した材料が知られている。この型の表面においては
表面でのフィプリン形成速度を血栓溶解速度が上回って
いることが必要であるが、その為には使用する酵素の固
定化方法を十分に吟味して高い活性を維持させることが
必要である。しかし、従来の固定化方法では酵素活性が
十分に維持されるとは言いがたく、そのうえ医療用材料
として不可欠な滅菌過程において酵素活性が失活する場
合もある。
[Problems to be Solved by the Invention] Medical materials with a pseudointima-forming surface include expanded PTFE (Gore-Tex).
) and Dacron-based artificial blood vessels. These materials allow host endothelial cells to engraft and grow on the surface of the material, so to speak, they acquire antithrombotic properties with the help of the living body; rather, it is desirable that the material surface itself has moderate thrombogenicity. It will be done. Also, since endothelial cell engraftment naturally requires a certain amount of time, it may be necessary to temporarily indwell the body with a catheter, or use an extracorporeal circulation circuit such as an artificial dialysis machine or blood processing device.
Another problem is that it cannot be used as a material for devices such as sensor surfaces or artificial lungs where material permeation is an important function. A thrombolytic surface refers to a material that has the function of dissolving blood clots on its surface, and typical examples include materials on which fibrinolytic system activating enzymes such as urokinase and streptokinase are immobilized. For this type of surface, it is necessary that the rate of thrombolytic dissolution exceeds the rate of fibrin formation on the surface, but in order to do so, the method of immobilizing the enzyme used must be carefully examined to maintain high activity. is necessary. However, it is difficult to say that the enzyme activity is sufficiently maintained by conventional immobilization methods, and furthermore, the enzyme activity may be deactivated during the sterilization process, which is essential for medical materials.

【0004】又、血栓形成抑制性表面を得る為の試みに
は、材料表面に血栓形成を抑制する生理活性物質を徐放
させる構造としたり或は生理活性物質を固定化したりす
る生化学的なアプローチと、材料表面の構造制御によっ
て血栓形成を抑制しようとする材料科学的アプローチが
ある。このうち生理活性物質を用いる方法では、ヘパリ
ンの徐放・固定化の研究が数多く、一部実用化されたも
のである。しかし、それらのデバイスは抗血栓性が長期
にわたって保持されにくく、比較的短期間の体内留置目
的に使用されるに留まっている。これに対し、材料表面
の構造制御で抗血栓性を獲得するデバイスは、体内に留
置される期間の長期・短期を問わず安定した性能を得ら
れると期待され、古くから積極的な研究がなされている
。抗血栓性と材料表面の構造との関係において最初に注
目されたのは荷電性であった。いわゆる静電反発理論と
最適荷電密度の概念である。しかしながら実際はそれほ
ど単純でなく、少なくとも現在材料表面の静電相互作用
のみを追及した人工デバイスは存在しない。
[0004] In addition, attempts to obtain a surface that inhibits thrombus formation include creating a structure that allows sustained release of a physiologically active substance that inhibits thrombus formation on the surface of the material, or biochemical techniques such as immobilizing a physiologically active substance. There is a materials science approach that attempts to suppress thrombus formation by controlling the structure of the material surface. Among these methods, many studies have been conducted on sustained release and immobilization of heparin using physiologically active substances, and some of them have been put into practical use. However, these devices have difficulty retaining their antithrombotic properties over a long period of time, and are only used for relatively short-term indwelling purposes. In contrast, devices that acquire antithrombotic properties by controlling the structure of the material surface are expected to have stable performance regardless of whether they are left in the body for long or short periods of time, and have been actively researched for a long time. ing. The first thing that attracted attention in the relationship between antithrombotic properties and material surface structure was chargeability. These are the so-called electrostatic repulsion theory and the concept of optimal charge density. However, in reality, it is not that simple, and at least currently there are no artificial devices that pursue only electrostatic interactions on material surfaces.

