WO2015087369A1 - ウェルプレート、該ウェルプレートを備えた対象物選別装置 - Google Patents

ウェルプレート、該ウェルプレートを備えた対象物選別装置 Download PDF

Info

Publication number
WO2015087369A1
WO2015087369A1 PCT/JP2013/007330 JP2013007330W WO2015087369A1 WO 2015087369 A1 WO2015087369 A1 WO 2015087369A1 JP 2013007330 W JP2013007330 W JP 2013007330W WO 2015087369 A1 WO2015087369 A1 WO 2015087369A1
Authority
WO
WIPO (PCT)
Prior art keywords
well plate
recess
cell aggregate
curvature
cell
Prior art date
Application number
PCT/JP2013/007330
Other languages
English (en)
French (fr)
Inventor
伊藤 三郎
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to US15/102,787 priority Critical patent/US20160312164A1/en
Priority to JP2015552206A priority patent/JPWO2015087369A1/ja
Priority to PCT/JP2013/007330 priority patent/WO2015087369A1/ja
Priority to EP13898961.1A priority patent/EP3081627A4/en
Priority to CN201380081527.5A priority patent/CN105814185A/zh
Publication of WO2015087369A1 publication Critical patent/WO2015087369A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/16Vibrating; Shaking; Tilting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Definitions

