WO2015086011A1 - Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges - Google Patents

Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges Download PDF

Info

Publication number
WO2015086011A1
WO2015086011A1 PCT/DE2014/200640 DE2014200640W WO2015086011A1 WO 2015086011 A1 WO2015086011 A1 WO 2015086011A1 DE 2014200640 W DE2014200640 W DE 2014200640W WO 2015086011 A1 WO2015086011 A1 WO 2015086011A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
motor vehicle
critical
safety distance
safety
Prior art date
Application number
PCT/DE2014/200640
Other languages
English (en)
French (fr)
Inventor
Volker Küss
Martin Dilzer
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112014005642.1T priority Critical patent/DE112014005642A5/de
Priority to CN201480066795.4A priority patent/CN105793088B/zh
Publication of WO2015086011A1 publication Critical patent/WO2015086011A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/10Preventing unintentional or unsafe engagement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3121Ambient conditions, e.g. air humidity, air temperature, ambient pressure
    • F16D2500/3122Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50287Torque control
    • F16D2500/5029Reducing drag torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5104Preventing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5108Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5114Failsafe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/52General
    • F16D2500/525Improve response of control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • F16D2500/70264Stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for avoiding a safety-critical operation of a disconnect clutch in a hybrid module of a drive train of a motor vehicle according to the preamble of claim 1.
  • the hybrid module between an internal combustion engine and a transmission is effective and has an electric drive, a clutch and a Freewheel, wherein the clutch for starting the engine by the transmission of a torque supplied by the electric drive or the drive train is used by a frictional connection with the electric drive or the drive train for purely electric driving.
  • a hybrid module for a drive train of a motor vehicle is known.
  • the hybrid module is arranged between the internal combustion engine and the transmission and has an electric drive, a disconnect clutch and a freewheel, wherein the disconnect clutch and the freewheel are provided parallel to each other for torque transmission from the engine to the transmission.
  • the freewheel transmits the torque coming from the internal combustion engine in the direction of the transmission and opens at oppositely directed torque, so that the motor vehicle can be driven either by the internal combustion engine or the electric drive or combined by both simultaneously.
  • the separating clutch has the task to start the engine by transmitting the torque supplied by the electric drive or the drive train by frictionally connecting the internal combustion engine and electric drive or drive train or decouple the engine from the drive train to operate the vehicle purely electrically or Transfer combustion engine tractive and thrust moments in hybrid driving mode.
  • a change from electric to hybrid driving thus requires closing the disconnect clutch to start the engine.
  • it comes through the closing of the clutch and the associated acceleration of the stationary engine to a corresponding braking torque.
  • functional safety hazardous situations for vehicles and vehicle occupants are conceivable in case of malfunction of the electrical, electronic or programmable electrical release system.
  • unwanted closing of the disconnect clutch system eg during an electric cornering, the potential danger is particularly high.
  • the separating clutch system In order to be able to react in good time in the event of a fault and thus avoid a safety-relevant closing of the separating clutch, the separating clutch system requires a safety clearance in the direction of the clutch position "open" in order to cover the required time span for fault detection and initiation of suitable remedial measures Nevertheless, due to malfunctions occurring in the clutch actuation system, undesired closing of the disconnect clutch occurs, which can cause safety-critical situations of the motor vehicle.
  • the invention is therefore based on the object to provide a method for avoiding a safety-critical operation of a separating clutch in a hybrid module of a drive train of a motor vehicle, in which malfunction of the Kupplungsbetuschists- be compensated system.
  • a vorzuhaltender safety distance of the open disconnect clutch is set in dependence on the ambient conditions of the motor vehicle and / or vehicle boundary conditions.
  • the distance between the friction linings, taking into account the release travel when the separating clutch is open, should be understood as the safe distance of the open clutch.
  • a sufficiently large safety distance is set, in which an unwanted closing of the clutch is reliably prevented even in case of malfunction of the clutch actuation system.
  • the motor vehicle system does not generally have to be operated in an over-secure area that covers all conceivable cases, but nevertheless offers the highest possible system dynamics, system availability and system security.
  • the safety distance is set as a function of the critical disturbance torque dependent on the ambient conditions of the motor vehicle and / or the vehicle boundary conditions. It is based on the consideration that in poor environmental conditions, the safety margin must be greater by small, tolerated disturbance torques, whereas under better environmental conditions, the safety distance is set smaller due to larger, tolerable disturbance torques. It is taken into account that malfunctions can also occur in technology, whereby it must be ensured that the safety distance always takes into account the position sufficiently open of the coupling.
  • the safety margin is defined as a constant on a clutch characteristic based on the position of the critical disturbance torque.
  • the constant distance which the open disconnect clutch has from the critical disturbance torque ensures that in critical driving situations due to malfunction of the technology, the clutch does not unintentionally transition to the closed state.
  • the clutch characteristic By including the clutch characteristic, the consideration of a coupling dynamic occurring in the event of a fault takes place, which improves the accuracy of the safety distance to be set.
  • the critical disturbance torque is determined as a function of a coefficient of friction of the vehicle wheels.