【0005】続いて注目されたのは材料表面の疎水性で
あり、低エネルギー表面であるほど抗血栓性であるとさ
れた。しかしながら、必ずしも表面エネルギーだけから
では抗血栓性が決定されないことが徐々に明らとなった
。次いで材料表面の親水性と抗血栓性との関係が研究さ
れたが、材料表面がタンパク質を吸着し間接的に生体と
接触している可能性が指摘されたり、又、親水性表面上
の微小血栓が剥離する事例の報告、更にカルシウムの沈
着が起こりやすい等の欠点も明らかとなった。いずれに
せよ、材料表面の抗血栓性を一義的に論ずるのは無理が
あり、現在では、最適荷電密度や親水性・疎水性のバラ
ンスに優れた材料表面を得ることが重要とされている。 ミクロドメイン構造の概念がこれに当たり、その様な構
造を有する材料として最近注目されているのが種々のセ
グメント化ポリウレタン(SPU)である。SPUは柔
軟性に富んだポリエーテルから成るソフトセグメントと
ウレタン及びウレア結合から成るハードセグメントとの
マルチブロック共重合体である。更にSPUとポリジメ
チルシロキサンとのブレンドマーを構成させたり、或は
ハードセグメント中に疎水性の弗素を導入したりして、
優れた抗血栓性と力学的特性を与えるべく努力が続けら
れているが、製造過程で混入する低分子物質の抽出や加
熱方法・乾燥条件等の製造条件の違いで抗血栓性が異な
ると言った欠点があり、優れた性能を安定的に供給する
のが難しいという問題がある。従って本発明の目的は、
上記従来技術の問題点を解決し、抗血栓性に極めて優れ
た医療用材料を提供することである。
[0005] Next, attention was focused on the hydrophobicity of the material's surface, and it was believed that the lower the energy of the surface, the more antithrombotic it was. However, it has gradually become clear that antithrombotic properties are not necessarily determined by surface energy alone. Next, the relationship between the hydrophilicity and antithrombotic property of the material surface was studied, and it was pointed out that the material surface may adsorb proteins and come into indirect contact with living organisms. There have been reports of cases of blood clots dislodging, and drawbacks such as easy calcium deposition have also been revealed. In any case, it is impossible to discuss the antithrombotic properties of a material surface unequivocally, and it is currently important to obtain a material surface with an optimal charge density and an excellent balance between hydrophilicity and hydrophobicity. The concept of a microdomain structure corresponds to this, and various segmented polyurethanes (SPUs) have recently attracted attention as materials having such a structure. SPU is a multi-block copolymer of a soft segment made of highly flexible polyether and a hard segment made of urethane and urea bonds. Furthermore, by constructing a blender of SPU and polydimethylsiloxane, or by introducing hydrophobic fluorine into the hard segment,
Efforts continue to be made to provide excellent antithrombotic properties and mechanical properties, but it is said that antithrombotic properties vary due to differences in manufacturing conditions such as extraction of low-molecular substances mixed in during the manufacturing process, heating method, and drying conditions. However, there are some drawbacks, and it is difficult to stably supply excellent performance. Therefore, the purpose of the present invention is to
The object of the present invention is to solve the problems of the prior art described above and provide a medical material with extremely excellent antithrombotic properties.

【0006】[0006]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、血液に直接接触
し或は生体内に一定の期間留置される材料であって、T
FE/VOHコポリマーで構成されるか又はその一部又
はそれらの表面の全面又は少なくとも一部が当該ポリマ
ーで構成されていることを特徴とする医療用複合化材料
である。
[Means for Solving the Problems] The above object is achieved by the following present invention. That is, the present invention is a material that comes into direct contact with blood or remains in a living body for a certain period of time, and which
A medical composite material characterized in that it is composed of an FE/VOH copolymer, or a part thereof, or the entire surface or at least a part of the surface thereof is composed of the polymer.

【0007】[0007]

【作用】TFE/VOHコポリマーで構成するか又は他
の材料の表面の全面又は少なくとも一部を上記コポリマ
ーで構成することによって、血液に直接接触し或は生体
内に一定の期間留置される医療用材料として使用した場
合、優れた抗血栓性を発揮する。従って、本発明の材料
は前記産業上の利用分野で挙げた各種医療用器具の構成
に極めて有用である。
[Operation] Medical use that comes into direct contact with blood or remains in the living body for a certain period of time by being made of TFE/VOH copolymer or by making the entire surface or at least a part of the surface of other material be made of the above copolymer. When used as a material, it exhibits excellent antithrombotic properties. Therefore, the material of the present invention is extremely useful in the construction of various medical instruments mentioned in the above-mentioned industrial fields of application.

