WO2015081494A1 - 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置 - Google Patents

一种用于甲醇和/或二甲醚制低碳烯烃的反应装置 Download PDF

Info

Publication number
WO2015081494A1
WO2015081494A1 PCT/CN2013/088413 CN2013088413W WO2015081494A1 WO 2015081494 A1 WO2015081494 A1 WO 2015081494A1 CN 2013088413 W CN2013088413 W CN 2013088413W WO 2015081494 A1 WO2015081494 A1 WO 2015081494A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
phase fluidized
dense phase
stripper
catalyst
Prior art date
Application number
PCT/CN2013/088413
Other languages
English (en)
French (fr)
Inventor
张涛
叶茂
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to DK13898849.8T priority Critical patent/DK3078414T3/en
Priority to KR1020167015784A priority patent/KR101763864B1/ko
Priority to JP2016555872A priority patent/JP6230722B2/ja
Priority to US15/039,471 priority patent/US9827544B2/en
Priority to MYPI2016702029A priority patent/MY171791A/en
Priority to AU2013407185A priority patent/AU2013407185B2/en
Priority to PCT/CN2013/088413 priority patent/WO2015081494A1/zh
Priority to RU2016125262A priority patent/RU2636077C1/ru
Priority to BR112016012613-0A priority patent/BR112016012613B1/pt
Priority to EP13898849.8A priority patent/EP3078414B1/en
Priority to SG11201604419XA priority patent/SG11201604419XA/en
Publication of WO2015081494A1 publication Critical patent/WO2015081494A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00938Flow distribution elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/28Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material
    • C10G9/32Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material according to the "fluidised-bed" technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • Reaction device for producing low carbon olefins from methanol and/or dimethyl ether
  • the present invention relates to a reaction apparatus for producing low carbon olefins from methanol and/or dimethyl ether. Background technique
  • Low-carbon olefins namely ethylene and propylene
  • ethylene and propylene are two important basic chemical materials, and their demand is increasing.
  • ethylene and propylene are produced through petroleum routes, but the cost of producing ethylene and propylene from petroleum resources is increasing due to the limited supply of petroleum resources and higher prices.
  • people have begun to vigorously develop technologies for converting raw materials into ethylene and propylene.
  • MTO methanol conversion to olefins
  • the process of methanol conversion to olefins (MTO) has received increasing attention and has achieved a production scale of millions of tons.
  • MTO methanol conversion to olefins
  • the CMAI analysis said that by 2016, ethylene demand will grow at an average annual rate of 4.3%, propylene. Demand will grow at an average annual rate of 4.4%. Due to the rapid growth of China's economy, the annual growth rate of ethylene and propylene demand in China exceeds the world average.
  • SAPO-34 molecular sieve catalyst showed excellent catalytic performance when used in MTO reaction, with high low-carbon olefin selectivity and high activity. However, the catalyst loses its activity due to carbon deposition after a period of use.
  • the SAPO-34 molecular sieve catalyst has a significant induction period during use. During the induction period, the selectivity of olefins is lower, and the selectivity of hydrazines is higher. As the reaction time increases, the selectivity of low olefins gradually increases. After the induction period, the catalyst maintains high selectivity and high activity for a certain period of time, and the activity of the catalyst rapidly decreases as time continues to increase.
  • U.S. Patent 6,166,282 discloses a technique and a reactor for the conversion of methanol to lower olefins using a fast fluidized bed reactor. After the reaction of the gas phase in the dense phase reaction zone where the gas velocity is low, the gas phase rises to a fast zone where the inner diameter rapidly decreases. Afterwards, most of the entrained catalyst was separated by a special gas-solid separation device. Since the product gas is quickly separated from the catalyst after the reaction, the occurrence of the secondary reaction is effectively prevented. According to the simulation calculation, the inner diameter of the fast fluidized bed reactor and the required reserves of the catalyst are greatly reduced as compared with the conventional bubbling fluidized bed reactor. However, the yield of low carbon olefins in the process is generally about 77%, and there is a problem that the yield of low carbon olefins is low.
  • CN101402538B discloses a method for increasing the yield of low carbon olefins, which is used in a second reaction zone is disposed on the upper portion of the first reaction zone where methanol is converted to a lower olefin, and the second reaction zone has a larger diameter than the first reaction zone to increase the retention of the product gas at the outlet of the first reaction zone in the second reaction zone. Time, the unreacted methanol, the produced dimethyl ether and the carbon four or more hydrocarbons continue to react to achieve the purpose of increasing the yield of the low-carbon olefin.
  • the method can improve the yield of the low-carbon olefin to a certain extent,
  • CN102276406 A discloses a process for producing propylene.
  • the technology provides three reaction zones, a first fast bed reaction zone for methanol conversion to olefins, a riser reaction zone and a second fast bed reaction zone for series conversion of ethylene, carbon tetrahydrocarbons and unreacted methanol or dimethyl ether.
  • substances such as carbon and more hydrocarbons have a shorter residence time in the riser reaction zone and the second fast-bed reaction zone, and the conversion efficiency is lower, resulting in a lower propylene yield.
  • a fluidized bed reactor for internally arranging a riser reactor for increasing the yield of light olefins is disclosed.
  • the first raw material enters the fluidized bed reaction zone, contacts with the catalyst to form a product including a low-carbon olefin, and simultaneously forms a catalyst to be produced; a part of the catalyst to be produced enters the regenerator to be regenerated, forms a regenerated catalyst, and a part enters the outlet end and is located inside the reaction zone.
  • the riser is in contact with the second raw material to raise the catalyst to be reacted into the reaction zone; the regenerated catalyst is returned to the reaction zone of the fluidized bed reactor.
  • the reaction device disclosed in this patent has no stripping part, and the raw catalyst will carry some product gas into the regenerator, burning with oxygen, and reducing low-carbon olefins.
  • the methanol to olefins technology disclosed in CN102875296A provides three reaction zones of a fast bed, a down bed and a riser.
  • the catalyst circulates between the regenerator, the fast bed, the riser and the descending bed.
  • the flow is very complicated, the flow distribution and control are very difficult, and the activity of the catalyst changes greatly.
  • the selectivity of the low olefins is closely related to the amount of carbon deposited on the catalyst.
  • a certain amount of carbon is required on the SAPO-34 catalyst.
  • the main reactor used in the MTO process is a fluidized bed, and the fluidized bed is close to the full mixed-flow reactor.
  • the distribution of catalyst coke is wide, which is not conducive to improving the selectivity of low-carbon olefins.
  • the MTO process has a small ratio of solvent to alcohol and a low coke yield.
  • the purpose of controlling the carbon deposition amount and the carbon content uniformity on the catalyst in the reaction zone is achieved. Therefore, control The uniformity of carbon deposition and carbon content in the reaction zone is a key technology in the MTO process.
  • the invention proposes to solve the problem of controlling the carbon deposition amount and the carbon content uniformity of the catalyst by forming an internal member to form a plurality of secondary reaction zones (regeneration zone:) in the dense phase fluidized bed, thereby improving the low carbon olefins. Selectivity. Summary of the invention
  • the technical problem to be solved by the present invention is the problem of low selectivity of low carbon olefins existing in the prior art, and a novel reaction apparatus for improving the selectivity of low carbon olefins is provided.
  • the reaction device is used in the production of low-carbon olefins, and has the advantages of good catalyst carbon deposition uniformity, high yield of low-carbon olefins, and good economical production process of low-carbon olefins.
