WO2015081778A1 - 一种皂苷的合成方法 - Google Patents
一种皂苷的合成方法 Download PDFInfo
- Publication number
- WO2015081778A1 WO2015081778A1 PCT/CN2014/090134 CN2014090134W WO2015081778A1 WO 2015081778 A1 WO2015081778 A1 WO 2015081778A1 CN 2014090134 W CN2014090134 W CN 2014090134W WO 2015081778 A1 WO2015081778 A1 WO 2015081778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- saponin
- group
- reaction
- sio
- Prior art date
Links
- WXMARHKAXWRNDM-AXDINOMPSA-N C[C@@H](C(C(C1)O2)[C@@](C)(CC3)C1C1C3[C@@](C)(CC[C@@H](C3)OC(C(C4O)O)OC(CO)C4O)C3=CC1)[C@]21OCC(C)CC1 Chemical compound C[C@@H](C(C(C1)O2)[C@@](C)(CC3)C1C1C3[C@@](C)(CC[C@@H](C3)OC(C(C4O)O)OC(CO)C4O)C3=CC1)[C@]21OCC(C)CC1 WXMARHKAXWRNDM-AXDINOMPSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/24—Condensed ring systems having three or more rings
- C07H15/256—Polyterpene radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J1/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane
- C07J1/0003—Androstane derivatives
- C07J1/0011—Androstane derivatives substituted in position 17 by a keto group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J17/00—Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
- C07J17/005—Glycosides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J63/00—Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by expansion of only one ring by one or two atoms
- C07J63/008—Expansion of ring D by one atom, e.g. D homo steroids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J69/00—Steroids in which the cyclopenta(a)hydrophenanthrene skeleton has been modified by contraction of only one ring by one atom and expansion of only one ring by one atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J71/00—Steroids in which the cyclopenta(a)hydrophenanthrene skeleton is condensed with a heterocyclic ring
- C07J71/0005—Oxygen-containing hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J71/00—Steroids in which the cyclopenta(a)hydrophenanthrene skeleton is condensed with a heterocyclic ring
- C07J71/0036—Nitrogen-containing hetero ring
- C07J71/0042—Nitrogen only
Definitions
- the invention belongs to the field of organic synthesis and relates to a strategy for constructing glycosidic bonds in saponins.
- Saponins are a special type of secondary metabolite, a sugar formed by a sugar moiety linked to a triterpene, a steroid or a steroid alkaloid via a glycosidic bond. Conjugate. According to the structure of sapogenin, it is divided into triterpenoidsaponins, steroidal saponins and steroidal alkaloids. Saponin is a widely active triterpene and steroidal glycoconjugate widely distributed in nature.
- glycosidic bonds in saponins in the prior art is generally: using halogenated sugars, glucosinolates, trichloroacetimidates (for example, the method for preparing saponins 11 in Steroids 76 (2011) 588-595, see reaction Formula 1)
- the glycosyl donor is glycosidically reacted with the aglycon by the action of a promoter to form a glycosidic bond.
- the synthesis of the above glycosyl donor requires a multi-step reaction to obtain.
- the most commonly used trichloroacetimidate donor (Schmidt donor) is exemplified by aldose or ketose, which requires full hydroxyl protection.
- the protecting group on the hydroxyl group at the 1-position is selectively removed, and then the Schmidt donor is prepared by reacting with trichloroacetonitrile and DBU. Since most of the reaction products are oily, it cannot be purified by recrystallization operation and needs to be separated by chromatography. Due to the instability of the Schmidt donor under acidic conditions, it is generally required to be used nowadays, and since the silica gel column is acidic, the yield is greatly reduced after silica gel column chromatography.
- the halogenated sugar or glucosinolate donor although there is no problem of instability, it also requires a multi-step reaction to prepare, and the reaction can be used for glycosidation with aglycon after purification by chromatography or recrystallization. In the reaction. It can be seen that the preparation and purification steps of the glycosyl donors for synthesizing saponins in the prior art are cumbersome and costly, and are not conducive to large-scale industrial production.
- the glycosidation reaction in the synthesis of saponin is a reaction between the active glycosyl donor and the hydroxyl group in the aglycon
- the prior art requires strict control of the water in the reaction system for constructing the glycosidic bond, and generally requires drying.
- the treated anhydrous solvent, and the reaction system needs to pass nitrogen or an inert gas, thereby greatly increasing the production cost, which is disadvantageous for large-scale industrial production.
- the invention provides a method for constructing a glycosidic bond in a saponin, comprising the steps of: using an excess amount of aldose or ketose directly with aglycon in a suitable organic solvent under the action of an acidic catalyst at 30 ° C to reflux temperature; The reaction yields the desired product saponin.
- the aldose or ketose is selected from the group consisting of monosaccharides or disaccharides, wherein the monosaccharide is selected from the group consisting of five carbon sugars, six carbon sugars or nine carbon sugars, and the five carbon sugars are preferably ribose, deoxyribose, xylose and arabinose, six carbon sugars.
- the element is selected from the group consisting of triterpenoids, steroids or steroidal alkaloids, wherein the steroids are preferably dehydroepiandrosterone, cholesterol, cholesterol, stigmasterol, sitosterol, ergosterol, diosgenin, digitonin, dragon tongue Lansaponin, estrogen ketone, pregnenolone, testosterone, dihydrotestosterone, steroidal alkaloids preferably peimisine, puqiedinone, solasodine, amylin Solamarine), alkaloid ( ⁇ -tomatine), dehydrotomatine, triterpenoids preferably protopanaxadiol, ginseng diol,
- the organic solvent is preferably benzene, toluene, xylene, ethylbenzene, chlorobenzene or dioxane Mixing one or more of a ring, chloroform, carbon tetrachloride, dichloromethane, acetonitrile, DMF, DMSO, THF;
- the acidic catalyst is selected from a solid acid or a liquid acid, and the solid acid is preferably an SiO 2 supported acid ( For example, H 2 SO 4 -SiO 2 , HClO 4 -SiO 2 , TfOH-SiO 2 , HF-SiO 2 , HBF 4 -SiO 2 , NaHSO 4 -SiO 2 , TMSOTf-
- the triterpene, steroid or steroidal alkaloid preferably has 3- ⁇ -OH, 3- ⁇ -OH, 6- ⁇ -OH, 6- ⁇ -OH, 12- ⁇ -OH, 12- ⁇ - A triterpene, steroidal or steroidal alkaloid of one or more of OH, 16- ⁇ -OH or 16- ⁇ -OH.
- aglycones are recovered by silica gel column chromatography, and the eluent used is one or a mixture of dichloromethane, chloroform, carbon tetrachloride or acetone.
- the silica gel column chromatography is continued to obtain the target product saponin, and the eluent used is one or a mixture of ethyl acetate, dichloromethane, chloroform, carbon tetrachloride, methanol, acetonitrile or acetone.
- the yield of the target product saponin can be up to 40% to 85% based on the amount of ketose or aldose.
- the suitable organic solvent refers to a solvent which does not contain a functional group which interferes with the progress of the glycosidation reaction, and for example, a suitable organic solvent does not include an alcohol solvent.
- the organic solvent used in the reaction may be a dried anhydrous solvent or an untreated analytically pure or chemically pure solvent.
