WO2015086873A1 - Dispositivo de electroterapia - Google Patents

Dispositivo de electroterapia Download PDF

Info

Publication number
WO2015086873A1
WO2015086873A1 PCT/ES2014/070878 ES2014070878W WO2015086873A1 WO 2015086873 A1 WO2015086873 A1 WO 2015086873A1 ES 2014070878 W ES2014070878 W ES 2014070878W WO 2015086873 A1 WO2015086873 A1 WO 2015086873A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
active
electrodes
electrode
active electrodes
Prior art date
Application number
PCT/ES2014/070878
Other languages
English (en)
French (fr)
Inventor
Xavier Rami Murillo
Original Assignee
Indiba, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indiba, S.A. filed Critical Indiba, S.A.
Priority to US15/100,051 priority Critical patent/US20170001004A1/en
Priority to ES14869518T priority patent/ES2897680T3/es
Priority to CN201480063516.9A priority patent/CN105744984B/zh
Priority to LTEPPCT/ES2014/070878T priority patent/LT3081256T/lt
Priority to BR112016011173-7A priority patent/BR112016011173B1/pt
Priority to PL14869518T priority patent/PL3081256T3/pl
Priority to SI201431916T priority patent/SI3081256T1/sl
Priority to RU2016118032A priority patent/RU2668198C1/ru
Priority to AU2014363371A priority patent/AU2014363371B2/en
Priority to MX2016006525A priority patent/MX359036B/es
Priority to JP2016533698A priority patent/JP6310080B2/ja
Priority to HRP20211741TT priority patent/HRP20211741T1/hr
Priority to EP14869518.2A priority patent/EP3081256B1/en
Priority to RS20211454A priority patent/RS62680B1/sr
Priority to NZ719996A priority patent/NZ719996B2/en
Publication of WO2015086873A1 publication Critical patent/WO2015086873A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters

Definitions

  • the present invention refers to an electrotherapy device applicable to living tissues, said electrotherapy being a moderate diathermy produced by radiofrequency (RF) electrical currents applied by contact electrodes.
  • RF radiofrequency
  • the neurologically active vascularized points are related to a stretch of the connective tissue of the hypodermis that leads the vasculonervious elements with cutaneous destination. 42% of the neurologically active vascularized points are located on known nerves or very close to them. Others are located on or near major blood vessels (18% on the arteries and 40% on the veins). These blood vessels are wrapped in small nerve bundles forming the nervi vasorum. The nature of these nerve bundles that are below the neurologically active vascularized point is diverse: cutaneous bundles (which are purely sensitive or sensitive and sympathetic), vascular bundles (mixture of sympathetic and sensory) or muscle bundles (mixture of sensory and motor).
  • the production of afferent influence on the peripheral nerves is essential for pain control with electric currents;
  • the ideal place for the application of a current is the point where the cutaneous nerve penetrates the fascia.
  • the same assessment can also be made with respect to the motor points, which they present the common anatomical characteristic of being the points where the nerve penetrates the muscle.
  • Diathermy is a technique that uses high frequency currents (greater than 100 kHz) applied by means of an electrode to produce local heating in the cellular tissues of certain parts of the body affected, for example, by ailments. These diathermy devices produce tissue heating but do not produce electrostimulation.
  • diathermy equipment increases the temperature of internal tissues by passing currents that can reach 3 A.
  • PWM pulse width modulation
  • the temperature increase of living tissue by diathermy is achieved by transmitting energy to it by two methods: by induced currents (electrodes without contact with the tissue) or by conducted currents (electrodes in contact with the tissue).
  • electrotherapy devices that operate with RF currents over 100 kHz, such as diathermy equipment, do not produce electrostimulation of nerves.
  • the frequency of the signal applied in the Contactless coupling method must be much higher than the frequency of the signal applied in the contact coupling method, in fact, these frequencies are greater than 100 kHz. More details on the effect of electric currents on humans and animals have already been studied and are regulated by IEC 60479 standards.
  • the treatment of the neurologically active vascularized points is carried out by means of currents of the order of milliamps for several minutes and with the static electrode active and in contact on the neurologically active vascularized point.
  • Current conduction diathermy equipment has an active electrode and a return electrode, as disclosed, for example, in Patents ES 287 964 and EP 0 893 140.
  • These devices are intended for therapeutic treatment of certain affected areas.
  • One of The differences of these devices with the present invention lies in the functionality that the present invention discloses for the simultaneous treatment of multiple zones, being able to use different parameters of, for example, voltage, current and / or frequency in each of the zones .
  • Documents ES1030072 and ES2304272 disclose particular embodiments of diathermy devices comprising pairs of electrodes connected to independent generators.
  • treatment of the neurologically active vascularized points with such a device would require a pair of electrodes to be provided for each of the neurologically active vascularized points. This fact would not only have the difficulty of arranging the active electrode at each neurologically active vascularized point but also, it would be necessary to determine exactly where each of the return electrodes should be arranged.
  • the present invention discloses a device that performs moderate diathermy therapies by means of at least two active electrodes and a return electrode, the amplitude, frequency and phase of each of the generators connected to each one being monitored and / or varied. of the active electrodes.
  • the electrodes of the present invention may preferably be skin electrodes, divided into active electrodes and return electrodes.
  • the return electrodes may preferably be a single ring-shaped plate, also called neutral electrodes where the return plate allows the return of the ions to the active electrode.
  • the active electrodes may preferably be surfaces of superficial cutaneous application in the form of a disc, although active electrodes in the form of needles are also possible, which penetrate the skin tissue.
  • the active electrodes can be differentiated into two types according to their uses: the capacitive electrode, which is ideal for superficial and vascularized tissue and the resistive electrode, which is suitable for thick, fatty and fibrotic tissue.
  • the active electrodes are conductive electrodes without insulating layer.
  • the present invention discloses an electrotherapy device comprising:
  • said device comprises a voltage generator controller that has means for monitoring and / or varying the voltage supplied to each of the active electrodes independently.
  • the controller comprises means for monitoring and / or varying, in addition to the voltage, the phase and / or the frequency of the voltage supplied to each of the active electrodes.
  • the maximum values reached by this electrotherapy device for each of the generator's current outputs are: a current of 300 mA RMS, a voltage of 70 V RMS and / or a power of 50 W.
  • the output signal of each generator is preferably of a sinusoidal type with a harmonic distortion of less than 50% and with a frequency between 100 kHz and 2 MHz.
  • the controller can be a digital controller comprising a microcontroller or a microprocessor.
  • the controller may be a programmable logic circuit of those known by the prior art, such as FPGA (of the English expression, Field Programmable Gate Array) or CPLD (of the English expression, Complex Programmable Logic Device).
  • the controller could be an analog circuit.
  • At least one of the electrodes may comprise a switch that switches the active electrode from a first position connected to the generator output to a second position connected to the return electrode.
  • the electrode in the first position, the electrode would be an active electrode and in the second position the electrode would be configured as a return electrode.
  • At least one of the electrodes comprises a temperature sensor.
  • the device comprises a single return electrode.
  • the active electrodes comprise patient attachment means, said patient attachment means could be, for example, adhesive means or suction means, among others.
  • Figure 1 shows an electrical diagram of an embodiment of a device according to the present invention.
  • Figure 2 shows an electrical diagram of a second embodiment of a device according to the present invention with two active electrodes.
  • Figure 3 shows an electrical diagram of a third embodiment of a device according to the present invention with three active electrodes.
