WO2015076617A1 - 계량화 수단을 이용한 피부 나이 예측 장치 및 방법 - Google Patents

계량화 수단을 이용한 피부 나이 예측 장치 및 방법 Download PDF

Info

Publication number
WO2015076617A1
WO2015076617A1 PCT/KR2014/011271 KR2014011271W WO2015076617A1 WO 2015076617 A1 WO2015076617 A1 WO 2015076617A1 KR 2014011271 W KR2014011271 W KR 2014011271W WO 2015076617 A1 WO2015076617 A1 WO 2015076617A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin age
skin
age
area
subject
Prior art date
Application number
PCT/KR2014/011271
Other languages
English (en)
French (fr)
Inventor
조가영
김지연
염명훈
조준철
Original Assignee
(주)아모레퍼시픽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아모레퍼시픽 filed Critical (주)아모레퍼시픽
Priority to US15/037,636 priority Critical patent/US20160292380A1/en
Priority to JP2016532601A priority patent/JP2016537124A/ja
Priority to CN201480063368.0A priority patent/CN105745657A/zh
Publication of WO2015076617A1 publication Critical patent/WO2015076617A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/483Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to an apparatus and method for predicting skin age, and more particularly, to an apparatus and method for predicting skin age of a person using statistical quantification means.
  • Human skin is aging by the passage of time and by environmental factors. Since the aging of human skin proceeds with individual deviations, even those with the same biological age may have different degrees of aging of the skin.
  • the human skin condition can be judged by the enlarged visual characteristics and the length, width and thickness of the skin wrinkles. Based on these visual features and personal experience, experts infer the skin condition using the abstract concept of skin age. Skin age is more affected by the subject's apparent skin characteristics and the extent of skin aging than with the biological age of the subject.
  • the skin age may be determined differently according to the subjective feeling of the person who observes the skin of the subject, and an objective criterion for determining the skin age is not established, which makes it difficult to quantify the skin age.
  • relative superiority such as which skin is younger, was relatively easy to assess, but objective and quantitative assessments such as how old the skin of each subject was were There was a difficulty that could not be easily judged without analysis.
  • Another object of the present invention is to provide an apparatus and method capable of quantifying and evaluating the skin age of a person without the analysis of an expert.
  • the skin age prediction method includes calculating a skin age grade by substituting at least one related factor representing a skin condition of a subject into a skin age prediction equation, wherein the skin age prediction equation is a regression constant and It consists of a linear combination of at least one variable term each corresponding to said at least one related factor.
  • the method may further include measuring or receiving the at least one related factor.
  • the method may further include determining a skin age of the subject from the calculated skin age grade.
  • the step of determining the skin age of the subject may comprise: scaling the calculated skin age grade according to a predetermined method; And calculating the skin age of the subject as the scaling result.
  • the related factors include the pigmented area and the area around the wrinkles of the subject.
  • the skin age prediction formula may correlate a plurality of samples to determine the at least one related factor among a plurality of factors indicative of a human skin condition, and multiplex the plurality of samples for the determined related factors.
  • Regression analysis is used to determine the regression constant and the at least one variable term and is determined by linear combination of the determined regression constant and the at least one variable term.
  • the at least one variable term is expressed as a product of a variable corresponding to any one of the pigment area and the periphery wrinkle area and a beta value corresponding to the variable, respectively.
  • the skin age prediction equation is, Wherein Q19 is the skin age grade, X1 is a variable corresponding to the pigment area, X2 is a variable corresponding to the area around the eye area, 7.414 is the regression constant, and -0.0000558 and The -0.0000576 is a beta value corresponding to the X1 and the X2, respectively.
  • Skin age prediction apparatus includes a storage unit for storing the skin age prediction formula; And a processor for substituting at least one related factor indicative of the subject's skin condition to the stored skin age prediction equation, the skin age rating being a regression constant and the at least one related factor, respectively. It consists of a linear combination of corresponding at least one variable term.
  • the apparatus may further include a measuring unit measuring the at least one related factor.
  • the skin age of a person can be easily quantified and evaluated.
  • 1 is a diagram showing a correlation between the skin age of a person and the actual age.
  • 2 is a bar diagram of samples having the same average actual age classified into different groups according to skin age.
  • 3 is a bar chart showing skin age of samples divided into five grades by expert evaluation.
  • FIG. 4 is a table illustrating a result of correlation analysis for determining a related factor according to an embodiment of the present invention.