- the aldose or ketose of the present invention comprises a pyran or furanose in a D-configuration and an L-configuration, and the target product saponin is a glycoside bond after the corresponding starting material (aldose or ketose with aglycon)
- the product, the configuration of the glycosidic bond includes two configurations of ⁇ and ⁇ , wherein the glycosidic bond configuration with the trans-structure of the hydroxyl group at the 1,2-position of the sugar is dominant (85% or more);
- the product of the cis-structured glycosidic bond is less than 10%.
- the C1-C4 alkyl group of the present invention is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl and the like, and the C1-C4 alkoxy group.
- said C1-C4 alkenyl is selected from the group consisting of vinyl, Propylene, allyl, butenyl, etc.
- said halogen means fluorine, chlorine, bromine, iodine, etc.
- said halogen means mono or polyfluoro, chloro, bromo, iodo substituted
- said aldose or A ketose refers to an aldose or ketose having a hydroxy group that is not protected by a protecting group.
- the above saponins or saponin intermediates can be used in the pharmaceutical, chemical or food fields.
- the preparation of the solid acid in the present invention comprises the steps of: adding silica gel and acid to an organic solvent, stirring uniformly at room temperature, evaporating the organic solvent by a rotary evaporator, and heating the remaining mixture to 90-110 ° C under vacuum to maintain a vacuum. Heating for 18-48h, to obtain a pale yellow powder, which is a solid acid, wherein the acid is one of H 2 SO 4 , HClO 4 , TfOH, HF, HBF 4 , NaHSO 4 or TMSOTf, the ratio of acid to silica gel It is 2 mmol/g.
- the organic solvent is preferably one or more of diethyl ether, methyl ether, dipropyl ether, dibutyl ether, dichloromethane;
- the silica gel is preferably 100-400 mesh, more preferably 100-200 mesh or 200-300 mesh, most preferably 300-400 mesh;
- the heating temperature under vacuum is preferably 100 ° C, and the heating time under vacuum is preferably 24 h.
- the present invention does not employ a conventional glycosyl donor (halogenated sugar, glucosinolate, trichloroacetimidate, etc.) to avoid the complicated operation of synthesizing a glycosyl donor, but uses aldose or ketose directly with aglycon
- a conventional glycosyl donor halogenated sugar, glucosinolate, trichloroacetimidate, etc.
- the strategy of reacting under the action of an acidic catalyst to form a glycosidic bond is simple, easy to operate, low in production cost, and easy to industrialize.
- the strategy for constructing a saponin glycosidic bond used in the present invention reduces the requirements on the reaction solvent and the reaction system.
- the present invention whether the dried organic solvent is used in the reaction, whether nitrogen or an inert gas is used for protection, Hard requirements, because the above treatment has little effect on the yield of the reaction. In this way, the practical operability of the present invention will be stronger, the requirements for the equipment are lower, and the industrial production is more favorable.
- the invention provides a chemical method for constructing a glycosidic bond in a saponin, which is generally applicable to the synthesis of various saponins.
- a chemical method for constructing a glycosidic bond in a saponin which is generally applicable to the synthesis of various saponins.
- the examples provided below are described in more detail. However, the examples are only for better understanding of the invention and are not intended to limit the scope or implementation of the invention. The embodiments of the invention are not limited to the following.
- the mixture was heated under vacuum for about 24 h to give a pale yellow powder, which was a corresponding solid acid supported on SiO 2 (for example, H 2 SO 4 -SiO 2 , HClO 4 - SiO 2 , TfOH-SiO 2 , HF-SiO 2 , HBF 4 -SiO 2 , NaHSO 4 -SiO 2 , TMSOTf-SiO 2 , etc.), and the solid acid was 2 mmol/g.
- SiO 2 for example, H 2 SO 4 -SiO 2 , HClO 4 - SiO 2 , TfOH-SiO 2 , HF-SiO 2 , HBF 4 -SiO 2 , NaHSO 4 -SiO 2 , TMSOTf-SiO 2 , etc.
- Dehydroepiandrosterone (34.6 g, 0.12 mol) was weighed, D-glucose (18.0 g, 0.1 mol) was dissolved in anhydrous toluene (200 mL), and H 2 SO 4 -SiO 2 (250 mg was added at 80 ° C).
- Dehydroepiandrosterone (34.6 g, 0.12 mol) was weighed, and D-glucose (18.0 g, 0.1 mol) was dissolved in toluene (200 mL, commercially available pure toluene, without drying), and added at 80 ° C. H 2 SO 4 -SiO 2 (250 mg, 0.5 mmol), constant temperature reaction (without argon shielding gas), until TLC detected that D-glucose almost completely disappeared (about 6 h), the reaction was concentrated, and then passed through a silica gel column.
- the strategy for constructing a glycosidic bond of the present invention has no effect on the yield of the reaction and the purity of the product, whether or not the dried organic solvent is used in the reaction, whether nitrogen or an inert gas is used for protection, and the present invention has no effect.
- the actual operation will be stronger, the requirements for equipment are lower, and it is more conducive to industrial production.
- Trillium glycosides (TRILIN, CAS registration number: 14144-06-0, structural formula: )Synthesis
- Diosgenin (62.2 g, 0.15 mol) was weighed, D-glucose (18.0 g, 0.1 mol) was dissolved in THF (300 mL), TfOH-SiO 2 (500 mg, 1.0 mmol) was added, and the reaction was refluxed until TLC was detected.
- Benzyl oleate 136.7 g, 0.25 mol was weighed, and L-arabinose (15.0 g, 0.1 mol) was dissolved in dioxane (500 mL). At 100 ° C, HClO 4 -SiO 2 was added.
- 12-Pivaloyl-20(S)-protopanaxadiol (163.5 g, 0.3 mol, prepared according to the method of Chinese patent CN200610116051.6) was weighed, and D-glucose (18.0 g, 0.1 mol) was dissolved in xylene ( In 500 mL), H 2 SO 4 -SiO 2 (500 mg, 1 mmol) was added at 90 ° C, and the reaction was kept at a constant temperature until D-glucose was almost completely disappeared by TLC (about 6 h), and the reaction was concentrated and passed through a silica gel column.
- ⁇ -sitosterol (124.4 g, 0.3 mol) was weighed, D-glucose (18.0 g, 0.1 mol) was dissolved in ethylbenzene (600 mL), and TMSOTf (8.9 g / 7.3 mL, 40 mmol) was added at 85 ° C.
- Fritillin (214 mg, 0.5 mmol) was weighed, D-glucose (18 mg, 0.1 mmol) was dissolved in acetonitrile-toluene (10 mL, volume ratio 1:2), and TfOH-SiO 2 (50 mg, was added at reflux temperature.
- a method for constructing a glycosidic bond in a saponin according to the present invention, ribose, deoxyribose, xylose, arabinose, glucose, glucosamine, acetylglucosamine, galactose, fructose, rhamnose, mannose, sialic acid, sucrose, Lactose, maltose, scillabiose, etc.