  • the present invention relates to a well plate that supports an object such as a cell, and an object sorting apparatus including the well plate.
  • a method for selecting an object in accordance with the size and the outer shape (hereinafter, these may be simply referred to as a shape) has been proposed.
  • the objects to be selected include tablets, capsules, granulated granules and the like for large ones, and cells derived from living bodies used in the fields of bio-related technology and medicine for small ones.
  • the sorted cells can be subjected to high-throughput screening (HTS) or the like.
  • FIG. 14 is a schematic diagram for explaining a state in which impurities are sucked at the same time. As shown in FIG.
  • Patent Document 1 discloses a method of manufacturing a platen having a desired thickness and having a plurality of through holes.
  • the platen of Patent Document 1 has a plurality of through-holes, and a cell of a desired size is selected by carrying cells or the like in the through-holes, and then the cells are collected by suction or the like.
  • the through-hole described in Patent Document 1 carries cells or the like on steep inclined surfaces formed in four directions. Therefore, the supported cells and the like are easily deformed along the shape of the through hole, and the properties may change.
  • the supported cells may be firmly fitted into the through-holes and be damaged when forcibly recovered by suction or the like.
  • a plurality of cells may be fitted into one through hole. In such a case, even if an external force such as vibration is applied, it is not easily separated, and one cell is appropriately recovered. Difficult to do.
  • the present invention has been made in view of such a conventional problem, and it is difficult to deform a carried object, and even if a plurality of objects are carried, an external force such as vibration is applied. It is an object of the present invention to provide a well plate that can be easily separated and that can recover an object without changing properties or damage, and an object sorting apparatus including the well plate.
  • a well plate is a well plate that supports an object held in a liquid at a support position, and includes an upper surface, a lower surface, and a plurality of recesses formed at the support position.
  • Each of the plurality of recesses has a shape that is open on the upper surface side and is recessed from the upper surface side to the lower surface side, and has a zero curvature or a first curvature in a vertical cross section.
  • FIG. 6 is a schematic diagram of the end surface shape of the side portion at the cross-sectional positions (1) to (3) in FIG. 2, and FIG. 6 (a) is a schematic diagram of the end surface shape of the side portion at the cross-sectional position (1) in FIG.
  • FIG. 6B is a schematic diagram of the end face shape of the side portion at the cross-sectional position (2) in FIG. 2, and FIG. 6C is the end face shape of the side portion at the cross-sectional position (3) in FIG.
  • It is a schematic diagram. It is sectional drawing of the recessed part of the 2nd Embodiment of this invention. It is a perspective view of the well plate of the 3rd Embodiment of this invention. It is sectional drawing of the recessed part of the 3rd Embodiment of this invention. It is a top view of the recessed part of the 3rd Embodiment of this invention.
  • FIG. 11 is a schematic diagram of the end surface shape of the side portion at the cross-sectional positions (4) to (6) in FIG. 9, and FIG.
  • FIG. 11 (a) is a schematic diagram of the end surface shape of the side portion at the cross-sectional position (4) in FIG.
  • FIG. 11B is a schematic diagram of the end face shape of the side portion at the cross-sectional position (5) in FIG. 9, and
  • FIG. 11C is the end face shape of the side portion at the cross-sectional position (6) in FIG.
  • It is a schematic diagram. It is a schematic diagram explaining the structure of the target object sorting apparatus of the 4th Embodiment of this invention. It is sectional drawing for demonstrating the well plate of the modification of the 1st Embodiment of this invention. It is a mimetic diagram explaining signs that impurities are sucked at the same time.
  • the well plate 100 of the present embodiment is a member for carrying a cell aggregate C (spheroid spheroid, target object: see FIG. 2) held in the cell culture solution Lm1 (liquid). It is used by immersing it in a container such as a stored petri dish 310 (see FIG. 12).
  • the carried cell aggregate C can be observed by, for example, an imaging device 350 (observation means, see FIG. 12) such as a phase contrast microscope attached to the outside.
  • the well plate 100 has an upper surface 110 and a lower surface 120.
  • the shape of the well plate 100 is not particularly limited.
  • an imaging device 350 such as a phase contrast microscope attached to the outside
  • the phase contrast microscope is used.
  • the well plate 100 of the present embodiment has a flat rectangular parallelepiped shape with a height of 0.15 mm and 15 mm square.
  • the material of the well plate 100 is not particularly limited, and is preferably a translucent material from the viewpoint that the state of the cell aggregate C can be easily confirmed. Although it does not specifically limit as a translucent material, for example, a thermoplastic resin, a thermosetting resin, a photocurable resin etc. are mentioned.
  • polyethylene resin polyethylene naphthalate resin; polypropylene resin; polyimide resin; polyvinyl chloride resin; cycloolefin copolymer; norbornene resin-containing polyether sulfone resin; Aromatic polyamide resin; (meth) acrylic resin such as poly (meth) methyl acrylate; styrene resin such as polystyrene and styrene-acrylonitrile copolymer; polycarbonate resin; polyester resin; phenoxy resin; butyral resin; Cellulose resins such as cellulose acetate and cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins;
  • a solution obtained by hydrolyzing an inorganic material such as a metal alkoxide, a ceramic precursor polymer, a solution containing a metal alkoxide by a sol-gel method or a combination thereof is solidified.
  • Inorganic material such as a metal alkoxide, a ceramic precursor polymer, a
  • a plurality of concave portions 200 having a shape that is recessed from the upper surface 110 side to the lower surface 120 side are formed at the position where the cell aggregate C is carried. For this reason, the well plate 100 drops and holds the cell aggregates C in the respective recesses 200 by dropping the cell culture solution Lm1 containing the cell aggregates C from above using, for example, a suction pipette equipped with a suction tip. Can do.
  • a suction pipette equipped with a suction tip.
  • FIG. 2 is a cross-sectional view of the recess 200 of the present embodiment, and is a cross-sectional view at the position indicated by AA in FIG.
  • Each of the plurality of recesses 200 has a substantially bowl shape opened on the upper surface 110 side and recessed from the upper surface 110 side to the lower surface 120 side. More specifically, each of the plurality of recesses 200 of the present embodiment has a bottom portion 210 on which a first surface 211 having a first curvature is formed and a second curvature in a vertical cross section, It has the side part 220 in which the 2nd surface 221 continuous with the 1st surface 211 was formed. The bottom portion 210 and the side portion 220 are smoothly continuous at the continuous portion 230.
  • the bottom portion 210 is a portion on which the cell aggregate C is mainly supported, and has a first surface 211 that is a support surface on which the cell aggregate C is supported.
  • the first surface 211 is a curved surface having a first curvature, and the periphery thereof is connected to the second surface 221 of the side portion 220 via the continuous portion 230. It does not specifically limit as a 1st curvature, What is necessary is just the curvature which can carry
  • Such curvature depending on the size of the recess 200, for example, if the maximum diameter of the opening formed in the upper surface 110 side of the recess 200 is 0.5 mm, greater than zero, 1.75 (mm - 1 )
  • the curvature radius r1 is 0.57 mm or more and does not include infinity ( ⁇ ).
  • the first surface 211 having a first curvature of 4.55 (mm ⁇ 1 ) and a radius of curvature r1 of 0.22 mm in the recess 200 having a maximum opening diameter of 0.37 mm is provided.
  • the formed bottom 210 is illustrated.
  • the first surface 211 having such a first curvature is a curved surface
  • the first surface 211 is relatively flat because of its large curvature. Therefore, the cell aggregate C is stably supported without being deformed at the bottom portion 210 where the first surface 211 having the first curvature is formed.
  • a through hole 240 is formed through the well plate 100 from the upper surface 110 side to the lower surface 120 side.
  • the diameter r3 of the through hole 240 is not particularly limited as long as it is smaller than the minimum diameter rC of the cell aggregate C to be supported.
  • the cell aggregate C has a substantially spherical shape, and its minimum diameter rC is about 0.05 to 0.1 mm. Therefore, the diameter r3 of the through hole 240 may be, for example, 0.008 to 0.05 mm.
  • the number of through holes 240 is not particularly limited, and may be one or plural.
  • the depth of the through-hole 240 is not particularly limited, and is appropriately set in consideration of the strength of the well plate 100 and the like.
  • a case where one cylindrical through hole 240 having a diameter r3 of 0.04 mm and a depth of 0.05 mm is formed at the center of the bottom portion 210 is illustrated. Since the concave portion 200 is formed with such a through-hole 240 in the bottom portion 210, even if a foreign substance Cx (see FIG. 3) having a smaller diameter than the cell aggregate C falls into the concave portion 200, Such foreign matter Cx falls through the through-hole 240 without being carried on the bottom portion 210. Further, since the diameter r3 of the through hole 240 is smaller than the diameter rC of the cell aggregate C, the cell aggregate C is difficult to fit into the through hole 240 and is not easily deformed.
  • the side portion 220 includes a second surface 221 that is a curved surface having a second curvature, and has a lower end 220d that is smoothly continuous with the periphery of the bottom portion 210 via the continuous portion 230, and an upper end 220u that has a peripheral edge.
  • the second curvature is greater than the first curvature.
  • Such curvature depends on the size of the recess 200, but is 6.66 (mm ⁇ 1 ) or more when the maximum diameter of the opening of the recess 200 formed on the upper surface 110 side is 0.5 mm, for example. (Mm ⁇ 1 ) or less.
  • the radius of curvature r2 is 0.05 mm or more and 0.15 mm or less.
  • the second surface 221 having a second curvature of 7.69 (mm ⁇ 1 ) and a curvature radius r2 of 0.13 mm is provided in the concave portion 200 having the maximum diameter of the opening of 0.37 mm.
  • the formed side part 220 is illustrated.
  • the second surface 221 having such a second curvature is formed on the side portion 220 of each recess 200, for example, when the cell aggregate C falls on the side portion 220 from above. Even so, the cell agglomerate C falls so as to roll along the second surface 221 and is carried on the bottom portion 210.
  • the position of the upper end of the second surface 221 is the center of the curvature circle Ci when the circumferential portion of the curvature circle Ci having the second curvature is brought into contact with the second surface 221. It is set to be equal to or less than the horizontal position of P.
  • the position of the upper end of the second surface 221 is the circumferential portion of the curvature circle Ci having the second curvature (9.09 (mm ⁇ 1 )) as the second surface 221. Is designed to be in the same horizontal position as the center P of the curvature circle Ci.
  • the second surface 221 is formed so that the vicinity of the upper end is substantially directed in the vertical direction, and is not formed in a shape that warps in the central direction of the recess 200.
  • the cell aggregate C can be separated from the recess 200 when vibration is applied by a vibration generator (vibration generator, see FIG. 12) described later.
  • the vertical height D of the upper end 220u of the side part 220 with respect to the deepest part of the bottom part 210 is preferably designed to be 0.06 to 0.5 mm, although it depends on the second curvature.
  • the vertical height D of the upper end 220u of the side portion 220 is within such a range, when an external force such as vibration is applied when a plurality of cell aggregates C are carried in the concave portion 200 described later, these cells
  • the aggregate C is separated and only one cell aggregate C is supported on the bottom 210, and the cell aggregate C is supported on each of the adjacent recesses 200, the cell aggregate of one recess 200 is obtained.
  • FIG. 3 is a top view of the recess 200 of this embodiment.
  • FIG. 4 is a cross-sectional view of the recess 200 of this embodiment.
  • Each of the plurality of recesses 200 is connected to the periphery of the upper end 220u of the side portion 220.
  • One of the plurality of recesses 200 carries a plurality of cell aggregates and impurities.
  • the recess 200m has a bottom 210m on which a first surface 211m having a first curvature is formed, and a side part 220m on which a second surface 221m having a second curvature is formed.
  • the cell aggregate Cm is supported at substantially the center of the bottom 210m, and the cell aggregate Cn is supported around the cell aggregate Cm.
  • the cell aggregate Cn is carried at the bottom 210m or near the boundary between the bottom 210m and the side 220m.
  • the peripheral edge of the side portion 220m of the concave portion 200m and the peripheral edge of the side portion 220n of the concave portion 200n are connected to each other, and a sharp peak portion 250 is formed.
  • the cell aggregate Cn reaches the peak portion 250 beyond the side portion 220m, the cell aggregate lump Cn is not held at the peak portion 250 and is once beyond the peak portion 250. , It falls to the bottom 210n along the side 220n of the adjacent recess 200n. Moreover, the foreign substance Cx falls from the through-hole 240 formed in the bottom part 210, or is separated out of the recessed part 200m by the stress applied by the vibration.
  • the cell aggregate Cm supported at the approximate center of the bottom 210m may move somewhat due to the stress applied by the vibration, but the moving distance does not leave the bottom 220m where the first surface 221m is formed.
  • the cell agglomerate Cm is not moved so as to exceed the side part 220m, and even if it moves to the side part 220m, it falls in the direction of the bottom part 210m along the side part 220m and is again carried by the bottom part 210m. Is done.
  • the cell aggregates may be separated by tilting the well plate 200 back and forth and left and right.
  • each of the plurality of recesses 200 of the present embodiment has a regular hexagonal shape of the opening in a top view, and the plurality of recesses 200 are arranged in a honeycomb shape. Therefore, the cell agglomerate Cn is easily separated from the recess 200m into the recesses 200n adjacent to the hexagon when vibration is applied. Further, since the plurality of recesses 200 are densely arranged in a honeycomb shape, the number of the recesses 200 that can be formed in one well plate 100 is increased, and the area efficiency is good.
  • the vibration conditions necessary for separating the cell aggregate n and supporting only the cell aggregate Cm on the recess 200m are as follows: It is appropriately set based on the shape and mass of the aggregate, the viscosity of the cell culture solution, the temperature, the shape of the recess, and the like.
  • the well plate 100 of the present embodiment has the first curvature of 4.55 (mm ⁇ 1 ) and the second curvature of 6.66 (mm ⁇ 1 ) as described above, and the concave portion
  • the depth of 200 (the vertical height D from the deepest part of the bottom part 210 to the upper end 220u of the side part 220) is 0.1 mm
  • the maximum diameter of the opening of the recess 200 is 0.37 mm
  • the diameter rC is 0.
  • a 1 mm substantially spherical cell aggregate C is carried on the bottom 210 (see FIG. 2).
  • the specific gravity, viscosity, etc. of the cell culture solution Lm1 are approximately the same as that of water.
  • the vibration frequency is set to 0 to 200 rpm, or when the well plate 200 is tilted, the tilt angle is set to about ⁇ 5 to 10 ° so that the recess 200m is formed.
  • the supported cell aggregate Cn can be separated and only the cell aggregate Cm can be supported on the recess 200m.
  • FIG. 5 is a cross-sectional view of the concave portion of the present embodiment.
  • Each of the plurality of recesses carries a cell aggregate.
  • one cell aggregate Cm is supported on the bottom 210m of one recess 200m, and one cell aggregate Cn is also supported on the bottom 210n of the recess 200n adjacent to the recess 200m. The case where only the cell aggregate Cm is sucked will be described.
  • the cell aggregate Cn Since the side portion 220n on which the surface 221n is formed is formed, the cell aggregate Cn is not moved by the liquid flow A1 beyond the side portion 220n, falls along the side portion 220n, and again It is carried on the bottom 210n. As a result, only the cell aggregate Cm carried in the recess 200m in which the suction tip T is inserted is sucked. In addition, in the case where one cell aggregate C (cell aggregate Cm and cell aggregate Cn) is supported in each of the adjacent recesses 200 (recesses 200m and 200n), it is supported in the adjacent recess 200n.
  • the suction conditions necessary for sucking only the cell aggregate Cm supported in the recess 200m without sucking the cell aggregate Cn are as follows: the shape, mass, viscosity of the cell culture medium, temperature, recess It is set as appropriate based on the shape and the like.
  • the well plate 100 of the present embodiment has the first curvature of 4.55 (mm ⁇ 1 ) and the second curvature of 6.66 (mm ⁇ 1 ) as described above, and the concave portion
  • the depth of 200 (the vertical height D from the deepest part of the bottom part 210 to the upper end 220u of the side part 220) is 0.1 mm
  • the maximum diameter of the opening of the recess 200 is 0.37 mm
  • the diameter rC is 0.
  • a 1 mm substantially spherical cell aggregate C is carried on the bottom 210 (see FIG. 2). Further, it is assumed that the specific gravity, viscosity, etc. of the cell culture solution Lm1 are approximately the same as that of water.
  • a suction pipette (not shown) equipped with the suction tip T is inserted from directly above the recess 200m, and the suction port Th is placed 0.15mm above the cell aggregate Cm, and 0.8 ⁇ L / When 0.4 ⁇ L is sucked at a speed of 2 seconds, only the cell aggregate Cm supported on the recess 200m is sucked, and the cell aggregate Cn supported on the recess 200n is not sucked.
  • the continuous portion 230 is a portion that smoothly connects the bottom portion 210 and the side portion 220, and is formed at a location where the bottom portion 210 and the side portion 220 are continuous.
  • the shape of the continuous portion 230 is not particularly limited, and is defined by the outer peripheral shape of the first surface 211 of the bottom portion 210. Specifically, when the outer peripheral shape of the first surface 211 of the bottom 210 in a top view is circular (see FIG. 3), the continuous portion 230 has the same circle in the top view.
  • the cell agglomerate Cn loses the energy (internal energy) obtained by vibration and retained inside due to the collision, and can not exceed the side portion 220m, and is separated from the concave portion 200m to the concave portion 200n. May not be.
  • the continuous part 230 of this embodiment since the bottom part 210 and the side part 220 are smoothly connected, the cell aggregate Cn is easily moved from the bottom part 210m to the side part 220m, and the internal energy is increased. Is used to cross the side 220 without being lost. As a result, the cell aggregate Cn is easily separated from the recess 200m to the recess 200n, leaving only the cell aggregate Cm.
