WO2015080149A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2015080149A1
WO2015080149A1 PCT/JP2014/081228 JP2014081228W WO2015080149A1 WO 2015080149 A1 WO2015080149 A1 WO 2015080149A1 JP 2014081228 W JP2014081228 W JP 2014081228W WO 2015080149 A1 WO2015080149 A1 WO 2015080149A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
content
contained
substrate
cutting tool
Prior art date
Application number
PCT/JP2014/081228
Other languages
English (en)
French (fr)
Inventor
隼人 久保
晃 李
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020167014151A priority Critical patent/KR101813536B1/ko
Priority to EP14865641.6A priority patent/EP3075475A4/en
Priority to CN201480064946.2A priority patent/CN105792967B/zh
Priority to US15/039,927 priority patent/US10113239B2/en
Priority to JP2015550959A priority patent/JP6276288B2/ja
Publication of WO2015080149A1 publication Critical patent/WO2015080149A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Definitions

  • the present invention relates to a cutting tool, and particularly to a cutting tool having a coating layer.
  • a cutting tool widely used for metal cutting is widely used in which a multilayer coating layer such as a TiCN layer or an Al 2 O 3 layer is deposited on the surface of a substrate such as cemented carbide. Yes. It is also known that the cemented carbide contains a Cr component in addition to WC to enhance the corrosion resistance of the cemented carbide.
  • Patent Document 1 a cutting tool in which a TiN layer, a TiCN layer, a TiC layer, a TiCNO layer, an Al 2 O 3 layer, and a TiN layer are sequentially coated on the surface of a cemented carbide substrate by a CVD (chemical vapor deposition) method. Is disclosed, and W and Co are diffused and contained in the crystal grain boundaries of the TiN layer, TiCN layer, and TiC layer on the substrate side.
  • CVD chemical vapor deposition
  • Patent Document 2 discloses a method of increasing the oxidation resistance of the Ti-based coating layer by diffusing the Cr component together with the Co component in the cemented carbide substrate into the Ti-based coating layer on the substrate side.
  • An object of the present invention is to provide a cutting tool capable of exhibiting excellent wear resistance by suppressing the oxidation of the coating layer even when the cutting blade is subjected to high temperature processing such as high speed processing.
  • the cutting tool of the present embodiment includes a base made of a cemented carbide containing Cr, and at least one layer of Ti (C x1 N y1 O z1 ) (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ on the surface of the base.
  • the Ti-based layer, the Al 2 O 3 layer and the outermost layer coated on the surface of the cemented carbide substrate contain Cr, and the content of Cr contained in the substrate
  • the oxidation resistance of the coating layer containing Ti can be improved and the wear resistance of the cutting tool can be improved.
  • FIG. 1A is a scanning electron microscope (SEM) photograph of a cross section including a coating layer of a cutting tool
  • FIG. 1B is a glow discharge emission spectroscopic analysis (GDS) in the depth direction from the surface of the coating layer. Analysis) data
  • FIG. 2 is a partially enlarged view for viewing the distribution state of trace components of the GDS analysis data in FIG. 1 and 2 specify the structure of each layer determined by the distribution of each element and the correspondence with an electron micrograph (SEM).
  • SEM scanning electron microscope
  • 1 is a base (hard metal)
  • 4 is (Ti, Al) (C x2 N y2 O z2 ) (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇
  • the intermediate layer 4 can be omitted.
  • the first Ti-based layer 2a on the substrate 1 side is a TiCN layer
  • the second Ti-based layer 2b is also a TiCN layer having a different CN ratio.
  • the thickness of each layer can be calculated by GDS analysis, but if the etching rate of each layer is different, the error in the thickness of each layer becomes large. Therefore, while checking the configuration of each layer while checking with a scanning electron microscope (SEM) photograph and electron microanalysis (EPMA) data (not shown), the peak shape of the GDS analysis data is confirmed. The range was fixed. As can be seen from the SEM photograph in FIG. 1A, there is a portion where the thickness of each layer in the SEM photograph and the thickness of each layer detected by GDS analysis are not proportional. Further, in the SEM photograph of FIG.
  • the thickest layer in the coating layer 7 is the TiCN layer that is the first Ti-based layer 2 a of the Ti-based layer 2, and then the layer thickness is the largest.
  • the Al 2 O 3 layer 5 can be confirmed to be the Al 2 O 3 layer 5, and from the shape of the peak of the GDS analysis data in FIG. 1B, a region where the Ti distribution changes at a high concentration and a region where the Al distribution changes at a high concentration, Was confirmed to exist.
  • the region where the Ti distribution changes at a high concentration is the region of the first Ti-based layer 2a and the region of the second Ti-based layer 2b, and the region where the distribution of Al changes at a high concentration is the region of the Al 2 O 3 layer 5 Is identified.
  • the center position of the thickness of each layer, the middle L Ti of the 1Ti based layer 2a, is specified as the center L Al of the Al 2 O 3 layer 5.
  • the intermediate layer 4 and the outermost layer 6 are determined by specifying the region of the Ti-based layer 2 and the region of the Al 2 O 3 layer 5 of the first Ti-based layer 2a and the second Ti-based layer 2b. For the center position of 6, the center position in the region is specified as the center position (not shown).
  • the boundary of each layer is a bending point where the content of each element changes abruptly.
  • the boundary of each layer is specified by the following method. That is, the boundary between the region of the first Ti-based layer 2a and the region of the second Ti-based layer 2b is 10% lower than the maximum Ti content in the region of the first Ti-based layer 2a. It is defined as a position that is a quantity.
  • the boundary between the region of the second Ti-based layer 2b and the region of the intermediate layer 4 is such that the content of Ti is 10% lower than the maximum value of the Ti content in the region of the second Ti-based layer 2b. Is defined as the position.
  • the boundary between the region of the intermediate layer 4 and the region of the Al 2 O 3 layer 5 is such that the content of Al is 10% lower than the maximum value of the Al content in the Al 2 O 3 layer 5 Is defined as
