WO2015087663A1 - 二次元フォトンカウンティング素子 - Google Patents

二次元フォトンカウンティング素子 Download PDF

Info

Publication number
WO2015087663A1
WO2015087663A1 PCT/JP2014/080484 JP2014080484W WO2015087663A1 WO 2015087663 A1 WO2015087663 A1 WO 2015087663A1 JP 2014080484 W JP2014080484 W JP 2014080484W WO 2015087663 A1 WO2015087663 A1 WO 2015087663A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
carrier
input
pixel electrode
patterns
Prior art date
Application number
PCT/JP2014/080484
Other languages
English (en)
French (fr)
Inventor
実 市河
一樹 藤田
治通 森
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to ES14870555T priority Critical patent/ES2696748T3/es
Priority to CN201480067271.7A priority patent/CN105830432B/zh
Priority to JP2015552372A priority patent/JP6474350B2/ja
Priority to KR1020167016387A priority patent/KR102237264B1/ko
Priority to EP14870555.1A priority patent/EP3082332B1/en
Priority to US15/101,087 priority patent/US9909921B2/en
Publication of WO2015087663A1 publication Critical patent/WO2015087663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to a two-dimensional photon counting element.
  • Patent Document 1 describes a signal processing method when a photon such as an X-ray enters a sensor having a plurality of detection regions.
  • Patent Document 1 describes a phenomenon (charge sharing) in which a charge generated by a sensor due to incidence of a photon does not fit in one pixel but diffuses to a plurality of pixels.
  • the method described in Patent Document 1 firstly includes a pixel (a central pixel) whose charge amount exceeds a threshold among a plurality of pixels. ) Is determined. Then, a plurality of combination patterns are considered as combinations of the center pixel and the peripheral pixels. The charge amount of the pixels included in the combination pattern is added for each combination pattern, and the largest added value is output as the charge amount in the center pixel.
  • the two-dimensional photon counting element is an element that captures a weak radiation image or light image by two-dimensionally detecting the incident position and intensity of a photon and integrating the number of incidents for each position.
  • the two-dimensional photon counting element inputs a carrier from a plate-like or layer-like conversion unit that converts photons into carriers such as electric charges, and a plurality of pixel electrode units connected to the conversion unit. And a counting circuit for counting.
  • a two-dimensional photon counting element In such a two-dimensional photon counting element, ideally, a plurality of carriers generated by the incidence of photons on the conversion unit are collected in a certain pixel electrode unit.
  • the signal generation unit connected to the one pixel electrode unit generates an input signal corresponding to the number of collected carriers.
  • the counting circuit adds one count value for the pixel.
  • a plurality of carriers generated by the incidence of photons may be distributed and collected in a plurality of pixel electrode portions due to various phenomena such as thermal diffusion or repulsion between carriers.
  • double counting a problem that count values are added in a plurality of pixels with respect to the incidence of one photon.
  • it is considered necessary to adjust a reference threshold value when determining the center pixel.
  • it is not easy to set the threshold value to an appropriate size.
  • it is necessary to add another process to the input signal, and the process of the input signal may be extremely complicated.
  • An object of the present invention is to provide a two-dimensional photon counting element that can be used.
  • One aspect of the present invention is a two-dimensional photon counting element, which is connected to a plurality of pixel electrode portions arranged in a two-dimensional form of M rows and N columns (M and N are integers of 2 or more),
  • a counting circuit is provided that counts photons by detecting carriers collected from a conversion unit that converts photons into carriers through a plurality of pixel electrode units, and the counting circuit is a pixel electrode of the plurality of pixel electrode units.
  • a signal generation unit that generates an input signal having a magnitude corresponding to the number of carriers input to the unit (hereinafter referred to as a self-electrode unit), and a pixel electrode unit (hereinafter referred to as a peripheral electrode) disposed around the self-electrode unit
  • Input signal generated in a signal generation unit connected to a specific pixel electrode unit (hereinafter referred to as a specific electrode unit), and input generated in a signal generation unit connected to the own electrode unit
  • the carrier for determining whether the carrier input pattern that represents the presence / absence of carrier input to the self electrode portion and the surrounding electrode portion for each pixel electrode portion matches any of a plurality of determination patterns.
  • the input pattern discriminating unit and the carrier input pattern discriminating unit discriminate that the carrier input pattern matches one of a plurality of discriminating patterns, and the magnitude of the input signal after addition output from the adding unit exceeds a predetermined threshold value
  • a counting unit that adds the number of photons in some cases.
  • the carrier input pattern determination unit determines whether or not the carrier input pattern for the predetermined pixel electrode group matches any of the plurality of determination patterns.
  • the predetermined pixel electrode group is a group composed of a self-electrode part connected to the carrier input pattern discriminating part and all or a part of the peripheral electrode parts arranged around the self-electrode part.
  • the peripheral electrode portion includes eight pixels included in at least one column or row of a front column and a rear column of a column including the self electrode portion, and a front row and a rear row of a row including the self electrode portion. It refers to an electrode part or a part (for example, seven) of pixel electrode parts.
  • the carrier input pattern is a pattern representing which pixel electrode portion in the pixel electrode group the carrier is input to.
  • the two-dimensional photon counting element it is considered that a photon is incident on the region of the conversion unit corresponding to each pixel electrode unit simply by determining whether the carrier input pattern matches a plurality of determination patterns. Or not. Therefore, even when carriers are distributed and collected in a plurality of pixel electrode portions, it is possible to suppress the occurrence of double counting and reduce counting, and to identify the position where a photon is incident very easily. .
  • the signal generation unit generates an input signal having a magnitude corresponding to the number of carriers.
  • the input signal output from the signal generation part connected to the self-electrode part and the specific electrode part among said pixel electrode groups is added by the addition part.
  • the specific electrode portion is a peripheral electrode portion considered to be included in the carrier dispersion range caused by the photon when counting the number of photons, and is arbitrarily and preliminarily determined from the peripheral electrode portion.
  • the counting unit determines that the carrier input pattern matches any of the plurality of determination patterns, and if the magnitude of the input signal after addition output from the addition unit exceeds a predetermined threshold, to add.
  • counting can be performed with high accuracy corresponding to the incidence of one or more photons to be measured.
  • the carrier input pattern when the carrier is input to the pixel electrode portion other than the specific electrode portion among the peripheral electrode portions may not match any of the plurality of discrimination patterns. In this case, pattern discrimination can be easily performed.
  • the plurality of discrimination patterns may include a pattern corresponding to a carrier input pattern when no carrier is input to the self electrode unit.
  • the carrier input pattern in which no carrier is input to the self-electrode part is incorporated in a part of the plurality of discrimination patterns, counting down can be further reduced, and the position where the photon is incident can be specified with higher accuracy.
  • the carrier input pattern when the carrier is input to at least one specific electrode portion among the specific electrode portions included in the row or column including the self electrode portion, and the carrier is input to the self electrode portion It may match any one of a plurality of discrimination patterns.
  • the counting circuit determines that the carrier input pattern matches any of the plurality of determination patterns, and the magnitude of the input signal after addition output from the addition unit has the first threshold value.
  • the first counting unit that adds the number of photons when exceeding, and the carrier input pattern determined to match any one of the plurality of determination patterns, and the magnitude of the input signal after addition output from the adding unit is the first A second counting unit that adds the number of photons when a second threshold value greater than the second threshold value is exceeded.
  • the plurality of determination patterns are one column of the front electrode and the rear column of the column including the peripheral electrode part included in one of the preceding and subsequent lines of the line including the own electrode part, and the own electrode part.
  • the carrier input pattern in the case where carriers are input to any of the peripheral electrode portions included in the peripheral electrode portion, and the peripheral electrode portion not included in any of the one row and the one column may be the specific electrode. . In this case, it is possible to appropriately avoid adding the number of photons by a plurality of pixel circuits with respect to the incidence of one photon.
  • the plurality of discrimination patterns are not included in one column and are input to the peripheral electrode portion included in the row including the self electrode portion, and included in the column not included in the one row and including the self electrode portion.
  • the carrier input pattern may be included in the case where carriers are input to the surrounding electrode portions and carriers are not input to the self electrode portions.
  • the occurrence of double counting is suppressed and counting down is reduced, and the position where a photon is incident is determined.
  • a two-dimensional photon counting element that can be easily specified can be provided.
  • FIG. 1 is a diagram showing a configuration of a two-dimensional photon counting element according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the arrangement of a plurality of pixel electrode portions on the back surface of the conversion portion.
  • FIG. 3 is a diagram illustrating an example of an internal configuration of each pixel circuit.
  • FIG. 4 is a diagram illustrating a circuit example when each pixel electrode portion includes a plurality of electrodes.
  • FIG. 5 is a diagram showing a self-electrode part and eight surrounding electrode parts surrounding the self-electrode part.
  • FIG. 6 is a diagram illustrating ten determination patterns as an example of a plurality of determination patterns set in the carrier input pattern determination unit.
  • FIG. 1 is a diagram showing a configuration of a two-dimensional photon counting element according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the arrangement of a plurality of pixel electrode portions on the back surface of the conversion portion.
  • FIG. 3 is
  • FIG. 7 is a flowchart showing the operation of the two-dimensional photon counting element.
  • FIG. 8 is a diagram showing ten determination patterns as a first modification.
  • FIG. 9 is a diagram illustrating ten determination patterns as a second modification.
  • FIG. 10 is a diagram illustrating ten determination patterns as a third modification.
  • FIG. 11 is a diagram illustrating an example of an internal configuration of a pixel circuit according to a fourth modification.
  • FIG. 12 is a graph for explaining the effect of the fourth modified example, and is a graph showing an example of the relationship between the energy of X-rays incident on the conversion unit and the number of events (count number).
  • FIG. 1 is a diagram showing a configuration of a two-dimensional photon counting element 1A according to an embodiment of the present invention.
  • the two-dimensional photon counting element 1 ⁇ / b> A of the present embodiment includes a conversion unit 3, a plurality of pixel electrode units B, and a counting circuit 5.
  • the conversion unit 3 is a bulk or layered member that absorbs photons P such as light and X-rays to generate carriers.
  • the converter 3 is made of a material containing at least one of CdTe, CdZnTe, GaAs, InP, TlBr, HgI 2 , PbI 2 , Si, Ge, and a-Se, for example.
  • the converter 3 extends along a plane that intersects the incident direction of the photon P, and has a front surface 3a and a back surface 3b.
  • a bias electrode (common electrode) 31 is provided so as to cover the entire surface 3a. Photons P are incident on the surface 3 a through the bias electrode 31.
  • FIG. 2A is a plan view showing an arrangement of a plurality of pixel electrode portions B on the back surface 3 b of the conversion unit 3.
  • the plurality of pixel electrode portions B are arranged two-dimensionally in M rows ⁇ N columns (M and N are integers of 2 or more) when viewed from the incident direction of the photons P.
  • M and N are integers of 2 or more
  • Each of the M ⁇ N pixel electrode portions B forms a pixel region of M rows and N columns in the conversion unit 3.
  • Each pixel electrode portion B collects carriers generated in the corresponding pixel region.
  • each pixel electrode portion B is composed of one electrode.
  • one pixel electrode portion B may include a plurality of electrodes b.
  • the counting circuit 5 detects the carrier generated in the conversion unit 3 for each pixel area, and counts the number of photons for each pixel area.
  • the counting circuit 5 is realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit).
  • the counting circuit 5 includes a plurality of pixel circuits (M ⁇ N pixel circuits) 5a. Each pixel circuit 5a detects the carriers collected in the corresponding pixel electrode part B, and counts the number of photons.
  • FIG. 3 is a diagram showing an example of the internal configuration of each pixel circuit 5a.
  • the pixel circuit 5a includes a signal generation unit 51, current output units 52a and 52b, an addition unit 53, a comparison unit 54, a carrier input signal generation unit 55, a carrier input pattern determination unit 56, and a counting unit. 57.
  • the signal generation unit 51 is electrically connected to the pixel electrode unit B connected to the pixel circuit 5a among the plurality of pixel electrode units B.
  • the signal generator 51 generates the input signal SP1 by performing charge-voltage conversion of carriers.
  • the pixel circuit 5a to the pixel electrode connected portion B may be referred to as self-electrode portion B 0.
  • the input signal SP1 is a signal having a voltage waveform having a magnitude corresponding to the number of carriers input from the own electrode part B0 to the pixel circuit 5a.
  • each pixel electrode part B includes a plurality of electrodes b (see (b) shown in FIG. 2), as shown in (a) in FIG. It may be connected to the input end of the signal generator 51.
  • a plurality of signal generation units 51 may be provided, and each of the plurality of electrodes b may be connected to each of the plurality of signal generation units 51.
  • the current output unit 52 a is connected to the output terminal of the signal generation unit 51 and receives the input signal SP ⁇ b> 1 from the signal generation unit 51.
  • Current output unit 52a generates the magnitude of the current signal SC in response to the input signal SP1 which is a voltage signal, the particular pixel electrode portions B of the pixel electrodes arranged portion B around the own electrode portions B 0 A current signal SC is provided to the connected pixel circuit 5a.
  • the pixel electrodes arranged portion B around the own electrode portions B 0 may be referred to as peripheral electrode portion.
  • FIG. Figure 5 is a diagram showing a self-electrode portion B 0, eight and surrounding the electrode portions B 1 ⁇ B 8 surrounding the self-electrode portion B 0.