  • each of the plurality of recesses 200 of the present embodiment has a regular hexagonal shape in the top view (see FIG. 3). That is, the shape of the upper end 220u of the side part 220 is a regular hexagon when viewed from above.
  • the lower end 220d of the side portion 220 is smoothly connected to the bottom portion 210 by the continuous portion 230, and thus has the same outer peripheral shape (for example, a circle) as the bottom portion 210.
  • the shape of the side portion 220 in the top view is the same as the outer peripheral shape of the bottom portion 210 in the top view, and continuously from the lower end 220d side to the upper end 220u side so that the upper end 220u side is a regular hexagon in the top view. It is a deformed shape.
  • FIG. 6 is a schematic view of the end face shape of the side portion 220 at the cross-sectional positions (1) to (3) in FIG. 2, and FIG. 6 (a) is an end face of the side portion 220 at the cross-sectional position (1) in FIG.
  • FIG. 6B is a schematic diagram of the shape
  • FIG. 6B is a schematic diagram of the end face shape of the side portion 220 at the cross-sectional position (2) in FIG.
  • FIG. 6C is the cross-sectional position in FIG. It is a schematic diagram of the end surface shape of the side part 220 in FIG.
  • the shape S1 of the lower end 220d of the side portion 220 at the cross-sectional position (1) in FIG. 2 is the same as the outer peripheral shape of the bottom portion 210.
  • the case where the outer peripheral shape of the bottom part 210 is circular and the end surface shape of the lower end 220d of the side part 220 is also circular is illustrated.
  • FIG. 6B the shape of the central portion 220c of the side portion 220 at the cross-sectional position (2) in FIG.
  • the shape of the upper end 220u of the side portion 220 at the cross-sectional position (3) in FIG. 2 is a regular hexagon.
  • the shape of the side portion 220 is continuously deformed from the lower end 220d side to the upper end 220u side in the top view. Therefore, when the cell aggregate C moves beyond the side part 220 from the bottom part 210 when external energy such as vibration is applied (particularly in the vicinity of the continuous part 230 reaching the side part 220 from the bottom part 210). The internal energy is not easily lost and is easily separated beyond the side portion 220.
  • the first surface 211 of the bottom 210 of the recess 200 has the first curvature smaller than the second curvature and is relatively flat. Therefore, the cell aggregate C is stably supported on such a relatively flat bottom portion 210, and the shape is not excessively deformed.
  • a plurality of cell aggregates (cell aggregate Cm and cell aggregate Cn) are supported on the bottom portion 210 m or impurities Cx are supported.
  • the cell aggregate Cn has a second surface 221m having a second curvature with a larger curvature from the bottom 210m on which the first surface 211m having the first curvature is formed. It is easy to be separated into the adjacent concave portion 200n through the formed side portion 220m. As a result, only the cell aggregate Cm is carried in the recess 200m. Further, as described above with reference to FIG. 5, the second curvature of the second surface 221n formed on the side portion 220n is larger than the first curvature of the first surface 211n formed on the bottom portion 210n.
  • the cell aggregate C carried on the bottom portion 210n is not moved beyond the side portion 220 by this liquid flow, even if some liquid flow is generated around it.
  • the cell aggregate Cn supported on the bottom 210n of the recess 200n is, for example, a tip Ta including the suction port Th of the suction tip T in order to suck the cell aggregate Cm supported on the adjacent recess 200m. Even if a liquid flow is generated in the cell culture medium Lm1 by being inserted from directly above the recess 200m, the liquid flow of this level is not moved beyond the side 220n.
  • the cell aggregate Cn carried in the recess 200n is hardly affected by the liquid flow.
  • the well plate 100 of the present embodiment when the cell aggregate Cm to be sucked held in the recess 200m is sucked, the cell aggregate Cn held in the adjacent recess 200n is sucked at the same time. Therefore, only the cell aggregate Cm to be aspirated can be easily aspirated and selected.
  • FIG. 7 is a cross-sectional view of the recess 200a of the present embodiment.
  • the well plate 100a of this embodiment has the same configuration as the well plate 100 (see FIG. 2) described above in the first embodiment, except that the shape of the bottom 210a of the recess 200a is different. For this reason, the same reference numerals are assigned to overlapping components, and the description thereof is omitted as appropriate.
  • Each of the plurality of recesses 200a of the present embodiment has a substantially bowl shape that is open on the upper surface 110 side and recessed from the upper surface 110 side to the lower surface 120 side. More specifically, each of the plurality of recesses 200a of the present embodiment has a bottom 210a formed with a first surface 211a having a curvature of zero and a second curvature in the vertical cross section, and a second curvature. 1 side 211a and the side part 220 in which the 2nd surface 221 continuous was formed. The bottom part 210 a and the side part 220 are smoothly continuous at the continuous part 230.
  • the bottom part 210a is a part where the cell aggregate C is mainly supported, and has a first surface 211a which is a supporting surface.
  • the first surface 211a is a flat surface with zero curvature.
  • the cell aggregate C is more stably supported without being deformed at the bottom 210a.
  • a through hole 240 is formed in the center of the bottom portion 210a so as to penetrate the well plate 100a from the upper surface 110 side to the lower surface 120 side. Since the dimensions, functions, and the like of the through-hole 240 are the same as the dimensions, functions, and the like described in the first embodiment, descriptions thereof are omitted.
  • the horizontal width d1 of the first surface 211a is not particularly limited as long as the cell aggregate C can be stably supported. Such a width is, for example, 0.1 to 0.5 mm. In the present embodiment, the horizontal width d1 of the first surface 211a is 0.3 mm.
  • the side portion 220 includes a second surface 221 that is a curved surface having a second curvature, and has a lower end 220d that is smoothly connected to the bottom portion 210a via the continuous portion 230, and an upper end 220u that includes a peripheral edge.
  • the second curvature is larger than the curvature of the first surface 211a (zero in this embodiment).
  • Such curvature depends on the size of the recess 200a, but exceeds, for example, 20 (mm ⁇ 1 ) when the maximum diameter of the opening of the recess 200a formed on the upper surface 110 side is 0.5 mm. Or less, preferably 6.66 (mm ⁇ 1 ) or more and 20 (mm ⁇ 1 ) or less.
  • the radius of curvature r2 is 0.05 mm or more and 0.15 mm or less.
  • the second surface 221 having a second curvature of 7.69 (mm ⁇ 1 ) and a radius of curvature r2 of 0.13 mm is formed in the recess 200a having the maximum diameter of the opening of 0.37 mm.
  • the formed side part 220 is illustrated. Since the position of the upper end of the second surface 221, the vertical height, the shape of the side portion 220, and the like are the same as those described in the first embodiment, description thereof is omitted.
  • the curvature of the first surface 211a is zero, and the bottom 210a is a flat surface. Therefore, the cell agglomerate C is less likely to be deformed at the bottom portion 210a having a flat surface and is more stably supported. In addition, the cell aggregate C carried on the flat bottom 210a is easily observed with an imaging device such as a phase contrast microscope attached to the outside.
  • FIG. 8 is a perspective view of the well plate 100b of the present embodiment.
  • FIG. 9 is a cross-sectional view of the recess 200b of the present embodiment, and is a cross-sectional view at the position indicated by BB in FIG.
  • FIG. 10 is a top view of the recess 200b of the present embodiment.
  • the well plate 100b of the present embodiment is different in the shape of the side portion 220b of the recess 200b, and thus the upper surface shape of the recess 200b is different, so that the well plate 100 described above in the first embodiment (FIG. 1, FIG.
  • the configuration is the same as that shown in FIG. For this reason, the same reference numerals are assigned to overlapping components, and the description thereof is omitted as appropriate.
  • the well plate 100b of this embodiment has a plurality of concave portions 200b that are recessed from the upper surface 110 side to the lower surface 120 side at the position where the cell aggregate C is carried.
  • Each of the plurality of recesses 200b has a square (quadrangle) shape of the opening in a top view, and the plurality of recesses 200b are arranged in a matrix.
  • the plurality of recesses 200b have a peripheral edge at the upper end 220bu of the side portion 220b.
  • the peripheral edge provided in each of the plurality of concave portions 200b is connected to the peripheral edge of another concave portion 200b adjacent in four directions when viewed from above, and a sharp peak portion 250b is formed.
  • the plurality of cell aggregates are easily separated by applying an external force such as vibration. More specifically, as shown in FIG. 10, for example, when three cell aggregates (cell aggregate Cm and cell aggregate Cn) and impurities Cx are supported in the recess 200bm, By applying an external force, the cell aggregate Cn and the foreign matter Cx are easily separated from the recess 200bm into the four recesses 200bn adjacent to the recess 200bm. As a result, only the cell aggregate Cm is easily carried in the recess 200bm.
  • the adjacent concave portion is the same as described above with reference to FIG. 5 in the first embodiment. It is not sucked together with the cell aggregate Cn carried on 200n. Furthermore, since each of the plurality of recesses 200b is densely arranged in a matrix, the number of recesses 200b that can be formed in one well plate 100b increases, and the area efficiency is good.
  • the length d3 of one side of the peak 250b that separates adjacent recesses is larger than the length d2 of one side of the peak 250 described in the first embodiment (see FIG. 3). long. For this reason, for example, a cell aggregate that has dropped onto the upper surface 110 of the well plate 100b from above the well plate 100b tends to be urged to fall into the recess 200b by reaching the peak 250b.
  • each of the plurality of recesses 200b of the present embodiment has a square opening shape in a top view. That is, the shape of the upper end 220bu of the side part 220b is a square when viewed from above.
  • the lower end 220bd of the side portion 220b is smoothly connected to the bottom portion 210 by the continuous portion 230 described above in the first embodiment, and thus has the same outer peripheral shape (for example, a circle) as the bottom portion 210.
  • the shape of the side part 220b is the same as the outer peripheral shape of the bottom part 210 in the top view on the lower end 220bd side, and is continuously deformed from the lower end 220bd side to the upper end 220bu side so that the upper end 220bu side is square in the top view. is there.
  • FIG. 11 is a schematic diagram of the end face shape of the side portion 220b at the cross-sectional positions (4) to (6) in FIG. 9, and FIG. 11 (a) is an end face of the side portion 220b at the cross-sectional position (4) in FIG.
  • FIG. 11B is a schematic diagram of the shape, FIG.
  • FIG. 11B is a schematic diagram of the end face shape of the side portion 220b at the cross-sectional position (5) in FIG. 9, and FIG. 11C is a cross-sectional position (6) in FIG. It is a schematic diagram of the end surface shape of the side part 220b.
  • the shape S4 of the lower end 220bd of the side portion 220b at the cross-sectional position (4) in FIG. 9 is the same as the outer peripheral shape of the bottom portion 210.
  • the case where the outer periphery shape of the bottom part 210 is circular and the end surface shape of the lower end 220bd of the side part 220b is also circular is illustrated.
  • FIG. 11A the shape S4 of the lower end 220bd of the side portion 220b at the cross-sectional position (4) in FIG. 9 is the same as the outer peripheral shape of the bottom portion 210.
  • the shape of the upper end 220bu of the side part 220b in sectional position (6) in FIG. 9 is a square. In this way, the shape of the side portion 220b is continuously deformed from the lower end 220bd side to the upper end 220bu side in the top view. Therefore, when the cell agglomerate C moves beyond the side part 220b from the bottom part 210 when external energy such as vibration is applied (particularly in the vicinity of the continuous part 230 reaching the side part 220b from the bottom part 210). The internal energy is not easily lost and is easily separated beyond the side portion 220b.
  • the cell aggregate C is supported on the bottom portion 210, and the shape is not excessively deformed.
  • a plurality of cell aggregates (cell aggregate Cm and cell aggregate Cn) are supported on the bottom portion 210 m or impurities Cx are supported.
  • the cell aggregate Cn is easily separated from the recess 200m to the recess 200n. As a result, only the cell aggregate C is carried in the recess 200m.
  • the well plate 100 of the present embodiment when the cell aggregate Cm to be sucked held in the recess 200m is sucked, the cell aggregate Cn is supported in the adjacent recess 200n. However, the cell aggregate Cn is not simultaneously sucked, and only the cell aggregate Cm to be sucked can be easily sucked and selected. Furthermore, since each of the plurality of recesses 200b is arranged in a matrix, the number of recesses 200b that can be formed per well plate 100b is increased, and the area efficiency is good.
  • FIG. 12 is a schematic diagram illustrating the configuration of the object sorting apparatus 300 according to the present embodiment.
  • the object sorting apparatus 300 includes a well plate 100 having a recess 200 that holds a cell aggregate C to be sucked (see FIG. 3), and a flat columnar petri dish 310 (container having an inner bottom 311 and an upper opening). ), A stage 320 on which the petri dish 310 is placed, a vibration generator 330 (vibration generating means) that applies vibrations to the well plate 100 held in the petri dish 310 placed on the stage 320, and a stage 320.
  • a vibration generator 330 vibration generating means
  • a capacitor 340 (irradiation means) for irradiating irradiation light from above to the cell aggregate C which is arranged spaced apart upward from the well plate 100 to be placed and is carried in the recess 200, and placed on the stage 320.
  • An imaging device 350 (observation means) that is arranged below the well plate 100 and that observes the cell aggregate C carried on the recess 200 from below.
  • a display device 351 attached to the imaging device 350, a suction tip 360 for sucking the cell aggregate C carried in the recess 200, a suction pipette 370 for generating a suction force for suction, and a suction pipette 370
  • a moving device 380 driving means for moving up and down.
  • the petri dish 310 stores a cell culture solution Lm1.
  • the well plate 100 is immersed in the cell culture medium Lm1 in the petri dish 310, and the lower surface thereof is separated from the inner bottom 311 of the petri dish 310 via the spacer 130.
  • Capacitor 340 and imaging device 350 are devices constituting an illumination system and an imaging system of an inverted phase contrast microscope, respectively.
  • the stage 320 is a horizontal flat plate-like gantry provided with a circular holder (not shown) for holding the petri dish 310.
  • the stage 320 is provided with a position adjusting mechanism (not shown) for moving the well plate 100 back and forth, left and right manually or automatically.
  • the position adjustment mechanism With the position adjustment mechanism, the well plate 100 placed on the stage 320 has the capacitor 340 disposed above the recess 200 in which the cell aggregate C to be aspirated is carried, and the imaging device 350 disposed below. The position is adjusted. Thereby, the irradiation light from the light source of the capacitor 340 is irradiated from above the concave portion 200 that holds the cell aggregate C to be aspirated, and enters the imaging device 350 below.
  • the capacitor 340 is disposed above the well plate 100 placed on the stage 320 and spaced apart from the well plate 100, and irradiates the cell aggregate C carried on the recess 200 with irradiation light from above.
  • the condenser 340 includes a substantially cylindrical casing, and includes a light source (halogen lamp (6V30W)), a collector lens, a ring slit, an aperture stop, and a condenser lens (not shown) in the casing.
  • the light source is not particularly limited, and other than the halogen lamp, for example, a tungsten lamp, a mercury lamp, a xenon lamp, a light emitting diode (LED), or the like can be used.
  • the ring slit is a light shielding plate having an annular hole, and is incorporated at the position of the aperture stop of the capacitor 340.
  • the irradiation light irradiated from the light source in the condenser 340 passes through the collector lens, the hole of the ring slit, the aperture stop, and the condenser lens, and is irradiated to the cell aggregate C carried in the concave portion 200, and then to the imaging device 350. Incident.
  • the imaging device 350 is disposed below the petri dish 310 placed on the stage 320, and is provided for observing the cell aggregate C carried in the recess 200 from below.
  • the imaging device 350 includes a phase difference objective lens, an objective lens exit aperture (lens optical system), a phase plate, an eyepiece field stop, an eyepiece, and a CCD (Charge Coupled Device) image sensor.
  • a sensor, an image processing unit, and a display device 351 are provided.
  • the phase plate is a ring-shaped translucent plate-like body that reduces the intensity of light passing therethrough and delays the phase by 1 ⁇ 4.
  • the CCD image sensor converts an optical image formed on the light receiving surface into an electrical image data signal.
  • the image processing unit performs image processing such as gamma correction and shading correction on the image data as necessary.
  • the display device 351 displays the image data after image processing.
  • the user observes the image displayed on the display device 351.
  • the irradiation light diffracted by the cell aggregate C is incident on the phase difference objective lens and imaged. At this time, since most of the irradiation light passes through other than the phase plate, the phase remains delayed by 1/4 wavelength. As a result of direct light and diffracted light having the same phase and strengthening by interference, the cell aggregate C is brightly observed.
  • the arrangement of the components of the capacitor 340 and the imaging device 350 is adjusted to be a Kohler illumination system. That is, the light source, the aperture stop, and the exit stop of the objective lens are arranged at the conjugate point with respect to the irradiation light, and the field stop, the cell aggregate C (sample), the eyepiece field stop, and the CCD image sensor with respect to the specimen image. Are arranged so that the light-receiving surface of the light becomes a conjugate point.
  • the Kohler illumination system an image of the light source is formed at the aperture stop position, and an image of the field stop is formed on the sample surface, thereby illuminating the cell aggregate C as a sample brightly and uniformly.
  • the field stop and the aperture stop can function independently, the amount and range of light on the sample surface can be adjusted.