  • the measurement area in the in-plane direction of the coating layer is as wide as about 1 mm, if there are irregularities between the layers, the components of other layers adjacent to each layer are mixed and detected. Sometimes. Further, due to the difference in etching rate of each layer, components contained in the substrate 1 are mixed on the substrate side in the region identified as the first Ti-based layer 2a in the GDS analysis. Further, the component contained in the lower Ti-based layer 2 is mixed on the substrate side in the region identified as the intermediate layer 4, and the upper Al layer is present on the surface side in the region identified as the intermediate layer 4. The components contained in the 2 O 3 layer 5 are detected in a mixed state. As a result, the region of the intermediate layer 4 in the GDS analysis is observed wider than the actual thickness observed in the SEM photograph.
  • substrate 1 is formed from the WC phase, the binder phase, and the B1 type solid solution phase depending on necessity.
  • WC is 80 to 94% by mass
  • Co is 5 to 15% by mass
  • Cr is 0.1 to 1% by mass in terms of Cr 3 C 2, and groups of Group 4, 5, and 6 metals in the periodic table excluding Cr
  • the surface of the substrate 1 has the coating layer 7 in which the Ti-based layer 2, the intermediate layer 4, the Al 2 O 3 layer 5, and the outermost layer 6 are laminated in order from the substrate 1 side.
  • the content of Cr contained in the center position of the thickness of the first Ti-based layer 2 a on the substrate 1 side in the Ti-based layer 2 is contained in the substrate 1.
  • the content of Cr is lower than the content of Cr, and is higher than the content of Cr contained in the center position of the thickness of the Al 2 O 3 layer 5.
  • the content of Cr contained in the central position of the thickness of the outermost layer 6 is higher than the content of Cr contained in the central position of the thickness of the Al 2 O 3 layer.
  • the wear resistance of the cutting tool 8 can be improved by suppressing the coating layer 7 from being oxidized and reducing its hardness.
  • the Al 2 O 3 layer 5 has an effect that wear resistance is improved because the Cr content is lower than that of the other layers.
  • the outermost layer 6 has an effect of improving the welding resistance on the surface of the coating layer 7 by containing Cr.
  • the content of Cr contained in the central position of the thickness of the first Ti-based layer 2 a is the same as or less than the content of Cr contained in the central position of the thickness of the Al 2 O 3 layer 5. Then, the oxidation of the coating layer 7 tends to proceed easily.
  • the content of Cr contained in the central position of the thickness of the Al 2 O 3 layer 5 is the content of Cr contained in the central position of the thickness of the first Ti-based layer 2a, or the center of the thickness of the outermost layer 6 If the content of Cr is the same as or greater than the content of Cr, the wear resistance of the Al 2 O 3 layer 5 tends to decrease.
  • the coating layer 7 There is a tendency for the welding resistance of the steel to decrease.
  • the Cr content contained in the center of the thicknesses of the first Ti-based layer 2a, the Al 2 O 3 layer 5 and the outermost layer 6 with respect to the Cr content contained in the substrate 1 is further increased.
  • the ratio of Cr Ti , Cr Al and Cr s is 0.5 ⁇ Cr Ti ⁇ 0.9, 0.01 ⁇ Cr Al ⁇ 0.2, 0.4 ⁇ Cr s ⁇ 0.7, respectively. It is.
  • the content of Cr contained in the substrate 1 is measured in a region where the change rate of the contents of W and C is within 5% in the GDS analysis data.
  • the oxidation resistance of the first Ti-based layer 2a, the second Ti-based layer 2b containing Ti, and the outermost layer 6 is improved, and the coating layer 7 is formed even in processing where the cutting edge becomes high temperature such as high-speed cutting. It is possible to increase the wear resistance of the cutting tool 8 by suppressing the decrease in hardness due to oxidation. Note that the same effect can be obtained even in a coating layer in which the intermediate layer 4 is omitted.
  • the coating layer 7 contains W and Co in addition to Cr.
  • the ratio of the contents of W and Co contained in each of the first Ti-based layer 2a, the Al 2 O 3 layer 5 and the outermost layer 6 with respect to the contents of W and Co contained in the substrate 1 is determined. , W Ti , W Al , W s , Co Ti , Co Al and Co s , respectively, 0.05 ⁇ W Ti ⁇ 0.3, W Al ⁇ 0.01, W s ⁇ 0.01, 0 .05 ⁇ Co Ti ⁇ 0.3, Co Al ⁇ 0.01, and Co s ⁇ 0.01.
  • W and Co diffusing from the base body 1 can diffuse into the Ti-based layer 2 and further improve the adhesion between the base body 1 and the coating layer 7.
  • W and Co easily oxidize at high temperatures, they hardly diffuse into the Al 2 O 3 layer 5 and the outermost layer 6, and the oxidation of the coating layer 7 can be suppressed.
  • the substrate 1 contains Si and Fe as inevitable impurity components, and these are diffused in the coating layer 7.
  • the ratio of the content of Si and Fe contained in each of the first Ti-based layer 2a, the Al 2 O 3 layer 5 and the outermost layer 6 with respect to the contents of Si and Fe contained in the substrate 1, respectively, is Si Ti , Si Al and Si s, when the Fe Ti, Fe Al and Fe s, 0.05 ⁇ Si Ti ⁇ 0.4, Si Al ⁇ 0.01, Si s ⁇ 0.01,0.05 ⁇ Fe Ti ⁇ 0.4, Fe Al ⁇ 0.01, and Fe s ⁇ 0.01.
  • Si and Fe diffusing from the base body 1 can diffuse into the Ti-based layer 2 to further enhance the adhesion between the base body 1 and the coating layer 7.
  • Si and Fe are easily oxidized at a high temperature, they hardly diffuse into the Al 2 O 3 layer 5 and the outermost layer 6, and the oxidation of the coating layer 7 can be suppressed.
  • the ratio of the content of Si and Fe contained in the intermediate layer 4 to the content of Si and Fe contained in the substrate 1 is Si m and Fe m , respectively. , Si m ⁇ 0.05 and Fe m ⁇ 0.05. That is, Si and Fe diffusing from the substrate 1 hardly diffuse into the intermediate layer 4 and can suppress the oxidation of the coating layer 7.
  • the substrate 1 and the coating layer 7 contain C (carbon).
  • the ratio of the content of C contained in each of the first Ti-based layer 2a, the intermediate layer 4, the Al 2 O 3 layer 5 and the outermost layer 6 with respect to the content of C contained in the substrate 1 is represented by C Ti ,
  • C Ti carbon
  • C m , C Al, and C s are satisfied, 0.2 ⁇ C Ti ⁇ 0.7, 0.01 ⁇ C m ⁇ 0.18, C Al ⁇ 0.01, and C s ⁇ 0.30.
  • More preferable range of C Ti is 0.3 ⁇ C Ti ⁇ 0.6.
  • the Ti-based layer 2 in the present embodiment is a TiCN layer in which both the first Ti-based layer 2a and the second Ti-based layer 2b on the substrate 1 side are laminated.
  • a single layer may be sufficient, and the multilayer of 3 or more layers may be sufficient. With this configuration, the degree of diffusion of Cr, W, Co, Fe, Si, and C components into the coating layer 7 can be easily adjusted.
  • the surface of a cemented carbide alloy is grind
  • the coating layer 2 is formed on the surface of the obtained substrate by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a TiN (titanium nitride) layer which is a first Ti-based layer, is formed on the surface of the substrate.