【0008】[0008]

【好ましい実施態様】本発明において使用し、本発明を
主として特徴づけるコポリマーは、TFE(テトラフル
オロエチレン)とビニルアルコール(VOH)との共重
合体であり、かかるコポリマーはTFEと酢酸ビニルを
適当な共重合比は、本発明においては好ましくはTFE
と酢酸ビニルとの総モル数のうちTFEは20.3モル
%以下で、酢酸ビニルが79.7モル%以上の比率が好
適であるが、この範囲に特に限定される訳ではない。 又、これらの比率の範囲において、例えば、第三及び第
四のモノマーとして、例えば、弗素含有モノマーとして
は、フッ化ビニル等のモノフルオロエチレン、フッ化ビ
ニリデン等のジフルオロエチレンの他、トリフルオロエ
チレン等も使用可能である。又、親水基含有モノマーと
しては、水酸基、カルボキシル基、スルホン基等の親水
基を有するビニルモノマー、例えば、アクリル酸、メタ
クリル酸、スルホン化スチレン等も使用可能である。但
し、これらの他のモノマーは前記必須モノマーを越えた
量で使用することは好ましくはない。TFEとビニルア
ルコールとの共重合体は、以上の如くして得られたTF
Eと酢酸ビニルとの共重合体を鹸化処理し、共重合体中
に含まれるアセテート基を水酸基に変換させることによ
って得ることも出来る。この場合、共重合体中に含まれ
るアセテート基は必ずしもその全部を水酸基に変える必
要はなく、共重合体が親水性を有する程度に水酸基に変
換されていればよい。本発明で用いるTFE/VOHコ
ポリマーにおいて、その弗素含有率は、重量基準で、2
〜60%、好ましくは10〜60%である。弗素含有率
が高くなりすぎるとポリマーの親水性が悪化し、一方、
低すぎる場合には抗血栓性が低下すると共に、他の材料
と併用する場合、他の材料に対する付着性が低下するの
で好ましくない。又、上記TFE/VOHコポリマーの
親水基当量は45〜500、好ましくは60〜500の
範囲にビニルアルコール分を調整するのが望ましい。
[Preferred Embodiment] The copolymer used in the present invention and which mainly characterizes the present invention is a copolymer of TFE (tetrafluoroethylene) and vinyl alcohol (VOH). In the present invention, the copolymerization ratio is preferably TFE
It is preferable that TFE be 20.3 mol% or less and vinyl acetate be 79.7 mol% or more of the total number of moles of TFE and vinyl acetate, but the ratio is not particularly limited to this range. In addition, within these ratio ranges, for example, as the third and fourth monomers, for example, as the fluorine-containing monomer, in addition to monofluoroethylene such as vinyl fluoride, difluoroethylene such as vinylidene fluoride, trifluoroethylene, etc. etc. can also be used. Furthermore, as the hydrophilic group-containing monomer, vinyl monomers having hydrophilic groups such as hydroxyl group, carboxyl group, and sulfone group, such as acrylic acid, methacrylic acid, and sulfonated styrene, can also be used. However, it is not preferable to use these other monomers in an amount exceeding the above-mentioned essential monomers. The copolymer of TFE and vinyl alcohol is the TF obtained as described above.
It can also be obtained by saponifying a copolymer of E and vinyl acetate to convert acetate groups contained in the copolymer into hydroxyl groups. In this case, all of the acetate groups contained in the copolymer do not necessarily need to be converted into hydroxyl groups, as long as they are converted to hydroxyl groups to the extent that the copolymer has hydrophilicity. In the TFE/VOH copolymer used in the present invention, the fluorine content is 2
-60%, preferably 10-60%. If the fluorine content becomes too high, the hydrophilicity of the polymer will deteriorate;
If it is too low, the antithrombotic properties will decrease, and when used in combination with other materials, the adhesion to other materials will decrease, which is not preferable. Further, it is desirable that the vinyl alcohol content of the TFE/VOH copolymer is adjusted to have a hydrophilic group equivalent in the range of 45 to 500, preferably 60 to 500.