  • the peripheral electrode portions B 1 to B 3 are included in the previous row of the self electrode portion B 0
  • the peripheral electrode portions B 4 and B 5 are included in the same row as the self electrode portion B 0.
  • the peripheral electrode portions B 6 to B 8 are included in the subsequent line of the self electrode portion B 0 .
  • the peripheral electrode portions B 1 , B 4 , B 6 are included in the front row of the self electrode portion B 0 , and the peripheral electrode portions B 2 , B 7 are included in the same row as the self electrode portion B 0, and the peripheral electrode portion B 3 , B 5 , B 8 are included in the rear row of the self-electrode part B 0 .
  • the current output unit 52a provides the current signal SC to the pixel circuit 5a connected to the peripheral electrode units B 1 , B 2 , B 4 .
  • the current output unit 52 b is connected to the output terminal of the signal generation unit 51 and receives the input signal SP ⁇ b> 1 from the signal generation unit 51.
  • the current output unit 52b generates a current signal SC having a magnitude corresponding to the input signal SP1 that is a voltage signal, and provides the current signal SC to the adding unit 53.
  • Addition unit 53, a particular electrode portion (hereinafter, certain of the electrode portion) B 5, B 7, the current output section 52a of the three pixel circuits 5a connected to B 8 of the peripheral electrode portions B 1 ⁇ B 8 They are connected and receive a current signal SC from their current output units 52a.
  • the adding unit 53 adds the three current signals SC received and the current signal SC provided from the current output unit 52b of the pixel circuit 5a, and the voltage signal SP2 having a magnitude corresponding to the added current. Is generated.
  • Voltage signal SP2 is a signal having a self-electrode portions B 0 and the specific electrode unit B 5, B 7, B the magnitude of the voltage waveform corresponding to the sum of the number of carriers input to 8.
  • the specific electrode portions B 5 , B 7 , and B 8 are peripheral electrode portions that are considered to be included in the carrier dispersion range caused by the photons P when counting the number of photons in each pixel circuit 5a. Any one of the surrounding electrode portions B 1 to B 8 is determined in advance.
  • the addition part 53 is present It is not necessary to add the current signal SC from the specific electrode portion that is not.
  • the self-electrode portions B 0 is not present all of the specific electrode unit B 5, B 7, B 8 for its own electrode unit B 0 by the like present in the end of line and column end, the addition unit 53 and the subsequent The circuit portion is not essential and can be omitted.
  • the comparison unit 54 is connected to the output terminal of the addition unit 53 and receives the voltage signal SP ⁇ b> 2 from the addition unit 53.
  • the comparison unit 54 determines whether or not the magnitude of the peak voltage of the voltage signal SP2 exceeds a predetermined threshold value. That is, the comparison unit 54 determines whether the number of carriers that corresponds to a photon P to one or more measured in the vicinity of the self-electrode portions B 0 has occurred.
  • the comparison unit 54 outputs a high level (significant value) as the determination result signal S1 when the magnitude of the peak voltage of the voltage signal SP2 exceeds a predetermined threshold.
  • the comparison unit 54 outputs a Low level (insignificant value) as the determination result signal S1.
  • the carrier input signal generation unit 55 is connected to the output terminal of the signal generation unit 51 and receives the input signal SP1 from the signal generation unit 51.
  • the carrier input signal generation unit 55 a certain threshold (e.g., slightly greater than the noise level) that the input signal SP1 more than is when it is input, there is an input of the carrier to its own electrode unit B 0 To show, a high level (significant value) is output as the carrier input signal S2.
  • the carrier input signal generation unit 55 outputs a low level (insignificant value) as the carrier input signal S2.
  • the carrier input signal S2 is provided to the seven pixel circuits 5a connected to the peripheral electrode portions B 2 to B 8 respectively.
  • the carrier input pattern discriminating unit 56 receives the carrier input signal S2 from the seven pixel circuits 5a connected to the peripheral electrode units B 1 to B 7 respectively. Based on these carrier input signals S2, the carrier input pattern determination unit 56 determines whether the carrier input pattern matches any one of the plurality of determination patterns.
  • the carrier input pattern indicates the presence / absence of carrier input to the self-electrode part B 0 and the surrounding electrode parts B 1 to B 7 for each electrode. In the carrier input pattern, it is patterned to which pixel electrode part B of the self-electrode part B 0 and the surrounding electrode parts B 1 to B 8 is inputted.
  • the carrier input pattern determination unit 56 When the carrier input pattern matches any one of the plurality of discrimination patterns and a high level (significant value) is input as the determination result signal S1, the carrier input pattern determination unit 56 is high as the determination signal S3. Output level (significant value).
  • the carrier input pattern discrimination unit 56 discriminates when the carrier input pattern does not match any of the plurality of discrimination patterns and / or when the Low level (insignificant value) is input as the determination result signal S1. A Low level (insignificant value) is output as the signal S3.
  • the counting part 57 when the carrier input pattern discrimination
  • the carrier input pattern determination unit 56 since the presence or absence of incidence of carriers in the surrounding electrode section B 8 does not affect the determination, the carrier input pattern determination unit 56, the carrier input signal S2 from the pixel circuit 5a connected to the surrounding electrode portion B 8 There is no need to receive the offer.
  • one counting unit 57 is provided for each pixel electrode unit B, but only one counting unit 57 may be provided for two or more pixel electrode units B.
  • FIG. 6A to 6J are diagrams showing ten discrimination patterns P1 to P10 as an example of a plurality of discrimination patterns set in the carrier input pattern discrimination unit 56.
  • FIG. 6 “H” is written in the pixel electrode portion corresponding to the pixel circuit 5 a to which the carrier input signal S ⁇ b> 2 is output (that is, the carrier is input).
  • the self-electrode part B 0 and the specific electrode parts B 5 , B 7 , B 8 are shown by thick frames in order to easily understand the discrimination patterns P1 to P10.
  • the reference numerals of the self electrode part B 0 and the surrounding electrode parts B 1 to B 7 are shown only in (a) of FIG.
  • the carrier input pattern determination unit 56 may be configured by a combination of a plurality of logic circuits. In this case, whether or not the plurality of combined logic circuits are effective according to the combination of the carrier input signal S2 from the peripheral electrode portions B 1 to B 7 and the carrier input signal S2 of the self electrode portion B 0 is determined. decide. As a result, the carrier input pattern discriminating unit 56 discriminates whether or not the carrier input pattern matches any of a plurality of discrimination patterns (for example, discrimination patterns P1 to P10).
  • the counting circuit 5 may include a memory for storing a plurality of discrimination patterns (for example, discrimination patterns P1 to P10).
  • the carrier input pattern determination unit 56 determines whether any of the plurality of determination patterns stored in the memory matches the carrier input pattern.
  • the carrier input pattern determination unit 56 is configured by a combination of a plurality of logic circuits, a physical configuration such as a memory becomes unnecessary, and the configuration of the counting circuit 5 can be simplified.
  • the ten discrimination patterns P1 to P10 shown in FIG. 6 are determined according to some rules.
  • the surrounding electrode portions B 1 to B 8 carrier input patterns when carriers are input to the pixel electrode portions B 1 to B 4 and B 6 other than the specific electrode portions B 5 , B 7 and B 8 are discriminated patterns P 1 to Does not match any of P10.
  • the surrounding electrode portions B 1 to B included in one of the previous row and the subsequent row including the own electrode portion B 0 are included.
  • the carrier is input to any one of the surrounding electrode portions B 1 , B 4 , and B 6 included in one of the front row and the rear row of the row including the self electrode portion B 0 (the front row in this embodiment).
  • the pattern corresponding to the carrier input pattern is not included. Therefore, when a carrier is input to any of the surrounding electrode portions B 1 to B 4 , B 6 , the carrier input pattern determination unit 56 of the pixel circuit 5a connected to the self electrode portion B 0 has a plurality of carrier input patterns. It is determined that the pattern does not match any of the determination patterns P1 to P10.
  • the pixel circuit 5a connected to any one of the pixel electrode portions B except the self electrode portion B 0 must be used.
  • the discrimination patterns P1 to P10 are set so that the carrier input pattern matches any of the discrimination patterns P1 to P10. Therefore, by setting the discrimination patterns P1 to P10 in accordance with the discrimination rule, it is possible to appropriately avoid adding the number of photons by the plurality of pixel circuits 5a with respect to the incidence of one photon P. .
  • the surrounding electrode portions B 1 to B 4 and B 6 are marked with x.
  • the peripheral electrode portions B 5 , B 7 , and B 8 that are not included in any of the one row (front row) and the one column (front column) are specific electrodes. It is effective when
  • a discrimination pattern P2 all the patterns in the case where the carrier around the electrode portions B 5 and the self-electrode portions B 0 is input is represented by a discrimination pattern P2, P5, P7, P8. All patterns when carriers are input to the surrounding electrode portion B 7 and the self electrode portion B 0 are represented by the discrimination patterns P3, P6, P7, and P8.
  • discrimination patterns P1 ⁇ P10 carrier is input to the peripheral electrode portions B 5 included in the line containing the self-electrode portions B 0 and not included in said one row (front row), said one row (front row ) to be not and input carrier around electrode portion B 7 contained in the column containing the self-electrode portions B 0 included, and, contains a pattern corresponding to the carrier input pattern when the carrier to its own electrode unit B 0 is not inputted It is.
  • all patterns in which carriers are input to both the surrounding electrode portions B 5 and B 7 and no carriers are input to the self electrode portion B 0 are represented by the discrimination patterns P9 and P10.
  • the discrimination patterns P1 ⁇ P10, the influence of the charge sharing little discrimination pattern P1 is also included when the carrier only to its own electrode unit B 0 is input.
  • FIG. 7 is a flowchart showing the operation of the two-dimensional photon counting element 1A.
  • a photon P such as a light image or a radiation image is incident on the conversion unit 3 to generate a plurality of carriers in the conversion unit 3 (S11).
  • the plurality of carriers move inside the conversion unit 3 and are input to one or two or more pixel electrode units B among the plurality of pixel electrode units B (S12).
  • the signal generator 51 In each pixel circuit 5a connected to the pixel electrode part B to which the carrier is input, the signal generator 51 generates the input signal SP1 (S13).
  • the input signal SP1 is converted into a current signal SC by the current output units 52a and 52b (S14).
  • the current signal SC output from the current output section 52a is provided to the pixel circuit 5a connected to the surrounding electrode portion B 1, B 2, B 4 for its own electrode unit B 0 corresponding to each pixel circuit 5a (S15 ). Further, the current signal SC output from the current output unit 52 b is provided to the adding unit 53.
  • the addition section 53 receives the provision of current signal SC from the specific electrode unit B 5, B 7, B 8 connected to the three pixel circuits 5a of the current output section 52a. Then, the supplied three current signals SC and the current signal SC generated in the current output unit 51b of the pixel circuit 5a are added to generate the voltage signal SP2 (S16). Subsequently, in the comparison unit 54, it is determined whether or not the magnitude of the peak voltage of the voltage signal SP2 exceeds a predetermined threshold (S17). When the magnitude of the peak voltage of the voltage signal SP2 exceeds a predetermined threshold, the determination result signal S1 is at a high level (significant value).
  • operation S18 is performed.
  • operation S18 when the input signal SP1 which exceeds a certain threshold value is input, to indicate that there is an input of the carrier to its own electrode unit B 0, the carrier input is generated by the carrier input signal generation unit 55
  • the signal S2 becomes a high level (significant value).
  • the carrier input signal S2 is provided to the seven pixel circuits 5a connected to the peripheral electrode portions B 2 to B 8 (S19).
  • the carrier input pattern that indicates the presence / absence of carrier input to the own electrode unit B 0 and the surrounding electrode units B 1 to B 8 for each electrode is one of the plurality of discriminating patterns. It is determined whether or not they match (S20). If it is determined in the operation S20 that they match and the determination result signal S1 is at a high level (significant value) (“YES” in S21), the determination signal S3 is at a high level (significant value), and the counting unit In 57, the number of photons is added (S22).
  • the plurality of carriers generated by the incidence of the photons P on the conversion unit 3 may be distributed and collected in the plurality of pixel electrode units.
  • carrier dispersion is caused by, for example, thermal diffusion or repulsion between carriers.
  • photoelectric conversion all of the energy is converted into photoelectrons at the location where the photon P is incident on the conversion unit 3, but this high energy photoelectron generates carriers while moving inside the conversion unit 3 while losing energy. To do. Even in such a case, carrier dispersion occurs.
  • the carrier input pattern determination unit 56 determines whether to output the output from the comparison unit 54 to the counting unit 57 based on the determination result. As described above, according to the two-dimensional photon counting element 1A of the present embodiment, whether or not the number of photons is counted simply by determining whether or not the carrier input pattern matches the plurality of determination patterns P1 to P10.
  • the two-dimensional photon counting element 1A even when carriers are distributed and collected in a plurality of pixel electrode portions B (when charge sharing occurs), double counting is suppressed and counting down is reduced. Is done. As a result, the two-dimensional photon counting element 1A can very easily identify the position where the photon P is incident without performing complicated processing.
  • the input signal SP1 having a magnitude corresponding to the number of carriers input to each pixel circuit 5a is generated and converted into the current signal SC, and the self-electrode unit B0 and the specific electrode unit B are generated.
  • the current signal SC of the pixel circuit 5 a connected to 5 , B 7 , B 8 is added in the adder 53.
  • a predetermined threshold in other words, it is considered that one or more photons P to be measured are incident on the dispersion range.
  • the judgment result signal S1 input from the comparator unit 54 connected to its own electrode unit B 0 to the carrier input pattern determination unit 56 becomes High level (significance value).
  • the target charge share is determined in advance, and the range of the peripheral electrode portion and the like is set based on the prediction of the target charge share spread. That is, a phenomenon that causes a very large scattering distance is not a measurement target. Accordingly, the correction process can be easily performed without performing the complicated process (a process of sequentially increasing the addition area) as in Patent Document 1.
