WO2015079830A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2015079830A1
WO2015079830A1 PCT/JP2014/078009 JP2014078009W WO2015079830A1 WO 2015079830 A1 WO2015079830 A1 WO 2015079830A1 JP 2014078009 W JP2014078009 W JP 2014078009W WO 2015079830 A1 WO2015079830 A1 WO 2015079830A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply circuit
conversion device
heat dissipation
power
Prior art date
Application number
PCT/JP2014/078009
Other languages
English (en)
French (fr)
Inventor
信太朗 田中
忠彦 千田
秀則 篠原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015079830A1 publication Critical patent/WO2015079830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel

Definitions

  • the present invention relates to a power converter for boosting or stepping down a DC voltage, and more particularly to a power converter mounted in a hybrid vehicle or an electric vehicle.
  • Hybrid vehicles and electric vehicles are equipped with a power converter that supplies the necessary output from a high-voltage battery to auxiliary equipment with a low operating voltage. Since there is a limited mounting space for electric devices in a hybrid vehicle or the like, it is desired that the power conversion device be mounted with high density.
  • Patent Document 1 discloses a configuration that achieves both high-density mounting and heat dissipation.
  • This Patent Document 1 shows a configuration in which a part that generates a large amount of heat is disposed near a flow path forming body.
  • An object of the present invention is to reduce the mounting area of the power conversion device while ensuring the heat dissipation of the heat generating components inside the power conversion device.
  • a power conversion device includes a power supply circuit having a transformer and a switching element, a heat dissipation base on which the power supply circuit is mounted, and a flow path forming body in which a flow path through which a cooling refrigerant flows is formed.
  • the flow path forming body forms an opening connected to the flow path
  • the heat dissipation base includes a base portion and a standing portion formed on one surface of the base portion, The heat dissipating base is installed on the flow path forming body so that a surface opposite to the one surface of the base portion closes the opening, and the power supply circuit is mounted on the surface of the standing portion.
  • the present invention it is possible to reduce the mounting area of the power conversion device while ensuring the heat dissipation of the heat generating components inside the power conversion device.
  • FIG. It is an external appearance perspective view of the power converter device of Example 1.
  • FIG. It is a circuit block diagram of the power converter device of Example 1.
  • FIG. It is a board
  • FIG. It is a reverse view of the power module of the power converter device of Example 1.
  • FIG. It is an external appearance side view of the power converter device of Example 3.
  • FIG. It is an external appearance perspective view of the power converter device of Example 4.
  • FIG. It is a circuit block diagram of the power converter device of Example 4.
  • FIG. It is an external appearance perspective view of the power converter device of Example 5.
  • FIG. It is a circuit block diagram of the power converter device of Example 1.
  • FIG. It is an external appearance perspective view of the power converter device of Example 5.
  • the configuration of the power conversion apparatus according to the first embodiment is a diagram illustrated in FIG.
  • the first embodiment will be described in detail with reference to FIGS.
  • FIG. 1 is an external perspective view of the power conversion device of this embodiment.
  • the power conversion device includes a power supply module 1a and a flow path forming body 103 in which a flow path 105 through which a cooling refrigerant flows is formed.
  • the power supply module 1a includes a power supply circuit 3 that converts a voltage, and a heat dissipation base 101 on which the power supply circuit 3 is mounted.
  • the heat dissipation base 101 includes a base part 107, a standing part 106, and fins 102.
  • the standing portion 106 is formed so as to protrude from one surface of the base portion 107 toward the normal direction of the one surface.
  • the standing portion 106 has a surface having a larger area than the wide surface of the base portion 107.
  • the fins 102 are formed so as to protrude from the other surface of the base portion 107 opposite to the one surface toward the normal direction of the other surface.
  • the power supply circuit 3 is mounted with a circuit using a switching element 202, a transformer 207, a capacitor 203, and a rectifying element 208, which will be described later.
  • the power supply circuit 3 is mounted on the wide surface of the standing portion 106.
  • the mounting surface of the power supply circuit 3 is perpendicular to the surface of the base unit 107.
  • the flow path forming body 103 has an opening 104 connected to the flow path 105 through which the cooling refrigerant flows on one surface of the flow path forming body 103.
  • the power supply module 1 a is installed on the flow path forming body 103 so that the base 107 of the power supply module 1 a closes the opening 104 of the flow path forming body 103.
  • the fins 102 are arranged so as to protrude into the flow path 105.
  • the heat dissipation base 101 is formed of a material having good thermal conductivity such as metal.
  • the heat generated in the power supply circuit 3 mounted on the surface of the standing portion 106 of the heat radiation base 101 is transferred in order to the standing portion 106, the base portion 107, and the fin 102, and the cooling refrigerant flowing through the flow path 105 Heat exchanged. Since the heat radiation base 101 is installed so as to close the opening 104 connected to the flow path 105, it is efficiently cooled. Thereby, the heat generating component mounted on the power supply circuit 3 is efficiently cooled.