- aglycones dehydroepiandrosterone, cholesterol, cholesterol, stigmasterol, sitosterol, ergosterol, diosgenin, digitonin, dragon Glucoside, estrogen ketone, pregnenolone, testosterone, dihydrotestosterone, peimisine, puqiedinone, solasodine, solamarine, tomato Alkali ( ⁇ -tomatine), dehydrotomatine, protopanaxadiol, ginseng diol, oleanolic acid, ursolic acid, glycyrrhetinic acid, 11-deoxyglycyrrhetinic acid (where sialic acid, Qi Dun The carboxyl group in the fruit acid, ursolic acid, glycyrrhetinic acid or 11-deoxyglycyrrhetinic acid may be protected by a C1-C4 alkyl group, a C1-
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Steroid Compounds (AREA)
Abstract
本发明属于有机合成领域,涉及一种皂苷的合成方法,具体涉及一种构建皂苷中糖苷键的方法,包括如下步骤:采用过量的醛糖或酮糖直接与苷元在适合的有机溶剂中,在酸性催化剂作用下,于30℃至回流温度下,反应得到目标产物皂苷。
Description
本发明属于有机合成领域,涉及一种皂苷中糖苷键的构建策略。
皂苷(Saponins)是一类特别的次级代谢产物,由糖链(sugar moiety)与三萜(triterpene)、甾体(steroid)或甾体生物碱(steroid alkaloid)通过糖苷键相连而成的糖缀合物。依据皂苷元的结构分为三萜皂苷(triterpenoidsaponins)、甾体皂苷(steroidal saponins)和甾体生物碱皂苷(steroidal alkaloids)。皂苷是广泛存在于自然界中的一种具有广泛活性的三萜及甾体的糖缀合物,是很多中草药的活性成分,具有广泛的生物活性,例如免疫调节作用、抗肿瘤作用、降胆固醇、抗菌、抗病毒、降血糖、防治心血管疾病、降血压、利尿、抗疲劳、解热镇痛、保肝等,而且还可以作为食品天然甜味剂、保护剂、发泡剂、增味剂、抗氧化剂等。然而,皂苷在自然界总是以结构类似的大家族存在,使得分离纯化这一类化合物成为一个棘手的问题,从而限制了这类具有广泛药用前景的天然产物进行深入细致的生物活性研究。因此,寻找一种简单、快速、高效的合成皂苷的方法成为国内外研究者的研究热点,合成皂苷中关键的步骤就是糖基部分与苷元之间糖苷键的构建,因此,开发一种简单、快速、高效的构建皂苷糖苷键的方法成为当务之急。
首先,现有技术中皂苷中糖苷键的构建策略一般为:采用卤代糖、硫苷、三氯乙酰亚胺酯(例如文献Steroids 76(2011)588–595中制备皂苷11的方法,见反应式一)等糖基供体在促进剂的作用下与苷元发生糖苷化反应,进而形成糖苷键。然而上述糖基供体的合成需要进行多步反应才能得到,以最为常用的三氯乙酰亚胺酯供体(Schmidt供体)为例,以醛糖或酮糖为原料,需经全羟基保护后,选择性脱除1位羟基上的保护基,再与三氯乙腈、DBU反应制备得到Schmidt供体,由于多数反应产物为油状物,因此无法用重结晶操作进行纯化,需经色谱分离。由于Schmidt供体酸性条件下不稳定,一般需要现用现制,而且由于硅胶柱显酸性,因此经硅胶柱层析后其收率大为降低。至于卤代糖或硫苷供体虽然不存在不稳定的问题,但也需要多步反应才能制备得到,而且反应后需经色谱分离或重结晶等纯化操作后才能用于与苷元的糖苷化反应中。可见,现有技术用于合成皂苷的糖基供体的制备纯化步骤繁琐,成本高,不利于大规模工业化生产。
其次,由于皂苷合成中的糖苷化反应是活性糖基供体与苷元中的羟基发生的反应,因此,现有技术在构建糖苷键的反应体系中对水需要严格控制,一般需要使用经干燥处理的无水溶剂,且反应体系需通入氮气或惰性气体,由此极大地增加了生成成本,不利于大规模工业化生产。
发明内容
本发明提供一种构建皂苷中糖苷键的方法,包括如下步骤:采用过量的醛糖或酮糖直接与苷元在适合的有机溶剂中,在酸性催化剂作用下,于30℃至回流温度下,反应得到目标产物皂苷。
所述醛糖或酮糖选自单糖或二糖,其中单糖选自五碳糖、六碳糖或九碳糖,五碳糖优选核糖、脱氧核糖、木糖和阿拉伯糖,六碳糖优选葡萄糖、氨基葡萄糖、乙酰氨基葡萄糖、半乳糖、果糖、鼠李糖、甘露糖,九碳糖优选唾液酸,二糖优选蔗糖、乳糖、麦芽糖、绵枣儿二糖(scillabiose);所述苷元选自三萜、甾体或甾体生物碱,其中甾体优选去氢表雄酮、胆甾醇、胆固醇、豆甾醇、谷甾醇、麦角固醇、薯蓣皂苷元、洋地黄皂苷元、龙舌兰皂苷元、雌激素酮、孕烯醇酮、睾酮、二氢睾酮,甾体生物碱优选贝母辛(peimisine)、蒲贝酮碱(puqiedinone)、澳洲茄胺(solasodine)、苦茄碱(solamarine)、番茄碱(α-tomatine)、脱氢番茄碱(dehydrotomatine),三萜优选原人参二醇、人参二醇、齐墩果酸、熊果酸、甘草次酸、11-脱氧甘草次酸,其中唾液酸、齐墩果酸、熊果酸、甘草次酸或11-脱氧甘草次酸中的羧基可以被C1-C4的烷基、C1-C4的烯基、C1-C4的卤代烷基或苄基保护,所述苄基任选被1个或多个C1-C4的烷基、C1-C4的烷氧基、C1-C4的卤代烷基、C1-C4的卤代烷氧基或卤素取代;所述有机溶剂优选苯、甲苯、二甲苯、乙苯、氯苯、二氧六环、氯仿、四氯化碳、二氯甲烷、乙腈、DMF、DMSO、THF中的一种或多种混合;所述酸性催化剂选自固体酸或液体酸,固体酸优选SiO2负载的酸(例如H2SO4-SiO2、HClO4-SiO2、TfOH-SiO2、HF-SiO2、HBF4-SiO2、NaHSO4-SiO2、TMSOTf-SiO2等),液体酸优选H2SO4、HClO4、TfOH、TMSOTf、
HF;反应可以在氮气或惰性气体保护的环境下进行,也可以不通入保护气体;反应中酮糖或醛糖与苷元的摩尔比优选1:1.2~20,更优选1:1.5~15,最优选1:2.5~5.0;酮糖或醛糖与酸性催化剂的摩尔比优选1:0.005~1,更优选1:0.01~0.3,最优选1:0.02~0.1;反应温度优选为50℃~120℃,更优选70~110℃,最优选80~95℃,反应时间优选2h~24h,更优选5h~18h,最优选6h~10h。
所述三萜、甾体或甾体生物碱,优选带有3-β-OH、3-α-OH、6-β-OH、6-α-OH、12-β-OH、12-α-OH、16-β-OH或16-α-OH中一个或多个基团的三萜、甾体或甾体生物碱。
本发明反应结束后,利用硅胶柱层析的方法回收未反应的苷元,所用洗脱剂为二氯甲烷、氯仿、四氯化碳或丙酮中的一种或几种混合。回收苷元后,继续进行硅胶柱层析,得到目标产物皂苷,所用洗脱剂为乙酸乙酯、二氯甲烷、氯仿、四氯化碳、甲醇、乙腈或丙酮中的一种或几种混合,目标产物皂苷的收率以酮糖或醛糖的量计算可达40%~85%。
所述合适的有机溶剂指的是溶剂中不含有干扰糖苷化反应进行的官能团的溶剂,例如合适的有机溶剂不包括醇类溶剂。反应中所用的有机溶剂可以是经干燥的无水溶剂,也可以是未经处理的分析纯或化学纯溶剂。