  • the present invention provides a reaction apparatus for producing a low carbon olefin from methanol and/or dimethyl ether, the reaction apparatus comprising a dense phase fluidized bed reactor (2), a cyclone separator (3), a stripper (5), a riser (7), a dense phase fluidized bed regenerator (10), a cyclone (11), a stripper (13), and a riser (15); wherein, the reactor feeds a line (1) is connected to the bottom of the dense phase fluidized bed reactor (2); a part of the stripper (5) is in the dense phase fluidized bed reactor (2), and the rest is in the Said below the dense phase fluidized bed reactor (2); the bottom of the riser (7) is connected to the bottom of the stripper (5), and the top of the riser (7) is fluidized with the dense phase a bed regenerator (10) is connected; a regenerator feed line (9) is connected to the bottom of the dense phase fluidized bed regenerator (10); a portion of the stripper (13) is fluid
  • the top of the riser (15) is connected to the first secondary reaction zone, the nth secondary reaction zone and the material overflow of the upper part of the stripper (5) (18) Connected; a cyclone separator (3) is disposed at an upper portion of the dense phase fluidized bed reactor (2), and a top outlet of the cyclone separator (3) is connected to a product material line (4), the cyclone separator The bottom of (3) is connected to the nth secondary reaction zone.
  • the top of the riser (7) is connected to the first secondary regeneration zone, the mth secondary regeneration zone and the material overflow of the upper portion of the stripper (13) (18) Connected; a cyclone separator (11) is disposed at an upper portion of the dense phase fluidized bed regenerator (10), and a top outlet of the cyclone separator (11) is connected to an exhaust gas line (12), the cyclone separator The bottom of (11) is connected to the mth secondary regeneration zone.
  • the material flow controller (17) consists of a partition (19), an orifice (20), a material downstream flow tube (21), a bottom baffle (22), and a heat take-up component (23).
  • the orifice (20) is located below the partition (19) and connected to the bottom of the material downstream flow tube (21), and the bottom baffle (22) is located in the material downstream flow tube (21) And the bottom of the orifice (20), the heat taking member (23) is fixed to the partition (19).
  • the bottom baffle (22) is a perforated plate or a non-porous plate.
  • Advantageous effects of the present invention include, but are not limited to, the following aspects as compared with prior art solutions:
  • the dense phase fluidized bed has a high bed density, a low catalyst speed and low wear.
  • the gas velocity in the material flow controller is lower than or equal to the minimum fluidization velocity of the catalyst, and the catalyst is in a dense phase accumulation state, forming a unidirectional dense phase transport flow of the catalyst, avoiding adjacent secondary
  • the catalyst back-mixing between the reaction zones (or adjacent secondary regeneration zones) has a narrow residence time distribution.
  • the heat take-up component in the material flow controller has the function of controlling the temperature of the reaction zone.
  • the material flow controller divides the reaction zone into n secondary reaction zones, and the catalyst passes through the first to second reaction zones in sequence, the residence time distribution is narrow, and the carbon content of the catalyst to be produced is uniform. substantial improvement.
  • the material flow controller divides the regeneration zone into m secondary regeneration zones, and the catalyst passes through After the first-stage secondary regeneration zone to the m-second secondary regeneration zone, the residence time distribution is narrow, and the uniformity of the carbon content of the regenerated catalyst is greatly improved.
  • FIG. 2 is a schematic structural view of a dense phase fluidized bed comprising four secondary reaction zones according to the present invention, wherein the arrow in the A-A cross-sectional view is the catalyst flow direction in the secondary reaction zone.
  • FIG. 3 is a schematic structural view of a dense phase fluidized bed comprising four secondary regeneration zones according to the present invention, wherein the arrow in the B-B cross-sectional view is the flow direction of the catalyst in the secondary regeneration zone;
  • FIG. 4 is a schematic structural view of a stripper according to the present invention.
  • Figure 5 is a schematic view showing the structure of the material flow controller of the present invention.
  • the present invention provides a reaction apparatus for producing low carbon olefins from methanol and/or dimethyl ether, mainly comprising a dense phase fluidized bed reactor. (2), cyclone (3), stripper (5), riser (7), dense fluidized bed regenerator (10), cyclone (11), stripper (13) and lift Tube (15).
  • the reactor feed line (1) is connected to the bottom of the dense phase fluidized bed reactor (2), the stripper (5) is partially in the dense phase fluidized bed reactor (2), and the remainder is in the dense phase flow.
  • the water vapor line (6) is connected to the bottom of the stripper (5), and the bottom of the riser (7) is connected to the bottom of the stripper (5) to lift the gas line (8).
  • the top of the riser 7 is connected to the dense phase fluidized bed regenerator (10), the bottom of the regenerator feed line (9) and the dense phase fluidized bed regenerator (10) Connected, part of the stripper (13) is in the dense phase fluidized bed regenerator (10), the rest is located below the dense phase fluidized bed regenerator (10), the water vapor line (14) and the stripper (13) Connected to the bottom, the bottom of the riser (15) and the stripper
  • the reactor feed line (1) comprises n reaction zone feed branches (1-1, ..., ln), and the dense phase fluidized bed reactor (2) is comprised of a material flow controller ( 17) separated into n secondary reaction zones (2-1, . . .
  • n reaction zone feed branches are respectively connected to n secondary reaction zones;
  • the first to nth secondary reaction zones are sequentially connected, the top of the riser (15) is connected to the first secondary reaction zone, and the material of the nth secondary reaction zone and the upper part of the stripper (5) is overflowed.
  • the flow port (18) is connected, the cyclone separator (3) is arranged on the upper part of the dense phase fluidized bed reactor (2), and the top outlet of the cyclone separator (3) is connected to the product material line (4), and the cyclone separator ( The bottom of 3) is connected to the nth secondary reaction zone.
  • the regenerator feed line (9) comprises m regeneration zone feed branches
  • the dense phase fluidized bed regenerator (10) is divided into m secondary regeneration zones by a material flow controller (17) (10-1, ⁇ ⁇ , 10-m), m ⁇ 2, preferably 8 m 3; m regeneration zone feed branches are connected to m secondary regeneration zones respectively; first to mth secondary regeneration zones are connected in sequence, The top of the riser (7) is connected to the first secondary regeneration zone, and the mth secondary regeneration zone is connected to the material overflow (18) of the upper part of the stripper (13), dense phase fluidized bed regenerator ( The upper part of 10) is provided with a cyclone (11), the top outlet of the cyclone (11) Connected to the exhaust line (12), the bottom of the cyclone (11) is connected to the mth secondary regeneration zone.
  • the material flow controller (17) is composed of a partition (19), an orifice (20), a material downstream flow tube (21), a bottom baffle (22) and a heat take-up component (23).
  • the orifice (20) is located below the partition (19) and is connected to the bottom of the material downstream flow tube (21).
  • the bottom baffle (22) can be a perforated plate or a non-porous plate, which is located in the material downstream flow tube (21).
  • the heat-removing part (23) is fixed to the partition (19).
  • the schematic diagram of the methanol-based lower olefins of the present invention is shown in Figure 1.
  • the feedstock mainly methanol and/or dimethyl ether
  • enters the dense phase fluidized bed reactor (2) is contacted with the catalyst to form a gas phase product stream and a spent catalyst, the gas phase product stream and the entrained catalyst to enter the cyclone ( 3), the gas phase product stream enters the subsequent separation section through the outlet of the cyclone separator, and the entrained catalyst enters the nth second-stage reaction zone through the material leg of the cyclone separator, and the regenerated catalyst passes through the stripper (13) and the riser (15) entering the dense phase fluidized bed reactor 2, and sequentially passing through the first to nth secondary reaction zones, forming a catalyst to be produced after carbon deposition, and then passing the catalyst through the stripper (5)
  • the tube (7) enters the dense phase fluidized bed regenerator (10) and sequentially passes through the first to mth secondary regeneration zones to form a regenerated
  • the schematic diagram of the dense phase fluidized bed of the present invention comprising four secondary reaction zones is shown in Figure 2.
  • the arrows in the A-A cross-sectional view are the catalyst flow directions in the secondary reaction zone.