【0009】本発明の親水性を有する樹脂材料を単独で
目的に合わせた適当な形状に製造するには、例えば、窒
素雰囲気下にTFE/VOHコポリマーを溶融させた後
に、押出成形や射出成形等、従来の熱可塑性樹脂の成形
方法がそのまま応用出来る他、当該コポリマーを適当な
溶剤、例えば、DMFやDMAに溶解し、金属棒をこの
溶液に浸して引上げては乾燥させるという操作を繰り返
してチューブ状に成形したり、又、円筒容器中にこの溶
液を入れて遠心分離し、加熱乾燥させてチューブやボト
ル、その他バッグ状に成形することも出来る。
[0009] In order to manufacture the hydrophilic resin material of the present invention alone into an appropriate shape according to the purpose, for example, after melting the TFE/VOH copolymer in a nitrogen atmosphere, extrusion molding, injection molding, etc. In addition to being able to apply conventional thermoplastic resin molding methods as is, tubes can be made by dissolving the copolymer in a suitable solvent, such as DMF or DMA, and repeating the process of dipping a metal rod into the solution, pulling it up, and drying it. Alternatively, the solution can be placed in a cylindrical container, centrifuged, heated and dried to form tubes, bottles, and other bag shapes.

【0010】本発明で使用するTFE/VOHコポリマ
ーは上記の如く単独でも使用され、又、他の医療用高分
子材料或は医療補助目的の高分子材料と組み合わせて複
合材料として使用することが好ましい場合も多い。これ
らの他の材料としては次の様なものが挙げられる。 (1)軟質或は硬質のポリ塩化ビニル (2)ポリスチレン (3)ポリプロピレン (4)ポリエチレン (5)ポリオレフィン系 (6)汎用或は難燃性ABS (7)ポリメチルペンテン (8)スチレン−エチレン−スチレン共重合体(9)ス
チレン−ブタジェンブロック共重合体(10)ポリグリ
コール酸 (11)ポリメタクリル酸メチル (12)ポリジメチルシロキサン (13)ポリテトラフルオロエチレン (14)ポリエチレンテレフタレート (15)ポリアリルスルホン (16)ポリスルホン (17)ポリエーテルイミド (18)ポリカーボネイト (19)ポリブチレンテレフタレート (20)ポリアセタール (21)ナイロン又はセグメント化ナイロン(22)ナ
イロン/ABSアロイ (23)ポリスルホン/熱可塑性ポリエステルアロイ(
24)ナイロンブロック共重合体 (25)改質PPE (26) スチレン水素化ブタジェンブロック共重合体
(27)セルロース系 (28)ポリアクリロニトリル系 (29)ポリビニルアルコール系 (30)エチレン−ビニルアルコール共重合体(31)
ポリウレタン、セグメント化ポリウレタン、セグメント
化ポリウレタンウレア (32)天然ゴム (33)その他のブロック・グラフトコポリマー
[0010] The TFE/VOH copolymer used in the present invention can be used alone as described above, or preferably used in combination with other medical polymer materials or polymer materials for medical support purposes as a composite material. There are many cases. Examples of these other materials include the following. (1) Soft or hard polyvinyl chloride (2) Polystyrene (3) Polypropylene (4) Polyethylene (5) Polyolefin (6) General-purpose or flame-retardant ABS (7) Polymethylpentene (8) Styrene-ethylene -Styrene copolymer (9) Styrene-butadiene block copolymer (10) Polyglycolic acid (11) Polymethyl methacrylate (12) Polydimethylsiloxane (13) Polytetrafluoroethylene (14) Polyethylene terephthalate (15) Polyaryl sulfone (16) Polysulfone (17) Polyetherimide (18) Polycarbonate (19) Polybutylene terephthalate (20) Polyacetal (21) Nylon or segmented nylon (22) Nylon/ABS alloy (23) Polysulfone/thermoplastic polyester Alloy (
24) Nylon block copolymer (25) Modified PPE (26) Styrene hydrogenated butadiene block copolymer (27) Cellulose type (28) Polyacrylonitrile type (29) Polyvinyl alcohol type (30) Ethylene-vinyl alcohol copolymer Polymer (31)
Polyurethane, segmented polyurethane, segmented polyurethane urea (32) Natural rubber (33) Other block/graft copolymers