  • the suction pipette 370 is a tubular member that can generate a suction force, and is connected to a suction tip 360 for sucking the cell aggregate C carried in the recess 200.
  • a suction force is generated in the tubular passage 360p of the suction tip 360, and the cell aggregate C is sucked and collected from the suction port.
  • the suction pipette 370 is used by being connected to the moving device 380, the drive is controlled by the moving device 380, and it is moved up and down.
  • the suction tip 360 has an L-shaped bent shape, and is connected to the suction pipette 370 so that the front end portion 361 is in a substantially vertical direction and the rear end portion 362 is laterally extended sideways. Therefore, when the arrangement of the components of the capacitor 340 and the imaging device 350 described above is adjusted so as to be a Koehler illumination system, the tip portion is provided between the capacitor 340 and the well plate 100 while maintaining these arrangements. 361 can be arranged. As a result, the moving device 380 can be disposed obliquely above the well plate 100 without being disposed at a position where the irradiation light from the capacitor 340 is blocked, and the distal end portion is disposed in the gap between the capacitor 340 and the well plate 100. 361 can be arranged.
  • the method for causing the tip 361 to enter the gap between the capacitor 340 and the well plate 100 is not particularly limited, and for example, a method of moving the stage 320 back and forth and in the left-right direction can be employed.
  • the moving device 380 is a device that can connect the suction pipette 370 in a horizontal posture and moves the connected suction pipette 370 up and down while maintaining the horizontal posture, and is disposed obliquely above the stage 320.
  • the moving device 380 includes a main body portion 381 to which a suction pipette 370 is connected, and a guide portion 382 on which the main body portion 381 travels.
  • the main body 381 includes a motor (not shown) that moves the suction pipette 370 up and down by moving the main body 381 in the vertical direction in a substantially rectangular parallelepiped housing, and a controller (not shown) that controls the motor.
  • a connection port (not shown) that is a suction port that generates a suction force by a syringe pump and is connected to the suction pipette 370 is formed on the outside of the housing of the main body 381.
  • the guide portion 382 is provided with a linear gear (rack), and the main body portion 381 is provided with a circular gear (pinion). When the motor controlled by the controller is driven, the main body portion 381 travels along the guide portion 382.
  • the motor moves the main body 381 also in the front-rear and left-right directions so that the suction port of the suction tip 360 is captured within the depth of field of the objective lens of the imaging device 350, for example.
  • the suction device can be calibrated. Calibration is appropriately performed when the suction tip 360 is replaced or when the apparatus is started up.
  • a cell culture solution Lm2 containing cell aggregates C and contaminants Cx (see FIG. 3) is dropped.
  • the dropping of the cell culture solution Lm2 can be performed by a suction pipette Pa equipped with a suction tip Ta.
  • Cell aggregates C and contaminants Cx contained in the dropped cell culture solution Lm2 are carried in the recesses 200 of the well plate 100.
  • the cell aggregate C and the foreign substance Cx carried at the carrying position of the recess 200 are observed by the imaging device 350 and displayed on the display device 351.
  • a plurality of cell aggregates (cell aggregates Cm and cell aggregates Cn) and contaminants Cx may be carried in one recess 200m. Therefore, in such a case, the object sorting apparatus 300 of the present embodiment generates vibrations by the vibration generator 330 that applies vibrations to the well plate 100 held in the petri dish 310 placed on the stage 320.
  • the cell aggregate Cn and the contaminant Cx are separated so that only one cell aggregate Cm is carried by the recess 200m.
  • the cell aggregate Cn passes from the bottom part 210m to the side part 220m.
  • the recess 200m for example, the adjacent recess 200n.
  • the foreign matter Cx falls from the through hole 240 of the recess 200m to the inner bottom 311 of the petri dish. As a result, only one cell aggregate Cm is carried in the recess 200m.
  • the cell aggregate C moves the suction tip 360.
  • the suction pipette 370 provided is aspirated. Specifically, by the downward movement of the main body portion 381, the suction tip 360 is inserted downward into the concave portion 200 in which the cell aggregate C is supported, and the suction port 363 is brought close to the cell aggregate C. . Since the position of the cell aggregate C and the position of the suction port 363 are displayed on the display device 351 of the imaging device 350, the suction port 363 can be brought close to the cell aggregate C accurately while the position is confirmed. Since the irradiation light from the capacitor 340 is not blocked except by the tip 361, the cell aggregate C is observed under sufficient irradiation light.
  • the object sorting device 300 drives a syringe pump (not shown) of the moving device 380 to generate a suction force in the tubular passage 360p of the suction tip 360, and sucks the cell aggregate C from the suction port 363. To do.
  • a syringe pump (not shown) of the moving device 380 to generate a suction force in the tubular passage 360p of the suction tip 360, and sucks the cell aggregate C from the suction port 363.
  • the cell aggregate Cn is also supported in the recess 200n adjacent to the recess 200m in which the cell aggregate Cm to be sucked is supported. is there.
  • the display device 351 displays the state of the recess 200m (presence / absence of the cell aggregate Cm), the success or failure of the recovery can be easily determined.
  • the object sorting apparatus 300 moves the main body 381 upward, and pulls up the tip 361 from the recess 200.
  • the object sorting apparatus 300 discharges the sucked cell aggregate C (cell aggregate Cm) to a recovery plate (not shown) adjacent to the same stage 320 as the well plate 100, and completes the selection.
  • the vibration generator 330 can apply vibration to the well plate 100 in the petri dish 310 placed on the stage 320, and tentatively the concave portion 200 of the well plate 100. Even when a plurality of cell aggregates C are carried on the bottom portion 210 or foreign substances Cx other than the cell aggregates C are also carried, only one cell aggregate C is present at the carrying position of the recess 200. These can be separated to be supported. In addition, when a single cell aggregate C carried in the recess 200 is sucked by the suction pipette 370 to which the suction tip 360 is attached, it is assumed that the cell aggregate C is also carried in the adjacent recess 200.
  • the target object sorting apparatus 300 of the present embodiment it is possible to appropriately sort only one target cell aggregate C.
  • a cell aggregate is exemplified as an object carried in the recess.
  • the present invention may be targeted for tablets, capsules, granulated granules and the like, and cells derived from living bodies used in the fields of biotechnology and medicine.
  • a cell derived from a living body is a target, and a cell aggregate derived from a living body is more preferable. That is, cells or the like carried on a conventional well plate (platen) are likely to be deformed along the shape of the through hole, and the properties may change. In addition, the carried cells may be firmly fitted into the through-hole, and may be damaged when forcibly recovered by suction or the like. In addition, a plurality of cells may be fitted into one through hole. In such a case, even if an external force such as vibration is applied, it is not easily separated, and one cell is appropriately recovered. Difficult to do.
  • the supported cells are not easily deformed, and even if a plurality of cells are supported, they can be easily separated by applying external force such as vibration, It can be recovered without changing properties or damage. As a result, the cells are accurately weighed, and highly reliable results are obtained in various experiments.
  • the living body-derived cell aggregate has a reconstructed living body-like environment in which the interaction between cells is taken into consideration inside the cell aggregate from the test results obtained using one cell. It is important in the field of regenerative medicine and the development of pharmaceuticals such as anticancer drugs, because the results of taking into account the functions of the cells can be obtained and the experimental conditions can be adjusted to the conditions that are more suitable for the environment in vivo. It is said that.
  • Specific examples of the cell aggregate include, for example, BxPC-3 (human pancreatic adenocarcinoma cell), embryonic stem cell (ES cell), induced pluripotent stem cell (iPS cell) and the like. In general, such a cell aggregate is formed by aggregation of several to several hundred thousand individual cells.
  • the supported cell aggregates are not easily deformed, and even when a plurality of cell aggregates are supported, they can be easily separated by applying external force such as vibration. And can be recovered without changing properties or damage.
  • cell aggregates are accurately measured, highly reliable results can be obtained in the fields of biotechnology and medicine (including the field of regenerative medicine and the development of pharmaceuticals such as anticancer agents).
  • the well plate of the present invention can appropriately use a liquid that retains the cell aggregates that does not deteriorate the properties of the cell aggregates.
  • Typical liquids include, for example, basal medium, synthetic medium, eagle medium, RPMI medium, Fischer medium, ham medium, MCDB medium, serum, and other glycerol, cell bunker (Juji Field) to be added before frozen storage.
  • cell frozen solution formalin, reagent for fluorescent staining, antibody, purified water, physiological saline and the like.
  • a culture preservation solution adapted to the cell aggregate can be used.
  • the cell aggregate is BxPC-3 (human pancreatic adenocarcinoma cell), 10% fetal bovine serum FBS (Fetal Bovine Serum) mixed with RPMI-1640 medium, and antibiotics as necessary Further, a supplement to which a supplement such as sodium pyruvate is added can be used.
  • BxPC-3 human pancreatic adenocarcinoma cell
  • 10% fetal bovine serum FBS Fetal Bovine Serum
  • RPMI-1640 medium fetal bovine Serum
  • antibiotics as necessary
  • a supplement to which a supplement such as sodium pyruvate is added can be used.
  • the concave portion having the through hole formed in the bottom portion is exemplified.
  • the through hole is not essential in the well plate of the present invention. That is, even when a cell culture solution containing cell aggregates contains impurities having a diameter smaller than that of the cell aggregates, these contaminants can be removed in advance by performing a process such as filter filtration. it can.
  • FIG. 13 is a cross-sectional view for explaining a well plate 100c according to a modification of the first embodiment.
  • the recessed part of the well plate 100c is the structure similar to the above-mentioned recessed part 200 in 1st Embodiment, the same referential mark is attached
  • the peripheral edge of the upper end 220u of the side portion 220 of the adjacent recess 200 is not connected, and a wall portion 260 separating the adjacent recesses 200 is formed.
  • the cell aggregate C may be temporarily held on the upper surface 110a of the wall 260.
  • the cell aggregate Ca represents a cell aggregate retained on the upper surface 110a of the wall 260.
  • such a cell aggregate Ca can be easily dropped onto the bottom 210 of the recess 200 by applying an external force such as vibration.
  • the first surface having zero curvature or the first curvature is formed in the entire region of the bottom, and the concave portion in which the second surface having the second curvature is formed in the entire region of the side portion. Illustrated. Instead, according to the present invention, a first surface having zero curvature or a first curvature is formed on at least a part of the bottom, and a second surface having a second curvature is formed on at least a part of the side. May be.
  • the object sorting device includes a vibration generator as a device for applying an external force to the well plate.
  • the present invention may include a tilting device (for example, Rocking Mixer RM-80 manufactured by ASONE Co., Ltd.) as a device for applying an external force to the well plate. According to the tilting device, the cell aggregates carried in the recesses can be separated or dispersed by tilting the well plate.
  • a well plate is a well plate that supports an object held in a liquid at a support position, and includes an upper surface, a lower surface, and a plurality of recesses formed at the support position.
  • Each of the plurality of recesses has a shape that is open on the upper surface side and is recessed from the upper surface side to the lower surface side, and has a zero curvature or a first curvature in a vertical cross section.
  • the object is held on such a relatively flat bottom, and the shape is not excessively deformed.
  • the object may be subjected to stress applied by vibration, for example, by applying an external force such as vibration. Therefore, it is easy to separate from the bottom portion where the first surface having the first curvature is formed to the outside of the original recess through the side portion where the second surface having the second curvature having a larger curvature is formed. . As a result, one object is carried in the original recess.
  • the object carried on the bottom side is caused by the liquid flow even if some liquid flow is generated around it. There is no movement beyond the department. Specifically, for example, even if a liquid flow is generated around the object carried on the bottom portion when the suction port of the suction tip of the suction pipette is approached during suction, depending on the liquid flow of this level, the second It is not moved beyond the side where the surface is formed. Similarly, for example, when a plurality of recesses are adjacent to each other and an object is carried on the bottom of each recess, a suction force is generated to suck the object carried on one recess by a suction pipette.
  • the object carried in the other recess is not easily affected by the liquid flow generated by the suction operation. That is, when the object carried in one recess is sucked, the object carried in the adjacent recess is not sucked at the same time. Therefore, only one object is easily recovered.
  • each of the side portions of the plurality of recesses includes a peripheral edge at an upper end thereof, and the plurality of recesses include a first recess and a second recess adjacent to the first recess, It is preferable that the 1st recessed part and the said 2nd recessed part have mutually connected the said periphery.
  • the peripheral edges of the first concave portion and the second concave portion are connected. Therefore, even if a plurality of objects are carried on the bottom of the first recess or a foreign object other than the object is carried, by applying an external force such as vibration, the object is It deviates from the carrying position of the first recess and is easily separated into the second recess. Specifically, when the peripheral edges of the first concave portion and the second concave portion are connected in this way, a ridge portion that separates them is formed between the first concave portion and the second concave portion.
  • the peak portion has a relatively pointed shape, an object that has moved out of the carrying position of the first recess portion by applying an external force such as vibration, for example, only exceeds the peak portion, and then the second recess portion. It is easy to fall to the carrying position along the side. As a result, the object is easily separated from the first recess to the second recess.
  • each of the plurality of recesses has a quadrangular opening shape in a top view, and the plurality of recesses are arranged in a matrix and the peripheral edges are connected. Therefore, even if a plurality of objects are carried on the bottom of one recess, or a foreign object other than the object is carried, by applying an external force such as vibration, the object is It deviates from the original carrying position and is easily separated into other concave portions adjacent to the four sides. In addition, the number of recesses that can be formed per well plate is large, and the area efficiency is good.
  • each of the side portions of the plurality of recesses includes a peripheral edge at an upper end thereof, and each of the plurality of recesses has a regular hexagonal shape of the opening in a top view. They are preferably arranged in a honeycomb shape, and the peripheral edges are connected.
  • each of the plurality of recesses has a regular hexagonal shape of the opening in a top view, and the plurality of recesses are arranged in a honeycomb shape, and the peripheral edges are connected. Therefore, even if a plurality of objects are carried on the bottom of one recess, or a foreign object other than the object is carried, by applying an external force such as vibration, the object is It deviates from the original carrying position, and is particularly easily separated into other concave portions adjacent to each other in six directions.
  • the shape of the concave portion as viewed from above is a regular hexagon and is a shape that is relatively close to a circle, the object is hardly adhered to the side of the concave portion and is not easily deformed.
  • the number of recesses that can be formed per well plate is large, and the area efficiency is good.
  • a through hole having a diameter smaller than the diameter of the object is formed in the bottom of the plurality of recesses from the upper surface side to the lower surface side.
  • a through-hole having a diameter smaller than the diameter of the object is formed in the bottom of the plurality of recesses from the upper surface side to the lower surface side. For this reason, when a contaminant having a diameter smaller than that of the through hole is included, the contaminant is dropped and removed from the through hole. Moreover, since the diameter of the through hole is smaller than the target object, the target object is less likely to be fitted into the through hole and is not easily deformed.
  • the object is preferably a living cell.
  • the object is a cell derived from a living body. Therefore, the cells appropriately separated using the well plate of the present invention can be used in the fields of bio-related technology and medicine.
  • the object is a cell aggregate derived from a living body.
  • a cell-derived aggregate derived from a living body has a living body-like environment in which the interaction between cells is taken into consideration inside the cell aggregate rather than the test results obtained using one cell. Results are taken into account, and the experimental conditions can be adjusted to the conditions that are more suitable for the environment in the living body, which is important in the field of regenerative medicine and the development of pharmaceuticals such as anticancer drugs. ing. Therefore, the cell aggregate appropriately separated using the well plate of the present invention can be used in the fields of biotechnology and medicine (including the field of regenerative medicine and the development of pharmaceuticals such as anticancer agents). .
  • An object sorting apparatus includes the well plate and vibration generating means for vibrating the well plate.
  • the object sorting device can apply vibration to the well plate by the vibration generating means, and a plurality of objects are carried on the bottom of the recess of the well plate. Even when impurities are also carried, they can be separated so that one object is carried at the carrying position of the recess.