  • Figure 4 shows a flow chart of the monitoring and / or variation procedure of the signal generator controller.
  • Figure 5 shows, by way of example, some of the neurologically active vascularized points of the human body.
  • Figure 1 shows a diagram of a device according to the present invention. This device has four active electrodes -21-, -22-, -23-, -24- and a single return electrode -20-.
  • the device comprises multiple independent voltage generators -211-, -221-, -231-, -241- adjustable individually and controlled by the -2- controller.
  • the controller -2- comprises control means that allow monitoring and / or varying the frequency, phase and amplitude of the output signal of each of the generators.
  • This monitoring and / or variation of the output signals of the generators can be done through analogue control circuits (through operational or similar amplifiers) or digital (such as microprocessors, microcontrollers, FPGA, CPLD, among others).
  • data acquisition means -1- are available. These data acquisition means can be analog (for example, potentiometers) or digital (such as switches, touch screens, etc.).
  • the present invention contemplates the arrangement of current measuring devices at points -201-, -202-, -203-, -204- at the output of the amplifiers or generators according to the configuration of the device.
  • the active electrodes -21-, -22-, -23-, -24- must be in contact with the tissue and remain fixed during therapy. Accordingly, said electrodes may be, for example, of patch type adhesives, suction or equivalent and their active surface is preferably metallic.
  • this arrangement of fixed electrodes suggests the provision of means to limit the power, by limiting the current and / or the maximum voltage applied to each point so as not to damage tissues due to an excessive increase in temperature.
  • the surface of the active electrode should be similar to the surface of the neurologically active vascularized points so that the maximum electrical current selected by the therapist crosses the neurologically active vascularized point. It has been determined that the ideal surface of the active electrode for treatment of neurologically active vascularized points is a maximum of 2 cm. To reduce the impedance between the active and the return electrodes, at least one of the active electrodes -21-, -22-, -23-, -24- can be switched to become a return electrode.
  • switches -210-, -220-, -230-, -240- that allow to choose whether the active electrode is connected to the voltage generator (and, therefore, to fulfill the function of active electrode) or to the return electrode (to fulfill the function of return electrode).
  • each electrode may have a temperature sensor (not shown) to monitor the temperature of the electrode or the skin.
  • the device comprises a single return electrode -20-.
  • Figure 2 shows an electrical impedance model simulating an embodiment of the present invention comprising two active electrodes. This figure shows the use of a first voltage generator -251- associated with a first active electrode -25- and a second voltage generator -261- associated with a second active electrode -26-. In addition there is a return electrode -20- that closes the circuit.
  • a solution would be to have a current measurement device that circulates through each of the electrodes -25-, -26- and modify the voltage of at least one of the generators iteratively until obtaining the desired current in each one of the electrodes -25-, -26-.
  • This voltage modification can be done by automatic means or manually in each of the generators -251-, -261-.
  • the current (I-250-) through electrode -25- is 20 mA and the current (I-260-) through electrode -26- is 30 mA.
  • the impedance of the tissues at 448 kHz is fundamentally resistive, and therefore its reactive part can be neglected.
  • An example of equivalent impedance values could be:
  • the necessary voltages of the RF generators -251-, and -261- for I-250- to be 20 mA and I-260- to be 30 mA are:
  • V_ 2 6i- 43 V
  • the voltage of V_26 would be 33 V; less than 31 V and 43 V when the two electrodes are applied together.
  • V-251- (t) i ⁇ sin ( ( 0 or t + ⁇ pi)
  • V_26i- (t) V 2 ⁇ sin ( ( 0 or t + ⁇ p 2 )
  • V_253- (t) Z_253- ⁇ [1-250- (t) + 1-260- (t)]
  • V-251- 1 V
  • V-261- 23 VZI8O 0
  • a 180 ° phase variation has been shown, but it can be any other phase between 0 or ⁇ 180 °.
  • the common mode voltage is reduced, and therefore lower tensions can be applied to achieve the same therapeutic current of the neurologically active vascularized points.
  • the power dissipated by tissues that are not intended to be treated is also reduced since a deep treatment is not sought as in deep diathermy, but the treatment close to the neurologically active vascularized points, which are in the hypodermis.
  • This simplified electrical model is scalable to embodiments in which more than three electrodes are available, taking into account that new common impedances appear between the electrodes.
  • it is intended, for example, to treat twelve neurologically active vascularized points simultaneously, so it is necessary to have a controller that adjusts the voltage, phase and frequency of each RF generator, so that for each Active electrode circulate the current selected by the therapist.
  • a flow chart of a controller proposal is shown in Figure 4. In this controller the treatment parameters -400- are selected, the impedances at the output of each electrode -401- are measured and, once the controller has the The value of these parameters activates the generator -402- (or set of generators) to have the desired treatment current at each electrode at the output. This is done for all outputs.
  • a second measurement -403- of the current is made in each of the outputs. If the measured current for each of the electrodes (taking into account a certain tolerance, preferably 10%) is less than the desired current -404- the voltage must be increased of the generator -406-, if it is greater, you should ask if the output current is greater than the desired current -405- (taking into account a certain tolerance). In the case where the current is greater than the desired current, the generator voltage -407- must be reduced. Once the modifications have been made to the generators (if necessary) a pause -408- is made to stabilize the voltage and current measurements.
  • Figure 5 shows an example of neurologically active vascularized points located on the human body -500-.
  • the inventors of the present invention have located more than a thousand neurologically active vascularized points in humans, however, as an example, neurologically active vascularized points have been located in the shoulder -501-, in the anterior part of the elbow -502- and under the knees -503-.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Surgery (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Electrotherapy Devices (AREA)
  • Finger-Pressure Massage (AREA)

Abstract

Dispositivo de electroterapia que comprende: una pluralidad de electrodos activos; un electrodo de retorno; y una pluralidad de generadores de tensión conectados cada uno de ellos a un electrodo activo; en el que dicho dispositivo comprende un controlador de los generadores de tensión que dispone de medios para monitorizar y/o variar la tensión suministrada a cada uno de los electrodos activos de manera independiente.