  • the coefficient of friction changes, so that the disturbance torque is changed depending on different coefficients of friction to prevent safety-critical operation of the separating clutch, as a differentiated power transmission of the tires occurs on the road.
  • the coefficient of friction for a predetermined range of an outside temperature of the motor vehicle is designed as a constant.
  • a coefficient of friction for example, at an outside temperature ⁇ 3 ° C and an outside temperature of> 3 ° C are set to classify the friction transmission between the tire and the road.
  • the critical disturbance torque is determined as a function of a transverse acceleration of the motor vehicle.
  • the dependence of the tolerable disturbance torque on the variables advocatehaftbeiwert, gear ratio and driving speed or the associated lateral acceleration is considered at a constant speed to ensure vehicle safety.
  • the safety distance is set variably in dependence on the touch point of the separating clutch.
  • the Tastwert should be understood the Ausgurweg the clutch, in which the clutch begins to grip, and the torque is transmitted from the engine to the drive train. Since this touch point depends on the structural design of the drive train and is subject to aging, it must be constantly re-evaluated.
  • the safety distance is set as a function of the last known position of the touch point of the separating clutch, wherein a temperature dependence of the touch point is taken into account.
  • information about the environmental conditions and / or the vehicle boundary conditions is provided via a communication line of the motor vehicle.
  • the data provided by sensors which are present in the motor vehicle are also used to suppress a safety-critical actuation of the separating clutch.
  • FIG. 1 shows a schematic representation of a drive train of a motor vehicle with a hybrid module
  • FIG. 2 Overview of critical disturbance torques as a function of the friction adhesion, the gear and the vehicle speed
  • FIG. 3 shows a first exemplary embodiment of the method according to the invention
  • Figure 4 a second embodiment of the inventive method.
  • FIG. 1 schematically shows a drive train of a motor vehicle with an internal combustion engine 1, a vibration damper 3 connected to a crankshaft 2 of the internal combustion engine 1, a hybrid module 4 with freewheel 5 and separating clutch 6, as well as rotor 7 and stator 8 of an electric drive, a transmission 9 , a differential 10 and not shown in detail wheels.
  • the freewheel 5 transmits the torque from the engine 1 to the transmission 9 and opens at torque flow direction from the transmission 9 to the engine 1.
  • Torques from the transmission 9 in the direction of the internal combustion engine 1 are at overall closed disconnect clutch 6 transferable. This concerns in particular the starting of the internal combustion engine 1 from the electric driving and the transmission of the thrust torque in the case of a full battery.
  • the separating clutch 6 In internal combustion engine operation of the drive train, the separating clutch 6 remains closed, so that it transmits, in accordance with its applied torque transmission capacity, the torque transmittable by the internal combustion engine 1 proportionally together with the freewheel 5.
  • the function of the separating clutch 6 is controlled by a control unit 1 1, which is connected to a higher-level vehicle control unit 12.
  • the control unit 1 1 and the vehicle control unit 12 are connected via a vehicle communication line, preferably a CAN bus 15, to each other and to sensors 13 and a driver assistance system 14.
  • FIG. 2 shows an overview of the critical disturbance torques as a function of the coefficient of friction, the gear and the vehicle speed.
  • disturbance torques of> 55 nm can already lead to a possible safety-critical adhesion separation between tire and tire Lead the roadway to the drive axle.
  • the coefficient of friction ⁇ increases to about 0.7, which allows tolerable disturbance torques of up to about 150 nm.
  • a necessary safety distance to be maintained can be defined as a function of the required fault tolerance time. In poorer environmental conditions, therefore, the safety margin must be greater due to the lower tolerable disturbance torques. From this situation result depending on the environmental conditions, different safety distances, which serve on the one hand, the functional safety and the possible availability of the system.
  • a critical disturbance M crit is determined, which is determined as follows.
  • the associated position of the determined critical disturbance M crit can also be determined as a function of the last known position of the touch point T. In this case, variations of the touch point T, for example due to temperature influences, have to be taken into account or additionally provided.
  • the required position "safely open” can now be defined on the calculated position of the critical disturbance torque M crit , up to which the disconnect clutch 6 must be actuated and held when uncoupling the internal combustion engine 1.
  • Knowing the clutch characteristic may, depending on the information provided by the sensors 13, e.g. possible smoothness hazard at outside temperatures ⁇ 3 ° C and / or measured lateral acceleration of existing driver assistance systems 14 in combination with the, depending on the overall system fault tolerance time of the safety distance s defined.
  • the critical disturbance torque M crit which varies as a function of the ambient conditions, such as coefficient of friction and outside temperature, of the motor vehicle, is thus at low torques.
  • the safety distance s of 3 mm will be added to the disengagement of the clutch 6, which corresponds to crit the critical disturbance torque M, the safety distance s of 3 mm so as to "ensure open" the separating clutch 6 to guarantee a position.
  • the touch point T of the separating clutch 6 is in these circumstances safely within the release distance spanned by the safety distance S.
  • the safety distance s can however also be variably defined as a function of the touch point T.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges, wobei das Hybridmodul zwischen einem Verbrennungsmotor und einem Getriebe wirksam ist und einen elektrischen Antrieb, eine Trennkupplung und einen Freilauf aufweist, und die Trennkupplung zum Start des Verbrennungsmotors durch die Übertragung eines, von dem elektrischen Antrieb oder dem Antriebsstrang gelieferten Drehmomentes durch eine kraftschlüssige Verbindung mit dem elektrischen Antrieb oder dem Antriebsstrang für ein rein elektrisches Fahren verwendet wird. Bei einem Verfahren, bei welchem die Fehlertoleranzen des Gesamtsystems berücksichtigt werden können, wird ein vorzuhaltender Sicherheitsabstand der offenen Trennkupplung in Abhängigkeit von den Umgebungsbedingungen des Kraftfahrzeuges und/oder den Fahrzeugrandbedingungen eingestellt.