Abstract

 液体中に保持された対象物を担持位置に担持するウェルプレートであって、上面と、下面と、前記担持位置に形成された複数の凹部とを有し、前記複数の凹部の各々は、前記上面側が開口し、該上面側から前記下面側に窪んだ形状であり、上下方向の断面において、曲率がゼロであるかまたは第1の曲率を有する第1面が形成され、前記対象物が担持される底部と、前記第1の曲率よりも大きな第2の曲率を有し、前記第1面と連続する第2面が形成された側部と、を有するウェルプレート。

Description

ウェルプレート、該ウェルプレートを備えた対象物選別装置
 本発明は、細胞等の対象物を担持するウェルプレート、該ウェルプレートを備えた対象物選別装置に関する。
 従来、種々の分野において、大きさや外形(以下、これらを単に形状という場合がある)に応じて対象物を選別する方法が提案されている。選別される対象物としては、大きいものでは錠剤、カプセル、造粒された顆粒などが挙げられ、小さいものでは、バイオ関連技術や医薬の分野で使用される生体由来の細胞等が挙げられる。このように、たとえば細胞を選別して形状を揃えれば、その細胞を用いた各種試験において、試験条件の偏差を小さくすることができる。選別後の細胞は、ハイスループット・スクリーニング(high-throughput screening(HTS))等に供することができる。
 しかしながら、たとえば種々の形状を呈する複数の細胞から、試験に適した形状の細胞のみを吸引して選別する場合には、選別時に他の夾雑物を同時に吸引してしまうことがある。図14は、夾雑物が同時に吸引される様子を説明する模式図である。図14に示されるように、シャーレ等の上部が開口された容器Coに細胞培養液等の液体Lmが貯留され、液体Lm内に複数の細胞Cや夾雑物Cxが担持されている場合において、吸引ピペット等の吸引装置(図示せず)により吸引チップTの管状通路Tp内に吸引力を発生させると、管状通路Tp内に細胞Cとともに夾雑物Cxが吸引される。その結果、細胞Cのみを選別することができない。また、1個の細胞Cを吸引すべきところ、複数の細胞Cが同時に吸引されることがある。
 このような問題に鑑みて、特許文献1には、複数の貫通孔を有する所望の厚さのプラテンを作製する方法が開示されている。特許文献1のプラテンは、複数の貫通孔を有し、該貫通孔に細胞等を担持させることにより、所望の大きさの細胞の選別を行い、その後吸引等により細胞を回収する。
 しかしながら、特許文献1に記載の貫通孔は、四方に形成された急な傾斜面に細胞等を担持する。そのため、担持された細胞等は、貫通孔の形状に沿って変形されやすく、性状が変化する場合がある。また、担持された細胞は、貫通孔に強固に嵌まり込み、吸引等により無理に回収する場合に損傷する場合がある。さらに、1個の貫通孔に複数の細胞が嵌まり込む場合もあり、このような場合には、たとえば振動等の外力を加えたとしても容易に分離されず、適切に1個の細胞を回収することが困難である。
特表2009-504161号公報
 本発明は、このような従来の問題に鑑みてなされたものであり、担持された対象物が変形されにくく、仮に複数の対象物が担持された場合であっても、振動等の外力を加えることにより容易に分離することができ、性状を変化させたり損傷させることなく対象物を回収することのできるウェルプレート、該ウェルプレートを備えた対象物選別装置を提供することを目的とする。
 本発明の一局面によるウェルプレートは、液体中に保持された対象物を担持位置に担持するウェルプレートであって、上面と、下面と、前記担持位置に形成された複数の凹部とを有し、前記複数の凹部の各々は、前記上面側が開口し、該上面側から前記下面側に窪んだ形状であり、上下方向の断面において、曲率がゼロであるかまたは第1の曲率を有する第1面が形成され、前記対象物が担持される底部と、前記第1の曲率よりも大きな第2の曲率を有し、前記第1面と連続する第2面が形成された側部と、を有することを特徴とする。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の第1の実施形態のウェルプレートの斜視図である。 本発明の第1の実施形態の凹部の断面図である。 本発明の第1の実施形態の凹部の上面図である。 本発明の第1の実施形態の凹部の断面図である。 本発明の第1の実施形態の凹部の断面図である。 図2の断面位置(1)~(3)における側部の端面形状の模式図であり、図6(a)は、図2の断面位置(1)における側部の端面形状の模式図であり、図6(b)は、図2の断面位置(2)における側部の端面形状の模式図であり、図6(c)は、図2の断面位置(3)における側部の端面形状の模式図である。 本発明の第2の実施形態の凹部の断面図である。 本発明の第3の実施形態のウェルプレートの斜視図である。 本発明の第3の実施形態の凹部の断面図である。 本発明の第3の実施形態の凹部の上面図である。 図9の断面位置(4)~(6)における側部の端面形状の模式図であり、図11(a)は、図9の断面位置(4)における側部の端面形状の模式図であり、図11(b)は、図9の断面位置(5)における側部の端面形状の模式図であり、図11(c)は、図9の断面位置(6)における側部の端面形状の模式図である。 本発明の第4の実施形態の対象物選別装置の構成を説明する模式図である。 本発明の第1の実施形態の変形例のウェルプレートを説明するための断面図である。 夾雑物が同時に吸引される様子を説明する模式図である。
<ウェルプレート>
(第1の実施形態)
 以下に、本発明の第1の実施形態のウェルプレートについて、図面を参照しながら詳細に説明する。図1は、本実施形態のウェルプレート100の斜視図である。
 本実施形態のウェルプレート100は、細胞培養液Lm1(液体)中に保持された細胞凝集塊C(スフェロイド spheroid、対象物 図2参照)を担持するための部材であり、たとえば細胞培養液Lm1を貯留したシャーレ310等の容器に浸漬して使用される(図12参照)。担持された細胞凝集塊Cは、たとえば外部に付設された位相差顕微鏡等の撮像装置350(観察手段、図12参照)により観察することができる。ウェルプレート100は、上面110と下面120とを有する。
 ウェルプレート100の形状としては特に限定されないが、たとえば担持された細胞凝集塊Cを外部に付設された位相差顕微鏡等の撮像装置350(図12参照)により下方から観察する際に、位相差顕微鏡の焦点を合わせ易い点から、扁平な形状であることが好ましい。ウェルプレート100の大きさとしては、シャーレ310に貯留された細胞培養液Lm1に浸漬する必要があるため、シャーレ310の開口幅よりも幅が小さく、かつ、シャーレ310の収容深さに比べて高さが小さければよい。本実施形態のウェルプレート100は、高さが0.15mm、15mm四方の扁平な直方体の形状を備える。
 ウェルプレート100の材質としては特に限定されず、細胞凝集塊Cの状態を容易に確認し得る点から、透光性材料であることが好ましい。透光性材料としては特に限定されないが、たとえば、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。より具体的には、透光性材料として、ポリエチレン樹脂;ポリエチレンナフタレート樹脂;ポリプロピレン樹脂;ポリイミド樹脂;ポリ塩化ビニル樹脂;シクロオレフィンコポリマー;含ノルボルネン樹脂;ポリエーテルスルホン樹脂;ポリエチレンナフタレート樹脂;セロファン;芳香族ポリアミド樹脂;ポリ(メタ)アクリル酸メチル等の(メタ)アクリル樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂;ポリ乳酸等が挙げられる。ほかにも、ウェルプレート100の材質としては、無機系材料、たとえば金属アルコキシド、セラミック前駆体ポリマー、金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合してなる溶液またはこれらの組み合わせを固化した無機系材料、たとえばシロキサン結合を有する無機系材料(ポリジメチルシロキサンなど)やガラスが挙げられる。本実施形態のウェルプレート100は、アクリル製である。
 ウェルプレート100には、細胞凝集塊Cの担持位置に、上面110側から下面120側にかけて窪んだ形状の凹部200が複数形成されている。そのため、ウェルプレート100は、たとえば吸引チップを装着した吸引ピペットにより細胞凝集塊Cを含む細胞培養液Lm1を上方から滴下することにより、各々の凹部200に細胞凝集塊Cを落下させて担持することができる。ここで、凹部200には1個の細胞凝集塊Cが担持されるべきところ、このように上方から細胞凝集塊Cを含む細胞培養液Lm1を滴下すると、複数の細胞凝集塊Cが1個の凹部200に担持されたり、細胞凝集塊C以外の夾雑物が1個の凹部200に合わせて担持される場合がある。本実施形態の凹部200は、以下の形状を有しているため、これらの場合であっても振動等の外力を加えることにより複数の細胞凝集塊Cや夾雑物を分離して1個の細胞凝集塊Cのみを凹部200に担持させることができ、かつ、1の凹部200から細胞凝集塊Cを吸引して選別する際に、他の凹部200に担持された細胞凝集塊Cが同時に吸引されることがない。
 図2は、本実施形態の凹部200の断面図であり、図1においてA-Aで示された位置における断面図である。複数の凹部200の各々は、上面110側が開口し、上面110側から下面120側に窪んだ略椀状である。より具体的には、本実施形態の複数の凹部200の各々は、上下方向の断面において、第1の曲率を有する第1面211が形成された底部210と、第2の曲率を有し、第1面211と連続する第2面221が形成された側部220とを有する。底部210と側部220とは、連続部230においてなめらかに連続している。
 底部210は、細胞凝集塊Cが主に担持される部位であり、細胞凝集塊Cが担持される担持面である第1面211を有する。第1面211は、第1の曲率を有する湾曲面であり、その周囲は連続部230を介して側部220の第2面221と繋がっている。第1の曲率としては特に限定されず、細胞凝集塊Cを変形させることなく担持することのできる曲率であればよい。このような曲率としては、凹部200の大きさにもよるが、たとえば凹部200の上面110側に形成された開口の最大径が0.5mmである場合、ゼロを超え、1.75(mm-1)以下である。この場合、曲率半径r1は、0.57mm以上であり、無限大(∞)を含まない。本実施形態では、開口の最大径が0.37mmである凹部200において、第1の曲率が4.55(mm-1)であり、その曲率半径r1が0.22mmである第1面211が形成された底部210が例示されている。このような第1の曲率を有する第1面211は、湾曲面ではあるが、曲率が大きいため、比較的平坦に形成されている。そのため、細胞凝集塊Cは、このような第1の曲率を有する第1面211が形成された底部210において変形されることなく安定に担持される。
 底部210の中央には、上面110側から下面120側にかけてウェルプレート100を貫通する貫通孔240が形成されている。貫通孔240の径r3としては特に限定されず、担持すべき細胞凝集塊Cの最小径rCよりも小さければよい。後述するように細胞凝集塊Cは略球形であり、その最小径rCは0.05~0.1mm程度である。そのため、貫通孔240の径r3は、たとえば0.008~0.05mmであればよい。また、貫通孔240の個数は特に限定されず、1個であってもよく、複数であってもよい。さらに、貫通孔240の深さは特に限定されず、ウェルプレート100の強度等を考慮して適宜設定される。本実施形態では、径r3が0.04mmであり、深さが0.05mmの円柱状の貫通孔240が底部210の中心に1個形成されている場合が例示されている。凹部200は、底部210にこのような貫通孔240が形成されているため、細胞凝集塊Cよりも小さな径の夾雑物Cx(図3参照)が凹部200に落下した場合であっても、このような夾雑物Cxは、底部210に担持されることなく、貫通孔240を通過して落下する。また、貫通孔240の径r3は細胞凝集塊Cの径rCよりも小さいため、細胞凝集塊Cは、貫通孔240に嵌まり込みにくく、変形しにくい。
 側部220は、第2の曲率を有する湾曲面である第2面221を含み、連続部230を介して底部210の周囲となめらかに連続する下端220dと、周縁を備える上端220uとを有する。第2の曲率は、第1の曲率よりも大きい。このような曲率としては、凹部200の大きさにもよるが、たとえば上面110側に形成された凹部200の開口の最大径が0.5mmである場合、6.66(mm-1)以上20(mm-1)以下である。この場合、曲率半径r2は、0.05mm以上0.15mm以下である。本実施形態では、開口の最大径が0.37mmである凹部200において、第2の曲率が7.69(mm-1)であり、その曲率半径r2が0.13mmである第2面221が形成された側部220が例示されている。ウェルプレート100は、各々の凹部200の側部220に、このような第2の曲率を有する第2面221が形成されているため、たとえば細胞凝集塊Cが上方から側部220に落下した場合であっても、細胞凝集塊Cは、第2面221に沿って転がるように落下して底部210に担持される。
 また、第2面221の上端(側部220の上端220u)の位置は、第2の曲率を有する曲率円Ciの円周部分を第2面221に接触させる場合において、当該曲率円Ciの中心Pの水平位置以下になるよう設定される。本実施形態の凹部200の側部220は、第2面221の上端の位置は、第2の曲率(9.09(mm-1))を有する曲率円Ciの円周部分を第2面221に接触させた場合において、その曲率円Ciの中心Pと同じ水平位置になるよう設計されている。そのため、第2面221は、上端近傍が実質的に鉛直方向を向くように形成され、凹部200の中心方向へ反り返る形状には形成されない。その結果、細胞凝集塊Cは、後述する振動発生装置(振動発生手段、図12参照)により振動を加えた際に、凹部200から分離することができる。
 底部210の最深部に対する側部220の上端220uの垂直高さDは、第2の曲率にもよるが、0.06~0.5mmとなるよう設計されることが好ましい。側部220の上端220uの垂直高さDがこのような範囲である場合、後述する凹部200に複数の細胞凝集塊Cが担持されている場合に振動等の外力を加えたときに、これら細胞凝集塊Cが分離されて1個の細胞凝集塊Cのみが底部210に担持され、かつ、隣り合う凹部200の各々に細胞凝集塊Cが担持されている場合に1の凹部200の細胞凝集塊Cのみを吸引するために吸引チップを装着した吸引ピペットを上方より挿し入れて吸引力を発生させたときに、隣の凹部200の細胞凝集塊Cが同時に吸引されることなく、1の凹部200の細胞凝集塊Cのみが吸引される。本実施形態では、垂直高さDが0.1mmである凹部200が例示されている。以下、これらの作用効果について、図3~図5を参照しながらより具体的に説明する。
 まず、複数の細胞凝集塊が適切に分離される効果について説明する。図3は、本実施形態の凹部200の上面図である。図4は、本実施形態の凹部200の断面図である。複数の凹部200の各々は、側部220の上端220uの周縁が繋がっている。複数の凹部200の1つには、複数の細胞凝集塊と夾雑物とが担持されている。本実施形態では、一例として、1つの凹部200m(第1凹部)に、3個の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)と1個の夾雑物Cxが担持されている場合について説明する。凹部200mは、第1の曲率を有する第1面211mが形成された底部210mと、第2の曲率を有する第2面221mが形成された側部220mとを有する。細胞凝集塊Cmは、底部210mの略中心に担持されており、その周囲に細胞凝集塊Cnが担持されている。細胞凝集塊Cnは、底部210mか、底部210mと側部220mとの境界近傍に担持されている。凹部200mの側部220mの周縁と、凹部200nの側部220nの周縁とは繋がっており、尖った峰部250が形成されている。このような状態において外部に付設した振動発生装置(図示せず)を駆動してウェルプレート100に振動を与えると、細胞凝集塊Cmおよび細胞凝集塊Cnには、振動による応力が加えられる。細胞凝集塊Cmおよび細胞凝集塊Cnのうち、細胞凝集塊Cmは、比較的平坦な第1面211mにおいて底部210mの略中心に担持されているためさほど移動されないが、細胞凝集塊Cmの周囲に担持されている細胞凝集塊Cnは、側部220mを超えて移動し、隣の凹部200n(第1凹部と隣り合う第2凹部)へ分離される。この際、峰部250は尖っているため、細胞凝集塊Cnは、側部220mを超えて峰部250に差し掛かった際に、峰部250において保持されることなく、一端峰部250を越えると、隣の凹部200nの側部220nに沿って底部210nに落下する。また、夾雑物Cxは、底部210に形成された貫通孔240から落下するか、振動により加えられた応力により凹部200mの外へ分離される。なお、底部210mの略中心に担持された細胞凝集塊Cmは、振動により加えられた応力によりいくらか移動することはあるが、その移動距離は、第1面221mが形成された底部220mを出ない範囲であるか、底部220mを出たとしても側部230mに差し掛かる程度となる。そのため、細胞凝集塊Cmは、側部220mを越えるほど移動されることはなく、仮に側部220mにまで移動したとしても、側部220mに沿って底部210m方向へ落下し、再び底部210mに担持される。なお、振動等の外力を加える場合のほか、ウェルプレート200を前後、左右に傾けることにより細胞凝集塊を分離してもよい。
 また、図3に示されるように、本実施形態の複数の凹部200の各々は、上面視における開口の形状が正六角形であり、複数の凹部200は、ハニカム状に配列されている。そのため、細胞凝集塊Cnは、振動が加えられることにより、凹部200mから、容易に六方に隣接する凹部200nへ分離されやすい。また、複数の凹部200は、ハニカム状に密に配列されるため、1枚あたりのウェルプレート100に形成することのできる凹部200の数が多くなり、面積効率がよい。なお、凹部200mに細胞凝集塊Cmおよび細胞凝集塊Cnが担持されている場合において、細胞凝集塊nを分離して細胞凝集塊Cmのみを凹部200mに担持させるために必要な振動条件は、細胞凝集塊の形状、質量、細胞培養液の粘性、温度、凹部の形状等に基づいて適宜設定される。一例を挙げると、本実施形態のウェルプレート100は、上記のとおり第1の曲率が4.55(mm-1)であり、第2の曲率が6.66(mm-1)であり、凹部200の深さ(底部210の最深部から側部220の上端220uまでの垂直高さD)が0.1mmであり、凹部200の開口の最大径が0.37mmであり、径rCが0.1mmの略球形の細胞凝集塊Cが底部210に担持されている(図2参照)。また、細胞培養液Lm1の比重や粘性等を水と同程度と仮定する。この場合において、振動発生装置により振動を加える場合には振動周波数を0~200rpmとするか、ウェルプレート200を傾ける場合には、傾斜角を±5~10°程度とすることにより、凹部200mに担持された細胞凝集塊Cnを分離して、細胞凝集塊Cmのみを凹部200mに担持させることができる。
 次に、1個の細胞凝集塊のみが適切に吸引される効果について説明する。図5は、本実施形態の凹部の断面図である。複数の凹部の各々には、細胞凝集塊が担持されている。本実施形態では、一例として、1つの凹部200mの底部210mに1個の細胞凝集塊Cmが担持されており、凹部200mの隣の凹部200nの底部210nにも1個の細胞凝集塊Cnが担持されており、細胞凝集塊Cmのみを吸引する場合について説明する。
 まず、凹部200mの上方から吸引ピペット(図示せず)の吸引チップTを挿し入れて吸引すると、凹部200mに担持された吸引すべき細胞凝集塊Cmおよび細胞培養液Lm1は、吸引チップTの管状通路Tp内に吸引される。この際、液流A1が発生する。この液流A1により、凹部200nに担持されている細胞凝集塊Cnは、移動される場合がある。しかしながら、本実施形態の各々の凹部(たとえば凹部200n)には、第1の曲率を有する第1面211nが形成された底部210nと、第1の曲率よりも大きな第2の曲率を有する第2面221nが形成された側部220nとが形成されているため、細胞凝集塊Cnは、側部220nを越えるほど液流A1により移動されることはなく、側部220nに沿って落下し、再び底部210nに担持される。その結果、吸引チップTの挿し入れられた凹部200mに担持されていた細胞凝集塊Cmのみが吸引される。なお、隣り合う各々の凹部200(凹部200mおよび凹部200n)にそれぞれ1個の細胞凝集塊C(細胞凝集塊Cmおよび細胞凝集塊Cn)が担持されている場合において、隣の凹部200nに担持された細胞凝集塊Cnを吸引することなく、凹部200mに担持された細胞凝集塊Cmのみを吸引するために必要な吸引条件は、細胞凝集塊の形状、質量、細胞培養液の粘性、温度、凹部の形状等に基づいて適宜設定される。一例を挙げると、本実施形態のウェルプレート100は、上記のとおり第1の曲率が4.55(mm-1)であり、第2の曲率が6.66(mm-1)であり、凹部200の深さ(底部210の最深部から側部220の上端220uまでの垂直高さD)が0.1mmであり、凹部200の開口の最大径が0.37mmであり、径rCが0.1mmの略球形の細胞凝集塊Cが底部210に担持されている(図2参照)。また、細胞培養液Lm1の比重や粘性等を水と同程度と仮定する。この場合において、吸引チップTを装着した吸引ピペット(図示せず)を、凹部200mの真上から挿し入れて、細胞凝集塊Cmの0.15mm上方に吸引口Thを配置し、0.8μL/秒の速度で0.4μL吸引する場合、凹部200mに担持された細胞凝集塊Cmのみが吸引され、凹部200nに担持された細胞凝集塊Cnは吸引されない。