Description

DISPOSITIVO DE ELECTROTERAPIA DESCRIPCIÓN
La presente invención hace referencia a un dispositivo de electroterapia aplicable a los tejidos vivos, siendo dicha electroterapia una diatermia moderada producida mediante corrientes eléctricas de radiofrecuencia (RF) aplicadas mediante electrodos de contacto. En particular, esta electroterapia se realiza en los puntos vascularizados neurológicamente activos del paciente.
Los puntos vascularizados neurológicamente activos están relacionados con un tramo del tejido conjuntivo de la hipodermis que conduce los elementos vasculonerviosos con destinación cutánea. El 42 % de los puntos vascularizados neurológicamente activos se localizan sobre nervios conocidos o muy cerca de ellos. Otros se localizan sobre vasos sanguíneos mayores o muy cerca de ellos (18 % sobre las arterias y 40 % sobre las venas) . Dichos vasos sanguíneos están envueltos de pequeños haces nerviosos formando el nervi vasorum. La naturaleza de estos haces nerviosos que se encuentran debajo del punto vascularizado neurológicamente activo es diversa: haces cutáneos (que son puramente sensitivos o sensitivos y simpáticos), vasculares (mezcla de simpático y sensorial) o haces musculares (mezcla de sensitivo y motor) .
La producción de influjo aferente sobre los nervios periféricos es esencial para el control del dolor con corrientes eléctricas; el lugar idóneo para la aplicación de una corriente es el punto donde el nervio cutáneo penetra en la fascia. También se puede hacer la misma apreciación con respecto a los puntos motores, los cuales presentan la característica anatómica común de ser los puntos por donde penetra el nervio en el músculo.
Son conocidos en la técnica anterior múltiples dispositivos de diatermia. La diatermia es una técnica que utiliza corrientes de alta frecuencia (mayores a los 100 kHz) aplicadas mediante un electrodo para producir calentamiento local en los tejidos celulares de determinadas partes del cuerpo afectadas, por ejemplo, por dolencias. Estos dispositivos de diatermia producen calentamiento de los tejidos pero no producen electroestimulación .
En general, los equipos de diatermia aumentan la temperatura de los tejidos internos haciendo pasar corrientes que pueden llegar hasta los 3 A.
Algunos dispositivos de diatermia utilizan corrientes controladas mediante modulación por ancho de pulsos (PWM por sus siglas en inglés), en este caso se pueden tener corrientes superiores.
El aumento de temperatura del tejido vivo mediante diatermia se consigue transmitiendo energía al mismo mediante dos métodos: por corrientes inducidas (electrodos sin contacto con el tejido) o por corrientes conducidas (electrodos en contacto con el tejido) . A diferencia de los dispositivos de electroestimulación transcutánea de los nervios (o TENS, por sus siglas en inglés), los dispositivos de electroterapia que funcionan con corrientes de RF a más de 100 kHz, como son los equipos de diatermia, no producen electroestimulación de los nervios. En general, la frecuencia de la señal aplicada en el método de acoplamiento sin contacto ha de ser muy superior a la frecuencia de la señal aplicada en el método de acoplamiento con contacto, de hecho, dichas frecuencias son superiores a los 100 kHz . Mayores detalles sobre el efecto de las corrientes eléctricas en los seres humanos y animales ya han sido estudiados y se encuentran regulados por las normas IEC 60479.
En la diatermia por corrientes conducidas se aplican dos electrodos en contacto con el tejido vivo, de forma que se produce una circulación de corriente eléctrica que atraviesa el tejido que encuentra a su paso. Debido a la impedancia eléctrica del propio tejido, la corriente eléctrica que circula a través del tejido provoca la elevación de la temperatura del mismo por el efecto Joule.
A diferencia del uso habitual de los equipos de diatermia que, en general, debido a la gran intensidad de corriente que aplican, requieren un movimiento constante del electrodo activo sobre el tejido a tratar, el tratamiento de los puntos vascularizados neurológicamente activos se realiza mediante corrientes eléctricas del orden de miliamperios durante varios minutos y con el electrodo activo estático y en contacto sobre el punto vascularizado neurológicamente activo.
Los equipos actuales de diatermia por conducción disponen de un electrodo activo y un electrodo de retorno, como se da a conocer, por ejemplo, en las Patentes ES 287 964 y EP 0 893 140.
Estos dispositivos están destinados al tratamiento terapéutico de unas determinadas zonas afectadas. Una de las diferencias de estos dispositivos con la presente invención radica en la funcionalidad que la presente invención da a conocer para el tratamiento simultáneo de múltiples zonas pudiendo utilizar parámetros diferentes de, por ejemplo, de voltaje, corriente y/o frecuencia en cada una de las zonas.
Una solución parecida se enseña en el documento US 2008 0015572 para tratamiento de puntos de acupuntura en los que los electrodos activos son agujas. Con esta configuración, en ningún caso el terapeuta podría seleccionar la corriente eléctrica de tratamiento para cada punto vascularizado neurológicamente activo, ya que cada una de las agujas se encuentra conectada al mismo generador.
Los documentos ES1030072 y ES2304272 dan a conocer realizaciones particulares de dispositivos de diatermia que comprenden pares de electrodos conectados a generadores independientes. Sin embargo, el tratamiento de los puntos vascularizados neurológicamente activos con un dispositivo de este tipo requeriría disponer un par de electrodos para cada uno de los puntos vascularizados neurológicamente activos. Este hecho, no solo tendría la dificultad que supone disponer el electrodo activo en cada punto vascularizado neurológicamente activo sino que, además, habría que determinar con exactitud el lugar en el que se debe disponer cada uno de los electrodos de retorno .
Cada punto vascularizado neurológicamente activo, al ser único, se debe tratar con una corriente de una amplitud independiente de las demás. Por tanto, uno de los problemas a solucionar por la presente invención es cómo tratar diferentes puntos vascularizados neurológicamente activos mediante un único dispositivo. El documento US2002/0082653 da a conocer un marcapasos. Dichos marcapasos se clasifican en el sector como "dispositivos de electromedicina" para diferenciarlos de los "dispositivos de electroterapia". Los marcapasos son aparatos electrónicos de pequeño tamaño que excitan de manera discontinua y rítmica (mediante electrodos bipolares) el corazón incapaz de contraerse por sí mismo con regularidad, situando los electrodos dentro del corazón. Los electrodos bipolares funcionan simultáneamente como ánodo y cátodo quedando integrados en una misma unidad física y una única localización.
La presente invención da a conocer un dispositivo que efectúa terapias de diatermia moderada mediante al menos dos electrodos activos y un electrodo de retorno, pudiendo monitorizarse y/o variarse la amplitud, la frecuencia y la fase de cada uno de los generadores conectados a cada uno de los electrodos activos.
Los electrodos de la presente invención pueden ser preferentemente electrodos de aplicación cutánea, divididos en electrodos activos y electrodos de retorno.
Los electrodos de retorno pueden ser preferentemente una única placa en forma de anillo, denominados también electrodos neutros dónde la placa de retorno permite el retorno de los iones al electrodo activo.
Los electrodos activos pueden ser preferentemente superficies de aplicación cutánea superficial en forma de disco, aunque también son posibles los electrodos activos en forma de agujas, los cuales penetran en el tejido cutáneo .
Los electrodos activos se pueden diferenciar en dos tipos según sus usos: el electrodo capacitivo, el cual es idóneo para tejido superficial y vascularizado y el electrodo resistivo, el cual es idóneo para tejido grueso, graso y fibrótico. Preferentemente los electrodos activos son electrodos conductores sin capa aislante.
La presente invención da a conocer un dispositivo de electroterapia que comprende:
- una pluralidad de electrodos activos;
- un electrodo de retorno; y
- una pluralidad de generadores de tensión conectados cada uno ellos a un electrodo activo; en el que dicho dispositivo comprende un controlador de los generadores de tensión que dispone de medios para monitorizar y/o variar la tensión suministrada a cada uno de los electrodos activos de manera independiente.
En una realización particular de la presente invención el controlador comprende medios para monitorizar y/o variar, además de la tensión, la fase y/o la frecuencia de la tensión suministrada a cada uno de los electrodos activos.
Preferentemente, los valores máximos que alcanza este dispositivo de electroterapia por cada una de las salidas de corriente del generador son: una corriente de 300 mA RMS, una tensión de 70 V RMS y/o una potencia de 50 W.
Además, la señal de salida de cada generador es, preferentemente, de tipo sinusoidal con una distorsión armónica menor al 50 % y con una frecuencia entre 100 kHz y 2 MHz.
Por otra parte, para poder monitorizar y/o variar de manera individual cada una de las salidas de los generadores, el controlador puede ser un controlador digital que comprende un microcontrolador o un microprocesador. En otras realizaciones, el controlador puede ser un circuito lógico programable de los conocidos mediante la técnica anterior, tales como FPGA (de la expresión inglesa, Field Programmable Gate Array) o CPLD (de la expresión inglesa, Complex Programmable Logic Device) .
En realizaciones particulares de la presente invención el controlador podría ser un circuito analógico.
Con el fin de dotar de una mayor flexibilidad al dispositivo, al menos uno de los electrodos puede comprender un conmutador que conmuta el electrodo activo desde una primera posición conectada a la salida del generador a una segunda posición conectada al electrodo de retorno. De esta manera, en la primera posición, el electrodo sería un electrodo activo y en la segunda posición el electrodo quedaría configurado como un electrodo de retorno.
Más preferentemente, al menos uno de los electrodos comprende un sensor de temperatura. Preferentemente el dispositivo comprende un único electrodo de retorno. De manera particular, los electrodos activos comprenden medios de unión al paciente, dichos medios de unión al paciente podrían ser, por ejemplo, medios adhesivos o medios de succión, entre otros. Para su mejor comprensión se adjuntan, a título de ejemplo explicativo pero no limitativo, unos dibujos de una realización del dispositivo objeto de la presente invención . La figura 1 muestra un esquema eléctrico de una realización de un dispositivo según la presente invención.
La figura 2 muestra un esquema eléctrico de una segunda realización de un dispositivo según la presente invención con dos electrodos activos.
La figura 3 muestra un esquema eléctrico de una tercera realización de un dispositivo según la presente invención con tres electrodos activos.
La figura 4 muestra un diagrama de flujo del procedimiento de monitorización y/o variación del controlador del generador de señales. La figura 5 muestra, a título de ejemplo, algunos de los puntos vascularizados neurológicamente activos del cuerpo humano . La figura 1 muestra un esquema de un dispositivo según la presente invención. Este dispositivo cuenta con cuatro electrodos activos -21-, -22-, -23-, -24- y un único electrodo de retorno -20-.
Con el fin de suministrar corriente a los electrodos activos -21-, -22-, -23-, -24-, el dispositivo comprende múltiples generadores de tensión independientes -211-, -221-, -231-, -241- regulables individualmente y controlados mediante el controlador -2-. Por otra parte, en realizaciones de la presente invención es posible disponer de amplificadores -212-, -222-, -232-, -242- a la salida de los citados generadores. Adicionalmente , dicho controlador -2- comprende medios de control que permiten monitorizar y/o variar la frecuencia, la fase y la amplitud de la señal de salida de cada uno de los generadores. Esta monitorización y/o variación de las señales de salida de los generadores se puede realizar mediante circuitos de control analógicos (mediante amplificadores operacionales o similares) o digitales (tales como microprocesadores, microcontroladores , FPGA, CPLD, entre otros) . Por otra parte, para seleccionar los parámetros del tratamiento que se desee realizar, se dispone de medios de adquisición de datos -1-. Estos medios de adquisición de datos pueden ser medios analógicos (por ejemplo, potenciómetros) o digitales (como interruptores, pantallas táctiles, etc.) .
Para un funcionamiento óptimo del controlador -2-, es imprescindible tener una medición real de la corriente que circula a través de cada electrodo activo. La presente invención contempla la disposición de dispositivos de medición de corriente en los puntos -201-, -202-, -203-, -204- a la salida de los amplificadores o los generadores según la configuración del dispositivo.
Dado que los puntos vascularizados neurológicamente activos son puntos fijos, los electrodos activos -21-, -22-, -23-, -24-, deben estar en contacto con el tejido y permanecer fijos durante la terapia. En consecuencia, dichos electrodos pueden ser, por ejemplo, de tipo parche adhesivos, de succión o equivalentes y su superficie activa es, preferentemente, metálica. Además, esta disposición de electrodos fijos sugiere la disposición de medios que permitan limitar la potencia, mediante la limitación de la corriente y/o la tensión máxima aplicada a cada punto para no dañar tejidos por un aumento desmesurado de temperatura.
En una realización preferente, la superficie del electrodo activo debe ser similar a la superficie de los puntos vascularizados neurológicamente activos para que la máxima corriente eléctrica seleccionada por el terapeuta atraviese el punto vascularizado neurológicamente activo. Se ha determinado que la superficie ideal del electrodo activo para tratamiento de los puntos vascularizados neurológicamente activos es de, como máximo, 2 cm . Para reducir la impedancia entre los electrodos activos y el de retorno, al menos uno de los electrodos activos -21-, -22-, -23-, -24- puede conmutarse para convertirse en un electrodo de retorno. Esto se consigue mediante la disposición de conmutadores -210-, -220-, -230-, -240- que permiten elegir si el electrodo activo se conecta al generador de tensión (y, por tanto, para cumplir la función de electrodo activo) o al electrodo de retorno (para cumplir la función de electrodo de retorno) .
Adicionalmente , cada electrodo puede disponer de un sensor de temperatura (no mostrado) para monitorizar la temperatura del electrodo o de la piel.
En una realización particular, como se puede observar en la figura 1, figura 2 y figura 3, el dispositivo comprende de un único electrodo de retorno -20-. La figura 2 muestra un modelo de impedancias eléctricas simulando un ejemplo de realización de la presente invención que comprende dos electrodos activos. En esta figura se puede observar la utilización de un primer generador de tensión -251- asociado a un primer electrodo activo -25- y un segundo generador de tensión -261- asociado a un segundo electrodo activo -26-. Además se dispone de un electrodo de retorno -20- que cierra el circuito . Uno de los problemas que se debe resolver en la presente invención es que, tal y como se observa en la figura, el tejido humano ofrece una resistencia en serie -250-, -260- a la salida de cada electrodo -25-, -26- que permitiría calcular fácilmente la tensión que se debe aplicar a cada electrodo para obtener una corriente determinada a través del tejido, sin embargo, la existencia de una resistencia común -253- (que es inherente al tejido) hace que la corriente de salida de electrodos -25-, -26- se encuentre en un punto común -252- que hace que las corrientes de salida interfieran entre ellas.
Una solución seria la de disponer de un dispositivo de medición de la corriente que circula por cada uno de los electrodos -25-, -26- y modificar la tensión de al menos uno de los generadores de manera iterativa hasta obtener la corriente deseada en cada uno de los electrodos -25-, -26-. Esta modificación de la tensión se puede realizar mediante medios automáticos o manualmente en cada uno de los generadores -251-, -261-.