【00
11】以上の様な既知の医療用高分子材料とTFE/V
OHコポリマーを複合化する方法には従来既知の手段が
利用出来るが、例えば、当該ポリマーを有機溶剤に溶解
させた後に対象となる高分子成形体の表面にコーティン
グしたり、又、対象が多孔質構造を持つ場合は同様の溶
液中に含浸させたりすることが出来る。そのほか化学蒸
着、グラフト等も好適であり、特殊な方法として予め薄
膜状に成形した当該ポリマーを表面に接着したり、ラミ
ネート化することも可能である。尚、本発明の複合材料
は、TFEと他の疎水性のモノマー(例えば酢酸ビニル
)の共重合体を例えば有機溶剤に溶解し、上記の如く適
当な成形体に適用後に乾燥させた後、その疎水基の少な
くとも一部を親水基に変換させることによっても製造す
ることが出来る。
00
11] Known medical polymer materials such as those mentioned above and TFE/V
Conventionally known means can be used to composite the OH copolymer; for example, the polymer may be dissolved in an organic solvent and then coated on the surface of the target polymer molded body, or if the target is porous. If it has a structure, it can be impregnated in a similar solution. In addition, chemical vapor deposition, grafting, etc. are also suitable, and as a special method, it is also possible to adhere or laminate the polymer previously formed into a thin film onto the surface. The composite material of the present invention can be prepared by dissolving a copolymer of TFE and another hydrophobic monomer (for example, vinyl acetate) in, for example, an organic solvent, applying it to a suitable molded body as described above, drying it, It can also be produced by converting at least a portion of a hydrophobic group into a hydrophilic group.

【0012】続いて当該樹脂(本発明のコポリマー)の
用途について以下に使用目的別に好ましい実施態様を説
明する。 1)血液用分離膜 抗血栓性に優れる当該樹脂を多孔質膜としたり、或は既
にある多孔質表面を当該樹脂で覆うことで抗血栓性に優
れた血液用分離膜が得られる。この場合の多孔質膜とし
ては既に血液分離膜として用いられるセルロース系膜や
エチレンビニルアルコール等の親水性膜が利用出来る他
、疎水性であって従来はこの目的に利用されがたかった
延伸PTFE膜も利用出来、耐薬品性等むしろ好適であ
る。多孔性延伸PTFE膜表面を当該樹脂で覆う方法は
蒸着等があるが、溶剤に溶解させた当該樹脂中に延伸P
TFEを含浸させる方法が適している。この際延伸PT
FE膜の厚さ、孔径、空孔比は分離目的となる対象に応
じて自由に選択される。 2)血液回路、血液保存容器或はカテーテル・ドレン等
当該樹脂を従来既知の方法、例えば、押し出し成形法や
射出成形法等で必要なチューブ、バック形状に成形する
ほか、軟質塩化ビニル樹脂製の従来品の血液接触面に当
該樹脂を被覆することで、抗血栓性の血液回路や血液保
存容器が得られる。
Next, preferred embodiments of the uses of the resin (copolymer of the present invention) will be explained for each purpose. 1) Separation membrane for blood A separation membrane for blood with excellent antithrombotic properties can be obtained by forming a porous membrane using the resin having excellent antithrombotic properties, or by covering an existing porous surface with the resin. As porous membranes in this case, cellulose membranes that are already used as blood separation membranes and hydrophilic membranes such as ethylene vinyl alcohol can be used, as well as expanded PTFE membranes that are hydrophobic and have traditionally been difficult to use for this purpose. It can also be used, and is rather preferable due to its chemical resistance. Vapor deposition is a method for covering the surface of a porous expanded PTFE membrane with the resin.
A method of impregnating with TFE is suitable. At this time, stretched PT
The thickness, pore diameter, and pore ratio of the FE membrane are freely selected depending on the object to be separated. 2) Blood circuits, blood storage containers, catheters, drains, etc.In addition to molding the resin into the necessary tube or bag shape by conventionally known methods such as extrusion molding or injection molding, it is also possible to mold By coating the blood contact surface of a conventional product with the resin, an antithrombotic blood circuit or blood storage container can be obtained.