 図2に戻り、連続部230は、底部210と側部220とをなめらかに接続する部位であり、底部210と側部220との連続する箇所に形成される。連続部230の形状は特に限定されず、底部210の第1面211の外周形状により規定される。具体的には、上面視における底部210の第1面211の外周形状が円形である場合(図3参照)には、連続部230は、上面視において同じ円形となる。
 ここで、再び図4を参照し、連続部230により底部210と側部220とがなめらかに連続されることにより奏される効果について説明する。まず、底部210mに複数の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)が担持されており、凹部200mに細胞凝集塊Cmのみを残して細胞凝集塊Cnを凹部200nへ分離させる場合において、仮に底部210mと側部220mとがなめらかに接続されておらず角になる部分が存在する場合には、ウェルプレート100に振動等の外力(外部エネルギー)を加えると、該外部エネルギーを受けて底部210mから側部220mに移動した細胞凝集塊Cnは、上記角の部分に衝突する場合がある。この場合には、細胞凝集塊Cnは、衝突により、振動により得て内部に保持しているエネルギー(内部エネルギー)が損失され、側部220mを越えることができず、凹部200mから凹部200nへ分離されない場合がある。しかしながら、本実施形態の連続部230によれば、底部210と側部220とがなめらかに接続されているため、細胞凝集塊Cnは、底部210mから側部220mへ移動されやすく、かつ、内部エネルギーは失われることなく側部220を越えるために利用される。その結果、細胞凝集塊Cnは、細胞凝集塊Cmのみを残して凹部200mから凹部200nへ分離されやすい。
 なお、上記のとおり、本実施形態の複数の凹部200の各々は、上面視における開口の形状が正六角形である(図3参照)。すなわち、側部220の上端220uの形状は、上面視において正六角形である。一方、側部220の下端220dは、連続部230により底部210となめらかに接続されているため、底部210の外周形状(たとえば円形)と同じになる。そのため、上面視における側部220の形状は、下端220d側が上面視において底部210の外周形状と同じであり、上端220u側が上面視において正六角形となるよう下端220d側から上端220u側にかけて連続的に変形した形状である。図6を参照してより具体的に説明する。図6は、図2の断面位置(1)~(3)における側部220の端面形状の模式図であり、図6(a)は、図2の断面位置(1)における側部220の端面形状の模式図であり、図6(b)は、図2の断面位置(2)における側部220の端面形状の模式図であり、図6(c)は、図2の断面位置(3)における側部220の端面形状の模式図である。図6(a)に示されるように、図2において断面位置(1)における側部220の下端220dの形状S1は、底部210の外周形状と同じである。本実施形態では、底部210の外周形状が円形であり、側部220の下端220dの端面形状も円形である場合が例示されている。一方、図6(b)に示されるように、図2において断面位置(2)における側部220の中央部220cの形状は、正六角形に近似した形状ではあるものの、各頂点を結ぶ各辺はいくらか丸みを帯びた形状に変形されている。そして、図6(c)に示されるように、図2において断面位置(3)における側部220の上端220uの形状は、正六角形である。このように、側部220の形状は、上面視において下端220d側から上端220u側にかけて連続的に変形されている。そのため、細胞凝集塊Cは、振動等の外部エネルギーが加えられた場合に底部210から側部220を越えて移動する際に(特に底部210から側部220に差し掛かる連続部230近辺において)、内部エネルギーが損失されにくく、側部220を越えて分離されやすい。
 以上、本実施形態のウェルプレート100によれば、凹部200の底部210の第1面211は、第2の曲率よりも小さな第1の曲率を有しており、比較的平坦である。そのため、細胞凝集塊Cは、このような比較的平坦な底部210において安定に担持され、過度に形状が変形されることがない。また、図4を参照して上記したように、仮に底部210mに複数の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)が担持されていたり、夾雑物Cxが担持されている場合には、たとえば振動等の外力を加えることにより、細胞凝集塊Cnは、第1の曲率を有する第1面211mが形成された底部210mから、より曲率の大きな第2の曲率を有する第2面221mが形成された側部220mを通って、隣の凹部200nへ分離されやすい。その結果、凹部200mには細胞凝集塊Cmのみが担持されることとなる。また、図5を参照して上記したように、側部220nに形成された第2面221nの第2の曲率は、底部210nに形成された第1面211nの第1の曲率よりも大きいため、底部210nに担持された細胞凝集塊Cは、周囲にいくらか液流が発生したとしても、この液流によって側部220を越えて移動されることがない。具体的には、凹部200nの底部210nに担持された細胞凝集塊Cnは、たとえば隣の凹部200mに担持された細胞凝集塊Cmを吸引するために吸引チップTの吸引口Thを含む先端部Taが凹部200mの真上から挿し入れられることにより細胞培養液Lm1に液流が発生したとしても、この程度の液流によっては、側部220nを越えるほど移動されない。また、この状態から吸引チップTの管状通路Tp内に吸引力を発生させて細胞凝集塊Cmを吸引したとしても、凹部200nに担持された細胞凝集塊Cnは、液流の影響を受けにくい。その結果、本実施形態のウェルプレート100によれば、凹部200mに担持された吸引すべき細胞凝集塊Cmを吸引する際に、隣の凹部200nに担持された細胞凝集塊Cnを同時に吸引してしまうことがなく、吸引すべき細胞凝集塊Cmのみを容易に吸引して選別することができる。
(第2の実施形態)
 以下に、本発明の第2の実施形態のウェルプレート100aについて、図面を参照しながら詳細に説明する。図7は、本実施形態の凹部200aの断面図である。本実施形態のウェルプレート100aは、凹部200aの底部210aの形状が異なる以外は第1の実施形態において上記したウェルプレート100(図2参照)と同様の構成である。そのため、重複する構成については同一の参照符号を付して説明を適宜省略する。
 本実施形態の複数の凹部200aの各々は、上面110側が開口し、上面110側から下面120側に窪んだ略椀状である。より具体的には、本実施形態の複数の凹部200aの各々は、上下方向の断面において、曲率がゼロである第1面211aが形成された底部210aと、第2の曲率を有し、第1面211aと連続する第2面221が形成された側部220とを有する。底部210aと側部220とは、連続部230においてなめらかに連続している。
 底部210aは、細胞凝集塊Cが主に担持される部位であり、担持面である第1面211aを有する。第1面211aは、曲率がゼロの平坦面である。このように第1面211aは、曲率がゼロの平坦面であるため、細胞凝集塊Cは、底部210aにおいて変形されることなく、より安定に担持される。
 底部210aの中央には、上面110側から下面120側にかけてウェルプレート100aを貫通する貫通孔240が形成されている。貫通孔240の寸法、作用等については第1の実施形態において上記した寸法、作用等と同様であるため、説明を省略する。
 第1面211aの水平方向の幅d1として特に限定されず、細胞凝集塊Cを安定に担持できる幅であればよい。このような幅としては、たとえば0.1~0.5mmである。本実施形態では、第1面211aの水平方向の幅d1は、0.3mmである。
 側部220は、第2の曲率を有する湾曲面である第2面221を含み、連続部230を介して底部210aとなめらかに接続する下端220dと、周縁を備える上端220uとを有する。第2の曲率は、第1面211aの曲率(本実施形態ではゼロ)よりも大きい。このような曲率としては、凹部200aの大きさにもよるが、たとえば上面110側に形成された凹部200aの開口の最大径が0.5mmである場合、ゼロを超え、20(mm-1)以下であり、好ましくは6.66(mm-1)以上20(mm-1)以下である。この場合、曲率半径r2は、0.05mm以上0.15mm以下である。本実施形態では、開口の最大径が0.37mmである凹部200aにおいて、第2の曲率が7.69(mm-1)であり、その曲率半径r2が0.13mmである第2面221が形成された側部220が例示されている。第2面221の上端の位置や垂直高さ、側部220の形状等については第1の実施形態で上記したものと同じであるため、説明を省略する。
 以上、本実施形態のウェルプレート100aによれば、第1面211aの曲率がゼロであり、底部210aが平坦面である。そのため、細胞凝集塊Cは、平坦面を有する底部210aにおいて、より変形されにくく、より安定に担持される。また、このような平坦な底部210aに担持された細胞凝集塊Cは、たとえば外部に付設された位相差顕微鏡等の撮像装置により観察されやすい。
(第3の実施形態)
 以下に、本発明の第3の実施形態のウェルプレートについて、図面を参照しながら詳細に説明する。図8は、本実施形態のウェルプレート100bの斜視図である。図9は、本実施形態の凹部200bの断面図であり、図8においてB-Bで示された位置における断面図である。図10は、本実施形態の凹部200bの上面図である。本実施形態のウェルプレート100bは、凹部200bの側部220bの形状が異なっており、これにより凹部200bの上面形状が異なっている以外は第1の実施形態において上記したウェルプレート100(図1、図2参照)と同様の構成である。そのため、重複する構成については同一の参照符号を付して説明を適宜省略する。
 本実施形態のウェルプレート100bは、細胞凝集塊Cの担持位置に、上面110側から下面120側にかけて窪んだ形状の凹部200bが複数形成されている。複数の凹部200bの各々は、上面視における開口の形状が正方形(四角形)であり、複数の凹部200bは、マトリクス状に配列されている。複数の凹部200bは、側部220bの上端220buに周縁を備える。複数の凹部200bの各々が備える周縁は、上面視において四方に隣接する他の凹部200bの周縁とそれぞれ繋がっており、尖った峰部250bが形成されている。そのため、たとえば1の凹部200bに複数の細胞凝集塊や夾雑物が担持されている場合であっても、振動等の外力を加えることにより、これら複数の細胞凝集塊は分離されやすい。より具体的には、図10に示されるように、たとえば凹部200bmに3個の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)や夾雑物Cxが担持されている場合において、振動等の外力を加えることにより、細胞凝集塊Cnや夾雑物Cxは、凹部200bmから凹部200bmと隣り合う四方の凹部200bnに分離されやすい。その結果、凹部200bmには、細胞凝集塊Cmのみが担持されやすい。また、凹部200bmに担持された細胞凝集塊Cmは、たとえば吸引チップを装着した吸引ピペットにより吸引される際に、第1の実施形態において図5を参照して上記したと同様に、隣の凹部200nに担持された細胞凝集塊Cnとともに吸引されることがない。さらに、複数の凹部200bの各々は、マトリクス状に密に配列されているため、1枚あたりのウェルプレート100bに形成することのできる凹部200bの数が多くなり、面積効率がよい。また、隣り合う凹部(たとえば凹部200bmおよび凹部200bn)を隔てる峰部250bの一辺の長さd3は、第1の実施形態において上記した峰部250の一辺の長さd2(図3参照)よりも長い。そのため、たとえばウェルプレート100bの上方よりウェルプレート100bの上面110に落下された細胞凝集塊は、このような峰部250bに差し掛かることにより、凹部200bに落下するよう促されやすい。
 なお、上記のとおり、本実施形態の複数の凹部200bの各々は、上面視における開口の形状が正方形である。すなわち、側部220bの上端220buの形状は、上面視において正方形である。一方、側部220bの下端220bdは、第1の実施形態において上記した連続部230により底部210となめらかに接続されているため、底部210の外周形状(たとえば円形)と同じになる。そのため、側部220bの形状は、下端220bd側が上面視において底部210の外周形状と同じであり、上端220bu側が上面視において正方形となるよう下端220bd側から上端220bu側にかけて連続的に変形した形状である。図11を参照してより具体的に説明する。図11は、図9の断面位置(4)~(6)における側部220bの端面形状の模式図であり、図11(a)は、図9の断面位置(4)における側部220bの端面形状の模式図であり、図11(b)は、図9の断面位置(5)における側部220bの端面形状の模式図であり、図11(c)は、図9の断面位置(6)における側部220bの端面形状の模式図である。図11(a)に示されるように、図9において断面位置(4)における側部220bの下端220bdの形状S4は、底部210の外周形状と同じである。本実施形態では、底部210の外周形状が円形であり、側部220bの下端220bdの端面形状も円形である場合が例示されている。一方、図11(b)に示されるように、図9において断面位置(5)における側部220bの中央部220bcの形状は、正方形に近似した形状ではあるものの、各頂点を結ぶ各辺はいくらか丸みを帯びた形状に変形されている。そして、図11(c)に示されるように、図9において断面位置(6)における側部220bの上端220buの形状は、正方形である。このように、側部220bの形状が、上面視において下端220bd側から上端220bu側にかけて連続的に変形されている。そのため、細胞凝集塊Cは、振動等の外部エネルギーが加えられた場合に底部210から側部220bを越えて移動する際に(特に底部210から側部220bに差し掛かる連続部230近辺において)、内部エネルギーが損失されにくく、側部220bを越えて分離されやすい。
 以上、本実施形態のウェルプレート100bによれば、細胞凝集塊Cは、底部210において担持され、過度に形状が変形されることがない。また、図10を参照して上記したように、仮に底部210mに複数の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)が担持されていたり、夾雑物Cxが担持されている場合には、たとえば振動等の外力を加えることにより、細胞凝集塊Cnは、凹部200mから凹部200nへ分離されやすい。その結果、凹部200mには細胞凝集塊Cのみが担持されることとなる。また、本実施形態のウェルプレート100によれば、凹部200mに担持された吸引すべき細胞凝集塊Cmを吸引する際に、隣の凹部200nに細胞凝集塊Cnが担持されている場合であっても、細胞凝集塊Cnを同時に吸引してしまうことがなく、吸引すべき細胞凝集塊Cmのみを容易に吸引して選別することができる。さらに、複数の凹部200bの各々は、マトリクス状に配列されているため、1枚のウェルプレート100bあたりに形成することのできる凹部200bの数が多くなり、面積効率がよい。
(第4の実施形態)
<対象物選別装置>
 次に、本発明のウェルプレートを備える対象物選別装置について、図面を参照しながら詳細に説明する。本実施形態では、一例として第1の実施形態において上記したウェルプレート100(図1参照)を備える対象物選別装置について説明する。
 図12は、本実施形態の対象物選別装置300の構成を説明する模式図である。対象物選別装置300は、吸引される細胞凝集塊C(図3参照)を担持する凹部200を備えるウェルプレート100と、内底部311を有し上部が開口した扁平な円柱状のシャーレ310(容器)と、シャーレ310が載置されるステージ320と、ステージ320に載置されたシャーレ310内に保持されたウェルプレート100に振動を加える振動発生装置330(振動発生手段)と、ステージ320に載置されるウェルプレート100から上方に離間して配置され、凹部200に担持される細胞凝集塊Cに対して上方より照射光を照射するコンデンサ340(照射手段)と、ステージ320に載置されるウェルプレート100の下方に配置され、凹部200に担持される細胞凝集塊Cを下方より観察する撮像装置350(観察手段)と、撮像装置350に付設された表示装置351と、凹部200に担持される細胞凝集塊Cを吸引するための吸引チップ360と、吸引のための吸引力を発生させる吸引ピペット370と、吸引ピペット370を上下に移動させる移動装置380(駆動手段)とを備える。また、シャーレ310には細胞培養液Lm1が貯留されている。ウェルプレート100は、シャーレ310内の細胞培養液Lm1に浸漬されており、その下面がスペーサ130を介してシャーレ310の内底部311から離間されている。なお、コンデンサ340および撮像装置350は、それぞれ倒立位相差顕微鏡の照明系および撮像系を構成する装置である。
 ステージ320は、シャーレ310を保持する円形ホルダ(図示せず)を備える水平な扁平な板状の架台である。ステージ320には、手動または自動によりウェルプレート100を前後、左右へ移動するための位置調整機構(図示せず)が備えられている。当該位置調整機構により、ステージ320に載置されたウェルプレート100は、吸引対象となる細胞凝集塊Cが担持された凹部200の上方にコンデンサ340が配置され、下方に撮像装置350が配置されるよう位置が調整される。これにより、コンデンサ340の光源からの照射光は、吸引対象となる細胞凝集塊Cを担持する凹部200の上方より照射され、下方の撮像装置350に入射する。
 コンデンサ340は、ステージ320に載置されるウェルプレート100の上方に、ウェルプレート100と離間して配置され、凹部200に担持される細胞凝集塊Cに対して上方より照射光を照射するために設けられている。コンデンサ340は、略円筒状の筐体を備え、該筐体内に図示しない光源(ハロゲンランプ(6V30W))、コレクターレンズ、リングスリット、開口絞りおよびコンデンサレンズを含む。光源としては特に限定されず、ハロゲンランプ以外にも、たとえば、タングステンランプ、水銀ランプ、キセノンランプ、発光ダイオード(LED)等を使用することが可能である。リングスリットは、円環状の孔の開いた遮光板であり、コンデンサ340の開口絞りの位置に組み込まれている。コンデンサ340内の光源より照射された照射光は、コレクターレンズ、リングスリットの孔、開口絞り、コンデンサレンズを通過し、凹部200に担持された細胞凝集塊Cに照射され、その後、撮像装置350に入射する。
 撮像装置350は、ステージ320に載置されるシャーレ310の下方に配置され、凹部200に担持された細胞凝集塊Cを下方より観察するために設けられている。撮像装置350は、図示しない位相差用対物レンズ、対物レンズの射出絞り(レンズ光学系)、位相板、接眼レンズの視野絞り、接眼レンズ、撮像素子であるCCD(電荷結合素子 Charge Coupled Device)イメージセンサ、画像処理部および表示装置351を備える。位相板は、リング状の半透明の板状体であり、通過する光の強度を減弱させ、位相を1/4だけ遅らせる。CCDイメージセンサは、受光面に形成された光像を電気的な画像データ信号に変換する。画像処理部は、必要に応じて画像データにガンマ補正やシェーディング補正などの画像処理を施す。表示装置351は、画像処理後の画像データを表示する。ユーザは、表示装置351に表示された画像を観察する。細胞凝集塊Cによって回折された照射光は、位相差用対物レンズに入射され、結像される。このとき、大部分の照射光は位相板以外を通るため、その位相は1/4波長遅れたままとなる。直接光と回折光とが同じ位相になり、干渉により強め合う結果、細胞凝集塊Cが明るく観察される。
 本実施形態において、コンデンサ340および撮像装置350の各構成部品の配置は、ケーラー照明系となるよう調整される。すなわち、照射光に関して、光源、開口絞り、対物レンズの射出絞りが共役点に配置されており、標本の像に関して、視野絞り、細胞凝集塊C(試料)、接眼レンズの視野絞り、CCDイメージセンサの受光面が共役点になるよう配置される。ケーラー照明系では、光源の像を開口絞り位置につくり、視野絞りの像を標本面につくることにより、標本である細胞凝集塊Cをムラなく明るく照明する。また、視野絞りと開口絞りを独立して機能させることができるため、標本面の光の量や範囲を調整できる。