Description

Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hvbridmodul eines Antriebsstranges eines Kraftfahrzeuges
Die Erfindung betrifft ein Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges nach dem Oberbegriff von Anspruch 1. Bei einem solchen Verfahren ist das Hybridmodul zwischen einem Verbrennungsmotor und einem Getriebe wirksam und weist einen elektrischen Antrieb, eine Trennkupplung und einen Freilauf auf, wobei die Trennkupplung zum Start des Verbrennungsmotors durch die Übertragung eines, von dem elektrischen Antrieb oder dem Antriebsstrang gelieferten Drehmomentes durch eine kraftschlüssige Verbindung mit dem elektrischen Antrieb oder dem Antriebsstrang für rein elektrisches Fahren verwendet wird.
Aus der DE 10 2012 206 680 A1 ist ein Hybridmodul für einen Triebstrang eines Kraftfahrzeuges bekannt. Das Hybridmodul ist zwischen dem Verbrennungsmotor und dem Getriebe angeordnet und weist einen elektrischen Antrieb, eine Trennkupplung und einen Freilauf auf, wobei die Trennkupplung und der Freilauf parallel zueinander jeweils zur Drehmomentenübertragung vom Verbrennungsmotor in Richtung Getriebe vorgesehen sind. Der Freilauf überträgt das Drehmoment vom Verbrennungsmotor kommend in Richtung Getriebe und öffnet bei entgegengesetzt gerichtetem Drehmoment, so dass das Kraftfahrzeug wahlweise durch den Verbrennungsmotor oder den elektrischen Antrieb oder kombiniert gleichzeitig durch beide antreibbar ist. Die Trennkupplung hat dabei die Aufgaben, den Verbrennungsmotor durch Übertragung des von dem elektrischen Antrieb bzw. dem Antriebsstrang gelieferten Drehmoments durch kraftschlüssiges Verbinden von Verbrennungskraftmaschine und elektrischen Antrieb bzw. Antriebsstrang zu starten oder den Verbrennungsmotor vom Antriebsstrang abzukoppeln, um das Kraftfahrzeug rein elektrisch zu betreiben oder Verbrennungsmotorzug- und -schubmomente im hybridischen Fahrbetrieb zu übertragen.
Ein Wechsel vom elektrischen zum hybridischen Fahrbetrieb erfordert somit das Schließen der Trennkupplung, um den Verbrennungsmotor zu starten. Insbesondere beim Start bzw. Wiederstart über die kinetische Energie des drehenden Antriebsstranges kommt es durch das Schließen der Trennkupplung und die damit verbundene Beschleunigung des stehenden Verbrennungsmotors zu einem entsprechenden Bremsmoment. Im Sinne der funktionalen Sicherheit sind bei Fehlfunktionen des elektrischen, elektronischen oder programmierbaren elektrischen Ausrückersystems Gefährdungssituationen für Fahrzeuge und Fahrzeuginsassen vorstellbar. Besonders im Falle des ungewollten Schließens des Trennkupplungssystems, z.B. während einer elektrischen Kurvenfahrt, ist das Gefährdungspotential besonders hoch. Um im Fehlerfall rechtzeitig reagieren und so ein sicherheitsrelevantes Schließen der Trennkupplung vermeiden zu können, bedarf es beim Trennkupplungssystem eines Sicherheitsabstandes in Richtung der Kupplungsposition„offen", um die benötigte Zeitspanne zur Fehlererkennung und Einleitung geeigneter Abhilfemaßnahmen abdecken zu können. Bei einem fest eingestellten Sicherheitsabstand kann es auf Grund auftretender Fehlfunktionen des Kupplungsbetäti- gungssystems trotzdem zu einem ungewollten Schließen der Trennkupplung kommen, was sicherheitskritische Situationen des Kraftfahrzeuges hervorrufen kann.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges anzugeben, bei welchem Fehlfunktionen des Kupplungsbetätigungs- systems ausgeglichen werden.
Erfindungsgemäß ist die Aufgabe dadurch gelöst, dass ein vorzuhaltender Sicherheitsabstand der offenen Trennkupplung in Abhängigkeit von den Umgebungsbedingungen des Kraftfahrzeuges und/oder Fahrzeugrandbedingungen eingestellt wird. Unter dem Sicherheitsabstand der offenen Kupplung soll dabei der Abstand der Reibbeläge unter Berücksichtigung des Ausrückweges bei geöffneter Trennkupplung verstanden werden. Durch die Berücksichtigung der Umgebungsbedingungen bei der Auswahl des Sicherheitsabstandes wird ein ausreichend großer Sicherheitsabstand eingestellt, bei welchem ein ungewolltes Schließen der Trennkupplung auch bei einer Fehlfunktion des Kupplungsbetätigungssystems sicher unterbunden wird. Dabei muss das Kraftfahrzeug System nicht generell in einem übersicheren Bereich betrieben werden, der alle erdenklichen Fälle abdeckt, es bietet aber trotzdem die höchstmögliche Systemdynamik, Systemverfügbarkeit und Systemsicherheit.