  • the preferred film forming conditions include a mixed gas composition containing titanium tetrachloride (TiCl 4 ) gas in a ratio of 0.5 to 10% by volume and nitrogen (N 2 ) gas in a ratio of 10 to 60% by volume, with the remainder being hydrogen ( A mixed gas comprising H 2 ) gas is used, the film forming temperature is 800 to 940 ° C., and the pressure is 8 to 50 kPa.
  • TiCN layer that is a second Ti-based layer is formed on the TiN layer.
  • the film forming conditions are 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 1 to 60% by volume of nitrogen (N 2 ) gas, and 0.2% of acetonitrile (CH 3 CN) gas as the mixed gas composition.
  • Examples include a mixed gas containing 1 to 3.0% by volume and the balance of hydrogen (H 2 ) gas, a film forming temperature of 780 to 850 ° C., and a pressure of 5 to 25 kPa.
  • An MT (Moderate Temprature) -TiCN layer composed of so-called columnar crystals is formed.
  • the crystal width of the columnar crystals can be adjusted by increasing or decreasing the flow rate of acetonitrile (CH 3 CN) gas during film formation.
  • an HT (High Temprature) -TiCN layer made of so-called granular crystals is formed on the MT-TiCN layer.
  • titanium tetrachloride (TiCl 4 ) gas is 0.1 to 3% by volume
  • nitrogen (N 2 ) gas is 0 to 15% by volume
  • methane (CH 4 ) gas or acetonitrile is 0.1 to 3% by volume.
  • the film forming temperature is 900 to 1020 ° C., and the pressure is 5 to 40 kPa.
  • the HT-TiCN layer is formed by switching to the film formation conditions.
  • titanium tetrachloride (TiCl 4 ) gas is 0.1 to 3% by volume
  • nitrogen (N 2 ) gas is 1 to 15% by volume
  • methane (CH 4 ) 0.1 to 10% by volume of gas or acetonitrile (CH 3 CN) gas is 1 to 15% by volume
  • methane (CH 4 ) 0.1 to 10% by volume of gas or acetonitrile (CH 3 CN) gas 0.5 to 3.0% by volume of carbon monoxide (CO) gas
  • AlCl 3 aluminum trichloride
  • a mixed gas containing 3.0% by volume and the remainder consisting of hydrogen (H 2 ) gas is used, the film forming temperature is 900 to 1020 ° C., and the pressure is 5 to 40 kPa.
  • AlCl 3 aluminum trichloride (AlCl 3 ) gas is 0.5 to 5.0% by volume
  • hydrogen chloride (HCl) gas is 0.5 to 3.5% by volume
  • carbon dioxide ( CO 2 ) gas of 0.5 to 5.0% by volume
  • hydrogen sulfide (H 2 S) gas of 0 to 0.5% by volume
  • the balance is hydrogen (H 2 ) gas. Is 930 to 1010 ° C., and the pressure is 5 to 10 kPa.
  • the film forming conditions for forming the TiN layer as the outermost layer include: a mixed gas composition of 0.1 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas and 0.005 to of chromium chloride (CrCl 2 ) gas.
  • TiCl 4 titanium tetrachloride
  • CrCl 2 chromium chloride
  • the film forming temperature is 855 to 1010 ° C.
  • the pressure is 10 It is set to ⁇ 85 kPa.
  • the inside of the deposition chamber is maintained at a pressure of 350 kPa to 850 kPa and a temperature of 1000 to 1200 ° C. for 30 minutes to 120 minutes, and then the chamber is cooled to thereby provide Cr present on the substrate surface.
  • the components and W, Co, Fe, Si and C components are diffused to the coating layer side, and are contained in a predetermined ratio in the Ti-based layer, the intermediate layer, and the Al 2 O 3 layer.
  • a raw material gas containing a Cr component is flowed at the time of film formation, so that the outermost layer contains the Cr component.
  • the cutting edge portion of the surface of the formed coating layer is polished.
  • the cutting edge portion is processed smoothly, the welding of the work material is suppressed, and the tool is further excellent in fracture resistance.
  • this granulated powder is used to form a cutting tool shape (CNMG120408PS) by press molding, degreased at 450 ° C. for 3 hours in a firing furnace, and then fired at 1450 ° C. for 1 hour to obtain super A hard alloy was produced.
  • CNMG120408PS cutting tool shape
  • the cutting edge portion was further subjected to honing on the surface of the substrate.
  • a surface treatment was performed using a slurry containing Cr 3 C 2 to increase the Cr concentration on the substrate surface by the method shown in Table 2 to increase the Cr content on the substrate surface.
  • coating layers having the structures shown in Tables 2 to 5 were sequentially formed on the surface of the processed cemented carbide by chemical vapor deposition (CVD) under the film forming conditions shown in Table 1.
  • CVD chemical vapor deposition
  • a TiN layer was formed as a first Ti-based layer
  • the second Ti-based layer was a laminate of an MT-TiCN layer and an HT-TiCN layer.
  • the thickness of the second Ti-based layer was constant at 0.5 ⁇ m for the HT-TiCN layer, and the thickness of the MT-TiCN layer was adjusted so that the total thickness was as shown in Table 2.
  • Sample No. No. 9 was formed without adding chromium chloride (CrCl 4 ) gas to the mixed gas when forming the outermost layer.
  • the film was formed by adding chromium chloride (CrCl 4 ) gas only to the latter half after the middle of the film formation time into the mixed gas when forming the outermost layer.
  • the chamber was filled with N 2 gas so as to be 500 kPa, and the inside of the chamber was cooled through a high temperature holding step after film formation in which the temperature shown in Table 2 was held for 60 minutes. The thickness of each layer was confirmed by observing the cross section of the coating layer with a scanning electron microscope.
  • GDS analysis (GD-PROFLER, manufactured by HORIBA, Ltd., analysis conditions: power 20 W, Ar pressure 600 Pa, discharge range 2 mm ⁇ , sampling time 0.3 sec / point)
  • the distribution of each element of Cr, W, Co, Fe, Si and C at the center of each layer was confirmed, and the concentrations of each element are shown in Tables 2 to 5.
  • SEM observation was performed about the cross section of the cutting tool.
  • a TiN layer, a TiCN layer, and an Al 2 O 3 layer are laminated in this order, and in GDS analysis, Cr Ti is smaller than the Cr content of the substrate, Cr Al is larger, and Cr Al is Cr s.
  • Sample No. smaller than Nos. 1 to 4 and 10 to 12 all had high cutting force with high coating layer adhesion and excellent wear resistance.
  • sample No. 1 satisfying 0.5 ⁇ Cr Ti ⁇ 0.9, 0.01 ⁇ Cr Al ⁇ 0.2, and 0.4 ⁇ Cr s ⁇ 0.7.
  • the wear resistance was particularly high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 【課題】耐溶着性および耐摩耗性の高い切削工具を提供する。【解決手段】Crを含有する超硬合金からなる基体(1)と、基体(1)の表面に、少なくとも1層のTi(Cx1Ny1Oz1)(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)からなるTi系層(2)、Al2O3層(5)、および、Ti(Cx3Ny3Oz3)(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3=1)からなる最表層(6)を、其体側から順に積層した被覆層(7)とを有してなり、グロー放電発光分光分析(GDS分析)において、Ti系層(2)中の基体側の第1Ti系層(2a)の厚みの中央の位置に含有されるCrの含有量が、基体(1)に含有されるCrの含有量よりも低いとともに、Al2O3層(5)の厚みの中央の位置に含有されるCrの含有量よりも高く、かつ最表層(6)の厚みの中央の位置に含有されるCrの含有量がAl2O3層(5)の厚みの中央の位置に含有されるCrの含有量よりも高い切削工具(8)である。