  • 5 is a table showing the results of multiple regression analysis showing the effect of the association factor on the skin age according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of determining a skin age prediction equation according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method for predicting skin age according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a correlation between the skin age of a person and the actual age.
  • the actual age and skin age of the specimens (people who participated in the experiment or measurement) are plotted on a two-dimensional plane.
  • the skin age of the samples was measured through visual evaluation and questionnaire evaluation of experts.
  • the skin age of the specimens generally increases as the actual age increases (11). Nevertheless, as seen in the specimens located at the bottom right of the figure 10 or the specimens located at the top left of the figure 10, the skin age of the specimens is not necessarily proportional to the actual age. This is because the skin age of humans has both endogenous factors, which are natural aging according to the passage of time, and environmental factors, which are aging due to skin exposure environment and skin care habits.
  • the skin age can be diagnosed to some extent only through visual evaluation of the expert, and even the judgment result may be different according to the subjective feeling of the expert.
  • the present invention by providing a means for quantifying and predicting the skin age of a person objectively, it is possible to predict the skin age more simply and objectively.
  • FIG. 2 is a bar diagram of samples having the same average actual age classified into different groups according to skin age. Referring to FIG. 2, samples having the same average actual age are shown in the bar graph 20 divided into a group of high skin age (H) and a group of low skin age (L).
  • H high skin age
  • L low skin age
  • the samples having the same mean actual age are divided into different groups according to skin age. Classified. Then, various factors related to the skin condition of the specimens were measured, and the correlation between the measured factors and the skin age was analyzed to determine related factors directly related to the skin age.
  • correlation analysis which is a general statistical means, is used. As shown in FIG. 3, since the influence of endogenous factors may be minimized by determining a related factor in a sample having the same average actual age, the related factor may be determined by focusing more on environmental factors.
  • FIG. 3 is a bar chart showing skin age of samples divided into five grades by expert evaluation. Referring to FIG. 3, the skin age of the specimens is shown by a bar graph 30 classified by experts to the 5th grade.
  • the group (A) rated as the first grade is a group in which the skin age is evaluated to be less than 35 years old by expert evaluation.
  • Group (B) rated as Grade 2 is a group in which skin age was assessed between 35 and 41 years old by expert evaluation.
  • Group (C) rated at Grade 3 is a group of skin ages between 42 and 48 years old, assessed by expert assessment.
  • Group D, rated as Grade 4 is a group whose skin age ranges between 49 and 55 years old by expert assessment.
  • Group (E) rated as Grade 5 is a group whose skin age is estimated to be 56 years or older by expert evaluation.
  • the present invention may classify the skin age of the samples by different classification criteria.
  • the present invention can classify specimens into ten groups of skin age 1 to 100 years old, of equal intervals or of the same size.
  • the average actual age of the samples is not required to be the same, and experts evaluate the skin age of the samples based only on the observed skin condition.
  • One-way analysis of variance of the skin age evaluation results of experts showed no significant difference, thereby securing objectivity of the evaluation results.
  • the table 40 includes factors 41 representing skin conditions and their correlation analysis results.
  • n represents the total number of samples
  • r represents the correlation coefficient calculated according to the correlation analysis method
  • p-value represents the significant probability
  • Q19 represents the expert evaluation result.
  • Q19 is an expert evaluation result, and may correspond to a value of 1 to 5, respectively, when the skin age is 1 to 5 levels (that is, Q19 of group A of FIG. 3 is 1).
  • * indicates significance at the 0.05 level in the 2-tailed analysis
  • ** indicates significance at the 0.01 level in the 2-tailed analysis. It is present.
  • the table 40 in FIG. 4 shows the correlation between the factors 41 and Q19.
  • the correlation coefficient r is a value between -1 and 1 indicating how much linear relationship the factors 41 and Q19 have.
  • r ⁇ -0.7 means that the factor and Q19 have a strong negative linear relationship
  • -0.7 ⁇ r ⁇ -0.3 means that the factor and Q19 have some distinct negative linear relationship
  • -0.3 ⁇ r ⁇ -0.1 means that the factor and Q19 have a weak negative linear relationship
  • 0.7 ⁇ r means that the factor and Q19 have a strong negative linear relationship
  • 0.3 ⁇ r ⁇ 0.7 means that the factor and Q19 have some distinct negative linear relationship
  • 0.1 ⁇ r ⁇ 0.3 means that the factor and Q19 have a strong negative linear relationship.