Vorteilhafterweise wird der Sicherheitsabstand in Abhängigkeit des von den Umgebungsbedingungen des Kraftfahrzeuges und/oder den Fahrzeugrandbedingungen abhängigen kritischen Störmomentes eingestellt. Dabei wird der Betrachtung zugrunde gelegt, dass bei schlechten Umgebungsbedingungen der Sicherheitsabstand durch geringe, zu tolerierende Störmomente größer sein muss, wohingegen bei besseren Umgebungsbedingungen der Sicherheitsabstand infolge größerer, tolerierbarer Störmomente kleiner eingestellt wird. Es wird berücksichtigt, dass auch in der Technik Fehlfunktionen auftreten können, wobei sichergestellt werden muss, dass der Sicherheitsabstand immer die Position ausreichend offen der Kupplung berücksichtigt. ln einer Ausgestaltung wird der Sicherheitsabstand als Konstante auf einer Kupplungskennlinie ausgehend von der Position des kritischen Störmomentes definiert. Durch den konstanten Abstand, welcher die offene Trennkupplung von dem kritischen Störmoment aufweist, wird gewährleistet, dass bei kritischen Fahrsituationen infolge von Fehlfunktionen der Technik die Kupplung nicht ungewollt in den geschlossenen Zustand übergeht. Durch Einbeziehung der Kupplungskennlinie erfolgt die Berücksichtigung einer, im Fehlerfall auftretenden Kupplungsdynamik, was die Genauigkeit des einzustellenden Sicherheitsabstandes verbessert.
In einer Variante wird das kritische Störmoment in Abhängigkeit eines Reibwertes der Fahrzeugräder bestimmt. Insbesondere bei regennasser Fahrbahn oder bei Eisglätte verändert sich der Reibwert, so dass das Störmoment in Abhängigkeit von unterschiedlichen Reibwerten geändert wird, um eine sicherheitskritische Betätigung der Trennkupplung zu unterbinden, da eine differenzierte Kraftübertragung der Reifen auf die Fahrbahn auftritt.
In einer Weiterbildung ist der Reibwert für einen vorgegebenen Bereich einer Außentemperatur des Kraftfahrzeuges als Konstante ausgebildet. So kann ein Reibwert beispielsweise bei einer Außentemperatur <3°C und einer Außentemperatur von >3°C festgelegt werden, um die Reibübertragung zwischen Reifen und Fahrbahn zu klassifizieren.
In einer weiteren Ausführungsform wird das kritische Störmoment in Abhängigkeit einer Querbeschleunigung des Kraftfahrzeuges bestimmt. Dabei wird, insbesondere bei Kurvenfahrten, mit einer konstanten Fahrgeschwindigkeit die Abhängigkeit des tolerierbaren Störmomentes von dem Größen Straßenhaftbeiwert, Gangübersetzung und Fahrgeschwindigkeit bzw. der damit zusammenhängenden Querbeschleunigung berücksichtigt, um die Fahrzeugsicherheit zu gewährleisten.
In einer Variante wird der Sicherheitsabstand in Abhängigkeit des Tastpunktes der Trennkupplung variabel eingestellt. Unter dem Tastwert soll der Ausrückweg der Kupplung verstanden werden, bei welchem die Kupplung zu greifen beginnt, und das Drehmoment vom Verbrennungsmotor auf den Antriebsstrang übertragen wird. Da dieser Tastpunkt von dem konstruktiven Aufbau des Antriebsstranges abhängt und Alterungserscheinungen unterliegt, muss dieser ständig neu bewertet werden.
In einer Ausgestaltung wird der Sicherheitsabstand in Abhängigkeit der zuletzt bekannten Position des Tastpunktes der Trennkupplung eingestellt, wobei eine Temperaturabhängigkeit des Tastpunktes berücksichtigt wird. Durch die Einstellung des Sicherheitsabstandes in Abhängigkeit von dem Tastpunkt wird gewährleistet, dass immer ein ausreichender Abstand bei der Position Kupplung offen vorhanden ist, der bei fehlerhafter Funktion des Kupplungsbetäti- gungssystems verhindert, dass die Trennkupplung unbeabsichtigt geschlossen wird.