Description

切削工具
 本発明は切削工具に関し、特に被覆層を具備する切削工具に関する。
 従来から金属の切削加工に広く用いられている切削工具は、超硬合金等の基体の表面にTiCN層やAl層等の多層の被覆層を被着形成したものが広く用いられている。また、超硬合金中にはWC以外にCr成分を含有させて、超硬合金の耐食性を高めることが知られている。
 一方、特許文献1では、超硬合金の基体の表面に、CVD(化学蒸着)法によって、TiN層、TiCN層、TiC層、TiCNO層、Al層、TiN層を順に被覆した切削工具が開示され、基体側のTiN層、TiCN層、TiC層の結晶粒界にWとCoとを拡散含有させることが記載されている。
 また、特許文献2には、超硬合金の基体中のCo成分とともにCr成分を基体側のTi系被覆層中に拡散させ、Ti系被覆層の耐酸化性を高める方法が開示されている。
特開平08-118108号公報 特開2011-36988号公報
 しかしながら、特許文献1に記載の被覆層内にWとCoとを拡散含有させた切削工具では、被覆層の酸化が進行しやすく、被覆層の耐摩耗性が低下するおそれがあった。また、特許文献2に記載のCoとCrとを被覆層内に拡散させた切削工具でも、被覆層の表面における耐酸化性が不十分であった。
 本発明の目的は、高速加工等の切刃が高温になる加工によっても被覆層の酸化を抑えて、優れた耐摩耗性を発揮することができる切削工具を提供することにある。
 本実施形態の切削工具は、Crを含有する超硬合金からなる基体と、該基体の表面に、少なくとも1層のTi(Cx1y1z1)(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)からなるTi系層、Al層およびTi(Cx3y3z3)(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3=1)からなる最表層を前記基体側から順に積層した被覆層とを有してなり、グロー放電発光分光分析(GDS分析)において、前記Ti系層中の前記基体側の第1Ti系層の厚みの中央の位置に含有されるCrの含有量が、前記基体に含有されるCrの含有量よりも低く、かつ、前記Al層の厚みの中央の位置に含有されるCrの含有量よりも高く、前記最表層の厚みの中央の位置に含有されるCrの含有量が前記Al層の厚みの中央の位置に含有されるCrの含有量よりも高いものである。
 本実施形態の切削工具によれば、超硬合金の基体の表面に被覆されるTi系層、Al層および最表層にCrが含有されており、基体に含有されるCrの含有量に対する各層に含有されるCrの含有量を、所定の順となるように調整することによって、Tiを含有する被覆層の耐酸化性を高めて切削工具の耐摩耗性を向上できる。
本実施形態の切削工具の表面を含む断面について、(a)走査型電子顕微鏡(SEM)写真、(b)グロー放電発光分光分析(GDS分析)データを並べたものである。 図1のGDS分析データの微量成分の分布状態を見るための拡大図である。
 図1(a)は切削工具の被覆層を含む断面についての走査型電子顕微鏡(SEM)写真であり、図1(b)は被覆層の表面から深さ方向についてのグロー放電発光分光分析(GDS分析)データを示す。なお、図2は図1におけるGDS分析データの微量成分の分布状態を見るための部分拡大図である。図1、2には各元素の分布および電子顕微鏡写真(SEM)との対応によって決定される各層の構成を特定している。
 1が基体(超硬合金)、2がTi(Cx1y1z1)(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)からなるTi系層、2aがTi(Cx11y11z11)(0≦x11≦1、0≦y11≦1、0≦z11≦1、x11+y11+z11=1)からなる第1Ti系層、2bがTi(Cx12y12z12)(0≦x12≦1、0≦y12≦1、0≦z12≦1、x12+y12+z12=1)からなる第2Ti系層、4が(Ti,Al)(Cx2y2z2)(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)からなる中間層、5がAl層、6がTi(Cx3y3z3)(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3=1)からなる最表層、7が各層を積層してなる被覆層、8が切削工具であり、図1では切削工具8の一部を示している。
 なお、中間層4は省くことができる。本実施形態によれば、基体1側の第1Ti系層2aがTiCN層、第2Ti系層2bもCN比の異なるTiCN層である。
 ここで、GDS分析にて各層の厚みを算出することはできるが、各層のエッチング速度が異なると各層の厚みの誤差が大きくなってしまう。そこで、走査型電子顕微鏡(SEM)写真および電子線マイクロ分析(EPMA)データ(図示せず)と照合しながら各層の構成を確認しつつ、GDS分析データのピークの形を確認して、各層の範囲を確定した。なお、図1(a)のSEM写真からわかるように、SEM写真における各層の厚みとGDS分析で検出される各層の厚みとは比例しない部分がある。また、図1(a)のSEM写真において、被覆層7の中で、最も層厚が厚いのがTi系層2のうちの第1Ti系層2aであるTiCN層、次に層厚が厚いのがAl層5であることが確認でき、図1(b)のGDS分析データのピークの形からTiの分布が高い濃度で推移する領域とAlの分布が高い濃度で推移する領域とが存在することを確認できた。そして、このTiの分布が高い濃度で推移する領域を第1Ti系層2aの領域、および第2Ti系層2bの領域、Alの分布が高い濃度で推移する領域をAl層5の領域と特定する。そして、各層の厚みの中央の位置を、第1Ti系層2aの中央LTi、Al層5の中央LAlとして特定する。中間層4および最表層6については、第1Ti系層2aと第2Ti系層2bとのTi系層2の領域およびAl層5の領域の特定によって決定され、中間層4および最表層6の中央の位置については、領域中の中央の位置を中央位置(図示せず)として特定する。
 ここで、各層の境界は、各元素の含有量が急激に変化する屈曲点とする。しかしながら、各元素の含有量が急激に変化する位置が明確に決定できない境界においては、下記方法にて、各層の境界を特定する。すなわち、第1Ti系層2aの領域と第2Ti系層2bの領域との境界は、第1Ti系層2aの領域におけるTiの含有量の最高値に対して、Tiの含有量が10%低い含有量となる位置と定義する。同様に、第2Ti系層2bの領域と中間層4の領域との境界は、第2Ti系層2bの領域におけるTiの含有量の最高値に対して、Tiの含有量が10%低い含有量となる位置と定義する。また、中間層4の領域とAl層5の領域との境界は、Al層5におけるAlの含有量の最高値に対して、Alの含有量が10%低い含有量となる位置と定義する。
 また、GDS分析では、被覆層の面内方向の測定領域が1mm程度と広いために、各層の層間に凹凸がある場合には、各層に隣接する他の層の成分が混在して検出されることがある。また、各層のエッチング速度の違いによって、GDS分析において、第1Ti系層2aと特定された領域内の基体側には、基体1に含有される成分が混在している。また、中間層4と特定された領域内の基体側には、下層のTi系層2に含有される成分が混在し、中間層4と特定された領域内の表面側には、上層のAl層5に含有される成分が混在した状態で検出されている。その結果、GDS分析における中間層4の領域は、SEM写真にて観察される実際の厚みよりも広く観察されている。
 ここで、基体1の好適例は、WC相、結合相、および所望によってB1型固溶相から形成されている。そして、WCを80~94質量%、Coを5~15質量%、CrをCr換算量で0.1~1質量%、Crを除く周期表第4、5および6族金属の群から選ばれる少なくとも1種の炭化物(WCを除く)、窒化物および炭窒化物のうちの少なくとも1種を0~10質量%の比率で含有する。
