WO2015078378A1 - 电容式传感器及组合电容式位移测量传感系统 - Google Patents

电容式传感器及组合电容式位移测量传感系统 Download PDF

Info

Publication number
WO2015078378A1
WO2015078378A1 PCT/CN2014/092307 CN2014092307W WO2015078378A1 WO 2015078378 A1 WO2015078378 A1 WO 2015078378A1 CN 2014092307 W CN2014092307 W CN 2014092307W WO 2015078378 A1 WO2015078378 A1 WO 2015078378A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
stator
mover
capacitor
pole
Prior art date
Application number
PCT/CN2014/092307
Other languages
English (en)
French (fr)
Inventor
林立
Original Assignee
林立
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林立 filed Critical 林立
Priority to EP14866749.6A priority Critical patent/EP3076136B1/en
Publication of WO2015078378A1 publication Critical patent/WO2015078378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders

Definitions

  • the invention relates to a capacitive sensor and a combined capacitive displacement measuring sensing system, in particular to a sensor for measuring displacement using a change in relative area of a capacitor pole piece and a combined capacitor displacement measuring system thereof.
  • two parallel conductor electrodes can form a capacitor whose capacitance is approximately proportional to the dielectric constant of the dielectric between the parallel electrodes, proportional to the relative (overlapping) area of the two pole pieces, and the two pole pieces The gap between them is inversely proportional. Therefore, the magnitude of the capacitance varies with the relative area and gap distance between the two pole pieces.
  • sensors including displacement (position) measurement sensors.
  • the capacitance can be used to measure the displacement by two methods.
  • One method is to detect a change in capacitance due to a change in the gap between the two pole pieces of the capacitor, where the direction of motion is perpendicular to the surface of the pole piece.
  • the capacitance of the capacitor is very sensitive to changes in the gap, especially when the gap is very small.
  • manufacturing techniques are relatively easy to get small gap changes with little change in relative overlap area.
  • This method is widely used in nanopositioning systems today. This sensor can measure displacements as small as a few picometers, but its maximum range is only a few hundred microns.
  • Another method is to detect the change in capacitance caused by the change in the area of the overlap of the parallel pole pieces of the two capacitors, where the motion is parallel to the surface of the pole piece. Due to the simple manufacturing and low production cost, the market demanded such a sensor based on the principle of area change, but it is extremely difficult to be encountered in practical applications. This is because such a simple capacitor is difficult to ensure that the gap between the pole pieces does not change when the electrodes move in the parallel direction to produce a change in the measurement overlap area, so that the measurement signal cannot be singlely characterized by the change in the overlap area, which may result in Measurement error. As mentioned above, the effect of the gap change on the capacitance of the capacitor is very sensitive.
  • a capacitive sensor comprising: at least one fixed component STATOR, each combined fixed component STATOR comprising:
  • An electrically insulating substrate having a first pole piece set electrically connected together by m pole piece conductive sheets electrically connected together, and electrically connected to the m pole piece conductive sheets electrically connected together
  • the second capacitor pole piece group, the first pole piece group and the second pole piece group have the same number and the same shape, and are arranged alternately and equally spaced on the electrically insulating substrate;
  • An electrically insulating substrate having a set of ground pole pieces composed of n equally spaced grounding pole pieces, the grounding pole pieces having the same shape and electrically connected together to form a grounded pole piece group; n is less than or equal to m ;
  • each of the grounding pole pieces of the moving part MOVER in the moving direction thereof is such that during movement or rotation, a capacitor pole piece and a second of the first capacitor pole piece group in the fixed part of the fixed part
  • a capacitor pole piece of the capacitor pole piece group constitutes two variable capacitors, so that the ground pole piece group of the moving part MOVER and the first capacitor pole piece group and the second capacitor pole piece group in the fixed part STATOR form two variable capacitors group.
  • the corresponding pole pieces in the different fixed parts STATOR are one pair positive
  • the corresponding pole pieces in the different moving parts MOVER are one pair positive
  • a pair of opposite fixed poles from different fixed parts STATOR The chip and a ground pad form a pair of variable capacitors. Forms a direct compensation structure.
  • the same fixed component on the STATOR comes from A pair of adjacent pole pieces of the first capacitive pole piece set and the second capacitive pole piece set together with a corresponding one of the grounding pole pieces constitute a pair of variable capacitors.
  • a differential compensation structure is formed.
  • the pole piece has a rectangular or fan-shaped or triangular or circular triangular planar structure, or a cylindrical or partially cylindrical shape having a rectangular structure or a partial cylindrical curved surface having a triangular structure.
  • the width or angular width of the pole piece in the pole piece, the moving part MOVER, Wcs and Wgs represent the distance or angular distance between the adjacent two pole pieces in the fixed part STATOR, the moving part MOVER.
  • the value of Wc is between 0.001 mm and 200 mm, and the value of Wcs is between 0.001 mm and 200 mm, and the value of Lc is taken.
  • the value is between 0.005 mm and 200 mm, Wc represents the width of the pole piece in the fixed part STATOR, Wcs represents the distance between two adjacent pole pieces in the fixed part STATOR, and Lc represents the length of the pole piece in the fixed part STATOR.
  • the value of Wc is between 0.001° and 180°, and the value of Wcs is 0.001° to Between 270°, the value of Lc is between 0.1mm and 200mm, Wc is the angular width of the pole piece in the fixed part STATOR, Wcs is the angular distance between two adjacent pole pieces in the fixed part of the STATOR, and Lc is fixed. The radius of rotation of the pole piece in the component STATOR.
  • the fixed part STATOR has two pole pieces, the width or angular width of the two pole pieces is denoted Wcl, and the moving part MOVER has a grounding pole piece whose width or angular width is recorded as Wsl,
  • the electrically insulating substrate of the stationary component STATOR is provided with an electrical shielding layer.
  • the fixing member STATOR and the moving member MOVER are manufactured by a method of a printed circuit, a method of film deposition, or a method of printing electrons.
  • the moving member MOVER is made of a metal foil or a thin tube, and the two faces of the metal foil or the thin tube respectively form a plurality of variable capacitance groups as a ground electrode and a plurality of fixing members STATOR.
  • the invention also provides a combined capacitive displacement measuring sensing system comprising the above capacitive sensor, further comprising:
  • a signal processing system for measuring electrical signals of the first capacitive pole piece set and the second capacitive pole piece set to obtain displacement data, wherein a ground end of the signal processing system is coupled to the ground pole piece set.
  • the influence of the change of the capacitance gap is reduced by the mutual compensation of the variable capacitances of the shape and layout of the pole piece, and the accurate large-range absolute displacement measurement is realized, for example, the range is larger than Linear displacement measurement with 1m resolution and nanometer resolution; another example: 360° omnidirectional and angular displacement measurement with angular accuracy.
  • Figure 1a is a side elevational view of one embodiment of a capacitive sensor of the present invention comprising two fixed components STATOR and a double-sided moving component MOVER, also showing the geometry of the capacitive pole pieces.
  • Figure 1b is a top plan view of the embodiment of Figure 1a showing the interaction of the capacitive pole piece of the stationary component STATOR and the grounding pole of the moving component MOVER.
  • Figure 2 illustrates how the Figure 1 embodiment produces and eliminates capacitance, as well as the number of capacitors.
  • FIG. 3 is a block diagram showing the circuit connection of the combined capacitive displacement measuring sensing system of the present invention.
  • FIG. 4 is a block diagram of another circuit connection of the combined capacitive displacement measuring sensing system of the present invention.
  • Figure 5 is an illustration of the digital output curve of the embodiment of Figure 1 showing the dead zone.
  • Figure 6 is a top plan view of an embodiment of the sensor of the present invention for eliminating dead zones, the embodiment comprising two fixed pieces STOTT with two pole pieces offset Wss and two pairs of positive moving parts MOVER, also shown in the figure Geometry.
  • Figure 7 is an illustration of the digital output curve of the embodiment of Figure 6, showing how the dead zone is compensated by this embodiment.
  • Figure 8 is a top plan view of another embodiment of the curve of Figure 7, including two pairs of positive fixed members STATOR and two moving parts MOVER of the grounding pole staggered Wss, also showing the geometry of their construction.
  • Figure 9 is a side elevational view of the embodiment of Figure 6 implementing the curve of Figure 7, also showing the geometry of their construction.
  • Figure 10 is a side elevational view of the embodiment of Figure 8 implementing the curve of Figure 7, also showing the geometry of their construction.
  • Figures 11a and 11b are two manufacturing embodiments of the moving part MOVER.
  • 12a to 12c are schematic structural views of a combined capacitance measuring sensing system having a coarse measuring function.
  • Figure 13a is one embodiment of a complete assembly of the combined capacitance absolute measurement linear sensing system of the present invention.
  • FIG. 13b and 13c are schematic views showing the structure of the fixed member STATOR and the moving member MOVER in Fig. 13a.
  • Figure 14a is a block diagram showing the complete assembly of a combined capacitance absolute measurement linear sensing system.
  • Figure 14b is a schematic view showing the structure of the fixed member STATOR and the moving member MOVER in Figure 14a.
  • Figure 15a is a block diagram showing the complete assembly of a combined capacitance absolute measurement angle sensing system.