In einer Ausgestaltung werden Informationen über die Umgebungsbedingungen und/oder die Fahrzeugrandbedingungen über eine Kommunikationsleitung des Kraftfahrzeuges bereitgestellt. Dadurch werden die von Sensoren, welche an sich im Kraftfahrzeug vorhanden sind, bereitgestellten Daten auch zur Unterbindung einer sicherheitskritischen Betätigung der Trennkupplung genutzt.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1 : eine schematische Darstellung eines Antriebsstranges eines Kraftfahrzeuges mit einem Hybridmodul,
Figur 2: Übersicht kritischer Störmomente als Funktion von der Reibhaftung, dem Gang und der Fahrzeuggeschwindigkeit,
Figur 3: ein erstes Ausführungsbeispiel für das erfindungsgemäße Verfahren,
Figur 4: ein zweites Ausführungsbeispiel für das erfindungsgemäße Verfahren.
Figur 1 zeigt schematisch einen Triebstrang eines Kraftfahrzeuges mit einem Verbrennungsmotor 1 , einen, an einer Kurbelwelle 2 des Verbrennungsmotors 1 angebundenen Schwingungsdämpfer 3, einem Hybridmodul 4 mit Freilauf 5 und Trennkupplung 6, sowie mit Rotor 7 und Stator 8 eines elektrischen Antriebes, einem Getriebe 9, einem Differenzial 10 und nicht im Einzelnen dargestellten Rädern. Zwischen dem Verbrennungsmotor 1 und dem Getriebe 9 sind zwei parallele Drehmomentübertragungsstränge vorgesehen. Ein erster Drehmomentübertragungsstrang enthält die Trennkupplung 6 und ein zweiter Drehmomentübertragungsstrang den Freilauf 5. Der Freilauf 5 überträgt das Drehmoment vom Verbrennungsmotor 1 auf das Getriebe 9 und öffnet bei Drehmomentflussrichtung vom Getriebe 9 auf den Verbrennungsmotor 1. Drehmomente vom Getriebe 9 in Richtung Verbrennungsmotor 1 sind bei ge- schlossener Trennkupplung 6 übertragbar. Dies betrifft insbesondere das Starten des Verbrennungsmotors 1 aus dem elektrischen Fahren sowie das Übertragen des Schubmomentes im Falle einer vollen Batterie.
Im verbrennungsmotorischen Betrieb des Triebstranges bleibt die Trennkupplung 6 geschlossen, so dass diese entsprechend ihrer anliegenden Drehmomentübertragungskapazität das vom Verbrennungsmotor 1 übertragbare Moment jeweils anteilig zusammen mit dem Freilauf 5 überträgt. Die Funktion der Trennkupplung 6 wird durch ein Steuergerät 1 1 , welches mit einem übergeordneten Fahrzeugsteuergerät 12 verbunden ist, gesteuert. Das Steuergerät 1 1 und das Fahrzeugsteuergerät 12 sind dabei über eine Fahrzeugkommunikationsleitung, vorzugsweise einen CAN-Bus 15, miteinander und mit Sensoren 13 und einem Fahrerassistenzsystem 14 verbunden.
In Figur 2 ist eine Übersicht der kritischen Störmomente als Funktion des Reibwertes, des Ganges sowie der Fahrzeuggeschwindigkeit dargestellt. Wie der Figur 2 zu entnehmen ist, können beim Durchfahren einer Kurve im zweiten Gang bei 30 km/h unter Schnee bzw. eisglatter Fahrbahn (Annahme Reibwert μ = 0,3) bereits Störmomente von >55 nm zu einem eventuellen sicherheitskritischen Haftabriss zwischen Reifen und Fahrbahn an der Antriebsachse führen.
Bei regennasser Fahrbahn erhöht sich der Reibwert μ auf etwa 0,7, was tolerierbare Störmomente von bis zu ca. 150 nm zulässt. Unter Berücksichtigung der im Fehlerfall auftretenden Kupplungsdynamiken kann in Abhängigkeit der benötigten Fehlertoleranzzeit ein notwendiger, vorzuhaltender Sicherheitsabstand definiert werden. Bei schlechteren Umgebungsbedingungen muss also der Sicherheitsabstand durch die geringeren tolerierbaren Störmomente größer werden. Aus diesem Sachverhalt ergeben sich von den Umgebungsbedingungen abhängige, unterschiedliche Sicherheitsabstände, welche zum einen der funktionalen Sicherheit als auch der möglichen Verfügbarkeit des Systems dienen.
Zur Einstellung des Sicherheitsabstandes wird ein kritisches Störmoment Mkrit bestimmt, was wie folgt ermittelt wird.
M Krit = rriv * + M E -Maschine '
Figure imgf000007_0001