  • discrimination pattern in the P1 ⁇ P10 contains self-electrode portions B 0 to determine the pattern P9
  • P10 is a pattern carrier corresponds to the carrier input pattern when not inputted.
  • the number of photons is not added in the pixel circuit 5a connected to the pixel electrode part B.
  • carriers may not be input to the pixel electrode unit B corresponding to the incident position of the photon P.
  • the carrier input pattern carrier to the self electrode portion B 0 is not input is not incorporated in a part of the plurality of discrimination patterns P1 ⁇ P10, counting loss is further Reduced.
  • the position where the photon P is incident can be specified with higher accuracy by the two-dimensional photon counting element 1A.
  • K-escape is a phenomenon in which, for example, electrons in the L and M shells fall where the photoelectrons in the K shell have fallen, and emit differential X-rays.
  • FIG. 8 is a diagram showing ten discrimination patterns P11 to P20 as a first modification.
  • the discrimination patterns P11 to P20 shown in FIG. 8 are suitable patterns when the specific electrode portions are B 4 , B 6 , and B 7 .
  • These determination patterns P11 to P20 are determined according to the same rules as the determination patterns P1 to P10 (see FIG. 6) of the above embodiment.
  • a carrier input pattern when carriers are input to the pixel electrode portions B 1 to B 3 , B 5 , and B 8 other than the specific electrode portions B 4 , B 6 , and B 7 among the surrounding electrode portions B 1 to B 8 is as follows. This does not match any of the discrimination patterns P11 to P20.
  • the peripheral electrode portions B 1 to B included in one row (the previous row in this modification) of the previous row and the subsequent row of the row including the self electrode portion B 0 are included.
  • the carrier electrode is input to any one of the peripheral electrode portions B 3 , B 5 , and B 8 included in one of the columns including the front electrode and the rear column including the self electrode portion B 0 (the rear column in this modification).
  • the pattern corresponding to the carrier input pattern is not included.
  • the carrier input pattern determination unit 56 of the pixel circuit 5 a connected to the self electrode portion B 0 It is determined that the pattern does not match any of the plurality of determination patterns P11 to P20.
  • discrimination patterns P11 ⁇ P20 the carrier around electrode portion B 4 included in the line containing the self-electrode portions B 0 and not included in said one row (back row) is input, the one row (front row ) to be not and input carrier around electrode portion B 7 contained in the column containing the self-electrode portions B 0 included, and, contains a pattern corresponding to the carrier input pattern when the carrier to its own electrode unit B 0 is not inputted It is.
  • all patterns in which carriers are input to both of the surrounding electrode portions B 4 and B 7 and no carriers are input to the self electrode portion B 0 are represented by discrimination patterns P19 and P20.
  • the two-dimensional photon counting element 1A is the same as that in the above embodiment. There is an effect.
  • FIG. 9 is a diagram showing ten discrimination patterns P21 to P30 as a second modification.
  • the discrimination patterns P21 to P30 shown in FIG. 9 are suitable patterns when the specific electrodes are B 1 , B 2 , B 4 .
  • These determination patterns P21 to P30 are also defined according to the same rules as the determination patterns P1 to P10 (see FIG. 6) of the above embodiment.
  • the carrier input pattern when the carrier is input to the pixel electrode portions B 3 , B 5 to B 8 other than the specific electrode portions B 1 , B 2 , and B 4 among the surrounding electrode portions B 1 to B 8 is a discrimination pattern. It does not match any of P21 to P30.
  • the pattern corresponding to the carrier input pattern is not included. Therefore, when a carrier is input to any of the surrounding electrode portions B 3 and B 5 to B 8 , the carrier input pattern determination unit 56 of the pixel circuit 5a connected to the self electrode portion B 0 has a plurality of carrier input patterns. It is determined that any of the determination patterns P21 to P30 does not match.
  • discrimination patterns P21 ⁇ P30 the carrier around electrode portion B 4 included in the line containing the self-electrode portions B 0 and not included in said one row (back row) is input, the one row (trailing ) to be not and input carrier around electrode portion B 2 included in the column containing the self-electrode portions B 0 included, and, contains a pattern corresponding to the carrier input pattern when the carrier to its own electrode unit B 0 is not inputted It is.
  • all patterns in which carriers are input to both the peripheral electrode portions B 2 and B 4 and no carriers are input to the self electrode portion B 0 are represented by the discrimination patterns P29 and P30.
  • the two-dimensional photon counting element 1A is the same as that in the above embodiment. There is an effect.
  • FIG. 10 is a diagram showing ten discrimination patterns P31 to P40 as a third modification.
  • the discrimination patterns P31 to P40 shown in FIG. 10 are suitable patterns when the specific electrodes are B 2 , B 3 , and B 5 . These discrimination patterns P31 to P40 are also defined according to the same rules as the discrimination patterns P1 to P10 (see FIG. 6) of the above embodiment.
  • a carrier input pattern when carriers are inputted to the pixel electrode portions B 1 , B 4 , B 6 to B 8 other than the specific electrode portions B 2 , B 3 , and B 5 among the surrounding electrode portions B 1 to B 8 is as follows. This does not match any of the discrimination patterns P31 to P40.
  • the surrounding electrode portions B 6 to B included in one row (the following row in this modification) of the preceding row and the following row including the own electrode portion B 0 are included. 8 and the carrier is input to any of the surrounding electrode portions B 1 , B 4 , and B 6 included in one of the front row and the rear row of the row including the self electrode portion B 0 (the front row in this modification).
  • the pattern corresponding to the carrier input pattern is not included.
  • the carrier input pattern determination unit 56 of the pixel circuit 5a connected to the self electrode portion B 0 It is determined that the pattern does not match any of the plurality of determination patterns P31 to P40.
  • discrimination patterns P31 ⁇ P40 the carrier around electrode portion B 5 included in the line containing the self-electrode portions B 0 and not included in said one row (front row) is input, the one row (trailing ) to be not and input carrier around electrode portion B 2 included in the column containing the self-electrode portions B 0 included, and, contains a pattern corresponding to the carrier input pattern when the carrier to its own electrode unit B 0 is not inputted It is.
  • all patterns in which carriers are input to both the surrounding electrode portions B 2 and B 5 and no carriers are input to the self-electrode portion B 0 are represented by discrimination patterns P39 and P40.
  • the two-dimensional photon counting element 1A is the same as in the above embodiment. There is an effect.
  • FIG. 11 is a diagram illustrating an example of the internal configuration of the pixel circuit 5b according to the fourth modification.
  • the pixel circuit 5b includes a signal generation unit 51, current output units 52a and 52b, an addition unit 53, comparison units 54a and 54b, a carrier input signal generation unit 55, and carrier input pattern determination units 56a and 56b. And counting units 57a and 57b. Since the configuration and operation of the signal generation unit 51, current output units 52a and 52b, addition unit 53, and carrier input signal generation unit 55 are the same as those of the above-described embodiment, detailed description of these configurations and operations is omitted. To do.
  • the comparison units 54 a and 54 b are connected to the output terminal of the addition unit 53 and receive the voltage signal SP ⁇ b> 2 from the addition unit 53.
  • the comparison unit 54a determines whether or not the magnitude of the peak voltage of the voltage signal SP2 exceeds a predetermined first threshold value.
  • the comparison unit 54a outputs a high level (significant value) as the determination result signal S1a when the magnitude of the peak voltage of the voltage signal SP2 exceeds the first threshold value.
  • the comparison unit 54b determines whether or not the magnitude of the peak voltage of the voltage signal SP2 exceeds a second threshold value that is larger than the first threshold value.
  • the comparison unit 54b outputs a high level (significant value) as the determination result signal S1b when the magnitude of the peak voltage of the voltage signal SP2 exceeds the second threshold value. In other cases, the comparison units 54a and 54b output a Low level (insignificant value) as the determination result signals S1a and S1b.
  • the carrier input pattern discriminating units 56a and 56b receive the carrier input signal S2 from the seven pixel circuits 5b connected to the peripheral electrode units B 1 to B 7 respectively.
  • the carrier input pattern discriminating units 56a and 56b discriminate whether or not the carrier input pattern matches any one of the plurality of discriminating patterns based on these carrier input signals S2.
  • the carrier input pattern indicates the presence / absence of carrier input to the self-electrode part B 0 and the surrounding electrode parts B 1 to B 7 for each electrode.
  • the carrier input pattern discriminating unit 56a when the carrier input pattern matches any one of the plurality of discriminating patterns and when the high level (significant value) is inputted as the judgment result signal S1a, the carrier input pattern judgment unit 56a is high as the judgment signal S3a.
  • a level (significant value) is output, otherwise a low level (insignificant value) is output as the discrimination signal S3a.
  • the carrier input pattern determination unit 56b determines the determination signal when the carrier input pattern matches any of the plurality of determination patterns and the High level (significant value) is input as the determination result signal S1b.
  • a high level (significant value) is output as S3b, and a low level (insignificant value) is output as the discrimination signal S3b in other cases.
  • the counting units 57a and 57b function as the first and second counting units in the present embodiment, respectively.
  • the counting unit 57a when the carrier input pattern discriminating unit 56a discriminates that the carrier input pattern matches any of the plurality of discriminating patterns, and the High level (significant value) is output as the judgment result signal S1a (that is, discrimination) When the signal S3a is at a high level (significant value), the number of photons is added.
  • the counting unit 57b when the carrier input pattern discriminating unit 56b discriminates that the carrier input pattern matches any of the plural discriminating patterns, and the High level (significant value) is output as the judgment result signal S1b. In other words, the number of photons is added (when the determination signal S3b is at a high level (significant value)).
  • the pixel circuit may include a plurality of comparison units. Even in such a case, the same effect as that of the above-described embodiment can be obtained. Moreover, the effect demonstrated below can be further acquired by providing multiple comparison parts like this modification.
  • FIG. 12 is a graph for explaining the effect of this modification, and is a graph showing an example of the relationship between the energy of X-rays incident on the conversion unit 3 and the number of events (count number).
  • the count number is a peak Pk1 at a certain energy E1
  • the count number is another peak Pk2 at an energy E2 larger than the energy E1.
  • the energy E1 corresponding to the peak Pk1 is an energy value particularly effective for improving the image quality (for example, an X-ray energy band in which the contrast is improved).
  • the predetermined threshold value is only one value (threshold value vth1 in the figure) smaller than the energy E1, all photons having an energy value equal to or greater than vth1 are counted.
  • the first threshold value vth1 and the second threshold value vth2 larger than the energy E1 are set, and the difference between the count value at the threshold value vth1 and the count value at the threshold value vth2 is obtained, so that one measurement can be performed. More accurate data (desired energy band data) can be obtained.
  • the photon energy is known like ⁇ -ray, it can be used as a measure for pile-up. That is, when it is known in advance that the energy of the incident photon is always included in the range of the threshold value vth1 or more and the threshold value vth2 or less, when the energy exceeds the threshold value vth2, two photons are incident continuously. I guess that. Thereby, in this modification, it can count as two photons. In the method of the above embodiment (see FIG. 3), there is a risk of counting as one when two photons are incident continuously, but according to the present modification, the counting is further reduced as described above. Can be reduced.
  • the two-dimensional photon counting element according to the present invention is not limited to the above-described embodiment, and various other modifications are possible.
  • the 8 pixel electrode portions B 1 to B 8 included in the front row and the back row, and the front column and the back column are set as the peripheral electrode portions, and 3 ⁇ including the self electrode portion B 0
  • a discrimination pattern is set in an area of 3 pixels.
  • the discrimination pattern can be arbitrarily set in areas of various sizes, for example, 4 ⁇ 4 pixels or 5 ⁇ 5 pixels.
  • a region of 2 ⁇ 2 pixels is illustrated as the specific electrode portion, but the specific electrode portion can also be arbitrarily determined from the surrounding electrode portions. it can.
  • the comparison units 54, 54a, and 54b are positioned in front of the carrier input pattern determination units 56, 56a, and 56b, but the positions of the comparison units 54, 54a, and 54b are the same. Not limited.
  • the comparison units 54, 54a, 54b may be located at the subsequent stage of the carrier input pattern determination units 56, 56a, 56b.
  • the carrier input pattern discriminating units 56, 56 a and 56 b are connected to the output terminal of the adding unit 53 and receive the voltage signal SP ⁇ b> 2 from the adding unit 53.
  • the carrier input pattern discriminating units 56, 56a, and 56b compare the voltage signal SP2 when the carrier input pattern matches any one of the plural discriminating patterns and the voltage signal SP2 is input from the adding unit 53. It outputs to the part 54, 54a, 54b.
  • the comparison units 54, 54a, and 54b determine whether or not the magnitude of the peak voltage of the voltage signal SP2 input from the addition unit 53 through the carrier input pattern determination units 56, 56a, and 56b exceeds a predetermined threshold value.
  • the counting units 57, 57a, and 57b when the determination result signal S1 output from the comparison units 54, 54a, and 54b is at a high level (significant value), the number of photons is added.
  • the present invention can be used for a two-dimensional photon counting element.
  • SYMBOLS 1A Two-dimensional photon counting element, 3 ... Conversion part, 5 ... Counting circuit, 5a ... Pixel circuit, 51 ... Signal generation part, 52a, 52b ... Current output part, 53 ... Addition part, 54 ... Comparison part, 55 ... Carrier Input signal generation unit, 56 ... carrier input pattern discrimination unit, 57 ... counting unit, B ... pixel electrode unit, B0 ... self electrode unit, B1 to B8 ... peripheral electrode unit, P ... photon, P1 to P40 ... discrimination pattern, S1 ... judgment result signal, S2 ... carrier input signal, SP1 ... input signal, SP2 ... voltage signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 加算部53は、或る画素電極部の周囲に配置された画素電極部のうち特定の画素電極部に接続された信号生成部51において生成された入力信号と、上記或る画素電極部に接続された信号生成部51において生成された入力信号と、を加算する。キャリア入力パターン判別部56は、上記或る画素電極部及び当該或る画素電極部の周囲に配置された上記画素電極部へのキャリアの入力の有無を画素電極部毎に表すキャリア入力パターンが、複数の判別パターンの何れかに合致するか否かの判別を行う。計数部57は、キャリア入力パターン判別部56においてキャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ加算部53から出力された加算後の入力信号の大きさが所定の閾値を超えた場合に、光子数を加算する。

