WO2015087435A1 - 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体 - Google Patents

近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
WO2015087435A1
WO2015087435A1 PCT/JP2013/083396 JP2013083396W WO2015087435A1 WO 2015087435 A1 WO2015087435 A1 WO 2015087435A1 JP 2013083396 W JP2013083396 W JP 2013083396W WO 2015087435 A1 WO2015087435 A1 WO 2015087435A1
Authority
WO
WIPO (PCT)
Prior art keywords
myopia
eye
retina
unit
refractive power
Prior art date
Application number
PCT/JP2013/083396
Other languages
English (en)
French (fr)
Inventor
山口 剛史
素脩 見川
Original Assignee
株式会社ユニバーサルビュー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバーサルビュー filed Critical 株式会社ユニバーサルビュー
Priority to JP2014532753A priority Critical patent/JP5667730B1/ja
Publication of WO2015087435A1 publication Critical patent/WO2015087435A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention diagnoses the progression of refractive myopia that continues to progress in adults that are expected to stop the progression of axial myopia in schoolchildhood where the change in the axial length of the eye is remarkable, and the progression of refractive myopia that continues to progress.
  • the present invention relates to a myopia progress diagnosis apparatus, a myopia progress determination method, a program, and a storage medium that can be applied to a myopia progress diagnosis system that determines and treats the above.
  • myopia In Japan, about 50% of the population is myopic, and the use of glasses and contact lenses is required for daily life.
  • Pathologic intensity myopia such as axial myopia, which is one of the causes of myopia progression, leads to blindness due to macular degeneration, retinal hemorrhage, etc., and myopia is the fifth leading cause of blindness. Since myopia is a risk factor for major blindness diseases such as glaucoma and retinal detachment, the rate of myopia as a potential cause of blindness is expected to be higher.
  • peripheral vision blur is related to axial myopia in primates and birds.
  • certain contact lenses suppress axial myopia in children, but details are unknown.
  • many studies have examined only a simple refractive power, which has been a major problem in conventional peripheral vision research.
  • FIG. 32A is a cross-sectional view showing the structure of a human eye (hereinafter referred to as eye 2 to be examined).
  • eye 2 to be examined 41 is a cornea
  • 42 is a crystalline lens
  • 43 is a pupil
  • 44 is a vitreous body
  • 46 is a retina. Note that description of the structure of the eyeball 2 to be examined is omitted. First, a general depth of focus when a near-sighted person looks far and a presbyopic person looks close will be described.
  • the light entering the eyeball forms an image at the correct position on the retina 46, that is, the macular 45, regardless of whether a person with normal vision looks far or near.
  • O is the optical axis (ocular axis)
  • L1 is the axial length of a normal human eye.
  • the axial length L1 refers to a length from the central apex of the cornea 41 to the macular 45 portion of the retina 46.
  • the retina 46 is divided into a central retina which is a peripheral portion of the macular 45 and a peripheral retina which is a peripheral region of the central retina.
  • the axial length L2 extends backward and the shape of the eyeball is distorted when it starts to be myopic, the focus on the central retina shifts forward from the retina 46 (macular 45). The focus on the retina is moved onto the macular 45, and as a result, the axial length L2 further extends backward to match it, and as a result, it is thought that myopia progresses more and more because the focus is not focused on the central retina. .
  • the lens 42 loses its elasticity and becomes hard, so that the image is formed not behind the correct position on the retina 46 but behind the retina 46.
  • peripheral visual field optical characteristics have become measurable due to advances in computer-aided analysis technology and development of diagnostic equipment.
  • facilities around the world that are doing research similar to this patent, but they are analyzing the optical properties of only the most focused part of the peripheral retina. Primates have an adjustment function that allows them to freely manipulate the focal point of the near and far by changing the thickness of the lens during the course of evolution.
  • Patent Document 1 discloses an eye optical characteristic measuring method and an eye optical characteristic measuring apparatus regarding an apparatus and method for measuring eye optical characteristics at high speed.
  • the myopia progression diagnostic apparatus the measurement light is transmitted to the retina in a direction that forms an angle ⁇ with respect to an eye axis that connects the approximate center of the pupil of the eyeball to the macula.
  • a data analysis unit for determining whether or not a hyperopic back focal point exists.
  • the myopia progression diagnostic apparatus According to the myopia progression diagnostic apparatus according to claim 1, it is possible to determine (predict) whether or not the nearsightedness of the eye to be examined will proceed in the future.
  • the myopia progression diagnostic apparatus wherein the data analysis unit is the position of the focus of the measurement light that is most focused on the optical axis at the angle ⁇ , and the focus of the measurement light on the optical axis. Based on the position of the front focal point located on the front side and the point image intensity distribution characteristic of the position of the rear focal point located on the rear side of the focal point on the optical axis, the point image intensity distribution characteristic And a determining unit that determines whether or not a hyperopic back focal point exists in the peripheral visual field of the fundus of the eye to be examined.
  • the myopia progression diagnostic apparatus includes: a refractive power at the focus position of the measurement light; a refractive power at the front focus position; and a refractive power at the rear focus position. Is calculated for each angle ⁇ .
  • the myopia progression diagnosis apparatus displays a point image of the focus position of the measurement light, an astigmatism image of the front focus, and an astigmatism image of the rear focus for each angle ⁇ . It has a part.
  • the myopia progression diagnostic apparatus according to claim 6, wherein the myopia progression diagnosis device according to claim 3, wherein the data analysis unit analyzes the degree of blurring of the point image of the focus position of the measurement light and introduces an addition power for suppressing myopia progression. It is discriminate
  • the myopia progress determination method wherein the myopia progress diagnosis device for diagnosing the progress of myopia of the eye to be examined has an angle ⁇ with respect to an eye axis line connecting the approximate center of the pupil of the eye to be examined and the macula. Irradiating the direction of the retina with measurement light, receiving light reflected from the retina to obtain optical data in the peripheral visual field of the fundus, and analyzing the optical data to analyze the fundus of the eyeball to be examined And determining whether or not there is a hyperopic back focal point in the peripheral visual field.
  • the program according to claim 8 is readable by a computer for executing the myopia progression determination method.
  • the storage medium according to claim 9 describes a computer-readable program for executing the myopia progression determination method.
  • the myopia progress diagnosis apparatus since it is possible to determine (predict) whether or not myopia of the eyeball to be progressed in the future, the change in the axial length is remarkable. It is possible to easily diagnose the progression of refractive myopia that continues to progress in adults who are supposed to stop the progression of axial myopia during schoolchildhood and myopia. This makes it possible to easily prescribe glasses, contact lenses, and the like that match the eyes of children and the like who are in the progressing stage of myopia.
  • the myopia progression diagnostic apparatus when the three refractive powers are positive values, “the rear focal line located on the rear side from the front focal line located on the front side of the focal point on the optical axis line”. It is possible to diagnose that the hyperopic back focal point exists outside the retina.
  • the myopia progression diagnostic apparatus by analyzing the degree of blurring of the point image at the most focused position, the subject eyeball having a large blur of the point image becomes an excluded group that cannot be treated in this intervention test. It will be possible to classify whether this intervention study can be treated.
  • FIG. 1 is a block diagram showing a configuration example of a myopia progression diagnostic apparatus 100 as a first embodiment according to the present invention.
  • 3 is a block diagram illustrating a configuration example of a control system of the myopia progression diagnosis apparatus 100.
  • FIG. It is an intraocular sectional view showing a determination example in which the evaluation formulas A, B, and C are positive values. It is an intraocular sectional view showing a determination example in which evaluation formulas A, B, and C are negative values.
  • 4 is a flowchart showing an example of myopia progress determination (main routine) in the myopia progress diagnosis device 100. It is a flowchart which shows the myopia progress determination example (subroutine).
  • a and B are sectional views showing a configuration example of a contact lens 200 for suppressing myopia progression as a second embodiment according to the present invention.
  • 5 is a cross-sectional view showing an example of wearing a contact lens 200.
  • FIG. It is a graph which shows the example of a relationship between visual acuity and the frequency from a fovea.
  • It is a flowchart which shows the prescription example (the 2) of the contact lens 200.
  • It is explanatory drawing which shows the example of a relationship with type Ta, Tb, Tc of axial length Lx 24.0mm and a fundus curvature shape.
  • the present invention makes it possible to easily diagnose the progress of myopia in children, adults, etc., and to predict the future progress of myopia in children, etc.
  • An object is to provide a storage medium.
  • a myopia progression diagnosis apparatus 100 shown in FIG. 1 is an apparatus that acquires and analyzes optical data of a peripheral visual field in an eyeball of a subject 1 such as a child or an adult (hereinafter referred to as an eyeball 2 to be examined).
  • the myopia progression diagnostic apparatus 100 is capable of acquiring a wide range of optical data with a focus of ⁇ 2.5 [D] (D: diopter) from the center of the crystalline lens of the human eye to the peripheral visual field shifted by an angle of 40 °. It is.
  • the myopia progression diagnosis apparatus 100 is a device that devises an existing PSF analyzer (registered trademark). For example, whether myopia of a child or the like progresses in the future, and whether myopia that can progress can be suppressed by treatment. Determining whether or not it is possible to treat myopia suppression by adding a refractive lens to the periphery of a distance lens that can progress, and determining the effect after a certain period of treatment Etc. are applicable.
  • the myopia progression diagnosis apparatus 100 includes an optical data acquisition unit 10 and a data analysis apparatus 20.
  • the optical data acquisition unit 10 includes, for example, a main body unit 11, an XYZ stage 12, and an arcuate track 53.
  • the main body 11 is placed on an XYZ stage 12, and the XYZ stage 12 can move on an arc-shaped track 53 in a clockwise direction or a counterclockwise direction.
  • the XYZ stage 12 can move and adjust the main body 11 in the X direction (left-right direction), Y direction (front-rear direction), and Z direction (up-down direction: a direction perpendicular to the paper surface).
  • the XYZ stage 12 is provided with a setting unit 15, which is the same as the optical axis O described in FIG. 3: FIG. 32A and FIG. 32B that connects the approximate center of the pupil of the eye 2 to be examined and the macula.
  • the setting unit 15 includes an angle indicator 51, an operation lever 52, and the like.
  • a digital display is used as the angle display 51, and the angle ⁇ is displayed.
  • the track 53 is attached to the fixed coordinate system.
  • An XYZ stage 12 is movably engaged with the track 53.
  • the angle indicator 51 is provided on the XYZ stage 12, and when the operator (ophthalmologist) sets the angle ⁇ , if the XYZ stage 12 is moved along the track 53 with the operation lever 52, the angle indicator 51 Display as the value counts up sequentially.
  • a method may be employed in which the angle indicator 51 is provided on the track 53, the base line is provided on the XYZ stage 12, and the base line is aligned with the scale displaying the analog angle.
  • a driving mechanism (not shown) may be provided on the XYZ stage 12, the angle ⁇ may be set with a numeric keypad, etc., and the driving mechanism may be operated to automatically rotate the XYZ stage clockwise or counterclockwise.
  • 16 is an existing lever for XYZ stage operation.
  • Reference numeral 54 denotes a fixation card (Landolt ring having a notch in a horizontal direction, a vertical direction, or the like: C symbol).
  • the optical data acquisition unit 10 uses a PSF analyzer (registered trademark), an autorefractometer, or the like.
  • the auto-refractometer irradiates the subject's eyeball 2 with infrared light, and can automatically analyze the refraction state of the eye, mainly the presence or absence of myopia, hyperopia, and astigmatism, and the degree thereof, and the objective eyeball 2 can be objectively viewed. Can be measured numerically and digitized.
  • the data analysis device 20 includes a keyboard 21, a mouse 22, a control unit 23, and a display unit 24.
  • a personal computer information processing device
  • the mouse 22 is a wired type or a wireless type.
  • a liquid crystal display panel is used for the display unit 24.
  • the main body unit 11 includes a light irradiation unit 13, a light detection unit 14, and a data input / output unit 17, and these constitute a control system of the optical data acquisition unit 10.
  • the light irradiation unit 13 is provided with components of a projection system such as a light source, a focusing lens, a polarization beam splitter, and a quarter wavelength plate (not shown).
  • the irradiation control signal S13 Based on the irradiation control signal S13, the light irradiation unit 13 irradiates the retina 46 (see FIG. 3, FIG. 4, etc.) in the direction of the angle ⁇ with respect to the eye axis L with the measurement light.
  • the irradiation control signal S13 is a signal for controlling the light source, the focusing lens, and the like.
  • the light detection unit 14 receives light reflected from the retina 46 in the angle ⁇ direction and generates a light detection signal S14 in the peripheral visual field of the fundus.
  • the light detection unit 14 includes an imaging device (CCD).
  • CCD imaging device
  • the light detection unit 14 generates a light detection signal S14 serving as optical data D17 in a wide refraction range including the defocus components of the front focal line and the rear focal line.
  • the defocus component refers to a luminance component at a non-focus position that is shifted back and forth on the optical axis (direction) from the imaging position of the crystalline lens 42 (see FIG. 3).
  • This defocus component around the visual field can be the first factor for predicting the presence or absence of myopia progression.
  • the existing PSF analyzer registered trademark
  • the existing PSF analyzer can be used for the individual configurations and functions of the light irradiation unit 13, the light detection unit 14, and the data input / output unit 17, a detailed description thereof will be omitted.
  • the data input / output unit 17 controls the light irradiation unit 13 and the light detection unit 14 by transferring the optical data D17 to the data analysis device 20 or receiving the control data D33 from the data analysis device 20.
  • the data input / output unit 17 performs D / A conversion on the control data D33 to create an irradiation control signal S13, and outputs the irradiation control signal S13 to the light irradiation unit 13.
  • the data input / output unit 17 A / D converts the light detection signal S14 to create optical data D17, writes the angle ⁇ in the header, attaches the optical data D17 to the header, and transfers the optical data D17 to the data analyzer 20.
  • Optical data D17 is a point spread function (PSF image) every 0.25 [D] steps in the range of the optical axis ⁇ 2.0 [D] of the reflected light reflected from the retina 46 of the peripheral visual field at an angle ⁇ . ) Is reproduced (imaged) and constitutes 21 double-pass PSF images.
  • the control data D33 includes data for driving the focusing lens every 0.25 [D] steps in the range of ⁇ 2.0 [D].
  • the data input / output unit 17 is provided with an AD converter that converts the light detection signal S14 into digital optical data D17, and a DA converter that converts the control data D33 into the irradiation control signal S13.
  • the AD converter and the DA converter A local central processing unit (CPU) is also provided for controlling input / output such as.
  • the analyzer When a PSF analyzer (registered trademark) is used for the optical data acquisition unit 10, the analyzer is fixed with the eye to be measured by the child, and the optical data D17 of the center of the fundus and its peripheral visual field is ⁇ 2.0 [D ] In a wide range of 0.25 [D] steps.
  • the measurement light (light beam) incident on the subject's eyeball 2 is changed from convergent to parallel and divergent by driving the focusing lens of the light irradiating unit 13.
  • a double-pass PSF image can be acquired by optically changing the distance to the light source in 0.25 [D] steps.
  • a data analysis device 20 is connected to the optical data acquisition unit 10, and the data analysis device 20 analyzes the optical data D17.
  • a point image intensity distribution characteristic (hereinafter referred to as a PSF characteristic) at a focus position of the measurement light at an angle ⁇ and positions before and after the focus (step 0.25 [D]) is obtained, and based on the PSF characteristic. It is determined whether or not there is a hyperopic post-focal point in the peripheral visual field of the fundus of the optometry ball 2.
  • the back focal point refers to a non-focal point located on the rear focal line when the rear side of the focal point of the measurement light focused most on the optical axis L ′ at the angle ⁇ is defined as the rear focal line.
  • the data analysis apparatus 20 includes a control unit 23, and the control unit 23 includes, for example, a calculation unit 31, a determination unit 32, a data input / output unit 33, and a memory unit 34.
  • a central processing unit (CPU) is used for the calculation unit 31 and the determination unit 32.
  • the calculation unit 31 obtains the position of the focus of the measurement light at the angle ⁇ and the PSF characteristics of the positions before and after the focus from the optical data D17 related to the single pass PSF image. For example, the calculation unit 31 has the position of the focus of the measurement light most focused on the optical axis L ′ at the angle ⁇ , the position of the astigmatism on the front focal line located on the front side of the focus on the optical axis L ′, Then, the PSF characteristic of the position of the astigmatism on the rear focal line located behind the focal point on the optical axis L ′ is obtained.
  • the calculation unit 31 calculates the refractive power of the PSF image at the focal position at the angle ⁇ , the refractive power of the front focal point, and the refractive power of the rear focal point for each angle ⁇ . As a result, it is possible to predict the presence or absence of myopia from the refractive powers of the front focus and the back focus.
  • the calculation unit 31 sets the refractive power of the PSF image at the most focused position at the angle ⁇ as BFR ⁇ , and the same angle ⁇ .
  • the refractive power of the astigmatic image blurred on the front focal line is AFLR ⁇
  • the refractive power of the astigmatic image blurred on the rear focal line is PFLR ⁇
  • the most focused on the eye axis L ( ⁇ 0 °).
  • the discriminating unit 32 discriminates whether or not the hyperopic back focal point exists in the peripheral visual field of the fundus of the eye 2 to be examined based on the calculation results of the above-described equations (1) to (3). For example, the determination unit 32 determines whether the refractive power of the PSF image at the focus position of the measurement light, the refractive power of the astigmatism on the front focal line, and the refractive power of the astigmatism on the rear focal line are both positive values. Determine whether the value is negative.
  • the discriminating unit 32 When all of the three evaluation values A, B, and C are positive values, the discriminating unit 32 “has a far-focused back focal point outside the retina from the front focal line to the rear focal line. It will be possible to diagnose. On the other hand, if any one of the three evaluation values A, B, and C is negative, it is determined that “no hyperfocal rear focus exists at a position from the front focal line to the rear focal line”. become able to.
  • the optical data acquisition unit 10, the keyboard 21, the mouse 22, and the display unit 24 are connected to the data input / output unit 33 described above.
  • the data input / output unit 33 receives the optical data D17 from the optical data acquisition unit 10, and transfers the control data D33 to the optical data acquisition unit 10.
  • the data input / output unit 33 outputs display data D 24 to the display unit 24, inputs key data D 21 from the keyboard 21, and inputs operation data D 22 from the mouse 22.
  • a refractometer can be connected to the data input / output unit 33 instead of the optical data acquisition unit 10, and the fundus of the eyeball 2 to be examined is determined by the determination unit 32 based on the fundus shape data DIN obtained from the refractometer. It may be determined whether or not there is a hyperopic back focal point in the peripheral visual field.
  • the memory unit 34 constitutes an example of a storage medium and describes a computer-readable program for executing the myopia progress determination method.
  • a hard disk device is used for the memory unit 34.
  • the ROM stores program data readable by a computer for executing the myopia progress determination method.
  • the program data includes, for example, a step of irradiating measurement light to the retina 46 in the direction of an angle ⁇ with respect to the eye axis L connecting the approximate center of the crystalline lens of the eyeball 2 to be examined and the macula, and light reflected from the retina 46.
  • a program for a main routine for executing a step (see FIG. 5) for determining whether or not a hyperopic back focus exists in the peripheral visual field of the fundus of the eyeball 2 to be examined based on the PSF characteristics. Is.
  • the refractive power AFLR ⁇ of the astigmatism on the front focal line and the refraction of the focus on the axial length are a subroutine for determining whether or not a hyperopic back focus exists in the peripheral visual field of the fundus of the eye 2 to be examined.
  • the optical data D17 after conversion is developed at the time of frequency transfer function (Modulation Transfer Function: MTF) analysis.
  • MTF Modulation Transfer Function
  • the hard disk device stores optical data D17 before and after conversion, display data D24, control data D33, and the like.
  • the display data D24 is simulation image display data for displaying a thumbnail image for each angle ⁇ .
  • Ds in the figure is S curve data, which is image data for drawing the rear focal contour S of the radius rs, and is used when selecting a contact lens.