wobei μ der Reibwert und v2/r die Querbeschleunigung darstellt. Die zugehörige Position des ermittelten kritischen Störmomentes Mkrit kann auch in Abhängigkeit der zuletzt bekannten Position des Tastpunktes T ermittelt werden. Dabei sind Variationen des Tastpunktes T z.B. durch Temperatureinflüsse zu berücksichtigen bzw. zusätzlich vorzuhalten. Auf die so berechnete Position des kritischen Störmomentes Mkrit kann nun die erforderliche Position„sicher offen" definiert werden, bis zu welcher die Trennkupplung 6 beim Abkoppeln des Verbrennungsmotors 1 betätigt und gehalten werden muss.
Durch Kenntnis der Kupplungskennlinie kann in Abhängigkeit der von den Sensoren 13 gelieferten Informationen, z.B. mögliche Glättegefahr bei Außentemperaturen <3°C und/oder gemessene Querbeschleunigung bestehender Fahrerassistenzsysteme 14 in Kombination mit der, vom Gesamtsystem abhängigen Fehlertoleranzzeit der Sicherheitsabstand s definiert werden.
In Figur 3 ist die Kupplungskennlinie dargestellt, bei welcher ein zu übertragendes Drehmoment über dem Ausrückweg der Trennkupplung 6 dargestellt ist. Bei der in Figur 3 beschriebenen Situation wird von einer Fahrzeuggeschwindigkeit von 30 km/h und einem Reibwert von μ = 0,7 ausgegangen, was gleichbedeutend mit einer nassen Fahrbahn ist. Bei dieser Situation ist ein zulässiges Störmoment Mkrit von 155 nm gegeben, damit kein Haftabriss der Reifen von der Fahrbahn auftritt. Es wird eine Fehlertoleranzzeit von 100 ms angenommen, in welcher auftretende Fehler zugelassen werden. Darüber hinaus wird eine mittlere Aktordynamik im Fehlerfall von 30 mm/s angenommen, mit welcher sich der Aktor der Trennkupplung 6 in Schließrichtung bewegt.
Aus dieser Annahme ergibt sich ein erforderlicher Sicherheitsabstand s von s = v * t = 3 mm. Dieser Sicherheitsabstand s wird als Konstante auf den Ausrückweg addiert, der dem kritischen Störmoment Mkrit entspricht, welches sich in Abhängigkeit von den Umgebungsbedingungen ändert, auf den Ausrückweg der Kupplung zugeschlagen. Mit diesem Sicherheitsabstand s, den die offene Trennkupplung 6 nun einnimmt, ist die Trennkupplung 6 auch bei Fehlfunktionen des Kupplungsbetätigungssystems in der Position„sicher offen", in welcher ein ungewolltes Schließen der Trennkupplung 6 zuverlässig unterbunden wird. Der Tastpunkt T des Kupplungsbetätigungssystems liegt dabei zuverlässig innerhalb des ermittelten Sicherheitsabstandes s, so dass davon ausgegangen wird, dass kein Schließen der Kupplung auftritt. In einer zweiten Situation, welche in Figur 4 dargestellt ist, wird anhand der Kupplungskennlinie davon ausgegangen, dass das Kraftfahrzeug eine Geschwindigkeit von 30 km/h besitzt und der Reibwert μ = 0,2 beträgt, was mit einer schnee- oder eisbedeckten Fahrbahn gleichzusetzen ist. Das zulässige kritische Störmoment Mkrit, bei welchem kein Haftabriss der Räder von der Fahrbahn auftritt, wird auf 25 nm beschränkt. Die Fehlertoleranzzeit, innerhalb welcher ein Fehler des Steuergerätes 1 1 zugelassen wird, wird mit 100 ms angenommen, während die mittlere Aktordynamik zum Verfahren der Trennkupplung 6 im Fehlerfall mit 30 mm/s angenommen wird.
Auch unter diesen gegebenen Bedingungen wird ein erforderlicher Sicherheitsabstand s von s = v * t = 3 mm bestimmt. Das kritische Störmoment Mkrit, welches sich in Abhängigkeit von den Umgebungsbedingungen, wie Reibwert und Außentemperatur, des Kraftfahrzeuges verändert, liegt hiermit bei niederen Drehmomenten. Auch hier wird auf den Ausrückweg der Trennkupplung 6, welcher dem kritischen Störmoment Mkrit entspricht, der Sicherheitsabstand s von 3 mm aufgeschlagen, um somit eine Position„sicher offen" der Trennkupplung 6 zu gewährleisten. Der Tastpunkt T der Trennkupplung 6 liegt bei diesen Gegebenheiten sicher innerhalb des von dem Sicherheitsabstand s aufgespannten Ausrückweges. In einer Alternative kann der Sicherheitsabstand s aber auch in Abhängigkeit des Tastpunktes T variabel definiert werden.
Bezugszeichenliste Verbrennungsmotor
Kurbelwelle
Schwingungsdämpfer
Hybridmodul
Freilauf
Trennkupplung
Rotor
Stator
Getriebe
Differenzial
Steuergerät
Fahrzeugsteuergerät
Sensor
Fahrerassistenzsystem