  • Three material flow controllers (17) and one baffle are arranged vertically to separate the dense phase fluidized bed reaction zone into four secondary reaction zones, and the catalyst sequentially passes through the first to fourth secondary reaction zones. Then enter the stripper.
  • the schematic diagram of the dense phase fluidized bed of the present invention comprising four secondary regeneration zones is shown in Figure 3, and the arrows in the B-B cross-sectional view are the catalyst flow directions of the secondary regeneration zone.
  • Three material flow controllers (17) and one baffle are arranged vertically to separate the dense phase fluidized bed regeneration zone into four secondary regeneration zones, and the catalyst passes through the first to fourth secondary regeneration zones in sequence. Then enter the stripper.
  • FIG. 1 a schematic structural view of the stripper (5 and 13) of the present invention is shown in FIG.
  • the opening in the upper tube wall of the stripper (5) acts as the nth secondary reaction zone and the stripper (5) Material overflow port (18);
  • Stripper (13) The opening in the upper tube wall serves as the material overflow port (18) between the mth secondary regeneration zone and the stripper (13).
  • the material flow controller (17) is composed of a partition (19), an orifice (20), a material downstream flow tube (21), a bottom baffle (22) and a heat take-up component (23).
  • the catalyst enters the material downstream flow tube from above the downstream flow tube, wherein the apparent line velocity of the gas is less than or equal to the minimum fluidization speed, and the catalyst in the downstream flow tube of the material is in a dense phase accumulation state, forming a material flow driving force, pushing the catalyst into the orifice through the orifice.
  • the heat taking part can be fixed on the partition by a coil structure.
  • the apparent apparent linear velocity of the gas in the dense phase fluidized bed reaction zone is 0.1-1.5 m/s; and the apparent apparent linear velocity of the gas in the dense phase fluidized bed regeneration zone is 0.1-1.5 m/s;
  • the apparent apparent linear velocity of the gas in the material flow controller is less than or equal to the minimum fluidization velocity of the catalyst;
  • the catalyst preferably comprises a catalyst of a SAPO molecular sieve, and further preferably a catalyst comprising a SAPO-34 molecular sieve; a feed port comprising methanol and/or dimethyl ether, etc.; a stripping medium of the stripper (13) comprising water vapor; a regeneration medium inlet at the bottom of the regeneration zone (10), the regeneration medium comprising air, Oxygen-depleted air, water vapor, etc.;
  • the reaction temperature of the reaction zone (2) is 400-550 ° C, the bed density is 200-1200 kg/m 3 , and the average carbon deposition amount of the catalyst is from the first secondary reaction zone to The n
  • the purpose of controlling the carbon deposition amount of the catalyst, improving the uniformity of the carbon content and improving the selectivity of the low-carbon olefin can be achieved, and the technical advantage is large, and it can be used in the industrial production of the low-carbon olefin.
  • Example 1 In order to better explain the present invention, it is convenient to understand the technical solution of the present invention, and a typical but non-limiting embodiment of the present invention is as follows: Example 1
  • the regenerated catalyst enters the dense phase fluidized bed reactor through the stripper and the riser, and sequentially passes through the first to fourth secondary reaction zones, and forms a catalyst to be produced after carbon deposition, and then the catalyst is passed through the stripper.
  • the riser enters the dense phase fluidized bed regenerator and passes through the first to fourth secondary regeneration zones in sequence, forming a regenerated catalyst after charring.
  • the reaction conditions of the dense-phase fluidized bed reactor are: the reaction temperature is 400 °C, the gas phase linear velocity is 0.3 m/s, the bed density is 1000 k g / m 3 , and the average carbon deposition amount in the first secondary reaction zone is 2wt%, the average carbon deposition in the second secondary reaction zone is 6wt%, the average carbon deposition in the third secondary reaction zone is 8wt%, and the average carbon deposition in the fourth secondary reaction zone is 10wt%.
  • reaction conditions of the dense phase fluidized bed regenerator are: reaction temperature 500 °C, gas phase linear velocity 0.3 m/s, bed density 1000 kg / m 3 , average carbon deposition amount of the first secondary regeneration zone 7wt%, the average carbon deposition in the second secondary regeneration zone is 4wt%, the average carbon deposition in the third secondary regeneration zone is 2wt%, and the average carbon deposition in the fourth secondary regeneration zone is lwt %.
  • the reaction product was analyzed by on-line gas chromatography, and the yield of the low carbon olefin carbon group was 91.1% by weight.
  • Three secondary reaction zones are arranged in the dense-phase fluidized bed reactor, and two secondary regeneration zones are arranged in the dense-phase fluidized bed regenerator, mainly for the feedstock of methanol and/or dimethyl ether into the dense-phase fluidized bed reaction.
  • the catalyst comprising SAPO-34 molecular sieve
  • the formed gas phase product stream and the catalyst to be produced the gas phase material and the entrained catalyst to enter the cyclone separator, and the gas phase product stream passes through the outlet of the cyclone separator into the subsequent separation section, entrained
  • the spent catalyst enters the third secondary reaction zone via the feed leg of the cyclone.
  • the regenerated catalyst enters the dense phase fluidized bed reactor through the stripper and the riser, and sequentially passes through the first to third secondary reaction zones, and forms a catalyst to be produced after carbon deposition, and then the catalyst is passed through the stripper.
  • the riser enters the dense phase fluidized bed regenerator and passes through the first to second secondary regeneration zones in sequence, forming a regenerated catalyst after charring.
  • the reaction conditions of the dense phase fluidized bed reactor are: reaction temperature is 450 ° C, gas phase linear velocity is 0.5 m / s, bed density is 900 kg / m 3 , and average carbon deposition in the first secondary reaction zone is 3 wt.
  • reaction conditions are: a reaction temperature of 600 ° C, a gas phase linear velocity of 0.7 m / s, a bed density of 700 kg / m 3 , an average carbon deposition of the first secondary regeneration zone of 4 wt%, the second secondary The average amount of carbon deposited in the regeneration zone was 2% by weight.
  • the reaction product was analyzed by on-line gas chromatography, and the yield of the low carbon olefin carbon group was 90.5 wt%.
  • the regenerated catalyst enters the dense-phase fluidized bed reactor through the stripper and the riser, and sequentially passes through the first to sixth secondary reaction zones, and forms a catalyst to be produced after carbon deposition, and the catalyst is further passed through a stripper and lifted.
  • the tube enters the dense phase fluidized bed regenerator and passes through the first to fifth secondary regeneration zones in sequence, forming a regenerated catalyst after charring.
  • reaction temperature is 480 ° C
  • gas phase linear velocity is 0.7 m / s
  • bed density 700 kg / m 3
  • the average carbon deposition amount of the first secondary reaction zone is lwt %
  • the average carbon deposition in the second secondary reaction zone is 3 wt%
  • the average carbon deposition in the third secondary reaction zone is 4 wt%
  • the average carbon deposition in the fourth secondary reaction zone is 5 wt%.
  • the average carbon deposition in the fifth secondary reaction zone is 6 wt%, and the average carbon deposition in the sixth secondary reaction zone is 7 wt%;
  • the reaction condition of the dense phase fluidized bed regenerator is: reaction temperature is 650 ° C,
  • the gas phase linear velocity is 1.0 m/s, the bed density is 500 kg/m 3 , the average carbon deposition in the first secondary regeneration zone is 5 wt%, and the average carbon deposition in the second secondary regeneration zone is 3 wt%.
  • the average carbon deposition of the third secondary regeneration zone is 2 wt%, the average carbon deposition of the fourth secondary regeneration zone is 1 wt%, and the average carbon deposition of the fifth secondary regeneration zone is 0.01 wt%.
  • the reaction product was analyzed by on-line gas chromatography, and the yield of the low carbon olefin carbon group was 91.4% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及用于甲醇和/或二甲醚制低碳烯烃的反应装置,更具体地涉及一种用于甲醇和/或二甲醚制低碳烯烃的反应装置,其主要包括密相流化床反应器(2),旋风分离器(3),汽提器(5),提升管(7),密相流化床再生器(10),旋风分离器(11),汽提器(13)和提升管(15),其中密相流化床反应器(2)由物料流动控制器(17)分隔为n(n≥2)个二级反应区,密相流化床再生器(10)由物料流动控制器(17)分隔为m(m≥2)个二级再生区。利用本发明的反应装置解决了现有技术中催化剂积碳分布不均,低碳烯烃选择性较低的问题。