  • Q19 means having a weak negative linear relationship. If -0.1 ⁇ r ⁇ 0.1, the factor and Q19 are considered not to have a significant linear relationship (N.S).
  • the correlation coefficient (r) between the wrinkle area of the eye and Q19 is -0.532 (significance level 0.05), and the significance probability at that time is 0.011 (43).
  • the correlation coefficient r between the pigment area and Q19 is -0.561 (significance level 0.01), and the significance probability at that time is 0.007 (44).
  • Factors (corrugated wrinkle area and pigment area) analyzed to correlate with Q19 become the relevant factor in the present invention.
  • the related factors determined herein are exemplary, and other factors (eg, skin texture) not described herein may be added as the related factors.
  • the measured values of the factors 41 used in the correlation analysis may not be a value indicating an absolute number, content or area.
  • the measured values of the factors 41 may be relative values obtained by scaling an absolute number, content or area, and may be a processed value proportional to the absolute number, content or area.
  • the measured value of the wrinkle area of the eye used in the present embodiment is 30, this does not mean an absolute area such as 30 mm 2 or 30 cm 2, but means that the size of the area is 30 as a relative size.
  • the measured value 30 may mean 10 mm 2.
  • the measured value is proportional to the absolute area, when the measured value is doubled from 30 to 60, it means that the absolute area is also doubled.
  • a predetermined skin condition measuring means may be used to measure the area around the wrinkles and the pigment area.
  • a skin touch system STS
  • the skin touch system uses two parts, the AP scope and the AP sensor, to measure skin condition.
  • the AP scope is a magnification scope that can enlarge the subject's skin and is equipped with 30 magnification lenses, and it is a device that can acquire the skin image in two types of normal mode and polarization mode by selecting the left lever. .
  • the wrinkle area around the eye is measured by a method of calculating the area of the number of wrinkles through a conversion operation between the 2D image and the 3D image after sufficiently magnifying the wrinkle area, and calculating the total wrinkle area accordingly.
  • a method of calculating the area of the number of wrinkles through a conversion operation between the 2D image and the 3D image after sufficiently magnifying the wrinkle area and calculating the total wrinkle area accordingly.
  • the pigment area may be measured by photographing the skin surface in a polarization mode, separating the pigmentation region from the photographed skin image, and calculating the area.
  • FIG. 5 is a table showing the results of multiple regression analysis showing the effect of the association factor on the skin age according to an embodiment of the present invention.
  • the table 50 shows the related factors (pigment area, eye area wrinkle area) and their multiple regression analysis results.
  • n represents the total number of samples
  • constant is the regression constant of the regression equation (or Y-intercept of the regression graph) representing the linear relationship between the related factor and Q19
  • beta is the beta value of the regression equation.
  • p-value is the significant probability of the simple regression analysis
  • R 2 is the decision coefficient of the regression equation (or the decision coefficient of the regression graph).
  • the determination coefficient R 2 is a value representing the rate of change between the related factors and Q19, and the larger the determination coefficient, the closer the regression relationship between the related factors and Q19 becomes to a linear relationship.
  • the regression analysis showed that the pigment area and the wrinkle area of the eye area had a significant level of influence on Q19, and the skin age prediction formula (or multiplexed) was constructed according to the analysis result of the table 50.
  • Regression analysis model is shown in Equation 1.
  • Q19 is the skin age by expert evaluation
  • X1 is the measured pigment area value
  • X2 is the measured eye area area of wrinkles
  • 7.414 is the determined regression constant value
  • -0.0000558 and -0.0000576 are the pigment area and Beta value of the area around the wrinkles of the eye.
  • the measured pigment area and the measured eye area wrinkle area values are substituted into the variables X1 and X2 of the skin age prediction equation (Equation 1), respectively.
  • the substitution result is calculated as Q19, and the calculated value means the same value as the skin age evaluated by the expert within the statistical significance level. In this way, it is possible to produce the same result value within the significance level as the expert's evaluation, even without the expert evaluation.
  • the value of Q19 calculated by Equation 1 is also generally between 1 and 5.
  • the calculated Q19 value is 2
  • the subject's skin age belongs to the first grade and corresponds to the skin age of 35 to 41 years old.