Description

二次元フォトンカウンティング素子
 本発明は、二次元フォトンカウンティング素子に関する。
 特許文献1には、複数の検出領域を有するセンサにX線等の光子が入射した際の信号処理方法が記載されている。特許文献1には、光子の入射によってセンサで発生するチャージが一画素に収まらず、複数の画素に拡散する現象(チャージシェア)が記載されている。チャージシェアが生じた場合であっても光子の入射位置及び強度を特定するために、特許文献1に記載された方法では、まず、複数の画素の中でチャージ量が閾値を超える画素(中心画素)が、割り出される。そして、中心画素と周辺画素との組み合わせとして、複数の組み合わせパターンが考慮される。組み合わせパターン毎に組み合わせパターンに含まれる画素のチャージ量が加算され、最も大きい加算値が、中心画素におけるチャージ量として出力される。
米国特許第7667205号明細書
 二次元フォトンカウンティング素子は、光子の入射位置及び強度を二次元的に検出し、その入射回数を位置毎に積算することにより、微弱な放射線像若しくは光像を撮像する素子である。二次元フォトンカウンティング素子は、光子を電荷等のキャリアに変換する板状若しくは層状の変換部と、該変換部に接続された複数の画素電極部からキャリアを入力し、キャリアの検出及び光子数のカウントを行うカウンティング回路と、を備えている。
 このような二次元フォトンカウンティング素子において、理想的には、変換部への光子の入射によって発生した複数のキャリアは或る一つの画素電極部に収集される。上記或る一つの画素電極部に接続された信号生成部は、収集されたキャリアの個数に応じた入力信号を生成する。生成された入力信号の大きさが所定の閾値を超える場合に、カウンティング回路は、当該画素におけるカウント値を1つ加算する。
 光子の入射によって発生した複数のキャリアが、例えば熱拡散又はキャリア同士の反発といった種々の現象に起因して、複数の画素電極部に分散して収集されることがある。このような場合、光子のエネルギーが過小に判定されるという問題、又は、一つの光子の入射に対して複数の画素においてカウント値が加算されるという問題(以下、ダブルカウントと称する)が生じる。特許文献1に記載された方法では、中心画素を決定する際に基準となる閾値を調整する必要があると考えられる。しかしながら、その閾値を適切な大きさに設定することは容易ではない。また、ダブルカウントを防ぐためには入力信号に対して別の処理を加える必要があり、入力信号の処理が極めて複雑となるおそれがある。例えば、或る大きさのエネルギーを有する光子が互いに隣接する2つの画素に50%ずつシェアされた場合、双方の入射位置が共に入射中心(impact center)と捉えられ、ダブルカウントが生じるおそれがある。このような現象を防ぐためには、入力信号に対して別途の処理が必要となる。
 本発明の一態様は、複数の画素電極部にキャリアが分散して収集された場合であっても、ダブルカウントの発生を抑制すると共に数え落としを低減し、光子が入射した位置を容易に特定することができる二次元フォトンカウンティング素子を提供することを目的とする。
 本発明の一態様は、二次元フォトンカウンティング素子であって、M行N列(M及びNは、二以上の整数である)の二次元状に配列された複数の画素電極部に接続され、光子をキャリアに変換する変換部から複数の画素電極部を介して収集されるキャリアを検出して光子の計数を行うカウンティング回路を備え、カウンティング回路は、複数の画素電極部のうち或る画素電極部(以下、自電極部と称する)に入力されたキャリアの数に応じた大きさの入力信号を生成する信号生成部と、自電極部の周囲に配置された画素電極部(以下、周囲電極部と称する)のうち特定の画素電極部(以下、特定電極部と称する)に接続された信号生成部において生成された入力信号と、自電極部に接続された信号生成部において生成された入力信号と、を加算する加算部と、自電極部及び周囲電極部へのキャリアの入力の有無を画素電極部毎に表すキャリア入力パターンが、複数の判別パターンの何れかに合致するか否かの判別を行うキャリア入力パターン判別部と、キャリア入力パターン判別部においてキャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ加算部から出力された加算後の入力信号の大きさが所定の閾値を超えた場合に光子数を加算する計数部と、を有する。
 本態様では、キャリア入力パターン判別部が、所定の画素電極群に対するキャリア入力パターンが複数の判別パターンの何れかと合致するか否かを判別する。所定の画素電極群は、そのキャリア入力パターン判別部に接続された自電極部と、自電極部の周囲に配置された全部若しくは一部の周囲電極部とから成る群である。一例では、周囲電極部は、自電極部が含まれる列の前列及び後列、並びに自電極部が含まれる行の前行及び後行のうち少なくとも何れかの列又は行に含まれる8個の画素電極部、若しくはそのうちの一部(例えば7個)の画素電極部を指す。キャリア入力パターンは、この画素電極群の中の何れの画素電極部にキャリアが入力したのかを表したパターンである。
 上記二次元フォトンカウンティング素子によれば、キャリア入力パターンが複数の判別パターンと合致するか否かを単に判別するだけで、各画素電極部に対応する変換部の領域に光子が入射したとみなされるか否かを決定することができる。従って、複数の画素電極部にキャリアが分散して収集された場合であっても、ダブルカウントの発生を抑制するとともに数え落としを低減し、光子が入射した位置を極めて容易に特定することができる。
 上記二次元フォトンカウンティング素子では、信号生成部において、キャリアの数に応じた大きさの入力信号が生成される。そして、上記の画素電極群のうち自電極部及び特定電極部に接続された信号生成部から出力された入力信号が、加算部によって加算される。特定電極部は、光子数をカウントする際に、その光子に起因するキャリアの分散範囲に含まれるとみなされた周囲電極部であって、周囲電極部の中から任意に且つ予め決定される。加算部から出力された加算後の入力信号の大きさが所定の閾値を超えた場合、一つ以上の測定対象とする光子が分散範囲内に入射したとみなされる。そこで、計数部は、キャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ加算部から出力された加算後の入力信号の大きさが所定の閾値を超えた場合に、光子数を加算する。これにより、複数の画素電極部にキャリアが分散して収集された場合であっても、一つ以上の測定対象とする光子の入射に対応して精度良くカウントを行うことができる。
 本態様では、周囲電極部のうち特定電極部以外の画素電極部にキャリアが入力する場合のキャリア入力パターンが、複数の判別パターンの何れとも合致しなくてもよい。この場合、パターン判別を簡単に行うことができる。
 本態様では、複数の判別パターンが、自電極部にキャリアが入力されない場合のキャリア入力パターンに相当するパターンを含んでいてもよい。この場合、自電極部にキャリアが入力されないキャリア入力パターンが複数の判別パターンの一部に組み入れられているので、数え落としを更に低減し、光子が入射した位置をより精度良く特定することができる。
 本態様では、自電極部を含む行又は列に含まれる特定電極部のうち少なくとも一つの特定電極部にキャリアが入力され、且つ自電極部にキャリアが入力される場合のキャリア入力パターンが、前記複数の判別パターンの何れかと合致してもよい。
 本態様では、カウンティング回路は、上記計数部として、キャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ加算部から出力された加算後の入力信号の大きさが第1の閾値を超えた場合に光子数を加算する第1の計数部と、キャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ加算部から出力された加算後の入力信号の大きさが第1の閾値よりも大きい第2の閾値を超えた場合に光子数を加算する第2の計数部と、を有していてもよい。
 本態様では、複数の判別パターンが、自電極部を含む行の前行及び後行のうち一方の行に含まれる周囲電極部、及び自電極部を含む列の前列及び後列のうち一方の列に含まれる周囲電極部の何れかにキャリアが入力される場合のキャリア入力パターンを含まず、一方の行及び一方の列の何れにも含まれない周囲電極部が特定電極となっていてもよい。この場合、一つの光子の入射に対して複数の画素回路で光子数を加算することを適切に回避することができる。
 本態様では、複数の判別パターンが、一方の列に含まれず且つ自電極部を含む行に含まれる周囲電極部にキャリアが入力され、一方の行に含まれず且つ自電極部を含む列に含まれる周囲電極部にキャリアが入力され、且つ自電極部にキャリアが入力されない場合のキャリア入力パターンを含んでいてもよい。
 本発明の上記一態様によれば、複数の画素電極部にキャリアが分散して収集された場合であっても、ダブルカウントの発生を抑制すると共に数え落としを低減し、光子が入射した位置を容易に特定することができる二次元フォトンカウンティング素子を提供することができる。
図1は、本発明の一実施形態に係る二次元フォトンカウンティング素子の構成を示す図である。 図2は、変換部の裏面における複数の画素電極部の配置を示す平面図である。 図3は、各画素回路の内部構成の一例を示す図である。 図4は、各画素電極部が複数の電極を含む場合の回路例を示す図である。 図5は、自電極部と、自電極部を囲む8個の周囲電極部とを示す図である。 図6は、キャリア入力パターン判別部に設定される複数の判別パターンの一例として、10個の判別パターンを示す図である。 図7は、二次元フォトンカウンティング素子の動作を示すフローチャートである。 図8は、第1変形例としての10個の判別パターンを示す図である。 図9は、第2変形例としての10個の判別パターンを示す図である。 図10は、第3変形例としての10個の判別パターンを示す図である。 図11は、第4変形例に係る画素回路の内部構成の一例を示す図である。 図12は、第4変形例による効果を説明するためのグラフであって、変換部に入射したX線のエネルギーとイベント数(カウント数)との関係の一例を示すグラフである。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 図1は、本発明の一実施形態に係る二次元フォトンカウンティング素子1Aの構成を示す図である。図1に示されるように、本実施形態の二次元フォトンカウンティング素子1Aは、変換部3と、複数の画素電極部Bと、カウンティング回路5とを備えている。
 変換部3は、光やX線などの光子Pを吸収してキャリアを発生するバルク状若しくは層状の部材である。変換部3は、例えばCdTe、CdZnTe、GaAs、InP、TlBr、HgI、PbI、Si、Ge、及びa-Seのうち少なくとも一つを含む材料によって構成されている。変換部3は、光子Pの入射方向と交差する平面に沿って拡がっており、表面3a及び裏面3bを有する。表面3a上には、バイアス電極(共通電極)31が表面3aの全面を覆うように設けられている。表面3aには、バイアス電極31を通過して光子Pが入射する。
 複数の画素電極部Bは、変換部3の裏面3bに設けられている。複数の画素電極部Bとバイアス電極31との間には、バイアス電圧として高電圧が印加される。図2に示されている(a)は、変換部3の裏面3bにおける複数の画素電極部Bの配置を示す平面図である。複数の画素電極部Bは、光子Pの入射方向から見てM行×N列(M,Nは2以上の整数)の二次元状に配列されている。M×N個の画素電極部Bそれぞれは、変換部3においてM行N列の画素領域それぞれを形成する。各画素電極部Bは、対応する画素領域において発生したキャリアを収集する。図2に示されている(a)では、各画素電極部Bは、一つの電極から成る。図2中の(b)に示されるように、例えば、一つの画素電極部Bが、複数の電極bを含んでいてもよい。
 カウンティング回路5は、変換部3において発生したキャリアを画素領域毎に検出し、画素領域毎に光子数をカウントする。カウンティング回路5は、例えばASIC(Application Specific Integrated Circuit)などの集積回路により実現される。カウンティング回路5は、複数の画素回路(M×N個の画素回路)5aを有している。各画素回路5aは、対応する画素電極部Bにおいて収集されたキャリアを検出し、光子数をカウントする。