Description

一种用于甲醇和 /或二甲醚制低碳烯烃的反应装置 技术领域
本发明涉及一种用于甲醇和 /或二甲醚制低碳烯烃的反应装置。 背景技术
低碳烯烃, 即乙烯和丙烯, 是两种重要的基础化工原料, 其需求量在 不断增加。一般地, 乙烯、 丙烯是通过石油路线来生产, 但由于石油资源 有限的供应量及较高的价格,由石油资源生产乙烯、丙烯的成本不断增加。 近年来, 人们开始大力发展替代原料转化制乙烯、 丙烯的技术。 甲醇转化 制烯烃 (MTO)的工艺受到越来越多的重视, 已实现百万吨级的生产规模。 随着世界经济的发展, 低碳烯烃, 特别是丙烯, 需求量与日倶增, 析迈公 司 (CMAI)分析称, 在 2016年前, 乙烯需求量将以年均 4.3%的速度增长, 丙烯需求量将以年均 4.4%的速度增长。 由于我国经济的高速增长, 我国 乙烯和丙烯的需求量的年增长率均超过世界平均水平。
20世纪 80年代初, UCC公司成功开发出了 SAPO系列分子筛,其中 SAPO-34分子筛催化剂在用于 MTO反应时表现出优异的催化性能, 具有 很高的低碳烯烃选择性, 而且活性很高, 但催化剂在使用一段时间后由于 积碳而失去活性。 SAPO-34 分子筛催化剂在使用过程中存在明显的诱导 期, 在诱导期内, 烯烃的选择性较低, 垸烃的选择性较高, 随着反应时间 的增加, 低碳烯烃选择性逐渐上升, 诱导期过后, 催化剂在一定时间内保 持高的选择性和高的活性,随着时间的继续延长,催化剂的活性迅速下降。
US6166282中公布了一种甲醇转化为低碳烯烃的技术和反应器,采用 快速流化床反应器, 气相在气速较低的密相反应区反应完成后, 上升到内 径急速变小的快分区后,采用特殊的气固分离设备初歩分离出大部分的夹 带催化剂。 由于反应后产物气与催化剂快速分离, 有效的防止了二次反应 的发生。经模拟计算, 与传统的鼓泡流化床反应器相比, 该快速流化床反 应器内径及催化剂所需藏量均大大减少。但该方法中低碳烯烃碳基收率一 般均在 77%左右, 存在低碳烯烃收率较低的问题。
CN101402538B公布了一种提高低碳烯烃收率的方法, 该方法采用在 甲醇转化为低碳烯烃的第一反应区上部设置一个第二反应区,且该第二反 应区直径大于第一反应区,以增加第一反应区出口的产品气体在第二反应 区内的停留时间, 使得未反应的甲醇、生成的二甲醚和碳四以上烃继续反 应, 达到提高低碳烯烃收率的目的, 该方法虽然可以在一定程度上提高低 碳烯烃的收率, 但是由于第一反应区出来的催化剂已经带有较多的积碳, 而碳四以上烃裂解需要较高的催化剂活性,因此该方法中第二反应区内的 碳四以上烃转化效率仍然偏低, 从而导致低碳烯烃收率偏低。
CN102276406 A公布了一种增产丙烯的生产方法。该技术设置三个反 应区, 第一快速床反应区用于甲醇转化至烯烃, 提升管反应区和第二快速 床反应区串联用于转化乙烯、碳四以上烃和未反应的甲醇或二甲醚。此专 利中碳四以上烃等物质在提升管反应区和第二快速床反应区中的停留时 间较短, 转化效率偏低, 从而导致丙烯收率偏低。
CN102875289A 公布了一种内部布置提升管反应器的流化床反应装 置, 用于提高低碳烯烃的产率。第一原料进入流化床反应区, 与催化剂接 触, 生成包括低碳烯烃的产品, 同时形成待生催化剂; 待生催化剂一部分 进入再生器再生, 形成再生催化剂,一部分进入出口端位于反应区内部的 提升管, 与第二原料接触, 将待生催化剂提升至反应区内; 再生催化剂返 回流化床反应器反应区。此专利所披露的反应装置无汽提部分, 待生催化 剂将会携带部分产品气体进入再生器, 与氧气发生燃烧, 降低低碳烯烃的
CN102875296A公布的甲醇制烯烃技术设置了快速床、下行床和提升 管三个反应区。 催化剂在再生器、 快速床、 提升管和下行床之间循环, 流 向十分复杂、 流量分配和控制十分困难, 催化剂的活性变化较大。
本领域所公知的, 低碳烯烃的选择性和催化剂上的积碳量密切相关, 要保证高的低碳烯烃选择性, SAPO-34催化剂上需要一定数量的积碳。 目 前 MTO工艺所采用的主要反应器为流化床, 而流化床接近于全混流反应 器, 催化剂积炭分布很宽, 不利于提高低碳烯烃的选择性。 MTO工艺的 剂醇比很小, 生焦率较低, 要实现较大的、 容易控制的催化剂循环量, 就 需要在再生区中将催化剂上的积碳量、碳含量均匀性控制在一定水平, 进 而达到控制反应区内催化剂上的积碳量、碳含量均匀性的目的。 因此, 控 制反应区内的催化剂积碳量和碳含量均匀性于某一水平是 MTO工艺中的 关键技术。
为解决上述问题, 一些研究者提出了在流化床内设置上下两个反应 区、 两个流化床串联、 流化床和提升管、 下行床串联等技术, 初歩揭示了 控制催化剂积碳量和碳含量均匀性的方法, 取得了一定的有益效果, 但也 同时增加 MTO工艺的复杂性、 控制难度增加。 本发明提出了通过在密相 流化床中设置内构件形成多个二级反应区 (再生区:)的方案来解决控制催 化剂积碳量和碳含量均匀性的问题, 进而提高低碳烯烃的选择性。 发明内容
本发明所要解决的技术问题是现有技术中存在的低碳烯烃选择性不 高的问题, 提供一种新的提高低碳烯烃选择性的反应装置。该反应装置用 于低碳烯烃的生产中, 具有催化剂积碳均匀性好、低碳烯烃收率较高、低 碳烯烃生产工艺经济性较好的优点。
为解决上述问题, 本发明提供一种用于甲醇和 /或二甲醚制低碳烯烃的 反应装置, 所述反应装置包括密相流化床反应器 (2)、 旋风分离器 (3 )、 汽提器 (5 )、 提升管 (7 )、 密相流化床再生器 (10)、 旋风分离器 (11 )、 汽提器(13 )和提升管 (15); 其中, 反应器进料管线 (1 ) 与所述密相流 化床反应器(2)底部相连; 所述汽提器(5) 的一部分在所述密相流化床 反应器(2)之中, 其余部分在所述密相流化床反应器(2)下方; 所述提 升管 (7 ) 底部与所述汽提器 (5) 的底部相连, 所述提升管 (7 ) 的顶部 与所述密相流化床再生器 (10) 相连; 再生器进料管线 (9) 与所述密相 流化床再生器(10) 的底部相连; 所述汽提器(13 ) 的一部分在所述密相 流化床再生器(10)之中, 其余部分在所述密相流化床再生器(10)下方; 所述提升管(15 )的底部与所述汽提器(13 )的底部相连,所述提升管(15) 的顶部与所述密相流化床反应器 (2) 相连, 其特征在于, 所述密相流化 床反应器(2)和 /或密相流化床再生器(10)中具有物料流动控制器(17), 所述密相流化床反应器 (2) 由所述物料流动控制器 (17 ) 分隔为 n个二 级反应区, 并且第 1个至第 n个二级反应区依序相连; 所述密相流化床再 生器 (10) 由所述物料流动控制器 (17 ) 分隔为 m个二级再生区, 并且 第 1个至第 m个二级再生区依序相连; 并且其中11 2, m^2o
在一个优选实施方案中, 所述提升管 (15) 顶部与第 1个二级反应区 相连, 第 n个二级反应区与所述汽提器 (5) 上部的物料溢流口 (18) 相 连; 所述密相流化床反应器 (2) 的上部设有旋风分离器 (3), 所述旋风 分离器(3) 的顶部出口与产品物料管线 (4)相连, 所述旋风分离器(3) 的底部与第 n个二级反应区相连。
在一个优选实施方案中, 所述提升管(7)的顶部与第 1个二级再生区 相连, 第 m个二级再生区与所述汽提器 (13) 上部的物料溢流口 (18) 相连; 所述密相流化床再生器 (10) 的上部设有旋风分离器 (11), 所述 旋风分离器( 11 )的顶部出口与废气管线( 12)相连,所述旋风分离器( 11 ) 的底部与第 m个二级再生区相连。
在一个优选实施方案中, 8 n 3。