  • the components constituting the power supply circuit 3 are mounted not on the base part 107 of the heat dissipation base 101 but on the standing part 106 standing from the base part 107.
  • closed can be comprised with an area smaller than the mounting area of the power supply circuit 3. FIG. Therefore, the mounting area in the plane of the power converter can be reduced.
  • FIG. 2 is a circuit configuration diagram of the power conversion apparatus according to the present embodiment.
  • the power supply circuit 3 shown in this embodiment has a configuration of a center tap type half bridge converter circuit. A specific circuit configuration will be described with reference to FIG.
  • the power supply circuit 3 includes a primary circuit 2a connected to the input terminals 201a and 201b, a secondary circuit 2b connected to the output terminals 212a and 212b, and between the primary circuit 2a and the secondary circuit 2b. And a transformer 207 for converting the voltage.
  • a DC voltage is applied to the input terminals 201a and 201b. From the output terminals 212a and 212b, a DC voltage converted by the power supply circuit 3 is output.
  • the primary side circuit 2a includes switching elements 202a and 202b and midpoint potential capacitors 203a and 203b.
  • the switching elements 202a and 202b constitute an inverter circuit that converts a DC voltage input from the input terminals 201a and 201b into an AC voltage.
  • the switching elements 202a and 202b are configured by MOSFET (metal-oxide-semiconductor junction field effect transistor).
  • MOSFET metal-oxide-semiconductor junction field effect transistor
  • the switching element constituting the inverter circuit is not limited to the MOSFET, but may be constituted by an element such as an IGBT (insulated gate bipolar transistor).
  • the transformer 207 includes a primary winding 204, a secondary winding 205, and a magnetic core 206.
  • the magnetic core 206 magnetically couples the primary winding 204 and the secondary winding 205.
  • the primary winding 204 and the secondary winding 205 are electrically insulated from each other.
  • the switching elements 202a and 202b are connected in series between the input terminals 201a and 201b. Also, the midpoint potential capacitors 203a and 203b are connected in series between the input terminals 201a and 201b.
  • One end of the primary winding 204 of the transformer 207 is connected to a connection point between the switching elements 202a and 202b.
  • the other end of the primary winding 204 of the transformer 207 is connected to a connection point between the midpoint potential capacitors 203a and 203b.
  • the secondary circuit 2b includes rectifying elements 208a and 208b, a smoothing coil 209, a smoothing capacitor 210, and a ground terminal 211.
  • the rectifying elements 208a and 208b are diode rectifying elements, but MOSFETs or other elements that are synchronous rectifying elements may be used.
  • the secondary winding 205 of the transformer 207 has one end of the secondary winding connected to the cathode of the rectifying element 208a and the other end connected to the cathode of the rectifying element 208b.
  • a ground terminal 211 is connected to the anodes of the rectifying elements 208a and 208b.
  • One end of the smoothing coil 209 is connected to the neutral point of the secondary winding 205.
  • One end of the smoothing capacitor 210 is connected to the other end of the smoothing coil 209.
  • a ground terminal 211 is connected to the other end of the smoothing capacitor 210.
  • One end and the other end of the smoothing capacitor 210 are connected to output terminals 212a and 212b, respectively.
  • FIG. 3 is a diagram illustrating a substrate configuration example of the power supply circuit 3.
  • a flow path forming body 103 is arranged in the downward direction in the figure.
  • a first side 106 a shown in the drawing is a side of the standing part 106 connected to the base part 107.
  • the second side 106b is a side of the standing portion 106 on the side opposite to the first side 106a.
  • the switching elements 202a and 202b and the transformer 207 are elements that generate a particularly large amount of heat in the circuit shown in FIG. Such an element that generates a large amount of heat is disposed so as to be closer to the first side 107a than to the second side 106b. As described above, by disposing the element having a larger amount of heat generation at a position closer to the base portion 107, it is possible to radiate the heat-generating component more efficiently.
  • the input terminals 201a and 201b, the ground terminal 211, and the output terminal 212 are arranged so as to protrude upward from the second side 106b of the standing portion 106.
  • FIG. 4 is a rear view of the power supply module 1a of the power conversion device of this embodiment.
  • the fins 102 are formed on the base portion 107.
  • a seal groove 109 is formed in the base part 107.
  • a seal member such as an O-ring is disposed in the seal groove 109.
  • the seal groove 109 is formed so as to surround a region where the fin 102 is formed.
  • a screw hole 108 is formed on the outer peripheral side of the seal groove 109. A screw is passed through the screw hole 108 to attach the power supply module 1 a to the flow path forming body 103.
  • the power conversion device According to the power conversion device according to the embodiment described above, it is possible to reduce the mounting area of the power conversion device while ensuring the heat dissipation of the heat generating components inside the power conversion device.
  • the power converter device of this embodiment can be easily applied also to the flow-path formation body used for another power converter device, mounting with high density is realizable.