  • the calculated Q19 value may be scaled to calculate a specific skin age of the subject. For example, if the calculated Q19 value is 2, it means that the subject's skin age belongs to the first grade and the skin age is between 35 and 41 years old. In this case, the interval of each grade is 7, so if the upper limit of grade 1 is subtracted 1/2 of the grade interval (ie, 31.5) as a representative value of grade 1 (ie, 31.5), the calculated Q19 is subtracted from 1. When the value is scaled 7 times and the representative value of the 1st grade is added as a reference value (7 x (2-1) + 31.5), the skin age 38.5 years is calculated corresponding to the value 2 of Q19. The calculated age of 38.5 is the median of Grade 2.
  • a scaling method is exemplary, and various scaling methods different from those described herein may be applied within the scope of the present invention.
  • the configuration of the present invention as described above, it is possible to predict the skin age of a person by using a statistical measurement means, even without expert analysis of the expert can easily quantify and evaluate the skin age of a person. Further, by predicting the skin age of the subject through the proposed method, it is possible to obtain basic information for suggesting a cosmetic suitable for the skin of the subject.
  • the predictive equation determination method includes steps S110 to S130.
  • step S110 the correlation is analyzed to determine a related factor.
  • various factor values are measured from the skin condition of the samples, and the measured values and the skin age of the samples are correlated to determine related factors that affect the skin age.
  • Specific methods for determining the related factors are as described with reference to FIGS. 4 to 5, and in embodiments of the present invention, the related factors were analyzed by the pigment area and the wrinkle area of the eye area.
  • step S120 multiple regression analysis of the samples for the determined association factors, to determine the extent of the effect of the association factors on the skin age in detail.
  • the multiple regression analysis method for the related factors is the same as described with reference to FIGS. 4 to 5.
  • step S130 the skin age prediction equation is determined according to the result of the multiple regression analysis.
  • the determined skin age prediction equation is as described in Equation 1, and the prediction equation is constructed by a linear combination of the regression constant according to the multiple regression analysis and the measured pigment area and the periorbital wrinkle area multiplied with each beta value.
  • the skin age prediction method includes steps S210 to S230.
  • the skin age prediction method may be performed by at least one computing device.
  • the computing device may include a storage unit that stores a skin age prediction equation or an algorithm representing the prediction equation, and a processor that calculates skin age by substituting the measured values of related factors into the prediction equation or algorithm.
  • the computing device may further include a measuring unit measuring related factors of the subject. Since a general computing device for storing data and driving a predetermined algorithm with reference to the stored data is well known in the art, a detailed description thereof will be omitted herein.
  • step S210 the related factors of the subject are measured.
  • the related factor may be a pigment area and an eye wrinkle area.
  • the skin age grade is calculated by substituting the measured factor values into the skin age prediction equation.
  • the pigment area is substituted for X1 in Equation 1 and the eye wrinkle area is substituted for X2 in Equation 1, and as a result of substitution, the Q19 value becomes the skin age grade of the subject.
  • the calculated skin age grade may be a predetermined grade that indicates the subject's skin age level, or may be a direct quantification of the subject's skin age.
  • the specific skin age of the subject is determined from the calculated skin age grade.
  • the skin age prediction method may determine the skin age of the subject by scaling the calculated skin age grade according to a predetermined method. Specific methods or examples of scaling skin age grades are the same as described in FIG. 5.
  • the skin age prediction method of the present invention as described above, it is possible to predict the skin age of a person by using a statistical measurement means, and even without expert analysis of the skin age can be easily quantified and evaluated. Further, by predicting the skin age of the subject through the proposed method, it is possible to obtain basic information for suggesting a cosmetic suitable for the skin of the subject.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 통계적 계량화 수단을 이용하여 사람의 피부 나이를 예측하는 장치 및 방법을 제공한다. 본 발명에 따른 피부 나이 예측 방법은 대상자의 피부 상태를 나타내는 적어도 하나의 유관 팩터들을 피부 나이 예측식에 대입하여 피부 나이 등급을 산출하는 단계를 포함하고, 피부 나이 예측식은 회귀 상수 및 적어도 하나의 유관 팩터들에 각각 대응하는 적어도 하나의 변수항들의 선형 조합으로써 구성된다.

Description

계량화 수단을 이용한 피부 나이 예측 장치 및 방법
본 발명은 피부 나이를 예측하는 장치 및 방법에 관한 것으로서, 더욱 상세하게는 통계적 계량화 수단을 이용하여 사람의 피부 나이를 예측하는 장치 및 방법에 관한 것이다.