【0013】3)生体機能を代行する人工器官従来品の
生体接触表面に当該樹脂を被覆することで抗血栓性の人
工器官が得られる。この際体外循環の様な場合は上記2
)で得られる抗血栓性の血液回路を使用し、体外循環の
全経路が抗血栓性である様な適用法が望ましい。 4)センサ 従来技術で得られたセンサ表面を当該樹脂で被覆し、又
は上記1)で得られる分離膜でセンサ面を覆うことで抗
血栓性のセンサが得られる。この場合センサで測定する
対象によってはプレ分離を行う為に積極的に分離膜を利
用するのが望ましい。 5)薬物のコントロールドリリースシステムやバイオセ
パレータ等 生体接触表面を当該樹脂で被覆する他、従来既知技術で
必要な形状に成形する。
3) Prosthesis that performs biological functions An antithrombotic prosthesis can be obtained by coating the resin on the surface of a conventional product that comes into contact with the living body. At this time, if extracorporeal circulation is required, please refer to the above 2.
It is desirable to use the antithrombotic blood circuit obtained in ), and to use an application method in which the entire extracorporeal circulation route is antithrombotic. 4) Sensor An antithrombotic sensor can be obtained by coating the sensor surface obtained by the conventional technique with the resin or by covering the sensor surface with the separation membrane obtained in 1) above. In this case, depending on the object to be measured with the sensor, it is desirable to actively use a separation membrane for pre-separation. 5) In addition to coating the biocontact surfaces of drug controlled release systems, bioseparators, etc. with the resin, it is also molded into the required shape using conventionally known techniques.

【0014】[0014]

【実施例】次に本発明を実施例により更に詳細に説明す
る。 実施例1 孔径0.2μm、膜厚40μm、空孔率80%の多孔質
延伸PTFE膜を、TFE/VOHコポリマーの2%溶
液(メタノール)に含浸し、室温で予備乾燥した後、8
0℃で15分間乾燥させた。これによって得られた膜を
血漿分離膜として使用したところ血栓形成が非常に少な
く良好な結果が得られた。 実施例2 市販のセルロースジアセテート中空系血漿分離器の血液
接触側回路中にTFE/VOHコポリマーの0.5%溶
液(メタノール)を15分間充填した後、室温にてガス
クロ用乾燥窒素を500ミリリットル/hの速度で12
時間流し乾燥させた。これによって得られた血漿分離器
を市販のままの血漿分離器と同時に抗血液凝固処理しな
い牛血を循環させたところ閉塞までの時間は著明に増加
した。 実施例3 市販の静脈留置用カテーテルをTFE/VOHコポリマ
ーの5%メタノール溶液に浸漬し、引上げた後60℃空
気中にて乾燥し、これを4回繰り返した。これによって
得られた抗血栓性のカテーテルと市販のままのカテーテ
ルを抗血液凝固処理しないイヌの静脈中に留置した。そ
の結果、市販カテーテルでは10分で血栓形成が認めら
れたのに対し、本発明による抗血栓性カテーテル表面に
は全く血栓を認めなかった。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. Example 1 A porous expanded PTFE membrane with a pore size of 0.2 μm, a film thickness of 40 μm, and a porosity of 80% was impregnated with a 2% solution (methanol) of TFE/VOH copolymer, and pre-dried at room temperature.
It was dried for 15 minutes at 0°C. When the membrane thus obtained was used as a plasma separation membrane, good results were obtained with very little thrombus formation. Example 2 A 0.5% solution of TFE/VOH copolymer (methanol) was filled into the blood contact side circuit of a commercially available cellulose diacetate hollow plasma separator for 15 minutes, and then 500 ml of dry nitrogen for gas chromatography was filled at room temperature. 12 at a speed of /h
Allowed to dry for a while. When the plasma separator thus obtained was circulated with bovine blood without anticoagulation treatment at the same time as a commercially available plasma separator, the time until occlusion was significantly increased. Example 3 A commercially available intravenous indwelling catheter was immersed in a 5% methanol solution of TFE/VOH copolymer, pulled up and dried in air at 60°C, and this process was repeated four times. The antithrombotic catheter thus obtained and the commercially available catheter were placed in the vein of a dog without anticoagulation treatment. As a result, while thrombus formation was observed in 10 minutes with the commercially available catheter, no thrombus was observed on the surface of the antithrombotic catheter of the present invention.