Claims

Patentansprüche
1 . Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges, wobei das Hybridmodul (4) zwischen einem Verbrennungsmotor (1 ) und einem Getriebe (9) wirksam ist und einen elektrischen Antrieb, eine Trennkupplung (6) und einen Freilauf (5) aufweist, und die Trennkupplung (6) zum Start des Verbrennungsmotors (1 ) durch die Übertragung eines von dem elektrischen Antrieb oder dem Antriebsstrang gelieferten Drehmomentes durch die kraftschlüssige Verbindung mit dem elektrischen Antrieb oder dem Antriebsstrang für ein rein elektrisches Fahren verwendet wird, dadurch gekennzeichnet, dass ein vorzuhaltender Sicherheitsabstand (s) der offenen Trennkupplung (6) in Abhängigkeit von den Umgebungsbedingungen des Kraftfahrzeuges und/oder Fahrzeugrandbedingungen eingestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Sicherheitsabstand (s) in Abhängigkeit eines von den Umgebungsbedingungen des Kraftfahrzeuges und/oder den Fahrzeugrandbedingungen abhängigen kritischen Störmomentes (Mkrit) eingestellt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Sicherheitsabstand (s) als Konstante ausgehend von der Position des kritischen Störmomentes (Mkrit) aus definiert wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das kritische Störmoment (Mkrit) in Abhängigkeit eines Reibwertes (μ) der Fahrzeugräder bestimmt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Reibwert (μ) für einen vorgegebenen Bereich einer Außentemperatur des Kraftfahrzeuges als Konstante ausgebildet ist.
6. Verfahren nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass das kritische
Störmoment (Mkrit) in Abhängigkeit einer Querbeschleunigung (v2/r) des Kraftfahrzeuges bestimmt wird.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Sicherheitsabstand (s) in Abhängigkeit eines Tastpunktes (T) der Trennkupplung (6) variabel eingestellt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Sicherheitsabstand (s) in Abhängigkeit der zuletzt bekannten Position des Tastpunktes (T) der Trennkupplung (6) eingestellt wird, wobei eine Temperaturabhängigkeit des Tastpunktes (T) berücksichtigt wird.
PCT/DE2014/200640 2013-12-11 2014-11-17 Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges WO2015086011A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014005642.1T DE112014005642A5 (de) 2013-12-11 2014-11-17 Verfahren zur Vermeidung einer sicherheitskritischen Betätigung einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges
CN201480066795.4A CN105793088B (zh) 2013-12-11 2014-11-17 避免对机动车驱动系的混合动力模块中的分离离合器进行危及安全性的操纵的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013225522 2013-12-11
DE102013225522.5 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015086011A1 true WO2015086011A1 (de) 2015-06-18

Family

ID=52144324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200640 WO2015086011A1 (de) 2013-12-11 2014-11-17 Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges

Country Status (3)

Country Link
CN (1) CN105793088B (de)
DE (1) DE112014005642A5 (de)
WO (1) WO2015086011A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034223A2 (de) * 2007-09-07 2009-03-11 Toyota Jidosha Kabusiki Kaisha Automatische Getriebesteuervorrichtung und Verfahren zum Steuern des automatischen Getriebes
DE102007050775A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102009043243A1 (de) * 2008-10-30 2010-05-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Antriebsstranges und Antriebsstrang
DE102012206680A1 (de) 2011-05-05 2012-11-08 Schaeffler Technologies AG & Co. KG Hybridmodul für einen Triebstrang eines Fahrzeuges

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19946335A1 (de) * 1998-10-08 2000-04-13 Luk Getriebe Systeme Gmbh Verfahren zum Beeinflussen eines beim Fahren eines Kraftfahrzeugs mit einer Übersetzungsänderung verbundenen Schaltvorgang
CN101925497B (zh) * 2008-02-08 2015-03-25 沃尔沃技术公司 用于运行混合动力车辆的方法及混合动力车辆
DE102009053037A1 (de) * 2008-12-18 2010-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Beendigung einer Kupplungsschutzfunktion
GB2488527A (en) * 2011-02-18 2012-09-05 Land Rover Uk Ltd Vehicle with speed threshold for transition to two or multi wheel drive
SE535679C2 (sv) * 2011-03-14 2012-11-06 Scania Cv Ab Förfarande och system vid bestämning av en kontaktpunkt för en koppling
CN104024676A (zh) * 2011-12-28 2014-09-03 斯堪尼亚商用车有限公司 用于控制车辆的离合器的方法和系统
US20140277984A1 (en) * 2013-03-13 2014-09-18 Ford Global Technologies, Llc Coordinated brake control of wheels on a common differential

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034223A2 (de) * 2007-09-07 2009-03-11 Toyota Jidosha Kabusiki Kaisha Automatische Getriebesteuervorrichtung und Verfahren zum Steuern des automatischen Getriebes
DE102007050775A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102009043243A1 (de) * 2008-10-30 2010-05-06 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zum Betreiben eines Antriebsstranges und Antriebsstrang
DE102012206680A1 (de) 2011-05-05 2012-11-08 Schaeffler Technologies AG & Co. KG Hybridmodul für einen Triebstrang eines Fahrzeuges

Also Published As

Publication number Publication date
CN105793088B (zh) 2018-09-25
CN105793088A (zh) 2016-07-20
DE112014005642A5 (de) 2016-09-29

Similar Documents

Publication Publication Date Title
EP2409873B1 (de) Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs und entsprechender Antriebsstrang
DE102012020906A1 (de) Verfahren und System zum Betreiben eines Antriebsstrangs eines Kraftwagens
DE102013107781B4 (de) Verfahren und Vorrichtung zum Verhindern einer ungewollten Beschleunigung eines Kraftfahrzeugs
DE102008008207A1 (de) Verfahren zum ausfallsicheren Betreiben eines Hybridfahrzeugs zum kontrollierten Hervorrufen von einer einen Notlauf des Fahrzeugs ermöglichenden Ersatzmaßnahme und Vorrichtung zum Durchführen dieses Verfahrens
DE102012020908A1 (de) Verfahren und System zum Betreiben eines Antriebsstrangs eines Kraftwagens
DE102013009747A1 (de) Absicherung einer elektrisch angesteuerten Parksperre mit Hilfe der elektrischen Feststellbremse
WO2009030219A2 (de) Verfahren zur steuerung eines doppelkupplungsgetriebes
DE102011076682A1 (de) Verfahren und Sicherheitskonzept zur Erkennung von Fehlern in einem Antriebssystem eines Kraftfahrzeuges
DE102013205010A1 (de) Verfahren zur Überführung eines Antriebsstrangs eines Kraftfahrzeugs von einem Segelbetrieb in einen Normalbetrieb
WO2010108729A1 (de) Verfahren und vorrichtung zur steuerung eines ablaufes von fahrzeuginternen funktionen in einem fahrzeug
EP3084253B1 (de) Verfahren zur erhöhung einer verfügbarkeit einer hybridtrennkupplung in einem hybridantriebsstrang eines kraftfahrzeuges
DE102010034422A1 (de) Kupplungssteuerung
DE112013003797B4 (de) Verfahren zum Betreiben eines Antriebstrangs
WO2015043596A1 (de) Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges
DE102012218227A1 (de) Verfahren zur Steuerung einer Reibungskupplung
DE102008063069A1 (de) Erkennung der Unterbrechung des Antriebsleistungsflusses eines Fahrzeugs
DE19747925B4 (de) Vorrichtung und Verfahren zur automatisierten Betätigung einer Kupplung im Antriebsstrang eines Kraftfahrzeugs
DE102013016762A1 (de) Verfahren zum Betreiben eines Triebstrangs für einen allradbetreibbaren Kraftwagen
WO2015086011A1 (de) Verfahren zur vermeidung einer sicherheitskritischen betätigung einer trennkupplung in einem hybridmodul eines antriebsstranges eines kraftfahrzeuges
DE102015202533A1 (de) Verfahren zur Erzeugung eines Warnsignales in einem Antriebsstrang eines Fahrzeuges
DE112018003113B4 (de) Verfahren zur Betätigung einer Hybridtrennkupplung eines Hybridfahrzeuges
DE102015016971B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102006058194A1 (de) Verfahren und Vorrichtung zum Steuern des Betriebes einer im Antriebsstrang eines Fahrzeuges angeordneten Kupplung beim Anfahren
DE102011018395A1 (de) Verfahren zur Steuerung und/oder Regelung einer Kupplung in einem Antriebsstrang eines Hybridfahrzeuges
DE102014224850B4 (de) Verfahren zur Erkennung von sicherheitskritischen Betätigungen einer Trennkupplung in einem Hybridmodul eines Antriebsstranges eines Kraftfahrzeuges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014005642

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014005642

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816119

Country of ref document: EP

Kind code of ref document: A1