Por ejemplo, en la figura 2 se quiere que la corriente (I-250-) a través del electrodo -25- sea 20 mA y la corriente (I-260-) a través del electrodo -26- sea 30 mA. La impedancia de los tejidos a 448 kHz es fundamentalmente resistiva, y por lo tanto se puede despreciar su parte reactiva. Un ejemplo de valores de las impedancias equivalentes podría ser:
Impedancia en la primera resistencia serial -250-:
Z-250- = 300 ohm
Impedancia en la segunda resistencia serial -260-:
Z-260- = 600 ohm
Impedancia en la resistencia común -253-:
Z-253- = 500 ohm
Los voltajes necesarios de los generadores de RF -251-, y -261- para que I-250- sea 20 mA e I-260- sea 30 mA son:
Voltaje en el primer generador -251- : V_25i- = 31 V
Voltaje en el segundo generador -261- : V_26i- = 43 V
Con una tensión en modo común (en el punto -253-) de: V_253- = 25 V
En este ejemplo, como la impedancia común -253- es relativamente elevada, provoca que las tensiones de entrada también sean elevadas.
Si solo se aplicara el electrodo -25-, la tensión V_25i- necesaria para que I-250- = 20 mA seria de 16 V, y si se aplicara solo el electrodo -26- para que I-260- = 30 mA, la tensión de V_26i- seria 33 V; menores que 31 V y 43 V cuando se aplican los dos electrodos conjuntamente.
Sin embargo, no siempre es posible reducir el valor de la impedancia común porque ésta depende de la composición de los tejidos y de la posición de los electrodos.
El efecto de la impedancia común hace que, la corriente de cada electrodo dependa de las corrientes de los demás electrodos. Este problema se puede comprender mejor haciendo referencia al ejemplo anterior en el que se muestra un ejemplo simplificado a dos generadores de RF conectados a dos electrodos activos. En este caso se tiene que :
Figure imgf000015_0001
z 7-2SS- ~ Z-263- *( I-20O-+1-260- Las corrientes I-250- e I-260- dependen de la tensión común V-253 que a su vez depende del valor de las corrientes
1-250- θ 1-260-· Si por ejemplo se fija Ι_25θ-? al aumentar el valor de I_26o la tensión común V-253-r aumentará, y esto hará disminuir la tensión entre extremos de la impedancia Z_2so- reduciendo el valor de la corriente Ι-250-· Si para compensar esta caída se aumenta la tensión de _25i-? de la misma forma aumentará la tensión común V_253-? disminuyendo el valor de I_26o--
Otro ejemplo que exacerba más este problema es cuando el electrodo de retorno está en una extremidad del paciente, por ejemplo en la mano o en una pierna; en este caso la impedancia común _253- puede ser máxima. El resultado es que unos puntos vascularizados neurológicamente activos se tratarían en exceso y otros en déficit. La única forma de evitar esta dependencia, es que la impedancia común _253- donde se suman las corrientes I-250- e 1-260-/· tienda a cero.
Una alternativa que propone la presente invención para reducir la tensión común es modificando la fase de las corrientes de los electrodos, de forma que tiendan a cancelarse provocando una reducción de la tensión en la impedancia común Z-253-. En este caso también tendríamos que :
V-251- (t) = i · sin ((0ot + <pi)
V_26i- (t) = V2 · sin ((0ot + <p2) V_253- (t) = Z_253- · [ 1-250- (t) + 1-260- (t)]
Si por ejemplo el voltaje V_26i- está desfasado 180° respecto la fase de V_25i- con ψι = 0o y φ2 = 180°, para los mismos parámetros de I-250-, 1-260- Z_250-, Z_260- y Z_253_, seleccionados en el ejemplo anterior, las corrientes I_25o-f 1-260- se restarán, reduciendo el valor de la tensión común V_253_ . Las tensiones necesarias son:
V-251- = 1 V, y
V-261- = 23 VZI8O0
Con una tensión en modo común de V_253_ = 5 V .I8O0
En este ejemplo se ha mostrado una variación de fase de 180°, pero puede ser cualquier otra fase entre 0o y ±180°. Al variar las fases de las señales, se reduce la tensión en modo común, y por lo tanto se puede aplicar tensiones menores para conseguir la misma corriente terapéutica de los puntos vascularizados neurológicamente activos. Como consecuencia, la potencia disipada por los tejidos que no pretenden ser tratados también se reduce ya que no se busca un tratamiento en profundidad como en la diatermia profunda, sino el tratamiento cercano a los puntos vascularizados neurológicamente activos, que están en la hipodermis .
En un ejemplo de realización como el que se muestra en la figura 3, en el que se tienen tres electrodos activos -27-, -28-, -29- conectados cada uno a un generador independiente -271-, -281-, -291- existe una mayor cantidad de variables a controlar ya que se dispone una resistencia en serie -272-, -282-, -292- para cada uno de los electrodos -27-, -28-, -29- y dos resistencias comunes -274-, -294- que definen dos puntos comunes -273-, -293- que dificultan este proceso iterativo en cada uno de los generadores para obtener la corriente deseada a través de cada punto vascularizado neurológicamente activo.
Este modelo eléctrico simplificado es escalable a realizaciones en las que se dispongan más de tres electrodos, teniendo en cuenta que aparecen nuevas impedancias comunes entre los electrodos. Con la presente invención se pretende, por ejemplo, tratar doce puntos vascularizados neurológicamente activos de manera simultánea, por lo que es necesario disponer de un controlador que ajuste la tensión, la fase y la frecuencia de cada generador de RF, de forma que por cada electrodo activo circule la corriente seleccionada por el terapeuta. Un diagrama de flujo de una propuesta de controlador se muestra en la figura 4. En este controlador se seleccionan los parámetros de tratamiento -400-, se miden las impedancias a la salida de cada electrodo -401- y, una vez el controlador dispone del valor de estos parámetros activa el generador -402- (o conjunto de generadores) para tener a la salida la corriente deseada de tratamiento en cada electrodo. Esto se realiza para todas las salidas.
Posteriormente, se realiza una segunda medición -403- de la corriente en cada una de las salidas. Si la corriente medida para cada uno de los electrodos (teniendo en cuenta una cierta tolerancia, preferentemente del 10 %) es menor que la corriente deseada -404- se debe aumentar la tensión del generador -406-, si es mayor, se debe preguntar si la corriente de salida es mayor que la corriente deseada -405- (teniendo en cuenta una cierta tolerancia) . En el caso en que la corriente sea mayor que la corriente deseada, se debe disminuir la tensión del generador -407- . Una vez se ha realizado las modificaciones en los generadores (si eran necesarias) se realiza una pausa -408- para estabilizar las medidas de voltaje y corriente.
Tras esta pausa se realiza una medición de los voltajes de salida -409-. Si la tensión de salida es superior a la tensión máxima permitida (o se encuentra cerca de ésta) se debe disminuir la tensión del generador y modificar la fase de la señal -410-. Asi, la modificación de la fase permite tener corrientes mayores, incluso aplicando una tensión menor debido a la suma de señales de corriente alterna . Una vez se tiene la corriente deseada en un electrodo se pasa al siguiente canal -411-, correspondiente al siguiente electrodo.
Una vez se pasa al siguiente canal, el controlador se pregunta si se continúa con el tratamiento -412-, si es asi, volverá a realizar la segunda medición de corriente -409- y continuará haciendo el proceso. Si ha llegado una señal de terminar el tratamiento se desactivan todos los generadores -413-.
La figura 5 muestra un ejemplo de puntos vascularizados neurológicamente activos ubicados sobre el cuerpo humano -500-. Los inventores de la presente invención han localizado más de mil puntos vascularizados neurológicamente activos en humanos, sin embargo, a titulo de ejemplo se han localizado puntos vascularizados neurológicamente activos en el hombro -501-, en la parte anterior del codo -502- y bajo las rodillas -503-.
Si bien la invención se ha descrito con respecto a ejemplos de realizaciones preferentes, éstos no se deben considerar limitativos de la invención, que se definirá por la interpretación más amplia de las siguientes reivindicaciones .