  • the display unit 24 displays the PSF image at the most focused position calculated by the calculation unit 31, the astigmatic image on the front focal line, and the astigmatic image on the rear focal line for each angle ⁇ .
  • the display data D24 is received from the data input / output unit 33, and the PSF image at the most focused position, the astigmatic image on the front focal line, and the thumbnail image of the astigmatic image on the rear focal line are displayed on one screen.
  • the display unit 24 may display a schematic section of the eyeball 2 to be superposed with the optical axis L ′ at the angle ⁇ (see FIGS. 3 and 4).
  • a liquid crystal display panel is used for the display unit 24. These constitute the myopia progression diagnostic apparatus 100.
  • 3 and 4 are schematic cross sections of the eyeball 2 to be superposed with the optical axis L ′ at an angle ⁇ , and the position (focus point) on the optical axis L ′ is a 0.25 [D] scale. And unfocused depth).
  • the evaluation formulas A, B, and C shown in FIG. 3 are positive values
  • the determination example in which the evaluation formulas A, B, and C shown in FIG. 3 are positive values
  • the determination example in which the evaluation formulas A, B, and C shown in FIG. 3 are positive values
  • the child whose myopia has progressed is more likely to have the eyeball 2 to be examined compared to the child with normal vision shown in FIG.
  • the axial length Lx extends.
  • the measurement light (light beam) incident on 2 is changed, the positions of the non-focal point and the focal point are described for each 0.25 [D] step.
  • the most focused position (black circle mark) is BFp
  • the position of the astigmatism on the front focal line (black rhombus mark) is AFp
  • the astigmatism on the rear focal line The position BFp and the position RFp straddle the retina 46 and are located on the far vision side when the position (white diamond mark) is set to RFp.
  • the position AFp corresponds to -3.45 [D] shown in FIG. 8E
  • the position BFp corresponds to -1.95 [D] shown in FIG. 8K
  • the position RFp is This corresponds to -0.45 [D] shown in FIG. 9E.
  • the evaluation formulas A, B, and C are positive values, and myopia of the eyeball 2 progresses. It can be determined that
  • the evaluation formulas A, B, and C shown in FIG. 4 are negative values
  • a normal-sighted child has an eye of the eyeball 2 to be examined as compared to a myopic child shown in FIG.
  • the axial length Lx does not extend.
  • the most focused position BFp and the astigmatic position AFp on the front focal line are located on the myopia side without straddling the retina 46.
  • the evaluation formulas A, B, and C are negative, and it is determined that the myopia of the test eyeball 2 is not progressing. can do.
  • the myopia progression diagnosis apparatus 100 shown in FIG. 1 fixes the head of the subject 1 to its chin and causes the fixation card 54 to be fixed with a non-inspection eye. It is assumed that the optical data D17 in the peripheral visual field is measured by the myopia progression diagnostic apparatus 100.
  • the myopia progress diagnosis device 100 executes the following steps ST1 to ST7, and in step ST5, the control unit 23 determines the progress of myopia of the eyeball 2 to be diagnosed to diagnose the progress of myopia of the eyeball 2 to be examined. To take.
  • step ST1 of the flowchart shown in FIG. 5 first, the control unit 23 accepts the setting of the angle ⁇ .
  • the angle ⁇ is an irradiation angle of the measurement light with respect to the eye axis L connecting the approximate center of the crystalline lens 42 of the eyeball 2 to be examined and the macula 45.
  • the ophthalmologist operates the setting unit 15 to set the angle ⁇ .
  • the setting unit 15 notifies the control unit 23 via the data input / output units 17 and 33 of the optical data D17 indicating the angle ⁇ setting.
  • the optical data D17 indicating the angle ⁇ setting may be input to the control unit 23 by operating the keyboard 21 or the mouse 22.
  • step ST2 the control unit 23 controls the light irradiation unit 13 to irradiate the measurement light to the retina 46 in the direction of the angle ⁇ set previously. Based on the irradiation control signal S13 input from the data input / output unit 17, the light irradiation unit 13 irradiates the retina 46 (see FIG. 3, FIG. 4, etc.) in the direction of the angle ⁇ with respect to the eye axis L.
  • step ST3 the control unit 23 controls the data input / output unit 17 so as to acquire the optical data D17.
  • the light detection unit 14 receives light reflected from the retina 46 in the direction of the angle ⁇ and generates a light detection signal S14 having a wide refraction range including defocus components of front focal lines and rear focal lines in the peripheral visual field of the fundus. To do.
  • the data input / output unit 17 receives the photodetection signal S14 from the photodetection unit 14, A / D converts the photodetection signal S14, and has a wide refraction range optical data including defocus components of the front focal line and the rear focal line. D17 is acquired.
  • the optical data D17 is data constituting a double-pass PSF image shown in FIG.
  • the double-pass PSF image is a point image formed on the retina 46 when a point light source is projected onto the eyeball optical system, and includes all the optical information (optical data D17) of the eyeball optical system.
  • optical data D17 By acquiring the optical data D17, it is possible to acquire the optical characteristics of the defocused component not only in the most focused portion in the peripheral portion of the visual field but also in a fine and wide range such as 0.25 [D].
  • step ST4 the control unit 23 analyzes the optical data D17.
  • the control unit 23 obtains the PSF characteristics of the focus position of the measurement light at the angle ⁇ and the positions before and after the focus. Since the measurement light passes through the eyeball optical system twice in the above-described double-pass PSF image, the double-pass PSF image shown in FIG. ) Convert to PSF image.
  • the optical data D17 indicating the double pass PSF image is converted into the optical data D17 indicating the single pass PSF image by the same method as the conventional method.
  • the converted optical data D17 is analyzed and used to determine whether or not a hyperopic back focal point exists in the peripheral visual field of the fundus of the eye 2 to be examined.
  • requires MTF as a function showing the transfer characteristic of a single path
  • optical Transfer Function Optical Transfer Function: OTF
  • OTF optical Transfer Function
  • the calculation unit 31 calculates contrast data (MTF data) reflecting low-order and high-order aberrations from the optical data D17.
  • the unfocused blur of the peripheral visual field is analyzed (MTF analysis) by calculating MTF (fx, fy) in the PSF image at the most focused position.
  • MTF the optical transfer function of the eyeball optical system of the eye 2 to be examined
  • the frequency transfer function is MTF (fx, fy)
  • the luminance signal component of the optical data D17 for non-focus and focus is S. (Fx, fy), S (0, 0)
  • the horizontal spatial frequency is fx
  • the vertical spatial frequency is fy.
  • MTF (fx, fy) is calculated from the above.
  • step ST42 the control unit 23 displays the focus and non-focus images for each 0.25 [D] step as thumbnail images on the display unit 24 in the range of ⁇ 2.0 [D] at the angle ⁇ .
  • the display unit 24 receives the display data D24 from the data input / output unit 33, and displays the PSF image at the most focused position, the astigmatic thumbnail image on the front focal line, and the thumbnail image of the astigmatic image on the rear focal line. It is displayed on the screen (see FIGS. 8A to 8L and FIGS. 9A to 9I).
  • the range of the optical axis ⁇ 2.0 [D] of the reflected light reflected from the retina 46 at the periphery of the visual field at an angle ⁇ 20 °.
  • 21 single-pass PSF images reproduced (captured) every 0.25 [D] steps are constructed, and optical data D17 (contrast) of the single-pass PSF image converted from the double-pass PSF image shown in A of FIG. Data: MTF data)).
  • the refractive powers shown in FIGS. 8A to 8L are ⁇ 4.45 [D], ⁇ 4.20 [D], ⁇ 3.95 [D], ⁇ 3.70 [D], ⁇ 3.45 [D], -3.20 [D], -2.95 [D], -2.70 [D], -2.45 [D], -2.20 [D], -1.95 [D], -1
  • the non-focus images shown in FIGS. 8A to 8J have a long and narrow elliptical shape with a width and a length that are large and small.
  • the non-focus images shown in FIG. 8L and FIGS. 9A to 9I also have large and small widths and lengths, and have a long and narrow elliptical shape.
  • the selection criterion for the non-focus image on the front focal line and the non-focus image on the rear focal line is, for example, a front focus at a position shifted by ⁇ 0.25 [D] before and after the PSF image at the most focused position BFp.
  • the non-focus image on the front focal line and the rear at the symmetrical positions AFp and RFp that become the light intensity of the PSF image is extracted.
  • the other angles ⁇ 10 °, 30 °, and 40 ° are obtained in the same manner.
  • the vertical axis is the MTF of the intraocular lens (the crystalline lens 42), and the contrast reduction corresponding to the spatial frequency (Spatial Frequency) indicating the fineness of the PSF image. Shows the percentage.
  • the horizontal axis is the spatial frequency [c / deg].
  • the broken line is the horizontal MTF vs. spatial frequency characteristic of the PSF image
  • the alternate long and short dash line is the vertical MTF vs. spatial frequency characteristic of the PSF image
  • the MTF (contrast) rapidly decreases as the spatial frequency increases (becomes a fine image). From this MTF characteristic, the optical characteristic of the crystalline lens 42 of the eye 2 to be examined can be grasped.
  • the solid line in the figure is the MTF characteristic of the crystalline eye.
  • step ST53 the calculation unit 31 inputs the refractive power BFR ⁇ at the most focused position and the refractive power BFR0 of the focal point on the axial length.
  • step ST55 the calculation unit 31 inputs the refractive power PFLR ⁇ of the astigmatism on the rear focal line and the refractive power BFR0 of the focal point on the eye axis L.
  • step ST57 the determination unit 32 determines whether the evaluation values A, B, and C are all positive values.
  • A, B, C> 0 is satisfied (YES)
  • the process returns to step ST5 “the peripheral visual field has a hyperopic back focal point”.
  • A, B, C ⁇ 0 NO
  • the process returns to step ST5 “No hyperopic back focus in the peripheral visual field”.
  • the refractive power BFR0 of the focal point on the eye axis L is ⁇ 0.3 [D]
  • the refractive power of the PSF image at the most focused position at an angle ⁇ 20 °.
  • BFR ⁇ is ⁇ 1.5 [D]
  • the refractive power AFLR ⁇ of the astigmatism on the front focal line is 0.0
  • the refractive power PFLR ⁇ of the astigmatism on the rear focal line is ⁇ 3.0
  • the evaluation value A is +3
  • the evaluation value B is +1.5
  • the evaluation value C is 0.0
  • the evaluation values A and B are positive values. Therefore, it can be determined that all hyperopic defocuses from the front focal line to the rear focal line exist.
  • the child who has progressed myopia can expect that the focal point at the angle ⁇ and the astigmatism on the back focal line straddle the retina 46 and be located on the farsighted side.
  • the refractive power BFR0 of the focal point on the eye axis L is 0.0 [D]
  • the refractive power BFR ⁇ of the PSF image at the most focused position at an angle ⁇ 20 °.
  • the refractive power AFLR ⁇ of the astigmatic image on the front focal line is 0.0
  • the refractive power PFLR ⁇ of the astigmatic image on the rear focal line is -2.0
  • evaluation value C is ⁇ 2.0
  • evaluation values B and C are negative values
  • a child who has not progressed myopia can be expected to be positioned on the myopic side of the retina 46 without the front focal line and the rear focal line at the angle ⁇ straddling the retina 46.
  • astigmatism on the myopia side of the retina 46 as shown in FIG. 4 is present on the focal point and the front focal line, and it can be predicted that the eyeball 2 is not subject to myopia progression. .
  • control unit 23 determines that “the myopia 2 does not progress myopia” in step ST5 described above, the control unit 23 informs the display unit 24 of “exclude from addition power introduction treatment” in step ST6. Is displayed.
  • control unit 23 determines in step ST5 that “the eyeball 2 to be examined has a progress of myopia”, in step ST7, the control unit 23 displays “Apply prescription introduction of addition power” on the display unit 24.
  • treatment with spectacles or a contact lens that introduces an addition power for suppressing myopia progression is prescribed from the analysis result of the degree of blurring of the point image of the focal position of the measurement light at the angle ⁇ .
  • this step ST7 it may be determined whether or not the myopia that can be progressed can be suppressed by treatment, and how much refractive correction can be treated in the peripheral portion by adding the refractive correction to the peripheral portion.
  • the addition power for returning the rear focal point outside the retina 46 at the angle ⁇ to the myopia (intraocular) side is set around the far optical part (myopia correction lens).
  • the optical data D17 in the peripheral visual field of the fundus obtained by receiving the light reflected from the retina 46 in the direction of the angle ⁇ is analyzed.
  • the data analysis device 20 is provided, and the data analysis device 20 has a hyperopic back focal point in the peripheral visual field of the fundus of the eye 2 based on the position of the focus of the measurement light at the angle ⁇ and the PSF characteristics of the positions before and after the focus. It will be determined whether or not it exists.
  • the myopia progress diagnosis device 100 it is useful for preventing or suppressing myopia progression, such as periodically performing myopia progression determination and appropriately performing refractive correction while monitoring changes in the optical data D17 in the peripheral visual field. It can. Thereby, in the effect determination performed after a certain period of treatment, the treatment criteria can be clearly defined.
  • the myopia progression determination method in the optical characteristics of the peripheral visual field of the fundus, the refraction of the front focal line and the rear focal line is taken into consideration, and in step ST4, the degree of blur of the point image at the focal position of the measurement light at the angle ⁇ is determined.
  • the subject eyeball 2 in which the point image of the focus position of the measurement light is largely blurred can be identified (classified) as an exclusion group that cannot be treated in this intervention test or can be treated in this intervention test. Become.
  • the IOL eye intraocular lens eye
  • the IOL eye has been subjected to a method (lasik or the like) in which the crystalline lens 42 is removed by cataract surgery and an artificial crystalline lens is inserted (embedded) instead.
  • a method lasik or the like
  • the crystalline lens 42 is removed by cataract surgery and an artificial crystalline lens is inserted (embedded) instead.
  • FIG. 14 shows an example of MTF characteristics of the IOL eye.
  • the solid line in the figure is the MTF characteristic of the IOL eye.
  • the MTF characteristic of the IOL eye is flatter than that of the crystalline eye.
  • the overall image diameter of the PSF image of the IOL eye is larger than that of the lens eye PSF image. It can be seen that the MTF is significantly degraded in the IOL eye.
  • the above-described aberration component can also be identified by performing MTF analysis on the optical data D17. Since myopia progresses in IOL eyes in past reports, the introduction of the discrimination method of the present invention is effective as a method for distinguishing examples that should be excluded from intervention tests.
  • the head of the subject 1 is fixed to the chin stand of the inspection device, and the optical data acquisition unit 10 is trajected while the fixation card 54 is fixed with a non-inspection eye.
  • the angle ⁇ optical axis
  • the present invention is not limited to this.
  • the optical data acquisition unit 10 is fixed with a child's eye to be measured, and an optical system including a point light source, a half mirror, a CCD, or the like inside the optical data acquisition unit 10 is mounted on a stage or the like.
  • the optical system is fixed independently to the rotating coordinate system with respect to the fixed coordinate system in which the subject 1 and the data acquisition unit main body are fixed, and the stage or the like in the rotating coordinate system is set at an angle ⁇ (optical axis).
  • a method may be adopted in which a reflecting mirror is disposed on the optical axis of the optical system, and the angle ⁇ (optical axis) is displaced by rotationally driving the reflecting mirror.
  • accurate optical data D17 including the front focal line and the rear focal line at the angle ⁇ can be acquired.
  • the correction power necessary for myopia suppression can be measured from the hyperopia power obtained from the data analysis device 20 (see step ST7).
  • the axial length Lx extends rearward and the eyeball shape is distorted.
  • the angle ⁇ is set to the eye axis L that connects the approximate center vertex of the crystalline lens 42 of the eyeball 2 to the macular 45.
  • myopia progression suppression theory By pulling back the hyperopic back focus from the outer position straddling the peripheral retina in the direction of formation to the inside (intraocular) of the peripheral retina, it becomes possible to suppress the progression of myopia (hereinafter referred to as myopia progression suppression theory) ).
  • a contact lens 200 for suppressing myopia progression as a second embodiment shown in FIGS. 15A and 15B is an example of a contact lens, and a rear focus control unit (hereinafter referred to as a refractive index for suppressing myopia progression) is set.
  • the rear focal point control area 63 is provided in the peripheral region of the distance optical unit 62.
  • the contact lens 200 according to the present invention is based on the following design basis.
  • the contact lens 200 has a bowl-shaped lens main body 61 having a concave central portion and a convex shape around the concave portion.
  • a member constituting a soft contact lens can be used conventionally.
  • the lens body 61 is provided with a frequency setting area I (additional area: ADD).
  • the diameter D ⁇ 2 of the frequency setting region I is set to about 7.0 mm because the pupil diameter D ⁇ 3 shown in FIG. 16 is 4.6 mm on average.
  • FIG. 16 shows an example in which the contact lens 200 is mounted on the cornea 41.
  • the frequency setting area I includes a distance optical unit 62 and a rear focus control area 63.
  • the distance optical unit 62 is provided in the central region of the lens body 61, and a concave lens having a predetermined minus power for correcting myopia is disposed.
  • the width of the distance optical unit 62 is indicated by OZ and is designed at the center of the lens when viewed from the front, and the width OZ of the distance optical unit 62 is set to about 2.5 mm.
  • the second object is to make the incident angle of light with little influence on the back of the retina 46 even in the vicinity of the macular 45.
  • the remaining area obtained by subtracting the area area with the width OZ of the distance optical unit 62 from the frequency setting area I is referred to as a back focus control area 63.
  • the power of the back focus control area 63 is determined based on the calculation formula created for the retinal curvature and the myopia progression suppression theory, regardless of the power of the myopic eye and how it is viewed.
  • the rear focus control area 63 is set within an angle of 30 ° (see FIG. 16) to control the light incident on the eye at this angle of 30 ° in order to provide power.
  • the angle 30 ° is defined as an angle 0 ° with respect to the eye axis L connecting the substantially central vertex of the crystalline lens 42 of the eyeball 2 shown in FIG. , 24 °, 36 °, 48 ° and 60 °.
  • the rear focus control area 63 is provided around the distance optical unit 62.
  • a convex lens having a predetermined plus power for suppressing myopia progression is arranged, and an eye axis L that connects the approximate center of the pupil 43 of the eyeball 2 to be examined (substantially the central vertex of the crystalline lens 42) and the macular 45.
  • the far-focused back focus is pulled back from the outside position across the peripheral retina in the direction forming the angle ⁇ to the inside (intraocular) of the peripheral retina.
  • the contact lens 200 represents the inner surface shape of the retina 46 including the macular 45 of the eye 2 to be examined by the fundus curvature radius, and the retina eye having the smallest fundus curvature radius and the fundus curvature radius are the smallest. If the retinal eye has a larger radius of curvature of the eyeball than the average retinal eye, based on the average retinal eye obtained by averaging the largest retinal eye, the average retinal eye If the retinal eye has a smaller radius of curvature of the fundus of the eye than the average retinal eye, a refractive power stronger than that of the average retinal eye is set. Is.
  • the area outside the frequency setting area I is an area having no frequency
  • the area between the area having no frequency and the area where the frequency is set is a loose junction (connection part; boundary part). ing.
  • the sudden change in shape and frequency is to cause image jumps and distortions in the peripheral part of the field of view.
  • the design has a zone (transition zone) in which the lens tip (outermost side) is gradually changed.
  • the above-described contact lens 200 for suppressing myopia progression can be manufactured based on the basic data on the optical characteristics of the peripheral visual field of the eyeball 2 to be examined and the calculation formula.
  • the myopia power of the distance optical unit 62 is arranged at the center, and the rear focus control area 63 obtained by the calculation formula is arranged at the periphery thereof.
  • the distance OZ (area) of the distance optical unit 62 is set too wide, a large amount of light that has entered the eye from the distance optical unit 62 reaches the periphery of the retina. In order to prevent this light from reaching the periphery of the retina, it is desirable to make the width OZ of the distance optical unit 62 as narrow (small) as possible.
  • the width OZ is designed based on the data calculated by the calculation formula.
  • the feature of the present invention is that the area of the distance optical unit 62 in which the refractive power for the distance vision is contained is significantly smaller than the conventional contact lens for vision correction.
  • halo refers to the after-effects translated as annulus, accompanied by the symptoms that a ring-like light can be seen around the light.
  • the light itself may appear round and blurred. In any case, it feels dazzling because it is larger than the original light.
  • Glare is a sequelae translated as radiance, and is accompanied by symptoms in which the light is more glaring and dazzling. Some people say that it looks blurred.
  • the refractive index for suppressing myopia progression is set, and the rear focus control area 63 provided in the peripheral region of the distance optical unit 62 is provided.
  • the far-focused back focus is pulled back from the outer position across the peripheral retina in the direction forming the angle ⁇ of the optometry ball 2 to the inner side (intraocular) of the peripheral retina.
  • the contact lens 200 according to the present invention is intended to suppress myopia progression, it is designed so that the light from the distance optical unit 62 is imaged on the macular 45 which is the center of the retina 46 in the distance vision. However, it is not intended to image the focal point of the back focus control area 63 on the macular 45.