 図3は、各画素回路5aの内部構成の一例を示す図である。図3に示されるように、画素回路5aは、信号生成部51、電流出力部52a,52b、加算部53、比較部54、キャリア入力信号生成部55、キャリア入力パターン判別部56、及び計数部57を有している。
 信号生成部51は、複数の画素電極部Bのうち当該画素回路5aに接続されている画素電極部Bと電気的に接続されている。信号生成部51は、キャリアの電荷電圧変換を行うことによって入力信号SP1を生成する。以下の説明において、当該画素回路5aに接続された画素電極部Bを自電極部Bと称することがある。入力信号SP1は、自電極部Bから画素回路5aに入力されたキャリアの数に応じた大きさの電圧波形を有する信号である。各画素電極部Bが複数の電極bを含む場合(図2に示されている(b)を参照)には、図4中の(a)に示されるように、複数の電極bが一つの信号生成部51の入力端に接続されるとよい。或いは、図4中の(b)に示されるように、複数の信号生成部51が設けられ、複数の電極bそれぞれが複数の信号生成部51それぞれに接続されてもよい。
 電流出力部52aは、信号生成部51の出力端に接続されており、信号生成部51から入力信号SP1を受ける。電流出力部52aは、電圧信号である入力信号SP1に応じた大きさの電流信号SCを生成し、自電極部Bの周囲に配置された画素電極部Bのうち特定の画素電極部Bに接続された画素回路5aに、電流信号SCを提供する。以下の説明において、自電極部Bの周囲に配置された画素電極部Bを周囲電極部と称することがある。
 ここで、図5を参照する。図5は、自電極部Bと、自電極部Bを囲む8個の周囲電極部B~Bとを示す図である。図5に示された一例では、周囲電極部B~Bは自電極部Bの前行に含まれ、周囲電極部B,Bは自電極部Bと同じ行に含まれ、周囲電極部B~Bは自電極部Bの後行に含まれる。また、周囲電極部B,B,Bは自電極部Bの前列に含まれ、周囲電極部B,Bは自電極部Bと同じ列に含まれ、周囲電極部B,B,Bは自電極部Bの後列に含まれる。本実施形態では、電流出力部52aは、周囲電極部B,B,Bに接続された画素回路5aに電流信号SCを提供する。
 再び図3を参照する。電流出力部52bは、信号生成部51の出力端に接続されており、信号生成部51から入力信号SP1を受ける。電流出力部52bは、電圧信号である入力信号SP1に応じた大きさの電流信号SCを生成し、電流信号SCを加算部53に提供する。加算部53は、周囲電極部B~Bのうち特定の電極部(以下、特定電極部という)B,B,Bに接続された3つの画素回路5aの電流出力部52aと接続されており、それらの電流出力部52aから電流信号SCの提供を受ける。加算部53は、提供を受けた3つの電流信号SCと、当該画素回路5aの電流出力部52bから提供された電流信号SCとを加算し、加算後の電流に応じた大きさの電圧信号SP2を生成する。電圧信号SP2は、自電極部B及び特定電極部B,B,Bに入力されたキャリア数の総和に応じた大きさの電圧波形を有する信号である。特定電極部B,B,Bは、各画素回路5aにおいて光子数をカウントする際に、その光子Pに起因するキャリアの分散範囲に含まれるとみなされた周囲電極部であって、周囲電極部B~Bの中から任意に且つ予め決定される。例えば自電極部Bが行端または列端に存在する等によって自電極部Bに対する特定電極部B,B,Bの一部が存在しない場合には、加算部53は、存在しない特定電極部からの電流信号SCを加算しなくてもよい。例えば自電極部Bが行端且つ列端に存在する等によって自電極部Bに対する特定電極部B,B,Bの全部が存在しない場合には、加算部53及びそれ以降の回路部分は、必須ではなく省略可能である。
 比較部54は、加算部53の出力端に接続されており、加算部53から電圧信号SP2を受ける。比較部54は、電圧信号SP2のピーク電圧の大きさが所定の閾値を超えているか否かを判定する。すなわち、比較部54は、自電極部Bの周辺において一つ以上の測定対象とする光子Pに相当する数のキャリアが発生したか否かを判定する。比較部54は、電圧信号SP2のピーク電圧の大きさが所定の閾値を超えている場合に、判定結果信号S1としてHighレベル(有意値)を出力する。比較部54は、電圧信号SP2のピーク電圧の大きさが上記所定の閾値を超えていない場合には、判定結果信号S1としてLowレベル(非有意値)を出力する。
 キャリア入力信号生成部55は、信号生成部51の出力端に接続されており、信号生成部51から入力信号SP1を受ける。キャリア入力信号生成部55は、或る閾値(例えば、ノイズレベルより僅かに大きい値)を超える入力信号SP1が入力された場合には、自電極部Bへのキャリアの入力があったことを示すために、キャリア入力信号S2としてHighレベル(有意値)を出力する。キャリア入力信号生成部55は、上記閾値を超えない入力信号SP1が入力された場合には、キャリア入力信号S2としてLowレベル(非有意値)を出力する。キャリア入力信号S2は、周囲電極部B~Bにそれぞれ接続された7つの画素回路5aに提供される。
 キャリア入力パターン判別部56は、周囲電極部B~Bにそれぞれ接続された7つの画素回路5aから、キャリア入力信号S2の提供を受ける。キャリア入力パターン判別部56は、これらのキャリア入力信号S2に基づいて、キャリア入力パターンが複数の判別パターンのうちの何れかと合致するか否かを判別する。キャリア入力パターンは、自電極部B及び周囲電極部B~Bへのキャリアの入力の有無を電極毎に表している。キャリア入力パターンでは、キャリアが自電極部B及び周囲電極部B~Bのうち何れの画素電極部Bに入力したのかがパターン化されている。キャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンのうちの何れかと合致し、且つ、判定結果信号S1としてHighレベル(有意値)が入力されている場合に、判別信号S3としてHighレベル(有意値)を出力する。キャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンのうちの何れかと合致しない場合、及び/又は、判定結果信号S1としてLowレベル(非有意値)が入力されている場合に、判別信号S3としてLowレベル(非有意値)を出力する。これにより、計数部57では、キャリア入力パターン判別部56においてキャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ電圧信号SP2のピーク電圧の大きさが所定の閾値を超えている場合(すなわち判別信号S3がHighレベル(有意値)である場合)に、光子数の加算が行われる。本実施形態では、周囲電極部Bにおけるキャリアの入射の有無は判別に影響しないので、キャリア入力パターン判別部56は、周囲電極部Bに接続された画素回路5aからはキャリア入力信号S2の提供を受ける必要はない。本実施形態では、計数部57が画素電極部B毎に一つずつ設けられているが、計数部57は、二つ以上の画素電極部Bに対して一つのみ設けられてもよい。
 ここで、図6を参照する。図6中の(a)~(j)は、キャリア入力パターン判別部56に設定される複数の判別パターンの一例として、10個の判別パターンP1~P10を示す図である。図6では、キャリア入力信号S2が出力された(すなわちキャリアが入力された)画素回路5aに対応する画素電極部に「H」と表記されている。自電極部B及び特定電極部B,B,Bは、判別パターンP1~P10を容易に理解するために、太枠で示されている。自電極部B及び周囲電極部B~Bの符号は、図6中の(a)にのみ示し、図6中の(b)~(j)では省略している。キャリア入力パターン判別部56は、複数の論理回路の組み合わせにより構成されていてもよい。この場合、組み合わされた複数の論理回路は、周囲電極部B~Bからのキャリア入力信号S2及び自電極部Bのキャリア入力信号S2の組み合わせに応じて、有効であるか否かを決定する。これにより、キャリア入力パターン判別部56において、キャリア入力パターンが複数の判別パターン(たとえば、判別パターンP1~P10)のうちの何れかと合致するか否かが判別される。また、カウンティング回路5は、複数の判別パターン(たとえば、判別パターンP1~P10)を記憶するメモリを含んでいてもよい。この場合、キャリア入力パターン判別部56は、上記メモリに記憶されている複数の判別パターンの何れかとキャリア入力パターンとが合致するか否かを判別する。キャリア入力パターン判別部56が、複数の論理回路の組み合わせにより構成されている場合、メモリなどの物理構成が不要となり、カウンティング回路5の構成を簡素化することができる。
 図6に示される10個の判別パターンP1~P10は、幾つかのルールに則り定められている。周囲電極部B~Bのうち特定電極部B,B,B以外の画素電極部B~B,Bにキャリアが入力する場合のキャリア入力パターンが、判別パターンP1~P10の何れとも合致しない。言い換えれば、これらの判別パターンP1~P10には、自電極部Bを含む行の前行及び後行のうち一方の行(本実施形態では前行)に含まれる周囲電極部B~B、及び自電極部Bを含む列の前列及び後列のうち一方の列(本実施形態では前列)に含まれる周囲電極部B,B,Bの何れかにキャリアが入力される場合のキャリア入力パターンに相当するパターンが含まれない。従って、周囲電極部B~B,Bの何れかにキャリアが入力された場合、自電極部Bに接続された画素回路5aのキャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンP1~P10の何れとも合致しないものとして判別する。これらの周囲電極部B~B,Bの何れかにキャリアが入力された場合には、自電極部Bを除く何れかの画素電極部Bに接続された画素回路5aにおいて、必ずキャリア入力パターンが判別パターンP1~P10の何れかに合致するように、判別パターンP1~P10が設定されている。従って、上記の判別ルールに則って判別パターンP1~P10が設定されることにより、一つの光子Pの入射に対して複数の画素回路5aで光子数を加算することを適切に回避することができる。判別パターンP1~P10を容易に理解するために、周囲電極部B~B,Bには×印が付されている。×印が付された周囲電極部B~B,Bに接続された画素回路5aからは、実際には空白の画素と同様の「Low」のキャリア入力信号S2が出力されている。この判別ルールは、本実施形態のように上記一方の行(前行)及び上記一方の列(前列)の何れにも含まれない周囲電極部B,B,Bが特定電極となっている場合に有効である。
 これらの判別パターンP1~P10には、上記一方の行(前行)及び上記一方の列(前列)の何れにも含まれず、且つ自電極部Bを含む行又は列に含まれる周囲電極部B,Bのうち、少なくとも一つの周囲電極部にキャリアが入力され、且つ、自電極部Bにキャリアが入力される場合の全てのキャリア入力パターンに相当するパターンが含まれている。言い換えれば、自電極部Bを含む行又は列に含まれる特定電極部B,Bのうち少なくとも一つの特定電極部にキャリアが入力され、且つ自電極部Bにキャリアが入力される場合のキャリア入力パターンが、複数の判別パターンP1~P10の何れかと必ず合致する。具体的には、周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP2,P5,P7,P8によって表されている。周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP3,P6,P7,P8によって表されている。このような判別ルールに則って判別パターンが設定されることにより、当該画素回路5aにおける光子数の加算の可否を適切に判定することができる。
 これらの判別パターンP1~P10には、上記一方の列(前列)に含まれず且つ自電極部Bを含む行に含まれる周囲電極部Bにキャリアが入力され、上記一方の行(前行)に含まれず且つ自電極部Bを含む列に含まれる周囲電極部Bにキャリアが入力され、且つ、自電極部Bにキャリアが入力されない場合のキャリア入力パターンに相当するパターンが含まれている。具体的には、周囲電極部B,Bの双方にキャリアが入力され、自電極部Bにキャリアが入力されない全てのパターンが判別パターンP9,P10によって表されている。このような判別ルールに則って判別パターンが設定されることにより、当該画素回路5aにおける光子数の加算の可否を適切に判定することができる。判別パターンP1~P10には、チャージシェアの影響がほとんどなく、自電極部Bにのみキャリアが入力される場合の判別パターンP1も含まれている。