在一个优选实施方案中, 8 m 3。
在一个优选实施方案中, 所述物料流动控制器(17) 由隔板(19)、 孔 口 (20)、物料下行流动管(21)、 底部挡板(22)和取热部件(23)组成; 所述孔口(20)位于所述隔板(19)的下方并与所述物料下行流动管(21) 底部相连, 所述底部挡板(22)位于所述物料下行流动管(21)和所述孔 口 (20) 的底部, 所述取热部件 (23) 固定在所述隔板 (19) 上。
在一个优选实施方案中, 所述底部挡板 (22) 为多孔板或无孔板。 与已有技术方案相比, 本发明的有益效果包括但不限于以下几方面:
(1)密相流化床具有较高的床层密度, 催化剂速度较低、 磨损低。
(2)物料流动控制器中的物料下行流动管中的气速小于等于催化剂的 最小流化速度, 催化剂处于密相堆积状态, 形成了催化剂的单向密相输送 流, 避免了相邻二级反应区(或相邻二级再生区)之间的催化剂返混, 停 留时间分布窄。
(3)物料流动控制器中的取热部件具有控制反应区温度的作用。
(4;)物料流动控制器将反应区分隔为 n个二级反应区, 催化剂依次通 过第 1二级反应区至第 n二级反应区, 停留时间分布窄, 待生催化剂碳含 量的均匀性大幅度提高。
(5;)物料流动控制器将再生区分隔为 m个二级再生区, 催化剂依次通 过第 1二级再生区至第 m二级再生区, 停留时间分布窄, 再生催化剂碳 含量的均匀性大幅度提高。
(6)实现了较为精确的控制再生催化剂和待生催化剂的碳含量, 并且 碳含量分布较为均匀, 提高了低碳烯烃的选择性, 并可根据需求调控碳含 量来优化丙烯 /乙烯的比率。
(7)因催化剂的碳含量分布较为均匀, 反应区所需的催化剂藏量降低。
(8)多个二级反应区的结构便于实现反应器的大型化。 附图说明
图 1为本发明所述方法的流程示意图;
图 2为本发明所述包含 4个二级反应区的密相流化床的结构示意图, 其中 A-A剖面图中的箭头是二级反应区间的催化剂流动方向 ·'
图 3为本发明所述包含 4个二级再生区的密相流化床的结构示意图, 其中 B-B剖面图中的箭头是二级再生区间的催化剂流动方向;
图 4为本发明所述汽提器的结构示意图;
图 5为本发明所述物料流动控制器的结构示意图。
附图中的附图标记说明如下:
1-反应器进料管线; 1-1第 1个二级反应区进料支线; 1-2第 2二级反 应区进料支线; 1-3第 3二级反应区进料支线; 1-4第 4二级反应区进料 支线; 2-密相流化床反应器; 2-1第 1二级反应区; 2-2第 2二级反应区; 2-3第 3二级反应区; 2-4第 4二级反应区; 3-旋风分离器; 4-产品物料管 线; 5-汽提器; 6-水蒸气管线; 7-提升管; 8-提升气管线; 9-再生器进料 管线; 9-1第 1二级再生区进料支线; 9-2第 2二级再生区进料支线; 9-3 第 3二级再生区进料支线; 9-4第 4二级再生区进料支线; 10-密相流化床 再生器; 10-1第 1二级再生区; 10-2第 2二级再生区; 10-3第 3二级再 生区; 10-4第 4二级再生区; 11-旋风分离器; 12-废气管线; 13-汽提器; 14-水蒸气管线; 15-提升管; 16-提升气管线; 17-物料流动控制器; 18-物 料溢流口; 19-隔板; 20-?L口; 21-物料下行流动管; 22-底部挡板; 23-取 热部件。 具体实施方式
为了提高含氧化合物制取低碳烯烃的工艺中的低碳烯烃选择性,本发 明提供了一种甲醇和 /或二甲醚制低碳烯烃的反应装置, 主要包括密相流 化床反应器(2), 旋风分离器(3), 汽提器(5), 提升管 (7), 密相流化 床再生器 (10), 旋风分离器 (11), 汽提器 (13) 和提升管 (15)。 反应 器进料管线 (1) 与密相流化床反应器 (2) 的底部相连, 汽提器 (5) — 部分在密相流化床反应器 (2) 中, 其余部分位于密相流化床反应器 (2) 的下方, 水蒸气管线 (6) 与汽提器 (5) 的底部相连, 提升管 (7) 的底 部与汽提器 (5) 的底部相连, 提升气管线 (8) 与提升管 (7) 的底部相 连,提升管 7的顶部与密相流化床再生器(10)相连,再生器进料管线(9) 与密相流化床再生器(10) 的底部相连, 汽提器(13) 的一部分在密相流 化床再生器(10) 中, 其余部分位于密相流化床再生器(10)下方, 水蒸 气管线 (14) 与汽提器(13) 的底部相连, 提升管(15) 的底部与汽提器
(13) 的底部相连, 提升气管线 (16) 与提升管 (15) 的底部相连, 提升 管 (15) 的顶部与密相流化床反应器 (2) 相连。 优选地, 所述反应器进 料管线 (1) 包含 n个反应区进料支线 (1-1, ……, l-n), 所述密相流化 床反应器(2)由物料流动控制器(17)分隔为 n个二级反应区(2-1,……, 2-n), n^2, 优选为 8 n 3; n个反应区进料支线分别与 n个二级反应 区相连; 第 1个至第 n个二级反应区依序相连, 提升管(15) 的顶部与第 1个二级反应区相连, 第 n个二级反应区与汽提器 (5) 上部的物料溢流 口 (18) 相连, 密相流化床反应器 (2) 的上部设有旋风分离器 (3), 旋 风分离器 (3) 的顶部出口与产品物料管线 (4) 相连, 旋风分离器 (3) 的底部与第 n个二级反应区相连。
优选地, 所述再生器进料管线 (9) 包含 m 个再生区进料支线
(9-1,……, 9-m),所述密相流化床再生器(10)由物料流动控制器(17) 分隔为 m个二级再生区 (10-1, ······, 10-m), m^2, 优选为 8 m 3; m个再生区进料支线分别与 m个二级再生区相连; 第 1个至第 m个二级 再生区依序相连, 提升管 (7) 的顶部与第 1个二级再生区相连, 第 m个 二级再生区与汽提器(13)上部的物料溢流口 (18)相连, 密相流化床再 生器 (10) 的上部设有旋风分离器 (11), 旋风分离器 (11) 的顶部出口 与废气管线 (12) 相连, 旋风分离器 (11 ) 的底部与第 m个二级再生区 相连。
优选地, 所述物料流动控制器(17 ) 由隔板(19)、 孔口 (20)、 物料 下行流动管 (21 )、 底部挡板 (22) 和取热部件 (23 ) 组成。 孔口 (20) 位于隔板(19) 的下方, 与物料下行流动管(21 ) 的底部相连, 底部挡板 (22)可采用多孔板或无孔板, 其位于物料下行流动管(21 )和孔口(20) 的底部, 取热部件 (23 ) 固定在隔板 (19) 上。
在一个优选实施方案中,本发明所述的甲醇制低碳烯烃的流程示意图 如图 1所示。 主要为甲醇和 /或二甲醚的原料进入密相流化床反应器(2), 与催化剂接触, 生成气相产品物流和待生催化剂, 气相产品物流和夹带的 待生催化剂进入旋风分离器(3 ), 气相产品物流经旋风分离器的出口进入 后续分离工段,夹带的待生催化剂经旋风分离器的料腿进入第 n个二级反 应区, 再生催化剂经过汽提器 (13 )、 提升管 (15 ) 进入密相流化床反应 器 2, 并依序经过第 1个至第 n个二级反应区, 积碳后形成待生催化剂, 待生催化剂再经过汽提器(5)、提升管(7)进入密相流化床再生器(10), 并依序经过第 1个至第 m个二级再生区, 烧炭后形成再生催化剂。 所述 催化剂优选包括 SAPO分子筛的催化剂, 进一歩优选为包括 SAPO-34分 子筛的催化剂。
在一个具体实施方案中,本发明的包含 4个二级反应区的密相流化床 的结构示意图如图 2所示, A-A剖面图中的箭头是二级反应区间的催化剂 流动方向。 3个物料流动控制器 (17) 和一个挡板竖直设置, 将密相流化 床反应区分隔为 4个二级反应区,催化剂依序通过第 1个至第 4个二级反 应区, 然后进入汽提器。