 本実施形態によれば、基体1の表面には、Ti系層2、中間層4、Al層5および最表層6が基体1側から順に積層された被覆層7を有している。図2のグロー放電発光分光分析(GDS分析)において、Ti系層中2の基体1側の第1Ti系層2aの厚みの中央の位置に含有されるCrの含有量が、基体1に含有されるCrの含有量よりも低く、かつAl層5の厚みの中央の位置に含有されるCrの含有量よりも高い。さらに、最表層6の厚みの中央の位置に含有されるCrの含有量が前記Al層の厚みの中央の位置に含有されるCrの含有量よりも高い。
 これによって、Tiが含有される第1Ti系層2aおよび最表層6、さらに、場合によっては第2Ti系層2bの耐酸化性が向上する。その結果、高速切削等の切刃が高温になる加工においても、被覆層7が酸化して硬度が低下することを抑制して、切削工具8の耐摩耗性を高めることができる。また、Al層5においては、Crの含有量が他の層に比べて低いことによって、耐摩耗性が向上するという効果がある。さらに、最表層6においては、Crを含有することによって、被覆層7の表面における耐溶着性を高める効果もある。
 すなわち、第1Ti系層2aの厚みの中央の位置に含有されるCrの含有量が、Al層5の厚みの中央の位置に含有されるCrの含有量と同じであるかまたは少ないと、被覆層7の酸化が進行しやすい傾向にある。Al層5の厚みの中央の位置に含有されるCrの含有量が、第1Ti系層2aの厚みの中央の位置に含有されるCrの含有量、または最表層6の厚みの中央の位置に含有されるCrの含有量と同じであるかまたは多いと、Al層5の耐摩耗性が低下する傾向にある。最表層6の厚みの中央の位置に含有されるCrの含有量がAl層5の厚みの中央の位置に含有されるCrの含有量と同じであるかまたは低いと、被覆層7の耐溶着性が低下する傾向にある。
 本実施形態では、さらに、基体1に含有されるCrの含有量に対する第1Ti系層2a、Al層5および最表層6の各層の厚みの中央の位置に含有されるCrの含有量の比率を、それぞれ、CrTi、CrAlおよびCrとしたとき、0.5≦CrTi≦0.9、0.01≦CrAl≦0.2、0.4≦Cr≦0.7である。ここで、基体1に含有されるCrの含有量は、GDS分析データにおいて、WおよびCの含有量の変化率が5%以内である領域において測定する。
 これによって、Tiが含有される第1Ti系層2a、第2Ti系層2b、さらに最表層6の耐酸化性が向上し、高速切削等の切刃が高温になる加工においても、被覆層7が酸化して硬度が低下することを抑制して、切削工具8の耐摩耗性を高めることができる。なお、中間層4を省いた被覆層においても同様の効果を得ることができる。
 さらに、本実施形態では、基体1に含有されるCrの含有量に対する中間層4の厚みの中央の位置に含有されるCrの含有量の比率をCrとしたとき、0.2≦Cr≦0.5である。これによって、中間層4の耐酸化性が向上する。
 ここで、被覆層7中にはCrの他にWおよびCoが含有されている。本実施形態においては、基体1に含有されるWおよびCoの含有量に対する第1Ti系層2a、Al層5および最表層6の各層に含有されるWおよびCoの含有量の比率を、それぞれ、WTi、WAl、W、CoTi、CoAlおよびCoとしたとき、0.05≦WTi≦0.3、WAl≦0.01、W≦0.01、0.05≦CoTi≦0.3、CoAl≦0.01、Co≦0.01である。つまり、基体1から拡散するWおよびCoは、Ti系層2中に拡散して、基体1と被覆層7との密着性をさらに高めることができる。しかし、WおよびCoは高温になると酸化しやすいので、Al層5および最表層6にはほとんど拡散せず、被覆層7の酸化を抑制できる。
 このとき、基体1に含有されるWおよびCoの含有量に対する中間層4に含有されるWおよびCoの含有量の比率を、それぞれ、WおよびCoとしたとき、W≦0.05、Co≦0.05である。つまり、基体1から拡散するWおよびCoは、中間層4にはほとんど拡散せず、被覆層7の酸化を抑制できる。
 また、本実施形態によれば、基体1中には、不可避不純物成分としてSiおよびFeが含有されており、これらが被覆層7中に拡散されている。基体1に含有されるSiおよびFeの含有量に対する第1Ti系層2a、Al層5および最表層6の各層に含有されるSiおよびFeの含有量の比率を、それぞれ、SiTi、SiAlおよびSi、FeTi、FeAlおよびFeとしたとき、0.05≦SiTi≦0.4、SiAl≦0.01、Si≦0.01、0.05≦FeTi≦0.4、FeAl≦0.01、Fe≦0.01である。つまり、基体1から拡散するSiおよびFeは、Ti系層2中に拡散して、基体1と被覆層7との密着性をさらに高めることができる。しかし、SiおよびFeは高温になると酸化しやすいので、Al層5および最表層6にはほとんど拡散せず、被覆層7の酸化を抑制できる。
 このとき、本実施形態によれば、基体1に含有されるSiおよびFeの含有量に対する中間層4に含有されるSiおよびFeの含有量の比率を、それぞれ、SiおよびFeとしたとき、Si≦0.05、Fe≦0.05である。つまり、基体1から拡散するSiおよびFeは、中間層4にはほとんど拡散せず、被覆層7の酸化を抑制できる。
 さらに、本実施形態によれば、基体1および被覆層7中には、C(炭素)が含有されている。基体1に含有されるCの含有量に対する第1Ti系層2a、中間層4、Al層5および最表層6の各層に含有されるCの含有量の比率を、それぞれ、CTi、C、CAlおよびCとしたとき、0.2≦CTi≦0.7、0.01≦C≦0.18、CAl≦0.01、C≦0.30である。被覆層7中のC含有量を制御することによって、基体1と被覆層7との密着性をさらに高めることができる。CTiのさらに望ましい範囲は、0.3≦CTi≦0.6である。
 なお、本実施形態におけるTi系層2は、基体1側の第1Ti系層2a、第2Ti系層2bともにTiCN層であり、これらの複数層を積層したものであったが、Ti系層は単層であってもよく、または3層以上の多層であってもよい。この構成によって、Cr、W、Co、Fe、SiおよびCの各成分の被覆層7への拡散の程度を容易に調整することができる。
 (製造方法)
 上述した本実施形態の切削工具を構成する超硬合金の製造方法の一例について説明する。まず、WC粉末を80~94質量%と、金属Co粉末を5~15質量%と、Cr粉末を0.1~1質量%、所望により他の金属成分を含有する化合物粉末を0~10質量%以下の比率で調合する。
 この調合した粉末に溶媒を加えて、所定時間混合・粉砕してスラリーとする。このスラリーにバインダを添加してさらに混合し、スプレードライヤー等を用いてスラリーを乾燥しながら混合粉末の造粒を行う。次に、造粒された顆粒を用いてプレス成形により切削工具形状に成形を行う。さらに、焼成炉にて脱脂を行った後、20~2000Paの減圧雰囲気中、焼成炉の温度を1380~1480℃の焼成温度に上げて1~1.5時間焼成して超硬合金を作製することができる。
 そして、作製された超硬合金について、所望によって超硬合金の表面を研磨加工したり、切刃部にホーニング加工を施したりする。その後、超硬合金からなる基体を酸処理やアルカリ処理して、基体の表面の汚れを除去し、Cr粉末または金属クロム(Cr)を含有する溶液を準備しておき、スプレー法、含浸法、塗布法により、基体の表面にCr成分を付着させCr濃度を高めておく。
 次に、得られた基体の表面に化学気相蒸着(CVD)法によって被覆層2を形成する。その成膜条件の一例について説明すると、まず、所望により、基体の表面に、第1Ti系層であるTiN(窒化チタン)層を形成する。その好適な成膜条件は、混合ガス組成として四塩化チタン(TiCl)ガスを0.5~10体積%、窒素(N)ガスを10~60体積%の比率で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を800~940℃、圧力を8~50kPaである。