本发明所述的醛糖或酮糖包括D-构型和L-构型的吡喃或呋喃糖,所述的目标产物皂苷为相应原料(醛糖或酮糖与苷元)形成糖苷键后的产物,糖苷键的构型包括α、β两种构型,其中以糖上1,2位羟基成反式结构的糖苷键构型为主(85%以上);糖上1,2位羟基成顺式结构糖苷键的产物不足10%。
本发明所述的C1-C4的烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基等,所述的C1-C4的烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、叔丁氧基等,所述的C1-C4的烯基选自乙烯基、丙烯基、烯丙基、丁烯基等,所述的卤素指氟、氯、溴、碘等,所述的卤代指单或多氟、氯、溴、碘取代,所述的醛糖或酮糖指糖上羟基未被保护基保护的醛糖或酮糖。
本发明的方法在制备具有药理活性的皂苷中的应用,所述皂苷优选:
本发明的方法在制备皂苷中间体中的应用,所述皂苷中间体优选:
上述的皂苷或皂苷中间体可用于医药、化工或食品领域。
本发明中固体酸的制备包括如下步骤:向有机溶剂中加入硅胶和酸,室温下搅拌均匀,用旋转蒸发仪蒸除有机溶剂,剩下的混合物于真空下加热到90-110℃,保持真空加热18-48h,得到淡黄色粉末,即为固体酸,其中所述酸为H2SO4、HClO4、TfOH、HF、HBF4、NaHSO4或TMSOTf中的一种,酸和硅胶的用量比为2mmol/g。
所述有机溶剂优选乙醚、甲醚、丙醚、丁醚、二氯甲烷中的一种或几种;所述硅胶优选100-400目,更优选100-200目或200-300目,最优选300-400目;所述真空下加热温度优选100℃,真空下加热时间优选24h。
与现有技术相比,本发明的优点在于:
(1)本发明没有采用常规糖基供体(卤代糖、硫苷、三氯乙酰亚胺酯等)避免合成糖基供体的复杂操作,而是采用醛糖或酮糖直接与苷元在酸性催化剂作用下反应,进而形成糖苷键的策略,该策略步骤简单、易于操作、生产成本低、易于工业化生产。
(2)本发明采用的构建皂苷糖苷键的策略,降低了对反应溶剂及反应体系的要求,本发明中对反应中是否采用经干燥处理的有机溶剂、是否采用氮气或惰性气体进行保护,没有硬性要求,因为上述处理对反应的收率几乎没有影响。这样一来,本发明的实际操作性将更强,对设备的要求更低,更加利于工业化生产。
(3)由于苷元、皂苷、醛糖或酮糖极性差别较大,反应结束后,可采用简
单的硅胶柱层析(单一洗脱剂),回收过量的苷元(可循环利用),回收苷元后,更换极性稍大的溶剂即可得到目标产物皂苷,纯化操作简单。
应理解,在本发明范围内,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
本发明提供一种构建皂苷中糖苷键的化学方法,该方法普遍适用于各类皂苷的合成。为了进一步理解本发明中构建糖苷键的策略,下面提供的实施例对其做了更详细的说明。但是这些实施例仅供更好的理解发明而并非用来限定本发明的范围或实施原则,本发明的实施方式不限于以下内容。
固体酸(例如H2SO4-SiO2、HClO4-SiO2、TfOH-SiO2、HF-SiO2、HBF4-SiO2、NaHSO4-SiO2或TMSOTf-SiO2等)的通用制备方法:
向40mL乙醚中加入10g硅胶(优选300-400目)、20mmol酸(如H2SO4、HClO4、TfOH、HF、HBF4、NaHSO4、TMSOTf)室温下搅拌均匀(约搅拌30min),用旋转蒸发仪蒸除乙醚,剩下的混合物于真空下加热到100℃,保持真空加热约24h,得到淡黄色粉末,即为SiO2负载的相应固体酸(例如H2SO4-SiO2、HClO4-SiO2、TfOH-SiO2、HF-SiO2、HBF4-SiO2、NaHSO4-SiO2、TMSOTf-SiO2等),该固体酸为2mmol/g。
实施例1
称取去氢表雄酮(34.6g,0.12mol),D-葡萄糖(18.0g,0.1mol)溶于无水甲苯(200mL)中,于80℃下,加入H2SO4-SiO2(250mg,0.5mmol),氩气保护恒温反应,直至TLC检测D-葡萄糖几乎完全消失(约5h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无去氢表雄酮,将洗脱液浓缩,得去氢表雄酮(14.4g,0.05mol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得白色固体22.5g,即为标题化合物,收率为50.0%,HPLC检测
纯度约为98.6%。
结构确证数据:ESI-MS(m/z):473.3[M+Na]+,1H NMR(400MHz,CD3OD):δ5.42(d,J=5.2Hz,1H,H-6),4.83(d,J=1.4Hz,1H,H-1),3.75(dd,J=3.2,1.6Hz,1H),3.68–3.61(m,2H),3.49–3.40(m,1H),3.36(dd,J=12.1,6.9Hz,1H),2.46(dd,J=19.2,8.8Hz,1H),2.42–2.36(m,1H),2.18(dd,J=25.6,10.9Hz,2H),2.08(dd,J=19.1,9.1Hz,1H),2.01–1.85(m,3H),1.83–1.77(m,1H),1.74–1.66(m,3H),1.64–1.52(m,3H),1.39–1.33(m,1H),1.31–1.27(m,1H),1.24(d,J=6.3Hz,3H,CH3-6),1.13(dd,J=13.6,3.7Hz,1H),1.07(s,3H,CH3-19),1.05–1.00(m,1H),0.90(s,3H,CH3-18).与文献Steroids 76(2011)588–595中化合物12的数据一致。
对比例1:
称取去氢表雄酮(34.6g,0.12mol),D-葡萄糖(18.0g,0.1mol)溶于甲苯(200mL,商品化分析纯甲苯,未经干燥处理)中,于80℃下,加入H2SO4-SiO2(250mg,0.5mmol),恒温反应(未通入氩气保护气),直至TLC检测D-葡萄糖几乎完全消失(约6h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无去氢表雄酮,将洗脱液浓缩,得去氢表雄酮(15.9g,55mmol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得白色固体22.6g,即为标题化合物,收率为50.2%,HPLC检测纯度约为98.2%。
由上述对比例可知,本发明构建糖苷键的策略,对反应中是否采用经干燥处理的有机溶剂、是否采用氮气或惰性气体进行保护,对反应的收率及产品的纯度几乎没有影响,本发明的实际操作性将更强,对设备的要求更低,更加利于工业化生产。
实施例2
称取薯蓣皂苷元(62.2g,0.15mol),D-葡萄糖(18.0g,0.1mol)溶于THF(300mL)中,加入TfOH-SiO2(500mg,1.0mmol),回流反应,直至TLC检测D-葡萄糖几乎完全消失(约12h),将反应物浓缩后,经硅胶柱层析(硅胶200~300目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无薯蓣皂苷元,将洗脱液浓缩,得薯蓣皂苷元(16.6g,0.04mol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无延龄草苷,将洗脱液浓缩,得延龄草苷(46.1g),收率80%,HPLC检测纯度96.5%。
结构确证数据:熔点:275-280℃,ESI-MS(m/z):577.5[M+H]+,1HNMR(400MHz,CD3OD)δ:0.64(3H,d,J=5.1Hz,CH3-27),0.78(3H,s,CH3-18),0.90(3H,s,CH3-19),1.09(3H,d,J=6.9Hz,CH3-21),5.03(1H,d,J=8.4Hz),5.26(brs,H-6).与文献《化工时刊》,第26卷第2期,第25-26页,2012年2月中的数据一致。