인간의 피부는 세월의 흐름에 의해 그리고 환경적 요인에 의해 노화를 겪는다. 이러한 인간의 피부 노화는 개인별 편차를 가지고 진행되기 때문에, 생물학적 나이가 동일한 사람이라 하더라도 피부 노화 정도는 상이할 수 있다.
피부과 의사나 한의사와 같은 피부 전문가들에 따르면, 인간의 피부 상태는 확대된 시각적 특징과 피부 주름의 길이, 너비, 두께를 통하여 판단될 수 있다. 이러한 시각적 특징과 개인적 경험에 기초하여 전문가들은 피부 나이라는 추상적인 개념을 사용하여 피부 상태를 추론한다. 피부 나이는 대상자의 생물학적 나이보다는 대상자의 외관적인 피부 특징이나 피부 노화 진행 정도에 더욱 큰 영향을 받는다.
한편, 이러한 피부 나이는 대상자의 피부를 관찰하는 사람의 주관적인 느낌에 따라 다르게 판단될 수 있으며, 피부 나이를 판별하기 위한 객관적인 기준도 정립되지 않아, 피부 나이를 계량화하는 데 어려움이 있었다. 즉, 서로 다른 대상자에 대해, 어느 쪽이 더 피부 나이가 어린지와 같은 상대적인 우열은 비교적 용이하게 평가할 수 있었으나, 각 대상자의 피부 나이가 몇 세인지와 같은 객관적이고 계량화된 평가는 전문가의 전문적인 분석이 아니면 쉽게 판단할 수 없는 난점이 있었다.
본 발명의 목적은 통계적 계량 수단을 이용하여 사람의 피부 나이를 예측하는 장치 및 방법을 제공하는 데 있다.
본 발명의 다른 목적은 전문가의 분석 없이도, 사람의 피부 나이를 계량화하여 평가할 수 있는 장치 및 방법을 제공하는 데 있다.
본 발명의 또 다른 목적은 대상자에게 적합한 화장품을 제안하기 위해, 대상자의 피부 나이를 예측할 수 있는 장치 및 방법을 제공하는 데 있다.
본 발명의 실시 예들에 따른 피부 나이 예측 방법은 대상자의 피부 상태를 나타내는 적어도 하나의 유관 팩터들을 피부 나이 예측식에 대입하여 피부 나이 등급을 산출하는 단계를 포함하고, 상기 피부 나이 예측식은 회귀 상수 및 상기 적어도 하나의 유관 팩터들에 각각 대응하는 적어도 하나의 변수항들의 선형 조합으로써 구성된다.
실시 예로서, 상기 적어도 하나의 유관 팩터들을 측정하거나 입력받는 단계를 더 포함한다.
실시 예로서, 상기 산출된 피부 나이 등급으로부터 상기 대상자의 피부 나이를 결정하는 단계를 더 포함한다.
실시 예로서, 상기 대상자의 피부 나이를 결정하는 단계를 포함하는 단계는, 상기 산출된 피부 나이 등급을 미리 결정된 방법에 따라 스케일링하는 단계; 및 상기 스케일링 결과로서 상기 대상자의 피부 나이를 산출하는 단계를 포함한다.
실시 예로서, 상기 유관 팩터들은 상기 대상자의 색소 면적 및 눈가 주름 면적을 포함한다.
실시 예로서, 상기 피부 나이 예측식은 복수의 표본들을 상관 분석하여 사람의 피부 상태를 나타내는 복수의 팩터들 중 상기 적어도 하나의 유관 팩터들을 결정하고, 상기 결정된 유관 팩터들에 대해 상기 복수의 표본들을 다중 회귀 분석하여 상기 회귀 상수 및 상기 적어도 하나의 변수항들을 결정하고, 상기 결정된 회귀 상수 및 적어도 하나의 변수항들을 선형 조합하여 결정된다.
실시 예로서, 상기 적어도 하나의 변수항들은, 각각 상기 색소 면적 및 눈가 주름 면적 중 어느 하나에 대응하는 변수와 상기 변수에 대응하는 베타 값의 곱으로 표현된다.
실시 예로서, 상기 피부 나이 예측식은, 수학식
Figure PCTKR2014011271-appb-I000001
으로 표현되고, 상기 Q19는 상기 피부 나이 등급이고, 상기 X1은 상기 색소 면적에 대응하는 변수이고, 상기 X2는 상기 눈가 주름 면적에 대응하는 변수이고, 상기 7.414는 상기 회귀 상수이고, 상기 -0.0000558 및 상기 -0.0000576은 각각 상기 X1 및 상기 X2에 대응하는 베타 값이다.