  • the circuit configuration as shown in FIG. 2 has been described as an example of the power supply circuit, but the circuit configuration is not limited to the configuration as shown in FIG.
  • the present invention can be applied to a non-insulated circuit that does not use a transformer, a circuit such as another step-down circuit system, a step-up circuit, and an inverter circuit.
  • the fin 102 has a linear fin shape, but other shapes such as a pin fin shape may be used.
  • the substrate on which the power supply circuit 3 is mounted may be mounted not only on one side of the standing portion 106 but also on both sides.
  • the shape of the standing portion 106 may be, for example, an L shape instead of the T shape shown in FIG.
  • a heat dissipation sheet or the like may be sandwiched between the standing portion 106 and the substrate on which the power supply circuit 3 is mounted.
  • FIG. 5 is a perspective view showing the configuration of the power supply module 1a according to the second embodiment. Unless otherwise specified, the configuration of the power conversion device is the same as the configuration according to the above-described first embodiment, and the description of the overlapping symbols is omitted.
  • the switching elements 202a and 202b are mounted on the base unit 107. Electrical wiring with the switching elements 202 a and 202 b in the power supply circuit 3 is formed on a substrate mounted on the standing portion 106.
  • the transformer 207 is arranged on a substrate mounted on the standing portion 106 as in the first embodiment.
  • the base is further provided via a resin coated on one side of the transformer 207. It arrange
  • the switching elements 202a and 202b having a large heat generation amount are mounted on the base 107 having a short heat transfer path to the cooling refrigerant flowing through the flow path 105, the switching elements 202a and 202b are mounted. The heat dissipation performance is improved.
  • the element when there is an element with a larger calorific value among the elements constituting the power supply circuit 3, the element may be mounted on the base unit 107.
  • FIG. 6 is a diagram showing the configuration of the power supply module 1a according to the third embodiment.
  • the primary side circuit 2 a shown in FIG. 2 is mounted on the primary side power supply board 112
  • the secondary side circuit 2 b is mounted on the secondary side power supply board 113.
  • the primary side power supply substrate 112 is mounted on the heat dissipation base 101a.
  • the secondary power supply substrate 113 is mounted on the heat dissipation base 101b.
  • the primary side circuit and the secondary side circuit are separated.
  • the separation method is not limited to this, and the element unit on the power supply circuit may be separated.
  • FIG. 7 is a diagram illustrating a configuration of a power conversion device according to the fourth embodiment.
  • the present embodiment relates to a power conversion apparatus using a plurality of power supply modules 1a shown in the first embodiment.
  • a configuration using power supply modules 1a, 1b, 1c, and 1d will be described as an example.
  • the plurality of power supply modules 1 a, 1 b, 1 c, 1 d are installed in a common flow path forming body 103.
  • the flow path forming body 103 has a plurality of openings corresponding to the plurality of power supply modules.
  • power supply circuits are mounted on both surfaces of the upright portion 106 for each power supply module.
  • a wiring board 110 is disposed on the opposite side of the power supply modules 1a, 1b, 1c, and 1d from the flow path forming body 103.
  • the wiring board 110 includes wiring for connecting the power supply modules 1a, 1b, 1c, and 1d in parallel. Connection between the wiring board 110 and each of the power supply modules 1a, 1b, 1c, and 1d is performed by a terminal connection portion 111 formed on the wiring board 110.
  • wiring for a control signal such as a microcomputer is also mounted.
  • FIG. 8 is a circuit configuration diagram of the power conversion device according to the present embodiment.
  • the circuit shown in FIG. 2 of Embodiment 1 is connected in parallel.
  • the smoothing capacitor 210 is common to a plurality of circuits connected in parallel.
  • FIG. 8 shows a circuit configuration diagram of only one power supply circuit among a total of eight power supply circuits mounted on the power supply modules 1a, 1b, 1c, and 1d of the present embodiment, and the remaining seven power supply circuits are similar. Since it is a structure, description is abbreviate
  • the power conversion device can be configured with a small mounting area even when a plurality of power supply circuits are configured in parallel. Further, by using the wiring substrate 110, it is possible to easily perform wiring connection work even when a plurality of power supply circuits are configured in parallel.
  • FIG. 9 is a diagram illustrating a configuration of a power conversion device according to the fifth embodiment.
  • the present embodiment relates to a configuration in which a plurality of power supply modules as shown in Example 4 are mounted on a flow path forming body of an inverter device.
  • the inverter device includes a flow path forming body 114, a refrigerant inlet 115 that introduces a cooling refrigerant into the flow path forming body 114, a refrigerant outlet 116 that discharges the cooling refrigerant into the flow path forming body 114, a DC input terminal 117, and an alternating current. And an output terminal 118.
  • the channel forming body 114 is formed with an opening connected to the channel through which the cooling refrigerant flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 電力変換装置内部の発熱部品の放熱性を確保しつつ、電力変換装置の実装面積の低減を図る。 本発明の電力変換装置は、トランス及びスイッチング素子を有する電源回路3と、前記電源回路が実装される放熱ベース101と、冷却冷媒が流れる流路が形成される流路形成体103と、を備え、前記流路形成体は前記流路とつながる開口部104を形成し、前記放熱ベースは基台部107と前記基台部の一方の面に形成される立設部106とを有し、前記放熱ベースは前記基台部の前記一方の面とは反対側の面が前記開口部を塞ぐように前記流路形成体に設置され、前記電源回路は前記立設部の面に実装される。

