WO2015078993A1 - Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen - Google Patents

Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen Download PDF

Info

Publication number
WO2015078993A1
WO2015078993A1 PCT/EP2014/075860 EP2014075860W WO2015078993A1 WO 2015078993 A1 WO2015078993 A1 WO 2015078993A1 EP 2014075860 W EP2014075860 W EP 2014075860W WO 2015078993 A1 WO2015078993 A1 WO 2015078993A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrically conductive
conductive structures
foil
films
Prior art date
Application number
PCT/EP2014/075860
Other languages
English (en)
French (fr)
Inventor
Uwe Keller
Marco Greb
Original Assignee
Kuraray Europe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Europe Gmbh filed Critical Kuraray Europe Gmbh
Priority to US15/036,466 priority Critical patent/US10105932B2/en
Priority to EP17191664.6A priority patent/EP3281784B1/de
Priority to EP14808891.7A priority patent/EP3074221B1/de
Priority to JP2016534980A priority patent/JP6456385B2/ja
Priority to CN201480063905.1A priority patent/CN105722679B/zh
Publication of WO2015078993A1 publication Critical patent/WO2015078993A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • B32B17/10192Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions patterned in the form of columns or grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10247Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons
    • B32B17/10256Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques
    • B32B17/10275Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques on interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to a method for the production of laminated glass panes with embedded electrically conductive structures using an interlayer film based on polyvinyl acetal with thereon electrically conductive structures.
  • PET films with electrically conductive structures are partially established and, for example, almost invisible heating elements, sensor fields, etc., can be produced thereon.
  • a leading company in this field is for example PolyIC from Marieth in Germany.
  • PET films in laminated glass laminates are typically at least 3 layers of film (1 x functionalized PET, 2 x PVB film) must be used because PET with the functionalized side or the Back can not be melted directly on a glass surface.
  • WO 2010/030413 discloses electrically conductive interlayer films which are mounted between two electrodes. In addition to a reduced transparency of the laminate, this results in a high consumption of material in the conductive layers.
  • the invention therefore relates to a method for producing laminated glass laminates with electrically conductive structures by bonding two transparent panes with at least one foil A and at least one foil B, characterized in that the foils A and B are positioned between the two transparent panes and these bonding together, wherein film A has a polyvinyl acetal PA and 0 to 16 wt.% Of at least one plasticizer WA and discrete, electrically conductive structures and film B a polyvinyl acetal PB and at least 16 wt.% Of at least one plasticizer WB
  • discrete, electrically conductive structures are not understood to mean laminar layers but individually identifiable structures such as printed conductors, wires, nets constructed therefrom, points and combinations thereof.
  • the discrete, electrically conductive structures may be applied to or embedded in the surface of the films A.
  • the transparent panes may be the same or different from PMMA or polycarbonate glass.
  • glass pane or “glass surface” are used synonymously with the terms “transparent pane” or “surface of the transparent pane”.
  • the method according to the invention can be carried out by positioning the intermediate layer on a transparent pane by positioning film A on a transparent pane on which film B and a second transparent pane are placed. Alternatively, it is possible to position film B on a transparent disk on which film A and a second transparent disk are then placed.
  • the discrete electrically conductive structures preferably contain metals such as silver, copper, gold, indium, zinc, iron, aluminum.
  • semiconductor materials can also be arranged in or on the film A.
  • carbon-based conductive materials such as graphite, CNT (carbon nanotubes) or graphene may be included.
  • the films A have on one or both surfaces electrically conductive structures.
  • the electrically conductive structures can be produced by different variants of printing processes such as, for example, screen printing, flexographic printing or gravure printing, vapor deposition, sputtering, electrodeposition on the surface of the film A.
  • printing processes corresponding inks are used, which can be dried or thermally or photonically cured before the lamination in the rule.
  • the electrically conductive structures can be worked out in their final form only by the use of lasers or other processing means (engrave, etch) from an initially coarser structure on the film A.
  • the inks or inks contain conductive particles. These may be particles of metals such as gold, silver, copper, zinc, iron or aluminum as well as metal-coated materials such as silver-plated glass fibers, glass beads and conductive carbon black, carbon nanotubes, graphite or graphene. Furthermore, particles of semiconductors such as conductive metal oxides, e.g. Indium-doped tin oxide, doped zinc oxides, antimony-doped tin oxide.
  • the electrically conductive structures can generally be used for the electromagnetic shielding of frequency fields, for the generation of electrical circuits such as tracks or transmitting and / or receiving antennas and other functions.
  • heating elements can be introduced into the glass composite, and antennas can be used, for example, in the automotive sector for receiving radio waves or in car-to-car communication.
  • the electrically conductive structures of the laminates according to the invention can also be embodied as a touch sensor, which enables the production of interactive laminated glass panes.
  • Information input on the laminated glass pane e.g., a windshield or side glazing of a car or the sliding glass of a door
  • Conductive and dielectric structures can also be applied to entire electronic circuits or components. These include u.a. Transistors, resistors, chips, sensors, displays, light emitting diodes (e.g., OLEDs), and / or smart labels.
  • the electrically conductive structures can be so small that they can only be recognized poorly with the naked eye. This at widths of 1 to 30 microns, preferably 1 to 20 microns and most preferably 1 to 15 microns of the case. Especially with flat heating fields, the width of the filaments is less than 25 microns. Heating fields may also be only local, e.g. be introduced in front of an optical sensor system on a top of a windshield.
  • the film A may have a smaller area than film B, so that the film B is in a partial area in direct contact with at least one glass pane.
  • film A with its electrically conductive structure can be flexibly positioned anywhere on a car glazing without filling the entire pane.
  • the electrically conductive structures used according to the invention preferably have thicknesses in the range from 0.1 to 50 .mu.m, more preferably in the range from 0.5 to 20 .mu.m, and preferably in the range from 1 to 10 .mu.m.
  • the films A and B may contain a single plasticizer as well as mixtures of plasticizers of both different and the same composition in the initial state before laminating the layers as well as in the interlayer stack located in the laminated glass laminate.
  • different composition is meant both the nature of the plasticizers and their proportion in the mixture.
  • the film A and film B after laminating i. in the finished laminated glass the same plasticizer WA and WB.
  • the film A contains no plasticizer in its initial state and, after lamination, the plasticizer WB.
  • Plasticizer-containing films B used according to the invention in the initial state before lamination of the layers contain at least 16% by weight, such as 16.1-36.0% by weight, preferably 22.0-32.0% by weight and in particular 26.0-30.0% by weight plasticizer.
  • Films A used in the present invention, prior to lamination of the layers, may be less than 16 weight percent (such as 15.9 weight percent), less than 12 weight percent, less than 8 weight percent, less than 6 weight percent, in the initial state. less than 4% by weight, less than 3% by weight, less than 2% by weight, less than 1% by weight, each having the lower limit of 0% by weight of plasticizer WA.
  • the low-plasticizer films A preferably contain 0.0-8% by weight of plasticizer WA.
  • the film A in the initial state before the lamination of the layers has a thickness of not more than 20%, preferably 15% and preferably not more than 10% of the thickness of the film or the films B.
  • the thickness of the film A includes the electrically conductive structure.
  • the thickness of a film A in the initial state before laminating the layers is 10-150 ⁇ m, preferably 20-120 ⁇ m, preferably 30-100 ⁇ m, preferably 40-80 ⁇ m and most preferably 50-70 ⁇ m.
  • the thickness of the film increases due to the transition of plasticizer from film B.
  • Film A is produced separately from film B (e.g., extruded and either does not have any plasticizer or plasticizer portion so low that it neither stretches too much nor is too tacky during mechanical stressing and processing).
  • the thickness of a film B in the initial state is 450-2500 ⁇ m, preferably 600-1000 ⁇ m, preferably 700-900 ⁇ m.
  • films B are stretched prior to making the sandwich and / or additionally arcuately conformed to the shape of a disk (e.g., windshield), the indicated thicknesses at the time of lamination may be reduced by as much as 20%.
  • At least one thin film A having the electrically conductive structure is oriented to a glass surface of the laminated glass laminate according to the invention.
  • the film A can be applied to the glass surface with the surface which has the electrically conductive structure or the surface which does not have the electrically conductive structures.
  • the transparent panes can be connected to one another by a layer sequence of three films, such as film A / film B / film A or film B / film A / film B.
  • a film A to both glass surfaces, so that a laminated glass laminate with a layer sequence of glass / film A / film B / film A / glass is present.
  • the decoration of the films A may be the same or different.
  • one of the films A may have the electrically conductive structure and the second film A may have heat-absorbing layers or other layers with optical functions.
  • the plasticizer-poor film A can be cut and positioned so that it does not reach all the way to the edge of the laminate in the laminated glass laminate.
  • the film A in the edge region can be smaller by at least 1 mm than at least one glass pane so that the film B is in direct contact with at least one glass pane in this edge region.
  • the thin, low-plasticizer or plasticizer-free film A in the initial state can be perforated prior to insertion into the glass / film sandwich, so that it can have recesses such as openings, holes, slots in any geometric patterns.
  • the film A may have at least one recess, so that the film B through this recess in direct contact with at least one glass sheet.
  • the film B is glued with in the initial state higher plasticizer content at these points with the glass without interruption.
  • recesses can thus be obtained in places of the laminated glass, behind which optical, antenna elements would otherwise be impaired by an electrically conductive structure in their function.
  • the films A and B used according to the invention contain polyvinyl acetals which are prepared by acetalization of polyvinyl alcohol or ethylene-vinyl alcohol copolymer.
  • the films may contain polyvinyl acetals, each with different polyvinyl alcohol content, degree of acetalization, residual acetate content, ethylene content, molecular weight or different chain lengths of the aldehyde of the acetal groups.
  • the aldehydes or keto compounds used to prepare the polyvinyl acetals may be linear or branched (i.e., of the "n” or “iso” type) of 2 to 10 carbon atoms, resulting in corresponding linear or branched acetal groups.
  • the polyvinyl acetals are accordingly referred to as “polyvinyl (iso) acetals” or “polyvinyl (n) acetals”.
  • the polyvinyl (n) acetal used according to the invention results in particular from the reaction of at least one polyvinyl alcohol with one or more aliphatic unbranched keto compounds having 2 to 10 carbon atoms.
  • n-butyraldehyde is used for this purpose.
  • the polyvinyl alcohols or ethylene-vinyl alcohol copolymers used to prepare the polyvinyl acetals in films A or B may each be the same or different, pure or a mixture of polyvinyl alcohols or ethylene-vinyl alcohol copolymers having different degrees of polymerization or degree of hydrolysis.
  • the polyvinyl acetate content of the polyvinyl acetals in the films A or B can be adjusted by using a polyvinyl alcohol or ethylene-vinyl alcohol copolymer saponified to a corresponding degree.
  • the polyvinyl acetate content influences the polarity of the polyvinyl acetal, which also changes the plasticizer compatibility and the mechanical strength of the respective layer. It is also possible to carry out the acetalization of the polyvinyl alcohols or ethylene-vinyl alcohol copolymers with a mixture of several aldehydes or keto compounds.
  • the films A or B preferably contain polyvinyl acetals with a proportion of polyvinyl acetate groups, based on the layers, in each case identically or differently, 0.1 to 20 mol%, preferably 0.5 to 3 mol% or 5 to 8 mol%.
  • the polyvinyl alcohol content of the polyvinyl acetal PA used in the lower plasticizer A film can between 6 - 26 wt .-%, 8 - 24 wt .-%, 10 - 22 wt .-%, 12 - 21 wt .-%, 14 - 20 wt .-%, 16 to 19 wt .-% and preferably between 16 and 21 wt .-% or 10 - 16 wt .-% amount.
  • the polyvinyl alcohol content of the polyvinyl acetals PB used in the plasticizer-rich film B in the starting state can be between 14-26% by weight, 16-24% by weight, 17-23% by weight and preferably between 18 and 21% by weight.
  • the films A or B preferably contain uncrosslinked polyvinyl acetal.
  • the use of crosslinked polyvinyl acetals is also possible.
  • Methods for crosslinking polyvinyl acetals are e.g. in EP 1527107 B1 and WO 2004/063231 A1 (thermal self-crosslinking of polyvinyl acetals containing carboxyl groups), EP 1606325 A1 (polyvinyl acetals crosslinked with polyaldehydes) and WO 03/020776 A1 (polyvinyl acetals crosslinked with glyoxylic acid).
  • plasticizers are high boiling organic liquids. For this reason, other types of organic liquids with a boiling point higher than 120 ° C can be used as a plasticizer.
  • the films contain A in the variants in which a plasticizer WA is present in film A in AusgansPark and films B 1,2-Cyclohexandicarbon Acidiisononylester (DINCH) or triethylene glycol bis-2-ethylhexanoate (3GO or 3G8) as a plasticizer.
  • a plasticizer WA is present in film A in AusgansPark and films B 1,2-Cyclohexandicarbonkladiisononylester (DINCH) or triethylene glycol bis-2-ethylhexanoate (3GO or 3G8) as a plasticizer.
  • films A and B may contain other additives such as residual amounts of water, UV absorbers, antioxidants, adhesion regulators, optical brighteners or fluorescent additives, stabilizers, colorants, processing aids, organic or inorganic nanoparticles, fumed silica and / or surface-active substances included .
  • film B as adhesion regulators may have from 0.001 to 0.1% by weight of alkali metal and / or alkaline earth metal salts of carboxylic acids.
  • the anticorrosive agent may be contained before lamination in film B and pass during and after the bonding with film A by diffusion in the thinner film A and in the range of their coating.
  • the corrosion inhibitor before lamination is already contained in film A.
  • Preference is given to using corrosion inhibitors in amounts of 0.005 to 5% by weight in film B and / or A.
  • Preference is given to using unsubstituted or substituted benzotriazoles as corrosion inhibitors.
  • the film A preferably has less than 150 ppm of chloride ions and / or nitrate ions and / or sulfate ions.
  • the chloride content of the film A may be less than 150 ppm, preferably less than 100 ppm and in particular less than 50 ppm. Ideally, the chloride content of the film A is less than 10 ppm or even 0 ppm.
  • the nitrate content of the film A film can be less than 150 ppm, preferably less than 100 ppm and in particular less than 50 ppm. Ideally, the nitrate content of the film A is less than 10 ppm or even 0 ppm.
  • the sulphate content of the film A film can be less than 150 ppm, preferably less than 100 ppm and in particular less than 50 ppm. Ideally, the sulphate content of film A is less than 10 ppm or even 0 ppm.
  • film A may contain more than 0 ppm of magnesium ions.
  • the magnesium content is preferably more than 5 ppm, more preferably 10 ppm, in particular 5-20 ppm
  • the films A and B can be positioned together between two glass sheets and fused at elevated temperature.
  • the laminating step for producing the laminated glass is preferably carried out by positioning the foils A and B between two glass panes and compressing the thus prepared laminate into a laminate under increased or reduced pressure and elevated temperature.
  • vacuum laminators consist of a heatable and evacuable chamber, in which laminated glazing can be laminated within 30 - 60 minutes. Reduced pressures of 0.01 to 300 mbar and temperatures of 100 to 200 ° C, in particular 130-160 ° C have proven in practice.
  • film A or B is positioned on a glass pane and synchronously or subsequently the further film B or A. Subsequently, the second glass pane is placed and a glass-film composite is produced. Excess air may thereafter be removed by any pre-bonding technique known to those skilled in the art. This is also already a first slight bonding of the layers with each other and with the glass.
  • the glass-film composite can finally be subjected to an autoclave process.
  • film A is positioned on the first glass sheet and covered with the thicker film B before the second glass sheet is laid up.
  • the method can be carried out in many conceivable and basically practicable variants.
  • film A is simply taken from a roll of appropriate width whereas film B was previously cut to size of the laminated glass to be produced. This is particularly advantageous in the case of windshields and other automotive glazing parts. In this case, it is particularly advantageous to additionally stretch the thicker film B before cutting. This allows a more economical use of foil or, in the case that foil B has a color wedge, adapting its curvature to the upper edge of the disc.
  • films are frequently used which have a so-called ink ribbon in the upper region.
  • the upper part of the films A and B can be co-extruded with a correspondingly colored polymer melt or, in a multi-layer system, one of the films A and B can have a different coloration in some areas. In the present invention, this can be achieved by completely or partially coloring at least one of the films A and B.
  • the foils B can therefore have a color wedge, which in particular has already been adapted in an upstream process step to the geometry of a windshield.
  • the films B have a wedge-shaped thickness profile.
  • the laminated glass laminate of the invention obtains a wedge-shaped thickness profile even with plane-parallel thickness profile of the film A and can be used in automotive windscreens for HUD displays.
  • the film B is a commercially available PVB film with or without ribbon and with or without a wedge-shaped thickness profile. Also, films B with nanoparticles dispersed therein for IR protection as well as colored films may be used. Of course, a film B may also be a film with an acoustic function, so that by combining with a film A improved Schalldämmeigenschaften be obtained. Of course, a film B can already combine several of these functions in itself.
  • the preparation of the thin films A is usually carried out by extrusion using a cast film line or as a blown film.
  • a surface roughness by controlled flow break or the cast-film process can additionally be done by using a structured chill roll.
  • an already produced film can be impressed by a stamping process between at least one pair of rollers a regular, non-stochastic roughness.
  • Films used according to the invention preferably have a one-sided surface structure with a roughness Rz of 0 to 25 ⁇ m, preferably Rz of 1 to 20 ⁇ m, particularly preferably Rz of 3 to 15 ⁇ m and in particular Rz of 4 to 12 ⁇ m. It is particularly preferred if the side of the film A coming into contact with the glass pane has a surface roughness Rz of not more than 20% of its thickness.
  • the surface provided with the electrically conductive structure preferably has a particularly low surface roughness before application of the coating. In particular, here the roughness parameter Ra is less than 3 ⁇ m and Rz is less than 5 ⁇ m.

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Verbundglaslaminaten mit elektrisch leitfähigen Strukturen durch verkleben von zwei transparenten Scheiben mit mindestens einer Folie A und mindestens einer Folie B, wobei die Folien A und B zwischen die zwei transparenten Scheiben positioniert werden und diese miteinander verkleben, wobei Folie A ein Polyvinylacetal PA und 0 bis 16 Gew% mindestens eines Weichmachers WA sowie diskrete, elektrisch leitfähige Strukturen und Folie B ein Polyvinylacetal PB und mindestens 16 Gew% mindestens eines Weichmachers WB aufweist

Description

Verfahren zur Herstellung von Verbundglaslaminaten mit eingebetteten elektrisch leitfähigen Strukturen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Verbundglasscheiben mit eingebetteten elektrisch leitfähigen Strukturen unter Verwendung einer Zwischenschichtfolie auf Basis von Polyvinylacetal mit darauf befindlichen elektrisch leitfähigen Strukturen.
Technisches Gebiet
Zur Herstellung von Verbundglasscheiben mit elektrisch leitfähigen Strukturen wie etwa Heizdrähten oder Antennen Eigenschaften sind Verfahren üblich, bei welchen Metallfilamente entweder zunächst auf die Oberfläche einer normalen PVB-Folie aufgeschmolzen bzw. in diese eingenäht werden oder die elektrisch leitfähigen Strukturen auf einer der im Laminat nach innen orientierten Glasoberflächen durch Siebdruck und anschließendes Einbrennen aufgebracht werden. In beiden Fällen besteht das Risiko von wirtschaftlichen Verlusten, falls beim Applizieren auf die normale PVB-Folie oder beim Aufbringen auf eine vorbereitete Glasscheibe Fehler auftreten. Im ersten Fall kann die PVB-Folie, im zweiten Fall das Glas nicht mehr zur Lamination verwendet werden.
Das direkte bedrucken von PET-Folien mit elektrisch leitfähigen Strukturen ist dagegen teilweise etabliert und beispielsweise können nahezu unsichtbare Heizelemente, Sensorfelder etc. darauf erzeugt werden. Eine führende Firma auf diesem Gebiet ist zum Beispiel PolyIC aus Fürth in Deutschland. Nachteilig bei einer beabsichtigten Integration solcher mit elektrisch leitfähigen Strukturen bedruckter PET-Folien in Verbundglaslaminate ist dabei jedoch, dass immer mindestens 3 Folienlagen (1 x funktionalisiertes PET, 2 x PVB-Folie) verwendet werden müssen, da PET mit der funktionalisierten Seite bzw. der Rückseite nicht direkt auf einer Glasoberfläche angeschmolzen werden kann.
Ein anderer Nachteil ist die erhöhte Komplexität der Folienkonfektionierung, die durch Kombination des Merkmales „mit elektrisch leitfähigen Strukturen“ mit weiteren Funktionsmerkmalen wie „akustischer Dämpfung“, „Bandfilter“, „keilförmiges Dickenprofil“, „Farbton“ zu einer Verkomplizierung der Folienvorbereitung beim Verarbeiter führt.
Die Herstellung von Verbundglaslaminaten mit leitfähigen Schichten, die vollflächig in das Laminat eingebracht sind, ist z.B. aus EP 2409833 bekannt. WO 2010/030413 offenbart elektrisch leitfähige Zwischenschichtfilme die zwischen zwei Elektroden angebracht sind. Dies hat neben einer verminderten Transparenz des Laminats einen hohen Materialverbrauch in den leitfähigen Schichten zur Folge.
Aufgabe
Aufgabe der vorliegenden Erfindung war es daher, auf wirtschaftliche Weise Verbundglaslaminate mit beliebigen elektrisch leitfähigen Strukturen im Inneren des Verbundglases zu bereitzustellen.
Es wurde gefunden, dass dünne Folien auf Basis von weichmacherarmem bzw. –freien Polyvinylacetal mit darauf angeordneten diskreten, elektrisch leitfähigen Strukturen in den typischen Herstellverfahren für Verbundglaslaminate direkt auf einer der Glasoberflächen angeschmolzen werden können. In Kombination mit mindestens einer Lage aus weichmacherhaltigem Polyvinylacetal können dann die üblichen geforderten Sicherheitseigenschaften von Verbundglaslaminaten erhalten werden.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Verbundglaslaminaten mit elektrisch leitfähigen Strukturen durch verkleben von zwei transparenten Scheiben mit mindestens einer Folie A und mindestens einer Folie B, dadurch gekennzeichnet, dass die Folien A und B zwischen die zwei transparenten Scheiben positioniert werden und diese miteinander verkleben, wobei Folie A ein Polyvinylacetal PA und 0 bis 16 Gew.% mindestens eines Weichmachers WA sowie diskrete, elektrisch leitfähige Strukturen und Folie B ein Polyvinylacetal PB und mindestens 16 Gew.% mindestens eines Weichmachers WB aufweist
Unter diskreten, elektrisch leitfähigen Strukturen werden vorliegend keine flächigen Schichten sondern einzeln identifizierbare Strukturen wie Leiterbahnen, Drähte, hieraus aufgebaute Netze, Punkte sowie Kombinationen daraus verstanden. Die diskreten, elektrisch leitfähigen Strukturen können auf der Oberfläche der Folien A aufgebracht oder in diese eingebettet sein.
Die transparenten Scheiben können gleich oder unterschiedlich aus Glas PMMA oder Polycarbonat bestehen. Im Folgenden werden die Begriffe „Glasscheibe“ oder „Glasoberfläche“ synonym mit den Begriffen „transparente Scheibe“ oder „Oberfläche der transparenten Scheibe“ verwendet.
Das erfindungsgemäße Verfahren kann durchgeführt werden, das die Zwischenschicht auf eine transparente Scheibe positioniert wird indem Folie A auf eine transparente Scheibe positioniert wird, auf die Folie B und eine zweite transparente Scheibe gelegt werden. Alternativ ist es möglich, Folie B auf eine transparente Scheibe zu positionieren auf die dann Folie A und eine zweite transparente Scheibe gelegt wird.
Bevorzugt enthalten die diskreten elektrisch leitfähigen Strukturen Metalle wie Silber, Kupfer, Gold, Indium, Zink, Eisen, Aluminium. Alternativ bzw. in Kombination dazu können aber auch Halbleitermaterialien in oder auf der Folie A angeordnet sein. Weiterhin können Leitfähige Materialien auf Kohlenstoffbasis wie etwa Graphit, CNT (Carbon nano tubes) oder Graphen enthalten sein.
Die Folien A weisen auf einer oder beiden Oberfläche elektrisch leitfähige Strukturen auf.
Die elektrisch leitfähigen Strukturen können durch unterschiedliche Varianten von Druckverfahren wie zum Beispiel Sieb-, Flexo- oder Gravurdruck, Bedampfen, Besputtern, Elektroabscheidung auf der Oberfläche der Folie A erzeugt werden. Bei Druckverfahren kommen entsprechende Tinten zum Einsatz, welche unter Umständen vor der Lamination in der Regel noch getrocknet bzw. thermisch oder photonisch ausgehärtet werden können. Die elektrisch leitfähigen Strukturen können auch in Ihrer endgültigen Form erst durch die Verwendung von Lasern oder anderen Bearbeitungsmitteln (gravieren, ätzen) aus einer zunächst gröberen Struktur auf der Folie A herausgearbeitet werden.
Bei Verwendung von Druckverfahren („printed electronics“) enthalten die verwendeten Tinten bzw. Druckfarben Leitfähigkeitspartikel. Dies können Partikel aus Metallen wie aus Gold, Silber, Kupfer, Zink, Eisen oder Aluminium sowie mit Metallen beschichtete Materialien wie versilberte Glasfasern, Glaskügelchen sowie Leitfähigkeitsruß, Carbon-Nanotubes, Graphit oder Graphen sein. Weiterhin Partikel aus Halbleitern wie leitfähige Metalloxide, z.B. Indium-dotiertes Zinnoxid, dotierte Zinkoxide, Antimon-dotiertes Zinnoxid.
Die elektrisch leitfähigen Strukturen können generell zur elektromagnetischen Abschirmung von Frequenzfeldern, zur Erzeugung elektrischer Stromkreise wie Leiterbahnen oder Sende- und/oder Empfangsantennen sowie weiterer Funktionen eingesetzt werden. Dadurch können beispielsweise Heizelemente in den Glasverbund eingebracht werden, Antennen können beispielsweise im Automobilsektor zum Empfang von Radiowellen oder in der Car-to-Car-Kommunikation Verwendung finden.
Die elektrisch leitfähigen Strukturen der erfindungsgemäßen Laminate können auch als Berührungssensor ausgeführt werden was die Herstellung von interaktiven Verbundglasscheiben ermöglicht. So können z.B. Informationseingaben auf der Verbundglasscheibe (z.B. einer Windschutzscheibe oder Seitenverglasung eines KFZ oder der Glasschiebe einer Türe) zur Zugangskontrolle genutzt werden.
Bei Mehrschichtaufbauten elektronischer Elemente, d.h. leitfähiger und dielektrischer Strukturen lassen sich darüber hinaus ganze elektronische Schaltkreise oder Bauteile aufbringen. Hierunter fallen u.a. Transistoren, Widerstände, Chips, Sensoren, Displays, Leuchtdioden (z.B. OLEDs) und/oder Smart-Labels.
Die elektrisch leitfähigen Strukturen können so klein sein, dass sie mit bloßem Auge nur noch schlecht erkannt werden können. Dies bei Breiten von 1 bis 30 µm, bevorzugt 1 bis 20 µm und am meisten bevorzugt 1 bis 15 µm der Fall. Insbesondere bei flächigen Heizfeldern beträgt die Breite der Filamente weniger als 25 µm. Heizfelder können auch nur lokal, z.B. vor einem optischen Sensorsystem an einer Oberseite einer Windschutzscheibe eingebracht werden.
So kann die Folie A eine kleinere Fläche als Folie B aufweisen, sodass die Folie B in einem Teilbereich in direktem Kontakt mit mindestens einer Glasscheibe ist. Hier ist der Vorteil, dass Folie A mit ihrer elektrisch leitfähigen Struktur flexibel an beliebigen Stellen einer Automobilverglasung positioniert werden kann, ohne die gesamte Scheibe auszufüllen.
Die erfindungsgemäß eingesetzten elektrisch leitfähigen Strukturen weisen bevorzugt Dicken im Bereich von 0.1 – 50 µm, besonders bevorzugt im Bereich von 0,5 – 20 µm und bevorzugt im Bereich von 1 – 10 µm auf.
Im Folgenden wird mit dem „Ausgangszustand“ der Zustand der Folien A und B vor dem Laminieren, d.h. im noch getrennten Zustand verstanden.
Die Folien A und B können im Ausgangszustand vor dem Laminieren der Schichten als auch in dem im Verbundglaslaminat befindlichen Zwischenschichtstapel einen einzigen Weichmacher als auch Gemische von Weichmachern sowohl unterschiedlicher und gleicher Zusammensetzung enthalten. Mit unterschiedlicher Zusammensetzung ist sowohl die Art der Weichmacher als auch deren Anteil im Gemisch gemeint. Bevorzugt weisen die Folie A und Folie B nach dem laminieren d.h. im fertig gestellten Verbundglas den gleichen Weichmacher WA und WB auf. In einer bevorzugten Variante enthält die Folie A in ihrem Ausgangszustand aber keinen Weichmacher und nach dem Laminieren den Weichmacher WB.
Erfindungsgemäß verwendete weichmacherhaltige Folien B enthalten im Ausgangszustand vor dem Laminieren der Schichten mindestens 16 Gew%, wie 16.1 – 36.0 Gew.%, bevorzugt 22.0 – 32.0 Gew.% und insbesondere 26.0 - 30.0 Gew.% Weichmacher.
Erfindungsgemäß verwendete Folien A können im Ausgangszustand vor dem Laminieren der Schichten weniger als 16 Gew.% (wie 15.9 Gew.%), weniger als 12 Gew.-%, weniger als 8 Gew.-%, weniger als 6 Gew.-%, weniger als 4 Gew.-%, weniger als 3 Gew.-%, weniger als 2 Gew.-%, weniger als 1 Gew-%, jeweils mit der Untergrenze von 0 Gew.% an Weichmacher WA enthalten. Bevorzugt enthalten die weichmacherarmen Folien A 0.0 – 8 Gew.-% Weichmacher WA.
Im erfindungsgemäßen Verfahren weist die Folie A im Ausgangszustand vor dem Laminieren der Schichten eine Dicke von nicht mehr als 20%, bevorzugt 15% und bevorzugt nicht mehr als 10% der Dicke der Folie bzw. der Folien B auf. Die Dicke der Folie A schließt die elektrisch leitfähige Struktur mit ein.
Die Dicke einer Folie A im Ausgangszustand vor dem Laminieren der Schichten beträgt 10 – 150 µm, bevorzugt 20 – 120 µm, bevorzugt 30 – 100 µm, bevorzugt 40 – 80 µm und am meisten bevorzugt 50 – 70 µm. Im Verbundglas nimmt die Dicke der Folie durch Übergang von Weichmacher aus Folie B zu.
Die Folie A wird separat von Folie B hergestellt (z.B. extrudiert und weist entweder gar keinen Weichmacher oder einen so geringen Weichmacheranteil auf, dass sie bei der Herstellung und Weiterverarbeitung unter mechanischer Beanspruchung sich weder zu stark dehnt noch zu klebrig ist.
Die Dicke einer Folie B beträgt im Ausgangszustand 450 – 2500 µm, bevorzugt 600 – 1000 µm, bevorzugt 700 – 900 µm. Bei Verwendung mehrerer Folien B gilt entsprechendes für deren Gesamtdicke. Werden Folien B vor Herstellung des Sandwiches gereckt und / oder zusätzlich der Form einer Scheibe (z.B. Windschutzscheibe) bogenförmig angepasst, können sich die angegebenen Dicken zum Zeitpunkt der Lamination noch einmal um bis zu 20% verringern.
Mindestens eine dünne, Folie A mit der elektrisch leitfähigen Struktur ist zu einer Glasoberfläche des erfindungsgemäßen Verbundglaslaminats orientiert. Die Folie A kann hierbei mit der Oberfläche, welche die elektrisch leitfähige Struktur aufweist oder der Oberfläche, welche die elektrisch leitfähigen Strukturen nicht aufweist auf die Glasoberfläche aufgebracht werden.
Die die transparenten Scheiben können durch eine Schichtabfolge von drei Folien wie Folie A/Folie B/Folie A oder Folie B/Folie A/Folie B miteinander verbunden werden.
Es ist auch möglich, auf beide Glasoberflächen jeweils eine Folie A aufzubringen, so dass ein Verbundglaslaminat mit einer Schichtabfolge Glass/Folie A/ Folie B/ Folie A / Glass vorliegt. Hierbei kann die Dekoration der Folien A gleich oder unterschiedlich sein. Beispielsweise kann dabei eine der Folien A die elektrisch leitfähigen Struktur aufweisen und die zweite Folie A wärmeabsorbierende Schichten oder andere Schichten mit optischen Funktionen aufweisen.
Bei Automobilverglasung ist es aus ästhetischen und Dauerhaftigkeitsgründen nicht bevorzugt, die Kanten der Verbundglaslaminate mit Dichtstoffen zu versiegeln. Dies begünstigt die Anfälligkeit solcher Verglasungen gegenüber Ausbildung von Kantendefekten wie etwa Ablösungen der Schichten untereinander (Delaminationen) oder Korrosion bzw. chemischer Veränderung einer bis zur Kante des Laminates reichenden elektrisch leitfähigen Struktur.
Im erfindungsgemäßen Verfahren kann die weichmacherarme Folie A so zugeschnitten und positioniert werden, dass sie im Verbundglaslaminat nicht überall bis zum Rand des Laminates reicht. Insbesondere kann die Folie A im Randbereich um mindestens 1 mm kleiner sein als mindestens eine Glasscheibe sodass die Folie B in diesem Randbereich in direktem Kontakt mit mindestens einer Glasscheibe ist.
Weiterhin kann die dünne, im Ausgangszustand weichmacherarme oder weichmacherfreie Folie A vor dem Einlegen in den Glas / Foliensandwich perforiert werden, so dass sie Aussparungen wie Durchbrüche, Löcher, Schlitze in beliebigen geometrischen Mustern aufweisen kann.
So kann die Folie A mindestens eine Aussparung aufweisen, sodass die Folie B durch diese Aussparung in direktem Kontakt mit mindestens einer Glasscheibe ist. Nach dem Verkleben zum fertigen Verbundglas ist die Folie B mit im Ausgangszustand höherem Weichmachergehalt an diesen Stellen mit den Glasscheiben ohne Unterbrechung verklebt. Insbesondere können so Aussparungen an Stellen des Verbundglases erhalten werden, hinter welchen Optik-, Antennenelemente ansonsten durch eine elektrisch leitfähige Struktur in ihrer Funktion beeinträchtigt werden würden.
Die erfindungsgemäß eingesetzten Folien A und B enthalten Polyvinylacetale, welche durch Acetalisierung von Polyvinylalkohol oder Ethylen-Vinylalkohol-Copolymer hergestellt werden.
Die Folien können Polyvinylacetale mit jeweils unterschiedlichem Polyvinyl­alkohol­gehalt, Acetalisierungsgrad, Restacetatgehalt, Ethylenanteil, Molekulargewicht bzw. unterschiedlichen Kettenlängen des Aldehydes der Acetalgruppen enthalten.
Insbesondere können die zur Herstellung der Polyvinylacetale eingesetzten Aldehyde oder Ketoverbindungen linear oder verzweigt (d.h. vom „n“ oder „iso“-Typs) mit 2 bis 10 Kohlenstoffatomen sein, was zu entsprechenden linearen oder verzweigten Acetalgruppen führt. Die Polyvinylacetale werden entsprechend als „Polyvinyl(iso)acetale“ oder „Polyvinyl(n)­acetale“ bezeichnet.
Das erfindungsgemäß verwendete Polyvinyl(n)acetal resultiert insbesondere aus der Umsetzung von mindestens einem Polvinylalkohol mit einer oder mehreren aliphatischen unverzweigten Ketoverbindung mit 2 bis 10 Kohlenstoffatomen. Bevorzugt wird hierzu n-Butyraldehyd verwendet.
Die zur Herstellung der Polyvinylacetale in den Folien A oder B verwendeten Polyvinylalkohole oder Ethylen-Vinylalkohol-Copolymere können jeweils gleich oder unterschiedlich, rein oder eine Mischung von Polyvinylalkoholen oder Ethylen-Vinylalkohol-Copolymere mit unterschiedlichem Polymerisationsgrad oder Hydrolysegrad sein.
Der Polyvinylacetatgehalt der Polyvinylacetale in den Folien A oder B kann durch Verwendung eines zu einem entsprechenden Grad verseiften Polyvinylalkohols oder Ethylen-Vinylalkohol-Copolymer eingestellt werden. Durch den Polyvinylacetatgehalt wird die Polarität des Polyvinylacetals beeinflusst, wodurch sich auch die Weichmacherverträglichkeit und die mechanische Festigkeit der jeweiligen Schicht ändern. Es ist auch möglich, die Acetalisierung der Polyvinylalkohole oder Ethylen-Vinylalkohol-Copolymere mit einem Gemisch aus mehreren Aldehyden oder Ketoverbindungen durchzuführen.
Bevorzugt enthalten die Folien A oder B Polyvinylacetale mit einem Anteil an Polyvinylacetatgruppen bezogen auf die Schichten jeweils gleich oder unterschiedlich 0.1 bis 20 Mol%, bevorzugt 0,5 bis 3 Mol% oder 5 bis 8 Mol%.
Der Polyvinylalkoholgehalt der verwendeten Polyvinylacetale PA der im Ausgangszustand weichmacherärmeren Folie A kann zwischen 6 – 26 Gew.-%, 8 – 24 Gew.-%, 10 – 22 Gew.-%, 12 – 21 Gew.-%, 14 – 20 Gew.-%, 16 – 19 Gew.-% und bevorzugt zwischen 16 und 21 Gew.-% oder 10 – 16 Gew.-% betragen.
Der Polyvinylalkoholgehalt der verwendeten Polyvinylacetale PB der im Ausgangszustand weichmacherreicheren Folie B kann zwischen 14 – 26 Gew.-%, 16 – 24 Gew.-%, 17 – 23 Gew.-% und bevorzugt zwischen 18 und 21 Gew.-% betragen.
Die Folien A oder B enthalten bevorzugt unvernetztes Polyvinylacetal. Der Einsatz von vernetzten Polyvinylacetalen ist ebenso möglich. Verfahren zur Vernetzung von Polyvinylacetalen sind z.B. in EP 1527107 B1 und WO 2004/063231 A1 (thermische Selbstvernetzung von Carboxylgruppenhaltigen Polyvinylacetalen), EP 1606325 A1 (mit Polyaldehyden vernetzte Polyvinylacetale) und WO 03/020776 A1 (mit Glyoxylsäure vernetzte Polyvinylacetale) beschrieben.
Die erfindungsgemäß eingesetzten Folien A und/oder B können als Weichmacher WA und WB jeweils eine oder mehrere Verbindungen ausgewählt aus folgenden Gruppen enthalten:
  • Ester von mehrwertigen aliphatischen oder aromatischen Säuren, z.B. Dialkyladipate wie Dihexyladipat, Dioctyladipat, Hexylcyclohexyladipat, Mischungen aus Heptyl- und Nonyl­adipaten, Diisononyladipat, Heptylnonyl­adipat sowie Ester der Adipinsäure mit cycloaliphatischen oder Etherbindungen enthaltenden Esteralkoholen, Dialkylsebazate wie Dibutylsebazat sowie Ester der Sebazinsäure mit cycloaliphatischen oder Etherbindungen enthaltenden Esteralkoholen, Estern der Phthalsäure wie Butylbenzylphthalat oder Bis-2-butoxyethylphthalat
  • Ester oder Ether von mehrwertigen aliphatischen oder aromatischen Alkoholen oder Oligoetherglykolen mit einem oder mehreren unverzweigen oder verzweigten aliphatischen oder aromatischen Substituenten, wie z.B. Estern von Glycerin, Di-, Tri- oder Tetraglykolen mit linearen oder verzweigten ali­phatischen oder cycloaliphatischen Carbonsäuren; Als Beispiele für letztere Gruppe können Diethylenglykol-bis-(2-ethyl­hexanoat), Triethylenglykol-bis-(2-ethyl­hexanoat), Tri­ethylen­glykol-bis-(2-ethylbu­ta­no­at), Tetra­ethylen­glykol-bis-n-heptanoat, Triethylengly­kol-bis-n-heptanoat, Triethylenglykol-bis-n-hexanoat, Tetraethylen­glykol­dimethyl­ether und/oder Dipropylenglykolbenzoat dienen
  • Phosphate mit aliphatischen oder aromatischen Esteralkoholen wie z.B. Tris(2-ethylhexyl)phosphat (TOF), Triethylphosphat, Diphenyl-2-ethylhexylphosphat, und/oder Trikresylphosphat
  • Ester der Zitronensäure, Bernsteinsäure und/oder Fumarsäure
Per Definition sind Weichmacher hochsiedende organische Flüssigkeiten. Aus diesem Grund können auch weitere Arten von organischen Flüssigkeiten mit einem Siedepunkt höher als 120 °C als Weichmacher verwendet werden.
Besonders bevorzugt enthalten die Folien A in den Varianten, bei welchen in Folie A im Ausganszustand ein Weichmacher WA vorhanden ist sowie Folien B 1,2-Cyclohexandicarbonsäurediisononylester (DINCH) oder Triethylenglykol-bis-2-ethylhexanoat (3GO bzw. 3G8) als Weichmacher.
Zusätzlich können die Folien A und B weitere Zusätze enthalten wie Restmengen an Wasser, UV-Absorber, Antioxidantien, Haftungsregulatoren, optische Aufheller bzw. fluoreszierende Zusätze, Stabilisatoren, Farbmittel, Verarbeitungshilfsmittel, organische oder anorganische Nanopartikel, pyrogene Kieselsäure und/oder oberflächen­aktive Stoffe enthalten. Insbesondere kann Folie B als Haftungsregulatoren 0,001 bis 0,1 Gew.% Alkali- und/oder Erdalkalisalze von Carboxylsäuren aufweisen.
Zur Unterdrückung von Korrosionseffekten der über Folie A in das Verbundglas eingebrachten elektrisch leitfähigen Strukturen, insbesondere bei Verwendung von metallischen Leitermaterialien wie z.B. Silber, kann es hilfreich sein, ein Korrosionsschutzmittel im fertigen Laminat bereitzustellen. Bevorzugt kann das Korrosionsschutzmittel vor Lamination in Folie B enthalten sein und während und nach der Verklebung mit Folie A durch Diffusion auch in die dünnere Folie A bzw. in den Bereich von deren Beschichtung übergehen.
Alternativ ist das Korrosionsschutzmittel vor Lamination bereits in Folie A enthalten. Bevorzugt werden Korrosionsschutzmittel in Anteilen von 0.005 – 5 Gew.-% in Folie B oder / und A eingesetzt. Bevorzugt werden als Korrosionsschutzmittel unsubstituierte oder substituierte Benzotriazole verwendet.
Zur Vermeidung von Korrosion an den leitfähigen Strukturen ist bevorzugt das Folie A weniger als 150 ppm Chloridionen und/oder Nitrationen und/oder Sulfationen aufweist.
So kann der Chloridgehalt der Folie A geringer als 150 ppm, bevorzugt geringer als 100 ppm und insbesondere geringer als 50 ppm sein. Im Idealfall beträgt der Chloridgehalt der Folie A weniger als 10 ppm oder sogar 0 ppm.
Optional kann der Nitratgehalt der Folie A Folie weniger als 150 ppm betragen, bevorzugt weniger als 100 ppm und insbesondere weniger als 50 ppm betragen. Im Idealfall beträgt der Nitratgehalt der Folie A weniger als 10 ppm oder sogar 0 ppm.
Wiederum optional kann der Sulfatgehalt der Folie A Folie weniger als 150 ppm betragen, bevorzugt weniger als 100 ppm und insbesondere weniger als 50 ppm betragen. Im Idealfall beträgt der Sulfatgehalt der Folie A weniger als 10 ppm oder sogar 0 ppm.
Zusätzlich kann Folie A mehr als 0 ppm Magnesiumionen aufweisen. Bevorzugt beträgt der Magnesiumgehalt mehr als 5 ppm besonders bevorzugt 10 ppm, insbesondere 5 - 20 ppm
Es ist erfindungsgemäß möglich, zunächst die Folie A auf eine Glasscheibe durch erhöhte Temperatur vollflächig oder lokal anzuschmelzen und dann mit der Folie B abzudecken. Alternativ können die Folien A und B gemeinsam zwischen zwei Glasscheiben positioniert werden und bei erhöhter Temperatur verschmolzen werden.
Das Verkleben der transparenten Scheiben, d.h. der Laminationsschritt zur Herstellung des Verbundglases wird bevorzugt so durchgeführt, dass die Folien A und B zwischen zwei Glasscheiben positioniert werden und der so vorbereitete Schichtkörper unter erhöhtem oder vermindertem Druck und erhöhter Temperatur zu einem Laminat verpresst wird.
Zur Laminierung des Schichtkörpers können die dem Fachmann geläufigen Verfahren mit und ohne vorhergehender Herstellung eines Vorverbundes eingesetzt werden.
Sogenannte Autoklavenprozesse werden bei einem erhöhten Druck von ca. 10 bis 15 bar und Temperaturen von 100 bis 145 °C über ca. 2 Stunden durchgeführt. Vakuumsack- oder Vakuumring­verfahren z.B. gemäß EP 1 235 683 B1 arbeiten bei ca. 200 mbar und 130 bis 145 °C
Es sind auch sog. Vakuumlaminatoren einsetzbar. Diese bestehen aus einer beheizbaren und evakuierbaren Kammer, in denen Verbund­verglasungen innerhalb von 30 - 60 Minuten laminiert werden können. Verminderte Drücke von 0,01 bis 300 mbar und Temperaturen von 100 bis 200 °C, insbesondere 130 – 160 °C haben sich in der Praxis bewährt.
Im einfachsten Fall wird zur Herstellung der Verbundglaslaminate Folie A oder B auf eine Glasscheibe positioniert und hierzu synchron oder darauffolgend die weitere Folie B bzw. A. Im Anschluss daran wird die zweite Glasscheibe aufgelegt und ein Glasfolienverbund erzeugt. Überschüssige Luft kann danach mithilfe eines beliebigen dem Fachmann bekannten Vorverbundverfahrens entfernt werden. Hierbei erfolgt auch bereits ein erstes leichtes Verkleben der Schichten untereinander sowie mit dem Glas.
Der Glasfolienverbund kann abschließend einem Autoklavenprozess unterworfen werden. Bevorzugt wird Folie A auf der ersten Glasscheibe positioniert und mit der dickeren Folie B bedeckt, bevor die zweite Glasscheibe aufgelegt wird. Das Verfahren kann in vielen denkbaren und grundsätzlich praktikablen Varianten durchgeführt werden. Beispielsweise wird Folie A einfach von einer Rolle entsprechender Breite entnommen wogegen Folie B vorher auf Maß des herzustellenden Verbundglases zugeschnitten wurde. Dies ist insbesondere im Fall von Windschutzscheiben und anderen Automobilverglasungsteilen von Vorteil. In diesem Fall ist es besonders vorteilhaft, die dickere Folie B vor Zuschnitt zusätzlich noch zu Recken. Dies ermöglicht einen sparsameren Folieneinsatz bzw. für den Fall, dass Folie B ein Farbkeil aufweist, das Anpassen von dessen Krümmung an den oberen Scheibenrand.
Im Automobilbereich, insbesondere zur Herstellung von Windschutzscheiben werden häufig Folien verwendet, die im oberen Bereich ein sog. Farbband aufweisen. Hierzu kann entweder der obere Teil der Folien A und B mit einer entsprechend eingefärbten Polymerschmelze coextrudiert werden oder es kann in einem Mehrschichtsystem eine der Folien A und B in Teilbereichen eine unterschiedliche Färbung aufweisen. In der vorliegenden Erfindung ist dies durch vollständiges oder teilweises Einfärben zumindest einer der Folien A und B realisierbar.
Erfindungsgemäß können die Folien B daher einen Farbkeil aufweisen, welcher insbesondere bereits in einem vorgelagerten Prozessschritt der Geometrie einer Windsschutzscheibe angepasst wurde.
Es auch möglich das die Folien B ein keilförmige Dickenprofil besitzen. Hierdurch erhält das erfindungsgemäße Verbundglaslaminat selbst bei planparallelem Dickenprofil der Folie A ein keilförmiges Dickenprofil und kann in KFZ-Windschutzscheiben für HUD Displays eingesetzt werden.
Im einfachsten Fall ist die Folie B eine handelsüblichen PVB-Folie mit oder ohne Farbband und mit oder ohne keilförmigen Dickenprofil. Ebenfalls können Folien B mit darin zum IR-Schutz dispergierten Nanopartikeln als auch gefärbte Folien verwendet werden. Natürlich kann eine Folie B auch eine Folie mit Akustikfunktion sein, so dass durch Kombination mit einer Folie A verbesserte Schalldämmeigenschaften erhalten werden. Natürlich kann eine Folie B bereits auch mehrere der genannten Funktionen in sich vereinen.
Die Herstellung der dünnen Folien A erfolgt in der Regel durch Extrusion unter Verwendung einer Cast-Film Linie oder als Blasfolie. Hierbei kann eine Oberflächenrauhigkeit durch kontrollierten Fließbruch oder beim Cast-Film Verfahren zusätzlich durch Verwendung einer strukturierten Chillroll erfolgen.
Zusätzlich kann einer bereits hergestellten Folie durch einen Prägevorgang zwischen mindestens einem Walzenpaar eine regelmäßige, nicht stochastische Rauhigkeit aufgeprägt werden. Bevorzugt weisen erfindungsgemäß verwendete Folien eine einseitige Oberflächenstruktur mit einer Rauhigkeit Rz von 0 bis 25 µm, bevorzugt Rz von 1 bis 20 µm, besonders bevorzugt Rz von 3 bis 15 µm und insbesondere Rz von 4 bis 12 µm auf. Besonders bevorzugt ist, wenn die mit der Glasscheibe in Kontakt kommende Seite der Folie A eine Oberflächenrauhigkeit Rz von nicht mehr als 20% ihrer Dicke aufweist. Die mit der elektrisch leitfähigen Struktur versehene Oberfläche weist vor Aufbringen der Beschichtung bevorzugt eine besonders geringe Oberflächenrauhigkeit auf. Insbesondere beträgt hier der Rauhigkeitsparameter Ra weniger als 3 µm und Rz weniger als 5 µm.

Claims (15)

  1. Verfahren zur Herstellung von Verbundglaslaminaten mit elektrisch leitfähigen Strukturen durch verkleben von zwei transparenten Scheiben mit mindestens einer Folie A und mindestens einer Folie B, dadurch gekennzeichnet, dass die Folien A und B zwischen die zwei transparenten Scheiben positioniert werden und diese miteinander verkleben, wobei Folie A ein Polyvinylacetal PA und 0 bis 16 Gew% mindestens eines Weichmachers WA sowie diskrete, elektrisch leitfähige Strukturen und Folie B ein Polyvinylacetal PB und mindestens 16 Gew% mindestens eines Weichmachers WB aufweist.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die diskreten, elektrisch leitfähigen Strukturen auf der Oberfläche der Folien A aufgebracht sind.
  3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die diskreten, elektrisch leitfähigen Strukturen eine Dicke von 0.1 – 50 µm aufweisen.
  4. Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass die diskreten, elektrisch leitfähigen Strukturen eine Breite von 1 – 30 µm aufweisen.
  5. Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die Folie A ein Polyvinylacetal PA mit einem Anteil an Vinylalkoholgruppen von 6 bis 26 Gew.% und die Folie B ein Polyvinylacetal PB mit einem Anteil an Vinylalkoholgruppen von 14 bis 26 Gew.% aufweist.
  6. Verfahren nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass die Folie A und / oder B 0.005 – 5 Gew.-% eines Korrosionsschutzmittel enthält.
  7. Verfahren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass die Folie A eine kleinere Fläche als Folie B aufweist, sodass die Folie B in einem Teilbereich in direktem Kontakt mit mindestens einer transparenten Scheibe ist.
  8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass die Folie A im Randbereich um mindestens 1 mm kleiner ist als mindestens eine Glasscheibe sodass die Folie B in diesem Randbereich in direktem Kontakt mit mindestens einer transparenten Scheibe ist.
  9. Verfahren nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass die Folie A mindestens eine Aussparung aufweist, sodass die Folie B durch diese Aussparung in direktem Kontakt mit mindestens einer transparenten Scheibe ist.
  10. Verfahren nach einem der Ansprüche 1 bis 9 da­durch gekennzeichnet, dass die Folie B aus mindestens zwei Teilfolien B‘ und B‘‘ besteht, die einen unterschiedlichen Weichmachergehalt aufweisen.
  11. Verfahren nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, dass die Folie B ein keilförmiges Dickenprofil aufweist.
  12. Verfahren nach einem der Ansprüche 1 bis 11 dadurch gekennzeichnet, dass Folie A weniger als 150 ppm Chloridionen und/oder Nitrationen und/oder Sulfationen aufweist.
  13. Verfahren nach einem der Ansprüche 1 bis 12 dadurch gekennzeichnet, dass Folie A mehr als 0 ppm Magnesiumionen aufweist.
  14. Verfahren nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, dass die transparenten Scheiben durch die Schichtabfolge Folie A/Folie B/Folie A miteinander verbunden werden.
  15. Verfahren nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, dass die transparenten Scheiben durch die Schichtabfolge Folie B/Folie A/Folie B miteinander verbunden werden.
PCT/EP2014/075860 2013-11-29 2014-11-27 Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen WO2015078993A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/036,466 US10105932B2 (en) 2013-11-29 2014-11-27 Process for producing laminated glass composites with embedded electrically conductive structures
EP17191664.6A EP3281784B1 (de) 2013-11-29 2014-11-27 Folie mit elektrisch leitfähigen strukturen
EP14808891.7A EP3074221B1 (de) 2013-11-29 2014-11-27 Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen
JP2016534980A JP6456385B2 (ja) 2013-11-29 2014-11-27 埋め込まれた導電性構造体を有する合わせガラス積層体を製造する方法
CN201480063905.1A CN105722679B (zh) 2013-11-29 2014-11-27 制造具有嵌入的导电结构的复合玻璃层压体的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13195211.1 2013-11-29
EP13195211.1A EP2878443A1 (de) 2013-11-29 2013-11-29 Verbundglaslaminate mit eingebetteten elektrisch leitfähigen Strukturen

Publications (1)

Publication Number Publication Date
WO2015078993A1 true WO2015078993A1 (de) 2015-06-04

Family

ID=49759019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/075860 WO2015078993A1 (de) 2013-11-29 2014-11-27 Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen

Country Status (5)

Country Link
US (1) US10105932B2 (de)
EP (3) EP2878443A1 (de)
JP (2) JP6456385B2 (de)
CN (1) CN105722679B (de)
WO (1) WO2015078993A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067338A1 (ja) 2018-09-26 2020-04-02 株式会社クラレ 中間積層体とその製造方法、積層体、およびグレージング材
US11161327B2 (en) 2015-05-22 2021-11-02 Kuraray Europe Gmbh Penetration resistant laminated glass manufactured with interlayer film layers having reduced adhesion and low plasticizer content

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698378A (zh) * 2016-02-22 2018-10-23 可乐丽欧洲有限责任公司 具有包括透明嵌入件的夹层的作为hud系统的光组合器的层压玻璃
RU2705333C1 (ru) * 2016-10-28 2019-11-06 Сэн-Гобэн Гласс Франс Способ получения многослойного стекла для автомобиля
EP3604254B1 (de) * 2017-03-27 2023-07-12 Kuraray Europe GmbH Polyvinylacetalharzfolie für verbundglas
KR20190128080A (ko) 2017-03-27 2019-11-14 주식회사 쿠라레 접합 유리용 폴리비닐 아세탈 수지 필름
WO2019009409A1 (ja) 2017-07-07 2019-01-10 株式会社クラレ 基材フィルム付き導電構造体含有フィルムの製造方法
WO2019038043A1 (en) 2017-08-25 2019-02-28 Kuraray Europe Gmbh LAMINATED GLASS COMPRISING INTERLAYER FILM LAYERS WITH PIGMENTED FRAME
CN111526986A (zh) 2017-12-22 2020-08-11 可乐丽欧洲有限责任公司 有嵌入的透明区域的具有遮蔽区域的层压玻璃
JPWO2019131963A1 (ja) * 2017-12-28 2021-01-07 株式会社クラレ 回路付きフィルム
KR20200098550A (ko) * 2017-12-28 2020-08-20 주식회사 쿠라레 회로 부착 필름
EP3733403A4 (de) 2017-12-28 2021-09-01 Kuraray Co., Ltd. Laminat und verbundglas
KR20200128013A (ko) 2018-03-01 2020-11-11 주식회사 쿠라레 가소제 함유 시트가 겹쳐서 이루어지는 다층 구조체
EP3783052A4 (de) * 2018-04-19 2022-01-19 Kuraray Co., Ltd. Polyvinylacetalharzfolie
US11590829B2 (en) * 2018-07-27 2023-02-28 Tesla, Inc. Functional interlayers for vehicle glazing systems
WO2020067176A1 (ja) * 2018-09-26 2020-04-02 株式会社クラレ ポリビニルアセタール樹脂フィルムおよびそれを含む積層体
WO2020067162A1 (ja) * 2018-09-26 2020-04-02 株式会社クラレ ポリビニルアセタール樹脂フィルムおよびそれを含む積層体
US11623985B2 (en) 2018-09-26 2023-04-11 Kuraray Europe Gmbh Polyvinyl acetal resin film and film roll thereof, and laminate comprising same
US20220022350A1 (en) * 2018-11-30 2022-01-20 The Research Foundation for The State of University New york Graphene laminate structures
WO2021119920A1 (zh) * 2019-12-16 2021-06-24 佛山市钜仕泰粉末冶金有限公司 一种全固态 pvb 基离子传输材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020776A1 (de) 2001-09-04 2003-03-13 Kuraray Specialities Europe Gmbh Hochmolekulare, vernetzte polyvinylbutyrale, verfahren zu deren herstellung sowie deren verwendung
EP1235683B1 (de) 1999-10-25 2003-08-20 Ht Troplast Ag Verfahren und folie zur herstellung von verbundsicherheitsscheiben
WO2004063231A1 (de) 2003-01-09 2004-07-29 Kuraray Specialities Europe Gmbh Vernetzte polyvinylacetale
EP1606325A1 (de) 2003-01-09 2005-12-21 Kuraray Specialities Europe GmbH Vernetzte polyvinylacetale
EP1527107B1 (de) 2002-07-04 2007-06-13 Kuraray Europe GmbH Vernetzte polyvinylacetale
WO2010030413A1 (en) 2008-09-15 2010-03-18 Sony Ericsson Mobile Communications Ab Wireless connection for data devices
EP2409833A1 (de) 2010-07-23 2012-01-25 Saint-Gobain Glass France Verbundglasscheibe als Head-Up-Display
EP2767393A1 (de) * 2013-02-14 2014-08-20 Kuraray Europe GmbH Verfahren zur Herstellung von Verbundglaslaminaten mit Schalldämmeigenschaften durch Laminieren von Glasscheiben mit mindestens einer dünnen weichmacherarmen Schicht auf Basis von Polyvinylacetal und mindestens einer weiteren Schicht aus weichmacherhaltigem Polyvinylacetal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958245A (en) * 1973-09-26 1976-05-18 Ppg Industries, Inc. Antenna windshield
AU2003257024B2 (en) * 2002-07-31 2009-01-08 E.I. Du Pont De Nemours And Company Polyvinylbutyral interlayer sheet with improved adhesion to glass and a process for preparing same
EP1608504A1 (de) * 2003-03-21 2005-12-28 Pilkington Italia S.p.A. Verbundglasscheibe für ein fahrzeug
US20070178314A1 (en) * 2005-03-09 2007-08-02 Sekisui Chemical Co., Ltd. Interlayer film for laminated glass and laminated glass
JP2008222513A (ja) * 2007-03-14 2008-09-25 Nippon Sheet Glass Co Ltd 導電膜を有する合わせガラス、および合わせガラス用中間膜
DE102007021103A1 (de) * 2007-05-03 2008-11-06 Kuraray Europe Gmbh Herstellung von Folien für Verbundverglasungen durch Spritzgieß- oder Spritzprägeverfahren
GB0720268D0 (en) * 2007-10-17 2007-11-28 Pilkington Group Ltd Glazing
WO2010093023A1 (ja) * 2009-02-13 2010-08-19 旭硝子株式会社 合わせガラス
DE102009025888B4 (de) * 2009-05-29 2014-04-10 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrisch großflächig beheizbarer, transparenter Gegenstand und seine Verwendung
JP5421874B2 (ja) * 2010-08-02 2014-02-19 株式会社クラレ ガラス中間膜用樹脂及び太陽電池封止材用樹脂
WO2012115197A1 (ja) * 2011-02-23 2012-08-30 積水化学工業株式会社 合わせガラス用中間膜及び合わせガラス
US20140150866A1 (en) * 2011-06-28 2014-06-05 Kuraray Co., Ltd. Encapsulant for solar cell and interlayer film for laminated glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235683B1 (de) 1999-10-25 2003-08-20 Ht Troplast Ag Verfahren und folie zur herstellung von verbundsicherheitsscheiben
WO2003020776A1 (de) 2001-09-04 2003-03-13 Kuraray Specialities Europe Gmbh Hochmolekulare, vernetzte polyvinylbutyrale, verfahren zu deren herstellung sowie deren verwendung
EP1527107B1 (de) 2002-07-04 2007-06-13 Kuraray Europe GmbH Vernetzte polyvinylacetale
WO2004063231A1 (de) 2003-01-09 2004-07-29 Kuraray Specialities Europe Gmbh Vernetzte polyvinylacetale
EP1606325A1 (de) 2003-01-09 2005-12-21 Kuraray Specialities Europe GmbH Vernetzte polyvinylacetale
WO2010030413A1 (en) 2008-09-15 2010-03-18 Sony Ericsson Mobile Communications Ab Wireless connection for data devices
EP2409833A1 (de) 2010-07-23 2012-01-25 Saint-Gobain Glass France Verbundglasscheibe als Head-Up-Display
EP2767393A1 (de) * 2013-02-14 2014-08-20 Kuraray Europe GmbH Verfahren zur Herstellung von Verbundglaslaminaten mit Schalldämmeigenschaften durch Laminieren von Glasscheiben mit mindestens einer dünnen weichmacherarmen Schicht auf Basis von Polyvinylacetal und mindestens einer weiteren Schicht aus weichmacherhaltigem Polyvinylacetal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161327B2 (en) 2015-05-22 2021-11-02 Kuraray Europe Gmbh Penetration resistant laminated glass manufactured with interlayer film layers having reduced adhesion and low plasticizer content
WO2020067338A1 (ja) 2018-09-26 2020-04-02 株式会社クラレ 中間積層体とその製造方法、積層体、およびグレージング材
KR20210064262A (ko) 2018-09-26 2021-06-02 주식회사 쿠라레 중간 적층체와 그 제조 방법, 적층체, 및 글레이징재

Also Published As

Publication number Publication date
JP2018048078A (ja) 2018-03-29
JP2016539905A (ja) 2016-12-22
EP3074221A1 (de) 2016-10-05
EP3074221B1 (de) 2018-02-28
CN105722679A (zh) 2016-06-29
US10105932B2 (en) 2018-10-23
EP3281784A1 (de) 2018-02-14
EP2878443A1 (de) 2015-06-03
CN105722679B (zh) 2019-04-23
EP3281784B1 (de) 2022-03-02
JP6456385B2 (ja) 2019-01-23
US20160288459A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
EP3074221B1 (de) Verfahren zur herstellung von verbundglaslaminaten mit eingebetteten elektrisch leitfähigen strukturen
EP2905130B1 (de) Verfahren zur Herstellung von Verbundglaslaminaten aus einem Schichtkörper enthaltend eine weichmacherhaltige und eine weichmacherarme Polyvinylacetalfolie
EP2905129B1 (de) Verbundglaslaminate mit Wärmestrahlung abschirmenden Eigenschaften auf Basis von dünnen Folien aus weichmacherfreiem Polyvinylacetal
EP3074220B1 (de) Verfahren zur herstellung von verbundglaslaminaten mit wärmestrahlung abschirmenden eigenschaften
EP2767394B1 (de) Verfahren zur herstellung von verbundglaslaminaten mit schalldämmeigenschaften durch laminieren von glasscheiben mit mindestens einer dünnen weichmacherarmen schicht auf basis von polyvinylacetal und mindestens einer weiteren schicht aus weichmacherhaltigem polyvinylacetal
JP2018008867A (ja) 機能性膜を含む合わせガラス
JP6698427B2 (ja) 接着性が低減され、かつ可塑剤含分が低い中間フィルム層を用いて作製された、耐貫通性合わせガラス
DE102007005845A1 (de) Verfahren zur Herstellung von Solarmodulen im Walzenverbundverfahren
CN111526986A (zh) 有嵌入的透明区域的具有遮蔽区域的层压玻璃
EP3535122B1 (de) Herstellungsverfahren für glaslaminat mit einem funktionellen film
KR20190113525A (ko) 써모크로믹성을 갖는 합판 유리용 중간막, 합판 유리 및 합판 유리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036466

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016534980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014808891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014808891

Country of ref document: EP