  • the refractive power of the rear focus control area 63 is determined by an objective examination by the myopia progression diagnostic apparatus 100, the visual appearance of the distance optical unit 62 is not improved. This is a major difference from the target existing bilateral contact lens.
  • the existing bilateral contact lenses for vision correction aim to improve the perceptual distance and near vision and how clear images can be obtained, preventing ghosts and glare.
  • the distance optical unit 62 ′ and the near optical unit 63 ′ are designed for the purpose of preventing image jump (see FIG. 30).
  • the existing vision correction and far-distance contact lenses must be prescribed a power corresponding to individual differences.
  • the human eyeball has an average size, it is possible to determine the specifications by performing several types of frequency designs based on the average eyeball size. Then, there is a merit that it leads to simplification of manufacturing.
  • the soft contact lens is formed by, for example, injection molding by injecting a lens resin material into a mold that integrally represents the concave lens of the distance optical unit 62, the convex lens of the back focus control area 63, and the surrounding area. It is obtained by doing.
  • the contact lens 200 described above is completely different from a general contact lens for correcting visual acuity, and the power provided in the rear focus control area 63 has nothing to do with the power of the distance optical unit 62 provided in the center. Neither is it related to the correction power required by the user. It is determined only by the difference in retinal curvature. Therefore, even if the eyes have the same myopia power and the same accommodation power, when the retinal curvature is different, the power of the rear focus control area 63 installed in the lens body 61 is different. For this reason, it is not intended to improve the near vision according to the frequency of the rear focus control area 63.
  • the distance optical unit 62 in front view also has a back focal point of the retina 46 around the macular 45 based on the myopia progression suppression theory. It is also characterized in that the distance optical unit 62 is remarkably narrow as compared with a general contact lens for correcting visual acuity in order to obtain a minimum angle with little influence on the back.
  • the frequency provided in the back focus control area 63 must be determined based on the myopia progression suppression theory. If the addition power is determined easily, the back focus cannot be moved to the front of the retina, and the purpose of suppressing the progression of myopia cannot be exhibited.
  • FIG. 17 is a graph showing the relationship between the angle from the macular 45, which is the center of the retina 46, and visual acuity.
  • the vertical axis represents the relative value of visual acuity and indicates visual acuity 0.025 to 1.0.
  • the horizontal axis is the frequency (angle) from the fovea (macular 45), and the position of the macular 45 on the eye axis L is 0 °.
  • the nasal side has a frequency of 0 ° to 70 ° and the ear side has a frequency of 0 ° to 60 °.
  • the visual acuity shows the highest value near the power of 0 °. Since the density of pyramidal cells decreases rapidly when the fovea is off, the visual acuity also decreases.
  • the oblique line near the frequency of 14 ° to 18 ° indicates a blind spot. The image cannot be recognized with this blind spot as a boundary. In other words, the image is not recognized as an image even when focused on the peripheral retina. This phenomenon is applied to the contact lens 200 of the present invention.
  • the contact lens 200 of the present invention is intended to suppress myopia, in the distance vision, the light from the distance optical unit 62 is imaged around the macular 45 where cone cells are densely distributed. Designed to. However, the contact lens 200 does not have an optical area for designing a wide field of view. The reason for this is that, as shown in FIG. 17, the visual acuity is the best in the central fovea of the macular 45, and the visual acuity drops rapidly when it is off the center.
  • the central visual acuity is the most sensitive and worse in the peripheral retina.
  • the visual acuity is about 0.4 when the line of sight is shifted by 2 ° (angle), and is about 0.1 when the line of sight is shifted by 5 °. It is known to decline.
  • myopia is a state in which the focal point f is in front of the macular 45, which is the center of the retina 46.
  • the front focal point a and the rear focal point b that enter the eye from the peripheral part of the cornea 41 and appear in the peripheral part of the retina are both connected to the front of the retina 46.
  • the focal point f is moved to f ′ so as to form an image on the macular 45 of the part, the front focal point a moves to a ′, and the rear focal point b moves to b ′.
  • the back focal point b ′ is connected behind the retina 46.
  • a front focal contour T indicated by a one-dot chain line and a rear focal contour S indicated by a broken line are generated depending on an incident angle (angle ⁇ ; actually a solid angle) of light into the eye.
  • the front focal contour T refers to an arc drawn by sequentially connecting non-focal points having the same PSF characteristic on the front focal line obtained for each angle ⁇ .
  • the rear focal contour S is an arcuate shape in which non-focal points having the same PSF characteristic are connected in order on the rear focal line obtained for each angle ⁇ .
  • the lowest point of each arc of the rear focal contour S and the front focal contour T slides on the eye axis L and moves to the position of the macular 45.
  • rs is the radius of the rear focal contour S, and is the length from the origin Ox on the eye axis to the rear focal contour S.
  • the degree of progress of myopia can be grasped by the difference in the shape of the fundus curvature of the eyeball 2 to be examined, for example, the size of the fundus curvature radius rx.
  • the degree of myopia progression can be determined.
  • the rear focus isoline S may be moved before the retina 46 of the myopic eye after myopia correction.
  • a rear focus control area 63 having a frequency completely irrelevant to the hyperopia correction may be provided in the periphery of the distance optical unit 62.
  • the fundus curvature radius ra is a length from the origin Oa on the eye axis to the retina 46.
  • the prefocus control area 63 for suppressing myopia progression is hardly required. According to this case, even when a mildly convex lens is set in the rear focus control area 63, the rear focus contour S can be easily moved to the front of the retina 46.
  • the fundus curvature radius rc is a length from the origin Oc on the eye axis to the retina 46.
  • prescription of the rear focal point control area 63 for suppressing myopia progression is indispensable.
  • a prescription for setting (inserting) a light lens having a light power is set as type Ta
  • a prescription for setting a convex lens having a power higher than that of type Ta is set as type Tb
  • a prescription for setting a convex lens having a higher power is referred to as type Tc.
  • the refractive power of type Ta is set to +1
  • the refractive power of type Tb is +3
  • the refractive power of type Tb is set to +5, and the like.
  • the fundus curvature radius rx of the eyeball 2 to be examined obtained from the myopia progression diagnosis apparatus 100 it is possible to determine which type Ta, type Tb, or type Tc back focus control area 63 is suitable. It becomes like this.
  • the prescription example of the contact lens 200 of type Ta shown in FIG. 21 the rear focal contour S generated in the peripheral portion of the retina due to the correction of myopia is immediately in front of the retina 46. This is a case of a retinal eye having a large (loose) fundus curvature radius ra compared to the fundus curvature radius rx of the myopic eye shown in FIG.
  • the refractive index provided in the rear focal point control area 63 moves the rear focal contour S forward of the retina 46 even if the degree of refraction is extremely slight. be able to. Accordingly, a contact lens 200 of type Ta is prescribed. In this example, it is also a case that does not require prescription.
  • the rear focal contour S generated in the peripheral portion of the retina due to the correction of myopia is immediately behind the retina 46, and the rear focal contour S and
  • This is the case of a retinal eye that is close to the retina 46 and that has the fundus curvature radius rx and the fundus curvature radius rb of the myopic eye shown in FIG.
  • the refractive power provided in the back focal point control area 63 can be moved to the front of the retina 46 by setting a power higher than that of the retinal eye having a large fundus curvature radius ra. Therefore, a contact lens 200 of type Tb is prescribed.
  • the rear focal contour S generated in the peripheral portion of the retina due to the correction of myopia is located farther from the retina 46, and the rear focus
  • the distance between the contour line S and the retina 46 is long, and the fundus curvature radius rc is smaller (tight) than the fundus curvature radius rx of the myopic eye shown in FIG.
  • the refractive power provided in the back focus control area 63 is set to a higher power than that of the retinal eye having a large fundus curvature radius ra, so that the back focal contour S can be moved in front of the retina 46. Therefore, a contact lens 200 of type Tc is prescribed.
  • the refractive power for correcting myopia corresponding to the visual acuity of the eyeball 2 to be examined is set in the center region of the lens main body 61 to form the distance optical unit 62, and type in the peripheral region of the distance optical unit 62.
  • a plurality of contact lenses 200 having a refractive index for suppressing myopia progression selected from Ta to Tc and set as a back focus control area 63 are prepared in advance. It is assumed that one optimal contact lens 200 is prescribed.
  • types Ta to Tc of the back focus control area 63 are determined based on whether the fundus curvature shape of the eyeball 2 to be examined is on the inside or the outside with reference to the leveled back focal contour S.
  • the inner surface shape of the retina 46 including the macular 45 of the eye 2 to be examined is represented by the fundus curvature radius rx
  • the retinal eye having the smallest fundus curvature radius rx and the retinal eye having the largest fundus curvature radius rx Are obtained to obtain a retinal eye having an average fundus curvature radius rx
  • the average retinal eye obtained here is used as a reference (leveling) (FIG. 22).
  • the posterior focal contour S of the average retinal eye is used as a comparison reference line when selecting types Ta to Tc. It is assumed that the rear focal contour S is reproduced from the leveled S curve data Ds.
  • the S curve data Ds is image data for drawing the rear focal contour S of the radius rs.
  • the control unit 23 is called from step ST7 shown in FIG. 5 and the control unit 23 in step ST71 shown in FIG. 24, the refractive power Rx of the far-field optical unit 62 of the eye 2 to be examined, fundus shape data Input DIN and S curve data Ds.
  • the refractive power Rx, the fundus shape data DIN, and the S curve data Ds are read from, for example, the memory unit 34 and input to the calculation unit 31 and the determination unit 32.
  • the control unit 23 calculates the fundus curvature radius rx of the eyeball 2 to be examined.
  • the calculation unit 31 has at least two or more measurement points (symmetric positions) on the inner peripheral surface of the left and right retinas 46 of the eye axis L connecting the substantially central vertex (see FIG. 2) of the crystalline lens 42 of the eyeball 2 to be examined and the macular 45. )
  • the fundus curvature radius rx is obtained by obtaining an arc (fundus curvature) having an arc length La and an arrow height h shown in FIG. 25A, superposing them using a known arc as a parameter, and matching the two arcs with each other. It is obtained by reading '.
  • step ST73 the control unit 23 determines whether the refractive power type of the back focus control area 63 of the eye 2 to be examined is Ta or other than Ta.
  • the discrimination unit 32 compares the rear focal contour S of the radius rs and the fundus curvature radius rx of the eyeball 2 to be examined. For this comparison, a pattern recognition method may be employed.
  • step ST74 the control unit 23 performs display control for prescribing a contact lens of refractive power Rx + type Ta.
  • the display unit 24 receives the display data D24 from the data input / output unit 33, and based on the display data D24, “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Ta”. Is displayed. As a result, it is possible to automatically select (prescribe) the contact lens 200 having a refractive power that is weaker than the average refractive power of the retinal eye.
  • the control unit 23 proceeds to step ST75 and the control unit 23 performs the back focal point radius rx of the eyeball 2 to be examined. It is determined whether the type of the control area 63 is Tb or Tc. At this time, as a result of comparing the radius rs of the back focus isoline S and the fundus curvature radius rx of the eyeball 2 to be examined, the radius rs of the back focus isoline S and the fundus curvature radius rx are almost as shown in FIG. If they are equal (average curvature shown in FIG.
  • the determination unit 32 determines that the type of the fundus curvature radius rb is Tb, and the process proceeds to step ST76.
  • the control unit 23 performs display control for prescribing the contact lens 200 of refractive power Rx + type Tb.
  • the display unit 24 displays based on the display data D24 that “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Tb”. As a result, it is possible to automatically select (prescribe) the contact lens 200 in which the refractive power substantially equal to the refractive power of the average retinal eye is set.
  • the determination unit 32 determines the eyeball to be examined. Since it is determined that the type of the back focus control area 63 of the fundus curvature radius rc of 2 is Tc, the process proceeds to step ST77. In step ST77, the control unit 23 performs display control for prescribing the contact lens 200 of refractive power Rx + type Tc.
  • the display unit 24 displays based on the display data D24 that “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Tc”.
  • the contact lens 200 having a refractive power higher than the average refractive power of the retinal eye can be easily and automatically selected (prescription). Thereafter, the process returns to step ST7 shown in FIG.
  • 40 ° ( ⁇ max)
  • the types Ta to Tc of the rear focus control area 63 are determined based on the optical data D17 (refer to FIG. 2) indicating the position RFp of the focal point b ′) and the optical data D17 indicating the position Mp of the retina 46.
  • the type Ta is used, and when the rear focal point b ′ is located outside the retina b ′, the retina is located.
  • the remaining types Tb and Tc are determined based on the degree of separation of the rear focal point b ′ with respect to the 46 position Mp.
  • the optical data D17 indicating the position RFp and the position Mp of the retina 46 are input.
  • the data of the position RFp and the position Mp is obtained from the optical data D17, and is, for example, information indicating the optical axis length (depth) from the surface apex portion of the crystalline lens 42 to the position RFp, the position Mp, and the like.
  • the optical axis length from the surface apex part to the position RFp is set as the depth Lr
  • the optical axis length from the surface apex part to the position Mp is set as the depth Lm (see FIG. 26).
  • the depth difference ⁇ d means a difference distance between the position Mp of the retina 46 and the position RFp of the back focal point b ′ at the angle ⁇ .
  • step ST73 ' the control unit 23 determines whether the refractive power type of the back focal point control area 63 of the eye 2 to be examined is Ta or other than Ta.
  • the determination unit 32 determines whether the depth difference ⁇ d is plus (+) or minus ( ⁇ ), and the control unit 23 branches the control.
  • the depth difference ⁇ d is plus (+)
  • the rear focal point b ′ exists outside the retina 46
  • the depth difference ⁇ d is minus
  • the rear focal point b ′ does not exist outside the retina 46. Is the case.
  • step ST74 ′ the control unit 23 performs display control for prescribing a contact lens of refractive power Rx + type Ta.
  • the display unit 24 receives the display data D24 from the data input / output unit 33, and based on the display data D24, “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Ta”. Is displayed. As a result, it is possible to automatically select (prescribe) the contact lens 200 having a refractive power that is weaker than the average refractive power of the retinal eye.
  • step ST75 ′ the control unit 23 determines whether the refractive power R ⁇ type of the rear focus control area 63 is Tb or Tc. .
  • the back focal point b ′ is present outside the retina 46.
  • a value (1/2) of the average retinal eye depth difference ⁇ d is used as a reference (threshold value ⁇ dth). To make a decision.
  • the depth difference ⁇ d of the eye 2 to be examined is compared with the threshold value ⁇ dth, and if it is smaller than the threshold value ⁇ dth, it is set as type Tb, and if the depth difference ⁇ d is larger than the threshold value ⁇ dth, it is set as type Tc.
  • step ST76 ' the control unit 23 performs display control to prescribe a contact lens of refractive power Rx + type Tb. Based on the display data D24, the display unit 24 displays that “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Tb”. As a result, it is possible to automatically select (prescribe) the contact lens 200 in which the refractive power substantially equal to the refractive power of the average retinal eye is set.
  • step ST75 If the depth difference ⁇ d is larger than the threshold value ⁇ dth in step ST75 'described above, it is determined that the type of the back focus control area 63 is C, and the process proceeds to step ST77'.
  • the control unit 23 performs display control for prescribing the contact lens 200 of refractive power Rx + type Tc.
  • the display unit 24 displays based on the display data D24 that “the refractive power Rx of the distance optical unit 62 + the refractive power of the rear focus control area 63 is type Tc”.
  • the contact lens 200 having a refractive power higher than the refractive power of the average retinal eye can be easily and automatically selected (prescription). Thereafter, the process returns to step ST7 shown in FIG.
  • the axial length based on fundus shape data DIN obtained from a fundus image acquisition apparatus such as a refractometer instead of the optical data acquisition unit 10 or a posterior eye OCT (Optical Coherence Tomography).
  • Lx was measured, and the types Ta, Tb, and Tc of the back focus control area 63 were determined from the axial length Lx and the average fundus curvature shape.
  • type Ta is prescribed. This makes it possible to prescribe the contact lens 200 having a refractive power that is weaker than the refractive power of the average retinal eye.
  • type Tb is prescribed. This makes it possible to prescribe the contact lens 200 having a refractive power that is approximately equal to the refractive power of the average retinal eye.
  • the back focus control area 63 is based on the minimum fundus shape data DIN obtained from the optical data acquisition unit such as a refractometer. Types Ta, Tb, and Tc can be determined.
  • the axial length Lx is about 23.0 mm
  • the diameter of the cornea 41 is about 12.0 mm
  • the thickness of the central part of the cornea 41 is about 0.5 mm
  • the thickness of the peripheral part is about 0.7 mm.
  • the diameter of the crystalline lens 42 is about 9.0 mm, the thickness of the crystalline lens 42 is about 3.6 mm, and the thickness of the anterior chamber 47 is about 3.3 mm.
  • the corneal refractive power is 43.0 [D]
  • the crystalline lens refractive power is 20.0 [D].
  • the myopia progression diagnostic apparatus 100 uses optical data indicating corneal refractive power and refractive power such as myopia (myopia power) based on fundus shape data DIN obtained from a refractometer or the like instead of the optical data acquisition unit 10.
  • the eye axis length Lx is predicted, and the types Ta, Tb, and Tc of the back focus control area 63 corresponding to the fundus curvature described with reference to FIGS. 28A to 28D are further determined from the eye axis length Lx.
  • the corneal refractive power of the eyeball 2 to be examined shown in FIG. 29A is 43.0 [D]
  • type Ta is prescribed.
  • the fundus has a fundus curvature shape C24 as shown by a broken line in FIG. 28D.
  • type Tb is prescribed.
  • the corneal refractive power of the eyeball 2 to be examined shown in FIG. 29C is 40.0 [D]
  • the fundus has a fundus curvature shape C25 as shown by a two-dot chain line in FIG. 28D.
  • type Tc is prescribed.
  • the types Ta, Tb, and Tc of the back focus control area 63 are changed based on the fundus shape data DIN obtained from the refractometer or the like. You can decide.
  • a spectacle lens 300 shown in FIG. 30 is designed based on the myopia progression suppression theory according to the present invention, and has a lens body portion 61 ′ having a distance optical portion 62 ′ and a near optical portion 63 ′. Yes.
  • the spectacle lens 300 when the focal point of light from the center is at the center of the macular 45 when viewed from the front, the front focal point a and the rear focal point b at the periphery of the retina are also in front of the retina 46, and there is no problem. Does not occur.
  • the eyeball is a part having a movement independent of the head, so that only the eyeball is moved to change the line of sight as shown in FIG.
  • the focal point of the light from the area of the distance optical unit 62 ′ provided in the center of the lens is in the vicinity of the retina 46, rather than the back of the retina, It moves quite far away.
  • the spectacle lens 300 when assuming the purpose of suppressing myopia progression due to the extension of the axial length Lx, the spectacle lens 300 not only provides the effect, but also gives an uncomfortable feeling to the appearance such as image distortion and jumping, There are concerns about problems such as eye strain that can cause visual impairment.
  • the contact lens 200 of the present invention even if only the eyeball is moved and the object is changed, such as the contact lens 200, the correction tool that continuously forms light on the macular 45 from the distance optical unit 62 provided at the center. Therefore, the above-mentioned problem does not occur.
  • one contact lens 200 is selected from the plurality of contact lenses 200 corresponding to the fundus curvature shape of the subject 1. Will come to do.
  • This configuration makes it possible to select (prescribe) a contact lens 200 having an optimum refractive power suitable for the progress of myopia. Accordingly, the contact lens 200 having a refractive power weaker than the refractive power of the average retinal eye is easily prescribed for the subject 1 who is a retinal eye having a fundus curvature radius rx larger than that of the average retinal eye.
  • the contact lens 200 having a refractive power stronger than the refractive power of the average retinal eye can be easily prescribed for the subject 1 who is a retinal eye having a fundus curvature radius rx smaller than that of the average retinal eye. It becomes like this.
  • the present invention is a myopia progression diagnostic system for diagnosing the possibility of future progression of myopia in children and adults, determining the therapeutic effect and prospects, and treating them, and particularly for “children who are applied in clinical practice in the future” It is extremely suitable for application to a central system of “diagnosis, measurement, and treatment in myopia suppression therapy”.