 吸引ピペット370は、吸引力を発生できる管状部材であり、凹部200に担持された細胞凝集塊Cを吸引するための吸引チップ360が接続される。吸引ピペット370が吸引力を発生すると、吸引チップ360の管状通路360pに吸引力が発生され、吸引口から細胞凝集塊Cが吸引されて回収される。吸引ピペット370は、移動装置380に接続して使用され、移動装置380により駆動が制御され、上下移動される。
 吸引チップ360は、L字状に屈曲した形状を有しており、先端部361が略鉛直方向となり、後端部362が側方へ延び出す横姿勢となるよう吸引ピペット370と接続される。そのため、上記したコンデンサ340および撮像装置350の各構成部品の配置が、ケーラー照明系となるよう調整される場合において、これらの配置を維持しつつ、コンデンサ340とウェルプレート100との間に先端部361とを配置することができる。その結果、移動装置380をコンデンサ340からの照射光を遮る位置に配置することなく、ウェルプレート100の斜め上方に配置することができるとともに、コンデンサ340とウェルプレート100との間の間隙に先端部361を配置させることができる。なお、コンデンサ340とウェルプレート100との間の間隙に先端部361を進入させる方法としては特に限定されず、たとえばステージ320を前後、左右方向に移動させる方法を採用することができる。
 移動装置380は、吸引ピペット370を横姿勢で接続でき、接続した吸引ピペット370を横姿勢を維持した状態で上下移動させるための装置であり、ステージ320の斜め上方に配置される。移動装置380は、吸引ピペット370が接続された本体部381と、本体部381が走行するガイド部382とを備える。本体部381は、略直方体形状の筐体内に、本体部381を上下方向に移動させることにより吸引ピペット370を上下移動させるモータ(図示せず)と、該モータを制御するコントローラ(図示せず)と、吸引ピペット370に吸引力を発生させるシリンジポンプ(図示せず)とを備える。本体部381の筐体の外側には、シリンジポンプにより吸引力が発生される吸引口であって吸引ピペット370と接続される接続口(図示せず)が形成されている。ガイド部382には直線歯車(ラック)が設けられており、本体部381には、円形歯車(ピニオン)が設けられている。コントローラにより制御されたモータが駆動されることにより、本体部381はガイド部382を走行する。なお、モータは、本体部381を上下移動させる以外に、たとえば撮像装置350の対物レンズの被写界深度内に吸引チップ360の吸引口が捉えられるよう本体部381を前後、左右方向にも移動させて、吸引装置の較正(キャリブレーション)を行うことができる。較正は、吸引チップ360の交換時や、装置立ち上げ時等に適宜行われる。
 次に、本実施形態の対象物選別装置300を用いて細胞凝集塊Cを選別する方法について具体的に説明する。
 まず、ウェルプレート100の上方より、たとえば細胞凝集塊Cや夾雑物Cx(図3参照)を含む細胞培養液Lm2が滴下される。細胞培養液Lm2の滴下は、吸引チップTaを装着した吸引ピペットPaにより行うことができる。滴下された細胞培養液Lm2に含まれる細胞凝集塊Cや夾雑物Cxは、ウェルプレート100の凹部200に担持される。凹部200の担持位置に担持された細胞凝集塊Cや夾雑物Cxは、撮像装置350により観察され、表示装置351に表示される。
 このとき、図3に示されるように、1個の凹部200mに、複数の細胞凝集塊(細胞凝集塊Cmおよび細胞凝集塊Cn)や夾雑物Cxが担持される場合がある。そこで、本実施形態の対象物選別装置300は、このような場合に、ステージ320に載置されたシャーレ310内に保持されたウェルプレート100に振動を加える振動発生装置330により振動を発生させて、1個の細胞凝集塊Cmのみが凹部200mに担持されるように細胞凝集塊Cnや夾雑物Cxを分離する。具体的には、第1の実施形態において図4を参照して上記したとおり、振動発生装置330によりウェルプレート100に振動が加えられると、細胞凝集塊Cnは、底部210mから側部220mを通って、凹部200mの外(たとえば隣の凹部200n)へ分離される。なお、夾雑物Cxは、凹部200mの貫通孔240から、シャーレの内底部311に落下する。その結果、凹部200mには1個の細胞凝集塊Cmのみが担持される。
 凹部200に1個の細胞凝集塊C(細胞凝集塊Cm)が担持されたことが撮像装置350およびこれに付設された表示装置351により確認されると、細胞凝集塊Cは、吸引チップ360を備えた吸引ピペット370により吸引される。具体的には、本体部381の下方向への移動により、細胞凝集塊Cが担持された凹部200に、吸引チップ360が下方向へ挿入されて、吸引口363が細胞凝集塊Cに近づけられる。細胞凝集塊Cの位置と吸引口363の位置とは撮像装置350の表示装置351に表示されるため、吸引口363は、位置が確認されながら正確に細胞凝集塊Cに近づけられる。コンデンサ340からの照射光は、先端部361以外に遮られることがないため、細胞凝集塊Cは充分な照射光の下で観察される。
 その後、対象物選別装置300は、移動装置380のシリンジポンプ(図示せず)を駆動させ、吸引チップ360の管状通路360p内に吸引力を発生させて、吸引口363から細胞凝集塊Cを吸引する。このとき、第1の実施形態において図5を参照しながら上記したとおり、吸引すべき細胞凝集塊Cmが担持された凹部200mと隣り合う凹部200nにも細胞凝集塊Cnが担持されている場合がある。しかしながら、細胞凝集塊Cmを吸引するために液流A1を発生させたとしても、凹部200nの細胞凝集塊Cnが同時に吸引されることがなく、吸引すべき細胞凝集塊Cmのみが吸引される。また、表示装置351には、凹部200mの状況(細胞凝集塊Cmの有無)が表示されるため、回収の成否が容易に判別できる。
 最後に、対象物選別装置300は、本体部381を上方向へ移動させ、凹部200から先端部361を引き上げる。対象物選別装置300は、吸引した細胞凝集塊C(細胞凝集塊Cm)を、ウェルプレート100と同じステージ320上に隣接された回収用プレート(図示せず)に吐出し、選別を完了する。
 以上、本実施形態の対象物選別装置300によれば、振動発生装置330によりステージ320に載置されたシャーレ310内のウェルプレート100に振動を加えることができ、仮にウェルプレート100の凹部200の底部210に複数の細胞凝集塊Cが担持されていたり、細胞凝集塊C以外の夾雑物Cxも担持されている場合であっても、凹部200の担持位置に1個の細胞凝集塊Cのみが担持されるようこれらを分離することができる。また、吸引チップ360が装着された吸引ピペット370により凹部200に担持された1個の細胞凝集塊Cを吸引する際に、仮に隣の凹部200にも細胞凝集塊Cが担持されている場合であっても、細胞凝集塊Cを吸引するために液流を発生させたとしても、隣の凹部200の細胞凝集塊Cが同時に吸引されることがなく、吸引すべき細胞凝集塊Cのみが吸引される。その結果、本実施形態の対象物選別装置300によれば、目的とする1個の細胞凝集塊Cのみを適切に選別することができる。
 以上、本発明の実施形態を説明したが、本発明はこれに限定されるものではなく、たとえば次のような変形実施形態を採用することができる。
 (1)上記実施形態では、凹部に担持される対象物として細胞凝集塊を例示した。本発明は、これに代えて、錠剤、カプセル、造粒された顆粒等や、バイオ関連技術や医薬の分野で使用される生体由来の細胞等を対象物としてもよい。
 なお、本発明では、生体由来の細胞を対象物とすることが好ましく、生体由来の細胞凝集塊を対象物とすることがより好ましい。すなわち、従来のウェルプレート(プラテン)に担持された細胞等は、貫通孔の形状に沿って変形されやすく、性状が変化する場合がある。また、担持された細胞が貫通孔に強固に嵌まり込むことがあり、吸引等により無理に回収する場合に、損傷する場合がある。さらに、1個の貫通孔に複数の細胞が嵌まり込む場合もあり、このような場合には、たとえば振動等の外力を加えたとしても容易に分離されず、適切に1個の細胞を回収することが困難である。しかしながら、本発明のウェルプレートによれば、担持された細胞が変形されにくく、仮に複数の細胞が担持された場合であっても、振動等の外力を加えることにより容易に分離することができ、性状を変化させたり損傷させることなく回収することができる。その結果、細胞が正確に計量され、各種実験等において信頼性の高い結果が得られる。
 また、生体由来の細胞凝集塊は、1個の細胞を用いて得た試験結果よりも、細胞凝集塊の内部に各細胞間の相互作用を考慮した生体類似環境が再構築されており、個々の細胞の機能を考慮した結果が得られ、かつ、実験条件を、より生体内における環境に即した条件に揃えることができるため、再生医療分野や抗がん剤等の医薬品の開発分野において重要とされている。細胞凝集塊の具体例としては、たとえば、BxPC-3(ヒト膵臓腺癌細胞)、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等が挙げられる。一般にこのような細胞凝集塊は、個々の細胞が数個~数十万個凝集して形成されている。本発明のウェルプレートによれば、担持された細胞凝集塊が変形されにくく、仮に複数の細胞凝集塊が担持された場合であっても、振動等の外力を加えることにより容易に分離することができ、性状を変化させたり損傷させることなく回収することができる。その結果、細胞凝集塊が正確に計量されるため、バイオ関連技術や医薬の分野(再生医療分野や抗がん剤等の医薬品の開発分野を含む)において信頼性の高い結果が得られる。
 (2)上記実施形態では、細胞凝集塊が細胞培養液に保持される場合を例示した。これに代えて、本発明のウェルプレートは、細胞凝集塊を保持する液体として、細胞凝集塊の性状を劣化させないものを適宜使用することができる。代表的な液体としては、たとえば基本培地、合成培地、イーグル培地、RPMI培地、フィッシャー培地、ハム培地、MCDB培地、血清などの培地のほか、冷凍保存前に添加するグリセロール、セルバンカー(十慈フィールド(株)製)等の細胞凍結液、ホルマリン、蛍光染色のための試薬、抗体、精製水、生理食塩水などを挙げることができる。また、細胞凝集塊に合わせた培養保存液を用いることができる。たとえば、細胞凝集塊がBxPC-3(ヒト膵臓腺癌細胞)である場合には、RPMI-1640培地に牛胎児血清FBS(Fetal Bovine Serum)を10%混ぜたものに、必要に応じて抗生物質、ピルビン酸ナトリウムなどのサプリメントを添加したものを用いることができる。
 (3)上記実施形態では、底部に貫通孔が形成された凹部を例示した。これに代えて、本発明のウェルプレートは、貫通孔は必須ではない。すなわち、細胞凝集塊を含む細胞培養液に細胞凝集塊よりも径の小さな夾雑物が含まれる場合であっても、これら夾雑物は、たとえばフィルターろ過等の処理を行うことにより予め除去することができる。
 (4)上記実施形態では、複数の凹部の各々が側部の上端の周縁が繋がっており、峰部が形成される場合を例示した。これに代えて、本発明のウェルプレートは、峰部は必須ではない。図13は、第1の実施形態の変形例のウェルプレート100cを説明するための断面図である。なお、ウェルプレート100cの凹部は、第1の実施形態において上記した凹部200と同様の構成であるため、同一の参照符号を付し、説明は適宜省略する。本変形例のウェルプレート100cは、隣り合う凹部200の側部220の上端220uの周縁が繋がっておらず、隣り合う凹部200を隔てる壁部260が形成されている。この場合、たとえば壁部260の上面110aに細胞凝集塊Cが一時的に保持される場合がある。細胞凝集塊Caは、壁部260の上面110aに保持された細胞凝集塊を示している。しかしながら、このような細胞凝集塊Caは、たとえば振動等の外力を加えることにより容易に凹部200の底部210に落下させることができる。
 (5)上記実施形態では、複数の凹部の各々の側部の上端が、隣り合う凹部の側部の上端と繋がっており、かつ、図6(a)~図6(c)や図11(a)~図11(c)を参照しながら説明したように、側部の形状は下端側から上端側にかけて連続的に変形し、上端において上面視における凹部の開口の形状が正六角形や正方形となるよう形成されている場合を例示した。本発明のウェルプレートは、これに代えて、上端における上面視の形状が、正六角形や正方形に形成される必要はなく、たとえば図6(b)を参照して説明したような正六角形に近似した丸みを帯びた形状でもよく、図11(b)を参照して説明したような正方形に近似した丸みを帯びた形状であってもよい。
 (6)上記実施形態では、底部の全域において、曲率がゼロまたは第1の曲率を有する第1面が形成され、側部の全域において第2の曲率を有する第2面が形成された凹部を例示した。これに代えて、本発明は、底部の少なくとも一部に曲率がゼロまたは第1の曲率を有する第1面が形成され、側部の少なくとも一部に第2の曲率を有する第2面が形成されていてもよい。
 (7)上記実施形態(第4の実施形態)では、対象物選別装置が、ウェルプレートに外力を加えるための装置として振動発生装置を含む場合について例示した。これに代えて、本発明は、ウェルプレートに外力を加えるための装置として、傾斜装置(たとえばロッキングミキサーRM-80 アズワン(株)製)を含んでもよい。傾斜装置によれば、ウェルプレートを傾斜させることにより、凹部に担持された細胞凝集塊を分離や分散することができる。
 上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面によるウェルプレートは、液体中に保持された対象物を担持位置に担持するウェルプレートであって、上面と、下面と、前記担持位置に形成された複数の凹部とを有し、前記複数の凹部の各々は、前記上面側が開口し、該上面側から前記下面側に窪んだ形状であり、上下方向の断面において、曲率がゼロであるかまたは第1の曲率を有する第1面が形成され、前記対象物が担持される底部と、前記第1の曲率よりも大きな第2の曲率を有し、前記第1面と連続する第2面が形成された側部と、を有することを特徴とする。
 このように、本発明のウェルプレートは、担持位置に形成された複数の凹部を有する。複数の凹部の各々は、上面側が開口し、上面側から下面側に窪んだ形状であり、上下方向の断面において、曲率がゼロであるかまたは第1の曲率を有する第1面が形成され、対象物が担持される底部を有する。また、凹部は、第1の曲率よりも大きな第2の曲率を有し、第1面と連続する第2面が形成された側部を有する。そのため、底部は、曲率がゼロであるかまたは第2の曲率よりも小さな第1の曲率を有しており、比較的平坦である。そのため、対象物は、このような比較的平坦な底部において担持され、過度に形状が変形されることがない。また、仮に底部に複数の対象物が担持されていたり、対象物以外の夾雑物も担持されている場合には、たとえば振動等の外力を加えることにより、対象物は、振動により加えられた応力によって、第1の曲率を有する第1面が形成された底部から、より曲率の大きな第2の曲率を有する第2面が形成された側部を通って、元の凹部の外へ分離されやすい。その結果、元の凹部には1個の対象物が担持されることとなる。また、第2面の第2の曲率は、第1面の第1の曲率よりも大きいため、底部に担持された対象物は、周囲にいくらか液流が発生したとしても、この液流によって側部を越えて移動することがない。具体的には、底部に担持された対象物は、たとえば吸引時に吸引ピペットの吸引チップの吸引口が接近させられることにより周囲に液流が発生したとしても、この程度の液流によっては第2面の形成された側部を越えるほど移動されない。同様に、たとえば複数の凹部が隣り合っており、それぞれの凹部の底部に対象物が担持されている場合において、1の凹部に担持された対象物を吸引ピペットにより吸引するため吸引力を発生させたとしても、他の凹部に担持された対象物は、吸引動作によって生じる液流の影響を受けにくい。すなわち、1の凹部に担持された対象物を吸引する際に、隣の凹部に担持された対象物を同時に吸引してしまうことがない。したがって、対象物は、1個だけが容易に回収される。
 上記構成において、前記複数の凹部の各々の前記側部は、その上端に周縁を備え、前記複数の凹部は、第1凹部と、該第1凹部と隣り合う第2凹部とを含み、前記第1凹部と前記第2凹部とは、互いの前記周縁が繋がっていることが好ましい。
 このような構成によれば、第1凹部と第2凹部とは、互いの周縁が繋がっている。そのため、仮に第1凹部の底部に複数の対象物が担持されていたり、対象物以外の夾雑物が担持されている場合であっても、たとえば振動等の外力を加えることにより、対象物は、第1凹部の担持位置から外れ、容易に第2凹部へ分離されやすい。具体的には、このように第1凹部と第2凹部との互いの周縁が繋がっている場合、第1凹部と第2凹部との間には、これらを隔てる峰部が形成される。峰部は比較的尖った形状であるため、たとえば振動等の外力を加えることにより第1凹部の担持位置から外れた対象物は、峰部をわずかに超えさえすれば、あとは第2凹部の側面に沿って担持位置まで落下しやすい。その結果、対象物は、第1凹部から第2凹部へ分離されやすい。
 上記構成において、前記複数の凹部の各々の前記側部は、その上端に周縁を備え、前記複数の凹部の各々は、上面視における前記開口の形状が四角形であり、前記複数の凹部は、マトリクス状に配列されており、前記周縁が繋がっていることが好ましい。
 このような構成によれば、複数の凹部の各々は、上面視における開口の形状が四角形であり、複数の凹部は、マトリクス状に配列されており、周縁が繋がっている。そのため、仮に1つ凹部の底部に複数の対象物が担持されていたり、対象物以外の夾雑物が担持されている場合であっても、たとえば振動等の外力を加えることにより、対象物は、元の担持位置から外れ、容易に四方に隣接する他の凹部へ分離されやすい。また、ウェルプレート1枚あたりに形成することのできる凹部の数が多く、面積効率がよい。
 上記構成において、前記複数の凹部の各々の前記側部は、その上端に周縁を備え、前記複数の凹部の各々は、上面視における前記開口の形状が正六角形であり、前記複数の凹部は、ハニカム状に配列されており、前記周縁が繋がっていることが好ましい。
 このような構成によれば、複数の凹部の各々は、上面視における開口の形状が正六角形であり、複数の凹部は、ハニカム状に配列されており、周縁が繋がっている。そのため、仮に1つ凹部の底部に複数の対象物が担持されていたり、対象物以外の夾雑物が担持されている場合であっても、たとえば振動等の外力を加えることにより、対象物は、元の担持位置から外れ、特に容易に六方に隣接する他の凹部へ分離されやすい。また、凹部の上面視の形状が正六角形であり、比較的円形に近い形状であるため、対象物は、凹部の側部と密着しにくく、かつ、変形されにくい。また、ウェルプレート1枚あたりに形成することのできる凹部の数が多く、面積効率がよい。
 上記構成において、前記複数の凹部の前記底部に、前記上面側から前記下面側にかけて、前記対象物の径よりも小さな径の貫通孔が形成されていることが好ましい。
 このような構成によれば、複数の凹部の底部に、上面側から下面側にかけて、対象物の径よりも小さな径の貫通孔が形成されている。そのため、貫通孔よりも径の小さな夾雑物が含まれる場合には、夾雑物は、この貫通孔から落下して除去される。また、貫通孔の径は対象物よりも小さいため、対象物は、貫通孔に嵌まり込みにくく、変形しにくい。
 上記構成において、前記対象物が、生体由来の細胞であることが好ましい。
 この構成によれば、対象物が生体由来の細胞である。そのため、本発明のウェルプレートを使用して適切に分離された細胞は、バイオ関連技術や医薬の分野において利用し得る。
 上記構成において、前記対象物が、生体由来の細胞凝集塊であることが好ましい。
 生体由来の細胞凝集塊は、1個の細胞を用いて得た試験結果よりも、細胞凝集塊の内部に各細胞間の相互作用を考慮した生体類似環境が再構築されており、個々の細胞の機能を考慮した結果が得られ、かつ、実験条件を、より生体内における環境に即した条件に揃えることができるため、再生医療分野や抗がん剤等の医薬品の開発分野において重要とされている。そのため、本発明のウェルプレートを使用して適切に分離された細胞凝集塊は、バイオ関連技術や医薬の分野(再生医療分野や抗がん剤等の医薬品の開発分野を含む)において利用し得る。
 本発明の他の一局面による対象物選別装置は、上記ウェルプレートと、該ウェルプレートを振動させる振動発生手段とを含むことを特徴とする。
 このような構成によれば、対象物選別装置は、振動発生手段によりウェルプレートに振動を加えることができ、仮にウェルプレートの凹部の底部に複数の対象物が担持されていたり、対象物以外の夾雑物も担持されている場合であっても、凹部の担持位置に1個の対象物が担持されるようこれらを分離することができる。