 以上の構成を備える本実施形態の二次元フォトンカウンティング素子1Aの動作について説明する。図7は、二次元フォトンカウンティング素子1Aの動作を示すフローチャートである。
 二次元フォトンカウンティング素子1Aでは、まず、光像又は放射線像などの光子Pが変換部3に入射することによって、変換部3において複数のキャリアが発生する(S11)。複数のキャリアは、変換部3の内部を移動し、複数の画素電極部Bのうち一又は二以上の画素電極部Bに入力される(S12)。キャリアが入力された画素電極部Bに接続されている各画素回路5aでは、信号生成部51において、入力信号SP1が生成される(S13)。そして、この入力信号SP1は、電流出力部52a,52bによって電流信号SCに変換される(S14)。電流出力部52aから出力された電流信号SCは、各画素回路5aに対応する自電極部Bに対する周囲電極部B,B,Bに接続された画素回路5aに提供される(S15)。また、電流出力部52bから出力された電流信号SCは、加算部53に提供される。
 続いて、加算部53では、特定電極部B,B,Bに接続された3つの画素回路5aの電流出力部52aから電流信号SCの提供を受ける。そして、提供を受けた3つの電流信号SCと、当該画素回路5aの電流出力部51bにおいて生成された電流信号SCとが加算され、電圧信号SP2が生成される(S16)。続いて、比較部54において、電圧信号SP2のピーク電圧の大きさが所定の閾値を超えているか否かが判定される(S17)。電圧信号SP2のピーク電圧の大きさが所定の閾値を超えている場合には、判定結果信号S1がHighレベル(有意値)となる。
 上述した一連の動作S14~S17と並行して、動作S18が行われる。動作S18では、或る閾値を超える入力信号SP1が入力された場合に、自電極部Bへのキャリアの入力があったことを示すために、キャリア入力信号生成部55によって生成されるキャリア入力信号S2がHighレベル(有意値)となる。キャリア入力信号S2は、周囲電極部B~Bにそれぞれ接続された7つの画素回路5aに提供される(S19)。
 続いて、キャリア入力パターン判別部56において、自電極部B及び周囲電極部B~Bへのキャリアの入力の有無を電極毎に表すキャリア入力パターンが、複数の判別パターンのうちの何れかと合致するか否かが判別される(S20)。そして、動作S20において合致すると判別され、且つ判定結果信号S1がHighレベル(有意値)である場合には(S21にて「YES」)、判別信号S3がHighレベル(有意値)となり、計数部57において、光子数の加算が行われる(S22)。
 以上に説明した本実施形態の二次元フォトンカウンティング素子1Aによって得られる効果について説明する。前述したように、変換部3への光子Pの入射によって発生した複数のキャリアは、複数の画素電極部に分散して収集されることがある。その分散範囲が比較的狭い場合(例えば、分散範囲が2×2画素内である場合)、キャリアの分散は、例えば熱拡散やキャリア同士の反発に起因する。光電変換の場合、変換部3に光子Pが入射した箇所でエネルギーの全てが光電子に変換されるが、この高エネルギーの光電子は、エネルギーを失いつつ変換部3の内部を移動しながらキャリアを生成する。このような場合にも、キャリアの分散が生じる。
 本実施形態の二次元フォトンカウンティング素子1Aでは、キャリア入力パターン判別部56が、自電極部B及び周囲電極部B~Bとから成る画素電極群に対するキャリア入力パターンが複数の判別パターンP1~P10の何れかと合致するか否かを判別する。そして、キャリア入力パターン判別部56は、その判別結果に基づいて、比較部54からの出力を計数部57に出力するか否かを決定する。このように、本実施形態の二次元フォトンカウンティング素子1Aによれば、キャリア入力パターンが複数の判別パターンP1~P10と合致するか否かを単に判別するだけで、光子数をカウントするか否か(換言すれば、各画素電極部Bに対応する変換部3の画素領域に光子Pが入射したとみなされるか否か)を決定することができる。従って、二次元フォトンカウンティング素子1Aでは、複数の画素電極部Bにキャリアが分散して収集された場合(チャージシェアが生じた場合)であっても、ダブルカウントが抑制されるとともに数え落としが低減される。この結果、二次元フォトンカウンティング素子1Aにより、光子Pが入射した位置を、複雑な処理を行うことなく極めて容易に特定することができる。
 前述したように、本実施形態では、各画素回路5aに入力されたキャリア数に応じた大きさの入力信号SP1が生成されて電流信号SCに変換され、自電極部B及び特定電極部B,B,Bに接続された画素回路5aの電流信号SCが加算部53において加算される。そして、加算部53から出力された加算後の電圧信号SP2の大きさが所定の閾値を超えた場合、言い換えれば、一つ以上の測定対象とする光子Pが分散範囲内に入射したとみなされる場合に、自電極部Bに接続された比較部54からキャリア入力パターン判別部56に入力される判定結果信号S1がHighレベル(有意値)となる。これにより、複数の画素電極部Bにキャリアが分散して収集された場合であっても、一つ以上の測定対象とする光子Pの入射に対応して精度良くカウントすることができる。
 実際には、上述したキャリアの分散(散乱)の態様とは異なる態様の散乱も存在する。異なる態様の散乱として、上述したキャリアの散乱と比較して散乱距離が大きい態様もあるが、当該態様の発生はごく稀である。本実施形態においては、対象とするチャージシェアが予め決められており、対象となるチャージシェアの拡がりの予測に基づいて、周囲電極部等の範囲が設定されている。つまり、極めて大きな散乱距離が生じる現象は、測定の対象とはされていない。これにより、特許文献1のような煩雑な処理(加算エリアを順次増やしていく等の処理)を行うことなく、簡単に補正処理を行うことができる。
 本実施形態では、判別パターンP1~P10の中に、自電極部Bにキャリアが入力されない場合のキャリア入力パターンに相当するパターンである判別パターンP9,P10が含まれている。一般的には、或る画素電極部Bにキャリアが入力されていない場合、その画素電極部Bに接続された画素回路5aにおいて光子数を加算することはない。しかしながら、例えば変換部3においてK-escapeという現象が生じた場合などに、光子Pの入射位置に対応する画素電極部Bにキャリアが入力されないことがある。本実施形態では、そのような場合であっても、自電極部Bにキャリアが入力されないキャリア入力パターンが複数の判別パターンP1~P10の一部に組み入れてられているので、数え落としが更に低減される。この結果、二次元フォトンカウンティング素子1Aにより、光子Pが入射した位置をより精度良く特定することができる。K-escapeとは、例えばK殻の光電子が抜けた所にL殻やM殻の電子が落ち、差分のX線を放出する現象である。
 続いて、複数の判別パターンの変形例について説明する。上記実施形態では、図6に示された10個の判別パターンP1~P10を例示したが、本実施形態による二次元フォトンカウンティング素子1Aでは、他に様々な判別パターンを適用することができる。
 (第1変形例)
 図8は、第1変形例としての10個の判別パターンP11~P20を示す図である。図8に示された判別パターンP11~P20は、特定電極部がB,B,Bである場合に好適なパターンである。これらの判別パターンP11~P20は、上記実施形態の判別パターンP1~P10(図6を参照)と同様のルールに則り定められている。まず、周囲電極部B~Bのうち特定電極部B,B,B以外の画素電極部B~B,B,Bにキャリアが入力する場合のキャリア入力パターンが、判別パターンP11~P20の何れとも合致しない。言い換えれば、これらの判別パターンP11~P20には、自電極部Bを含む行の前行及び後行のうち一方の行(本変形例では前行)に含まれる周囲電極部B~B、及び自電極部Bを含む列の前列及び後列のうち一方の列(本変形例では後列)に含まれる周囲電極部B,B,Bの何れかにキャリアが入力される場合のキャリア入力パターンに相当するパターンが含まれない。従って、周囲電極部B~B,B,Bの何れかにキャリアが入力された場合、自電極部Bに接続された画素回路5aのキャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンP11~P20の何れとも合致しないと判別する。
 これらの判別パターンP11~P20には、上記一方の行(前行)及び上記一方の列(後列)の何れにも含まれず、且つ自電極部Bを含む行又は列に含まれる周囲電極部B,Bのうち、少なくとも一つの周囲電極にキャリアが入力され、且つ、自電極部Bにキャリアが入力される場合の全てのキャリア入力パターンに相当するパターンが含まれている。言い換えれば、自電極部Bを含む行又は列に含まれる特定電極部B,Bのうち少なくとも一つの特定電極部にキャリアが入力され、且つ自電極部Bにキャリアが入力される場合のキャリア入力パターンが、複数の判別パターンP11~P20の何れかと必ず合致する。具体的には、周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP12,P15,P17,P18によって表されている。周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP13,P16,P17,P18によって表されている。
 これらの判別パターンP11~P20には、上記一方の列(後列)に含まれず且つ自電極部Bを含む行に含まれる周囲電極部Bにキャリアが入力され、上記一方の行(前行)に含まれず且つ自電極部Bを含む列に含まれる周囲電極部Bにキャリアが入力され、且つ、自電極部Bにキャリアが入力されない場合のキャリア入力パターンに相当するパターンが含まれている。具体的には、周囲電極部B、Bの双方にキャリアが入力され、且つ自電極部Bにキャリアが入力されない全てのパターンが、判別パターンP19,P20によって表されている。
 本変形例の複数の判別パターンP11~P20が、キャリア入力パターン判別部56で用いられる複数の判別パターンに適用される場合であっても、二次元フォトンカウンティング素子1Aは、上記実施形態と同様の効果を奏することができる。
 (第2変形例)
 図9は、第2変形例としての10個の判別パターンP21~P30を示す図である。図9に示された判別パターンP21~P30は、特定電極がB,B,Bである場合に好適なパターンである。これらの判別パターンP21~P30もまた、上記実施形態の判別パターンP1~P10(図6を参照)と同様のルールに則り定められている。まず、周囲電極部B~Bのうち特定電極部B,B,B以外の画素電極部B,B~Bにキャリアが入力する場合のキャリア入力パターンが、判別パターンP21~P30の何れとも合致しない。言い換えれば、これらの判別パターンP21~P30には、自電極部Bを含む行の前行及び後行のうち一方の行(本変形例では後行)に含まれる周囲電極部B~B、及び自電極部Bを含む列の前列及び後列のうち一方の列(本変形例では後列)に含まれる周囲電極部B,B,Bの何れかにキャリアが入力される場合のキャリア入力パターンに相当するパターンが含まれない。従って、周囲電極部B,B~Bの何れかにキャリアが入力された場合、自電極部Bに接続された画素回路5aのキャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンP21~P30の何れとも合致しないと判別する。