实施例3
称取齐墩果酸苄基酯(136.7g,0.25mol),L-阿拉伯糖(15.0g,0.1mol)溶于二氧六环(500mL)中,于100℃下,加入HClO4-SiO2(1.0g,2.0mmol),恒温反应,直至TLC检测L-阿拉伯糖几乎完全消失(约2h),将反应物浓缩后,经硅胶柱层析(硅胶200~300目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无齐墩果酸苄基酯,将洗脱液浓缩,得齐墩果酸苄基酯(65.6g,0.12mol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(48.9g),收率72%,HPLC检测纯度97.3%。
结构确证数据:ESI-MS(m/z):701.5[M+Na]+,1H NMR(400MHz,DMSO-d6)δ:7.30-7.37(m,5H,Ph-H),5.18(brs,1H,H-12),5.01-5.05(m,2H,PhCH2
),4.80(brs,lH,C2′-OH),4.53(brs,1H,C4′-OH),4.47(brs,1H,C3′-OH),4.10(d,J=6.2Hz,1H,H-1′),3.60-3.66(m,2H,H-4′,H-5′-1),3.31-3.34(m,3H,H-2′,H-3′,H-5′-2),2.99(dd,J=11.3,4.0Hz,1H,H-3),2.81(dd,J=13.6,4.1Hz,
1H,H-18),1.08,0.96,0.88,0.87,0.83,0.75,0.53(s each,3H each,CH3×7).与刘庆超博士的《中国海洋大学博士学位论文》(2010年)中的数据一致,3-O-β-L-吡喃阿拉伯糖-齐墩果酸苄基酯可用作合成天然皂苷Prosapogenin 1b的中间体。
实施例4
称取11-脱氧甘草次酸乙酯(242g,0.5mol),D-乳糖(34.2g,0.1mol)溶于乙腈-氯仿(1L,体积比1:1)中,于30℃下,加入HBF4-SiO2(5g,10mmol),恒温反应,直至TLC检测D-乳糖几乎完全消失(约24h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用氯仿作为洗脱剂,TLC检测直至洗脱液中无11-脱氧甘草次酸乙酯,将洗脱液浓缩,得11-脱氧甘草次酸乙酯(170g,0.35mol),再用氯仿-甲醇(5:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(32.4g),收率40%,HPLC检测纯度99.1%。
结构确证数据:ESI-MS m/z:831.5[M+Na]+,1H NMR(DMSO-d6,400MHz)δ:5.17(br s,1H,H-12),5.05(d,J=4.0Hz,1H),4.98(d,J=5.4Hz,1H),4.73(d,J=5.1Hz,1H),4.63~4.61(m,2H),4.47(d,J=4.6Hz,1H),4.41(t,J=5.9Hz,1H),4.23~4.19(m,2H),4.15~4.03(m,2H),3.73~3.70(m,1H),3.62~3.44(m,5H),3.33~3.25(m,5H),3.08~3.00(m,2H),1.17(t,J=7.15Hz,3H),1.11(s,3H,CH3-27),1.06(s,3H,CH3-29),0.99(s,3H,CH3),0.91(s,3H,CH3-26),0.89(s,3H,CH3-23),0.76(s,3H,CH3-24),0.73(s,3H,CH3-28)。
实施例5
称取11-脱氧甘草次酸乙酯(727g,1.5mol),L-鼠李糖(16.4g,0.1mol)溶于氯苯(2.5L)中,于90℃下,加入HF-SiO2(15g,30mmol),恒温反应,直至TLC检测L-鼠李糖几乎完全消失(约18h),将反应物浓缩后,经硅胶柱层析(硅胶300~400目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无11-脱氧甘草次酸乙酯,将洗脱液浓缩,得11-脱氧甘草次酸乙酯(630g,1.3mol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(53.7g),收率85%,HPLC检测纯度98.5%。
结构确证数据:ESI-MS m/z:653.6[M+Na]+,1H NMR(DMSO-d6,400MHz)δ:5.17(brs,1H,H-12),4.64~4.61(m,2H,H-1',OH-2'),4.59(s,1H,OH-3'),4.42(d,J=5.95Hz,1H,OH-4'),4.15~4.02(m,2H,CH2
CH3),3.63~3.62(m,1H,H-3'),3.54~3.50(m,1H,H-5'),3.43~3.39(m,1H,H-2'),3.19~3.15(m,1H,H-4'),3.03(dd,J=4.3,11.25Hz,1H,H-3),1.32~1.27(m,3H,CH3-5'),1.18(t,J=7.15Hz,3H,CH2CH3
),1.12~1.04(m,9H,CH3-27,CH3-29,CH3-25),0.91~0.90(m,9H,CH3-26,CH3-23,CH3-24),0.735(s,3H,CH3-28)。与文献Chin.J.Org.Chem.2012,32,138~144中报道的数据一致。
实施例6
称取12-特戊酰基-20(S)-原人参二醇(163.5g,0.3mol,按照中国专利CN200610116051.6的方法制备),D-葡萄糖(18.0g,0.1mol)溶于二甲苯(500mL)中,于90℃下,加入H2SO4-SiO2(500mg,1mmol),恒温反应,直至TLC
检测D-葡萄糖几乎完全消失(约6h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用丙酮作为洗脱剂,TLC检测直至洗脱液中无12-特戊酰基-20(S)-原人参二醇,将洗脱液浓缩,得12-特戊酰基-20(S)-原人参二醇(87.2g,0.16mol),再用乙酸乙酯或二氯甲烷-甲醇(6:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无12-特戊酰基-人参皂苷Rh2,将洗脱液浓缩,得12-特戊酰基-人参皂苷Rh2(53g),收率为75%,HPLC检测纯度约为98.5%,ESI-MS m/z:729.5[M+Na]+。
称取12-特戊酰基-人参皂苷Rh2(10g)溶液2mol/L的CH3ONa/CH3OH溶液150mL中,于50℃下反应10h,TLC检测反应结束后,浓缩反应液得白色固体,用乙醇或乙酸乙酯重结晶得人参皂苷Rh2(7.9g),HPLC检测纯度99.3%,ESI-MS m/z:645.4[M+Na]+,13C NMR(C5D5N,400MHz)δ:130.73,126.30,107.54,107.53,88.75,76.84,75.45,75.43,73.14,72.93,70.95,70.28,62.45,62.44,56.37,54.77,51.68,50.38,48.56,40.0,39.64,39.12,36.95,35.85,35.14,32.03,31.32,28.13,27.07,26.84,26.80,25.81,22.98,18.43,17.68,17.02,16.74,16.37,15.82.