Description

電力変換装置
 本発明は、直流電圧を昇圧、あるいは降圧する電力変換装置に関し、特にハイブリッド車や電気自動車に搭載される電力変換装置に関する。
 ハイブリッド車や電気自動車には、高圧バッテリから動作電圧が低い補機類へ必要な出力を供給する電力変換装置が搭載されている。ハイブリッド車等における電気機器類の実装空間には限りがあるため、電力変換装置には高密度実装であることが望まれている。
 また、ハイブリッド車等に搭載される電力変換装置の内部に流れる電流は数百アンペアにも達するため、電力変換装置内のスイッチング素子やトランス等の磁性部品は発熱が大きく、高い放熱性も求められる。
 高密度実装と放熱性の両立を実現する構成に関して、例えば特許文献1に記載されている。この特許文献1には、発熱が大きい部品を流路形成体の近くに配置する構成が示されている。
特開2013-62998号公報
 しかしながら、特許文献1に記載の電力変換装置においては、発熱素子すべてが平面上に配置されてしまうため、電力変換装置の平面における実装面積が大きくなってしまう。
 本発明の目的は、電力変換装置内部の発熱部品の放熱性を確保しつつ、電力変換装置の実装面積の低減を図ることである。
 本発明の電力変換装置は、トランス及びスイッチング素子を有する電源回路と、前記電源回路が実装される放熱ベースと、冷却冷媒が流れる流路が形成される流路形成体と、を備えた電力変換装置であって、前記流路形成体は前記流路とつながる開口部を形成し、前記放熱ベースは基台部と前記基台部の一方の面に形成される立設部とを有し、前記放熱ベースは前記基台部の前記一方の面とは反対側の面が前記開口部を塞ぐように前記流路形成体に設置され、前記電源回路は前記立設部の面に実装される。
 本発明によれば、電力変換装置内部の発熱部品の放熱性を確保しつつ、電力変換装置の実装面積の低減を図ることができる。
実施例1の電力変換装置の外観斜視図である。 実施例1の電力変換装置の回路構成図である。 実施例1の電力変換装置の電源回路の基板構成図である。 実施例1の電源変換装置の電源モジュールの裏面図である。 実施例2の電力変換装置の外観斜視図である。 実施例3の電力変換装置の外観側視図である。 実施例4の電力変換装置の外観斜視図である。 実施例4の電力変換装置の回路構成図である。 実施例5の電力変換装置の外観斜視図である。
 以下に、本発明の実施形態について図面を用いて詳細に説明する。本発明は、以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 実施例1に係る電力変換装置の構成は、図1に示す図である。また、図2~図4を用いて実施例1を詳細に説明する。
 図1は、本実施例の電力変換装置の外観斜視図である。電力変換装置は、電源モジュール1aと、冷却冷媒が流れる流路105が形成される流路形成体103と、を備える。電源モジュール1aは、電圧を変換する電源回路3と、電源回路3が実装される放熱ベース101と、を備える。
 放熱ベース101は、基台部107と、立設部106と、フィン102と、を有する。立設部106は、基台部107の一方の面から、当該一方の面の法線方向に向かって突出するように、形成される。立設部106は、基台部107の幅広の面よりも面積の大きい面を有する。フィン102は、基台部107の前記一方の面とは反対側の他方の面から、当該他方の面の法線方向に向かって突出するように、形成される。
 電源回路3は、後述するスイッチング素子202、トランス207、コンデンサ203、整流素子208、とを用いた回路が実装されている。電源回路3は、立設部106の幅広の面に実装される。電源回路3の実装面は、基台部107の面と垂直な関係になっている。
 流路形成体103は、当該流路形成体103の一方の面に、冷却冷媒が流れる流路105に繋がる開口部104が形成される。電源モジュール1aは、当該電源モジュール1aの基台部107が流路形成体103の開口部104を塞ぐように、流路形成体103に設置される。電源モジュール1aが流路形成体103に設置された状態において、フィン102は、流路105内に突出するように配置される。
 放熱ベース101は、例えば金属のように熱伝導性の良い材料により形成される。放熱ベース101の立設部106の面に実装される電源回路3で発生する発熱は、立設部106、基台部107、フィン102を順に伝熱していき、流路105を流れる冷却冷媒と熱交換される。放熱ベース101は、流路105と繋がる開口部104を塞ぐように設置されているので、効率よく冷却されている。これにより、電源回路3に実装される発熱部品は効率的に冷却される。
 更に、電源回路3を構成する部品は、放熱ベース101の基台部107ではなく、基台部107から立設する立設部106に実装されている。これにより、流路形成体103の開口部104を塞ぐように配置される基台部107は、電源回路3の実装面積よりも小さな面積で構成することができる。したがって、電力変換装置の平面における実装面積を低減することができる。
 図2は、本実施例の電力変換装置の回路構成図である。本実施例に示す電源回路3は、センタータップ型ハーフブリッジコンバータ回路の構成をとっている。具体的な回路構成を、図2を用いて説明する。