 次に、TiN層の上層に第2Ti系層であるTiCN層を形成する。その成膜条件は、混合ガス組成として四塩化チタン(TiCl)ガスを0.5~10体積%、窒素(N)ガスを1~60体積%、アセトニトリル(CHCN)ガスを0.1~3.0体積%の比率で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を780~850℃、圧力を5~25kPaの条件が挙げられ、この条件によって、いわゆる柱状結晶にて構成されるMT(Moderate Temprature)-TiCN層が成膜される。アセトニトリル(CHCN)ガスの流量を成膜中に増減させることによって、柱状結晶の結晶幅を調整することができる。次いでMT-TiCN層の上層にいわゆる粒状結晶からなるHT(High Temprature)-TiCN層を形成する。具体的には、上記TiCN層に続いて、四塩化チタン(TiCl)ガスを0.1~3体積%、窒素(N)ガスを0~15体積%、メタン(CH)ガスまたはアセトニトリル(CHCN)ガスを0.1~10体積%の比率で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を900~1020℃、圧力を5~40kPaとする成膜条件に切り替えてHT-TiCN層を成膜する。
 続いて、中間層を成膜する。TiAlCNO層を成膜する具体的な成膜条件の一例としては、四塩化チタン(TiCl)ガスを0.1~3体積%、窒素(N)ガスを1~15体積%、メタン(CH)ガスまたはアセトニトリル(CHCN)ガスを0.1~10体積%、一酸化炭素(CO)ガスを0.5~3.0体積%、三塩化アルミニウム(AlCl)を0.5~3.0体積%の比率で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を900~1020℃、圧力を5~40kPaである。
 その後、引き続き、α型Al層を形成する。具体的な成膜条件の一例としては、三塩化アルミニウム(AlCl)ガスを0.5~5.0体積%、塩化水素(HCl)ガスを0.5~3.5体積%、二酸化炭素(CO)ガスを0.5~5.0体積%、硫化水素(HS)ガスを0~0.5体積%、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を930~1010℃、圧力を5~10kPaとする。
 ついで、所望により、Al層の表面に最表層を成膜する。最表層としてTiN層を成膜する場合の成膜条件としては、混合ガス組成として四塩化チタン(TiCl)ガスを0.1~10体積%、塩化クロム(CrCl)ガスを0.005~0.025体積%、窒素(N)ガスを1~60体積%の比率で含み、残りが水素(H)ガスからなる混合ガスを用い、成膜温度を855~1010℃、圧力を10~85kPaとする。
 そして、被覆層を成膜終了後、成膜チャンバ内を圧力350kPa~850kPa、温度1000~1200℃にして30分~120分保持した後、チャンバ内を冷却することによって、基体表面に存在するCr成分、およびW、Co、Fe、SiおよびC成分を被覆層側に拡散させて、Ti系層、中間層、Al層内に所定の比率で含有させる。最表層については、上記成膜時にCr成分を含有する原料ガスを流して、最表層内にCr成分を含有させる。
 その後、所望により、形成した被覆層の表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた工具となる。
 平均粒径5μmのWC粉末に対して、平均粒径1.5μmの金属Co粉末を8質量%、平均粒径1.0μmのTiC粉末を0.8質量%、平均粒径1.0μmのNbC粉末を3.5質量%、平均粒径2.0μmのZrC粉末を0.3質量%、平均粒径2.0μmのCr粉末を0.6質量%の比率で、原料の総計が100質量%となるように調合、添加して、これに有機溶剤を加えて混合・粉砕した後、保形剤を添加してさらに混合し、できたスラリーをスプレードライヤーに投入して造粒粉末を作製した。次に、この造粒粉末を用いて、プレス成形により切削工具形状(CNMG120408PS)に成形を行い、焼成炉にて450℃で3時間脱脂を行った後、1450℃、1時間で焼成して超硬合金を作製した。
 そして、上記超硬合金を研削加工してCNMG120408PSの略平板形状にした後、この基体の表面に対して、さらに切刃部にホーニング加工を施した。次いで、Crを含有するスラリーを用いて表2の方法で基体表面のCr濃度を高める処理を行う表面処理を実施して、基体の表面におけるCrの含有量を高めた。
 さらに、この加工した超硬合金の表面に化学気相蒸着(CVD)法によって、表1の成膜条件で表2~5の構成の被覆層を順次成膜した。なお、Ti系層は、第1Ti系層としてTiN層を成膜し、第2Ti系層は、MT-TiCN層とHT-TiCN層との積層とした。第2Ti系層の厚みは、HT-TiCN層の厚みを0.5μmで一定とし、MT-TiCN層の厚みを調整して、総厚みが表2の厚みとなるようにした。また、試料No.9については、最表層を成膜する際の混合ガス中に塩化クロム(CrCl)ガスを添加しないで成膜し、試料No.12については、最表層を成膜する際の混合ガス中に塩化クロム(CrCl)ガスを成膜時間の中間以後の後半のみ添加して成膜した。成膜後、チャンバ内にNガスを500kPaとなるように充填にして、表2に示す温度で60分保持する成膜後高温保持工程を経てチャンバ内を冷却した。なお、各層の厚みは被覆層の断面を走査型電子顕微鏡で観察して確認した。
Figure JPOXMLDOC01-appb-T000001
 得られた切削工具について、表面から深さ方向の組成変化についてGDS分析(堀場製作所社製GD-PROFTLER、分析条件:電力20W、Ar圧力600Pa、放電範囲2mmφ、サンプルリング時間0.3sec/point)を行い、各層の中央におけるCr、W、Co、Fe、SiおよびCの各元素の分布を確認し、各元素の濃度を表2~5に示した。また、切削工具の断面についてSEM観察を行った。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 そして、この工具を用いて下記の条件により、連続切削試験および強断続切削試験を行い、耐摩耗性および耐欠損性を評価した。
 (摩耗評価条件)
被削材 :SCM435
工具形状:CNMG120408PS
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:2.0mm(3秒切削毎に切込変動)
切削時間:15分
切削液 :エマルジョン15%+水85%混合液
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
 (強断続切削条件)
被削材 :SCM440 4本溝入材
工具形状:CNMG120408PS
切削速度:300m/分
送り速度:0.35mm/rev
切り込み:1.5mm
切削液 :エマルジョン15%+水85%混合液
評価項目:欠損に至る衝撃回数
     衝撃回数1000回時点で顕微鏡にて切刃の状態を観察
結果は表6に示した。
Figure JPOXMLDOC01-appb-T000006
 表1~6に示す結果より、基体の表面にTiN層を形成しなかった試料No.5では、CrTiが基体中のCr含有量と同じになり、強断続試験において被覆層が剥離した。また、基体の表面にCrを付着させなかった試料No.6、および成膜後の熱処理をしなかった試料No.8では、CrTiがCrAlに対して同じかまたは小さくなり、耐摩耗性が低下した。さらに、成膜後の熱処理温度が高く、CrがCrAlよりも小さい試料No.7では、被覆層の耐摩耗性が低下した。また、最表層中のCrが0.4より小さい試料No.9では、被覆層に溶着が発生して、耐摩耗性が低下した。
 これに対して、TiN層、TiCN層、Al層を順に積層し、GDS分析において、CrTiが基体のCr含有量よりも小さいとともに、CrAlがよりも大きく、CrAlがCrよりも小さい試料No.1~4、10~12では、いずれも被覆層の密着力が高く、かつ耐摩耗性に優れた切削性能を有するものであった。特に、0.5≦CrTi≦0.9、0.01≦CrAl≦0.2、0.4≦Cr≦0.7を満たす試料No.1~4では、耐摩耗性が特に高いものであった。
1  基体(超硬合金)
2  Ti系層
 2a  第1Ti系層
 2b  第2Ti系層
4  中間層
5  Al
6  最表層
7  被覆層
8  切削工具