Abstract

 児童及び成人の近視の進行を容易に診断できるようにして、児童等の近視の進行の有無を予想できるようにすると共に児童等の眼に合ったコンタクトレンズを処方できるようにした近視進行診断装置は、図1に示すように、被検眼球2の瞳孔の略中心と黄斑とを結ぶ眼軸線に対して角度θを成す方向の網膜に測定光を照射する光照射部13と、網膜から反射される光を受光して眼底の周辺視野における光学データD17を取得する光検出部14と、光学データD17を解析して角度θにおける測定光の焦点の位置及び当該焦点の前後の位置のPSF特性を求め、当該PSF特性に基づいて被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するデータ解析装置20とを備えるものである。本測定システムで得られた遠視度数から近視抑制に必要な矯正度数が測定できる。

Description

近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体
 本発明は、眼軸長の変化が著しい学童期の軸性近視や、本来近視の進行が止まるとされる成人において、引き続き進行し続ける屈折性近視の進行を診断し、その後の治療効果、見通しについて判定し、治療する近視進行診断システムに適用可能な近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体に関するものである。
 我が国において、人口の約50%が近視であり、眼鏡やコンタクトレンズの使用が日常生活に必要とされている。近視進行原因の一つである眼軸長の伸びによる軸性近視等の病的な強度近視は黄斑変性や網膜出血などを起こし失明に至るため、近視は失明原因の第5位を占め、さらに近視は緑内障や網膜剥離など主要な失明疾患のリスクファクターとなるため潜在的な失明原因としての近視の割合はさらに多いと見込まれる。
 近視とその進行との関連因子については、環境・遺伝、生活習慣など解明されつつあるが、その予防の基礎研究はほとんどされず、糖尿病網膜症や緑内障など他の主要失明原因疾患と比較すると研究がほとんど進んでいない。これは近視が眼軸長の延長という、いわゆる遺伝が決定する、通常の「眼の成長」の個人差によるものであり、「個体の身長の差」程度にしか理解されていないことが原因といえる。
 ところが、近年、周辺視野のぼやけと眼軸伸長との関連が明らかになりつつある。その背景に、動物実験において視覚刺激を奪われた部分で眼球のbulge(突出)が起き近視が進行することが示され(Wallman J, Science 1987)、実際の臨床においても未熟児網膜症でレーザー治療を受けた未熟児や先天白内障で眼内レンズを眼内に固定した児童で軸性近視が進行するという現象が確認されている。
 眼内レンズ眼は眼底視野の周辺になるほど、乱視や非点収差の影響から網膜像が劣化する(図14参照)。すなわち、周辺視のぼやけによる視覚刺激遮断が弱視だけでなく、眼球形態の成長に大きく関与することの示唆している(Connoly, Ophthalmolgy 2004)。つまり、これまで遺伝や環境要因による個体差と考えられてきた近視進行は光学的要因が関係すると考えられ、近年、コンタクトレンズや眼鏡で近視進行を抑制しようという流れがあるが、周辺の光学特性において、しっかりした基礎データに基づく研究がないのが現状であった。
 これは周辺視野の光学データの詳細な解析が、従来の機種で難しいことが原因である。最新のHartmann-Shack波面収差計では最も焦点が合う度数の高次収差しか測定できないが、周辺視は中心視焦点にあわせる調整機能によって常にデフォーカス(Defocus)にさらされている。
 そこで、我々は、2009年から2011年に至る期間に「小児期における近視進行は周辺視野の光学的劣化、主に高次収差が起因する」との仮説のもとに前向き研究を行ったところ、高次収差成分よりも低次収差、特に相対的な遠視が近視進行と眼軸伸長に関与し、その相対的遠視にも個体差があることを見出した。
 これまで霊長類や鳥類で周辺視のぼやけが眼軸近視に関与するという報告はある。近年、ヒトでも、ある種のコンタクトレンズが小児の軸性近視を抑制するという報告があるが詳細はわかっていない。また、ヒトの周辺視野の光学特性の解析は簡易な屈折度数しか検査しない検討が多く、これが従来の周辺視研究の大きな問題点であった。
 図32Aはヒトの眼(以下被検眼球2という)の構造を示す断面図である。図32Aにおいて、41は角膜、42は水晶体、43は瞳孔、44は硝子体、46は網膜である。なお、被検眼球2の構造については、その説明を省略する。まず、近視のヒトが遠くを見る場合と老眼のヒトが近くを見る場合の一般的な焦点深度について説明する。
 図32Aに示すように、正視のヒトが遠くを見る場合も近くを見る場合も、眼球内に入ってきた光が、網膜46上の正しい位置、すなわち、黄斑45で結像する。図中のOは、光軸(眼軸)であり、L1は正視のヒトの眼軸長である。眼軸長L1は角膜41の中心頂上部から網膜46の黄斑45の部分に至る長さをいう。網膜46は黄斑45の周辺部分をいう中心網膜と、当該中心網膜の周囲領域をいう周辺網膜とに分けて論じられる。
 一方、図32Bに示す眼軸長L2(L2>L1)のように図32Aに示した眼軸長L1に比べて後方に延びると、焦点が網膜46上に合わなくなる。遠方の物が見え難くなる、いわゆる近視の症状である。近視のヒトが遠くを見る場合には、眼球内に入ってきた光が、網膜46上の正しい位置ではなく、中心網膜上よりも手前側で結像する。また、焦点深度も浅いため、焦点位置が網膜46よりも前方となる。
 近視になり始めると眼軸長L2が後方に延び、眼球形状が歪むため、中心網膜でのピントが網膜46(黄斑45)上よりも前方にずれてしまうため、視力補正用具を使用し、中心網膜でのピントを黄斑45上に移動させるが、そうすると、それに合わせるように眼軸長L2が更に後方に延びる結果、ますます、中心網膜上に焦点が合わなくなり近視が進行して行くと考えられる。なお、図示せずも、老眼のヒトが近くを見る場合、水晶体42が弾性を失い硬くなるので、網膜46上の正しい位置ではなく、網膜46よりも後方で結像するようになる。
 また、周辺視野の光学解析の歴史は長く、1700年代英国物理学者であり眼光学の大家であったトーマス・ヤングに遡る。近年、コンピューターを使用した解析技術の進歩と診断機器の発達から、周辺視野光学特性が測定可能となった。世界的にも、本特許と類似した研究を行っている施設はあるが、彼らが行っているのは、周辺網膜の最も焦点があった部分だけの光学特性の解析である。霊長類は進化の過程で水晶体の厚みを変えることによる遠近の焦点を自在に操る調節機能を持つに至っている。
 このような周辺視野の光学解析に当たり、眼光学特性を高速に測定するための装置や方法に関して、特許文献1には眼光学特性測定方法及び眼光学特性測定装置が開示されている。
特開2006-263300号公報
 ところで、従来例に係る眼光学特性の測定技術によれば、次のような問題がある。  
 i.近視の進行を予想する技術に関して、これまでの数多くの「近視進行抑制」の試みがされてきた。しかしながら、アトロピン点眼、累進加入度数眼鏡など、大規模の臨床研究がされてきたにも関わらず、若干の効果があるとされるものの、臨床で普及させるには十分といえるレベルには到底達せず、その予測が失敗に終わっている。
 ii.近年、ある種のコンタクトレンズによる近視抑制や、軸外収差抑制眼鏡が近視進行を止めるという臨床報告もあるが、これらはその直後に研究デザインの不備を指摘されている。この原因として、ボランティア児童が介入治療を始める段階で、今後近視が進行する児童なのか、近視が進行しない児童なのかを判定する基準がないことが挙げられる。
 iii.特許文献1に見られるような眼光学特性測定装置によれば、周辺視野の光学解析において十分なデフォーカス成分の詳細な解析を行っていないのが実状である。このため、何らの工夫無しに、当該眼光学特性測定装置を近視進行診断装置に適用しても、近視が進行する児童であるか否かの判定をすることが困難となる。
 上述の課題を解決するために、請求項1に記載の近視進行診断装置は、被検眼球の瞳孔の略中心と黄斑とを結ぶ眼軸線に対して角度θを成す方向の網膜へ測定光を照射する光照射部と、前記網膜から反射される光を受光して眼底の周辺視野における光学データを取得する光検出部と、前記光学データを解析して前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するデータ解析部とを備えるものである。
 請求項1に係る近視進行診断装置によれば、被検眼球の近視が今後進行するか否かを判別(予想)できるようになる。
 請求項2記載の近視進行診断装置は請求項1において、前記データ解析部は、前記角度θにおける光軸線上で最も焦点が合った前記測定光の焦点の位置、前記光軸線上で前記焦点の前側に位置する前焦点の位置、及び、前記光軸線上で前記焦点の後側に位置する後焦点の位置の点像強度分布特性を求める演算部と、前記点像強度分布特性に基づいて前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別する判別部とを有するものである。
 請求項3に記載の近視進行診断装置は請求項2において、前記演算部は、前記測定光の焦点の位置の屈折度数、前記前焦点の位置の屈折度数及び、前記後焦点の位置の屈折度数を前記角度θ毎に演算するものである。
 請求項4に記載の近視進行診断装置は請求項2において、前記演算部は、前記測定光の焦点の位置の屈折度数、前記前焦点の位置の屈折度数及び前記後焦点の位置の屈折度数の各々から前記眼軸線(θ=0°)における前記測定光の焦点の位置の屈折度数を差し引いた各々の差分を演算し、前記判別部は、前記差分が共に正の値であるか負の値であるかを判別するものである。
 請求項5に記載の近視進行診断装置は請求項3において、前記測定光の焦点位置の点像、前記前焦点の非点像及び前記後焦点の非点像を前記角度θ毎に表示する表示部を備えるものである。
 請求項6に記載の近視進行診断装置は請求項3において、前記データ解析部は、前記測定光の焦点位置の点像のぼやけ具合を解析して近視進行抑制用の加入度数を導入したコンタクトレンズによる治療が可能か否かを判別するものである。
 請求項7に記載の近視進行判別方法は、被検眼球の近視の進行を診断する近視進行診断装置が、前記被検眼球の瞳孔の略中心と黄斑とを結ぶ眼軸線に対して角度θの方向の網膜へ測定光を照射するステップと、前記網膜から反射される光を受光して眼底の周辺視野における光学データを取得するステップと、前記光学データを解析して前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するステップとを実行するものである。
 請求項8に記載のプログラムは、近視進行判別方法を実行するためのコンピューターが読み取り可能なものである。
 請求項9に記載の記憶媒体は、近視進行判別方法を実行するためのコンピューターが読み取り可能なプログラムを記述したものである。
 請求項1に係る近視進行診断装置及び請求項7に係る近視進行判別方法によれば、被検眼球の近視が今後進行するか否かを判別(予想)できるので、眼軸長の変化が著しい学童期の軸性近視や、本来近視の進行が止まるとされる成人において、引き続き進行し続ける屈折性近視の進行を容易に診断できるようになる。これにより、近視の進行段階にある児童等の眼に合った眼鏡やコンタクトレンズ等を容易に処方できるようになる。
 請求項4に係る近視進行診断装置によれば、3つの屈折度数が正の値である場合は、”光軸線上で焦点の前側に位置する前焦線から、その後側に位置する後焦線に至るまですべてに遠視性の後焦点が網膜の外側に存在する”と診断できるようになる。
 請求項6に係る近視進行診断装置によれば、最も焦点が合った位置の点像のぼやけ具合の解析によって、当該点像のぼやけが大きい被検眼球は本介入試験では治療できない除外群になるか、本介入試験で治療が可能となるか等を分類できるようになる。
本発明に係る第1の実施形態としての近視進行診断装置100の構成例を示すブロック図である。 近視進行診断装置100の制御系の構成例を示すブロック図である。 評価式A,B,Cが正値となる判定例を示す眼内断面図である。 評価式A,B,Cが負値となる判定例を示す眼内断面図である。 近視進行診断装置100における近視進行判定例(メインルーチン)を示すフローチャートである。 近視進行判定例(サブルーチン)を示すフローチャートである。 A及びBはダブルパスPSF像からシングルパスPSF像への変換例を示す画像図である。 光学データD17の取得例[θ=20°](-4.45[D])を示す画像図である。 光学データD17の取得例[θ=20°](-4.20[D])を示す画像図である。 光学データD17の取得例[θ=20°](-3.95[D])を示す画像図である。 光学データD17の取得例[θ=20°](-3.70[D])を示す画像図である。 光学データD17の取得例[θ=20°](-3.45[D])を示す画像図である。 光学データD17の取得例[θ=20°](-3.20[D])を示す画像図である。 光学データD17の取得例[θ=20°](-2.95[D])を示す画像図である。 光学データD17の取得例[θ=20°](-2.70[D])を示す画像図である。 光学データD17の取得例[θ=20°](-2.45[D])を示す画像図である。 光学データD17の取得例[θ=20°](-2.20[D])を示す画像図である。 光学データD17の取得例[θ=20°](-1.95[D])を示す画像図である。 光学データD17の取得例[θ=20°](-1.70[D])を示す画像図である。 光学データD17の取得例[θ=20°](-1.45[D])を示す画像図である。 光学データD17の取得例[θ=20°](-1.20[D])を示す画像図である。 光学データD17の取得例[θ=20°](-0.95[D])を示す画像図である。 光学データD17の取得例[θ=20°](-0.70[D])を示す画像図である。 光学データD17の取得例[θ=20°](-0.45[D])を示す画像図である。 光学データD17の取得例[θ=20°](-0.20[D])を示す画像図である。 光学データD17の取得例[θ=20°](0.05[D])を示す画像図である。 光学データD17の取得例[θ=20°](0.30[D])を示す画像図である。 光学データD17の取得例[θ=20°](0.55[D])を示す画像図である。 MTF対空間周波数の特性例を示すグラフ図である。 水晶体眼のベストフォーカス時[θ=-20°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=-10°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=0°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=10°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=20°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=30°]のPSF像の取得例を示す画像図である。 水晶体眼のベストフォーカス時[θ=40°]のPSF像の取得例を示す画像図である。 水晶体眼のMTF特性例を示すグラフ図である。 IOL眼のベストフォーカス時[θ=-20°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=-10°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=0°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=10°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=20°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=30°]のPSF像の取得例を示す画像図である。 IOL眼のベストフォーカス時[θ=40°]のPSF像の取得例を示す画像図である。 IOL眼のMTF特性例を示すグラフ図である。 A及びBは本発明に係る第2の実施形態としての近視進行抑制用のコンタクトレンズ200の構成例を示す断面図である。 コンタクトレンズ200の装着例を示す断面図である。 視力と中心窩からの度数との関係例を示すグラフ図である。 近視眼の矯正例(その1)を示す断面図である。 近視眼の矯正例(その2)を示す断面図である。 近視眼の矯正例(その3)を示す断面図である。 タイプTaによるコンタクトレンズ200の処方例を示す断面図である。 タイプTbによるコンタクトレンズ200の処方例を示す断面図である。 タイプTcによるコンタクトレンズ200の処方例を示す断面図である。 コンタクトレンズの処方例(その1)を示すフローチャートである。 眼底曲率半径rxの算出例を示す説明図である。 タイプTa,Tb,Tcの処方例を示す説明図である。 角度θ=40°におけるタイプTa,Tb,Tcの判定例を示す被検眼球2の眼内断面図である。 コンタクトレンズ200の処方例(その2)を示すフローチャートである。 眼軸長Lx=23.0mmと眼底曲率形状とのタイプTa,Tb,Tcとの関係例を示す説明図である。 眼軸長Lx=24.0mmと眼底曲率形状とのタイプTa,Tb,Tcとの関係例を示す説明図である。 眼軸長Lx=25.0mmと眼底曲率形状とのタイプTa,Tb,Tcとの関係例を示す説明図である。 眼軸長Lx=23.0,24.0,25.0mmと眼底曲率形状C23~C25とのタイプTa,Tb,Tcとの関係例を示す説明図である。 眼内寸法を示す説明図である。 眼軸長Lx=23.0mmと眼底曲率形状C23とタイプTaとの関係例を示す説明図である。 眼軸長Lx=24.0mmと眼底曲率形状C24とタイプTbとの関係例を示す説明図である。 眼軸長Lx=25.0mmと眼底曲率形状C25とタイプTcとの関係例を示す説明図である。 比較例としての近視進行抑制用の眼鏡レンズ300の装着例を示す断面図である。 比較例としての近視進行抑制用の眼鏡レンズ300の問題点を示す断面図である。 従来例に係る被検眼球(正視)の症状例を示す断面図である。 近視進行時の被検眼球(近視)の症状例を示す断面図である。
 近年、子供の近視の進行に関する研究が進み、子供の近視の進行は周辺網膜における像のぼけが原因するのではないかと考えられるようになってきた。そこで、本発明者は周辺網膜の焦点のずれを修正すれば、近視の進行が抑えられるとの考えに辿り着き、本発明に至った。
 本発明は、児童や成人等の近視の進行を容易に診断できるようにすると共に、児童等の近視の今後の進行の有無を予想できるようにした近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体を提供することを目的とする。
 以下、図面を参照しながら、本発明に係るコンタクトレンズ及びその選定方法について、その説明をする。図1に示す近視進行診断装置100は児童や成人等の被検者1の眼球(以下被検眼球2という)における周辺視野の光学データを取得して解析する装置である。近視進行診断装置100は、ヒトの眼の水晶体の中心から角度40°の軸ずれした周辺視野まで、焦点が合う度数±2.5[D](D:ジオプター)という広範囲の光学データが取得可能なものである。
 近視進行診断装置100は、既存のPSFアナライザー(登録商標)に工夫を施したものであり、例えば、児童等の近視が今後進行するか否かの判定、進行しうる近視が治療で抑制できるか否かの判定、進行しうる遠用レンズの周辺部にどのくらいの度数の屈折矯正レンズを加入することで近視抑制の治療ができるか否かの判定、及び、一定期間の治療の後の効果判定等に適用が可能なものである。
 近視進行診断装置100は、光学データ取得部10及びデータ解析装置20を有している。光学データ取得部10は、例えば、本体部11、XYZステージ12、円弧状の軌道53を有している。本体部11はXYZステージ12上に載置されており、このXYZステージ12が円弧状の軌道53上を時計方向又は反時計方向に移動できるようになっている。XYZステージ12は、本体部11をX方向(左右方向)、Y方向(前後方向)、Z方向(上下方向:紙面に鉛直な方向)に移動調整可能なものである。
 XYZステージ12には、例えば、設定部15が設けられ、被検眼球2の瞳孔の略中心と黄斑とを結ぶ眼軸線L(図3参照:図32A,図32Bで記述した光軸Oに同じ)に対する角度θを設定するように操作される。設定部15は角度表示器51や操作レバー52等から構成される。角度表示器51には例えばデジタル表示器が使用され、角度θが表示される。被検者1は本体部11とは別の固定座標系に頭部や顎等が固定され、設定部15で角度θを設定すると、XYZステージ12を被検眼球2の瞳孔の中心を原点にして、被検者1の回りを角度θだけ回動する方法が採られる。
 固定座標系には被検者1固定用の枠(図示せず)の他に軌道53が取り付けられる。軌道53にはXYZステージ12が移動自在に係合されている。角度表示器51はXYZステージ12に設けられ、操作者(眼科医師)が角度θを設定する際に、操作レバー52を持ってXYZステージ12を軌道53に沿って移動すると、角度表示器51の値が順次カウントアップするように表示する。もちろん、角度表示器51を軌道53に設け、XYZステージ12に基線を設けて、アナログ角度表示した目盛りに基線を合わせ込む方法を採ってもよい。
 また、XYZステージ12に図示しない駆動機構を設けて、テンキー等で角度θを設定し、駆動機構を動作させてXYZステージを時計方向又は反時計方向に自動的に回転する方法を採ってもよい。なお、図中の16はXYZステージ操作用の既存のレバーである。54は固視票(水平方向や垂直方向等に切り欠きを有するランドルト環:C記号)である。
 光学データ取得部10にはPSFアナライザー(登録商標)や、オートレフラクトメーター等が使用される。オートレフラクトメーターは被検眼球2に赤外線光を当て、眼の屈折状態、主に近視・遠視・乱視などの有無やその程度を自動的にコンピューターで解析可能で、かつ、被検眼球2を客観的に測定して数値化が可能なものである。