【0015】尚、実施例1で使用したTEF/VOH共
重合体は、TFE/酢酸ビニル共重合体のケン化物で、
鹸化度:100%、弗素含有率:16重量%、水酸基含
有率18.1ミリモル/gのものである。又、実施例2
で使用したTEF/VOH共重合体は、TFE/酢酸ビ
ニル共重合体のケン化物で、鹸化度:100%、弗素含
有率:20重量%、水酸基含有率19.1ミリモル/g
のものである。又、実施例3で使用したTEF/VOH
共重合体は、TFE/酢酸ビニル共重合体のケン化物で
、鹸化度:100%、弗素含有率:18重量%、水酸基
含有率18.6ミリモル/gのものである。 比較例 上記実施例2で得られた樹脂の成形体と、公知の材料か
らなる成形体の抗血栓性をLee−White 法によ
り比較して下記表1の結果を得た。
The TEF/VOH copolymer used in Example 1 is a saponified product of TFE/vinyl acetate copolymer.
Saponification degree: 100%, fluorine content: 16% by weight, and hydroxyl group content: 18.1 mmol/g. Also, Example 2
The TEF/VOH copolymer used in was a saponified product of TFE/vinyl acetate copolymer, with a degree of saponification of 100%, a fluorine content of 20% by weight, and a hydroxyl group content of 19.1 mmol/g.
belongs to. In addition, TEF/VOH used in Example 3
The copolymer is a saponified product of TFE/vinyl acetate copolymer, and has a degree of saponification of 100%, a fluorine content of 18% by weight, and a hydroxyl group content of 18.6 mmol/g. Comparative Example The antithrombotic properties of the resin molded body obtained in Example 2 and the molded body made of a known material were compared by the Lee-White method, and the results shown in Table 1 below were obtained.

【表1】 上記表1のデータを図1に示す。[Table 1] The data in Table 1 above is shown in FIG.

【0016】[0016]

【発明の効果】以上の如き本発明によれば、TFE/V
OHコポリマーで構成するか又は他の材料の表面の全面
又は少なくとも一部を上記コポリマーで構成することに
よって、血液に直接接触し或は生体内に一定の期間留置
される医療用材料として使用した場合、優れた抗血栓性
を発揮する。従って、本発明の材料は前記産業上の利用
分野で挙げた各種医療用材料の構成に極めて有用である
[Effects of the Invention] According to the present invention as described above, TFE/V
When used as a medical material that comes into direct contact with blood or remains in a living body for a certain period of time by being composed of an OH copolymer or by having the entire or at least part of the surface of another material composed of the above copolymer. , exhibits excellent antithrombotic properties. Therefore, the material of the present invention is extremely useful in the construction of various medical materials mentioned in the above-mentioned industrial fields of application.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】抗血栓性を比較した図。FIG. 1: Comparison of antithrombotic properties.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  血液に直接接触し或は生体内に一定の
期間留置される材料であって、TFE/VOHコポリマ
ーで構成されるか又はその一部又はそれらの表面の全面
又は少なくとも一部が当該ポリマーで構成されているこ
とを特徴とする医療用複合化材料。
Claim 1: A material that comes into direct contact with blood or remains in a living body for a certain period of time, which is composed of or partially composed of TFE/VOH copolymer, or whose surface is entirely or at least partially composed of a TFE/VOH copolymer. A medical composite material comprising the polymer.
【請求項2】  TFE/VOHコポリマーで表面の少
なくとも一部を被覆又は複合化した請求項1に記載の医
療用複合化材料。
2. The medical composite material according to claim 1, wherein at least a portion of the surface is coated or composited with a TFE/VOH copolymer.
【請求項3】  TFE/VOHコポリマーの弗素含有
率が2〜60重量%で且つ親水基当量が45〜500で
ある請求項1又は請求項2に記載の材料。
3. The material according to claim 1, wherein the TFE/VOH copolymer has a fluorine content of 2 to 60% by weight and a hydrophilic group equivalent of 45 to 500.
【請求項4】  TFE/VOHコポリマーの親水基当
量が60〜500である請求項1部又は請求項2に記載
の材料。
4. The material according to claim 1, wherein the TFE/VOH copolymer has a hydrophilic group equivalent weight of 60 to 500.
JP3119044A 1991-04-24 1991-04-24 Medical composite materials Expired - Lifetime JP2880319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119044A JP2880319B2 (en) 1991-04-24 1991-04-24 Medical composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119044A JP2880319B2 (en) 1991-04-24 1991-04-24 Medical composite materials