Claims (10)

  1.  Crを含有する超硬合金からなる基体と、該基体の表面に、少なくとも1層のTi(Cx1y1z1)(0≦x1≦1、0≦y1≦1、0≦z1≦1、x1+y1+z1=1)からなるTi系層、Al層およびTi(Cx3y3z3)(0≦x3≦1、0≦y3≦1、0≦z3≦1、x3+y3+z3=1)からなる最表層を前記基体側から順に積層した被覆層とを有してなり、グロー放電発光分光分析(GDS分析)において、前記Ti系層中の前記基体側の第1Ti系層の厚みの中央の位置に含有されるCrの含有量が、前記基体に含有されるCrの含有量よりも低く、かつ、前記Al層の厚みの中央の位置に含有されるCrの含有量よりも高く、前記最表層の厚みの中央の位置に含有されるCrの含有量が前記Al層の厚みの中央の位置に含有されるCrの含有量よりも高い切削工具。
  2.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるCrの含有量に対する前記Ti系層中の基体側の第1Ti系層、前記Al層および前記最表層の各層の厚みの中央の位置に含有されるCrの含有量の比率を、それぞれ、CrTi、CrAlおよびCrとしたとき、0.5≦CrTi≦0.9、0.01≦CrAl≦0.2、0.4≦Cr≦0.7である請求項1記載の切削工具。
  3.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるWおよびCoの含有量に対する前記第1Ti系層、前記Al層および前記最表層の各層に含有されるWおよびCoの含有量の比率を、それぞれ、WTi、WAl、W、CoTi、CoAlおよびCoとしたとき、0.05≦WTi≦0.3、WAl≦0.01、W≦0.01、0.05≦CoTi≦0.3、CoAl≦0.01、Co≦0.01である請求項2記載の切削工具。
  4.  前記基体中にSiおよびFeが含有されており、グロー放電発光分光分析(GDS分析)において、前記基体に含有されるSiおよびFeの含有量に対する前記第1Ti系層、前記Al層および前記最表層の各層に含有されるSiおよびFeの含有量の比率を、それぞれ、SiTi、SiAlおよびSi、FeTi、FeAlおよびFeとしたとき、0.05≦SiTi≦0.4、SiAl≦0.01、Si≦0.01、0.05≦FeTi≦0.4、FeAl≦0.01、Fe≦0.01である請求項2または3記載の切削工具。
  5.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるCの含有量に対する前記第1Ti系層、前記Al層および前記最表層の各層に含有されるCの含有量の比率を、それぞれ、CTi、CAlおよびCとしたとき、0.2≦CTi≦0.7、CAl≦0.01、C≦0.30である請求項2乃至4のいずれか記載の切削工具。
  6.  前記Ti系層と前記Al層との間に、(Ti,Al)(Cx2y2z2)(0≦x2≦1、0≦y2≦1、0≦z2≦1、x2+y2+z2=1)からなる中間層が存在する請求項1乃至5のいずれか記載の切削工具。
  7.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるCrの含有量に対する前記中間層の厚みの中央の位置に含有されるCrの含有量の比率を、Crとしたとき、0.2≦Cr≦0.5である請求項6記載の切削工具。
  8.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるWおよびCoの含有量に対する前記中間層に含有されるWおよびCoの含有量の比率を、それぞれ、WおよびCoとしたとき、W≦0.05、Co≦0.05である請求項6または7記載の切削工具。
  9.  グロー放電発光分光分析(GDS分析)において、前記基体に含有されるSiおよびFeの含有量に対する前記中間層に含有されるSiおよびFeの含有量の比率を、それぞれ、SiおよびFeとしたとき、Si≦0.05、Fe≦0.05である請求項6乃至8のいずれか記載の切削工具。
  10.  前記基体に含有されるCの含有量に対する前記中間層に含有されるCの含有量の比率をCとしたとき、0.01≦C≦0.18である請求項6乃至9のいずれか記載の切削工具。
PCT/JP2014/081228 2013-11-29 2014-11-26 切削工具 WO2015080149A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167014151A KR101813536B1 (ko) 2013-11-29 2014-11-26 절삭공구
EP14865641.6A EP3075475A4 (en) 2013-11-29 2014-11-26 Cutting tool
CN201480064946.2A CN105792967B (zh) 2013-11-29 2014-11-26 切削工具
US15/039,927 US10113239B2 (en) 2013-11-29 2014-11-26 Cutting tool
JP2015550959A JP6276288B2 (ja) 2013-11-29 2014-11-26 切削工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013247849 2013-11-29
JP2013-247849 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080149A1 true WO2015080149A1 (ja) 2015-06-04