Claims

REIVINDICACIONES
1. Dispositivo de electroterapia que comprende:
- una pluralidad de electrodos activos;
- un electrodo de retorno; y
- una pluralidad de generadores de tensión conectados cada uno de ellos a un electrodo activo;
caracterizado porque comprende un controlador de los generadores de tensión que dispone de medios para monitorizar y/o variar la tensión suministrada a cada uno de los electrodos activos de manera independiente.
2. Dispositivo, según la reivindicación 1, caracterizado porque el controlador de los generadores de tensión comprende medios para monitorizar y/o variar la fase de la tensión suministrada a cada uno de los electrodos activos.
3. Dispositivo, según cualquiera de las reivindicaciones 1 ó 2, caracterizado porque el controlador de los generadores de tensión comprende medios para monitorizar y/o variar la frecuencia de la tensión suministrada a cada uno de los electrodos activos.
4. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque a través de cada uno de los electrodos activos se dispone, como máximo, una corriente de 300 mA RMS .
5. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque por cada una de las salidas de tensión de los generadores de tensión se dispone, como máximo, una tensión de 70 V RMS.
6. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque cada una de las salidas de los generadores de tensión dispone de una potencia máxima de 50 W.
7. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque las señales generadas por los generadores de tensión son señales de tipo sinusoidal, con una distorsión armónica menor al 50 %.
8. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque las señales generadas por los generadores de tensión son señales a una frecuencia entre 100 kHz y 2 MHz .
9. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque el controlador de los generadores de tensión comprende un microcontrolador .
10. Dispositivo, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el controlador de los generadores de tensión comprende un microprocesador.
11. Dispositivo, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el controlador de los generadores de tensión comprende un circuito lógico programable .
12. Dispositivo, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el controlador de los generadores de tensión es un circuito analógico.
13. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque al menos uno de los electrodos activos comprende un conmutador que conmuta el electrodo activo desde un primera posición conectada a la salida del generador de tensión a una segunda posición conectada al electrodo de retorno
14. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque al menos uno de los electrodos activos comprende un sensor de temperatura.
15. Dispositivo, según cualquiera de las reivindicaciones anteriores, caracterizado porque los electrodos activos comprenden medios de unión al paciente.
16. Dispositivo, según la reivindicación 15, caracterizado porque dichos medios de unión al paciente son medios adhesivos .
17. Dispositivo, según la reivindicación 15, caracterizado porque dichos medios de unión al paciente son medios de succión .
18. Dispositivo según cualquiera de las reivindicaciones 1 a 17, caracterizado porque comprende un único electrodo de retorno .
PCT/ES2014/070878 2013-12-12 2014-11-28 Dispositivo de electroterapia WO2015086873A1 (es)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US15/100,051 US20170001004A1 (en) 2013-12-12 2014-11-28 Electrotherapy device
ES14869518T ES2897680T3 (es) 2013-12-12 2014-11-28 Dispositivo de electroterapia
CN201480063516.9A CN105744984B (zh) 2013-12-12 2014-11-28 电疗设备
LTEPPCT/ES2014/070878T LT3081256T (lt) 2013-12-12 2014-11-28 Elektroterapinis prietaisas
BR112016011173-7A BR112016011173B1 (pt) 2013-12-12 2014-11-28 Dispositivo de eletroterapia
PL14869518T PL3081256T3 (pl) 2013-12-12 2014-11-28 Urządzenie do elektroterapii
SI201431916T SI3081256T1 (sl) 2013-12-12 2014-11-28 Naprava za elektroterapijo
RU2016118032A RU2668198C1 (ru) 2013-12-12 2014-11-28 Электротерапевтическое устройство
AU2014363371A AU2014363371B2 (en) 2013-12-12 2014-11-28 Electrotherapy device
MX2016006525A MX359036B (es) 2013-12-12 2014-11-28 Dispositivo de electroterapia.
JP2016533698A JP6310080B2 (ja) 2013-12-12 2014-11-28 電気療法デバイス
HRP20211741TT HRP20211741T1 (hr) 2013-12-12 2014-11-28 Uređaj za elektroterapiju
EP14869518.2A EP3081256B1 (en) 2013-12-12 2014-11-28 Electrotherapy device
RS20211454A RS62680B1 (sr) 2013-12-12 2014-11-28 Uređaj za elektroterapiju
NZ719996A NZ719996B2 (en) 2013-12-12 2014-11-28 Electrotherapy device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201331817A ES2481515B1 (es) 2013-12-12 2013-12-12 Dispositivo de electroterapia
ESP201331817 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015086873A1 true WO2015086873A1 (es) 2015-06-18

Family

ID=51220964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070878 WO2015086873A1 (es) 2013-12-12 2014-11-28 Dispositivo de electroterapia

Country Status (17)

Country Link
US (1) US20170001004A1 (es)
EP (1) EP3081256B1 (es)
JP (1) JP6310080B2 (es)
CN (1) CN105744984B (es)
AR (1) AR098720A1 (es)
AU (1) AU2014363371B2 (es)
BR (1) BR112016011173B1 (es)
ES (2) ES2481515B1 (es)
HR (1) HRP20211741T1 (es)
LT (1) LT3081256T (es)
MX (1) MX359036B (es)
PL (1) PL3081256T3 (es)
PT (1) PT3081256T (es)
RS (1) RS62680B1 (es)
RU (1) RU2668198C1 (es)
SI (1) SI3081256T1 (es)
WO (1) WO2015086873A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019526301A (ja) * 2016-09-09 2019-09-19 インディバ・エス・アー ジアテルミー治療デバイス
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015299B1 (fr) * 2013-12-20 2017-10-06 Oreal Dispositif d'iontophorese a gestion independante de courant
ES2571460B1 (es) * 2015-10-23 2017-01-05 Indiba, S.A. Procedimiento cosmético para la reducción o prevención de la acumulación de tejido adiposo
FR3132227A1 (fr) * 2022-02-03 2023-08-04 Winback Group Dispositif d'électrothérapie haute fréquence bi-canal sérialisés ou parallélisés
FR3132226A1 (fr) * 2022-02-03 2023-08-04 Winback Group Dispositif d'électrothérapie associant l'électrostimulation et la técarthérapie
KR20240135620A (ko) * 2022-02-03 2024-09-11 윈백 그룹 직렬 또는 병렬로 두개의 채널을 갖는 고주파수 전기치료 디바이스
CN114983516A (zh) * 2022-05-19 2022-09-02 杭州天路医疗器械有限公司 一种冲击波能量发射电极的控制系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES287964Y (es) 1985-07-08 1986-07-16 Indiba,S.A. Dispositivo para la regeneracion cutanea
ES1030072U (es) 1995-02-02 1995-07-16 Torras De Terradas Mig Soriano Aparato generador de corriente de radiofrecuencia.
RU2106885C1 (ru) * 1997-04-15 1998-03-20 Юрий Михайлович Черкасов Многоканальный электростимулятор "альтаир"
EP0893140A2 (en) 1997-07-24 1999-01-27 Indiba, S.A. Hyperthermia device
US5891185A (en) * 1995-10-27 1999-04-06 Esd Limited Liability Company Method and apparatus for treating oropharyngeal disorders with electrical stimulation
US20020082653A1 (en) 2000-12-26 2002-06-27 Stahmann Jeffrey E. System and method for managing refractory periods in a cardiac rhythm management device with biventricular sensing
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US20050065554A1 (en) * 2003-09-23 2005-03-24 Kenknight Bruce H. Demand-based cardiac function therapy
US20080015572A1 (en) 2006-07-14 2008-01-17 Sherwood Services Ag Method for energy-based stimulation of acupuncture meridians
ES2304272A1 (es) 2005-10-06 2008-10-01 Hiperthermia Medical Group, S.R.L. Dispositivo de bio-resonancia molecular.
FR2973709A1 (fr) * 2011-04-06 2012-10-12 Cema Com Dispositif electro-stimulateur optimise