实施例7
称取熊果酸烯丙酯(298g,0.6mol),D-甘露糖(18.0g,0.1mol)溶于DMF(750mL)中,于120℃下,加入NaHSO4-SiO2(3.0g,6mmol),恒温反应,直至TLC检测D-甘露糖几乎完全消失(约8h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用二氯甲烷-氯仿(1:1,体积比)作为洗脱剂,TLC检测直至洗脱液中无熊果酸烯丙酯,将洗脱液浓缩,得熊果酸烯丙酯(224g,0.45mol),再用乙酸乙酯-丙酮(4:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(52.7g),收率80%,HPLC检测纯度98.5%。
结构确证数据:ESI-MS m/z:681.4[M+Na]+,1H NMR(DMSO-d6,400MHz)δ:5.87(ddd,J=22.5,10.6,5.4Hz,1H,CH2-CH=CH2),5.29(dd,J=17.2,1.5Hz,1H,H-12),5.21-5.16(m,J=10.2,9.0Hz,2H,CH2-CH=CH
2),4.77(s,1H,OH-6′),4.72(d,J=4.6Hz,1H,OH-2′),4.66(d,J=4.2Hz,1H,OH-4′),4.54(d,J=5.7Hz,1H,OH-1′),4.45(d,J=5.4Hz,1H,OH-3′),4.36(t,J=5.8Hz,1H,H-1),3.18(dd,J=11.5,4.1Hz,1H,H-3),2.16(d,J=11.3Hz,1H,H-18),1.05(s,3H,CH3),0.95(s,3H,CH3),0.88(s,3H,CH3),0.82(d,J=6.4Hz,3H,CH3),0.72(s,3H,CH3),0.68(s,3H,CH3).
实施例8
称取熊果酸烯丙酯(248g,0.5mol),D-麦芽糖(34.2g,0.1mol)溶于乙腈(700mL)中,于70℃下,加入TfOH(7.5g/4.4mL,50mmol),恒温反应,直至TLC检测D-麦芽糖几乎完全消失(约10h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用二氯甲烷-氯仿(1:1,体积比)作为洗脱剂,TLC检测直至洗脱液中无熊果酸烯丙酯,将洗脱液浓缩,得熊果酸烯丙酯(199g,0.40mol),再用二氯甲烷-甲醇(3:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(45.0g),收率55%,HPLC检测纯度98.8%。
结构确证数据:ESI-MS m/z:843.5[M+Na]+,1H NMR(DMSO-d6,400MHz)δ:5.92-5.84(m,2H,CH2-CH=CH2,H-1"),5.76(s,1H),5.29(d,J=17.3Hz,1H,H-12),5.24-5.11(m,2H,CH2-CH=CH
2),4.45(s,4H),4.10(d,J=6.3Hz,lH,H-1′),1.05(s,3H),0.98(s,3H),0.92(s,3H),0.87(s,3H),0.82(d,J=4.5Hz,3H),0.75(s,3H),0.67(s,3H).与王慧硕士的《四川师范大学硕士学位论文》(2012年)中的数据一致。
实施例9
称取β-谷甾醇(124.4g,0.3mol),D-葡萄糖(18.0g,0.1mol)溶于乙苯(600mL)中,于85℃下,加入TMSOTf(8.9g/7.3mL,40mmol),恒温反应,直至TLC检测D-葡萄糖几乎完全消失(约15h),将反应物浓缩后,经硅胶柱层析(硅胶100~200目),先用二氯甲烷作为洗脱剂,TLC检测直至洗脱液中无β-谷甾醇,将洗脱液浓缩,得β-谷甾醇(83.0g,0.2mol),再用乙酸乙酯作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(47.3g),收率82%,HPLC检测纯度97.8%。
结构确证数据:熔点:272-274℃,ESI-MS m/z:599.4[M+Na]+,1H NMR(C5D5N,400MHz)δ:0.65(3H,d,J=4.1Hz,CH3),0.84(3H,s,CH3),0.86(3H,s,CH3),0.88(3H,s,CH3),0.91(3H,s,CH3),0.92(3H,s,CH3),3.75-4.52(7H,m),4.59(1H,d,J=10.5Hz,H-1′),5.35(1H,s,H-6).与现有技术中数据一致。
实施例1-9的反应中均形成了少量(5%~8%)糖上1,2位羟基成顺式结构糖苷键的产物,其1H NMR数据与1,2位羟基成反式结构糖苷键产物的数据基本一致,主要不同体现在糖1位氢的偶合常数均小于4Hz或不裂分表现为宽单峰。
实施例10
称取贝母辛(214mg,0.5mmol),D-葡萄糖(18mg,0.1mmol)溶于乙腈-甲苯(10mL,体积比1:2)中,于回流温度下,加入TfOH-SiO2(50mg,0.1mmol),恒温反应,直至TLC检测D-葡萄糖几乎完全消失(约5h),将反应物浓缩后,
经硅胶柱层析(硅胶200~300目),先用二氯甲烷-氯仿(1:1,体积比)作为洗脱剂,TLC检测直至洗脱液中无贝母辛,将洗脱液浓缩,得贝母辛(171mg,0.4mmol),再用二氯甲烷-甲醇(5:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(27mg),收率63%,HPLC检测纯度98.4%。
结构确证数据:ESI-MS m/z:590.4[M+H]+,13C NMR(C5D5N,400MHz)δ:209.7,140.5,128.8,102.2,85.1,78.6,78.5,76.9,75.6,75.4,71.8,66.9,63.0,56.3,54.9,54.4,48.7,46.5,45.9,40.2,39.4,38.4,37.1,31.9,31.3,29.2,28.7,27.0,24.7,19.1,13.4,12.3,11.2.与现有技术中数据一致(Journal of Asian Natural Products Research,Vol.13,No.12,2011,1098-1103)。
实施例11
称取蒲贝酮碱(103mg,0.25mmol),D-葡萄糖(18mg,0.1mmol)溶于二甲苯(10mL)中,于95℃下,加入TMSOTf-SiO2(5mg,0.01mmol),恒温反应,直至TLC检测D-葡萄糖几乎完全消失(约10h),将反应物浓缩后,经硅胶柱层析(硅胶200~300目),先用二氯甲烷-氯仿(1:1,体积比)作为洗脱剂,TLC检测直至洗脱液中无蒲贝酮碱,将洗脱液浓缩,得蒲贝酮碱(50mg,0.12mmol),再用二氯甲烷-甲醇(6:1,体积比)作为洗脱剂继续洗脱,TLC检测直至洗脱液中无标题化合物,将洗脱液浓缩,得标题化合物(45mg),收率78%,HPLC检测纯度98.6%。
结构确证数据:ESI-MS m/z:576.4[M+H]+,13C NMR(C5D5N,400MHz)δ:210.1,102.2,78.6,78.7,76.9,75.4,71.8,68.3,63.1,63.0,56.6,56.5,46.0,45.9,45.8,44.3,40.7,40.3,40.2,38.4,36.8,33.0,30.1,30.0,29.2,28.8,27.0,25.0,24.4,19.3,
14.7,12.6.与现有技术中数据一致。
实施例10-11的反应中亦形成了少量(5%~8%)糖上1,2位羟基成顺式结构糖苷键的产物(即贝母辛-3-O-α-D-吡喃葡萄糖苷和蒲贝酮碱-3-O-α-D-吡喃葡萄糖苷),其1H NMR数据与1,2位羟基成反式结构糖苷键产物的数据基本一致,主要不同体现在糖1位氢的偶合常数均小于4Hz或不裂分表现为宽单峰。
按照本发明提供的构建皂苷中糖苷键的方法,核糖、脱氧核糖、木糖、阿拉伯糖、葡萄糖、氨基葡萄糖、乙酰氨基葡萄糖、半乳糖、果糖、鼠李糖、甘露糖、唾液酸、蔗糖、乳糖、麦芽糖、绵枣儿二糖(scillabiose)等均能与苷元:去氢表雄酮、胆甾醇、胆固醇、豆甾醇、谷甾醇、麦角固醇、薯蓣皂苷元、洋地黄皂苷元、龙舌兰皂苷元、雌激素酮、孕烯醇酮、睾酮、二氢睾酮、贝母辛(peimisine)、蒲贝酮碱(puqiedinone)、澳洲茄胺(solasodine)、苦茄碱(solamarine)、番茄碱(α-tomatine)、脱氢番茄碱(dehydrotomatine)、原人参二醇、人参二醇、齐墩果酸、熊果酸、甘草次酸、11-脱氧甘草次酸(其中唾液酸、齐墩果酸、熊果酸、甘草次酸或11-脱氧甘草次酸中的羧基可以被C1-C4的烷基、C1-C4的烯基、C1-C4的卤代烷基或苄基保护,所述苄基任选被1个或多个C1-C4的烷基、C1-C4的烷氧基、C1-C4的卤代烷基、C1-C4的卤代烷氧基或卤素取代)等反应生成相应的目标产物皂苷,其中糖苷键构型为糖上1,2位羟基成反式结构的目标产物皂苷的收率在40%~85%,糖苷键构型为糖上1,2位羟基成顺式结构的目标产物皂苷的收率在5%~8%。限于篇幅,在此不再一一累述。本领域的技术人员可以根据本发明实施例1-11记载的类似方法对相应的目标产物皂苷进行合成。