Claims (8)

  1.  液体中に保持された対象物を担持位置に担持するウェルプレートであって、
     上面と、下面と、前記担持位置に形成された複数の凹部とを有し、
     前記複数の凹部の各々は、前記上面側が開口し、該上面側から前記下面側に窪んだ形状であり、上下方向の断面において、
      曲率がゼロであるかまたは第1の曲率を有する第1面が形成され、前記対象物が担持される底部と、
      前記第1の曲率よりも大きな第2の曲率を有し、前記第1面と連続する第2面が形成された側部と、を有するウェルプレート。
  2.  前記複数の凹部の各々の前記側部は、その上端に周縁を備え、
     前記複数の凹部は、第1凹部と、該第1凹部と隣り合う第2凹部とを含み、
     前記第1凹部と前記第2凹部とは、互いの前記周縁が繋がっている、請求項1記載のウェルプレート。
  3.  前記複数の凹部の各々の前記側部は、その上端に周縁を備え、
     前記複数の凹部の各々は、上面視における前記開口の形状が四角形であり、
     前記複数の凹部は、マトリクス状に配列されており、前記周縁が繋がっている、請求項1記載のウェルプレート。
  4.  前記複数の凹部の各々の前記側部は、その上端に周縁を備え、
     前記複数の凹部の各々は、上面視における前記開口の形状が正六角形であり、
     前記複数の凹部は、ハニカム状に配列されており、前記周縁が繋がっている、請求項1記載のウェルプレート。
  5.  前記複数の凹部の各々の前記底部に、前記上面側から前記下面側にかけて、前記対象物の径よりも小さな径の貫通孔が形成されている、請求項1~4のいずれか1項に記載のウェルプレート。
  6.  前記対象物が、生体由来の細胞である、請求項1~5のいずれか1項に記載のウェルプレート。
  7.  前記対象物が、生体由来の細胞凝集塊である、請求項6記載のウェルプレート。
  8.  請求項1~7のいずれか1項に記載のウェルプレートと、該ウェルプレートを振動させる振動発生手段とを含む、対象物選別装置。
PCT/JP2013/007330 2013-12-12 2013-12-12 ウェルプレート、該ウェルプレートを備えた対象物選別装置 WO2015087369A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/102,787 US20160312164A1 (en) 2013-12-12 2013-12-12 Well plate and subject selection device provided with well plate
JP2015552206A JPWO2015087369A1 (ja) 2013-12-12 2013-12-12 ウェルプレート、該ウェルプレートを備えた対象物選別装置
PCT/JP2013/007330 WO2015087369A1 (ja) 2013-12-12 2013-12-12 ウェルプレート、該ウェルプレートを備えた対象物選別装置
EP13898961.1A EP3081627A4 (en) 2013-12-12 2013-12-12 Well plate and subject selection device provided with well plate
CN201380081527.5A CN105814185A (zh) 2013-12-12 2013-12-12 孔板以及具备该孔板的对象物分选装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/007330 WO2015087369A1 (ja) 2013-12-12 2013-12-12 ウェルプレート、該ウェルプレートを備えた対象物選別装置

Publications (1)

Publication Number Publication Date
WO2015087369A1 true WO2015087369A1 (ja) 2015-06-18

Family

ID=53370718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007330 WO2015087369A1 (ja) 2013-12-12 2013-12-12 ウェルプレート、該ウェルプレートを備えた対象物選別装置

Country Status (5)

Country Link
US (1) US20160312164A1 (ja)
EP (1) EP3081627A4 (ja)
JP (1) JPWO2015087369A1 (ja)
CN (1) CN105814185A (ja)
WO (1) WO2015087369A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179163B1 (en) * 2016-07-01 2017-12-18 Esco Medical Uab An apparatus for the combined incubation and vitrification of a biological material
WO2018037788A1 (ja) * 2016-08-23 2018-03-01 ソニー株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法
WO2018061973A1 (ja) * 2016-09-29 2018-04-05 東京応化工業株式会社 微粒子の回収方法及び回収システム
JP2018085978A (ja) * 2016-11-30 2018-06-07 旭硝子株式会社 培養容器
JP2018134026A (ja) * 2017-02-21 2018-08-30 東ソー株式会社 細胞保持方法
WO2020080453A1 (ja) * 2018-10-20 2020-04-23 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
JP2020526216A (ja) * 2017-07-14 2020-08-31 コーニング インコーポレイテッド 多孔性支持体を有する細胞培養槽
JP2021512633A (ja) * 2018-02-09 2021-05-20 グローバル・ライフ・サイエンシズ・ソリューションズ・ユーエスエー・エルエルシー 細胞療法のためのバイオプロセッシング方法
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11920119B2 (en) 2018-02-09 2024-03-05 Global Life Sciences Solutions Usa Llc Systems and methods for bioprocessing
US11932842B2 (en) 2018-02-09 2024-03-19 Global Life Sciences Solutions Usa Llc Bioprocessing apparatus
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
JP6930914B2 (ja) 2014-10-29 2021-09-01 コーニング インコーポレイテッド 灌流バイオリアクタ・プラットフォーム
WO2019014610A1 (en) 2017-07-14 2019-01-17 Corning Incorporated CELL CULTURE CONTAINER FOR 3D CULTURE AND METHODS OF CULTURING 3D CELLS

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
JP2005506083A (ja) * 2001-10-25 2005-03-03 バル−イラン ユニバーシティ 相互作用型透明個別細胞バイオチッププロセッサー
JP2005148048A (ja) * 2003-04-25 2005-06-09 Jsr Corp バイオチップおよびバイオチップキットならびにその製造方法および使用方法
JP2006109715A (ja) * 2004-10-12 2006-04-27 Chuo Seiki Kk ウェルプレートおよび細胞培養器具
JP2006345807A (ja) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd 反応チップ
JP2009504161A (ja) 2005-08-11 2009-02-05 バイオトローブ インコーポレイティッド アッセイ、合成及び保管のための装置、並びにその製造法、使用法及び操作法
US20090298116A1 (en) * 2008-05-30 2009-12-03 Ye Fang Cell culture apparatus having different micro-well topography
WO2010107497A2 (en) * 2009-03-18 2010-09-23 The Regents Of The University Of California Honeycomb shrink wells for stem cell culture
JP2012157267A (ja) * 2011-01-31 2012-08-23 Hitachi Maxell Ltd 微細パターンを有するプレート部材
WO2013093954A1 (ja) * 2011-12-19 2013-06-27 ヤマハ発動機株式会社 対象物選別装置および対象物選別方法
WO2013108293A1 (ja) * 2012-01-19 2013-07-25 ヤマハ発動機株式会社 ウェルプレートおよび該ウェルプレートを備えた吸引装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006001514U1 (de) * 2006-02-01 2006-04-06 Berthold Technologies Gmbh & Co. Kg Mischvorrichtung
KR20130058954A (ko) * 2011-11-28 2013-06-05 삼성전기주식회사 배양 용기 및 이의 시료 주입 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
JP2005506083A (ja) * 2001-10-25 2005-03-03 バル−イラン ユニバーシティ 相互作用型透明個別細胞バイオチッププロセッサー
JP2005148048A (ja) * 2003-04-25 2005-06-09 Jsr Corp バイオチップおよびバイオチップキットならびにその製造方法および使用方法
JP2006109715A (ja) * 2004-10-12 2006-04-27 Chuo Seiki Kk ウェルプレートおよび細胞培養器具
JP2006345807A (ja) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd 反応チップ
JP2009504161A (ja) 2005-08-11 2009-02-05 バイオトローブ インコーポレイティッド アッセイ、合成及び保管のための装置、並びにその製造法、使用法及び操作法
US20090298116A1 (en) * 2008-05-30 2009-12-03 Ye Fang Cell culture apparatus having different micro-well topography
WO2010107497A2 (en) * 2009-03-18 2010-09-23 The Regents Of The University Of California Honeycomb shrink wells for stem cell culture
JP2012157267A (ja) * 2011-01-31 2012-08-23 Hitachi Maxell Ltd 微細パターンを有するプレート部材
WO2013093954A1 (ja) * 2011-12-19 2013-06-27 ヤマハ発動機株式会社 対象物選別装置および対象物選別方法
WO2013108293A1 (ja) * 2012-01-19 2013-07-25 ヤマハ発動機株式会社 ウェルプレートおよび該ウェルプレートを備えた吸引装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081627A4

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert
DK201600392A1 (en) * 2016-07-01 2017-12-18 Esco Medical Uab An apparatus for the combined incubation and vitrification of a biological material
DK179163B1 (en) * 2016-07-01 2017-12-18 Esco Medical Uab An apparatus for the combined incubation and vitrification of a biological material
JPWO2018037788A1 (ja) * 2016-08-23 2019-07-18 ソニー株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法
WO2018037788A1 (ja) * 2016-08-23 2018-03-01 ソニー株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法
JP7006600B2 (ja) 2016-08-23 2022-02-10 ソニーグループ株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法
JPWO2018061973A1 (ja) * 2016-09-29 2019-06-24 東京応化工業株式会社 微粒子の回収方法及び回収システム
US11834642B2 (en) 2016-09-29 2023-12-05 Tokyo Ohka Kogyo Co., Ltd. Collection method for fine particles and collection system
WO2018061973A1 (ja) * 2016-09-29 2018-04-05 東京応化工業株式会社 微粒子の回収方法及び回収システム
KR20190055096A (ko) * 2016-09-29 2019-05-22 도쿄 오카 고교 가부시키가이샤 미립자의 회수 방법 및 회수 시스템
KR102405240B1 (ko) * 2016-09-29 2022-06-07 도쿄 오카 고교 가부시키가이샤 미립자의 회수 방법 및 회수 시스템
JP2018085978A (ja) * 2016-11-30 2018-06-07 旭硝子株式会社 培養容器
JP2018134026A (ja) * 2017-02-21 2018-08-30 東ソー株式会社 細胞保持方法
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
JP2020526216A (ja) * 2017-07-14 2020-08-31 コーニング インコーポレイテッド 多孔性支持体を有する細胞培養槽
JP7197557B2 (ja) 2017-07-14 2022-12-27 コーニング インコーポレイテッド 多孔性支持体を有する細胞培養槽
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
JP2021512633A (ja) * 2018-02-09 2021-05-20 グローバル・ライフ・サイエンシズ・ソリューションズ・ユーエスエー・エルエルシー 細胞療法のためのバイオプロセッシング方法
US11920119B2 (en) 2018-02-09 2024-03-05 Global Life Sciences Solutions Usa Llc Systems and methods for bioprocessing
US11932842B2 (en) 2018-02-09 2024-03-19 Global Life Sciences Solutions Usa Llc Bioprocessing apparatus
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
JP7271903B2 (ja) 2018-10-20 2023-05-12 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
JP2020065444A (ja) * 2018-10-20 2020-04-30 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
WO2020080453A1 (ja) * 2018-10-20 2020-04-23 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器

Also Published As

Publication number Publication date
EP3081627A1 (en) 2016-10-19
JPWO2015087369A1 (ja) 2017-03-16
CN105814185A (zh) 2016-07-27
EP3081627A4 (en) 2017-01-25
US20160312164A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
WO2015087369A1 (ja) ウェルプレート、該ウェルプレートを備えた対象物選別装置
US10232364B2 (en) Aspiration tip
KR101660784B1 (ko) 대상물 선별 장치 및 대상물 선별 방법
US20150072405A1 (en) Well plate and suction device provided with well plate
CN108026499B (zh) 用于繁殖微组织的装置
JP6126242B2 (ja) プレート構造体および該プレート構造体を含む対象物選別装置
EP2796538B1 (en) Object selecting device and object selecting method
JP5902319B2 (ja) 対象物回収装置
US20100308945A1 (en) Method of Positioning an Organic, Biological and/or Medical Specimen
JP5702002B2 (ja) 吸引装置
JP5897733B2 (ja) 吸引チップ、該吸引チップを用いた対象物観察装置ならびに対象物観察方法
JP7403549B2 (ja) 細胞検出装置および細胞検出方法
WO2021127576A1 (en) Methods of penning micro-objects using positive dielectrophoresis
KR20220069460A (ko) 미세입자의 분석방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552206

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013898961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898961

Country of ref document: EP