Publications (2)

Publication Number Publication Date
JPH04325160A true JPH04325160A (en) 1992-11-13
JP2880319B2 JP2880319B2 (en) 1999-04-05

Family

ID=14751543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119044A Expired - Lifetime JP2880319B2 (en) 1991-04-24 1991-04-24 Medical composite materials

Country Status (1)

Country Link
JP (1) JP2880319B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511733A (en) * 2004-08-31 2008-04-17 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Polymers of fluorinated monomers and hydrophilic monomers
WO2015087966A1 (en) * 2013-12-12 2015-06-18 国立大学法人 奈良先端科学技術大学院大学 Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface
WO2016104596A1 (en) * 2014-12-26 2016-06-30 国立大学法人 奈良先端科学技術大学院大学 Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511733A (en) * 2004-08-31 2008-04-17 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド Polymers of fluorinated monomers and hydrophilic monomers
WO2015087966A1 (en) * 2013-12-12 2015-06-18 国立大学法人 奈良先端科学技術大学院大学 Antithrombotic material, antithrombotic article, antibacterial material, antibacterial article and method for inhibiting growth of escherichia coli on article surface
JPWO2015087966A1 (en) * 2013-12-12 2017-03-16 国立大学法人 奈良先端科学技術大学院大学 Antithrombotic material, antithrombogenic article, antibacterial material, antibacterial article, and method for inhibiting proliferation of Escherichia coli on article surface
WO2016104596A1 (en) * 2014-12-26 2016-06-30 国立大学法人 奈良先端科学技術大学院大学 Low protein adsorption material, low protein adsorption article, low cell adhesion material, and low cell adhesion article
JPWO2016104596A1 (en) * 2014-12-26 2017-10-05 国立大学法人 奈良先端科学技術大学院大学 Low protein adsorbing material, low protein adsorbing article, low cell adhering material and low cell adhering article

Also Published As

Publication number Publication date
JP2880319B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US3826678A (en) Method for preparation of biocompatible and biofunctional materials and product thereof
US5807636A (en) Durable hydrophilic surface coatings
US5028597A (en) Antithrombogenic materials
US5028332A (en) Hydrophilic material and method of manufacturing
JP2806510B2 (en) Artificial organ membrane or medical device
US20020169493A1 (en) Anti-thrombogenic coatings for biomedical devices
JPS63119755A (en) Artificial blood vessel and its production
Sefton et al. Appendix E–Chapter II. 5.2–Nonthrombogenic Treatments and Strategies
CN116003692B (en) Surface graft crosslinked zwitterionic polymer coating, and preparation method and application thereof
Junkar Interaction of cells and platelets with biomaterial surfaces treated with gaseous plasma
Ai et al. Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth
JP2880319B2 (en) Medical composite materials
JP2957023B2 (en) Biocompatible substrate
JPH07184989A (en) High polymer material having compatibility with blood for medical treatment and medical treating material
JPH0751355A (en) Medical synthetic high polymer and medical material
Kawakami Polymeric membrane materials for artificial organs
JPH0311787B2 (en)
Wilson Hemocompatible polymers: preparation and properties
EP0282091A2 (en) Medical device with heparin slow-release
Khang et al. Prevention of platelet adhesion on the polysulfone porous catheter by saline solution perfusion, I. In vitro investigation
JP3700440B2 (en) Antithrombotic medical device and method for producing the same
Bruck Polymeric materials in the physiological environment
JPS6320552B2 (en)
PL240909B1 (en) Organic material with pore-forming, anti-inflammatory and anticoagulant properties and method of preparation thereof
Kim et al. Hemocompatible Polymers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112