 電源回路3は、入力端子201a及び201bに接続される1次側回路2aと、出力端子212a及び212bに接続される2次側回路2bと、1次側回路2aと2次側回路2bの間で電圧を変換するトランス207と、によって構成される。入力端子201a及び201bには、直流電圧が印加される。出力端子212a及び212bからは、電源回路3で電圧変換された直流電圧が出力される。
 1次側回路2aは、スイッチング素子202a及び202bと、中点電位コンデンサ203a及び203bと、を有する。スイッチング素子202a及び202bは、入力端子201a及び201bから入力された直流電圧を交流電圧に変換するインバータ回路を構成する。スイッチング素子202a及び202bは、MOSFET(金属―酸化物―半導体接合電界効果トランジスタ)により構成される。なお、インバータ回路を構成するスイッチング素子としては、MOSFETに限られず、IGBT(絶縁ゲートバイポーラトランジスタ)などの素子により構成しても良い。
 トランス207は、一次巻線204と、二次巻線205と、磁性体コア206と、により構成される。磁性体コア206は、一次巻線204と二次巻線205を磁気的に結合する。一次巻線204と二次巻線205は、互いに電気的に絶縁されている。
 スイッチング素子202a及び202bは、入力端子201aと201bの間で直列に接続される。また、中点電位コンデンサ203a及び203bも、入力端子201aと201bの間で直列に接続される。スイッチング素子202aと202bの接続点には、トランス207の一次巻線204の一端が接続される。中点電位コンデンサ203aと203bの接続点には、トランス207の一次巻線204の他端が接続される。
 2次側回路2bは、整流素子208a及び208bと、平滑コイル209と、平滑コンデンサ210と、グラウンド端子211と、を有する。本実施例においては、整流素子208a及び208bは、ダイオード整流素子を用いているが、同期整流素子であるMOSFETやその他の素子を用いても良い。
 トランス207の二次巻線205は、当該二次巻線の一端が整流素子208aのカソードに接続され、他端が整流素子208bのカソードに接続される。整流素子208a及び208bのアノードには、グラウンド端子211が接続される。また、二次巻線205の中性点には、平滑コイル209の一端が接続される。平滑コイル209の他端には、平滑コンデンサ210の一端が接続される。平滑コンデンサ210の他端には、グラウンド端子211が接続される。平滑コンデンサ210の一端及び他端は、それぞれ出力端子212a及び212bと接続される。
 図3は、電源回路3の基板構成例を示す図である。図中下方向に、流路形成体103が配置される。図中に示す第1辺106aは、基台部107と繋がる立設部106の辺である。第2辺106bは、第1辺106aとは反対側の立設部106の辺である。
 スイッチング素子202a及び202bやトランス207は、図2に示す回路の中でも特に発熱量が大きい素子である。このような発熱量が大きい素子は、第2辺106bよりも第1辺107aに近くなるように、配置される。このように、発熱量の大きい素子ほど基台部107に近い位置に配置することで、より効率的に発熱部品の放熱を行うことができる。
 入力端子201a及び201b、グラウンド端子211、出力端子212は、立設部106の第2辺106bよりも上方に突出するように、配置される。
 図4は、本実施例の電力変換装置の電源モジュール1aの裏面図である。前述の通り、基台部107には、フィン102が形成される。基台部107には、シール溝109が形成される。シール溝109には、Oリングなどのシール部材が配置される。これにより、流路105を流れる冷却冷媒が開口部104から漏洩しないようにする。シール溝109は、フィン102が形成される領域を囲むように形成される。シール溝109の更に外周側には、ネジ穴108が形成される。このネジ穴108にネジを通し、電源モジュール1aを流路形成体103に取り付ける。
 以上に示した実施形態に係る電力変換装置によれば、電力変換装置内部の発熱部品の放熱性を確保しつつ、電力変換装置の実装面積の低減を図ることができる。
 また、開口部104を塞ぐように基台部107を設置することで、流路105から冷却冷媒が漏洩することを防ぎ、かつ組立性が向上する。また、本実施形態の電力変換装置は、他の電力変換装置に用いられる流路形成体にも容易に適用することが可能であるため、高密度での実装が実現できる。
 上述した実施形態では、電源回路として図2に示すような回路構成を例に説明したが、回路構成は図2のような構成に限るものではない。例えば、トランスを用いない非絶縁型回路や、他の降圧型回路方式、昇圧回路、インバータ回路などの回路であっても適用することが可能である。
 また、上述した実施形態では、フィン102の形状として直線状のフィン形状となっているが、ピンフィン形状のように他の形状を用いてもよい。また、電源回路3が実装される基板は立設部106の片面だけでなく、両面に実装してもよい。また、立設部106の形状は、図4に示すようなT字形状でなく、例えばL字形状としてもよい。また、立設部106と電源回路3が実装される基板との間には、放熱シートなどを挟んで構成しても良い。
 図5は、第2の実施形態に係る電源モジュール1aの構成を示す斜視図である。なお、特に断らない限り、電力変換装置の構成は上述の実施例1に係る構成と共通であり、重複する符号の説明は省略する。