 データ解析装置20はキーボード21、マウス22、制御部23及び表示部24を有している。データ解析装置20には、ノート型やデスクトップ型等のパーソナルコンピューター(情報処理装置)が使用される。マウス22には有線式や無線式のものが使用される。表示部24には液晶表示パネルが使用される。
 本体部11には、図2に示すように光照射部13、光検出部14及びデータ入出力部17が備えられ、これらが光学データ取得部10の制御系を構成する。光照射部13は、図示しない光源、フォーカシングレンズ、偏光ビームスプリッタ、1/4波長板等の投影系の構成要素が設けられる。光照射部13は照射制御信号S13に基づいて眼軸線Lに対して角度θの方向の網膜46(図3、図4等を参照)へ測定光を照射する。照射制御信号S13は光源やフォーカシングレンズ等を制御する信号である。
 光検出部14は、角度θ方向の網膜46から反射される光を受光して眼底の周辺視野における光検出信号S14を発生する。光検出部14は例えば、撮像素子(CCD)から構成される。光検出部14では、前焦線・後焦線のデフォーカス成分を含む広屈折範囲の光学データD17となる光検出信号S14を発生する。
 ここにデフォーカス成分(非焦点成分)とは、水晶体42(図3参照)の結像位置から光軸線(方向)上で前後にズレた非焦点位置の輝度成分をいう。この視野周辺部のデフォーカス成分こそが、近視進行の有無を予想する第一の因子になり得るものである。なお、光照射部13、光検出部14及びデータ入出力部17の個々の構成及びその機能については、既存のPSFアナライザー(登録商標)を利用できるので、その詳細な説明を省略する。
 データ入出力部17は光学データD17をデータ解析装置20に転送したり、データ解析装置20から制御データD33を受信して光照射部13及び光検出部14を制御する。例えば、データ入出力部17は制御データD33をD/A変換して照射制御信号S13を作成し、照射制御信号S13を光照射部13に出力する。
 また、データ入出力部17は光検出信号S14をA/D変換して光学データD17を作成し、ヘッダに角度θを書き込み、当該ヘッダに光学データD17を添付してデータ解析装置20に転送する。光学データD17は角度θにおける周辺視野の網膜46から反射される反射光の光軸±2.0[D」の範囲について、0.25[D]ステップ毎に点像(Point Spread Function;PSF像)を再生(撮像)した21個のダブルパスPSF像を構成するデータである。制御データD33には±2.0[D」の範囲について、0.25[D]ステップ毎にフォーカシングレンズを駆動するデータが含まれる。
 データ入出力部17には光検出信号S14をデジタルの光学データD17に変換するAD変換器や、制御データD33を照射制御信号S13に変換するDA変換器が設けられ、AD変換器やDA変換器等の入出力を制御するためのローカルな中央処理装置(CPU)も備えられる。
 光学データ取得部10にPSFアナライザー(登録商標)を使用する場合は、当該アナライザーを児童の被測定眼で固視させて、眼底の中心及びその周辺視野の光学データD17を±2.0[D]の広範囲で0.25[D]ステップで測定する。光学データ取得部10によれば、光照射部13のフォーカシングレンズの駆動により被検眼球2に入射する測定光(光束)を収束から平行、発散へと変化させことで、被検眼球2から点光源までの距離を0.25[D]ステップで光学的に変えてダブルパスPSF像を取得できるようになる。
 これにより、児童(小児)等における眼底の中心及びその周辺視野での前焦線及び後焦線を含めた正確な光学データD17を詳細に把握できるようになる。被検眼球2の近視が今後進行するか否かを判別(予想)できるようになる。
 光学データ取得部10にはデータ解析装置20が接続され、データ解析装置20は光学データD17を解析するものである。例えば、角度θにおける測定光の焦点の位置及び当該焦点の前後の位置(0.25[D]ステップ)での点像強度分布特性(以下PSF特性という)を求め、当該PSF特性に基づいて被検眼球2の眼底の周辺視野に遠視性の後非焦点が存在するか否かを判別する。ここに後焦点とは、角度θにおける光軸線L’上で最も焦点が合った測定光の焦点の後側を後焦線としたとき、この後焦線上に位置する非焦点をいう。
 データ解析装置20は制御部23を有しており、制御部23は例えば演算部31、判別部32、データ入出力部33及びメモリ部34を有している。演算部31及び判別部32には中央処理装置(CPU)が使用される。
 演算部31は、シングルパスPSF像に関する光学データD17から角度θにおける測定光の焦点の位置及び当該焦点の前後の位置のPSF特性を求める。例えば、演算部31は、角度θにおける光軸線L’上で最も焦点が合った測定光の焦点の位置、光軸線L’上で焦点の前側に位置する前焦線上の非点像の位置、及び、光軸線L’上で焦点の後側に位置する後焦線上の非点像の位置のPSF特性を求める。
 更に、演算部31は角度θにおける焦点位置のPSF像の屈折度数、前焦点の屈折度数及び後焦点の屈折度数を角度θ毎に演算する。これにより、前焦点と後焦点の屈折度数から近視の進行の有無を予想できるようになる。
 この例では、更に演算部31が角度θにおける焦点位置の点像の屈折度数、前焦点の屈折度数及び後焦点の屈折度数の各々から眼軸線L(θ=0°)における測定光の焦点位置の点像の屈折度数を差し引いた各々の差分を演算する。この演算は遠視性の後焦点が黄斑を中心とした周辺視野の網膜46の外側に存在するか否かを判別するためである。
 例えば、遠視性の後焦点が存在するか否かを判別するための前段階として演算部31は、角度θにおける最も焦点が合っている位置のPSF像の屈折度数をBFRθとし、同じ角度θの前焦線上でぼやけている非点像の屈折度数をAFLRθとし、後焦線上でぼやけている非点像の屈折度数をPFLRθとし、眼軸線L上(θ=0°)における最も焦点が合っている位置のPSF像の屈折度数をBFR0とし、それぞれの評価値をA,B,Cとして、次の評価式(1)~(3)、すなわち、
      A=AFLRθ-BFR0       ・・・・・(1)
      B=BFLRθ-BFR0         ・・・・・(2)
      C=PFLRθ-BFR0        ・・・・・(3)
を演算する。
 判別部32は、上述の(1)~(3)式の演算結果に基づいて被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別する。例えば、判別部32は、測定光の焦点の位置のPSF像の屈折度数、前焦線上の非点像の屈折度数、及び後焦線上の非点像の屈折度数が共に正の値であるか負の値であるかを判別する。
 判別部32は、3つの評価値A,B,Cがいずれも正の値である場合は、”前焦線から後焦線に至るまですべてに遠視性の後焦点が網膜の外側に存在する”旨を診断できるようになる。反対に、3つの評価値A,B,Cの内、1つでも負の値である場合は、”前焦線から後焦線に至る位置に遠視性の後焦点が存在しない”旨を判断できるようになる。
 上述のデータ入出力部33には、光学データ取得部10、キーボード21、マウス22及び表示部24が接続される。データ入出力部33は光学データD17を光学データ取得部10から受信したり、光学データ取得部10へ制御データD33を転送する。データ入出力部33は表示部24に表示データD24を出力したり、キーボード21からキーデータD21を入力したり、マウス22から操作データD22を入力する。
 なお、データ入出力部33には光学データ取得部10に代えて、レフラクトメーターが接続可能となされ、レフラクトメーターから得られる眼底形状データDINに基づいて判別部32で被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するようにしてもよい。
 メモリ部34は記憶媒体の一例を構成し、近視進行判別方法を実行するためのコンピューターが読み取り可能なプログラムを記述したものである。メモリ部34にはROM、RAM等の他、ハードディスク装置が使用される。例えば、ROMには近視進行判別方法を実行するためのコンピューターが読み取り可能なプログラムデータが格納される。
 プログラムデータは、例えば、被検眼球2の水晶体の略中央と黄斑とを結ぶ眼軸線Lに対して角度θの方向の網膜46へ測定光を照射するステップと、当該網膜46から反射される光を受光して眼底の周辺視野における光学データD17を取得するステップと、光学データD17を解析して角度θにおける測定光の焦点の位置及び当該焦点の前後2の位置のPSF特性を求めるステップと、PSF特性に基づいて被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するステップ(図5参照)とを実行するためのメインルーチン用のプログラムを内容とするものである。
 更に、被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かの判別時のサブルーチンとして、前焦線上の非点像の屈折度数AFLRθ及び眼軸長上の焦点の屈折度数BFR0を入力するステップと、評価式A=AFLRθ-BFR0として評価値Aを求めるステップと、最も焦点が合っている位置の屈折度数BFRθ及び眼軸長上の焦点の屈折度数BFR0を入力するステップと、評価式B=BFLRθ-BFR0として評価値Bを求めるステップと、後焦線上の非点像の屈折度数PFLRθ及び眼軸線L上の焦点の屈折度数BFR0を入力するステップと、評価式C=PFLRθ-BFR0として評価値Cを求めるステップと、評価値A,B,Cがいずれも正の値であるか否かを判別するステップとを実行するためのプログラムデータも含まれる。
 RAMには周波数伝達関数(Modulation Transfer Function:MTF)解析時、変換後の光学データD17が展開される。MTF解析では、最も焦点が合うPSF像のぼやけ具合が解析される。ハードディスク装置には変換前及び変換後の光学データD17や、表示データD24、制御データD33等が格納される。表示データD24は角度θ毎にサムネイル画像を表示するためのシミュレーション画像表示用のデータである。これにより、被検眼球2の角度θにおける最も焦点の合う屈折位置での低次及び高次収差の影響を解析できるようになる。図中のDsはS曲線データであり、半径rsの後焦等線Sを描画するための画像データであり、コンタクトレンズの選定時に使用される。
 表示部24は、演算部31によって算出された最も焦点が合った位置のPSF像、前焦線上の非点像及び後焦線上の非点像を角度θ毎に表示するようになる。例えば、データ入出力部33から表示データD24を受信して、最も焦点が合った位置のPSF像、前焦線上の非点像及び後焦線上の非点像のサムネイル画像を1画面中に表示する(図8A~図8L及び図9A~図9I参照)。もちろん、表示部24に、被検眼球2の模式的な断面に角度θにおける光軸線L’を重ね合わせたもの表示してもよい(図3及び図4参照)。表示部24には液晶表示パネルが使用される。これらにより、近視進行診断装置100を構成する。
 ここで、図3及び図4を参照して、評価式A,B,Cが正値となる場合及び負値となる場合の判定例について説明する。図3及び図4は、被検眼球2の模式的な断面に角度θにおける光軸線L’を重ね合わせたものであり、光軸線L’上には0.25[D]スケールで位置(焦点や非焦点の深度)が記述されている。図3に示す評価式A,B,Cが正値となる判定例によれば、眼内断面図において、近視が進行した児童は、図4に示す正視の児童に比べて被検眼球2の眼軸長Lxが延びている。図中、角度θ=20°で破線に示す光軸線L’と直交する複数(21本)の縦方向の短線は、±2.0[D」の範囲について、フォーカシングレンズの駆動により被検眼球2に入射する測定光(光束)を変化させたとき、その0.25[D]ステップ毎に非焦点及び焦点の位置を記述したものである。
 この破線で示した光軸線L’において、最も焦点が合った位置(黒丸印)をBFpとし、前焦線上の非点像の位置(黒菱形印)をAFpとし、後焦線上の非点像の位置(白抜き菱形印)をRFpとしたとき、位置BFpと位置RFpとが網膜46を跨いで、その遠視側に位置している。先に説明した例で言うと、位置AFpが図8Eに示した-3.45[D]に相当し、位置BFpが図8Kに示した-1.95[D]に相当し、位置RFpが図9Eに示した-0.45[D]に相当する。
 このような位置BFpと位置RFpとが網膜46を跨いで遠視側に位置している児童の被検眼球2は、評価式A,B,Cが正値となり、被検眼球2の近視が進行していると判断することができる。
 図4に示す評価式A,B,Cが負値となる判定例によれば、眼内断面図において、正視の児童は、図3に示した近視の児童に比べて被検眼球2の眼軸長Lxが延びていない。図中、破線で示した光軸線L’において、最も焦点が合った位置BFp及び前焦線上の非点像の位置AFpが網膜46を跨ぐことなく、近視側に位置している。このような位置BFpと位置RFpとが近視側に位置している児童の被検眼球2は、評価式A,B,Cが負値となり、被検眼球2の近視は進行していないと判断することができる。
 続いて、図5~図14を参照して、本発明に係る近視進行判別方法について、当該近視進行診断装置の動作例について説明する。この例では、図1に示した近視進行診断装置100に被検者1の頭部をその顎台に固定して、非検査眼で固視票54を固視するようにさせて、検査眼の周辺視野での光学データD17を近視進行診断装置100によって測定する場合を前提とする。近視進行診断装置100が次のステップST1~ST7を実行し、そのステップST5で制御部23が被検眼球2の近視の進行を判定して被検眼球2の近視の進行を診断する場合を例に採る。
 これらを前提にして、図5に示すフローチャートのステップST1で、まず、制御部23は角度θの設定を受け付ける。角度θは被検眼球2の水晶体42の略中央と黄斑45とを結ぶ眼軸線Lに対する測定光の照射角となる。例えば、眼科医師は設定部15を操作して角度θを設定する。設定部15はデータ入出力部17,33を介して制御部23に角度θ設定を示す光学データD17を通知する。もちろん、キーボード21又はマウス22を操作して制御部23に角度θ設定を示す光学データD17を入力してもよい。
 次に、ステップST2で制御部23は、先に設定された角度θの方向の網膜46へ測定光を照射するように光照射部13を制御する。光照射部13はデータ入出力部17から入力した照射制御信号S13に基づいて眼軸線Lに対して角度θの方向の網膜46(図3、図4等を参照)へ測定光を照射する。
 更に、ステップST3で制御部23は、光学データD17を取得するようにデータ入出力部17を制御する。光検出部14では、角度θの方向の網膜46から反射される光を受光して眼底の周辺視野における前焦線・後焦線のデフォーカス成分を含む広屈折範囲の光検出信号S14を発生する。
 データ入出力部17は光検出部14から光検出信号S14を入力し、当該光検出信号S14をA/D変換して前焦線・後焦線のデフォーカス成分を含む広屈折範囲の光学データD17を取得する。光学データD17は図7のAに示すダブルパス(Double-pass)PSF像を構成するデータである。
 ダブルパスPSF像は、眼球光学系に点光源を投影した時に網膜46上に形成される点像であり、眼球光学系の全ての光学情報(光学データD17)を含んでいる。光学データD17を取得することで、視野周辺部で最も焦点が合う部分だけでなく、0.25[D]等、細かく広範囲に渡って、そのデフォーカス成分の光学特性を取得できるようになる。
 次いで、ステップST4で制御部23は光学データD17を解析する。例えば、ステップST41で制御部23は、角度θにおける測定光の焦点の位置及び焦点の前後の位置のPSF特性を求める。上述のダブルパスPSF像には測定光が眼球光学系を行きと帰りとで2回通過しているので、図7のAに示したダブルパスPSF像を図7のBに示すシングルパス(Single-pass)PSF像に変換する。このとき、ダブルパスPSF像を示す光学データD17が、従来方式と同じ方法でシングルパスPSF像を示す光学データD17に変換される。
 変換後の光学データD17は解析されて、被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するために用いられる。演算部31では、シングルパスPSF像の伝達特性を表す関数としてのMTFと、位相伝達関数(Phase Transfer Function:PTF)とを求める演算が行われる。
 このMTFとPTFの両方の特性を合わせた光学伝達関数(Optical Transfer Function:OTF)を求め、これらの特性によって、被検眼球2のレンズの画像伝達特性、換言すると、被検者1の眼内レンズ(水晶体42)の結像性能を判断するようになされる。演算部31は、光学データD17から低次及び高次収差を反映したコントラストデータ(MTFデータ)を計算するようになる。
 この例では、最も焦点が合った位置のPSF像におけるMTF(fx,fy)を計算することによって、周辺視野の非焦点のぼけ具合を解析(MTF解析)する。例えば、被検眼球2の眼球光学系の光学伝達関数をOTF(fx,fy)とし、その周波数伝達関数をMTF(fx,fy)とし、非焦点や焦点の光学データD17の輝度信号成分をS(fx,fy)、S(0,0)とし、水平方向の空間周波数をfx、垂直方向の空間周波数をfyとして、(4)式、すなわち、
Figure JPOXMLDOC01-appb-M000001
 からMTF(fx,fy)を計算する。 
 この(4)式に基づいて、角度θにおける±2.0[D」の範囲について、0.25[D]ステップ毎に非焦点及び焦点の位置(全21箇所)の点像強度分布特性(PSF特性)を算出する(図8A~図8L及び図9A~図9I参照)。これにより、最も焦点が合うPSF像のぼやけ具合をMTF解析することができる。このMTF解析によって測定光の焦点位置の点像のぼやけが大きい被検眼球2、例えば、PSF像のぼやけが大きい児童は、本介入試験では治療できない除外群になるか、本介入試験で治療が可能かを分類できるようになる。
 そして、ステップST42で制御部23が角度θにおける±2.0[D」の範囲について、0.25[D]ステップ毎の焦点及び非焦点像をサムネイル画像として表示部24に表示する。例えば、表示部24はデータ入出力部33から表示データD24を受信して、最も焦点が合った位置のPSF像、前焦線上の非点像及び後焦線上の非点像のサムネイル画像を1画面中に表示する(図8A~図8L及び図9A~図9I参照)。
 図8A~図8L及び図9A~図9Iに示す画像例によれば、角度θ=20°における視野周辺部の網膜46から反射される反射光の光軸±2.0[D」の範囲について、0.25[D]ステップ毎に再生(撮像)した21個のシングルパスPSF像が構成され、図7のAに示したダブルパスPSF像から変換されたシングルパスPSF像の光学データD17(コントラストデータ:MTFデータ))を構成するようになる。
 図8A~図8Lに示す屈折度数が-4.45[D]、-4.20[D]、-3.95[D]、-3.70[D]、-3.45[D]、-3.20[D]、-2.95[D]、-2.70[D]、-2.45[D]、-2.20[D]、-1.95[D]、-1.70[D]の12個の画像において、-3.45[D]が角度θ=20°における前焦線上の非焦点像であり、-1.95[D]が角度θ=20°における最も焦点が合った位置のPSF像である。
 また、図9A~図9Iに示す屈折度数が-1.45[D]、-1.20[D]、-0.95[D]、-0.70[D]、-0.45[D]、-0.20[D]、 0.05[D]、 0.30[D]、0.55[D]の9個の画像において、-0.45[D]が角度θ=20°における後焦線上の非焦点像である。図8A~図8Jに示した非焦点像は幅や長さに大小があるもの右下がりの細長い楕円形状を有している。図8L及び図9A~図9Iに示した非焦点像も幅や長さに大小があるもの、左下がりの細長い楕円形状を有している。
 前焦線上の非焦点像及び後焦線上の非焦点像の選択基準は、例えば、最も焦点が合った位置BFpのPSF像からその前後に±0.25[D]をずれた位置の前焦線上の非焦点像の光強度と後焦線上の非焦点像の光強度を合成したとき、当該PSF像の光強度となるような対称位置AFp,RFpにある前焦線上の非焦点像及び後焦線上の非焦点像とを抽出する。他の角度θ=10°,30°及び40°についても同様に取得される。
 図10に示すMTF対空間周波数の特性例によれば、縦軸が眼内レンズ(水晶体42)のMTFであり、PSF像の細かさを示す空間周波数(Spatial Frequency)に対応するコントラストの低下の割合を示している。横軸は空間周波数[c/deg]である。
 図中、破線はPSF像の水平方向のMTF対空間周波数特性であり、一点鎖線はPSF像の垂直方向のMTF対空間周波数特性であり、実線はこれらの平均値となるMTF対空間周波数特性である。いずれも特性も、角度θ=20°における最も焦点が合った-1.95[D]の位置で再生(シミュレーション)されるPSF像の場合である。MTF特性によれば、空間周波数が高くなる(細かい像になる)につれて急激にMTF(コントラスト)が低下してくる。このMTF特性から被検眼球2の水晶体42の光学特性を把握することができる。
 また、図11A~図11Gに示すPSF像の取得例によれば、角度θ=-20~40°における水晶体眼のベストフォーカス時の7個のPSF像である。この例では、眼軸線L上(角度θ=0°)における最も焦点が合っている位置のPSF像の屈折度数BFR0として、図11Cに示す水晶体眼のベストフォーカス時のPSF像を使用する。
 図12に示す水晶体眼のMTF特性例によれば、縦軸が眼内レンズ(水晶体42)のMTFであり、横軸は測定光照射時に設定された角度θであり、θ=-20~40°である。図中の実線は水晶体眼のMTF特性である。
 そして、ステップST5で制御部23はMTF特性及びPSF特性に基づいて被検眼球2の眼底の周辺視野の外側に遠視性の後焦点が存在するか否かを判別する。例えば、図6に示すサブルーチンをコールして、そのステップST51で演算部31は前焦線上の非点像の屈折度数AFLRθ及び、眼軸長上の焦点の屈折度数BFR0を入力する。次に、ステップST52で演算部31は、
       評価式A=AFLRθ-BFR0・・・・(1)
 から評価値Aを求める。その後、ステップST57に移行する。
 また、ステップST53で演算部31は最も焦点が合っている位置の屈折度数BFRθ及び、眼軸長上の焦点の屈折度数BFR0を入力する。次に、ステップST54で演算部31は、
       評価式B=BFLRθ-BFR0・・・・(2)
 から評価値Bを求める。その後、ステップST57に移行する。
 更に、ステップST55で演算部31は後焦線上の非点像の屈折度数PFLRθ及び、眼軸線L上の焦点の屈折度数BFR0を入力する。次に、ステップST56で演算部31は、
       評価式C=PFLRθ-BFR0・・・・(3)
から評価値Cを求める。その後、ステップST57に移行する。
 ステップST57で判別部32は評価値A,B,Cがいずれも正の値であるか否かを判別する。A,B,C>0となる場合(YES)は、ステップST5の「周辺視野に遠視性の後焦点が有る」にリターンする。反対に、A,B,C<0となる場合(NO)は、ステップST5の「周辺視野に遠視性の後焦点が無い」にリターンする。
 ここで、近視の被検眼球2に関して、眼軸線L上の焦点の屈折度数BFR0が-0.3[D]で、角度θ=20°における最も焦点が合っている位置のPSF像の屈折度数BFRθが-1.5[D]で、前焦線上の非点像の屈折度数AFLRθが0.0で、後焦線上の非点像の屈折度数PFLRθが-3.0である場合に、その評価値をA,B,Cとして、遠視性の後焦点が存在するか否かを判別する。
 これらの値を(1)~(3)式に代入すると、評価値Aは+3で、評価値Bは+1.5で、評価値Cが0.0となり、評価値A,Bが正の値となるので、前焦線から後焦線に至るすべて遠視性デフォーカスが存在すると判別できるようになる。
 近視が進行した児童は、角度θにおける焦点と後焦線上の非点像が網膜46を跨いで、その遠視側に位置すると予想できるようになる。角度θは20°の場合のみならず、θ=10°,30°,40°について演算し、1つの角度θで遠視性の後焦点が存在すると判別された場合は、他の角度θについて演算を行わなくとも、近視進行傾向にあると判別できる。具体的には、図3に示したような網膜46の遠視側に焦点位置が存在し、近視進行傾向にある被検眼球2である旨を予測できるようになる。
 また、正視の被検眼球2に関しては、眼軸線L上の焦点の屈折度数BFR0が0.0[D]で、角度θ=20°における最も焦点が合っている位置のPSF像の屈折度数BFRθが-1.0[D]で、前焦線上の非点像の屈折度数AFLRθが0.0で、後焦線上の非点像の屈折度数PFLRθが-2.0である場合に、評価値Aは0.0で、評価値Bは-1.0で、評価値Cが-2.0となり、評価値B,Cが負の値となるので、遠視性デフォーカスは存在しないと判別できるようになる。
 近視が進行していない児童は、角度θにおける前焦線と後焦線が網膜46を跨ぐことなく、網膜46の近視側に位置すると予想できるようになる。具体的には、図4に示したような網膜46の近視側に焦点及び前焦線上の非点像が存在し、近視進行傾向には無い被検眼球2である旨を予測できるようになる。
 上述のステップST5で制御部23は”被検眼球2に近視の進行が無い”と判別した合は、ステップST6で制御部23は「加入度数の導入治療から除外する」旨が表示部24に表示される。
 ステップST5で制御部23は”被検眼球2に近視の進行が有る”と判別した場合は、ステップST7で制御部23は「加入度数の導入処方を適用する」旨が表示部24に表示される。例えば、データ解析装置20では、角度θにおける測定光の焦点位置の点像のぼやけ具合の解析結果から、近視進行抑制用の加入度数を導入した眼鏡又はコンタクトレンズによる治療が処方される。
 このステップST7で、進行しうる近視が治療で抑制できるかどうかの判定や、進行しうる近視を周辺部にどれくらいの度数の屈折矯正を加入することで治療できるか等の判定を行ってもよい。例えば、眼鏡又はコンタクトレンズにおいて、角度θにおける網膜46の外側の後焦点を近視(眼内)側に引き戻すための加入度数を遠方光学部(近視矯正レンズ)の周囲に設定する。
 上述した-0.3[D]の近視の児童に対して、近視進行抑制用のコンタクトレンズを処方する場合、-0.3[D]の遠方光学部(凹レンズ)の周囲に+3°程度の近方光学部(凸レンズ)を設定する。この凸レンズは、角度θにおける網膜46の外側の後焦点を近視側に引き戻すためのもので、遠近両用のものとは機能が異なっている。
 このように、第1の実施形態としての近視進行診断装置100によれば、角度θを成す方向の網膜46から反射される光を受光して得た眼底の周辺視野における光学データD17を解析するデータ解析装置20を備え、データ解析装置20が角度θにおける測定光の焦点の位置及び当該焦点の前後の位置のPSF特性に基づいて被検眼球2の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するようになる。
 この構成によって、被検眼球2の近視の進行を判別(予想)できるので、小児の近視が今後進行するかどうかの判定を含めて、眼軸長の変化が著しい学童期の軸性近視や、本来近視の進行が止まるとされる成人において、引き続き進行し続ける屈折性近視の進行を容易に診断できるようになる。これにより、個々の小児の基礎データに基づくコンタクトレンズや眼鏡の処方が可能となる。近視の進行段階にある児童等の眼に合った眼鏡やコンタクトレンズを提供できるようになる。
 また、近視進行診断装置100によれば、定期的に近視進行判別を行って周辺視野での光学データD17の変化をモニターしながら適宜屈折矯正を行うといった、近視進行の予防・抑制に役立てることができる。これにより、一定期間の治療後に行われる効果判定において、その治療基準を明確にできるようになる。
 また、近視進行判別方法によれば、眼底の周辺視野の光学特性において、前焦線及び後焦線の屈折を考慮し、ステップST4で角度θにおける測定光の焦点位置の点像のぼやけ具合のMTF解析によって、当該測定光の焦点位置の点像のぼやけが大きい被検眼球2は本介入試験では治療できない除外群になるか、本介入試験で治療が可能かを鑑別(分類)できるようになる。
 なお、図13A~図13Gには、被検者1が眼内レンズ(Intraocular lens:IOL)眼である場合であって、角度θ=-20~40°におけるベストフォーカス時の7個のPSF像を示している。IOL眼(眼内レンズ眼)は白内障手術で水晶体42を摘出し、代わりに人工の水晶体を挿入する(埋め込む)方法(レーシック等)が施されたものである。IOL眼によれば大きな収差成分の原因で周辺にしっかり焦点ができなくなる。近視進行の第二の要素になりうる。
 また、図14にはIOL眼のMTF特性例を示している。縦軸は人工レンズ(IOL眼)のMTFであり、横軸は測定光照射時に設定された角度θであり、θ=-20~40°である。図中の実線はIOL眼のMTF特性である。IOL眼のMTF特性は、水晶体眼のMTF特性に比べて平坦な特性となっている。
 この例では、水晶体眼のPSF像よりも、全体的にIOL眼のPSF像の方がその像径が大きくなっている。IOL眼では有意にMTFが劣化していることが分かる。上述の収差成分も、光学データD17をMTF解析することで鑑別が可能となる。過去の報告でIOL眼は近視が進行することから、本発明の判別方法を導入することが、介入試験に無効な除外すべき例を鑑別する方法として有効となる。
 また、上述の実施の形態では、被検者1の頭部を検査機器のあご台に固定して、非検査眼で固視票54を固視した状態下で、光学データ取得部10を軌道53に沿って角度θ(光軸)だけ変位させる場合について説明したが、これに限られるものではない。例えば、光学データ取得部10を児童の被測定眼で固視させ、当該光学データ取得部10の内部の点光源や、ハーフミラー、CCD等を搭載した光学系をステージ等に搭載する。
 そして、被検者1とデータ取得部本体とが固定された固定座標系に対して光学系を回転座標系に独立して固定し、当該回転座標系でステージ等を角度θ(光軸)だけ変位させる方法を採ってもよい。もちろん、光学系の光軸に反射鏡を配置し、当該反射鏡を回転駆動して角度θ(光軸)を変位させる方法を採ってもよい。これらの構成によっても、角度θにおける前焦線及び後焦線を含めた正確な光学データD17を取得できるようになる。
 なお、今回、被検者1に関して児童の場合について説明したが、これに限らず、成人期での近視進行例でも応用しても同様な効果が得られることは言うまでもない。また、本発明に係る近視進行診断装置100(近視進行診断システム)では、データ解析装置20から得られた遠視度数から近視抑制に必要な矯正度数を測定できるようになる(ステップST7参照)。このように、近視になり始めると眼軸長Lxが後方に延びて眼球形状が歪むが、被検眼球2の水晶体42の略中心頂点と黄斑45とを結ぶ眼軸線Lに対して角度θを成す方向の周辺網膜を跨いだ外側の位置から当該周辺網膜の内側(眼内)へ遠視性の後焦点を引き戻すことで、近視の進行を抑制できるようになる(以下で、近視進行抑制理論という)。
 <近視進行抑制用のコンタクトレンズ> 
 図15のA及びBに示す第2の実施形態としての近視進行抑制用のコンタクトレンズ200は、コンタクトレンズの一例を構成し、近視進行抑制用の屈折度数が設定された後焦点制御部(以下で後焦点コントロールエリア63という)を、遠用光学部62の周辺領域に設けたものである。本発明に係るコンタクトレンズ200は次の設計根拠による。
 上述した近視進行抑制理論によって、眼軸長Lxの延長による視力進行は周辺視となる角膜周辺部から眼内に入射し、網膜周辺部に前焦点と後焦点を出現させ、その後焦点が網膜より後ろに結ぶことが原因であることが分かった。その後焦点は網膜曲率の違いによって網膜からの焦点の距離が異なるため、その網膜曲率に応じた後焦点制御領域をレンズ本体部61に設け、後焦点を網膜前方に結ぶような屈折度数を後焦点コントロールエリア63に設定してコンタクトレンズを設計したものである。
 この例では、近視進行診断装置100で計算した光学データD17を基づいて前焦線と後焦線に注目し、被検眼球2の近視進行の抑制を目的としたソフトコンタクトレンズを提供するものである。図15のAにおいて、コンタクトレンズ200は中央部が凹状に窪んでその周りが凸状に盛り上がったお椀形のレンズ本体部61を有している。レンズ本体部61の材質は従来からソフトコンタクトレンズを構成する部材が使用できる。
 Dφ1は図15のBに示すレンズ本体部61のレンズ径であり、角膜41(約12mm程度)を覆うため、それ以上の大きさとし、Dφ1=14.0mm前後である。レンズ本体部61には度数設定領域I(付加領域:ADD)が設けられている。度数設定領域Iの直径Dφ2は、図16に示す瞳孔径Dφ3が平均して4.6mmであることから、7.0mm程度に設定されている。図16には角膜41上にコンタクトレンズ200を装着した例を示している。なお、度数設定領域Iは、遠用光学部62及び後焦点コントロールエリア63から構成されている。
 遠用光学部62はレンズ本体部61の中心領域に設けられ、近視矯正用の所定のマイナス度数の凹レンズが配置される。遠用光学部62の幅はOZで示され、正面視時、レンズ中心部に設計され、遠用光学部62の幅OZは概ね2.5mm程度に設定される。幅Dz=2.5mmとする理由は、錐体細胞が密に分布する黄斑45の周辺に結像させることが第1の目的である。
 更に、黄斑45の周辺であっても結像が網膜46の後ろとなる影響の少ない光の入射角度とするのが第2の目的である。この例では度数設定領域Iから遠用光学部62の幅OZの面積領域を差し引いた残りの領域を後焦点コントロールエリア63と称している。後焦点コントロールエリア63の度数は、近視眼の度数や見え方に左右されず、網膜曲率と近視進行抑制理論のために作成された計算式に基づき決定される。
 上述の度数設定領域Iの直径Dφ2=7.0mmとする更なる理由は、黄斑45の周辺よりもさらに周辺部の網膜46の外側への結像を網膜46の手前となるよう行う凸レンズの加入度数を設けるために、後焦点コントロールエリア63を角度30°以内(図16参照)に設定し、この角度30°で眼内に入射する光をコントロールするためである。角度30°は、図16に示す被検眼球2の水晶体42の略中心頂点と黄斑45とを結ぶ眼軸線Lを角度0°とし、これを基準にして、角度12°をピッチで角度12°、24°、36°、48°及び60°で測定光を照射した際に選択されたものである。
 後焦点コントロールエリア63は遠用光学部62の周囲に設けられる。後焦点コントロールエリア63は近視進行抑制用の所定のプラス度数の凸レンズが配置され、被検眼球2の瞳孔43の略中心(水晶体42の略中心頂点)と黄斑45とを結ぶ眼軸線Lに対して角度θを成す方向の周辺網膜を跨いだ外側の位置から当該周辺網膜の内側(眼内)へ遠視性の後焦点を引き戻すようになされる。
 コンタクトレンズ200は後焦点コントロールエリア63の屈折度数に関して、被検眼球2の黄斑45を含む網膜46の内面形状を眼底曲率半径で表したとき、眼底曲率半径が最も小さい網膜眼と眼底曲率半径が最も大きい網膜眼とを平均して得た眼底曲率半径が平均の網膜眼を基準にして、平均の網膜眼よりも被検眼球の眼底曲率半径が大きい網膜眼である場合は、平均の網膜眼の屈折度数よりも弱い屈折度数が設定され、平均の網膜眼よりも被検眼球の眼底曲率半径が小さい網膜眼である場合は、平均の網膜眼の屈折度数よりも強い屈折度数が設定されるものである。
 この例では、度数設定領域Iの外側の領域は度数を持たない領域とされ、度数を持たない領域と、度数が設定された領域との間がゆるやかなジャンクション(接続部位;境界部位)となされている。急激な形状や度数の変化は、視界の周辺部にて像のジャンプや歪み等を発生させるためである。この例では、レンズ先端(最外側)までを段階的に変化させるゾーン(移行ゾーン)を持つデザインとなっている。
 上述した近視進行抑制用のコンタクトレンズ200は、被検眼球2の周辺視野の光学特性の基礎データと、計算式とに基づき、製造することが可能となる。例えば、コンタクトレンズ200において、中心に遠用光学部62の近視度数を配置し、その周辺部に計算式により得られた後焦点コントロールエリア63を配置する。
 遠用光学部62の幅OZ(面積)を余り広く設けると、この遠用光学部62から眼内に入射した光が網膜周辺部に多く届いてしまう。この光が網膜周辺部に届くことを防止するために、遠用光学部62の幅OZを可能な限り狭く(小さく)することが望ましい。
 幅OZも計算式によって算出されたデータを基づいて設計するようになされる。このように遠用光学部62の遠方視力用の屈折度数が入っている面積が従来の視力補正用のコンタクトレンズに比べて著しく小さいことが本発明の特徴となっている。
 上述のコンタクトレンズ200をソフトコンタクトレンズとする理由は、瞬目(瞬き)によってレンズ本体部61が角膜41上で大きく動くと、ハロやグレアによって、コントラスト等の見え方の質が低下するため、動きの小さいレンズであることが必要であるためである。ここに、ハロとは光輪症と訳される後遺症をいい、光を見ると光の周りに輪のような光が見える症状を伴う。光の種類によっては、光自体が丸くぼやけて見える場合もある。いずれにせよ、本来の光より大きいので、眩しく感じる。また、グレアとは光輝症と訳される後遺症をいい、光が本来よりもぎらぎらと強く、眩しく見える症状を伴う。「にじんで見える」と言う人もいる。
 このように、第2の実施形態としてのコンタクトレンズ200によれば、近視進行抑制用の屈折度数が設定されて遠用光学部62の周辺領域に設けられた後焦点コントロールエリア63を備え、被検眼球2の角度θを成す方向の周辺網膜を跨いだ外側の位置から当該周辺網膜の内側(眼内)へ遠視性の後焦点を引き戻すようになされる。
 この構成によって、遠近両用レンズの目的である近方の見え方に依存されることなく、又は、近方の見え方に依存することなく、近視状態の被検眼球2に関してそれ以降の近視の進行を抑制できるようになる。本発明に係るコンタクトレンズ200は近視進行抑制を目的としたものであるため、遠方視力においては遠用光学部62からの光を網膜46の中心部である黄斑45に結像するように設計されているが、後焦点コントロールエリア63の焦点を黄斑45に結像することを目的としていない。
 従って、後焦点コントロールエリア63の屈折度数は、近視進行診断装置100による他覚的検査により決定されるため、遠用光学部62の見え方が改善される訳ではないことが、視力補正用を目的とした既存の遠近両用コンタクトレンズとの大きな相違点である。これに対して、既存の視力補正用の遠近両用コンタクトレンズは、自覚的な遠方及び近方の見え方を向上させることを目的とし、かつ、いかに鮮明な像が得られ、ゴーストやグレアが防止されると共に、像のジャンプを生じさせないことを目的として遠用光学部62’及び近用光学部63’が設計されている(図30参照)。
 本発明のコンタクトレンズ200は、網膜46の中心部である黄斑45以外の周辺網膜への結像を網膜46の手前に移動させるための設計であり、その後焦点コントロールエリア63の屈折度数の設定は、角膜41に入射する角度(θ=30°)によって決定されるところに大きな違いがある。
 また、遠用光学部62以外の周辺の度数において、既存の視力補正用及び遠近両用コンタクトレンズは、個人差に応じた度数を処方しなければならない。しかし、ヒトの眼球には平均的な大きさがあるため、その平均的な眼球の大きさに基づいて何タイプかの度数設計を行うことで、仕様を確定させることが可能である。そうすれば製造の簡素化にも繋がるというメリットがある。ソフトコンタクトレンズは、例えば、遠用光学部62の凹状のレンズ、後焦点コントロールエリア63の凸レンズ及びその周囲領域を一体的に象った金型に、レンズ樹脂素材を注入して射出金型成形することで得られる。
 上述したコンタクトレンズ200は、一般的な視力補正用のコンタクトレンズとは全く異なるものであり、後焦点コントロールエリア63に設ける度数においては、中心に設ける遠用光学部62の度数とは一切関係がなく、また、使用者の必要とする矯正度数ともいっさい関係しないものである。あくまでも、網膜曲率の違いによって決定されることを特徴とする。従って、同じ近視度数を持ち、同じ調節力を持つ眼でも、網膜曲率が違う場合、レンズ本体部61に設置する後焦点コントロールエリア63の度数は異なることを特徴としている。このため、後焦点コントロールエリア63の度数によって近方の見え方が改善されることを目的としていない。
 加えて、一般的な遠近両用のコンタクトレンズのように、瞬きや視線の変更や移動によって角膜41上のレンズ本体部61を動かすことで加入度数の異なる場所に視軸を移動させて近方を見せるものではないことも他の視力補正用のコンタクトレンズとは異なる特徴である。このため、瞬きや視線の変更によって角膜41上でレンズ本体部61が動かないように工夫されている点も特徴となっている。
 また、本発明に係るコンタクトレンズは近視抑制用のコンタクトレンズであるため、正面視時の遠用光学部62においても、近視進行抑制理論に基づき、黄斑45の周辺での後焦点が網膜46の後ろとなる影響の少ない最低限の角度とするため、一般的な視力補正用のコンタクトレンズに比べて遠用光学部62が著しく狭いことも特徴となっている。
 また、後焦点コントロールエリア63に設ける度数においては、近視進行抑制理論に基づき決定されたものでなければならない。もしも、安易に決められた加入度数であると、後焦点を網膜手前に移動させることができず、近視の進行抑制という目的を発揮できない。
 <コンタクトレンズの選定方法>
 続いて、実施例としての近視進行抑制用のレンズの選定例について説明する。これに先立って、まず、図17~図23を参照して、近視眼の矯正及びタイプ別のコンタクトレンズ200について説明する。
 図17は、網膜46の中心である黄斑45からの角度と視力との関係をグラフに示したものである。図17において、縦軸は視力の相対値であり、視力0.025~1.0を示している。横軸は中心窩(黄斑45)からの度数(角度)であり、眼軸線Lの黄斑45の位置が0°である。鼻側が度数0°~70°で耳側が度数0°~60°である。
 図17に示す視力と度数との関係例によれば、度数0°付近で最も視力が最高値を示している。中心窩を外れると錐体細胞の密度が急激に低下するので、視力も低下する。図中の度数14°~18°付近の斜線は盲点を示している。この盲点を境界にして像が認識できなくなる。換言すると、周辺網膜上で焦点を結んでも像として認識されなくなる。この現象を本発明のコンタクトレンズ200に応用するものである。
 すなわち、本発明のコンタクトレンズ200は近視抑制を目的としたものであるため、遠方視力においては遠用光学部62からの光を錐体細胞が密に分布する黄斑45の周辺に結像するように設計される。しかし、コンタクトレンズ200は広い視野を確保するための光学エリアを設計の目的としていない。その理由として、図17に示したように、視力は黄斑45の中心窩における中心視力(central vision)が最も良く、中心から外れると視力は急激に低下することによる。
 視野の中では、中心視力が最も鋭敏で周辺網膜ほど悪く、中心視力1.0のとき、視線が度数(角度)2°ずれると0.4、度数5°ずれると0.1程度まで視力が低下することが知られている。このことから、本発明に係るコンタクトレンズ200において、その中心に設ける遠用光学部62の加入度数(光学)エリアを幅OZ=2.5mmとした場合、対象とする物を見た際、概ね度数10°の視野が確保できるようになる。つまり、必要とする視力を得るための視野は2.5mmで十分確保できていることになる。
 ところで、図18に示す近視眼の矯正例(その1)によれば、近視は焦点fが網膜46の中心部である黄斑45の手前にある状態である。この近視の状態では、角膜41の周辺部から眼内に入射し、網膜周辺部に出現する前焦点aと後焦点bは共に網膜46の手前に結ぶが、これを矯正し、網膜46の中心部の黄斑45に結像するように焦点fをf’に移動させた場合、前焦点aはa’に移動し、後焦点bはb’へと移動する。その結果、後焦点b’は網膜46よりも後ろに結ぶことになる。
 この例で、眼内への光の入射角(角度θ;実際は立体角)によって、一点鎖線で示す前焦等線Tと破線で示す後焦等線Sが生じる。ここに前焦等線Tとは角度θ毎に得られる前焦線上で等しいPSF特性を有する非焦点を順に繋いで弧状に描いたものをいう。後焦等線Sとは、角度θ毎に得られる後焦線上で等しいPSF特性を有する非焦点を順に繋いで弧状に描いたものをいう。後焦等線S及び前焦等線Tの各々の弧の最低点は、眼軸線L上をスライドして黄斑45の位置に移動する。図中、rsは後焦等線Sの半径であり、眼軸線上の原点Oxから後焦等線Sに至る長さである。
 近視の進行度合いは、被検眼球2の眼底曲率の形状、例えば、眼底曲率半径rxの大きさの違いによって把握することができる。図中では、x=a,b,cで示すrxは、近視眼の眼底曲率半径であり、眼軸線上の原点Oxから網膜46に至る長さである。後焦等線Sの位置と網膜46の位置との間の距離を見出すことで、近視の進行度合いが分かる。この近視の進行を抑制するためには、近視矯正後の近視眼の網膜46の手前に後焦等線Sを移動させればよい。このためには遠用光学部62の周辺部に遠視矯正とは全く無関係な度数の後焦点コントロールエリア63を設ければよい。
 また、図19に示す近視眼の矯正例(その2)によれば、図18に示した近視眼の眼底曲率半径rxに比べて、眼底曲率半径raが大きい(緩い)網膜46の場合である。眼底曲率半径raは、眼軸線上の原点Oaから網膜46に至る長さである。この場合は、移動した前焦点a’及び後焦点b’が共に網膜46の手前に移動するようになるので、近視進行抑制用の後焦点コントロールエリア63の処方がほとんど必要ない症例である。この症例によれば、軽度な度数の凸レンズを後焦点コントロールエリア63に設定した場合であっても、後焦等線Sは網膜46の手前に容易に移動させることができる。
 これに対して、図20に示す近視眼の矯正例(その3)によれば、図18に示した近視眼の眼底曲率半径rxに比べて、眼底曲率半径rcが小さい網膜46の場合である。眼底曲率半径rcは、眼軸線上の原点Ocから網膜46に至る長さである。この場合は、移動した後焦点b’はさらに網膜46よりも後ろ遠方に移動することになるので、近視進行抑制用の後焦点コントロールエリア63の処方が必須となる症例である。この症例によれば、後焦等線Sを網膜46の手前(眼内)へ引き戻すために、強度な度数の凸レンズを後焦点コントロールエリア63に設定する必要がある。
 ここで、近視進行抑制用の後焦点コントロールエリア63に関して、軽い度数の凸レンズを設定(挿入)する処方をタイプTaとし、タイプTaよりも強い度数の凸レンズを設定する処方をタイプTbとし、更に、これよりも強い度数の凸レンズを設定する処方をタイプTcとする。例えば、タイプTaの屈折度数は+1、タイプTbの屈折度数は+3、タイプTbの屈折度数は+5等のように設定する。
 この例では、近視進行診断装置100から得られる被検眼球2の眼底曲率半径rxがわかれば、タイプTa、タイプTb、あるいは、タイプTcの後焦点コントロールエリア63のどれが適しているかを判別できるようになる。図21に示すタイプTaのコンタクトレンズ200の処方例によれば、近視の矯正により網膜周辺部に発生した後焦等線Sが網膜46の直ぐ前にあり、後焦等線Sと網膜46との間の距離が近く、図18に示した近視眼の眼底曲率半径rxに比べて眼底曲率半径raの大きい(緩い)網膜眼の場合である。
 この場合は、網膜周辺部においても矯正後の後焦点bによる影響は少ないため、後焦点コントロールエリア63に設ける屈折度数は、極軽度な度数でも後焦等線Sを網膜46の前方に移動させることができる。従って、タイプTaのコンタクトレンズ200を処方する。この例では処方が必要としない症例でもある。
 次に、図22に示すタイプTbのコンタクトレンズ200の処方例によれば、近視の矯正により網膜周辺部に発生した後焦等線Sが網膜46の直ぐ後ろにあり、後焦等線Sと網膜46との間の距離が近く、図18に示した近視眼の眼底曲率半径rxと眼底曲率半径rbとがほぼ等しい網膜眼、すなわち、眼底曲率形状が平均的な網膜眼の場合である。この場合は、後焦点コントロールエリア63に設ける屈折度数は、眼底曲率半径raの大きい網膜眼よりも強い度数を設定することで後焦等線Sを網膜46の前方に移動させることができる。従って、タイプTbのコンタクトレンズ200を処方する。
 最後に、図23に示すタイプTcのコンタクトレンズ200の処方例によれば、近視の矯正により網膜周辺部に発生した後焦等線Sが網膜46からより遠くに離れた位置にあり、後焦等線Sと網膜46との間の距離が遠く、図18に示した近視眼の眼底曲率半径rxに比べて、眼底曲率半径rcが小さい(きつい)網膜眼の場合である。この場合は、後焦点コントロールエリア63に設ける屈折度数は、眼底曲率半径raの大きい網膜眼よりも更に強い度数を設定することで後焦等線Sを網膜46の前方に移動させることができる。従って、タイプTcのコンタクトレンズ200を処方する。
 続いて、図21~図29Dを参照して、コンタクトレンズ200の幾つかの処方例について説明をする。これらの処方例では、被検眼球2の視力に対応した近視矯正用の屈折度数をレンズ本体部61の中心領域に設定して遠用光学部62とし、遠用光学部62の周囲領域にタイプTa~Tcの中から選定される1つの近視進行抑制用の屈折度数が設定されて後焦点コントロールエリア63とした複数のコンタクトレンズ200が予め作成されており、その中から、被検眼球2に対応した最適な1つのコンタクトレンズ200を処方する場合を前提とする。
 第1実施例では、平準化された後焦等線Sを基準にして被検眼球2の眼底曲率形状がその内側にあるか外側に有るかに基づいて後焦点コントロールエリア63のタイプTa~Tcを設定するようにした。この設定のために、被検眼球2の黄斑45を含む網膜46の内面形状を眼底曲率半径rxで表したとき、眼底曲率半径rxが最も小さい網膜眼と眼底曲率半径rxが最も大きい網膜眼とを平均して、平均の眼底曲率半径rxを有する網膜眼を求め、ここで得られた平均の網膜眼を基準(平準化)とする(図22)。この例では、平均の網膜眼の後焦等線SをタイプTa~Tcの選定時の比較基準線とする。後焦等線Sは平準化したS曲線データDsから再生されるものとする。S曲線データDsは半径rsの後焦等線Sを描画するための画像データである。
 これらを選定条件にして、例えば、図5に示したステップST7からコールされて、図24に示すステップST71で制御部23は被検眼球2の遠用光学部62の屈折度数Rx、眼底形状データDIN及びS曲線データDsを入力する。屈折度数Rx、眼底形状データDIN及びS曲線データDsは例えば、メモリ部34から読み出して演算部31や判別部32に入力される。
 次に、ステップST72で制御部23は被検眼球2の眼底曲率半径rxを計算する。例えば、演算部31は被検眼球2の水晶体42の略中心頂点(図2参照)と黄斑45とを結ぶ眼軸線Lの左右の網膜46の周辺内面に少なくとも2点以上の測定点(対称位置)p1~p3を設定し、被検眼球2で測定点p1~p5に至る深度を測定して得た眼軸長L1等及び各測定点p1~p5の深度の情報から眼底曲率半径rxを演算する。眼底曲率半径rxは、図25Aに示す弧長がLaで、矢高がhの円弧(眼底曲率)を求め、既知の円弧をパラメータにして重ね合わせ、両者が一致したときの既知の円弧の半径rx’を読み取ることで得られる。
 次に、ステップST73で制御部23は被検眼球2の後焦点コントロールエリア63の屈折度数のタイプがTaか又はTa以外であるかを判別する。このとき、判別部32によって、半径rsの後焦等線Sと被検眼球2の眼底曲率半径rxとが比較される。この比較についてはパターン認識による方法を採ってもよい。
 この例で、図21に示したような平均の網膜眼の後焦等線Sの半径rsよりも被検眼球2の眼底曲率半径raが大きい網膜眼である場合(図25Bに示す緩い曲率)は、判別部32は眼底曲率半径raのタイプがTaであると判別するので、ステップST74に移行する。ステップST74で制御部23は屈折度数Rx+タイプTaのコンタクトレンズを処方する旨の表示制御を行う。
 表示部24はデータ入出力部33から表示データD24を入力し、当該表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTaである。」旨の表示を行う。これにより、平均の網膜眼の屈折度数よりも弱い屈折度数が設定されたコンタクトレンズ200を自動選定(処方)できるようになる。
 上述のステップST73で被検眼球2の後焦点コントロールエリア63の屈折度数のタイプがTa以外である場合は、ステップST75に移行して制御部23は被検眼球2の眼底曲率半径rxの後焦点コントロールエリア63のタイプがTb又はTcであるかを判別する。このとき、後焦等線Sの半径rsと被検眼球2の眼底曲率半径rxとを比較した結果、図22に示したように後焦等線Sの半径rsと眼底曲率半径rxとがほぼ等しい場合(図25Bに示す平均的な曲率)は、判別部32は、眼底曲率半径rbのタイプがTbであると判定するので、ステップST76に移行する。ステップST76で制御部23は屈折度数Rx+タイプTbのコンタクトレンズ200を処方する旨の表示制御を行う。
 表示部24は表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTbである」旨の表示を行う。これにより、平均の網膜眼の屈折度数とほぼ等しい屈折度数が設定されたコンタクトレンズ200を自動選定(処方)できるようになる。
 また、上述のステップST75で後焦等線Sの半径rsよりも被検眼球2の眼底曲率半径rxが小さい網膜眼である場合(図25Bに示すきつい曲率)は、判別部32は被検眼球2の眼底曲率半径rcの後焦点コントロールエリア63のタイプがTcであると判別するので、ステップST77に移行する。ステップST77で制御部23は屈折度数Rx+タイプTcのコンタクトレンズ200を処方する旨の表示制御を行う。
 表示部24は表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTcである」旨の表示を行う。これにより、第1実施例では、平均の網膜眼の屈折度数よりも強い屈折度数が設定されたコンタクトレンズ200を簡易に自動選定(処方)できるようになる。その後、図5に示したステップST7にリターンする。
 第2実施例では、図26に示す被検眼球2の眼内断面図において、角度θ、例えば、θ=40°(θmax)の光軸線上に存在する後焦線上の非焦点(以下単に後焦点b’という)の位置RFpを示す光学データD17(図2参照)及び、網膜46の位置Mpを示す光学データD17に基づいて後焦点コントロールエリア63のタイプTa~Tcを決定する場合を例に挙げる。この例では、角度θ=40°が後焦点b’の位置RFpと網膜46の位置Mpとの間の差が大きく出現する部分である。
 例えば、角度θ=40°の光軸線上の網膜46の内側に後焦点b’(図19参照)が位置する場合は、タイプTaとし、その外側に後焦点b’が位置する場合は、網膜46の位置Mpに対する後焦点b’の離間度合いに基づいて残りのタイプTb,Tcを決定する。もちろん、角度θはθmax=40°に限られることはなく、θ<40°以下の場合を抽出してそのタイプTa~Tcの判別を行ってもよい。
 これらを選定条件にして、例えば、図5に示したステップST7からコールされて、図27に示すステップST71’で遠用光学部62の屈折度数Rx及び、角度θ=40°の後焦点b’の位置RFp及び網膜46の位置Mpを示す光学データD17を入力する。位置RFp及び位置Mpのデータは光学データD17から得られ、例えば、水晶体42の表面頂点部位から位置RFpや位置Mp等に至る光軸長さ(深度)を示す情報である。ここに当該表面頂点部位から位置RFpに至る光軸長さを深度Lrとし、当該表面頂点部位から位置Mpに至る光軸長さを深度Lmとする(図26参照)。
 次に、ステップST72’で制御部23では、演算部31が深度差Δd=Lr-Lmを演算する。ここに、深度差Δdとは、角度θにおける網膜46の位置Mpと後焦点b’の位置RFpとの間の差分の距離をいう。
 次に、ステップST73’で制御部23は被検眼球2の後焦点コントロールエリア63の屈折度数のタイプをTaとするか又はTa以外とするかを判別する。このとき、判別部32は深度差Δdがプラス(+)となるか、マイナス(-)となるかを判別し、制御部23が制御を分岐する。ここに深度差Δdがプラス(+)となる場合は網膜46の外側に後焦点b’が存在し、深度差Δdがマイナスとなる場合は、網膜46の外側には後焦点b’が存在しない場合である。
 この例で、図21に示したように、平均の網膜眼の後焦等線Sよりも被検眼球2の眼底曲率半径rxが大きい網膜眼である場合、すなわち、深度差Δdがマイナスとなる場合は、網膜46の外側には後焦点b’が存在しないと判別されるので、ステップST74’に移行する。ステップST74’で制御部23は屈折度数Rx+タイプTaのコンタクトレンズを処方する旨の表示制御を行う。
 表示部24はデータ入出力部33から表示データD24を入力し、当該表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTaである。」旨の表示を行う。これにより、平均の網膜眼の屈折度数よりも弱い屈折度数が設定されたコンタクトレンズ200を自動選定(処方)できるようになる。
 また、上述のステップST73’で深度差Δdがプラス(+)となる場合は、ステップST75’で制御部23は後焦点コントロールエリア63の屈折度数RθのタイプをTb又はTcとするかを判別する。この例では、深度差Δdがプラスとなる場合、網膜46の外側に後焦点b’が存在するが、更に、平均の網膜眼の深度差Δdの1/2の値を基準(閾値Δdth)にして判別を行う。
 例えば、被検眼球2の深度差Δdと閾値Δdthとを比較し、閾値Δdthよりも小さい場合はタイプTbとし、その深度差Δdが閾値Δdthよりも大きい場合はタイプTcとする。閾値Δdthは平均の網膜眼の深度差Δdとして設定するものであり、角度θ=40°の光軸線上において、深度差Δdが最も小さい網膜眼と深度差Δdが最も大きい網膜眼とを平均して求めたものである。(図26参照)。
 この例で、図22に示したように、平均の網膜眼と被検眼球2の眼底曲率半径rxとがほぼ等しい場合、すなわち、被検眼球2の深度差Δdと閾値Δdthとを比較したとき、後焦点b’は、網膜46の外側に位置するものの、後焦点b’の位置RFpと網膜46の位置Mpとがほぼ同じ位置で測定される。この場合は、後焦点コントロールエリア63の屈折度数RθのタイプはTbであると判別されるので、ステップST76’に移行する。
 ステップST76’で制御部23は屈折度数Rx+タイプTbのコンタクトレンズを処方する旨の表示制御を行う。表示部24は表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTbである。」旨の表示を行う。これにより、平均の網膜眼の屈折度数とほぼ等しい屈折度数が設定されたコンタクトレンズ200を自動選定(処方)できるようになる。
 また、上述のステップST75’で深度差Δdが閾値Δdthよりも大きい場合は、後焦点コントロールエリア63のタイプがCであると判別されるので、ステップST77’に移行する。ステップST77’で制御部23は屈折度数Rx+タイプTcのコンタクトレンズ200を処方する旨の表示制御を行う。
 表示部24は表示データD24に基づいて「遠用光学部62の屈折度数Rx+後焦点コントロールエリア63の屈折度数がタイプTcである」旨の表示を行う。これにより、第2実施例では平均の網膜眼の屈折度数よりも強い屈折度数が設定されたコンタクトレンズ200を簡易に自動選定(処方)できるようになる。その後、図5に示したステップST7にリターンする。
 続いて、図28A~図28Dを参照して、眼軸長Lx及び眼底曲率形状からタイプTa,Tb,Tcを決定する例について説明する。この例では、近視進行診断装置100において、光学データ取得部10の代わるレフラクトメーターや後眼部OCT(Optical Coherence Tomography)等の眼底画像取得装置から得られる眼底形状データDINに基づいて眼軸長Lxを測定し、その眼軸長Lxと平均的な眼底曲率形状から後焦点コントロールエリア63のタイプTa,Tb,Tcを決定するようにした。
 例えば、図28Aに示す被検眼球2が眼軸長Lx=23mmで、図28Dで実線に示すような平均的な眼底曲率形状C23を有する場合は、タイプTaを処方する。これにより、平均の網膜眼の屈折度数よりも弱い屈折度数が設定されたコンタクトレンズ200を処方できるようになる。
 また、図28Bに示す被検眼球2が眼軸長Lx=24mmで、図28Dで破線に示すような平均的な眼底曲率形状C24を有する場合は、タイプTbを処方する。これにより、平均の網膜眼の屈折度数とほぼ等しい屈折度数が設定されたコンタクトレンズ200を処方できるようになる。
 更に、図28Cに示す被検眼球2が眼軸長Lx=25mmで、図28Dで二点鎖線に示すような平均的な眼底曲率形状C25を有する場合は、タイプTcを処方する。これにより、平均の網膜眼の屈折度数よりも強い屈折度数が設定されたコンタクトレンズ200を簡易に処方できるようになる。
 このように第1及び第2実施例で説明したような判別方法が採れない場合に、レフラクトメーター等の光学データ取得部から得られる最低限の眼底形状データDINに基づいて後焦点コントロールエリア63のタイプTa,Tb,Tcを決定できるようになる。
 続いて、図29A~図29Dを参照して、予測された眼軸長Lxから眼底曲率形状に対応するタイプTa,Tb,Tcを決定する例について説明する。図29Aに示す平均的な被検眼球2において、眼軸長Lxは23.0mm程度であり、角膜41の直径は12.0mm程度である。角膜41の中央部の厚みは0.5mm程度であり、その周縁部の厚みは0.7mm程度である。
 水晶体42の直径は9.0mm程度であり、水晶体42の厚みは3.6mm程度であり、前房47の厚みは3.3mm程度である。ここで、眼軸長Lxの1mmを3.00[D]とした場合、角膜屈折力は43.0[D]となり、水晶体屈折力は20.0[D]である。両者を加算すると、合成値が63.00[D]となる。この合成値の屈折度数データから例えば水晶体屈折力=20.00[D]を差し引くと、角膜屈折力=43.0[D]が得られ、43.0[D]に基づいて眼軸長Lxを予測できるので、この眼軸長Lxに基づいてタイプTa,Tb,Tcを決定する。もちろん、角膜屈折力=43.0[D]が既知であればそれを使用する。
 この例では、近視進行診断装置100において、光学データ取得部10の代わるレフラクトメーター等から得られる眼底形状データDINに基づいて角膜屈折力と近視等の屈折度数(近視度数)を示す光学データから眼軸長Lxを予測し、その眼軸長Lxから更に、図28A~図28Dで説明した眼底曲率形状に対応する後焦点コントロールエリア63のタイプTa,Tb,Tcを決定するようにした。
 例えば、図29Aに示す被検眼球2の角膜屈折力が43.0[D]である場合は、眼軸長Lxが平均的なLx=23mmであると予測できる。従って、図28Dで実線に示したような平均的な眼底曲率形状C23を有する場合と予測できる。この場合は、タイプTaを処方する。
 また、図29Bに示す被検眼球2の角膜屈折力が43.0[D]であって、近視度数が-3.00[D]である場合は、眼軸長LxがLx=24mmであると予測できる。従って、図28Dで破線に示したような眼底曲率形状C24を有する場合と予測できる。この場合は、タイプTbを処方する。
 更に、図29Cに示す被検眼球2の角膜屈折力が40.0[D]である場合は、眼軸長LxがLx=25mmであると予測できる。従って、図28Dで二点鎖線に示したような眼底曲率形状C25を有する場合と予測できる。この場合は、タイプTcを処方する。
 これにより、第1及び第2実施例で説明したような判別方法が採れない場合に、レフラクトメーター等から得られる眼底形状データDINに基づいて後焦点コントロールエリア63のタイプTa,Tb,Tcを決定できるようになる。
 ここで、図30及び図31を参照して、本発明に係る近視進行抑制用のコンタクトレンズ200と、比較例としての近視進行抑制用の眼鏡レンズ300とを比較して効果を考察する。図30に示す眼鏡レンズ300は、本発明に係る近視進行抑制理論に基づいて設計されたものであり、レンズ本体部61’に遠用光学部62’及び近用光学部63’を有している。眼鏡レンズ300によれば、正面視時において中心からの光の焦点が黄斑45の中心にある時は、網膜周辺部での前焦点a及び後焦点bも網膜46の手前にあり、何らの問題は発生しない。
 しかし、眼鏡レンズ300の場合はコンタクトレンズ200とは異なって、眼球が頭部とは独立した動きを持つ部位であるため、図31に示すように眼球のみを動かして視線を変えて近方を見た場合、または、たまたま加入度数エリアで近くが見えた場合、レンズ中心部に設けた遠用光学部62’の領域からの光の焦点が、網膜46の周辺では、かえって網膜後方、しかも、かなり遠くに移動してしまう。
 このため、眼軸長Lxの延長による近視進行を抑制するという目的を前提とした場合、眼鏡レンズ300はその効果が得られないばかりか、像の歪みやジャンプなど、見え方に違和感を与え、眼精疲労など、視力的障害を引き起こす可能性があるという問題が懸念される。この点、本発明のコンタクトレンズ200であると、コンタクトレンズ200など眼球のみを動かし対象物を変えても絶えず中心に設けた遠用光学部62からの光が黄斑45に結像される矯正用具に設計されているので、上述した問題が生じない。
 このように、第1及び第2実施例としてのコンタクトレンズ200の選定方法によれば、被検者1の眼底曲率形状に対応して複数のコンタクトレンズ200の中から1つのコンタクトレンズ200を選定するようになる。
 この構成によって、近視進行状況に見合った最適な屈折度数のコンタクトレンズ200を選定(処方)できるようになる。これにより、平均の網膜眼よりも眼底曲率半径rxが大きい網膜眼である被検者1に対して、平均の網膜眼の屈折度数よりも弱い屈折度数が設定されたコンタクトレンズ200を容易に処方でき、平均の網膜眼よりも眼底曲率半径rxが小さい網膜眼である被検者1に対して、平均の網膜眼の屈折度数よりも強い屈折度数が設定されたコンタクトレンズ200を容易に処方できるようになる。
 本発明は、児童及び成人の近視度数の今後の進行の可能性の有無を診断し、その後の治療効果、見通しについて判定し、治療する近視進行診断システム、特に、将来臨床で応用される「小児の近視抑制治療での診断・測定・治療」の中心的なシステムに適用して極めて好適である。
 10 光学データ取得部
 13 光照射部
 14 光検出部
 20 データ解析装置(データ解析部)
 24 表示部
 31 演算部 
 32 判別部
 61 レンズ本体部
 62 遠用光学部
 63 後焦点コントロールエリア(後焦点制御部)
 100 近視進行診断装置
 200 コンタクトレンズ

Claims (9)

  1.  被検眼球の瞳孔の略中心と黄斑とを結ぶ眼軸線に対して角度θを成す方向の網膜へ測定光を照射する光照射部と、
     前記網膜から反射される光を受光して眼底の周辺視野における光学データを取得する光検出部と、
     前記光学データを解析して前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するデータ解析部とを備える近視進行診断装置。
  2.  前記データ解析部は、
     前記角度θにおける光軸線上で最も焦点が合った前記測定光の焦点の位置、前記光軸線上で前記焦点の前側に位置する前焦点の位置、及び、前記光軸線上で前記焦点の後側に位置する後焦点の位置の点像強度分布特性を求める演算部と、
     前記点像強度分布特性に基づいて前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別する判別部とを有する請求項1に記載の近視進行診断装置。
  3.  前記演算部は、
     前記測定光の焦点の位置の屈折度数、前記前焦点の位置の屈折度数及び、前記後焦点の位置の屈折度数を前記角度θ毎に演算する請求項2に記載の近視進行診断装置。
  4.  前記演算部は、
     前記測定光の焦点の位置の屈折度数、前記前焦点の位置の屈折度数及び前記後焦点の位置の屈折度数の各々から前記眼軸線(θ=0°)における前記測定光の焦点の位置の屈折度数を差し引いた各々の差分を演算し、
     前記判別部は、
     前記差分が共に正の値であるか負の値であるかを判別する請求項2に記載の近視進行診断装置。
  5.  前記測定光の焦点位置の点像、前記前焦点の非点像及び前記後焦点の非点像を前記角度θ毎に表示する表示部を備える請求項3に記載の近視進行診断装置。
  6.  前記データ解析部は、
     前記測定光の焦点位置の点像のぼやけ具合を解析して近視進行抑制用の加入度数を導入したコンタクトレンズによる治療が可能か否かを判別する請求項2に記載の近視進行診断装置。
  7.  被検眼球の近視の進行を診断する近視進行診断装置が、
     前記被検眼球の瞳孔の略中心と黄斑とを結ぶ眼軸線に対して角度θの方向の網膜へ測定光を照射するステップと、
     前記網膜から反射される光を受光して眼底の周辺視野における光学データを取得するステップと、
     前記光学データを解析して前記被検眼球の眼底の周辺視野に遠視性の後焦点が存在するか否かを判別するステップとを実行する近視進行判別方法。
  8.  請求項7に記載の近視進行判別方法を実行するためのコンピューターが読み取り可能なプログラム。
  9.  請求項8に記載のコンピューターが読み取り可能なプログラムを記述した記憶媒体。
PCT/JP2013/083396 2013-12-09 2013-12-12 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体 WO2015087435A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532753A JP5667730B1 (ja) 2013-12-09 2013-12-12 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-254452 2013-12-09
JP2013254452 2013-12-09

Publications (1)

Publication Number Publication Date
WO2015087435A1 true WO2015087435A1 (ja) 2015-06-18

Family

ID=53370776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083396 WO2015087435A1 (ja) 2013-12-09 2013-12-12 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体

Country Status (1)

Country Link
WO (1) WO2015087435A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023473A (ja) * 2015-07-23 2017-02-02 学校法人北里研究所 レンズ度数演算装置、レンズ度数演算方法及びプログラム
EP3395233A1 (en) * 2017-04-25 2018-10-31 Johnson & Johnson Vision Care Inc. Ametropia treatment tracking methods and system
RU2688710C1 (ru) * 2018-04-13 2019-05-22 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ прогнозирования прогрессирования миопии у детей
US10642067B2 (en) 2016-01-27 2020-05-05 Johnson & Johnson Vision Care, Inc. Ametropia treatment tracking methods and system
CN112614593A (zh) * 2020-12-22 2021-04-06 爱尔眼科医院集团股份有限公司 近视发展进化树建立方法及近视发展风险评估装置
CN113057577A (zh) * 2021-03-23 2021-07-02 成都爱尔眼科医院有限公司 一种青少年近视预测试诊断系统
TWI778051B (zh) * 2017-04-25 2022-09-21 美商壯生和壯生視覺關懷公司 用於輔助處理一個體之近視之電腦實施方法、電腦系統及電腦程式產品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525835A (ja) * 2006-02-07 2009-07-16 ヴィジョン・シーアールシー・リミテッド 相対像面湾曲と周辺軸外焦点の配置を変えるための方法および装置
JP2013501963A (ja) * 2009-10-22 2013-01-17 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ 近視または遠視の進行を阻止または遅鈍するコンタクトレンズセットおよびその方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525835A (ja) * 2006-02-07 2009-07-16 ヴィジョン・シーアールシー・リミテッド 相対像面湾曲と周辺軸外焦点の配置を変えるための方法および装置
JP2013501963A (ja) * 2009-10-22 2013-01-17 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ 近視または遠視の進行を阻止または遅鈍するコンタクトレンズセットおよびその方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HEMA RADHAKRISHNAN ET AL.: "Peripheral refractive changes associated with myopia progression.", INVEST OPHTHALMOL VIS SCI., vol. 54, no. 2, February 2013 (2013-02-01), pages 1573 - 1581 *
MIYUKI SAITO ET AL.: "Kinshigan ni Okeru Jikugai Shusa no Ranshi Kyodo to Jiku Hoko no Bunpu", JOURNAL OF JAPANESE OPHTHALMOLOGICAL SOCIETY, 15 March 2009 (2009-03-15), pages 268 *
TAKEFUMI YAMAGUCHI ET AL.: "Peripheral optical quality and myopia progression in children.", GRAEFES ARCH CLIN EXP OPHTHALMOL., vol. 251, 13 June 2013 (2013-06-13), pages 2451 - 2461 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023473A (ja) * 2015-07-23 2017-02-02 学校法人北里研究所 レンズ度数演算装置、レンズ度数演算方法及びプログラム
US10642067B2 (en) 2016-01-27 2020-05-05 Johnson & Johnson Vision Care, Inc. Ametropia treatment tracking methods and system
US10912456B2 (en) 2016-01-27 2021-02-09 Johnson & Johnson Vision Care, Inc. Ametropia treatment tracking methods and system
EP3395233A1 (en) * 2017-04-25 2018-10-31 Johnson & Johnson Vision Care Inc. Ametropia treatment tracking methods and system
EP4049580A1 (en) * 2017-04-25 2022-08-31 Johnson & Johnson Vision Care, Inc. Ametropia treatment tracking methods and system
TWI778051B (zh) * 2017-04-25 2022-09-21 美商壯生和壯生視覺關懷公司 用於輔助處理一個體之近視之電腦實施方法、電腦系統及電腦程式產品
RU2688710C1 (ru) * 2018-04-13 2019-05-22 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ прогнозирования прогрессирования миопии у детей
CN112614593A (zh) * 2020-12-22 2021-04-06 爱尔眼科医院集团股份有限公司 近视发展进化树建立方法及近视发展风险评估装置
CN113057577A (zh) * 2021-03-23 2021-07-02 成都爱尔眼科医院有限公司 一种青少年近视预测试诊断系统

Similar Documents

Publication Publication Date Title
Wang et al. Human foveal cone photoreceptor topography and its dependence on eye length
WO2015087435A1 (ja) 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体
JP5667730B1 (ja) 近視進行診断装置、近視進行判別方法、プログラム及び記憶媒体
KR102510584B1 (ko) 근시 진행을 예방하고/하거나 늦추기 위한 마스크 렌즈 설계 및 방법
JP6726929B2 (ja) 多焦点光学レンズ
JP6845804B2 (ja) 不要な非点収差を有する眼鏡レンズを決定する方法
JP6346088B2 (ja) 近視の進行を治療するための眼科用レンズ
JP4880044B2 (ja) 視覚補助具の個別に必要な加入度を決定するための方法および装置
US20080033546A1 (en) Methods and apparatus for improving vision
CN112740098B (zh) 眼睛的屈光不正的变化的确定
KR20160026725A (ko) 근시 진행을 예방하고/하거나 늦추기 위한 자유 형태 렌즈 설계 및 방법
CN108968906B (zh) 用于确定儿童的眼睛的屈光特性的方法和系统
KR20100099684A (ko) 주변 시력을 향상시키는 방법 및 기구
JP2016051183A (ja) 近視の進行を防止及び/又は鈍化するための多焦点レンズデザイン及び方法
KR20060021331A (ko) 성형된 외주부를 구비하는 콘택트 렌즈
Wang et al. Influence of overnight orthokeratology lens treatment zone decentration on myopia progression
JP2013511060A (ja) 設計を計算するまたは選択することによって眼科用メガネレンズを提供するための方法
Zheleznyak et al. The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections
CN112043230A (zh) 眼睛测试
WO2015087436A1 (ja) コンタクトレンズ及びその選定方法
JP5689208B1 (ja) コンタクトレンズの組み合わせシリーズ及びその選定方法。
JP7128904B2 (ja) 単一視眼科レンズを決定する方法
JP5923640B1 (ja) 近視進行抑制用コンタクトレンズの設計方法および製造方法
TW201523067A (zh) 隱形眼鏡及其選定方法
JP6785857B2 (ja) 光学レンズの屈折力を判定するように構成された屈折力判定装置および光学レンズの屈折力を判定する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014532753

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899110

Country of ref document: EP

Kind code of ref document: A1