在一个具体实施方案中,本发明的包含 4个二级再生区的密相流化床 的结构示意图如图 3所示, B-B剖面图中的箭头是二级再生区间的催化剂 流动方向。 3个物料流动控制器 (17) 和一个挡板竖直设置, 将密相流化 床再生区分隔为 4个二级再生区,催化剂依序通过第 1个至第 4个二级再 生区, 然后进入汽提器。
优选地, 本发明所述的汽提器 (5和 13 ) 的结构示意图如图 4所示。 汽提器(5 )上部管壁上的开口作为第 n个二级反应区与汽提器(5)之间 的物料溢流口 (18); 汽提器 (13 ) 上部管壁上的开口作为第 m个二级再 生区与汽提器 (13 ) 之间的物料溢流口 (18)。
优选地, 本发明所述的物料流动控制器的结构示意图如图 5所示。物 料流动控制器 (17 ) 由隔板 (19)、 孔口 (20)、 物料下行流动管 (21 )、 底部挡板(22)和取热部件(23 )组成。 催化剂由下行流动管上方进入物 料下行流动管, 其中气体表观线速度小于等于最小流化速度, 物料下行流 动管内的催化剂处于密相堆积状态, 形成物料流动推动力, 推动催化剂经 过孔口流入其后的二级反应区 (或再生区:)。 取热部件可采用盘管结构, 固 定于隔板之上。
优选地, 所述密相流化床反应区内气体表观线速度为 0.1-1.5m/s; 所 述密相流化床再生区内气体表观线速度为 0.1-1.5m/s; 所述物料流动控制 器内气体表观线速度小于等于催化剂的最小流化速度;所述催化剂优选包 括 SAPO分子筛的催化剂,进一歩优选为包括 SAPO-34分子筛的催化剂; 所述反应区底部设有进料口, 进料包括甲醇和 /或二甲醚等; 所述汽提器 ( 13 )的汽提介质包含水蒸气;所述再生区(10)底部设有再生介质入口, 再生介质包括空气、 贫氧空气、 水蒸气等; 所述反应区 (2 ) 的反应温度 为 400-550°C,床层密度为 200-1200kg/m3, 催化剂平均积炭量由第 1个二 级反应区至第 n个二级反应区依次递增,第 1个二级反应区的平均积炭量 为 0.5-3wt%,第 n个二级反应区的平均积炭量为 7-10wt%;所述再生区( 10 ) 的反应温度为 500-700°C,床层密度为 200-1200kg/m3, 催化剂平均积炭量 由第 1个二级再生区至第 m个二级再生区依次递减, 第 1个二级再生区 的平均积炭量为 3-10wt%, 第 m个二级再生区的平均积炭量为 0-3wt%。 采用本发明的方法, 可以达到控制催化剂积碳量、 改善碳含量均匀性以及 提高低碳烯烃选择性的目的, 具有较大的技术优势, 可用于低碳烯烃的工 业生产中。
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但 非限制性的实施例如下: 实施例 1
密相流化床反应器内设置 4个二级反应区,密相流化床再生器内设置 4个二级再生区, 主要为甲醇和 /或二甲醚的原料进入密相流化床反应器, 与包括 SAPO-34分子筛的催化剂接触, 生成的气相产品物流和待生催化 剂, 气相物料和夹带的待生催化剂进入旋风分离器, 气相产品物流经旋风 分离器的出口进入后续分离工段,夹带的待生催化剂经旋风分离器的料腿 进入第 4个二级反应区。再生催化剂经过汽提器、提升管进入密相流化床 反应器, 并依序经过第 1个至 4个二级反应区, 积碳后形成待生催化剂, 待生催化剂再经过汽提器、提升管进入密相流化床再生器, 并依序经过第 1个至 4个二级再生区, 烧炭后形成再生催化剂。 密相流化床反应器反应 条件为:反应温度为 400 °C,气相线速度为 0.3m/s,床层密度为 1000kg/m3, 第 1个二级反应区的平均积炭量为 2wt%, 第 2个二级反应区的平均积炭 量为 6wt%, 第 3个二级反应区的平均积炭量为 8wt%, 第 4个二级反应 区的平均积炭量为 10wt%; 密相流化床再生器反应条件为: 反应温度为 500 °C , 气相线速度为 0.3m/s, 床层密度为 1000kg/m3, 第 1个二级再生区 的平均积炭量为 7wt%, 第 2个二级再生区的平均积炭量为 4wt%, 第 3 个二级再生区的平均积炭量为 2wt%, 第 4个二级再生区的平均积炭量为 lwt%。 反应产品采用在线气相色谱分析, 低碳烯烃碳基收率为 91.1wt%。 实施例 2
密相流化床反应器内设置 3个二级反应区,密相流化床再生器内设置 2个二级再生区, 主要为甲醇和 /或二甲醚的原料进入密相流化床反应器, 与包括 SAPO-34分子筛的催化剂接触, 生成的气相产品物流和待生催化 剂, 气相物料和夹带的待生催化剂进入旋风分离器, 气相产品物流经旋风 分离器的出口进入后续分离工段,夹带的待生催化剂经旋风分离器的料腿 进入第 3二级反应区。再生催化剂经过汽提器、提升管进入密相流化床反 应器, 并依序经过第 1个至 3个二级反应区, 积碳后形成待生催化剂, 待 生催化剂再经过汽提器、 提升管进入密相流化床再生器, 并依序经过第 1 个至 2个二级再生区, 烧炭后形成再生催化剂。密相流化床反应器反应条 件为: 反应温度为 450°C, 气相线速度为 0.5m/s, 床层密度为 900kg/m3, 第 1个二级反应区的平均积炭量为 3wt%, 第 2个二级反应区的平均积炭 量为 7wt%, 第 3二级反应区的平均积炭量为 9wt%; 密相流化床再生器 反应条件为: 反应温度为 600 °C, 气相线速度为 0.7m/s, 床层密度为 700kg/m3, 第 1个二级再生区的平均积炭量为 4wt%, 第 2个二级再生区 的平均积炭量为 2wt%。 反应产品采用在线气相色谱分析, 低碳烯烃碳基 收率为 90.5wt%。 实施例 3
密相流化床反应器内设置 6个二级反应区,密相流化床再生器内设置 5个二级再生区, 主要为甲醇和 /或二甲醚的原料进入密相流化床反应器, 与包括 SAPO-34分子筛的催化剂接触, 生成的气相产品物流和待生催化 剂, 气相物料和夹带的待生催化剂进入旋风分离器, 气相产品物流经旋风 分离器的出口进入后续分离工段,夹带的待生催化剂经旋风分离器的料腿 进入第 6个二级反应区。再生催化剂经过汽提器、提升管进入密相流化床 反应器, 并依序经过第 1至 6个二级反应区, 积碳后形成待生催化剂, 待 生催化剂再经过汽提器、 提升管进入密相流化床再生器, 并依序经过第 1 至 5个二级再生区, 烧炭后形成再生催化剂。密相流化床反应器反应条件 为: 反应温度为 480°C, 气相线速度为 0.7m/s, 床层密度为 700kg/m3, 第 1个二级反应区的平均积炭量为 lwt%, 第 2个二级反应区的平均积炭量 为 3wt%, 第 3个二级反应区的平均积炭量为 4wt%, 第 4个二级反应区 的平均积炭量为 5wt%, 第 5个二级反应区的平均积炭量为 6wt%, 第 6 个二级反应区的平均积炭量为 7wt%; 密相流化床再生器反应条件为: 反 应温度为 650°C, 气相线速度为 1.0m/s, 床层密度为 500kg/m3, 第 1个二 级再生区的平均积炭量为 5wt%, 第 2 个二级再生区的平均积炭量为 3wt%, 第 3个二级再生区的平均积炭量为 2wt%, 第 4个二级再生区的平 均积炭量为 lwt%, 第 5个二级再生区的平均积炭量为 0.01wt%。 反应产 品采用在线气相色谱分析, 低碳烯烃碳基收率为 91.4wt%。
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具 体实施方式。本领域技术人员理解, 在不背离本发明范围的情况下, 可以 作出其他更改和变形。 本发明的范围由所附权利要求限定。