 実施例2に係る電力変換装置においては、スイッチング素子202a及び202bは、基台部107上に実装される。電源回路3におけるスイッチング素子202a及び202bとの電気的な配線は、立設部106に実装される基板上において形成される。
 また、トランス207は、実施例1と同様に立設部106に実装される基板上に配置されているが、本実施例では更に、トランス207の一側面が塗布された樹脂を介して基台部107に実装されるように配置される。トランス207の側面が樹脂を介して基台部107に支持されるため、トランス207の耐振動性が向上するとともに、トランス207を立設部106と基台部107の2側面から放熱する。
 本実施形態の電源モジュールによれば、流路105を流れる冷却冷媒への伝熱経路が短い基台部107上に発熱量が大きいスイッチング素子202a及び202bが実装されるため、スイッチング素子202a及び202bの放熱性能が向上する。
 なお、電源回路3を構成する素子のうち、より発熱量が大きい素子が存在する場合は、その素子を基台部107上に実装する構成としてもよい。
 図6は、第3の実施例に係る電源モジュール1aの構成を示す図である。本実施例では、図2に示した1次側回路2aを1次側電源基板112に実装し、2次側回路2bを2次側電源基板113に実装している。1次側電源基板112は、放熱ベース101aに実装される。2次側電源基板113は、放熱ベース101bに実装される。
 1次側回路と2次側回路を分離して構成することにより、1次側回路と2次側回路の間の電気的絶縁を容易にし、電源回路の基板設計を容易にすることができる。
 また、発熱量の大きい素子を分離して実装することにより、発熱素子間での熱の干渉を抑制し、効率的に放熱を行うことができる。なお、本実施形態においては、1次側回路と2次側回路で分離したが、分離の方式としてはこれに限らず、電源回路上の素子単位での分離としてもよい。
 図7は、第4の実施形態に係る電力変換装置の構成を示す図である。本実施例は、実施例1に示した電源モジュール1aを複数用いた電力変換装置に関する。ここでは、電源モジュール1a、1b、1c、1dを用いた構成を例として説明する。
 複数の電源モジュール1a、1b、1c、1dは、共通の流路形成体103に設置される。流路形成体103には、複数の電源モジュールに対応して、複数の開口部が形成される。それぞれの電源モジュールの設置方法については、実施例1と同様である。また、本実施例では、それぞれの電源モジュールに対して、立設部106の両面に電源回路を実装している。
 電源モジュール1a、1b、1c、1dの流路形成体103とは反対側には、配線基板110が配置される。配線基板110は、電源モジュール1a、1b、1c、1dを並列に接続するための配線を備える。配線基板110と各電源モジュール1a、1b、1c、1dの接続は、配線基板110に形成された端子接続部111によって行う。配線基板110には、マイコンなどの制御信号の配線も実装されている。
 図8は、本実施例に係る電力変換装置の回路構成図である。実施例1の図2に示す回路を並列に接続した構成となっている。なお、平滑コンデンサ210は、並列接続された複数の回路で共通としている。図8では、本実施例の電源モジュール1a、1b、1c、1dに実装される合計8つの電源回路のうち、1つの電源回路のみ回路構成図を示し、残りの7つの電源回路については同様の構成であるため、記載を省略している。
 本実施形態に係る電力変換装置によれば、複数の電源回路を並列に構成した場合であっても、小さい実装面積により電力変換装置を構成することができる。また、配線基板110を用いることにより、複数の電源回路を並列に構成した場合であっても、容易に配線の接続作業を行うことができる。
 図9は、第5の実施形態に係る電力変換装置の構成を示す図である。本実施形態では、実施例4に示したような複数の電源モジュールを、インバータ装置の流路形成体に対して実装した構成に関する。
 インバータ装置は、流路形成体114と、流路形成体114に冷却冷媒を導入する冷媒入口115と、流路形成体114に冷却冷媒を排出する冷媒出口116と、直流入力端子117と、交流出力端子118と、を有する。流路形成体114には、冷却冷媒が流れる流路に繋がる開口部が形成される。
 本実施例のように、流路形成体を有する他の電力変換装置と流路形成体を共通することによって、新たに流路形成体を構成する必要がなくなり、電力変換装置の更なる高密度実装が可能となる。
  1:電源モジュール
  2:ハーフブリッジコンバータ
 2a:1次側回路、2b:2次側回路
  3:電源回路
101:放熱ベース
102:フィン
103:流路形成体
104:開口部
105:流路
106:立設部
107:基台部
108:ネジ穴
109:シール溝
110:配線基板
111:端子接続部
112:1次側電源基板
113:2次側電源基板
114:インバータの流路形成体
115:インバータの冷媒入口
116:インバータの冷媒出口
117:インバータの直流入力端子
118:インバータの直流出力端子
201:入力端子
202:スイッチング素子
203:中点電位コンデンサ
204:一次巻線
205:二次巻線
206:磁性体コア
207:トランス
208:整流素子
209:平滑コイル
210:平滑コンデンサ
211:グラウンド端子
212:出力端子

Claims (9)

  1.  トランス及びスイッチング素子を有する電源回路と、
     前記電源回路が実装される放熱ベースと、
     冷却冷媒が流れる流路が形成される流路形成体と、を備え、
     前記流路形成体は、前記流路と繋がる開口部を形成し、
     前記放熱ベースは、基台部と、前記基台部の一方の面に形成される立設部と、を有し、
     前記放熱ベースは、前記基台部の前記一方の面とは反対側の他方の面が前記開口部を塞ぐように前記流路形成体に設置され、
     前記電源回路は、前記立設部の面に実装される電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記立設部は、前記電源回路が実装される実装面において、前記基台部と繋がる第1辺と、前記第1辺とは前記実装面を挟んで反対側の第2辺と、を有し、
     前記電源回路は、当該電源回路を構成する素子のうち最も発熱量の大きい素子が第2辺よりも第1辺に近くなるように、前記立設部の前記実装面に実装される電力変換装置。
  3.  請求項1または2に記載のいずれかの電力変換装置であって、
     前記電源回路を構成する部品のうちの一部の部品は、前記立設部が形成される前記基台部の前記一方の面に実装される電力変換装置。
  4.  請求項3に記載の電力変換装置であって、
     前記トランスは、前記立設部の面に実装されるとともに、当該トランスの側面が前記基台部の前記一方の面に支持される電力変換装置。
  5.  請求項1ないし4に記載のいずれかの電力変換装置であって、
     複数の前記電源回路を電気的に接続する配線基板を備え、
     前記電源回路は、第1の電源回路と、第2の電源回路と、を有し、
     前記放熱ベースは、第1の放熱ベースと、第2の放熱ベースと、を有し、
     前記流路形成体は、前記流路と繋がる第1の開口部と、第2の開口部と、を形成し、
     前記第1の放熱ベースは、前記第1の開口部を塞ぐように前記流路形成体に設置され、
     前記第2の放熱ベースは、前記第2の開口部を塞ぐように前記流路形成体に設置され、
     前記第1の電源回路は、前記第1の放熱ベースの前記立設部の面に実装され、
     前記第2の電源回路は、前記第2の放熱ベースの前記立設部の面に実装され、
     前記配線基板は、前記第1の電源回路と前記第2の電源回路を電気的に並列に接続する電力変換装置。
  6.  請求項1ないし5に記載のいずれかの電力変換装置であって、
     前記電源回路は、第1の電源回路と、第2の電源回路と、を有し、
     前記第1の電源回路は、前記立設部の一方の面に実装され、
     前記第2の電源回路は、前記立設部の前記一方の面とは反対側の他方の面に実装される電力変換装置。
  7.  請求項1ないし6に記載のいずれかの電力変換装置であって、
     前記放熱ベースの前記基台部は、前記立設部が形成される面とは反対側の面において、フィンが形成される電力変換装置。
  8.  請求項1ないし7に記載のいずれかの電力変換装置であって、
     前記電源回路は、1次側回路と、前記1次側回路とは動作電圧の異なる2次側回路と、を有し、
     前記放熱ベースは、第1の放熱ベースと、第2の放熱ベースと、を有し、
     前記電源回路の前記1次側回路は、前記第1の放熱ベースに実装され、
     前記電源回路の前記2次側回路は、前記第2の放熱ベースに実装される電力変換装置。
  9.  請求項1ないし8に記載のいずれかの電力変換装置であって、
     さらに直流電力を交流電力に変換するインバータ回路を備え、
     前記インバータ回路は、前記流路形成体に設置される電力変換装置。
PCT/JP2014/078009 2013-11-29 2014-10-22 電力変換装置 WO2015079830A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246894 2013-11-29
JP2013246894A JP6158051B2 (ja) 2013-11-29 2013-11-29 電力変換装置

Publications (1)

Publication Number Publication Date
WO2015079830A1 true WO2015079830A1 (ja) 2015-06-04

Family

ID=53198780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078009 WO2015079830A1 (ja) 2013-11-29 2014-10-22 電力変換装置

Country Status (2)

Country Link
JP (1) JP6158051B2 (ja)
WO (1) WO2015079830A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034012A (ja) * 2015-07-30 2017-02-09 三菱電機株式会社 電力変換装置
CN109891731A (zh) * 2016-10-26 2019-06-14 三菱电机株式会社 功率转换装置
FR3105710A1 (fr) * 2019-12-24 2021-06-25 Valeo Systemes De Controle Moteur Système de refroidissement d’un dispositif électronique et système électronique comprenant un tel système de refroidissement

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438858B2 (ja) 2015-07-03 2018-12-19 日立オートモティブシステムズ株式会社 電力変換装置
US10888035B2 (en) * 2016-09-20 2021-01-05 Mitsubishi Electric Corporation Power conversion device
JP7154428B2 (ja) * 2019-09-09 2022-10-17 三菱電機株式会社 電力変換装置および電力変換装置の製造方法
JP7477012B2 (ja) 2022-04-22 2024-05-01 富士電機株式会社 直流直流コンバータ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837389A (ja) * 1994-07-22 1996-02-06 Furukawa Electric Co Ltd:The ヒートパイプ式放熱装置
JP2011234477A (ja) * 2010-04-27 2011-11-17 Denso Corp スイッチング電源
JP2013062998A (ja) * 2011-09-15 2013-04-04 Mitsubishi Electric Corp スイッチング電源装置
JP2013219127A (ja) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd 熱交換器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252177A (ja) * 2006-02-20 2007-09-27 Toshiba Kyaria Kk 電力変換装置
JP2008192657A (ja) * 2007-01-31 2008-08-21 Tdk Corp 電子機器
JP2009278727A (ja) * 2008-05-13 2009-11-26 Diamond Electric Mfg Co Ltd モータ制御装置
JP5003752B2 (ja) * 2009-12-28 2012-08-15 Tdk株式会社 電源装置
JP5529100B2 (ja) * 2011-10-27 2014-06-25 シャープ株式会社 スイッチングレギュレータおよびそれを備える電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837389A (ja) * 1994-07-22 1996-02-06 Furukawa Electric Co Ltd:The ヒートパイプ式放熱装置
JP2011234477A (ja) * 2010-04-27 2011-11-17 Denso Corp スイッチング電源
JP2013062998A (ja) * 2011-09-15 2013-04-04 Mitsubishi Electric Corp スイッチング電源装置
JP2013219127A (ja) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd 熱交換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034012A (ja) * 2015-07-30 2017-02-09 三菱電機株式会社 電力変換装置
CN109891731A (zh) * 2016-10-26 2019-06-14 三菱电机株式会社 功率转换装置
EP3534519A4 (en) * 2016-10-26 2019-11-06 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
US11431259B2 (en) 2016-10-26 2022-08-30 Mitsubishi Electric Corporation Power conversion device for reducing voltage ripple and voltage spike via connection of a transformer and a capacitor to a grounding surface
FR3105710A1 (fr) * 2019-12-24 2021-06-25 Valeo Systemes De Controle Moteur Système de refroidissement d’un dispositif électronique et système électronique comprenant un tel système de refroidissement

Also Published As

Publication number Publication date
JP2015106953A (ja) 2015-06-08
JP6158051B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6158051B2 (ja) 電力変換装置
JP6383408B2 (ja) コンバータ及び電力変換装置
US9552918B2 (en) Magnetic device
EP3057217A1 (en) Power conversion device
JP2017085800A (ja) 電力変換装置
JP6169181B2 (ja) Dc−dcコンバータ装置
JP2013150414A (ja) トランス及びスイッチング電源装置
JP2005143215A (ja) Dc−dcコンバータ装置
JP2017017861A (ja) コンデンサモジュール
WO2014141670A1 (ja) 磁気デバイス
JP2011139602A (ja) ベースプレート構造および電源装置
WO2021053975A1 (ja) 電力変換装置およびモータ一体型電力変換装置
US20230292474A1 (en) Power conversion device and dc-dc converter device
JP6647350B2 (ja) 電力変換装置
JP5003752B2 (ja) 電源装置
JP6265459B2 (ja) 電子部品の実装構造
JP2002369528A (ja) Dc−dcコンバータ装置
JP2016197952A (ja) 電子機器
KR101826727B1 (ko) 방열 장치 및 그 제조 방법
JP6213356B2 (ja) 電源装置
JP5669917B1 (ja) 電源装置
JP2013188010A (ja) 絶縁型スイッチング電源装置
JP3641603B2 (ja) Dc−dcコンバータ装置
EP3376658B1 (en) Power conversion device and power supply apparatus
JP6120619B2 (ja) 磁気デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866616

Country of ref document: EP

Kind code of ref document: A1