在本发明提及的所有文献都在本申请中引用作为参考文献,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述内容之后,本领域的技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
Claims (25)
- 一种构建皂苷中糖苷键的方法,包括如下步骤:采用过量的醛糖或酮糖直接与苷元在适合的有机溶剂中,在酸性催化剂作用下,于30℃至回流温度下,反应得到目标产物皂苷。
- 权利要求1所述的方法,其特征在于所述醛糖或酮糖选自单糖或二糖,其中单糖选自五碳糖、六碳糖或九碳糖。
- 权利要求2所述的方法,其特征在于所述五碳糖为核糖、脱氧核糖、木糖和阿拉伯糖,六碳糖为葡萄糖、氨基葡萄糖、乙酰氨基葡萄糖、半乳糖、果糖、鼠李糖、甘露糖,九碳糖为唾液酸,二糖为蔗糖、乳糖、麦芽糖、绵枣儿二糖。
- 权利要求1-3任一项所述的方法,其特征在于所述苷元选自三萜、甾体或甾体生物碱,其中甾体选自去氢表雄酮、胆甾醇、胆固醇、豆甾醇、谷甾醇、麦角固醇、薯蓣皂苷元、洋地黄皂苷元、龙舌兰皂苷元、雌激素酮、孕烯醇酮、睾酮、二氢睾酮,三萜选自齐墩果酸、熊果酸、甘草次酸、11-脱氧甘草次酸、原人参二醇、人参二醇;甾体生物碱选自贝母辛(peimisine)、蒲贝酮碱(puqiedinone)、澳洲茄胺(solasodine)、苦茄碱(solamarine)、番茄碱(α-tomatine)、脱氢番茄碱(dehydrotomatine)。
- 权利要求4所述的方法,其特征在于齐墩果酸、熊果酸、甘草次酸或11-脱氧甘草次酸中的羧基被C1-C4的烷基、C1-C4的烯基、C1-C4的卤代烷基或苄基保护,所述苄基任选被1个或多个C1-C4的烷基、C1-C4的烷氧基、C1-C4的卤代烷基、C1-C4的卤代烷氧基或卤素取代。
- 权利要求1-5任一项所述的方法,其特征在于所述有机溶剂为苯、甲苯、二甲苯、乙苯、氯苯、二氧六环、氯仿、四氯化碳、二氯甲烷、乙腈、DMF、DMSO、THF中的一种或多种混合。
- 权利要求1-6任一项所述的方法,其特征在于所述酸性催化剂选自固体酸或液体酸。
- 权利要求7所述的方法,其特征在于所述固体酸优选H2SO4-SiO2、HClO4-SiO2、TfOH-SiO2、HF-SiO2、HBF4-SiO2、NaHSO4-SiO2、TMSOTf-SiO2,所述液体酸优选H2SO4、HClO4、TfOH、TMSOTf、HF。
- 权利要求1-8任一项所述的方法,其特征在于所述反应在氮气或惰性气体保 护下进行。
- 权利要求1-9任一项所述的方法,其特征在于反应中酮糖或醛糖与苷元的摩尔比为1:1.2-20,酮糖或醛糖与酸性催化剂的摩尔比为1:0.005-1,反应温度为50℃-120℃,反应时间为2h-24h。
- 权利要求10所述的方法,其特征在于反应中酮糖或醛糖与苷元的摩尔比为更优选1:1.5-15,酮糖或醛糖与酸性催化剂的摩尔比为1:0.01-0.3,反应温度为70℃-110℃,反应时间为5h-18h。
- 权利要求11所述的方法,其特征在于反应中酮糖或醛糖与苷元的摩尔比为1:2.5-5.0,酮糖或醛糖与酸性催化剂的摩尔比为最优选1:0.02-0.1,反应温度为80℃-95℃,反应时间为6h-10h。
- 权利要求1-12任一项所述的方法,其特征在于所述苷元选自带有3-β-OH、3-α-OH、6-β-OH、6-α-OH、12-β-OH、12-α-OH、16-β-OH或16-α-OH中一个或多个基团的三萜、甾体或甾体生物碱。
- 权利要求1-13任一项所述的方法,其特征在于反应结束后利用硅胶柱层析的方法回收未反应的苷元,所用洗脱剂为二氯甲烷、氯仿、四氯化碳或丙酮中的一种或几种混合。
- 权利要求14所述的方法,其特征在于回收苷元后,继续进行硅胶柱层析,得到目标产物皂苷,所用洗脱剂为乙酸乙酯、二氯甲烷、氯仿、四氯化碳、甲醇、乙腈或丙酮中的一种或几种混合。
- 权利要求1-15任一项所述的方法,其特征在于目标产物皂苷的糖苷键构型为糖上1,2位羟基成反式结构的糖苷键。
- 权利要求1-15任一项所述的方法,其特征在于目标产物皂苷的糖苷键构型为糖上1,2位羟基成顺式结构的糖苷键。
- 权利要求1-17任一项所述的方法在制备具有药理活性的皂苷中的应用。
- 权利要求1-17任一项所述的方法在制备皂苷中间体中的应用。
- 权利要求18-21所述的皂苷或皂苷中间体可用于医药、化工或食品领域。
- 权利要求8所述的方法,其特征在于固体酸的制备包括如下步骤:向有机溶剂中加入硅胶和酸,室温下搅拌均匀,用旋转蒸发仪蒸除有机溶剂,剩下的混合物于真空下加热到90℃-110℃,保持真空加热18h-48h,得到淡黄色粉末,即为固体酸,其中所述酸为H2SO4、HClO4、TfOH、HF、HBF4、NaHSO4、TMSOTf中的一种,酸和硅胶的用量比为2mmol/g。
- 权利要求23所述的方法,其特征在于所述有机溶剂为乙醚、甲醚、丙醚、丁醚、二氯甲烷中的一种或几种;所述硅胶为300-400目。
- 权利要求23-24任一项所述的方法,其特征在于所述真空下加热温度为100℃,真空下加热时间为24h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480020337.7A CN105263945B (zh) | 2013-12-06 | 2014-11-01 | 一种酸催化醛糖或酮糖直接与苷元反应制备皂苷的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310645963.2 | 2013-12-06 | ||
CN201310645963 | 2013-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015081778A1 true WO2015081778A1 (zh) | 2015-06-11 |
Family
ID=53272860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/090134 WO2015081778A1 (zh) | 2013-12-06 | 2014-11-01 | 一种皂苷的合成方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105263945B (zh) |
WO (1) | WO2015081778A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114950480A (zh) * | 2022-07-06 | 2022-08-30 | 西北大学 | 一种碳基固体酸催化剂及其催化茶皂素制备茶皂苷元的方法 |
CN115010782A (zh) * | 2022-05-12 | 2022-09-06 | 陕西中医药大学 | 熊果酸n-糖苷衍生物及其制备方法和应用 |
CN115057906A (zh) * | 2022-07-28 | 2022-09-16 | 中节能万润股份有限公司 | 利用去氢表雄酮合成胆固醇的方法 |
CN115611964A (zh) * | 2021-07-15 | 2023-01-17 | 沈阳药科大学 | 具有炎症性肠病治疗作用的乌苏酸皂苷、其衍生物及制备方法和应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104693266B (zh) * | 2013-12-06 | 2018-03-23 | 扬州蓝色生物医药科技有限公司 | 一种改良的Fischer型糖苷化反应在构建皂苷中糖苷键的应用 |
CN110878110A (zh) * | 2018-09-06 | 2020-03-13 | 复旦大学 | 一种烯醇式糖苷的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293200A (zh) * | 2000-10-20 | 2001-05-02 | 中国科学院上海有机化学研究所 | 一种利用一步或两步随机化反应制备皂甙库的方法 |
CN101735287A (zh) * | 2009-12-11 | 2010-06-16 | 华东师范大学 | 一种2,3,4,6-四酰基吡喃葡萄糖的制备方法 |
CN101781342A (zh) * | 2010-01-26 | 2010-07-21 | 华东师范大学 | 一种烷基糖苷的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102093460B (zh) * | 2011-01-10 | 2013-09-11 | 武汉道一堂医药研究院 | 三萜皂苷化合物、其合成方法及其应用 |
CN102286063A (zh) * | 2011-07-06 | 2011-12-21 | 南京泽朗医药科技有限公司 | 一种延龄草苷的制备方法 |