  • Figure 15b is a schematic view showing the structure of the fixed member STATOR and the moving member MOVER in Figure 15a.
  • Figure 16a is a complete angular displacement sensor with an omnidirectional 360 metric.
  • Figure 16b shows a partial exploded view of the stationary part STATOR and the moving part MOVER.
  • a capacitive sensor 100 provided by the present invention includes at least one stationary component STATOR, two of which are shown, a stationary component STATOR-1104 and a stationary component STATOR-2105.
  • the fixed component STATRO-1104 includes a first capacitive pole piece group 11 having m equally spaced conductive electrode sheets, denoted as 11-1, 11-2, ..., 11-n...11-m; and a second capacitor pole A wafer set 12 having m equally spaced conductive electrode sheets, designated 12-1, 12-2...12-n...12-m.
  • the fixed component STATOR-2105 includes a first capacitive pole piece group 13 having m equally spaced conductive electrode sheets, denoted as 13-1, 13-2...13-n...13-m; and a second capacitor pole A wafer set 14 having m equally spaced conductive electrode sheets, designated 14-1, 14-2...14-n...14-m.
  • the pole pieces are identical in shape.
  • the capacitive sensor 100 further includes a moving member MOVER 106 equal in number to the fixed member STATOR, also shown here, two moving members MOVER-1 and moving member MOVER-2.
  • the moving part MOVER-1 comprises a first grounding pole piece group 15 having n equally spaced grounding pole pieces, denoted as 15-1, 15-2, ...
  • moving part MOVER- 2 includes a second ground pole piece group 16 having n equally spaced conductive electrode sheets, denoted as 16-1, 16-2, ... 16-n, n ⁇ m, respectively.
  • Each grounding pole piece has the same shape.
  • the m in the first capacitor pole set and the second capacitor pole set in the fixed component STATOR-1 and the fixed component STATOR-2 may be equal and are positive integers.
  • the n in the first ground pole piece group 15 and the second ground pole piece group 16 may be equal and also a positive integer.
  • the value of n is less than or equal to the value of m.
  • the first capacitive pole piece set 11 and the second capacitive pole piece set 12 in the fixed part STATOR-1104 are located on the same side of the electrically insulating substrate 17, and the other side of the electrically insulating substrate 17 is selectively provided with the electrical shielding layer 18.
  • the first capacitive pole piece group 11, the second capacitive pole piece group 12, the electrically insulating substrate 17, and the electrical shielding layer 18 constitute a combined unit as a fixed component STATOR-1104 in the sensor.
  • the first capacitive pole piece set 13 and the second capacitive pole piece set 14 in the fixed part STATOR-2105 are located on the same side of the electrically insulating substrate 19, and the other side of the electrically insulating substrate 19 is selectively provided with the electrical shielding layer 20.
  • the first capacitive pole piece group 13, the second capacitive pole piece group 14, the electrically insulating substrate 19, and the electrical shielding layer 20 constitute another combining unit as a fixed component STATOR-2105 in the sensor.
  • the first ground pole piece group 15 and the second ground pole piece group 16 are respectively located at two sides of the electrically insulating substrate 21, and the first ground pole piece group 15, the second ground pole piece group 16, and the electrically insulating base 21 constitute a combined unit.
  • the moving part MOVER 106 in the sensor including MOVER-1 and MOVER-2).
  • the embodiment of the present invention shows the case of two combined units of a capacitive sensor, and the present invention is also applicable to the case of one combined unit or a plurality of combined units.
  • the electrical shielding layers 18, 20 are optional components and are not a mandatory component.
  • the stationary component STATOR-1104 and the stationary component STATOR-2105 are arranged substantially in parallel, and the moving component MOVER 106 is movable in a substantially parallel manner relative to the stationary component STATOR-1104 and the stationary component STATOR-2105.
  • the first pole piece 11-1 of the first capacitor pole set 11 and the first pole of the first ground pole set 15 of MOVER-1 of the MOVER 106 The distance between the sheets 15-1 is denoted as the gap d1-1; the first pole piece 12-1 in the second capacitive pole piece group 12 and the first ground pole piece group 15 of the MOVER-1 in the MOVER 106 The distance between one pole piece 15-1 is recorded as the gap d2-1.
  • the first pole piece 13-1 of the first capacitive pole piece group 13 and the first pole piece piece 16-1 of the second ground pole piece group 16 of the MOVER-2 in the MOVER 106 The distance between them is denoted by the gap d3-1; the first pole piece 14-1 of the second capacitive pole piece group 14 and the first pole piece of the second ground pole piece group 16 of the MOVER-2 of the MOVER 106
  • the distance between 16-1 is recorded as the gap d4-1.
  • the gap d1-1, the gap d2-1, the gap d3-1, and the gap d4-1 may be substantially equal, for example, in the embodiment of Fig. 1, the measurement accuracy is not significantly reduced within the allowable manufacturing and assembly tolerances.
  • Figure 1b is a top view of Figure 1a.
  • the width and length of the pole pieces in each of the capacitor pole sets are denoted as Wc and Lc, respectively, and the pole pieces in the first capacitor pole set 11 and the pole pieces in the second capacitive pole set 12 are staggered, and The distance between two adjacent pole pieces is denoted as Wcs.
  • the width and length of the pole pieces in each of the grounding pole pieces are recorded as Wg and Lg, respectively.
  • the distance between two adjacent pole pieces in the first ground pole piece group 15 is denoted as Wgs.
  • the value of Lg can be greater or less than the value of Lc, but cannot be equal to the value of Lc to ensure that the overlap of the capacitors in the length direction is substantially constant.
  • the width of overlap between the pole piece 11-1 and the grounding pole piece 15-1 is denoted by X1-1
  • the overlapping area A1-1 is substantially equal to the width X1-1 and the pole piece length Lc.
  • the width of overlap between the pole piece 12-1 and the grounding pole piece 15-1 is denoted by X2-1; the overlapping area A2-1 is substantially equal to the product of the width X2-1 and the pole piece length Lc.
  • the width of the overlap between the pole piece 13-1 and the grounding pole piece 16-1 is denoted by X3-1; the overlapping area A3-1 is substantially equal to the product of the width X3-1 and the pole piece length Lc; the pole piece 14 -1 and grounding pole piece 16-1
  • the width of the overlap surface is denoted by X4-1; the overlap area A4-1 is substantially equal to the product between the width X4-1 and the pole piece length Lc.
  • the change in these overlapping areas is linear with the displacement X of the moving part MOVER106.
  • the calculation formula of A1-1 is as follows:
  • a variable capacitor CK-j can be formed by the pole piece K-i in the capacitor pole piece group and the pole piece G-j in the ground pole piece group.
  • the pole piece 11-1 in the first capacitive pole piece group 11 and the pole piece 15-1 in the first ground pole piece group 15 form a capacitance proportional to the value of (A1-1/d1-1). Capacitor C11-1.
  • the pole piece 11-2 in the first capacitive pole piece group 11 and the pole piece 15-2 in the first ground pole piece group 15 constitute a capacitor C11-2; based on the same principle, the pole piece 12-1,
  • the pole piece 15-1 constitutes C12-1;
  • the pole piece 13-1, the pole piece 16-1 constitutes C13-1;
  • the pole piece 14-1, the pole piece 16-1 constitutes C14-1;
  • the pole piece 11-n, the pole piece 15-n constitutes C11-n; pole piece 12-n, pole piece 15-n constitutes C12-n;
  • pole piece 13-n, pole piece 16-n constitutes C13-n; pole piece 14-n, pole piece 16- n constitutes C14-n, etc.
  • the capacitance of capacitor C11-2 is proportional to the value of (A1-2/d1-2);
  • the capacitance of capacitor C12-1 is equal to the value of (A2-1/d2-1) Proportional relationship;
  • the capacitance of capacitor C13-1 is proportional to the value of (A
  • Capacitors formed by the capacitor pole piece group K and the ground pole piece group G may be connected in parallel.
  • C11 and C13 can be aligned in the vertical direction so that the two one-to-one aligned capacitor banks can be used in parallel to form a direct compensation.
  • C12 and C14 can also be stacked together to form direct compensation.
  • the pole piece of the first capacitor pole set 11 and the pole piece of the first capacitor pole set 13 of the fixed part STATOR-2105 in the fixed part STATOR-1104 are located on different substrates, and the two are aligned with each other.
  • the pole pieces in the first capacitive pole piece group are aligned one by one within the tolerance of assembly or manufacturing; similarly, the two second capacitive pole piece sets also have the same one-to-one aligned structure; the first grounding pole
  • the set of sheets 15 and the second set of grounding pole pieces 16 are also aligned one by one.
  • the capacitor consisting of paired pole pieces can directly compensate for the respective capacitance changes caused by the motion in the non-ideal direction, for example, compensating for the change in capacitance caused by the pole piece in the vertical direction, thereby reducing the overall measurement error.
  • the gap d1-1 of the capacitor C11-1 is increased/decreased
  • the gap d3-1 of the capacitor C13-1 is decreased/increased, and the change in capacitance can be directly compensated for each other. Therefore, superposition direct compensation can be formed between the capacitor groups C11 and C13 and between C12 and C14 to reduce the influence of the gap variation on the measurement accuracy.
  • the arrangement of the capacitor banks C11 and C12 constitutes a differential compensation between C11 and C12; similarly, C13 and C14 have the same effect.
  • a capacitor C11-1 may be composed of a pole piece 11-1 and a pole piece 15-1, which may form a differential compensation with a capacitor C12-1 composed of a pole piece 12-1 and a pole piece 15-1.
  • the moving part MOVER106 moves to half of its cycle period
  • the overlapping width of the grounding pole piece 15-1 and the capacitor pole piece 11-1 is equal to the overlapping width of the grounding pole piece 15-1 and the capacitor pole piece 12-1
  • the capacitor A full differential compensation is formed between C11-1 and capacitor C12-1. Therefore, differential compensation can also be formed between the capacitor group C11 and the capacitor group C12, and differential compensation can also be formed between C13 and C14 to eliminate the influence of, for example, the displacement in the vertical direction on the capacitance change.
  • a combination of differential compensation and direct compensation interactions can be arranged between a plurality of capacitor banks to better eliminate the effect of gap variations on capacitance changes.
  • the capacitor group C11 can form a direct compensation structure with the capacitor group C13, and the capacitor group C12 forms a differential compensation mechanism.
  • the capacitor group C12 can form a direct compensation structure with the capacitor group C14, and form a differential compensation structure with the capacitor group C11.
  • the capacitor group C13 can form a direct compensation structure with the capacitor group C11, and form a differential compensation structure with the capacitor group C14.
  • the capacitor group C14 can form a direct compensation structure with the capacitor group C12, and form a differential compensation structure with the capacitor group C13.
  • the repeating pattern of the capacitor pole piece group and the ground pole piece group can be fabricated on the insulating substrate by some existing methods. These methods include, but are not limited to, printed circuit boards or methods of thin film deposition or printed electronics. Conductive materials for the electrodes include, but are not limited to, copper, Silver, gold, aluminum and their alloys also include coatings and inks; insulating substrate materials include, but are not limited to, various resin laminates, glass, ceramics, plastic sheets, tubes, and the like.
  • the width and length of the pole pieces in the capacitor pole piece group are denoted as Wc and Lc, respectively, and the size of Wc may be between 0.001 mm and 1000 mm, for example, between 0.01 mm and 200 mm.
  • the size of the Lc is between 0.1 mm and 1000 mm, for example between 0.1 mm and 200 mm.
  • the distance between the pole pieces in the adjacent two capacitor pole pieces is denoted as Wcs.
  • the size of Wcs ranges from 0.001mm to 200mm.
  • Wg and Lg The width and length of the pole pieces in the ground pole piece group are denoted as Wg and Lg, respectively, the distance between the pole pieces in the first ground pole piece group 15, and the distance between the pole pieces in the second ground pole piece group 16 are denoted as Wgs.
  • Wg + Wgs 2 * (Wc + Wcs), and in some embodiments, the following formula is satisfied between them: Wc ⁇ Wg ⁇ (Wc + 2 * Wcs).
  • the overlap length of the slices does not change.
  • the shape of the pole piece can be rectangular, and of course other suitable shapes are also possible.
  • the capacitive pole piece group and the ground pole piece group are not limited to one plane or flat.
  • the capacitor groups C11, C12, C13, and C14 can be connected to the electronic signal processing unit 800.
  • the grounding pole piece can be connected to the grounding end 801 of the processing unit through a conductive element.
  • the electronic signal processing unit 800 can be any signal processor that satisfies the requirements. , including but not limited to analog signal conditioners, analog signal to digital signal converters, digital signal processors, and the like.
  • the signal processing system can output digital.
  • the capacitances of the capacitor groups C11, C12, C13, and C14 can be separately measured and processed by the electronic signal processing unit 800.
  • C11 and C13 may be connected in parallel, and the values of C11 and C13 in parallel are measured and processed by the electronic signal processing unit 800.
  • C12 and C14 may also be connected as above.
  • the electronic signal processing unit 800 only needs to process two independent measurement values, and the simplified measurement circuit block diagram is shown in FIG. Capacitor banks C11, C12, C13, C14 and the electronic signal processing unit together form a complete capacitive displacement measurement sensing system.
  • Figure 5 shows the digital output curve of one of the above capacitive displacement measuring sensing systems. It can be seen from the figure that the curve has a cyclic characteristic which allows the measurement to be carried out infinitely. But the song The line has a dead zone 110 at its turning point, which is not available for measurement. For differential compensation structures, the dead zone occurs because of the gap Wcs between adjacent pole pieces; for direct compensation structures, the dead zone occurs because the edge of the pole piece cannot achieve nanometer-level accuracy. If the problem of the dead zone is not solved, the measurement can only be limited to a range of less than half a cycle, and measurement of a larger range is impossible.
  • the problem associated with the dead zone can be addressed by a combined measurement system 201 comprised of two capacitive sensors.
  • the combined measurement system includes a first system 30 and a second system 40.
  • the structures of the first system 30 and the second system 40 may be the same as those of the capacitive sensor 100 previously described, or may be part of the capacitive sensor 100.
  • the first system 30 includes a capacitor pole group 31 which is equidistantly arranged by pole pieces 31-1, 31-2, ..., 31-m, and capacitors arranged equidistantly by pole pieces 32-1, 32-1, ..., 32-m.
  • the pole piece group 32 is a ground pole piece group 35 which is equally spaced by the pole pieces 35-1, 35-2, ..., 35-n.
  • m takes 6 and n takes 3, that is, there are 12 pole pieces in the capacitor pole group 31, 32, and the pole piece and the capacitor in the capacitor pole group 31
  • the pole pieces in the pole piece group 32 are alternately arranged on the same side of the electrically insulating substrate 37 to form a fixed part STATORs; three pole pieces in the ground pole piece group 35 are equally spaced on another electrically insulating substrate to form Moving parts MOVERs.
  • the capacitor group C31 and the capacitor group C32 can form a differential compensation structure to reduce the influence of displacement in other directions on the capacitance change.
  • the structure of the second system 40 is the same as that of the first system 30.
  • the pole pieces in the ground pole piece set in the first system 30 also correspond one-to-one with the pole pieces of the ground pole piece set in the second system 40, and the pole pieces in the capacitor pole piece set in the second system 40 are relative to the first system 30.
  • the pole pieces in the middle capacitor pole piece group are staggered by the distance of Wss.
  • Wss (Wc+Wcs)/2, where Wc represents the width of the pole piece in the capacitor pole piece group, and Wcs represents two of the capacitor pole piece groups. The spacing between adjacent pole pieces.
  • Figure 7 shows the signal output curve of the combined measurement system 201, which includes a cycle curve U30 output by the first system 30 and a cycle curve U40 output by the second system 40, each of which still has a dead zone. But the existence of Wss makes the two cycle curves staggered from each other.
  • the cycle curve U40 of the second system 40 has a good linear characteristic; likewise, the position of the dead zone on the cycle curve U40 of the second system 40, of the system 40
  • the cycle curve U40 has good linear characteristics.
  • the first system 30 or the second system 40 can be alternately selected to avoid the problem of the dead zone, so that a large-scale measurement can be performed.
  • Wss represents the ground pole set 65 of the second system 60 relative to the ground of the first system 50.
  • the distance that the slice group 55 is staggered, Wss (Wc + Wcs) / 2
  • the capacitive pole piece set in the first system 50 and the capacitive pole piece set in the second system 60 are one pair positive.
  • the two signal output curves displayed by the combined measurement system 202 are the same as in FIG.
  • FIG. 9 is a side elevational view of a capacitive sensor embodying the curve of Figure 7 and having a similar construction to that of Figure 6, showing the geometry of their construction.
  • the sensor 203 includes two fixed components STATOR-1 and STATOR-2, and the STATOR-1 includes a first capacitive pole piece group composed of pole pieces 71-1, 71-2, 71-3, 71-4, and a second capacitor pole set consisting of pole pieces 72-1, 72-2, 72-3, 72-4, the first capacitor pole set and the pole pieces in the second capacitor pole set are staggered at equal intervals;
  • STATOR -2 includes a first capacitive pole piece group composed of pole pieces 73-1, 73-2, 73-3, 73-4, and consists of pole pieces 74-1, 74-2, 74-3, 74-4
  • the second capacitor pole piece group, the pole pieces in the two capacitor pole piece groups are staggered and arranged at equal intervals;
  • the capacitance pole piece set in the fixed part STATOR-1 is offset from the capacitance pole piece set in
  • FIG. 10 is a side elevational view of a capacitive sensor embodying the curve of Figure 7 and having a similar construction to that of Figure 8, showing the geometry of their construction.
  • the capacitive displacement sensor 204 of FIG. 10 is substantially identical in structure to the capacitive sensor 203 of FIG. 9, except that the capacitive pole piece set in the STATOR-1 is positively aligned with respect to the capacitive pole piece set in the STATOR-2.
  • the two sets of grounding pole pieces of the component MOVERs are offset by a distance Wss.
  • the moving part MOVER can be manufactured according to conventional techniques, such as wire cutting technology.
  • Fig. 11 shows two manufacturing structures of the moving part MOVER, for example, the moving part MOVER composed of the first ground pole piece group 15 and the second ground pole piece group 16 in the capacitive sensor 100 of Fig. 1.
  • two pole pieces 15-1, 15-2 of the first ground pole piece group 15 may be disposed on the upper surface of the electrically insulating substrate 21 and electrically connected to the final ground end of the measuring system; the second grounding pole
  • the two pole pieces 16-1, 16-2 of the sheet set 16 are disposed on the lower surface (not shown) of the electrically insulating substrate 21.
  • the moving part MOVER can be obtained by ordinary board manufacturing processes, such as PCB technology.
  • 11b shows a structure of a single-layer conductive substrate, the surface of the single-layer conductive substrate can be disposed on the same surface of the first ground pole piece group 15 and the second ground pole piece group 16 Due to its small size, thin thickness and light weight, the substrate can be applied to micro devices with fast response requirements.
  • FIGs 12a through 12c illustrate the construction of a combined capacitance measurement sensing system 205 having a coarse measurement function of the present invention.
  • the system 205 includes three capacitive sensors, designated as a first system 101, a second system 102, and a third system 103, respectively.
  • the first system 101, the second system 102 are used for fine measurement, and the third system 103 is used for coarse measurement.
  • the structure of the three systems is similar to that of the combined measurement system 202 of Figure 8, constituting three capacitive measurement sensing systems.
  • the first system 101 includes a first capacitive pole piece group 111 which is equidistantly arranged by pole pieces 111-1, 111-2, ..., 111-m, and the pole pieces 112-1, 112-2.
  • 112-m is a second capacitor pole group 112 arranged at equal intervals; a first ground pole group 115 is equally arranged by pole pieces 115-1, 115-2, ..., 115-n.
  • the first capacitive pole piece set 111 and the second capacitive pole piece set 112 are located on the same side of the electrically insulating substrate 120, forming part of the stationary component STATORs.
  • the first set of grounding pole pieces 115 can be obtained by wire cutting a metal sheet to form a part of the moving part MOVERs.
  • variable capacitors C111-1, C111-2, ..., C111-m and C112-1, C112-2, ..., C112-m are formed.
  • the first system 101 and the second system 102 can also exhibit curved characteristics as described in FIG.
  • the third system 103 only has two capacitor pole pieces 117, 118 which are located on the electrically insulating substrate 120 to form a part of the fixed part STATORs, the ground pole piece 119 and the first ground pole piece set 115 and the second The pole pieces in the ground pole piece group 116 are obtained together by wire-cutting metal sheets to form a moving part MOVERs.
  • the relationship between the width Wcl of the two pole pieces 117, 118 and the width Wsl of the ground pole piece 119 is as follows:
  • Wc is the width of the pole piece in the first capacitor pole piece group
  • Wcs represents the distance between two adjacent pole pieces in the two capacitor pole piece groups
  • the third system 103 outputs a one-way incremental linearity. curve.
  • FIG. 13a A specific structural diagram of a combined capacitance absolute measurement linear sensing system 300 is shown in Figure 13a.
  • the fixed component STATOR 301 and the moving component MOVER 302 form a plurality of variable capacitors during the movement.
  • the measurement sensing system 300 includes a fixed component STATOR bracket 303 and a moving component MOVER bracket 304.
  • the four corners of the fixed component STATOR bracket 303 are respectively fixed in the positioning.
  • On the column support bases 311, 312, 313, and 314, the two ends of the guide post 307 are respectively fixed to the positioning post support bases 311 and 314, and the two ends of the guide post 308 are respectively fixed to the positioning post support bases 312 and 313.
  • the guide post 307 and the guide post 308 are respectively slidably fitted with bearings 305, 306, and the lower ends of the two bearings are fixedly coupled to the moving member MOVER bracket 304.
  • Such a configuration causes the moving member MOVER bracket 304 to move linearly along the guide posts 307, 308 relative to the stationary member STATOR bracket 303 under the drive of the bearings 305, 306.
  • the fixed component STATOR301 in the fixed component STATOR bracket 303 includes the above-mentioned first system, the second system, and the capacitor pole piece set in the third system
  • the moving component MOVER302 fixed on the moving component MOVER bracket 304 includes the above first Grounding pole set in the system, the second system, and the third system.
  • Figure 13b shows a top view and a side view of the combined capacitance absolute measurement linear sensing system 300 of Figure 13a, each system having two capacitive pole sets and one grounded pole set, and as a third system for coarse measurement
  • Each of the capacitor pole pieces is provided with one pole piece, and as an example, the rough measured pole piece is a triangle.
  • FIG. 14a and 14b A structural assembly diagram of another combined capacitance absolute measurement linear sensing system 400 is shown in Figures 14a and 14b.
  • the pole pieces in the first capacitor pole piece group 401, the second capacitor pole piece group 402, and the ground pole piece group 403 have a cylindrical shape.
  • the first capacitive pole piece set 401 and the second capacitive pole piece set 402 are fixed on the circumferential surface of the cylindrical electrically insulating substrate 404 to form a fixed part STATOR in the system, for example by printing a flexible circuit board on an electrically insulating substrate.
  • the grounding pole piece group 403 can be made by cutting a conductive metal tube, and has a cylindrical shape.
  • the slider 409 is fixed on the outer side of the grounding pole piece group 403, and the inner cavity of the grounding pole piece group 403 is also fixed with the slider 409.
  • Guide To the post 408, the cylindrical electrically insulating substrate 404 is also provided with a lumen 407 which, when mated, inserts the electrically insulating substrate 404 into the interior of the ground pole piece set 403, while the guide post 408 is inserted into the interior of the electrically insulating substrate 404. In and with the sliding.
  • the cylindrical electrically insulating substrate 404 can be linearly moved along the ground pole piece set 403.
  • the surface of the cylindrical electrically insulating substrate 404 is along the surface thereof.
  • a guide groove 406 may be provided in the axial direction to be engaged with the protrusion 405 disposed downward on the inner side of the ground pole piece group 403.
  • a combined capacitance absolute measurement sensing system 500 is disclosed, which can be applied to 360° measurement, including the first fixed component STATOR501, The two fixed parts STATOR 502 and the moving part MOVER 503, the pole pieces in the first fixed part STATOR 501 and the second fixed part STATOR 502 are alternately distributed in a planar sector on a circumferential base. Similarly, the pole pieces in the moving part MOVER 503 are also flat. The fan is equidistantly stepped on the base of the circumference, and the base of the moving part MOVER 503 and the fixed part STATOR is concentrically engaged.
  • the pole piece on the moving part MOVER 503 and the first fixed part STATOR 501, the second fixed The pole pieces on the component STATOR 502 constitute a plurality of variable capacitors.
  • the base of the fixed component STATOR into a semicircle or a quarter circle, without requiring creative labor.
  • the change in the coverage area between the pole pieces is no longer rectangular, and the formulas in the above embodiments are still established.
  • Wc and Wg respectively represent the pole piece of the fixed part STATOR and the middle part of the moving part MOVER.
  • the angular width of the sheet, Wcs and Wgs represents the angular distance between two fixed pole pieces in the fixed part STATOR and the moving part MOVER, and Wss represents the angle between them.
  • Lc represents the radius of rotation of the pole piece in the fixed part STATOR
  • Lg represents the radius of rotation of the grounding pole piece in the moving part MOVER.
  • Figure 16a shows another embodiment of a combined capacitance absolute measurement angle sensing system 600 comprising a first fixed component STATOR 601 having a cylindrical shape, a second fixed component STATOR 602, a stationary component STATOR 603, a fixed component STATOR bracket 604, motion Component MOVER bracket 605, the two bearings 607, 608, further includes a bearing seat 606, and the moving part MOVER 603 fixed on the moving part MOVER bracket 605 can be rotated relative to the first fixed part STATOR 601 and the second fixed part STATOR 602 through the bearings 607, 608.
  • Figure 16b shows a schematic diagram of the internal structure of the measurement sensing system 600.
  • the first fixed component STATOR 601 includes four capacitive pole pieces 611, 621, 612, 622, each of which includes 45 pole pieces, wherein the capacitor pole
  • the pole pieces in the set of blocks 611, 621 are alternately equidistantly distributed in the upper half of the circumferential surface of the fixed component STATOR bracket, and the pole pieces in the set of capacitor pole pieces 612, 622 are alternately equidistantly distributed on the circumferential surface of the fixed component STATRO bracket.
  • the shape of the pole piece is a cylindrical surface having a rectangular portion.
  • the second fixing member STATOR 602 also has a cylindrical electrically insulating substrate having three larger pole pieces 613, 614, 617, wherein the pole pieces 613, 614 are in the shape of a triangular cylindrical surface, and the shape of the 617 is rectangular. Part of the cylindrical surface.
  • the moving part MOVER 603 comprises a cylindrical electrically insulating substrate, two sets of grounding pole pieces 615, 616, each set of 45 pole pieces, the two sets of grounding pole pieces 615, 616 are arranged inside the electrically insulating base Two grounding pole pieces 618 and 619 are disposed on the outer side thereof.
  • the capacitor pole piece group 611 and the ground pole piece group 615 form a capacitor group C611, a capacitor pole piece group 621 and a ground pole piece group.
  • capacitor pole piece 615 forms a capacitor group C621
  • the capacitor pole piece group 612 and the ground pole piece group 616 form a capacitor group C612
  • the capacitor pole piece group 622 and the ground pole piece group 616 form a capacitor group C622
  • the capacitor pole piece 613 and the ground pole piece 618 form a capacitor C613.
  • the capacitor pole piece 614 and the ground pole piece 618 form a capacitor C614, and the capacitor pole piece 617 and the ground pole piece 619 form a capacitor C617.
  • Capacitor banks C611 and C621, capacitor banks C612 and C622 respectively constitute fine measurements in the difference compensation structure, and capacitor groups C613 and C614 constitute coarse measurements in the difference compensation structure and the like.
  • Capacitor C617 can be used to reset or reset to zero.
  • Both the fixed component STATOR and the moving component MOVER mentioned in the present invention can be manufactured by a printed circuit method, a thin film deposition method or a printed electronic method. This manufacturing process is termed the prior art and will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种电容式传感器(100)及组合电容式位移测量传感系统,具有至少一个固定部件STATOR(104,105),具有电连接在一起的按预定的距离分布的m个导电极片(11-1,11-2…11-n…11-m;13-1,13-2…13-n…13-m)的第一电容极片组(11,13),和电连接在一起的按预定的距离分布的m个导电极片(12-1,12-2…12-n…12-m;14-1,14-2…14-n…14-m)的第二电容极片组(12,14),两组极片交替排列在电绝缘基底(17,19)上;至少一个运动部件MOVER(106),具有n个接地电极片(15-1,15-2……15-n; 16-1,16-2……16-n);固定部件STATOR(104,105)的电容极片与运动部件MOVER(106)的接地极片形成可变电容;运动部件MOVER(106)以某种可控方式相对于固定部件STATOR(104,105)运动改变可变电容器的重叠面积,使其电容量发生变化,可反映位移。还包括用于测量电容组电子信号、得到位移数据的信号处理系统;通过对极片形状和布局的设计得到可变电容之间的相互补偿减小电容间隙变化的影响,完成高精度大量程相对及绝对位移测量。

Description

电容式传感器及组合电容式位移测量传感系统 技术领域
本发明涉及一种电容式传感器及组合电容式位移测量传感系统,具体涉及一种利用电容极片相对面积的变化以测量位移的传感器及其组合电容器式位移测量的系统。
背景技术
人们已经知道两个平行导体电极可以形成一个电容器,电容器的电容量与平行电极间的介质的介电常数近于正比,与两个极片的相对(重叠)面积成正比,与两个极片之间的间隙成反比。因此电容量的大小随着两个极片之间相对面积和间隙距离的变化而变化。本领域的技术人员已经应用上述原理来制造各种传感器,包括位移(位置)测量传感器。
根据上述原理,可以通过两种方法利用电容来测量位移。一种方法是检测由于电容的两个极片的间隙变化引起的电容变化,此时运动方向垂直于极片表面。电容器的电容量对间隙的变化非常敏感,特别是当间隙非常小时。同时,制造技术比较容易得到很小的间隙变化而几乎没有相对重叠面积的变化。现在的纳米定位系统中广泛采用用这种方法。这种传感器可以测量小到几个皮米的位移量,但其最大量程只在几百个微米内。
另外一种方法是检测由两个电容的平行极片相对重叠面积变化所引起的电容量变化,此时运动平行于极片表面。由于制造简单和生产成本低等原因,市场需求这种基于面积变化原理的传感器,但遇到极大挑战,在实际应用中是非常困难的。这是因为,这种简单的电容器当电极在平行方向运动来产生测量重叠面积变化时,很难保证极片之间的间隙不会产生变化,以致测量信号不能单一表征来自重叠面积变化,会造成测量误差。如前上述,间隙变化对电容器的电容量的影响是非常敏感的,比如在100μm间隙的电容器中,1μm的变化将会造成百分之一的电容量的变化。工业化生产中,对机械式运动的另部件来 说,100μm的间隙是可以做到的而且是常有的,但1μm的公差是很难做到的。大部分应用场合,百分之一的不确定性误差是难以接受的。由于很难控制间隙的变化,所以也很难制造出这种基于面积变化的高精度位移测量传感器,因此,需要开发一种技术能够在对重叠面积时大大减小相变化间隙变化所带来的不良影响。
发明内容
本发明为克服上述问题,开发了一种电容式传感器,包括:至少一个固定部件STATOR,每个组合固定部件STATOR包括:
一个电绝缘基底,其上具有电连接在一起的m个极片导电极片电连接在一起组成的第一电容极片组,和电连接在一起的m个极片导电极片电连接在一起组成的第二电容极片组,第一电容极片组和第二电容极片组的中极片的数目相等、形状相同,且交替、等间距地排列在所述电绝缘基底上;
至少一个可相对于固定部件STATOR线性移动/转动的运动部件MOVER,运动部件MOVER的数量与固定部件STATOR的数量相同,每个运动部件MOVER包括:
一个电绝缘基底,其上具有由n个等间距排列的接地极片组成的接地极片组,所述接地极片的形状相同,且电连接在一起形成接地极片组;n小于或等于m;
其中,运动部件MOVER的每个接地极片在其运动方向的宽度大小,使其在移动或转动过程中,与所述固定部件STATOR中的第一电容极片组的一个电容极片和第二电容极片组的一个电容极片组成两个可变电容器,从而运动部件MOVER的接地极片组与固定部件STATOR中的第一电容极片组和第二电容极片组组成两个可变电容组。
在本发明的一个实施方式中,不同固定部件STATOR中的相应极片一一对正,不同运动部件MOVER中的相应极片一一对正,来自不同固定部件STATOR的一对相对应对正的极片和一个接地极片构成一对可变电容器。构成了直接补偿结构。
在本发明的另一个实施方式中,在同一固定部件STATOR上的分别来自 第一电容极片组和第二电容极片组的一对相邻极片与相对应的一个接地极片一起构成一对可变电容器。构成了差分补偿结构。
本发明优选的是,所述极片呈矩形或扇形或三角形或圆三角形的平面结构,或圆筒形或具有矩形结构的部分圆筒形或具有三角形结构的部分圆筒形曲面。
在本发明的一个优选的实施例中,(Wg+Wgs)=2*(Wc+Wcs),Wcs≤Wc,Wc≤Wg≤(Wc+2*Wcs),Wc和Wg分别表示固定部件STATOR中极片、运动部件MOVER中极片的宽度或角宽度,Wcs和Wgs表示固定部件STATOR、运动部件MOVER中相邻两个极片之间的距离或角距离。
在本发明的另一个优选的实施例中,当所述极片呈矩形平面结构时,Wc的取值在0.001mm至200mm之间,Wcs的取值在0.001mm至200mm之间,Lc的取值在0.005mm至200mm之间,Wc表示固定部件STATOR中极片的宽度,Wcs表示固定部件STATOR中相邻两个极片之间的距离,Lc表示固定部件STATOR中极片的长度。
在本发明的另一个优选的实施例中,当所述极片呈扇形平面结构或部分圆筒形曲面时,Wc的取值在0.001°至180°之间,Wcs的取值在0.001°至270°之间,Lc的取值在0.1mm至200mm之间,Wc表示固定部件STATOR中极片的角宽度,Wcs表示固定部件STATOR中相邻两个极片之间的角距离,Lc表示固定部件STATOR中极片的转动半径。
在本发明的另一个优选的实施例中,Lc≠Lg,Lc表示固定部件STATOR中极片的转动半径,Lg表示运动部件MOVER中接地极片的转动半径。
在本发明的另一个优选的实施例中,包括至少两个固定部件STATOR,所述不同固定部件STATOR之间的极片在运动部件MOVER的运动方向上相互错开Wss的距离,且Wss=(Wc+Wcs)/2,其中Wc表示固定部件STATOR中极片的宽度或角宽度,Wcs表示固定部件STATOR中相邻两个极片之间的距离或角距离;或
包括至少两个运动部件MOVER,所述不同运动部件MOVER之间的极片在其运动方向上相互错开Wss的距离,且Wss=(Wc+Wcs)/2,其中Wc表示固定部件STATOR中极片的宽度或角宽度,Wcs表示固定部件STATOR中 相邻两个极片之间的距离Wcs或角距离。
优选的是,进一步包括用于粗测量的固定部件STATOR和运动部件MOVER,其中该固定部件STATOR具有两个极片,该两个极片的宽度或角宽度记为Wcl,该运动部件MOVER上有一个接地极片,该极片的宽度或角宽度记为Wsl,
Wcl≤Wc*m+Wcs*(m-1)
Wsl≤(Wc+Wcs)*m。
本发明优选的是,所述固定部件STATOR的电绝缘基底设有电屏蔽层。
本发明优选的是,固定部件STATOR和运动部件MOVER用印刷电路的方法、薄膜沉积的方法或印刷电子的方法来制造。
本发明优选的是,运动部件MOVER由金属薄片或薄管制成,金属薄片或薄管的两个面分别作为接地极与多个固定部件STATOR形成多个可变电容组。
本发明还提供了一种包括上述电容式传感器的组合电容式位移测量传感系统,还包括:
用于测量所述第一电容极片组和所述第二电容极片组电子信号、得到位移数据的信号处理系统,其中,信号处理系统的接地端与所述接地极片组连接。
按照本发明的组合式电容器测量系统,通过对极片形状和布局的设计得到可变电容之间的相互补偿来减小电容间隙变化的影响,实现精准的大量程绝对位移测量,例如:量程大于1m而分辨率为纳米级的直线位移测量;又如:360°全方位而精度为角秒级的角度位移测量。
附图说明
图1a是本发明中电容式传感器的一个实施例的侧视图,该实施例包括两个固定部件STATOR和一个双侧运动部件MOVER,图中还示出它们构成电容极片的几何结构。
图1b是图1a实施例的顶视图,该实施例示出固定部件STATOR的电容极片和运动部件MOVER的接地极片的相互作用。
图2示出图1实施例如何产生和消除电容,以及电容器的编号。
图3是本发明组合电容式位移测量传感系统的电路连接框图。
图4是本发明组合电容式位移测量传感系统的另一个电路连接框图。
图5是图1实施例的数字输出曲线的举例,其中示出了死区。
图6是本发明传感器的一个消除死区的实施例的俯视图,该实施例包括两个极片错开Wss的固定部件STATOR和两个一一对正的运动部件MOVER,图中还示出它们构成的几何结构。
图7是图6实施例的数字输出曲线的举例,其中示出了死区是如何被本实施例所补偿的。
图8是实现图7曲线的另一个实施例的俯视图,包括两个一一对正的固定部件STATOR和两个接地极片错开Wss的运动部件MOVER,还示出它们构成的几何结构。
图9是实现图7曲线的图6实施例的侧视图,还示出它们构成的几何结构。
图10是实现图7曲线的图8实施例的侧视图,还示出它们构成的几何结构。
图11a、图11b是运动部件MOVER的两个制造实施例。
图12a至图12c是具有粗测功能的组合电容测量传感系统的结构示意图。
图13a是本发明的用于组合电容绝对测量线性传感系统的完整装配的一个实施例。
图13b、图13c是图13a中固定部件STATOR和运动部件MOVER的结构示意图。
图14a是用于组合电容绝对测量线性传感系统的完整装配的结构示意图。
图14b是图14a中固定部件STATOR、运动部件MOVER的结构示意图。
图15a是用于组合电容绝对测量角度传感系统的完整装配的结构示意图。
图15b是图15a中固定部件STATOR、运动部件MOVER的结构示意图。
图16a是全方位360度量程的完整的角度位移传感器。
图16b示出固定部件STATOR和运动部件MOVER的部分分解图。
具体实施方式
为了使本发明解决的技术问题、采用的技术方案、取得的技术效果易于理 解,下面结合具体的附图,对本发明的具体实施方式做进一步说明。
参考图1a,本发明提供的电容式传感器100包括至少一个固定部件STATOR,这里示出两个,固定部件STATOR-1104和固定部件STATOR-2105。固定部件STATOR-1104包括第一电容极片组11,其具有m个等间距分布的导电极片,记为11-1、11-2…11-n…11-m;还包括第二电容极片组12,其具有m个等间距分布的导电极片,记为12-1、12-2…12-n…12-m。固定部件STATOR-2105包括第一电容极片组13,其具有m个等间距分布的导电极片,记为13-1、13-2…13-n…13-m;还包括第二电容极片组14,其具有m个等间距分布的导电极片,记为14-1、14-2…14-n…14-m。所述各极片形状相同。电容式传感器100还包括与固定部件STATOR数量相等的运动部件MOVER106,这里也示出2个,运动部件MOVER-1和运动部件MOVER-2。运动部件MOVER-1包括第一接地极片组15,其具有n个等间距分布的接地极片,分别记为15-1、15-2……15-n,n≤m;运动部件MOVER-2包括第二接地极片组16,其具有n个等间距分布的导电极片,分别记为16-1、16-2……16-n,n≤m。各接地极片形状相同。其中,固定部件STATOR-1和固定部件STATOR-2中的第一电容极片组、第二电容极片组中的m可以相等,为正整数。第一接地极片组15、第二接地极片组16中的n可以相等,亦为正整数。n的数值小于或等于m的数值。
固定部件STATOR-1104中的第一电容极片组11和第二电容极片组12位于电绝缘基底17的同一侧,电绝缘基底17的另一侧可选择性地设有电屏蔽层18。第一电容极片组11、第二电容极片组12、电绝缘基底17、电屏蔽层18构成了一个组合单元,作为传感器中的固定部件STATOR-1104。
固定部件STATOR-2105中的第一电容极片组13和第二电容极片组14位于电绝缘基底19的同一侧,电绝缘基底19的另一侧可选择性地设有电屏蔽层20。第一电容极片组13、第二电容极片组14、电绝缘基底19、电屏蔽层20构成了另一个组合单元,作为传感器中的固定部件STATOR-2105。
第一接地极片组15和第二接地极片组16分别位于电绝缘基底21的两侧,第一接地极片组15、第二接地极片组16、电绝缘基底21构成了一个组合单元,作为传感器中的运动部件MOVER 106(包括MOVER-1和MOVER-2)。
请注意,本发明这里的实施例示出了电容式传感器的两个组合单元的情况,对于一个组合单元或多个组合单元的情况,本发明也是可以实施的。
作为一个实施例,电屏蔽层18、20是可选部件,不是必备部件。
固定部件STATOR-1104和固定部件STATOR-2105基本平行布置,运动部件MOVER 106能够相对于固定部件STATOR-1104、固定部件STATOR-2105以基本平行的方式运动。
仍参考图1a,固定部件STATOR-1104中,第一电容极片组11中的第一块极片11-1与MOVER 106中MOVER-1的第一接地极片组15中的第一块极片15-1之间的距离记为间隙d1-1;第二电容极片组12中的第一块极片12-1与MOVER 106中MOVER-1的第一接地极片组15中的第一块极片15-1之间的距离记为间隙d2-1。在固定部件STATOR-2105中,第一电容极片组13中的第一块极片13-1与MOVER 106中MOVER-2的第二接地极片组16中的第一块极片16-1之间的距离记为间隙d3-1;第二电容极片组14中的第一块极片14-1与MOVER 106中MOVER-2的第二接地极片组16中的第一块极片16-1之间的距离记为间隙d4-1。间隙d1-1、间隙d2-1、间隙d3-1、间隙d4-1可以基本是相等的,例如在图1的实施例中,在允许的制造、装配公差范围内不会显著降低测量精度。
图1b是图1a的俯视图。参考图1b,各个电容极片组中极片的宽度和长度分别记为Wc和Lc,第一电容极片组11中的极片与第二电容极片组12中的极片交错布置,且相邻的两个极片之间的距离记为Wcs。各个接地极片组中极片的宽度和长度分别记为Wg和Lg。第一接地极片组15中两个相邻极片之间的距离记为Wgs。在一些具体的实施方式中,Lg的值可以大于或小于Lc的值,但是不能等于Lc的值,以保证电容器在长度方向的重叠基本不变。
继续参考图1a、图1b,极片11-1与接地极片15-1之间重叠的宽度记为X1-1,其重叠面积A1-1基本上等于宽度X1-1与极片长度Lc之间的乘积(以Lg大于Lc为例)。基于同样的道理,极片12-1与接地极片15-1之间重叠的宽度记为X2-1;其重叠面积A2-1基本上等于宽度X2-1与极片长度Lc之间的乘积;极片13-1与接地极片16-1之间重叠的宽度记为X3-1;其重叠面积A3-1基本上等于宽度X3-1与极片长度Lc之间的乘积;极片14-1与接地极片16-1 之间重叠面的宽度记为X4-1;其重叠面积A4-1基本上等于宽度X4-1与极片长度Lc之间的乘积。这些重叠面积的变化与运动部件MOVER106的位移X成线性关系。例如在第一电容极片组的第一块极片11-1中,A1-1的计算公式如下:
A1-1=X1-1*Lc=(Wc-X)*Lc  式1;
在第二电容极片组12的第一块极片12-1中,A2-1的计算公式如下:
A2-1=X2-1*Lc=(Wg+X-Wc-Wcs)*Lc   式2;
由此,就可以通过位移的变化来表示覆盖面积的变化,而覆盖面积的变化与所引起的电容量变化成正比。基于上述原理,由电容极片组中的极片K-i和接地极片组中的极片G-j即可组成一个可变的电容器CK-j。例如,第一电容极片组11中的极片11-1和第一接地极片组15中的极片15-1组成一个具有电容与(A1-1/d1-1)的值成比例关系的电容器C11-1。进一步地,第一电容极片组11中的极片11-2和第一接地极片组15中的极片15-2组成一个电容器C11-2;基于同样的道理,极片12-1、极片15-1组成C12-1;极片13-1、极片16-1组成C13-1;极片14-1、极片16-1组成C14-1;极片11-n、极片15-n组成C11-n;极片12-n、极片15-n组成C12-n;极片13-n、极片16-n组成C13-n;极片14-n、极片16-n组成C14-n等;电容器C11-2的电容量与(A1-2/d1-2)的数值成比例关系;电容器C12-1的电容量与(A2-1/d2-1)的数值成比例关系;电容器C13-1的电容量与(A3-1/d3-1)的数值成比例关系;电容器C14-1的电容量与(A4-1/d4-1)的数值成比例关系,等等。
在上述列举的四个电容极片组中,共有(m-n)个极片不能与接地极片组中的极片组成电容器。但是当运动部件MOVER106移动的时候,一些电容器消失的同时又会有新的电容器产生,且消失的电容器与新产生电容器的数量相等,即,当系统总的电容容量随着重叠面积的变化而变化时,在移动的过程中,其电容器的数目是保持不变的。
由电容极片组K与接地极片组G形成的电容器可以并联。如图2所示的实施中,共有四个电容组,分别为C11、C12、C13、C14。可以将C11和C13在上下垂直方向相对齐以致使这两个一一对齐的电容组可以并联使用,叠加在一起形成直接补偿。C12和C14也可以叠加在一起形成直接补偿。
固定部件STATOR-1104中第一电容极片组11的极片和固定部件STATOR-2105中第一电容极片组13的极片位于不同的基底上,他们之间是互相对齐的,该两个第一电容极片组中的极片在装配或制造的公差范围内一一对齐;类似地,两个第二电容极片组之间也具有上述相同的一一对齐的结构;第一接地极片组15和第二接地极片组16也是一一对齐的。由成对极片组成的电容器,可直接补偿非理想方向上运动所引起的各自电容变化,例如补偿极片在垂直运动方向上所带来的电容量变化,从而减小整体测量误差。例如,电容器C11-1的间隙d1-1增大/减小时,电容器C13-1的间隙d3-1却减小/增大,恰好可以相互直接补偿电容的变化。所以,电容组C11和C13之间以及C12和C14之间可以形成叠加直接补偿,以减小间隙变化对测量精度的影响。
不同于电容组C11和C13之间的叠加直接补偿,电容组C11和C12的布置构成了C11和C12之间的差分补偿;类似地,C13和C14也具有相同作用。
参考图1a,电容器C11-1可以由极片11-1和极片15-1组成,其与由极片12-1和极片15-1组成的电容器C12-1之间可形成差分补偿。例如,当运动部件MOVER106移动至其循环周期的一半时,接地极片15-1与电容极片11-1的重叠宽度等于接地极片15-1与电容极片12-1的重叠宽度,电容器C11-1和电容器C12-1之间形成了全额差分补偿。故,电容组C11和电容组C12之间亦可形成差分补偿,C13和C14之间也可形成差分补偿,来消除例如垂直方向的位移对电容量变化的影响。
参考图1a,多个电容组之间可以布置形成一个差分补偿和直接补偿相互作用的组合,可以更好地消除间隙变化对电容量变化的影响。电容组C11可以和电容组C13形成直接补偿结构,和电容组C12形成差分补偿机构。电容组C12可以和电容组C14形成直接补偿结构,和电容组C11形成差分补偿结构。电容组C13可以和电容组C11形成直接补偿结构,和电容组C14形成差分补偿结构。电容组C14可以和电容组C12形成直接补偿结构,和电容组C13形成差分补偿结构。
可以通过现有的一些方法在绝缘基底上制造电容极片组、接地极片组的重复图案。这些方法包括但不限于印刷电路板或薄膜沉积(thin film deposition)或印刷电子(printed electronics)的方法。用于电极的导电材料包括但不限于铜、 银、金、铝及其合金,还包括涂料和油墨;绝缘基底材料包括但不限于各种树脂层压板、玻璃、陶瓷、塑料片材、管等。
参考图1b,电容极片组中极片的宽度和长度分别记为Wc和Lc,Wc的尺寸可在0.001mm-1000mm之间,例如选择在0.01mm-200mm之间。Lc的尺寸在0.1mm-1000mm之间,例如选择在0.1mm-200mm之间。相邻的两个电容极片组中极片间的距离记为Wcs。其中Wcs的尺寸范围在0.001mm-200mm之间。接地极片组中极片的宽度和长度分别记为Wg和Lg,第一接地极片组15中极片间的距离,以及第二接地极片组16中极片间的距离记为Wgs。它们之间的关系是:Wg+Wgs=2*(Wc+Wcs),在某些实施例中,它们之间满足以下公式:Wc≤Wg≤(Wc+2*Wcs)。
进一步地,接地极片组中极片的长度Lg不等于电容极片组中极片的长度Lc,例如,Lg=Lc±(0.2mm-1mm),以保证在极片长度方向两个电容极片的重叠长度不变。本发明中极片的形状都可以采用矩形,当然也可以是其它适合的形状。同时,电容极片组和接地极片组不仅仅局限于在一个平面或是扁平的。
图3是本发明组合电容式位移测量传感系统的电路连接框图。电容组C11、C12、C13、C14可以连接到电子信号处理单元800中,接地极片可通过导电元件连接到处理单元的接地端801,电子信号处理单元800可以是一任意满足需求的信号处理器,包括但不限于模拟信号调节器、模拟信号至数字信号转换器、数字信号处理器等。该信号处理系统可以将数字输出。
在具体的实际应用中,可以分别单独测量电容组C11、C12、C13、C14的电容量,并经过电子信号处理单元800处理。在某些具体的实施方式中,例如在电容组C11和电容组C13组成的直接补偿结构中,C11和C13可以并联在一起,测量C11和C13并联后的数值并经过电子信号处理单元800进行处理。C12和C14也可以是如上的连接方式。这样,电子信号处理单元800就只需处理两个独立的测量值,简化后的测量电路框图如图4所示。电容组C11、C12、C13、C14和电子信号处理单元一起形成一个完整的电容位移测量传感系统。
图5示出了一个上述电容位移测量传感系统的数字输出曲线,由图中可见该曲线具有循环特性,这种循环特性使得测量可以进行得无穷无尽。但是该曲 线在其转折点的位置存在死区110,该区是不能用于测量的。对于差分补偿结构来说,死区的出现是因为相邻极片之间的间隙Wcs;对于直接补偿结构来说,死区的出现是因为极片的边缘不能做到纳米级别的精度。如果不解决死区的问题,测量只能局限于小于半个周期的范围内,不可能进行较大量程的测量。
参考图6,在一个具体的实施例中,可通过由两个电容式传感器组成的组合测量系统201来解决死区所带来的问题。该组合测量系统包括第一系统30和第二系统40,第一系统30和第二系统40的结构可以和前文介绍的电容式传感器100的结构相同,或者是该电容式传感器100中的一部分。
第一系统30包括由极片31-1、31-2……31-m等间距排列的电容极片组31,由极片32-1、32-1……32-m等间距排列的电容极片组32,由极片35-1、35-2……35-n等间距排列的接地极片组35。在本发明的一个具体实施方式中,为了表达方便,m取6,n取3,即电容极片组31、32中共有12个极片,且,电容极片组31中的极片与电容极片组32中的极片交替等间距排列在电绝缘基底37的同一侧,形成固定部件STATORs;接地极片组35中有3个极片等间距地排列在另一个电绝缘基底上,形成运动部件MOVERs。当运动部件MOVERs相对于固定部件STATORs平行移动时,电容极片组中的极片与接地极片组中的极片之间的发生重叠,面积变化,形成可变电容器C31-1、C31-2、C31-3、C32-1、C32-2、C32-3,此时,电容组C31和电容组C32可以组成一个差分补偿结构,来降低其他方向上的位移对电容变化的影响。第二系统40的结构与第一系统30相同。第一系统30中接地极片组中的极片也与第二系统40中接地极片组的极片一一对应,第二系统40中电容极片组中的极片相对于第一系统30中电容极片组中的极片错开了Wss的距离,此时,Wss=(Wc+Wcs)/2,其中Wc代表电容极片组中极片的宽度,Wcs代表电容极片组中两个相邻极片间的间距。
图7示出了组合测量系统201的信号输出曲线,其包含了一条由第一系统30输出的循环曲线U30和一条由第二系统40输出的循环曲线U40,每条循环曲线依然存在死区,但是Wss的存在使得两条循环曲线相互错开。在第一系统30循环曲线U30上死区的位置,第二系统40的循环曲线U40具有良好的线性特性;同样的,在第二系统40循环曲线U40上死区的位置,系统40的 循环曲线U40具有良好的线性特性。这样在测量的时候,可以交替选择使用第一系统30或第二系统40以避开死区的问题,从而可以进行大量程的测量。
图8示出了本发明的另一个实施方式的组合测量系统202,和组合测量系统201不同的是,Wss代表的是第二系统60中接地极片组65相对于第一系统50中接地极片组55错开的距离,Wss=(Wc+Wcs)/2,第一系统50中的电容极片组和第二系统60中的电容极片组一一对正。组合测量系统202显示的两条信号输出曲线和图7相同。
图9是实现图7曲线的、并与图6具有类似结构的电容式传感器的侧视图,示出它们构成的几何结构。图中,传感器203包括两个固定部件STATOR-1和STATOR-2,STATOR-1包括由极片71-1、71-2、71-3、71-4组成的第一电容极片组,以及由极片72-1、72-2、72-3、72-4组成的第二电容极片组,第一电容极片组与第二电容极片组中的极片交错等间距排列;STATOR-2包括由极片73-1、73-2、73-3、73-4组成的第一电容极片组,以及由极片74-1、74-2、74-3、74-4组成的第二电容极片组,该两个电容极片组中的极片交错等间距排列;固定部件STATOR-1中的电容极片组相对于固定部件STATOR-2中的电容极片组错开距离Wss;还包括双侧具有接地极片组(由极片75-1、75-2组成的接地极片组和由76-1、76-2组成的接地极片组)的一个运动部件MOVER(相当于两个运动部件MOVER),两组接地极片一一对应。
图10是实现图7曲线的、并与图8具有类似结构的电容式传感器的侧视图,示出它们构成的几何结构。图10的电容位移传感器204与图9的电容式传感器203的结构基本相同,区别仅在于,STATOR-1中的电容极片组相对于STATOR-2中的电容极片组一一对正,运动部件MOVERs的两组接地极片错开距离Wss。
运动部件MOVER可以按照常规技术制造,例如线切割技术。图11示出了运动部件MOVER的两种制造结构,例如,制造图1电容式传感器100中的由第一接地极片组15和第二接地极片组16构成的运动部件MOVER。图11a中,第一接地极片组15中的两个极片15-1、15-2可以设置在电绝缘基底21的上表面,并和测量系统的最终接地端电连接;第二接地极片组16中的两个极片16-1、16-2设置在电绝缘基底21的下表面(未示出)。该运动部件 MOVER可由普通的电路板制作工艺得到,例如PCB技术。图11b示出了一种单层导电基板的结构,该单层导电基板的表面可将第一接地极片组15和第二接地极片组16中的多个极片设置在同一表面,这种基板由于其体积小、厚度薄、质量轻等特点,可应用到响应要求较快的微型设备中。
上述描述的各种组合测量系统利用输出信号循环的特性可以提供一个较大量程的校对测量。也正是这一循环特性,当电源关闭后再启动时,人们无法得到该测量系统所处的位置,需要使用的时候,必须对其进行复位或归零的操作。下面介绍绝对测量的方法。
图12a至图12c示出了本发明的一种具有粗测功能的组合电容测量传感系统205的结构。该系统205包括三个电容式传感器,分别记为第一系统101、第二系统102、第三系统103。第一系统101、第二系统102用于精测,第三系统103用于粗测。三个系统的结构与图8的组合测量系统202的部分结构相似,构成了三个电容测量传感系统。
参阅图12a至图12c,第一系统101包括了由极片111-1、111-2……111-m等间距排列的第一电容极片组111,由极片112-1、112-2……112-m等间距排列的第二电容极片组112;由极片115-1、115-2……115-n等间距排列的第一接地极片组115。第一电容极片组111和第二电容极片组112位于电绝缘基底120的同一侧,形成固定部件STATORs的一部分。第一接地极片组115可通过线切割金属片得到,形成运动部件MOVERs的一部分。运动部件MOVERs相对于固定部件STATORs平行移动时,形成可变电容器C111-1、C111-2……C111-m以及C112-1、C112-2……C112-m。
基于同样的道理,第二系统102包括了电容极片组113和114,其第二接地极片组116相对于第一接地极片组115错开了Wss的距离,Wss=(Wc+Wcs)/2。第一系统101和第二系统102亦可呈现出如图7所述的曲线特性。
第三系统103只含有两个电容极片117、118,该两个电容极片位于电绝缘基底120上,形成固定部件STATORs的一部分,接地极片119与第一接地极片组115和第二接地极片组116中的极片一起通过线切割金属片得到,共同形成运动部件MOVERs,两个极片117、118的宽度Wcl和接地极片119的宽度Wsl之间的关系如下:
Wcl≤Wc*m+Wcs*(m-1);
Wsl≤(Wc+Wcs)*m。
其中,Wc为第一电容极片组中极片的宽度,Wcs代表来两个电容极片组中相邻两个极片之间的距离,第三系统103输出的是一个单向递增的线性曲线。
图13a给出了一种组合电容绝对测量线性传感系统300的一个具体结构示意图。固定部件STATOR301和运动部件MOVER302在移动的过程中会形成多个可变的电容器,测量传感系统300包括固定部件STATOR支架303和运动部件MOVER支架304,固定部件STATOR支架303的四角分别固定在定位柱支撑座311、312、313、314上,导向柱307的两端分别固定于定位柱支撑座311、314,导向柱308的两端分别固定于定位柱支撑座312、313。导向柱307和导向柱308上分别滑动配合有轴承305、306,两个轴承的下端和运动部件MOVER支架304固定连接。这样的结构,使得运动部件MOVER支架304在轴承305、306的驱动下沿着导向柱307、308相对于固定部件STATOR支架303做直线运动。其中,位于固定部件STATOR支架303中的固定部件STATOR301包括上述的第一系统、第二系统、第三系统中的电容极片组,固定于运动部件MOVER支架304上的运动部件MOVER302包括上述第一系统、第二系统、第三系统中接地极片组。
图13b给出了图13a的组合电容绝对测量线性传感系统300的俯视图和侧视图,每个系统中均含有两个电容极片组和一个接地极片组,而作为粗测量的第三系统,其每个电容极片组中各设有一个极片,作为一个实例,粗测的极片为三角形。
图14a、图14b给出了另一种组合电容绝对测量线性传感系统400的结构装配示意图。在该结构中,第一电容极片组401、第二电容极片组402和接地极片组403中的极片呈圆柱形。第一电容极片组401、第二电容极片组402固定在圆柱形电绝缘基底404的圆周表面上,形成该系统中的固定部件STATOR,例如可通过将一柔性电路板印刷在电绝缘基底404的圆周表面上。接地极片组403可通过切割导电金属管来制作,呈圆筒状,滑块409固定在接地极片组403的外侧,接地极片组403的内腔中还固定有和滑块409同轴的导 向柱408,圆柱形电绝缘基底404也设有内腔407,配合的时候,将电绝缘基底404插入接地极片组403的内腔中,同时,导向柱408插入电绝缘基底404的内腔中并与其滑动配合在一起。这样,圆柱形电绝缘基底404可以沿着接地极片组403做直线运动,为了防止圆柱形电绝缘基底404和接地极片组403之间相互转动,圆柱形电绝缘基底404的表面上沿其轴向可设有一道导向槽406,与接地极片组403内侧向下设置的突起405配合在一起。
上述描述原理也可以运用到角位移的测量上,参考图15a、图15b、图15c公开了一种组合电容绝对测量传感系统500,可应用于360°测量,包括第一固定部件STATOR501、第二固定部件STATOR502和运动部件MOVER503,第一固定部件STATOR501和第二固定部件STATOR502中的极片呈平面扇形交替地分布在一个圆周的基底上,同样的,运动部件MOVER503中的极片也是呈平面扇形等距离地分步在圆周的基底上,运动部件MOVER503和固定部件STATOR的基底为同心配合,当运动部件MOVER503的转动时候,运动部件MOVER503上的极片与第一固定部件STATOR501、第二固定部件STATOR502上的极片组成多个可变电容器。当然,对于本领域的技术人员来说,将固定部件STATOR的基座做成半圆形或四分之一圆形等也是可以直接想到的,不需要付出创造性的劳动。也可以在固定部件STATOR的圆周基底上设置两个扇形的极片,与运动部件MOVER配合在一起进行粗测量。在该实施例中,极片之间的覆盖面积的变化不再是矩形,上述实施例中的各公式依然成立,此时,Wc和Wg分别表示固定部件STATOR中极片、运动部件MOVER中极片的角宽度,Wcs和Wgs表示固定部件STATOR、运动部件MOVER中相邻两个极片之间的角距离,Wss代表的是它们之间错开的角度。Lc表示的固定部件STATOR中极片的转动半径,Lg表示运动部件MOVER中接地极片的转动半径。当所述极片例如呈扇形平面结构或部分圆筒形曲面时,Wc的取值在0.001°至180°之间,Wcs的取值在0.001°至270°之间,Lc的取值在0.1mm至200mm之间。
图16a示出了另一种实施方式的组合电容绝对测量角度传感系统600,包括一具有圆柱形状的第一固定部件STATOR601、第二固定部件STATOR602、固定部件STATOR603、固定部件STATOR支架604、运动部件MOVER支架 605,两个轴承607、608,还包括一个轴承座606,固定在运动部件MOVER支架605上的运动部件MOVER603可通过轴承607、608可相对于第一固定部件STATOR601、第二固定部件STATOR602旋转。
图16b示出了测量传感系统600的内部结构示意图,第一固定部件STATOR601包括四个电容极片组611、621、612、622,每个电容极片组包括45个极片,其中电容极片组611、621中的极片交替等距离地分布在固定部件STATOR支架圆周表面的上半部,电容极片组612、622中的极片交替等距离地分布在固定部件STATOR支架圆周表面的下半部。极片的形状为具有矩形部分圆柱筒曲面。第二固定部件STATOR602也具有一个圆柱形的电绝缘基底,其具有三个较大的极片613、614、617,其中极片613、614的形状为三角形圆柱筒曲面,617的形状为具有矩形部分圆柱筒曲面。
运动部件MOVER603包括一个圆筒状的电绝缘基底,两组接地极片组615、616,每组分别设有45个极片,该两组接地极片组615、616布置在电绝缘基底的内侧,在其外侧还布置有两个接地极片618、619,当上述结构装配在一起后,电容极片组611与接地极片组615形成电容组C611,电容极片组621和接地极片组615形成电容组C621,电容极片组612和接地极片组616形成电容组C612,电容极片组622和接地极片组616形成电容组C622,电容极片613与接地极片618形成电容C613,电容极片614与接地极片618形成电容C614,电容极片617与接地极片619形成电容C617。
电容组C611和C621、电容组C612和C622分别构成了差额补偿结构中的精测量,电容组C613和C614构成了差额补偿结构中的粗测量等等。电容器C617可用于复位或归零。
本发明中提到的固定部件STATOR和运动部件MOVER均可用印刷电路的方法、薄膜沉积的方法或印刷电子的方法来制造,这种制造工艺术语现有的技术,在此不再进行赘述。
本发明已通过优选的实施方式进行了详尽的说明。然而,通过对前文的研读,对各实施方式的变化和增加也是本领域的一般技术人员所显而易见的。申请人的意图是所有这些变化和增加都落在了本发明权利要求所保护的范围中。
相似的编号通篇指代相似的元件。为清晰起见,在附图中可能有将某些线、 层、元件、部件或特征放大的情况。
本文中使用的术语仅为对具体的实施例加以说明,其并非意在对本发明进行限制。除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)均与本发明所属领域的一般技术人员的理解相同。

Claims (14)

  1. 一种电容式传感器,其特征在于,包括:
    至少一个固定部件STATOR,每个固定部件STATOR包括:
    一个电绝缘基底,其上具有m个导电极片电连接在一起组成的第一电容极片组,和m个导电极片电连接在一起组成的第二电容极片组,第一电容极片组和第二电容极片组中极片的数目相等、形状相同,且交替、等间距地排列在所述电绝缘基底上;
    至少一个可相对于固定部件STATOR线性移动/转动的运动部件MOVER,运动部件MOVER的数量与固定部件STATOR的数量相同,每个运动部件MOVER包括:
    一个电绝缘基底,其上具有n个接地极片电连接在一起组成的接地极片组,所述接地极片的形状相同、等间距地排列在所述电绝缘基底上;n小于或等于m;
    其中,运动部件MOVER的每个接地极片在其运动方向的宽度大小,使其在移动或转动过程中,与所述固定部件STATOR中的第一电容极片组的一个电容极片和第二电容极片组的一个电容极片组成两个可变电容器,从而运动部件MOVER的接地极片组与固定部件STATOR中的第一电容极片组和第二电容极片组组成两个可变电容组。
  2. 根据权利要求1所述的电容式传感器,其中,不同固定部件STATOR中的相应极片一一对正,不同运动部件MOVER中的相应极片一一对正,来自不同固定部件STATOR的一对相对正的极片和一个接地极片构成一对可变电容器。
  3. 根据权利要求1所述的电容式传感器,其中,在同一固定部件STATOR上的分别来自第一电容极片组和第二电容极片组的一对相邻极片与相对应的一个接地极片一起构成一对可变电容器。
  4. 根据权利要求1-3中之一所述的电容式传感器,其中,所述极片呈矩形或扇形或三角形或圆三角形的平面结构,或圆筒形或具有矩形结构的部分圆筒形或具有三角形结构的部分圆筒形曲面。
  5. 根据权利要求4所述的电容式传感器,其中,(Wg+Wgs)=2*(Wc+Wcs),Wcs≤Wc,Wc≤Wg≤(Wc+2*Wcs),Wc和Wg分别表示固定部件STATOR中极片、运动部件MOVER中极片的宽度或角宽度,Wcs和Wgs表示固定部件STATOR、运动部件MOVER中相邻两个极片之间的距离或角距离。
  6. 根据权利要求4所述的电容式传感器,其中,当所述极片呈矩形平面结构时,Wc的取值在0.001mm至200mm之间,Wcs的取值在0.001mm至200mm之间,Lc的取值在0.005mm至200mm之间,Wc表示固定部件STATOR中极片的宽度,Wcs表示固定部件STATOR中相邻两个极片之间的距离,Lc表示固定部件STATOR中极片的长度。
  7. 根据权利要求4所述的电容式传感器,其中,当所述极片呈扇形平面结构或部分圆筒形曲面时,Wc的取值在0.001°至180°之间,Wcs的取值在0.001°至270°之间,Lc的取值在0.1mm至200mm之间,Wc表示固定部件STATOR中极片的角宽度,Wcs表示固定部件STATOR中相邻两个极片之间的角距离,Lc表示固定部件STATOR中极片的转动半径。
  8. 根据权利要求4所述的电容式传感器,其中,Lc≠Lg,Lc表示固定部件STATOR中极片的转动半径,Lg表示运动部件MOVER中接地极片的转动半径。
  9. 根据权利要求1所述的电容式传感器,其中,包括至少两个固定部件STATOR,所述不同固定部件STATOR之间的极片在运动部件MOVER的运动方向上相互错开Wss的距离,且Wss=(Wc+Wcs)/2,其中Wc表示固定部件STATOR中极片的宽度或角宽度,Wcs表示固定部件STATOR中相邻两个极片之间的距离或角距离;或
    包括至少两个运动部件MOVER,所述不同运动部件MOVER之间的极片在其运动方向上相互错开Wss的距离,且Wss=(Wc+Wcs)/2,其中Wc表示固定部件STATOR中极片的宽度或角宽度,Wcs表示固定部件STATOR中相邻两个极片之间的距离或角距离。
  10. 根据权利要求9所述的电容式传感器,其特征在于,进一步包括用于粗测量的固定部件STATOR和运动部件MOVER,其中该固定部件STATOR具有两个极片,该两个极片的宽度或角宽度记为Wcl,该运动部件MOVER上 有一个接地极片,该极片的宽度或角宽度记为Wsl,
    Wcl≤Wc*m+Wcs*(m-1)
    Wsl≤(Wc+Wcs)*m。
  11. 根据权利要求1-3中任一项所述的电容式传感器,其中,所述固定部件STATOR的电绝缘基底设有电屏蔽层。
  12. 根据权利要求1所述的电容式传感器,其特征在于:其中,固定部件STATOR和运动部件MOVER用印刷电路的方法、薄膜沉积的方法或印刷电子的方法来制造。
  13. 根据权利要求1所述的电容式传感器,其特征在于:其中,运动部件MOVER由金属薄片或薄管制成,金属薄片或薄管的两个面分别作为接地极与多个固定部件STATOR形成多个可变电容组。
  14. 一种包括如权利要求1-13中任一项所述的电容式传感器的组合电容式位移测量传感系统,其特征在于,还包括:
    用于测量所述第一电容极片组和所述第二电容极片组电子信号、得到位移数据的信号处理系统,其中,信号处理系统的接地端与所述接地极片组连接。
PCT/CN2014/092307 2013-11-26 2014-11-26 电容式传感器及组合电容式位移测量传感系统 WO2015078378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14866749.6A EP3076136B1 (en) 2013-11-26 2014-11-26 Capacitive sensor and combined capacitive displacement measurement sensing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310612166.4A CN104677390B (zh) 2013-11-26 2013-11-26 电容式传感器及组合电容式位移测量传感系统
CN201310612166.4 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015078378A1 true WO2015078378A1 (zh) 2015-06-04

Family

ID=53198374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092307 WO2015078378A1 (zh) 2013-11-26 2014-11-26 电容式传感器及组合电容式位移测量传感系统

Country Status (3)

Country Link
EP (1) EP3076136B1 (zh)
CN (1) CN104677390B (zh)
WO (1) WO2015078378A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577974B (zh) * 2016-02-04 2017-04-11 台灣艾華電子工業股份有限公司 位置感測器及其可變式電容組件
CN112325756A (zh) * 2020-09-04 2021-02-05 山东休普动力科技股份有限公司 自由活塞发动机动子位移传感器、动子识别系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462142B (zh) * 2016-06-03 2019-09-17 清华大学 电容式接触型位移测量传感器及传感系统
CN106352783B (zh) * 2016-08-31 2020-07-03 威海华菱光电股份有限公司 厚度检测装置
CN109631734B (zh) * 2019-01-02 2021-04-09 上海坤锐电子科技有限公司 一种位移检测装置和位移检测方法
CN109668503B (zh) * 2019-01-28 2024-05-07 西安交通大学 电极片充放电体积原位检测装置、控制系统及其使用方法
US11499845B2 (en) 2019-02-07 2022-11-15 Texas Instruments Incorporated Compensation of mechanical tolerance in a capacitive sensing control element
CN113631890A (zh) 2019-02-07 2021-11-09 德克萨斯仪器股份有限公司 补偿电容传感控制元件中的机械公差
EP3805974A1 (en) 2019-10-11 2021-04-14 Nxp B.V. Tamper detection device, system, and method
US11525662B2 (en) * 2020-08-13 2022-12-13 Meta Platforms Technologies, Llc Electromechanical displacement sensor
CN113155012B (zh) * 2021-01-25 2022-11-01 上海兰宝传感科技股份有限公司 一种电容接近开关传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636792A (en) * 1984-07-02 1987-01-13 Itt Corporation Capacitive angular position transducer
CN1389704A (zh) * 2001-05-31 2003-01-08 惠普公司 三轴移动传感器
CN1497237A (zh) * 2002-01-11 2004-05-19 ���չ�˾ 基于电容的位置传感器
DE202004001444U1 (de) * 2004-01-26 2005-06-02 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Kapazitiver Drehgeber
US20060028214A1 (en) * 2004-08-05 2006-02-09 Olympus Corporation Electrostatic encoder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561038A (en) * 1984-04-04 1985-12-24 W & T Avery Limited Transducers
CN1019601B (zh) * 1986-09-09 1992-12-23 王祖斌 栅形电容式位移传感器
CN2117588U (zh) * 1992-03-18 1992-09-30 水利部、能源部地质勘探机电研究所 平板电容式位移传感器
JP3625530B2 (ja) * 1995-06-12 2005-03-02 ヒューレット・パッカード・カンパニー 位置検出装置及び位置検出方法
CN1163391A (zh) * 1997-01-10 1997-10-29 赵飙 分相式高分辨率容栅位移传感器
DE10133216B4 (de) * 2001-07-09 2005-01-27 Tecpharma Licensing Ag Positionsdetektion
JP2003240798A (ja) * 2002-02-19 2003-08-27 Denso Corp 容量式力学量センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636792A (en) * 1984-07-02 1987-01-13 Itt Corporation Capacitive angular position transducer
CN1389704A (zh) * 2001-05-31 2003-01-08 惠普公司 三轴移动传感器
CN1497237A (zh) * 2002-01-11 2004-05-19 ���չ�˾ 基于电容的位置传感器
DE202004001444U1 (de) * 2004-01-26 2005-06-02 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Kapazitiver Drehgeber
US20060028214A1 (en) * 2004-08-05 2006-02-09 Olympus Corporation Electrostatic encoder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076136A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577974B (zh) * 2016-02-04 2017-04-11 台灣艾華電子工業股份有限公司 位置感測器及其可變式電容組件
US9726471B1 (en) 2016-02-04 2017-08-08 Taiwan Alpha Electronic Co., Ltd. Position sensor and variable capacitor assembly thereof
CN112325756A (zh) * 2020-09-04 2021-02-05 山东休普动力科技股份有限公司 自由活塞发动机动子位移传感器、动子识别系统及方法

Also Published As

Publication number Publication date
CN104677390A (zh) 2015-06-03
EP3076136A4 (en) 2017-07-26
CN104677390B (zh) 2017-09-29
EP3076136B1 (en) 2018-11-07
EP3076136A1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2015078378A1 (zh) 电容式传感器及组合电容式位移测量传感系统
JP6086518B2 (ja) 単列多層構造に基づく電界式タイムグレーティング直線変位センサ
JP6086517B2 (ja) 電界式タイムグレーティング角変位センサ
CN103557781B (zh) 双单极电容差分位移传感器
JP6821288B2 (ja) 交番電界に基づくアブソリュート形タイムグレーティング角変位センサ
JP2011045194A (ja) 静電誘導型発電装置
JP6626074B2 (ja) 変位検出方式の力検出構造及び力センサ
US3517282A (en) Variable capacitance transducer
US3090934A (en) Reduction of unwanted coupling between transformer members of position-measuring transformers
RU2444738C1 (ru) Измерительный элемент датчика параметров движения для проведения инерциальных измерений высокой чувствительности
US9410998B2 (en) Method, system and apparatus for capacitive sensing
CN202793305U (zh) 多环并联式电容位移传感器
Liu et al. Design, fabrication, and performance characterization of LTCC-based capacitive accelerometers
JP2011047679A (ja) 静電エンコーダ
Zhao et al. Note: Differential amplified high-resolution tilt angle measurement system
CN203414050U (zh) 双单极电容差分位移传感器
JP2013134212A (ja) 静電容量型測定装置
JP2014126457A (ja) 静電容量式検出装置
CN108709493B (zh) 多环并联式电容角位移传感器
RU2521141C2 (ru) Емкостный датчик перемещений
Nwozor Analytical Evaluation of Operational Characteristics of a Mid-Plate Adjustable Capacitive Trans
TWI825300B (zh) 磁氣式線性感測器
CN114608431B (zh) 一种双层正弦式时栅直线位移传感器
US8829925B2 (en) Capacitive position sensor
US9443657B1 (en) Piezo controlled variable capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014866749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866749

Country of ref document: EP