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672980A (en) * 1980-04-02 1987-06-16 Bsd Medical Corporation System and method for creating hyperthermia in tissue
RU2098055C1 (ru) * 1994-03-02 1997-12-10 Московский научно-исследовательский институт глазных болезней им.Гельмгольца Минздрава РФ Способ интраоперационной локации внутриглазного осколка при его диасклеральном удалении и устройство для его осуществления
EP1144045B1 (en) * 1999-01-11 2003-05-21 BMR Research and Development Limited An electrotherapy device
US6512955B1 (en) * 2000-08-07 2003-01-28 Mcenany Thomas J. Electrical apparatus for therapeutic treatment
US6788976B2 (en) * 2001-11-02 2004-09-07 Lockheed Martin Corporation Movement timing simulator
US6993384B2 (en) * 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US6853865B2 (en) * 2002-09-04 2005-02-08 Selicor, Inc. Apparatus for RF diathermy treatment
US8165695B2 (en) * 2004-02-11 2012-04-24 Ethicon, Inc. System and method for selectively stimulating different body parts
CA2606787A1 (en) * 2005-04-29 2006-11-09 Cochlear Americas Focused stimulation in a medical stimulation device
DE102007024238A1 (de) * 2007-05-18 2008-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Selbsthaftendes Sensorelement
GB0709834D0 (en) * 2007-05-22 2007-07-04 Gillbe Ivor S Array stimulator
ES2308938B1 (es) * 2007-06-20 2010-01-08 Indiba, S.A. "circuito para dispositivos de radiofrecuencia aplicables a los tejidos vivos y dispositivo que lo contiene".
JP5294011B2 (ja) * 2008-12-03 2013-09-18 オージー技研株式会社 干渉低周波治療器
KR101121681B1 (ko) * 2009-06-18 2012-03-09 송미희 다주파수 다전극 심부투열 패드 및 이를 구비한 다주파수 다전극 심부투열 장치
JP5511606B2 (ja) * 2010-09-21 2014-06-04 クルールラボ株式会社 美容マッサージ器
WO2013054382A1 (ja) * 2011-10-14 2013-04-18 株式会社ホーマーイオン研究所 電気刺激信号生成装置及び筋運動代謝促進装置
US9180294B2 (en) * 2011-10-20 2015-11-10 Ams Research Corporation Electrical stimulation device having multiple stimulation channels

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES287964Y (es) 1985-07-08 1986-07-16 Indiba,S.A. Dispositivo para la regeneracion cutanea
ES1030072U (es) 1995-02-02 1995-07-16 Torras De Terradas Mig Soriano Aparato generador de corriente de radiofrecuencia.
US5891185A (en) * 1995-10-27 1999-04-06 Esd Limited Liability Company Method and apparatus for treating oropharyngeal disorders with electrical stimulation
RU2106885C1 (ru) * 1997-04-15 1998-03-20 Юрий Михайлович Черкасов Многоканальный электростимулятор "альтаир"
EP0893140A2 (en) 1997-07-24 1999-01-27 Indiba, S.A. Hyperthermia device
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US20020082653A1 (en) 2000-12-26 2002-06-27 Stahmann Jeffrey E. System and method for managing refractory periods in a cardiac rhythm management device with biventricular sensing
US20050065554A1 (en) * 2003-09-23 2005-03-24 Kenknight Bruce H. Demand-based cardiac function therapy
ES2304272A1 (es) 2005-10-06 2008-10-01 Hiperthermia Medical Group, S.R.L. Dispositivo de bio-resonancia molecular.
ES2304272B1 (es) * 2005-10-06 2009-07-23 Hiperthermia Medical Group, S.R.L. Dispositivo de bio-resonancia molecular.
US20080015572A1 (en) 2006-07-14 2008-01-17 Sherwood Services Ag Method for energy-based stimulation of acupuncture meridians
FR2973709A1 (fr) * 2011-04-06 2012-10-12 Cema Com Dispositif electro-stimulateur optimise

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199844, Derwent World Patents Index; Class P34, AN 1998-518902, XP055349260, THOMSON *
See also references of EP3081256A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019526301A (ja) * 2016-09-09 2019-09-19 インディバ・エス・アー ジアテルミー治療デバイス
EP3453425A4 (en) * 2016-09-09 2019-11-20 Indiba, S.A. DIATHERMIEBEHANDLUNGSVORRICHTUNG
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
US11801383B2 (en) 2016-12-01 2023-10-31 Hinge Health, Inc. Neuromodulation device and method for use

Also Published As

Publication number Publication date
EP3081256A1 (en) 2016-10-19
RU2668198C1 (ru) 2018-09-26
BR112016011173B1 (pt) 2021-07-27
CN105744984B (zh) 2018-11-09
NZ719996A (en) 2020-10-30
BR112016011173A2 (pt) 2017-08-08
ES2481515B1 (es) 2015-02-27
LT3081256T (lt) 2021-12-10
MX2016006525A (es) 2016-08-19
ES2897680T8 (es) 2022-03-15
ES2897680T3 (es) 2022-03-02
RS62680B1 (sr) 2021-12-31
CN105744984A (zh) 2016-07-06
HRP20211741T1 (hr) 2022-02-18
US20170001004A1 (en) 2017-01-05
MX359036B (es) 2018-09-12
AU2014363371B2 (en) 2019-02-21
SI3081256T1 (sl) 2022-01-31
EP3081256A4 (en) 2017-09-06
JP6310080B2 (ja) 2018-04-11
JP2016539692A (ja) 2016-12-22
AR098720A1 (es) 2016-06-08
PL3081256T3 (pl) 2022-03-21
EP3081256B1 (en) 2021-10-27
PT3081256T (pt) 2021-11-30
AU2014363371A1 (en) 2016-06-02
ES2481515A1 (es) 2014-07-30

Similar Documents

Publication Publication Date Title
ES2897680T3 (es) Dispositivo de electroterapia
JP7518809B2 (ja) 非侵襲的容量性電気刺激のためのデバイスおよび方法、ならびに患者の頸部の迷走神経刺激のためのそれらの使用
US11406444B2 (en) Electrically based medical treatment device and method
US20230149706A1 (en) Optimization of energy delivery for various applications
US20210169550A1 (en) Generating and interleaving of irreversible-electroporation and radiofrequnecy ablation (ire/rfa) waveforms
ES2629427T3 (es) Dispositivo para mejorar el flujo de sangre
JP2022525344A (ja) 選択的細胞切除のための空間多重化波形
KR20090125654A (ko) 코일을 이용한 온열침/뜸 가열장치
KR20190114906A (ko) 미용에 사용하는 복합 전극패드를 이용한 미용기기와 그 방법
KR101033287B1 (ko) 피부저항을 고려한 전류자극장치
US11617619B2 (en) System and method for detecting application of grounding pad for ablation devices
NZ719996B2 (en) Electrotherapy device
CN101690841A (zh) 一种电疗仪以及控制该电疗仪输出电流强度的方法
Bracciano Principles of Electrotherapy
KR101510713B1 (ko) 전기자극장치
JP6474419B2 (ja) 心臓組織の修復および再生ならびに心臓の電気生理学的代謝最適化の装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869518

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014869518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006525

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016533698

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15100051

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011173

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014363371

Country of ref document: AU

Date of ref document: 20141128

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016118032

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016011173

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160517