Family

ID=53199088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081228 WO2015080149A1 (ja) 2013-11-29 2014-11-26 切削工具

Country Status (6)

Country Link
US (1) US10113239B2 (ja)
EP (1) EP3075475A4 (ja)
JP (1) JP6276288B2 (ja)
KR (1) KR101813536B1 (ja)
CN (1) CN105792967B (ja)
WO (1) WO2015080149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146200A1 (ja) * 2016-02-24 2017-08-31 京セラ株式会社 被覆工具
JP2020157457A (ja) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 耐欠損性にすぐれた表面被覆切削工具

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004986T5 (de) * 2017-09-27 2020-06-10 Kyocera Corporation Beschichtetes werkzeug und schneidwerkzeug, welches dieses aufweist
JP6918951B2 (ja) * 2017-09-27 2021-08-11 京セラ株式会社 被覆工具及びこれを備えた切削工具
US20230126815A1 (en) * 2020-03-27 2023-04-27 Kyocera Corporation Coated tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118108A (ja) 1994-10-25 1996-05-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2000126905A (ja) * 1998-10-23 2000-05-09 Mitsubishi Materials Corp 耐欠損性にすぐれた表面被覆炭化タングステン基超硬合金製切削工具
JP2005105397A (ja) * 2003-10-02 2005-04-21 Hitachi Tool Engineering Ltd 被覆超硬合金
JP2011036988A (ja) 2009-08-06 2011-02-24 Hitachi Tool Engineering Ltd 被覆超硬合金工具
JP2011122222A (ja) * 2009-12-14 2011-06-23 Kyocera Corp 表面被覆部材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652045A (en) * 1994-10-20 1997-07-29 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member
JPH09262705A (ja) * 1996-03-28 1997-10-07 Mitsubishi Materials Corp 硬質被覆層がすぐれた靭性を有する表面被覆炭化タングステン基超硬合金製切削工具
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
US6554548B1 (en) * 2000-08-11 2003-04-29 Kennametal Inc. Chromium-containing cemented carbide body having a surface zone of binder enrichment
US6575671B1 (en) * 2000-08-11 2003-06-10 Kennametal Inc. Chromium-containing cemented tungsten carbide body
US6589602B2 (en) * 2001-04-17 2003-07-08 Toshiba Tungaloy Co., Ltd. Highly adhesive surface-coated cemented carbide and method for producing the same
US6733874B2 (en) * 2001-08-31 2004-05-11 Mitsubishi Materials Corporation Surface-coated carbide alloy cutting tool
DE102004007653A1 (de) * 2003-02-17 2004-08-26 Kyocera Corp. Oberflächenbeschichtetes Teil
JP2005131730A (ja) * 2003-10-30 2005-05-26 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具
SE528108C2 (sv) * 2004-07-13 2006-09-05 Sandvik Intellectual Property Belagt hårdmetallskär, speciellt för svarvning av stål, samt sätt att tillverka detsamma
JP4994367B2 (ja) * 2006-03-28 2012-08-08 京セラ株式会社 切削工具及びその製造方法、並びに切削方法
JP5240668B2 (ja) 2009-03-10 2013-07-17 三菱マテリアル株式会社 硬質合金鋼の高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118108A (ja) 1994-10-25 1996-05-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
JP2000126905A (ja) * 1998-10-23 2000-05-09 Mitsubishi Materials Corp 耐欠損性にすぐれた表面被覆炭化タングステン基超硬合金製切削工具
JP2005105397A (ja) * 2003-10-02 2005-04-21 Hitachi Tool Engineering Ltd 被覆超硬合金
JP2011036988A (ja) 2009-08-06 2011-02-24 Hitachi Tool Engineering Ltd 被覆超硬合金工具
JP2011122222A (ja) * 2009-12-14 2011-06-23 Kyocera Corp 表面被覆部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075475A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017146200A1 (ja) * 2016-02-24 2017-08-31 京セラ株式会社 被覆工具
CN108698136A (zh) * 2016-02-24 2018-10-23 京瓷株式会社 覆盖工具
JPWO2017146200A1 (ja) * 2016-02-24 2018-11-29 京セラ株式会社 被覆工具
JP2020062745A (ja) * 2016-02-24 2020-04-23 京セラ株式会社 被覆工具
JP2020157457A (ja) * 2019-03-28 2020-10-01 三菱マテリアル株式会社 耐欠損性にすぐれた表面被覆切削工具
JP7243013B2 (ja) 2019-03-28 2023-03-22 三菱マテリアル株式会社 耐欠損性にすぐれた表面被覆切削工具

Also Published As

Publication number Publication date
KR20160077181A (ko) 2016-07-01
EP3075475A4 (en) 2017-06-21
JPWO2015080149A1 (ja) 2017-03-16
CN105792967B (zh) 2017-11-10
JP6276288B2 (ja) 2018-02-07
EP3075475A1 (en) 2016-10-05
KR101813536B1 (ko) 2017-12-29
CN105792967A (zh) 2016-07-20
US20170009352A1 (en) 2017-01-12
US10113239B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
RU2623547C2 (ru) Режущий инструмент с покрытием и способ его изготовления
JP6272356B2 (ja) 切削工具
JP6044336B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5214075B1 (ja) 切削工具
JP6276288B2 (ja) 切削工具
JP6284034B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
EP2959994B1 (en) Surface-coated cutting tool and process for producing same
JP2015157351A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2014132512A1 (ja) 切削工具
JP2017030076A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US9044811B2 (en) Surface coated cutting tool
WO2011052767A1 (ja) 耐チッピング性にすぐれた表面被覆切削工具
WO2013031915A1 (ja) 切削工具
JP6709526B2 (ja) 表面被覆切削工具
US20150345012A1 (en) Surface coated member and method for manufacturing same
JP2016107397A (ja) 表面被覆切削工具
JP4107433B2 (ja) α型酸化アルミニウム被覆部材
JP2014231116A (ja) 表面被覆部材
EP3511097A1 (en) Cutting tool and method for producing same
JP2005262323A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
WO2016068122A1 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550959

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167014151

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014865641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15039927

Country of ref document: US

Ref document number: 2014865641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE