WO2015085818A1 - 氧化锆/氧化铪混合物的火法分离方法 - Google Patents

氧化锆/氧化铪混合物的火法分离方法 Download PDF

Info

Publication number
WO2015085818A1
WO2015085818A1 PCT/CN2014/087812 CN2014087812W WO2015085818A1 WO 2015085818 A1 WO2015085818 A1 WO 2015085818A1 CN 2014087812 W CN2014087812 W CN 2014087812W WO 2015085818 A1 WO2015085818 A1 WO 2015085818A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
tetrabromide
zirconia
mixture
hafnium
Prior art date
Application number
PCT/CN2014/087812
Other languages
English (en)
French (fr)
Inventor
朱兴峰
Original Assignee
朱兴峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱兴峰 filed Critical 朱兴峰
Priority to JP2016539057A priority Critical patent/JP6470287B2/ja
Priority to US15/102,255 priority patent/US10094000B2/en
Priority to ES14869461T priority patent/ES2698622T3/es
Priority to CA2933285A priority patent/CA2933285C/en
Priority to AU2014361446A priority patent/AU2014361446B2/en
Priority to KR1020167015197A priority patent/KR102119063B1/ko
Priority to RU2016124271A priority patent/RU2653521C1/ru
Priority to EP14869461.5A priority patent/EP3078756B1/en
Publication of WO2015085818A1 publication Critical patent/WO2015085818A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/04Halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0073Leaching or slurrying with acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/008Leaching or slurrying with non-acid solutions containing salts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to a method for separating zirconium and hafnium, in particular to a pyrolysis method for a mixture of zirconia/yttria.
  • Zirconium lanthanum has unique high temperature resistance, radiation resistance and corrosion resistance.
  • zirconium alloy is used as reactor cladding and structural materials, and it is used as reactor control material.
  • Zirconium lanthanum has also been widely used in the fields of chemical industry, metallurgy and electronics.
  • zirconium and hafnium separation technology is the key to producing atomic energy grade sponge zirconium.
  • Zirconium and strontium separation methods have been studied in many countries. At present, separation methods are roughly divided into two categories: wet separation and fire separation:
  • Wet separation mainly includes MIBK-HCNS method, TOA method, TBP-HCL-HNO 3 method, modified N235-H 2 SO 4 method and sulfoxide extraction method.
  • the main principle of pyrolysis separation is to separate the saturated vapor pressure of HfCl 4 and ZrCl 4 in molten salt potassium perchlorate (KAlCl 4 ) in the rectification column, and to separate zirconium and hafnium to obtain w(HfCl 4 ). 30% to 50% enrichment and atomic energy level ZrCl 4 .
  • ZrCl 4 and HfCl 4 enter from the middle of the column, and zirconium and hafnium are separated under normal pressure and a column temperature of 350 ° C.
  • the rectification column has a plurality of trays, each of which supports a molten salt layer, ZrCl 4
  • the fraction is recovered in the solvent phase of the bottom of the column, while the residual fraction rich in HfCl 4 is formed in the vapor phase at the top of the column.
  • the method is characterized by low consumption of chemical reagents, less pollution of three wastes, short separation process, and direct connection with the metal reduction process.
  • the shortcoming is that the equipment and the transportation system are operated at 350-500 °C, which has high requirements on equipment, purification and impurity removal, and large investment, and is suitable for large zirconium smelters.
  • a pyrometallurgical separation method of a zirconia/yttria mixture having a better separation effect comprising the following steps:
  • zirconium oxide/cerium oxide mixture, carbon and pure bromine are reacted at 650 ° C for one hour to obtain a bromide of zirconium and hafnium;
  • the mixture of zirconium tetrabromide and ruthenium tetrabromide is added to the molten salt for rectification separation, and the bottom of the distillation column is kept below 357 ° C for two hours, and the top of the column is obtained as a non-target product, and the molten salt is fluorine.
  • the rectification separation was carried out in the same apparatus, and the temperature was raised to 400 ° C to 403 ° C for more than five hours, and ruthenium tetrabromide was collected at the top of the column.
  • the temperature at which zirconium tetrabromide is collected is preferably maintained at 357 °C.
  • the temperature at which the ruthenium tetrabromide is collected is preferably maintained at 400 °C.
  • Pure zirconium and pure ruthenium can be obtained by separately replacing the zirconium tetrabromide or ruthenium tetrabromide with magnesium.
  • the present invention is changed to carbon bromide on the basis of conventional carbonation and chlorination, and the difference between the boiling points of zirconium and zirconium bromide is greater than the difference between the boiling points of the chloride.
  • the separation effect is better, the equipment investment is economical, and it is easy to industrialize.
  • the invention technology can fill the domestic gap and can greatly contribute to the localization of zirconium and niobium nuclear energy materials.
  • zirconium and hafnium oxide are added, and the corresponding carbon is added, and the vaporized raw material pure bromine is introduced into the high-temperature reactor through nitrogen gas, and the reactor is kept at 650 degrees, and the raw material is added with bromine. After completion, it was kept at 650 ° C for one hour, and a mixture of zirconium tetrabromide and ruthenium tetrabromide was obtained by post-cooling.
  • a mixture of zirconium tetrabromide and ruthenium tetrabromide is added to the corrosion-resistant and high-temperature resistant ceramic reactor, and a molten salt mixture is added, which is a molten mixture of potassium fluorate and potassium aluminum sulfate.
  • the residue in the kettle is preserved.
  • the rectification equipment in the invention adopts domestic equipment, adopts infrared heating, ceramic material, and the filler in the rectification tower adopts corrugated ceramic filler.
  • nuclear energy grade material the high-purity zirconium tetrabromide compound obtained by the above rectification separation, the high-purity cerium compound, and the magnesium powder are respectively subjected to reduction reaction to obtain high-purity sponge zirconium and high-purity sponge bismuth, respectively. Used for deep processing of nuclear energy zirconium and nuclear energy bismuth materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种氧化锆/氧化铪混合物的分离方法。将氧化锆/氧化铪混合物、炭和纯溴在650℃下反应一小时,得到锆、铪的溴化物,将所述的锆、铪溴化物加入到熔盐混合物中进行精馏分离,精馏塔塔底在357℃以下保持两小时,得到的为非目标物;在357℃保持五小时,收集高四溴化锆;釜内残留物保存起来;在相同的设备中进行精馏分离,加温到400度,保持五个小时以上,获得四溴化铪,通过镁分别置换所述的四溴化锆、四溴化铪得到纯锆和纯铪。

Description

氧化锆/氧化铪混合物的火法分离方法 [技术领域]
本发明涉及一种锆铪分离方法,具体涉及氧化锆/氧化铪混合物的火法分离方法。
[背景技术]
锆铪具有独特的耐高温、耐辐射、抗腐蚀性能,在原子能工业中,锆合金用作反应堆包壳和结构材料,铪作反应堆控制材料。在化工、冶金、电子等领域锆铪也得到广泛的应用。
锆和铪的化学性质极为相似,通常以氧化物的形式在矿石中共生,自然锆资源中通常铪的质量分数为锆的1.5%~3%,与此相比,原子能级海绵锆要求w(Hf)<0.01%。因此,锆铪分离技术是生产原子能级海绵锆的关键。许多国家都对锆、铪分离方法进行了研究,目前分离方法大致分为两大类别:湿法分离和火法分离:
湿法分离主要包括MIBK-HCNS法、TOA法、TBP-HCL-HNO3法、改进的N235-H2SO4法和亚砜类萃取法等。
火法分离其主要原理是利用HfCl4与ZrCl4在熔融盐铝氯酸钾(KAlCl4)中饱和蒸汽压的差异于精馏塔中进行分离,用此方法分离锆、铪最终得到w(HfCl4)30%~50%富集物和原子能级的ZrCl4
使用该技术的公司有:COMPAGNIE EUROPEENNE DU  ZIRCONIUM-CEZUS(欧洲塞扎斯“锆”公司),在其专利US20090117018公告日2008年2月7日,发明名称Process for the separation and purification of hafnium and zirconium(锆铪的分离纯化方法)中就公开了类似的方法,锆石矿的加碳氯化得到的ZrCl4和HfCl4混合物,反应过程如下式(1)和(2):
ZrSiO4+4C=ZrC+SiO+3CO   (1)
ZrC+2Cl2=ZrCl4+C   (2)
ZrCl4和HfCl4从塔中部进入,在常压和塔温为350℃的条件下进行锆、铪分离,精馏塔具有多个塔板,每个塔板均支撑熔融盐层,ZrCl4级分在塔底的溶剂相中被回收,而富含HfCl4的残余级分在塔顶的蒸汽相中生成。该方法的特点是:消耗化工试剂少、三废污染少、分离流程短,可以直接与金属还原工序衔接。其缺点是设备及运送系统都在350~500℃下操作,对设备要求高,净化除杂差,投资大,适合大型锆铪冶炼厂。
[发明内容]
为了解决现有技术中上述缺陷和不足,提供一种分离效果更好的氧化锆/氧化铪混合物的火法分离方法,该方法包括以下步骤:
将氧化锆/氧化铪混合物、炭和纯溴在650℃下反应一小时,得到锆、铪的溴化物;
ZrO2+C+2Br2→ZrBr4+CO2
HfO2+C+2Br2→HfBr4+CO2
将所述的四溴化锆、四溴化铪的混合物加入到熔盐中进行精馏分离,精馏塔塔底在357℃以下保持两小时,塔顶得到非目标产物,该熔盐为氟酸钾和硫酸铝钾的熔融混合物重量配比为氟酸钾:硫酸铝钾=1.2~1.6:1;
在357℃~360℃保持五小时,塔顶收集四溴化锆;釜内残留物保存起来;
在相同的设备中进行精馏分离,加温到400℃~403℃,保持五个小时以上,塔顶收集四溴化铪。
收集四溴化锆的温度优选保持在357℃。
收集四溴化铪的温度优选保持在400℃。
通过镁分别置换所述的四溴化锆、四溴化铪可得到得到纯锆和纯铪。
ZrBr4+2Mg=Zr+2MgBr2
HfBr4+2Mg=Hf+2MgBr2
本发明同现有技术相比,在常规的加碳氯化基础上改变为加碳溴化,锆铪溴化物沸点之差大于氯化物沸点之差。使得分离效果更好,设备投资经济,容易产业化。此发明技术可以填补国内空白,为锆铪核能材料的国产化可以作出极大贡献。
[具体实施方式]
下面通过具体实施例对本实用新型做进一步说明,下述实施例仅仅是为清楚地说明本实用新型所作的举例,而并非是对本实用新型的实施方式的限定。
实施例1
在耐腐耐高温的陶瓷反应器中,加入锆、铪氧化物,加入相应的炭,通过氮气将汽化的原料纯溴素进入高温的反应器内,反应器内保持650度,原料溴素加完后,在650度保持一小时,后冷却下获得四溴化锆与四溴化铪的混合物。
进入下一步精馏塔分离,在耐腐耐高温的陶瓷反应器里加入四溴化锆与四溴化铪的混合物,加入熔盐混合物,该熔盐为氟酸钾和硫酸铝钾的熔融混合物重量配比为氟酸钾:硫酸铝钾=1.2~1.6:1,在357度以下保持两小时,得到的为非目标物,在357度保持五小时,收集目标物高纯四溴化锆化合物,釜内残留物保存起来,由于量比较小,待收集N批次,有足够的原料时,在相同的设备中进行精馏分离,加温到400度,保持五个小时以上,获得高纯四溴化铪化合物。
本发明中的精馏设备全部采用国产设备,采用红外加热,陶瓷材质,精馏塔中的填料采用波纹陶瓷填料。
核能级材料的合成:将上面精馏分离获得的高纯四溴化锆化合物,高纯铪化合物,再分别与镁粉进行还原反应,分别得到高纯海绵锆与高纯海绵铪。用于核能锆,核能铪材料的深加工生产。

Claims (5)

  1. 一种氧化锆/氧化铪混合物的分离方法,其特征在于该方法包括以下步骤:将氧化锆/氧化铪混合物、炭和纯溴在650℃下反应一小时,得到四溴化锆、四溴化铪的混合物;
    将所述的四溴化锆、四溴化铪的混合物加入到熔盐中进行精馏分离,精馏塔塔底在357℃以下保持两小时,塔顶得到非目标产物,该熔盐为氟酸钾和硫酸铝钾的熔融混合物重量配比为氟酸钾:硫酸铝钾=1.2~1.6:1;
    在357℃~360℃保持五小时,塔顶收集四溴化锆;釜内残留物保存起来;
    在相同的设备中进行精馏分离,加温到400℃~403℃,保持五个小时以上,塔顶收集四溴化铪。
  2. 如权利要求1所述的氧化锆/氧化铪混合物的分离方法,其特征在于收集四溴化锆的温度保持在357℃。
  3. 如权利要求1所述的氧化锆/氧化铪混合物的分离方法,其特征在于收集四溴化铪的温度保持在400℃。
  4. 如权利要求1所述的氧化锆/氧化铪混合物的分离方法,其特征在于还包括将收集得到的四溴化锆通过镁置换得到纯锆的步骤。
  5. 如权利要求1所述的氧化锆/氧化铪混合物的分离方法,其特征在于还包括将收集得到的四溴化铪通过镁置换得到纯铪的步骤。
PCT/CN2014/087812 2013-12-12 2014-09-29 氧化锆/氧化铪混合物的火法分离方法 WO2015085818A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016539057A JP6470287B2 (ja) 2013-12-12 2014-09-29 酸化ジルコニウムと酸化ハフニウム混合物の乾式精錬分離方法
US15/102,255 US10094000B2 (en) 2013-12-12 2014-09-29 Method for separating the mixture of zirconium oxide/hafnium oxide by pyrometallurgy
ES14869461T ES2698622T3 (es) 2013-12-12 2014-09-29 Método de separación pirometalúrgica de una mezcla de dióxido de zirconio/oxido de hafnio
CA2933285A CA2933285C (en) 2013-12-12 2014-09-29 A method for separating the mixture of zirconium oxide and hafnium oxide by pyrometallurgy
AU2014361446A AU2014361446B2 (en) 2013-12-12 2014-09-29 Pyrometallurgical separation method of zirconia/hafnium oxide mixture
KR1020167015197A KR102119063B1 (ko) 2013-12-12 2014-09-29 건식 야금법으로 산화지르코늄과 산화하프늄 혼합물을 분리하는 방법
RU2016124271A RU2653521C1 (ru) 2013-12-12 2014-09-29 Способ разделения смеси оксида циркония и оксида гафния посредством пирометаллургии
EP14869461.5A EP3078756B1 (en) 2013-12-12 2014-09-29 Pyrometallurgical separation method of zirconia/hafnium oxide mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310682029.8A CN103725901B (zh) 2013-12-12 2013-12-12 氧化锆/氧化铪混合物的火法分离方法
CN201310682029.8 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015085818A1 true WO2015085818A1 (zh) 2015-06-18

Family

ID=50450191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087812 WO2015085818A1 (zh) 2013-12-12 2014-09-29 氧化锆/氧化铪混合物的火法分离方法

Country Status (10)

Country Link
US (1) US10094000B2 (zh)
EP (1) EP3078756B1 (zh)
JP (1) JP6470287B2 (zh)
KR (1) KR102119063B1 (zh)
CN (1) CN103725901B (zh)
AU (1) AU2014361446B2 (zh)
CA (1) CA2933285C (zh)
ES (1) ES2698622T3 (zh)
RU (1) RU2653521C1 (zh)
WO (1) WO2015085818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128828A (zh) * 2018-01-31 2018-06-08 丹阳同泰化工机械有限公司 一种用于污水处理的精馏塔

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103725901B (zh) * 2013-12-12 2015-10-28 上海哈峰新材料科技有限公司 氧化锆/氧化铪混合物的火法分离方法
CN108998683B (zh) * 2017-06-06 2020-02-21 安徽唯安科技新材料发展有限公司 分离氧化锆与氧化铪混合物的方法
RU2745521C1 (ru) * 2020-09-11 2021-03-25 Акционерное общество "Чепецкий механический завод" Способ повышения эффективности ректификационного разделения тетрахлоридов циркония и гафния
CN115305515A (zh) * 2021-05-08 2022-11-08 郑州大学 一种锆铪分离的电化学方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036706A (zh) * 1988-03-31 1989-11-01 欧洲塞扎斯“锆”公司 向在所说氯化物的压力下的连续萃取蒸馏塔中引入四氯化锆、四氯化铪及其混合物的方法和设备
FR2872811A1 (fr) * 2004-07-09 2006-01-13 Cie Europ Du Zirconium Cezus S Procede de separation et purification du hafnium et du zirconium
CN1829807A (zh) * 2003-07-25 2006-09-06 株式会社日矿材料 高纯度铪材料、由同种材料构成的靶和薄膜以及高纯度铪的制造方法
CN103725901A (zh) * 2013-12-12 2014-04-16 上海瀚威化学发展有限公司 氧化锆/氧化铪混合物的火法分离方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744060A (en) * 1952-10-09 1956-05-01 Du Pont Process for separating hafnium tetrachloride from zirconium tetrachloride
GB790345A (en) * 1956-04-13 1958-02-05 Du Pont Improvements in or relating to the separation of zirconium and hafnium compounds
US3012850A (en) * 1957-11-15 1961-12-12 Nat Distillers Chem Corp Process for the separation of zirconium and hafnium values
US3053620A (en) * 1958-02-12 1962-09-11 Nat Distillers Chem Corp Purification method for metal halides
US3966458A (en) * 1974-09-06 1976-06-29 Amax Speciality Metal Corporation Separation of zirconium and hafnium
US4910009A (en) * 1988-05-06 1990-03-20 Teledyne Industries, Inc. Ultra high purity halides and their preparation
US4983373A (en) * 1988-11-23 1991-01-08 Air Products And Chemicals, Inc. Process for the production of high purity zirconium tetrafluoride and other fluorides
FR2813877B1 (fr) * 2000-09-11 2002-12-06 Cezus Cie Europ Du Zirconium Procede de separation de metaux tels que le zirconium et l'hafnium
FR2823740B1 (fr) * 2001-04-18 2004-02-06 Cezus Co Europ Zirconium Procede de separation des tetrachlorures de zirconium et de hafnium
RU2214415C1 (ru) * 2002-05-13 2003-10-20 Общество с ограниченной ответственностью "Научно-исследовательская лаборатория "Синор" Способ получения галогенидов металлоценов (варианты)
US20060062910A1 (en) * 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
KR100939508B1 (ko) * 2004-11-18 2010-02-03 와커 헤미 아게 원소 할로겐화물의 제조 방법
KR101204588B1 (ko) * 2004-11-24 2012-11-27 스미토모덴키고교가부시키가이샤 용융염욕, 석출물 및 금속석출물의 제조방법
RU2329951C2 (ru) * 2006-07-12 2008-07-27 Лев Александрович Нисельсон Способ разделения тетрахлоридов циркония и гафния ректификацией
CN1927725A (zh) * 2006-10-23 2007-03-14 江西晶安高科技股份有限公司 甲基异丁基酮双溶剂萃取法制备原子能级氧化锆、氧化铪工艺
JP2008115063A (ja) * 2006-11-06 2008-05-22 Mitsuhide Kawasaki 高純度ハフニウム材料および溶媒抽出法を用いた該材料の製造方法。
CN102453801B (zh) * 2010-10-19 2013-08-14 北京有色金属研究总院 一种分离锆和铪的方法
WO2013006600A1 (en) * 2011-07-05 2013-01-10 Orchard Material Technology, Llc Retrieval of high value refractory metals from alloys and mixtures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036706A (zh) * 1988-03-31 1989-11-01 欧洲塞扎斯“锆”公司 向在所说氯化物的压力下的连续萃取蒸馏塔中引入四氯化锆、四氯化铪及其混合物的方法和设备
CN1829807A (zh) * 2003-07-25 2006-09-06 株式会社日矿材料 高纯度铪材料、由同种材料构成的靶和薄膜以及高纯度铪的制造方法
FR2872811A1 (fr) * 2004-07-09 2006-01-13 Cie Europ Du Zirconium Cezus S Procede de separation et purification du hafnium et du zirconium
US20090117018A9 (en) 2004-07-09 2009-05-07 Laurence Delons Process for the Separation and Purification of Hafnium and Zirconium
CN103725901A (zh) * 2013-12-12 2014-04-16 上海瀚威化学发展有限公司 氧化锆/氧化铪混合物的火法分离方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078756A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128828A (zh) * 2018-01-31 2018-06-08 丹阳同泰化工机械有限公司 一种用于污水处理的精馏塔

Also Published As

Publication number Publication date
EP3078756A4 (en) 2017-03-08
AU2014361446A1 (en) 2016-06-23
US20160348212A1 (en) 2016-12-01
ES2698622T3 (es) 2019-02-05
JP6470287B2 (ja) 2019-02-13
US10094000B2 (en) 2018-10-09
EP3078756B1 (en) 2018-10-10
KR20160097206A (ko) 2016-08-17
JP2017508868A (ja) 2017-03-30
AU2014361446B2 (en) 2017-03-02
CN103725901A (zh) 2014-04-16
KR102119063B1 (ko) 2020-06-04
CA2933285A1 (en) 2015-06-18
CA2933285C (en) 2019-04-02
EP3078756A1 (en) 2016-10-12
RU2653521C1 (ru) 2018-05-10
CN103725901B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2015085818A1 (zh) 氧化锆/氧化铪混合物的火法分离方法
US8641996B2 (en) Cyclic preparation method for producing titanium boride from intermediate feedstock potassium-based titanium-boron-fluorine salt mixture and producing potassium cryolite as byproduct
JP2018509371A (ja) 五酸化二バナジウム粉末の製造システム及び製造方法
CN1904097A (zh) 草酸体系萃取法制取无氟氧化铌工艺
CN102952951A (zh) 一种从钨冶炼渣中提取钽、铌并联产氟硅酸钾的方法
TW201111338A (en) Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
GB2513931A (en) Method for cyclically preparing titanium sponge and simultaneously producing sodium cryolite using sodium fluorotitanate as an intermediate material
KR101499645B1 (ko) 사용후 핵연료 우라늄 산화물(u3o8)의 염화물 전환방법
CN112351953A (zh) 氯化锂的制备方法及其装置
AU2011234028B2 (en) Treatment of tantalum- and/or niobium-containing compounds
CN108998683B (zh) 分离氧化锆与氧化铪混合物的方法
CN102424915B (zh) 一种利用含钛炉渣制备富钛化合物的方法
JP2011178586A (ja) 多結晶シリコンの精製方法
CN110921703A (zh) 一种从铪合金富集渣中制备四氯化铪的方法
EP2669393B1 (en) Method for producing metal zirconium industrially and producing low-temperature aluminum electrolyte as byproduct
CN102747250B (zh) 一种用于轧机的轧辊材料及其制备方法
CN114959283A (zh) 一种海绵钛生产中蒸馏镁的提纯方法
Accary et al. PREPARATION OF SMALL QUANTITIES OF METALLIC URANIUM BY REDUCTION OF DOUBLE FLUORIDE OF URANIUM AND CALCIUM
JPS63203730A (ja) 高純度金属ビスマスの製造方法
CN1362529A (zh) 含氟稀土硫酸介质中Ce4+与RE3+的氟化物绿色分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102255

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167015197

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016539057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2933285

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014361446

Country of ref document: AU

Date of ref document: 20140929

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014869461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016124271

Country of ref document: RU

Kind code of ref document: A