CN102755343A (zh) * | 2012-08-08 | 2012-10-31 | 南京中医药大学 | 胡萝卜苷在制备促进神经干细胞增殖药物中的应用 |
CN104693266B (zh) * | 2013-12-06 | 2018-03-23 | 扬州蓝色生物医药科技有限公司 | 一种改良的Fischer型糖苷化反应在构建皂苷中糖苷键的应用 |
-
2014
- 2014-11-01 WO PCT/CN2014/090134 patent/WO2015081778A1/zh active Application Filing
- 2014-11-01 CN CN201480020337.7A patent/CN105263945B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1293200A (zh) * | 2000-10-20 | 2001-05-02 | 中国科学院上海有机化学研究所 | 一种利用一步或两步随机化反应制备皂甙库的方法 |
CN101735287A (zh) * | 2009-12-11 | 2010-06-16 | 华东师范大学 | 一种2,3,4,6-四酰基吡喃葡萄糖的制备方法 |
CN101781342A (zh) * | 2010-01-26 | 2010-07-21 | 华东师范大学 | 一种烷基糖苷的制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115611964A (zh) * | 2021-07-15 | 2023-01-17 | 沈阳药科大学 | 具有炎症性肠病治疗作用的乌苏酸皂苷、其衍生物及制备方法和应用 |
CN115611964B (zh) * | 2021-07-15 | 2024-02-06 | 沈阳药科大学 | 具有炎症性肠病治疗作用的乌苏酸皂苷、其衍生物及制备方法和应用 |
CN115010782A (zh) * | 2022-05-12 | 2022-09-06 | 陕西中医药大学 | 熊果酸n-糖苷衍生物及其制备方法和应用 |
CN115010782B (zh) * | 2022-05-12 | 2024-01-30 | 陕西中医药大学 | 熊果酸n-糖苷衍生物及其制备方法和应用 |
CN114950480A (zh) * | 2022-07-06 | 2022-08-30 | 西北大学 | 一种碳基固体酸催化剂及其催化茶皂素制备茶皂苷元的方法 |
CN115057906A (zh) * | 2022-07-28 | 2022-09-16 | 中节能万润股份有限公司 | 利用去氢表雄酮合成胆固醇的方法 |
CN115057906B (zh) * | 2022-07-28 | 2022-12-02 | 中节能万润股份有限公司 | 利用去氢表雄酮合成胆固醇的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105263945B (zh) | 2017-05-03 |
CN105263945A (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015081778A1 (zh) | 一种皂苷的合成方法 | |
Yang et al. | ortho-Alkynylphenyl thioglycosides as a new type of glycosylation donors under the catalysis of Au (I) complexes | |
Gauthier et al. | Synthesis of two natural betulinic acid saponins containing α-l-rhamnopyranosyl-(1→ 2)-α-l-arabinopyranose and their analogues | |
CN104693266B (zh) | 一种改良的Fischer型糖苷化反应在构建皂苷中糖苷键的应用 | |
JP2008508194A (ja) | 20(S)−ジンセノサイドRh2の合成方法 | |
Chen et al. | Convergent synthesis and cytotoxic activities of 26-thio-and selenodioscin | |
Sahu | Triterpenoid saponins of Mimusops elengi | |
Wang et al. | Synthesis and cytotoxic activity of the N-acetylglucosamine-bearing triterpenoid saponins | |
Cheng et al. | Synthesis of β-hederin and Hederacolchiside A1: Triterpenoid saponins bearing a unique cytotoxicity-inducing disaccharide moiety | |
Wang et al. | Synthesis of two bidesmosidic ursolic acid saponins bearing a 2, 3-branched trisaccharide residue | |
Chwalek et al. | Synthesis and hemolytic activity of some hederagenin diglycosides | |
SATO et al. | Synthesis of 2-(5-cholesten-3β-yloxy) glycosides of N-acetyl-D-neuraminic acid derivatives | |
Korda et al. | Synthesis of bidesmosidic lupane saponins–comparison of batch and continuous-flow methodologies | |
Chen et al. | New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity | |
KONDO et al. | Studies on the Constituents of Panacis japonici Rhizoma. III. The Structure of Chikusetsusaponin. III. | |
Plé et al. | Synthesis of α‐Hederin, δ‐Hederin, and Related Triterpenoid Saponins | |
CN101781352A (zh) | 20-o-糖基及其原人参二醇类化合物及其制备方法 | |
Wen et al. | The first total synthesis of rebaudioside R | |
Klinotová et al. | Glycosylation of triterpene alcohols and acids of the lupane and a-secolupane series | |
Plé et al. | Synthesis of L-arabinopyranose containing hederagenin saponins | |
Thompson et al. | Sugar conjugates of fulvestrant (ICI 182,780): Efficient general procedures for glycosylation of the fulvestrant core | |
Luta et al. | Synthesis of cardenolide glycosides and putative biosynthetic precursors of cardenolide glycosides | |
d'Ortoli et al. | Synthesis of the tetrasaccharide glycoside moiety of Solaradixine and rapid NMR-based structure verification using the program CASPER | |
WO2018145578A1 (zh) | 一种黄芪甲苷的合成方法 | |
CN113480591A (zh) | 一种人参皂苷衍生物及其合成方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480020337.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867509 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14867509 Country of ref document: EP Kind code of ref document: A1 |