 これらの判別パターンP21~P30には、上記一方の行(後行)及び上記一方の列(後列)の何れにも含まれず、且つ自電極部Bを含む行又は列に含まれる周囲電極部B,Bのうち、少なくとも一つの周囲電極部にキャリアが入力され、且つ、自電極部Bにキャリアが入力される場合の全てのキャリア入力パターンに相当するパターンが含まれている。言い換えれば、自電極部Bを含む行又は列に含まれる特定電極部B,Bのうち少なくとも一つの特定電極部にキャリアが入力され、且つ自電極部Bにキャリアが入力される場合のキャリア入力パターンが、複数の判別パターンP21~P30の何れかと必ず合致する。具体的には、周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP22,P25,P27,P28によって表されている。周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP23,P26,P27,P28によって表されている。
 これらの判別パターンP21~P30には、上記一方の列(後列)に含まれず且つ自電極部Bを含む行に含まれる周囲電極部Bにキャリアが入力され、上記一方の行(後行)に含まれず且つ自電極部Bを含む列に含まれる周囲電極部Bにキャリアが入力され、且つ、自電極部Bにキャリアが入力されない場合のキャリア入力パターンに相当するパターンが含まれている。具体的には、周囲電極部B,Bの双方にキャリアが入力され、且つ自電極部Bにキャリアが入力されない全てのパターンが、判別パターンP29,P30によって表されている。
 本変形例の複数の判別パターンP21~P30が、キャリア入力パターン判別部56で用いられる複数の判別パターンに適用される場合であっても、二次元フォトンカウンティング素子1Aは、上記実施形態と同様の効果を奏することができる。
 (第3変形例)
 図10は、第3変形例としての10個の判別パターンP31~P40を示す図である。図10に示された判別パターンP31~P40は、特定電極がB,B,Bである場合に好適なパターンである。これらの判別パターンP31~P40もまた、上記実施形態の判別パターンP1~P10(図6を参照)と同様のルールに則り定められている。まず、周囲電極部B~Bのうち特定電極部B,B,B以外の画素電極部B,B,B~Bにキャリアが入力する場合のキャリア入力パターンが、判別パターンP31~P40の何れとも合致しない。言い換えれば、これらの判別パターンP31~P40には、自電極部Bを含む行の前行及び後行のうち一方の行(本変形例では後行)に含まれる周囲電極部B~B、及び自電極部Bを含む列の前列及び後列のうち一方の列(本変形例では前列)に含まれる周囲電極部B,B,Bの何れかにキャリアが入力される場合のキャリア入力パターンに相当するパターンが含まれない。従って、周囲電極部B,B,B~Bの何れかにキャリアが入力された場合、自電極部Bに接続された画素回路5aのキャリア入力パターン判別部56は、キャリア入力パターンが複数の判別パターンP31~P40の何れとも合致しないと判別する。
 これらの判別パターンP31~P40には、上記一方の行(後行)及び上記一方の列(前列)の何れにも含まれず、且つ自電極部Bを含む行又は列に含まれる周囲電極部B,Bのうち、少なくとも一つの周囲電極部にキャリアが入力され、且つ、自電極部Bにキャリアが入力される場合の全てのキャリア入力パターンに相当するパターンが含まれている。言い換えれば、自電極部Bを含む行又は列に含まれる特定電極部B,Bのうち少なくとも一つの特定電極部にキャリアが入力され、且つ自電極部Bにキャリアが入力される場合のキャリア入力パターンが、複数の判別パターンP31~P40の何れかと必ず合致する。具体的には、周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP32,P35,P37,P38によって表されている。周囲電極部B及び自電極部Bにキャリアが入力される場合の全てのパターンが、判別パターンP33,P36,P37,P38によって表されている。
 これらの判別パターンP31~P40には、上記一方の列(前列)に含まれず且つ自電極部Bを含む行に含まれる周囲電極部Bにキャリアが入力され、上記一方の行(後行)に含まれず且つ自電極部Bを含む列に含まれる周囲電極部Bにキャリアが入力され、且つ、自電極部Bにキャリアが入力されない場合のキャリア入力パターンに相当するパターンが含まれている。具体的には、周囲電極部B,Bの双方にキャリアが入力され、且つ自電極部Bにキャリアが入力されない全てのパターンが、判別パターンP39,P40によって表されている。
 本変形例の複数の判別パターンP31~P40が、キャリア入力パターン判別部56で用いられる複数の判別パターンに適用される場合であっても、二次元フォトンカウンティング素子1Aは、上記実施形態と同様の効果を奏することができる。
 (第4変形例)
 次に、図11を参照して、第4変形例として、画素回路5bの変形例を説明する。図11は、第4変形例に係る画素回路5bの内部構成の一例を示す図である。図11に示されるように、画素回路5bは、信号生成部51、電流出力部52a,52b、加算部53、比較部54a,54b、キャリア入力信号生成部55、キャリア入力パターン判別部56a,56b、並びに計数部57a,57bを有している。信号生成部51、電流出力部52a,52b、加算部53、並びにキャリア入力信号生成部55の構成及び動作は、前述した実施形態と同様であるため、これらの構成及び動作の詳細な説明を省略する。
 比較部54a,54bは、加算部53の出力端に接続されており、加算部53から電圧信号SP2を受ける。比較部54aは、電圧信号SP2のピーク電圧の大きさが所定の第1の閾値を超えているか否かを判定する。比較部54aは、電圧信号SP2のピーク電圧の大きさが第1の閾値を超えている場合に、判定結果信号S1aとしてHighレベル(有意値)を出力する。比較部54bは、電圧信号SP2のピーク電圧の大きさが、第1の閾値よりも大きい第2の閾値を超えているか否かを判定する。比較部54bは、電圧信号SP2のピーク電圧の大きさが第2の閾値を超えている場合に、判定結果信号S1bとしてHighレベル(有意値)を出力する。比較部54a,54bは、上記以外の場合に、判定結果信号S1a,S1bとしてLowレベル(非有意値)を出力する。
 キャリア入力パターン判別部56a,56bは、周囲電極部B~Bにそれぞれ接続された7つの画素回路5bから、キャリア入力信号S2の提供を受ける。キャリア入力パターン判別部56a,56bは、これらのキャリア入力信号S2に基づいて、キャリア入力パターンが複数の判別パターンのうちの何れかと合致するか否かを判別する。キャリア入力パターンは、自電極部B及び周囲電極部B~Bへのキャリアの入力の有無を電極毎に表している。キャリア入力パターン判別部56aは、キャリア入力パターンが複数の判別パターンのうちの何れかと合致し、且つ、判定結果信号S1aとしてHighレベル(有意値)が入力されている場合に、判別信号S3aとしてHighレベル(有意値)を出力し、それ以外の場合には判別信号S3aとしてLowレベル(非有意値)を出力する。同様に、キャリア入力パターン判別部56bは、キャリア入力パターンが複数の判別パターンのうちの何れかと合致し、且つ、判定結果信号S1bとしてHighレベル(有意値)が入力されている場合に、判別信号S3bとしてHighレベル(有意値)を出力し、それ以外の場合には判別信号S3bとしてLowレベル(非有意値)を出力する。
 計数部57a,57bは、それぞれ本実施形態における第1及び第2の計数部として機能する。計数部57aでは、キャリア入力パターン判別部56aにおいてキャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ、判定結果信号S1aとしてHighレベル(有意値)が出力されている場合(すなわち判別信号S3aがHighレベル(有意値)である場合)に、光子数の加算が行われる。同様に、計数部57bでは、キャリア入力パターン判別部56bにおいてキャリア入力パターンが複数の判別パターンの何れかと合致すると判別され、且つ、判定結果信号S1bとしてHighレベル(有意値)が出力されている場合(すなわち判別信号S3bがHighレベル(有意値)である場合)に、光子数の加算が行われる。
 本変形例の画素回路5bのように、画素回路は、複数の比較部を有してもよい。このような場合であっても、前述した実施形態と同様の効果を得ることができる。また、本変形例のように比較部が複数設けられることによって、以下に説明する効果を更に得ることができる。
 図12は、本変形例による効果を説明するためのグラフであって、変換部3に入射したX線のエネルギーとイベント数(カウント数)との関係の一例を示すグラフである。この例では、或るエネルギーE1においてカウント数がピークPk1となっており、エネルギーE1よりも大きいエネルギーE2においてカウント数が別のピークPk2となっている。ここで、ピークPk1に対応するエネルギーE1が、画質向上のために特に有効なエネルギー値(例えば、コントラストが向上するX線エネルギー帯)であると仮定する。このような場合、所定の閾値がエネルギーE1よりも小さい1つの値(図中の閾値vth1)のみであると、vth1以上のエネルギー値を有する光子が全てカウントされる。これに対し、第1の閾値vth1と、エネルギーE1よりも大きい第2の閾値vth2とを設定し、閾値vth1におけるカウント値と閾値vth2におけるカウント値との差を求めることによって、一回の測定でより精度の良いデータ(望ましいエネルギー帯のデータ)を得ることができる。
 例えばγ線のように光子エネルギーが既知であれば、パイルアップ対策としても使用可能である。すなわち、入射する光子のエネルギーが閾値vth1以上閾値vth2以下の範囲内に必ず含まれることが予め分かっている場合には、閾値vth2を超えるエネルギーの場合には2個の光子が連続して入射していると推測する。これにより、本変形例では、光子2個として計数することができる。上記実施形態の方式(図3を参照)では、2個の光子が連続して入射した場合に1個として計数するおそれがあるが、本変形例によれば、上記のように数え落としを更に低減することができる。
 本発明による二次元フォトンカウンティング素子は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態及び各変形例では前行及び後行、並びに前列及び後列に含まれる8個の画素電極部B~Bを周囲電極部とし、自電極部Bを含めた3×3画素の領域において判別パターンを設定している。本発明では、判別パターンの対象となる領域の大きさについての制約は無く、例えば4×4画素又は5×5画素といった様々な大きさの領域において判別パターンを任意に設定することができる。上記実施形態及び各変形例では、特定電極部として2×2画素(自電極部を含む)の領域を例示しているが、特定電極部もまた、周囲電極部の中から任意に定めることができる。
 本実施形態及び本変形例では、比較部54,54a,54bは、キャリア入力パターン判別部56,56a,56bの前段に位置しているが、比較部54,54a,54bの位置は、これに限られない。たとえば、比較部54,54a,54bは、キャリア入力パターン判別部56,56a,56bの後段に位置していてもよい。この場合、キャリア入力パターン判別部56,56a,56bは、加算部53の出力端に接続され、加算部53から電圧信号SP2を受ける。キャリア入力パターン判別部56,56a,56bは、キャリア入力パターンが複数の判別パターンのうちの何れかと合致し、且つ、加算部53から電圧信号SP2が入力されている場合に、電圧信号SP2を比較部54,54a,54bに出力する。比較部54,54a,54bは、キャリア入力パターン判別部56,56a,56bを通して加算部53から入力された電圧信号SP2のピーク電圧の大きさが所定の閾値を超えているか否かを判定する。計数部57,57a,57bでは、比較部54,54a,54bから出力された判定結果信号S1がHighレベル(有意値)である場合、光子数の加算が行われる。
 本発明は、二次元フォトンカウンティング素子に利用できる。
 1A…二次元フォトンカウンティング素子、3…変換部、5…カウンティング回路、5a…画素回路、51…信号生成部、52a,52b…電流出力部、53…加算部、54…比較部、55…キャリア入力信号生成部、56…キャリア入力パターン判別部、57…計数部、B…画素電極部、B0…自電極部、B1~B8…周囲電極部、P…光子、P1~P40…判別パターン、S1…判定結果信号、S2…キャリア入力信号、SP1…入力信号、SP2…電圧信号。