Claims

权 利 要 求
1. 一种用于甲醇和 /或二甲醚制低碳烯烃的反应装置, 其特征在于,所 述反应装置包括密相流化床反应器 (2)、 旋风分离器 (3)、 汽提器 (5)、 提升管 (7)、 密相流化床再生器 (10)、 旋风分离器 (11)、 汽提器 (13) 和提升管(15); 其中,反应器进料管线(1)与所述密相流化床反应器(2) 底部相连; 所述汽提器(5)的一部分在所述密相流化床反应器(2)之中, 其余部分在所述密相流化床反应器(2)下方; 所述提升管(7)底部与所 述汽提器(5) 的底部相连, 所述提升管(7) 的顶部与所述密相流化床再 生器 (10) 相连; 再生器进料管线 (9) 与所述密相流化床再生器 (10) 的底部相连; 所述汽提器 (13) 的一部分在所述密相流化床再生器 (10) 之中, 其余部分在所述密相流化床再生器 (10) 下方; 所述提升管 (15) 的底部与所述汽提器(13) 的底部相连, 所述提升管(15) 的顶部与所述 密相流化床反应器 (2) 相连, 其中所述密相流化床反应器 (2) 和 /或密 相流化床再生器 (10) 中具有物料流动控制器 (17), 所述密相流化床反 应器 (2) 由所述物料流动控制器 (17) 分隔为 n个二级反应区, 并且第 1个至第 n个二级反应区依序相连; 所述密相流化床再生器(10) 由所述 物料流动控制器 (17) 分隔为 m个二级再生区, 并且第 1个至第 m个二 级再生区依序相连; 并且其中11 2,
Figure imgf000013_0001
2. 根据权利要求 1所述的反应装置, 其特征在于, 所述提升管 (15) 顶部与第 1个二级反应区相连, 第 n个二级反应区与所述汽提器 (5) 上 部的物料溢流口 (18) 相连; 所述密相流化床反应器 (2) 的上部设有旋 风分离器(3), 所述旋风分离器(3) 的顶部出口与产品物料管线 (4)相 连, 所述旋风分离器 (3) 的底部与第 n个二级反应区相连。
3. 根据权利要求 1 所述的反应装置, 其特征在于, 所述提升管 (7) 的顶部与第 1个二级再生区相连, 第 m个二级再生区与所述汽提器(13) 上部的物料溢流口 (18)相连; 所述密相流化床再生器(10) 的上部设有 旋风分离器 (11), 所述旋风分离器 (11) 的顶部出口与废气管线 (12) 相连, 所述旋风分离器 (11) 的底部与第 m个二级再生区相连。
4. 根据权利要求 1所述的反应装置, 其特征在于, 8 n 3。
5. 根据权利要求 1所述的反应装置, 其特征在于, 8 m 3。
6. 根据权利要求 1-5任一项所述的反应装置, 其特征在于, 所述物料 流动控制器 (17) 由隔板 (19)、 孔口 (20)、 物料下行流动管 (21)、 底 部挡板(22)和取热部件(23)组成; 所述孔口 (20)位于所述隔板(19) 的下方并与所述物料下行流动管(21)底部相连, 所述底部挡板(22)位 于所述物料下行流动管(21)和所述孔口(20)的底部,所述取热部件(23) 固定在所述隔板 (19) 上。
7. 根据权利要求 6所述的反应装置,其特征在于,所述底部挡板(22) 为多孔板或无孔板。
PCT/CN2013/088413 2013-12-03 2013-12-03 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置 WO2015081494A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK13898849.8T DK3078414T3 (en) 2013-12-03 2013-12-03 REACTION DEVICE FOR THE PREPARATION OF LIGHT OLEFINES FROM METHANOL AND / OR DIMETHYLETHER
KR1020167015784A KR101763864B1 (ko) 2013-12-03 2013-12-03 메탄올 및/또는 디메틸 에테르로부터 저급 올레핀을 제조하기 위한 반응 장치
JP2016555872A JP6230722B2 (ja) 2013-12-03 2013-12-03 メタノール及び/又はジメチルエーテルから低級オレフィンを製造する反応装置
US15/039,471 US9827544B2 (en) 2013-12-03 2013-12-03 Reaction device for preparing light olefins from methanol and/or dimethyl ether
MYPI2016702029A MY171791A (en) 2013-12-03 2013-12-03 Reaction device for preparing light olefins from methanol and/or dimethyl ether
AU2013407185A AU2013407185B2 (en) 2013-12-03 2013-12-03 Reaction device for preparing light olefins from methanol and/or dimethyl ether
PCT/CN2013/088413 WO2015081494A1 (zh) 2013-12-03 2013-12-03 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置
RU2016125262A RU2636077C1 (ru) 2013-12-03 2013-12-03 Реакционное устройство для получения легких олефинов из метанола и/или диметилового эфира
BR112016012613-0A BR112016012613B1 (pt) 2013-12-03 2013-12-03 Dispositivo de reação para preparar olefinas leves a partir de metanol e/ou dimetil éter
EP13898849.8A EP3078414B1 (en) 2013-12-03 2013-12-03 Reaction device for preparing light olefins from methanol and/or dimethyl ether
SG11201604419XA SG11201604419XA (en) 2013-12-03 2013-12-03 Reaction device for preparing light olefins from methanol and/or dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/088413 WO2015081494A1 (zh) 2013-12-03 2013-12-03 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置

Publications (1)

Publication Number Publication Date
WO2015081494A1 true WO2015081494A1 (zh) 2015-06-11

Family

ID=53272726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088413 WO2015081494A1 (zh) 2013-12-03 2013-12-03 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置

Country Status (10)

Country Link
US (1) US9827544B2 (zh)
EP (1) EP3078414B1 (zh)
JP (1) JP6230722B2 (zh)
KR (1) KR101763864B1 (zh)
AU (1) AU2013407185B2 (zh)
BR (1) BR112016012613B1 (zh)
DK (1) DK3078414T3 (zh)
RU (1) RU2636077C1 (zh)
SG (1) SG11201604419XA (zh)
WO (1) WO2015081494A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108017496A (zh) * 2016-11-04 2018-05-11 中国石油化工股份有限公司 生产烯烃和芳烃的装置及其方法
JP2020500840A (ja) * 2016-10-19 2020-01-16 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences プロピレン及びc4の炭化水素類を製造する方法及びその装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029979B1 (fr) * 2014-12-12 2019-04-05 IFP Energies Nouvelles Procede et installation de combustion par oxydo-reduction en boucle chimique d'une charge hydrocarbonee gazeuse avec reformage catalytique in situ de la charge
KR102243316B1 (ko) * 2016-10-19 2021-04-21 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 산소 함유 화합물로 프로필렌과 c4 탄화수소류를 제조하는 난류 유동층 반응기, 장치 및 방법
EP3530639B1 (en) * 2016-10-19 2024-01-10 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences Fast fluidized-bed reactor, device, and method using oxygen-containing compound for manufacturing propene or c4 hydrocarbon
US10640433B2 (en) * 2016-10-19 2020-05-05 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method and device for manufacturing propene and C4 hydrocarbon
CN108786670B (zh) 2017-04-27 2021-01-26 中国科学院大连化学物理研究所 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的方法
CN108794291B (zh) 2017-04-27 2020-11-27 中国科学院大连化学物理研究所 甲醇和/或二甲醚与甲苯制对二甲苯联产低碳烯烃的流化床装置及方法
CN108786672B (zh) 2017-04-27 2021-01-26 中国科学院大连化学物理研究所 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的方法
CN108794294B (zh) * 2017-04-27 2020-12-11 中国科学院大连化学物理研究所 流化床气体分布器、应用其的反应器及生产对二甲苯联产低碳烯烃的方法
CN108786669B (zh) * 2017-04-27 2021-01-12 中国科学院大连化学物理研究所 流化床气体分布器、应用其的反应器及生产对二甲苯联产低碳烯烃的方法
CN108786671B (zh) 2017-04-27 2021-04-23 中国科学院大连化学物理研究所 甲醇和/或二甲醚与苯制对二甲苯联产低碳烯烃的流化床装置及方法
US20230125888A1 (en) * 2020-10-16 2023-04-27 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Regeneration device, device for preparing low-carbon olefins, and use thereof
KR20230011380A (ko) * 2020-10-16 2023-01-20 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 유동상 반응기, 장치 및 응용
EP4105193A4 (en) 2020-10-16 2023-10-11 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences COKE REGULATION AND CONTROL REACTOR, DEVICE AND METHOD FOR PREPARING LIGHT OLEFIN FROM AN OXYGEN-CONTAINING COMPOUND

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166282A (en) 1999-08-20 2000-12-26 Uop Llc Fast-fluidized bed reactor for MTO process
CN102276404A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 由甲醇生产低碳烯烃的反应装置
CN102276406A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 增产丙烯生产方法
CN102463074A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的反应装置
CN101402538B (zh) 2008-11-21 2013-01-09 中国石油化工股份有限公司 提高低碳烯烃收率的方法
CN102875296A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 甲醇制低碳烯烃的反应装置
CN102875289A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 制备低碳烯烃的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919241A (en) * 1955-06-17 1959-12-29 Kellogg M W Co Conversion process and apparatus with plural adjacent stages and central stripping zone
US3904548A (en) * 1973-09-10 1975-09-09 Mobil Oil Corp Regenerating catalyst with tangential introduction and circumferential swirl in a fluidized bed
GB1562571A (en) * 1978-01-26 1980-03-12 Melik Akhnazarov Others regeneration of hydrocarbon cracking catalyst
FR2417336A1 (fr) * 1978-02-16 1979-09-14 Melik Akhnazarov Talyat Procede de regeneration par oxydation du catalyseur vieilli du craking des matieres premieres hydrocarbonees et appareil pour sa mise en oeuvre
US4670410A (en) * 1981-06-22 1987-06-02 Atlantic Richfield Company Method for reducing attrition of particulate matter in a chemical conversion process
US5196172A (en) * 1989-05-16 1993-03-23 Engelhard Corporation Apparatus for the fluid catalytic cracking of hydrocarbon feed employing a separable mixture of catalyst and sorbent particles
US4994424A (en) * 1989-11-06 1991-02-19 Mobil Oil Corporation Catalytic cracking process with improved flow in swirl regenerator
EP0574821B1 (en) * 1992-06-18 1998-03-11 Montell Technology Company bv Process and apparatus for the gas-phase polymerization of olefins
FR2757785B1 (fr) * 1996-12-31 1999-11-26 Total Raffinage Distribution Dispositif pour le traitement de particules solides en lit fluidise, et son utilisation
US6023005A (en) * 1997-07-03 2000-02-08 Exxon Chemicals Patents Inc. Process for converting oxygenates to olefins using molecular sieve catalysts comprising desirable carbonaceous deposits
RO114524B1 (ro) * 1997-10-02 1999-05-28 Sc Zecasin Sa Procedeu de fabricare a oleofinelor cu greutate moleculara mica prin conversia catalitica in strat fluidizat a metanolului
US6143915A (en) * 1998-11-23 2000-11-07 Uop Llc Reaction process in hybrid reactor for propylene ammoxidation
JP2001340746A (ja) * 2000-06-01 2001-12-11 Nkk Corp スラリー床反応器
WO2002008359A1 (en) * 2000-07-21 2002-01-31 Shell Internationale Research Maatschappij B.V. Regenerator
JP4309568B2 (ja) * 2000-10-10 2009-08-05 財団法人 国際石油交流センター 炭化水素の連続的流動接触分解法における触媒の再生循環法
US20030127358A1 (en) * 2002-01-10 2003-07-10 Letzsch Warren S. Deep catalytic cracking process
US7122160B2 (en) * 2002-09-24 2006-10-17 Exxonmobil Chemical Patents Inc. Reactor with multiple risers and consolidated transport
EP2004776A1 (en) * 2006-03-31 2008-12-24 ExxonMobil Chemical Patents Inc. Product recovery in gas-solids reactors
US20080081006A1 (en) * 2006-09-29 2008-04-03 Myers Daniel N Advanced elevated feed distribution system for very large diameter RCC reactor risers
CN101239869B (zh) * 2007-02-07 2011-03-23 中国石油化工股份有限公司上海石油化工研究院 甲醇或二甲醚转化制低碳烯烃的方法
CN101959589B (zh) * 2008-03-07 2013-09-18 国际壳牌研究有限公司 用于裂化烃进料的反应器组件
CN101270019B (zh) * 2008-04-11 2011-05-18 中国石油化工股份有限公司 由甲醇或二甲醚制备乙烯和丙烯的方法
CN102464535B (zh) * 2010-11-17 2014-03-26 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的方法
CN103608098B (zh) * 2011-05-12 2016-04-06 格拉特工程技术有限公司 用于在涡流层设备中连续地处理固体的装置
DK3078651T3 (en) * 2013-12-03 2019-03-04 Dalian Inst Chem & Physics Cas PROCEDURE FOR THE PREPARATION OF A LIGHT OLEFINE USING AN OXYGEN CONNECTED
CN104672045B (zh) * 2013-12-03 2016-06-08 中国科学院大连化学物理研究所 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166282A (en) 1999-08-20 2000-12-26 Uop Llc Fast-fluidized bed reactor for MTO process
CN101402538B (zh) 2008-11-21 2013-01-09 中国石油化工股份有限公司 提高低碳烯烃收率的方法
CN102276404A (zh) * 2010-06-11 2011-12-14 中国石油化工股份有限公司 由甲醇生产低碳烯烃的反应装置
CN102276406A (zh) 2010-06-11 2011-12-14 中国石油化工股份有限公司 增产丙烯生产方法
CN102463074A (zh) * 2010-11-17 2012-05-23 中国石油化工股份有限公司 甲醇或二甲醚生产低碳烯烃的反应装置
CN102875296A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 甲醇制低碳烯烃的反应装置
CN102875289A (zh) 2011-07-12 2013-01-16 中国石油化工股份有限公司 制备低碳烯烃的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500840A (ja) * 2016-10-19 2020-01-16 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences プロピレン及びc4の炭化水素類を製造する方法及びその装置
CN108017496A (zh) * 2016-11-04 2018-05-11 中国石油化工股份有限公司 生产烯烃和芳烃的装置及其方法
CN108017496B (zh) * 2016-11-04 2021-03-30 中国石油化工股份有限公司 生产烯烃和芳烃的装置及其方法

Also Published As

Publication number Publication date
JP6230722B2 (ja) 2017-11-15
JP2017504654A (ja) 2017-02-09
SG11201604419XA (en) 2016-07-28
EP3078414A1 (en) 2016-10-12
DK3078414T3 (en) 2018-10-22
AU2013407185B2 (en) 2017-02-16
AU2013407185A1 (en) 2016-07-07
KR101763864B1 (ko) 2017-08-01
US20170001164A1 (en) 2017-01-05
KR20160086907A (ko) 2016-07-20
BR112016012613B1 (pt) 2021-08-03
RU2636077C1 (ru) 2017-11-20
US9827544B2 (en) 2017-11-28
BR112016012613A2 (pt) 2017-08-08
EP3078414B1 (en) 2018-09-19
EP3078414A4 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
WO2015081494A1 (zh) 一种用于甲醇和/或二甲醚制低碳烯烃的反应装置
WO2015081484A1 (zh) 一种含氧化合物制低碳烯烃的方法及其使用的设备
WO2015081489A1 (zh) 一种含氧化合物制低碳烯烃的方法
JP2017504654A5 (zh)
WO2012167708A1 (zh) 由含氧化合物制烯烃的流化床反应器和方法
CN102464532B (zh) 低碳烯烃的制备方法
JP2020500100A (ja) 酸素含有化合物からプロピレン、c4の炭化水素類を製造する高速流動床式反応器、装置及び方法
CN111018646A (zh) 一种提高含氧化合物转化制低碳烯烃选择性的方法及其装置
CN111004077A (zh) 一种提高甲醇转化制低碳烯烃选择性的方法及其装置
WO2021185168A1 (zh) 甲醇至烯烃的转化方法
WO2021089048A1 (zh) 一种催化剂预烃池化的方法及其设备
CN112778069A (zh) 一种提高含氧化合物转化制低碳烯烃选择性的方法及其装置
CN112778070A (zh) 一种催化剂预烃池化的方法及其设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15039471

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016555872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167015784

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016012613

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201604110

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2013898849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013898849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016125262

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013407185

Country of ref document: AU

Date of ref document: 20131203

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016012613

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160602