Claims (5)

  1.  二次元フォトンカウンティング素子であって、
     M行N列(M及びNは、二以上の整数である)の二次元状に配列された複数の画素電極部に接続され、光子をキャリアに変換する変換部から前記複数の画素電極部を介して収集されるキャリアを検出して前記光子の計数を行うカウンティング回路を備え、
     前記カウンティング回路は、
     前記複数の画素電極部のうち或る画素電極部に入力されたキャリアの数に応じた大きさの入力信号を生成する信号生成部と、
     前記或る画素電極部の周囲に配置された前記画素電極部のうち特定の画素電極部に接続された前記信号生成部において生成された前記入力信号と、前記或る画素電極部に接続された前記信号生成部において生成された前記入力信号と、を加算する加算部と、
     前記或る画素電極部及び当該或る画素電極部の周囲に配置された前記画素電極部へのキャリアの入力の有無を画素電極部毎に表すキャリア入力パターンが、複数の判別パターンの何れかに合致するか否かの判別を行うキャリア入力パターン判別部と、
     前記キャリア入力パターン判別部において前記キャリア入力パターンが前記複数の判別パターンの何れかと合致すると判別され、且つ前記加算部から出力された加算後の前記入力信号の大きさが所定の閾値を超えた場合に光子数を加算する計数部と、
    を有する。
  2.  請求項1に記載の二次元フォトンカウンティング素子であって、
     前記或る画素電極部の周囲に配置された前記画素電極部のうち前記特定の画素電極部以外の前記画素電極部にキャリアが入力する場合の前記キャリア入力パターンが、前記複数の判別パターンの何れとも合致しない。
  3.  請求項1または2に記載の二次元フォトンカウンティング素子であって、
     前記複数の判別パターンが、前記或る画素電極部に前記キャリアが入力されない場合のキャリア入力パターンに相当するパターンを含む。
  4.  請求項1~3のいずれか一項に記載の二次元フォトンカウンティング素子であって、
     前記或る画素電極部を含む行又は列に含まれる前記特定の画素電極部のうち少なくとも一つの前記特定の画素電極部に前記キャリアが入力され、且つ前記或る画素電極部にキャリアが入力される場合のキャリア入力パターンが、前記複数の判別パターンの何れかと合致する。
  5.  請求項1~4のいずれか一項に記載の二次元フォトンカウンティング素子であって、
     前記カウンティング回路は、前記計数部として、
     前記キャリア入力パターンが前記複数の判別パターンの何れかと合致すると判別され、且つ前記加算部から出力された加算後の前記入力信号の大きさが第1の閾値を超えた場合に光子数を加算する第1の計数部と、
     前記キャリア入力パターンが前記複数の判別パターンの何れかと合致すると判別され、且つ前記加算部から出力された加算後の前記入力信号の大きさが前記第1の閾値よりも大きい第2の閾値を超えた場合に光子数を加算する第2の計数部と、
    を有する。
PCT/JP2014/080484 2013-12-09 2014-11-18 二次元フォトンカウンティング素子 WO2015087663A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES14870555T ES2696748T3 (es) 2013-12-09 2014-11-18 Elemento de conteo de fotones bidimensional
CN201480067271.7A CN105830432B (zh) 2013-12-09 2014-11-18 二维光子计数元件
JP2015552372A JP6474350B2 (ja) 2013-12-09 2014-11-18 二次元フォトンカウンティング素子
KR1020167016387A KR102237264B1 (ko) 2013-12-09 2014-11-18 이차원 포톤 카운팅 소자
EP14870555.1A EP3082332B1 (en) 2013-12-09 2014-11-18 Two-dimensional photon counting element
US15/101,087 US9909921B2 (en) 2013-12-09 2014-11-18 Two-dimensional photon counting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013254261 2013-12-09
JP2013-254261 2013-12-09

Publications (1)

Publication Number Publication Date
WO2015087663A1 true WO2015087663A1 (ja) 2015-06-18

Family

ID=53370977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080484 WO2015087663A1 (ja) 2013-12-09 2014-11-18 二次元フォトンカウンティング素子

Country Status (8)

Country Link
US (1) US9909921B2 (ja)
EP (1) EP3082332B1 (ja)
JP (1) JP6474350B2 (ja)
KR (1) KR102237264B1 (ja)
CN (1) CN105830432B (ja)
ES (1) ES2696748T3 (ja)
TW (1) TWI668415B (ja)
WO (1) WO2015087663A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194295A1 (en) * 2015-06-01 2016-12-08 Canon Kabushiki Kaisha Radiation imaging apparatus, control method thereof, and program
WO2016194286A1 (en) * 2015-06-01 2016-12-08 Canon Kabushiki Kaisha Radiation imaging apparatus, driving method thereof, and program
JP2017009504A (ja) * 2015-06-24 2017-01-12 株式会社リガク X線データ処理装置、その方法およびプログラム
WO2017010045A1 (en) * 2015-07-10 2017-01-19 Canon Kabushiki Kaisha Radiation imaging apparatus, control method thereof, and program
US9608254B1 (en) 2016-05-26 2017-03-28 Royal Die & Stamping Co., Inc. Pull bar battery terminal clamp
JP2018040800A (ja) * 2016-09-07 2018-03-15 キヤノンメディカルシステムズ株式会社 信号処理回路、放射線検出装置及び信号処理方法
US10008789B1 (en) 2017-07-10 2018-06-26 Royal Die & Stamping, Llc Angled bolt T-bar battery terminal clamp
JP2019502100A (ja) * 2015-11-20 2019-01-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 検出値決定システム
WO2019017069A1 (ja) * 2017-07-20 2019-01-24 株式会社日立製作所 波高頻度分布取得装置、波高頻度分布取得方法、波高頻度分布取得プログラム及び放射線撮像装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9891328B2 (en) * 2015-09-30 2018-02-13 General Electric Company Systems and methods for reduced size detector electronics
JP7171213B2 (ja) * 2018-04-02 2022-11-15 キヤノン株式会社 光電変換装置及び撮像システム
JP7114396B2 (ja) * 2018-08-03 2022-08-08 キヤノン株式会社 撮像装置、撮像システム、移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667205B2 (en) 2005-10-05 2010-02-23 Organisation Europeenne Pour La Recherche Nucleaire Method for determining a particle and sensor device therefor
WO2013005848A1 (ja) * 2011-07-07 2013-01-10 株式会社東芝 光子計数型画像検出器、x線診断装置、及びx線コンピュータ断層装置
JP2013501226A (ja) * 2009-08-04 2013-01-10 オルガニザシオン・ユーロピエンヌ・プール・ラ・ルシェルシェ・ニュークリエール 画素化放射線検知デバイス
WO2013048436A1 (en) * 2011-09-30 2013-04-04 Analogic Corporation Photon count correction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442180A (en) * 1993-08-19 1995-08-15 Battelle Memorial Institute Apparatus for the field determination of concentration of radioactive constituents in a medium
DE69628858T2 (de) * 1996-11-24 2004-05-06 Ge Medical Systems Israel, Ltd. Festkörper-gammakamera
US6831263B2 (en) * 2002-06-04 2004-12-14 Intel Corporation Very high speed photodetector system using a PIN photodiode array for position sensing
FI119173B (fi) * 2001-11-23 2008-08-29 Planmed Oy Anturijärjestely ja menetelmä digitaalisessa pyyhkäisykuvantamisessa
US7208746B2 (en) * 2004-07-14 2007-04-24 Asml Netherlands B.V. Radiation generating device, lithographic apparatus, device manufacturing method and device manufactured thereby
RU2541133C2 (ru) * 2009-03-26 2015-02-10 Конинклейке Филипс Электроникс, Н.В. Сбор данных
CN101726452B (zh) * 2009-12-08 2012-03-28 华南师范大学 基于现场可编程门阵列(fpga)的光子相关器
CH704009A2 (de) * 2010-10-15 2012-04-30 Donata Castelberg Blendschutzvorrichtung.
RU2578252C2 (ru) * 2011-01-17 2016-03-27 Конинклейке Филипс Электроникс Н.В. Пиксель детектора со счетом фотонов, который имеет анод, содержащий два или более поочередно выбираемых и раздельных под-анода
EP2751596B1 (en) * 2011-08-30 2017-07-19 Koninklijke Philips N.V. Photon counting detector
CN102510282B (zh) * 2011-10-25 2014-07-09 中国科学院空间科学与应用研究中心 一种时间分辨单光子计数二维成像系统及方法
WO2014045210A2 (en) * 2012-09-18 2014-03-27 Koninklijke Philips N.V. Direct conversion photon counting detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667205B2 (en) 2005-10-05 2010-02-23 Organisation Europeenne Pour La Recherche Nucleaire Method for determining a particle and sensor device therefor
JP2013501226A (ja) * 2009-08-04 2013-01-10 オルガニザシオン・ユーロピエンヌ・プール・ラ・ルシェルシェ・ニュークリエール 画素化放射線検知デバイス
WO2013005848A1 (ja) * 2011-07-07 2013-01-10 株式会社東芝 光子計数型画像検出器、x線診断装置、及びx線コンピュータ断層装置
WO2013048436A1 (en) * 2011-09-30 2013-04-04 Analogic Corporation Photon count correction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082332A4
SULIMAN ABDALLA: "Circuit implementation of mechanism for charge-sharing suppression for photon-counting pixel arrays", IEEE CONFERENCE PUBLICATIONS NORCHIP CONFERENCE, 21 November 2005 (2005-11-21), pages 137 - 140, XP010895290 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194295A1 (en) * 2015-06-01 2016-12-08 Canon Kabushiki Kaisha Radiation imaging apparatus, control method thereof, and program
WO2016194286A1 (en) * 2015-06-01 2016-12-08 Canon Kabushiki Kaisha Radiation imaging apparatus, driving method thereof, and program
JP2016223951A (ja) * 2015-06-01 2016-12-28 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
JP2017009504A (ja) * 2015-06-24 2017-01-12 株式会社リガク X線データ処理装置、その方法およびプログラム
WO2017010045A1 (en) * 2015-07-10 2017-01-19 Canon Kabushiki Kaisha Radiation imaging apparatus, control method thereof, and program
JP2017020912A (ja) * 2015-07-10 2017-01-26 キヤノン株式会社 放射線撮像装置、その制御方法及びプログラム
US10197684B2 (en) 2015-07-10 2019-02-05 Canon Kabushiki Kaisha Radiation imaging apparatus, control method thereof, and non-transitory computer-readable storage medium
JP2019502100A (ja) * 2015-11-20 2019-01-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 検出値決定システム
JP7059180B6 (ja) 2015-11-20 2022-06-02 コーニンクレッカ フィリップス エヌ ヴェ 検出値決定システム
JP7059180B2 (ja) 2015-11-20 2022-04-25 コーニンクレッカ フィリップス エヌ ヴェ 検出値決定システム
US9608254B1 (en) 2016-05-26 2017-03-28 Royal Die & Stamping Co., Inc. Pull bar battery terminal clamp
JP2018040800A (ja) * 2016-09-07 2018-03-15 キヤノンメディカルシステムズ株式会社 信号処理回路、放射線検出装置及び信号処理方法
JP7027077B2 (ja) 2016-09-07 2022-03-01 キヤノンメディカルシステムズ株式会社 信号処理回路、放射線検出装置及び信号処理方法
US10008789B1 (en) 2017-07-10 2018-06-26 Royal Die & Stamping, Llc Angled bolt T-bar battery terminal clamp
US11045153B2 (en) 2017-07-20 2021-06-29 Hitachi, Ltd. Device for acquiring pulse height spectrum, method for acquiring pulse height spectrum, program for acquiring pulse height spectrum, and radiation imaging apparatus
JP2019020334A (ja) * 2017-07-20 2019-02-07 株式会社日立製作所 波高頻度分布取得装置、波高頻度分布取得方法、波高頻度分布取得プログラム及び放射線撮像装置
WO2019017069A1 (ja) * 2017-07-20 2019-01-24 株式会社日立製作所 波高頻度分布取得装置、波高頻度分布取得方法、波高頻度分布取得プログラム及び放射線撮像装置

Also Published As

Publication number Publication date
JP6474350B2 (ja) 2019-02-27
JPWO2015087663A1 (ja) 2017-03-16
TWI668415B (zh) 2019-08-11
EP3082332A4 (en) 2017-07-12
EP3082332A1 (en) 2016-10-19
KR102237264B1 (ko) 2021-04-07
CN105830432B (zh) 2019-05-10
TW201527722A (zh) 2015-07-16
US20160305818A1 (en) 2016-10-20
ES2696748T3 (es) 2019-01-17
US9909921B2 (en) 2018-03-06
EP3082332B1 (en) 2018-09-19
KR20160094991A (ko) 2016-08-10
CN105830432A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6474350B2 (ja) 二次元フォトンカウンティング素子
US10197684B2 (en) Radiation imaging apparatus, control method thereof, and non-transitory computer-readable storage medium
US9100601B2 (en) Image pickup device and camera system
JP4740710B2 (ja) ディジタルx線撮影装置およびディジタルx線撮影装置におけるx線像の撮影方法
JP6573667B2 (ja) 混合型光子計数/アナログ出力モードで動作可能なx線検出器
JP5576502B2 (ja) 放射線検出器
US20180038966A1 (en) Universal readout for silicon photomultiplier based detectors
JP2013085241A (ja) イメージセンサによるデータ取得方法
US11047996B2 (en) Photodetector
JP3152476B2 (ja) 放射線検出装置
US9759601B2 (en) Muzzle flash detection
WO2023118834A1 (en) Improved digital silicon photomultiplier
JPH095445A (ja) 放射線像撮像装置
WO2020182555A1 (en) Charge sharing compensation with sampled discriminators
JPH07104072A (ja) Ect装置
JPH07151860A (ja) 放射性表面汚染検出装置
CN111245378A (zh) 一种用于pet系统中探测器的加法电路
JP4178232B2 (ja) 入射位置検出装置
CN111624646B (zh) 多模块辐射探测器的重复事件甄别和处理方法
US20240061132A1 (en) Readout circuit, radiation detector, imaging apparatus and method of handling incident radiation
CN110389141B (zh) 位置读出设备、方法及装置
CN116325162A (zh) 检测器像素浮动
Dierickx et al. X-ray image sharpening by coincidence detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552372

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014870555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15101087

Country of ref document: US

Ref document number: 2014870555

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016387

Country of ref document: KR

Kind code of ref document: A