본 발명의 실시 예들에 따른 피부 나이 예측 장치는 피부 나이 예측식을 저장하는 저장부; 및 대상자의 피부 상태를 나타내는 적어도 하나의 유관 팩터들을 상기 저장된 피부 나이 예측식에 대입하여 피부 나이 등급을 산출하는 프로세서를 포함하고, 상기 피부 나이 예측식은 회귀 상수 및 상기 적어도 하나의 유관 팩터들에 각각 대응하는 적어도 하나의 변수항들의 선형 조합으로써 구성된다.
실시 예로서, 상기 적어도 하나의 유관 팩터들을 측정하는 측정부를 더 포함한다.
본 발명의 실시 예들에 따르면, 통계적 계량 수단을 이용하여 사람의 피부 나이를 예측할 수 있다.
또한, 전문가의 전문적인 분석이 없더라도, 손쉽게 사람의 피부 나이를 계량화하여 평가할 수 있다.
또한, 대상자의 피부 나이를 예측함으로써, 대상자의 피부에 적합한 화장품을 제안할 수 있다.
도 1은 사람의 피부 나이와 실제 나이 사이의 상관도를 나타내는 도면이다.
도 2는 평균적인 실제 나이가 동일한 표본들을 피부 나이에 따라 서로 다른 군으로 분류한 막대 도면이다.
도 3은 전문가 평가에 의해 다섯 등급으로 나누어진 표본들의 피부 나이를 나타내는 막대 도면이다.
도 4는 본 발명의 실시 예에 따른, 유관 팩터를 결정하기 위한 상관 분석의 결과를 나타내는 테이블이다.
도 5는 본 발명의 실시 예에 따른, 유관 팩터가 피부 나이에 미치는 영향을 나타내는 다중 회귀 분석 결과를 나타내는 테이블이다.
도 6은 본 발명의 실시 예에 따른, 피부 나이 예측식을 결정하는 방법을 나타내는 순서도이다.
도 7은 본 발명의 실시 예에 따른, 피부 나이 예측 방법을 나타내는 순서도이다.
후술하는 본 명세서에 대한 상세한 설명은, 본 명세서가 실시될 수 있는 특정 실시 예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시 예는 당업자가 본 명세서를 실시할 수 있기에 충분하도록 상세히 설명된다. 본 명세서의 다양한 실시 예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시 예에 관련하여 본 명세서의 사상 및 범위를 벗어나지 않으면서 다른 실시 예로 구현될 수 있다.
또한, 각각의 개시된 실시 예 내의 개별 구성요소의 위치 또는 배치는 본 명세서의 사상 및 범위를 벗어나지 않는 범위 내에서 다양하게 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 의도된 것이 아니며, 본 명세서의 범위는 원칙적으로 첨부한 청구항들에 의해 정해지고, 청구항들에 기재된 것 및 그와 균등한 범위의 가능한 실시 예들을 포괄한다. 유사한 참조부호가 도면들에서 사용되는 경우, 유사한 참조부호는 여러 실시 예들에 대해서 동일하거나 유사한 기능을 지칭한다.
도 1은 사람의 피부 나이와 실제 나이 사이의 상관도를 나타내는 도면이다. 도 1을 참조하면, 표본(실험 또는 측정에 참여한 사람)들의 실제 나이와 피부 나이가 2차원 평면상에 점으로 도시된다. 본 명세서에서, 표본들의 피부 나이는 전문가들의 육안 평가 및 설문 평가를 통해 측정되었다.
도 1에서, 표본들의 피부 나이는 실제 나이가 증가할수록 대체적으로 증가한다(11). 그럼에도, 도면(10)의 우하에 위치한 표본들이나 도면(10)의 좌상에 위치한 표본들에서 보는 바와 같이, 표본들의 피부 나이가 실제 나이와 반드시 비례하는 것은 아니다. 이는 사람의 피부 나이에는 세월의 흐름에 따른 자연 노화인 내인성 요인과 함께 피부 노출 환경, 피부 관리 습관 등에 따른 노화인 환경성 요인이 함께 영향을 미치기 때문이다.
따라서, 사람들은 생물학적 실제 나이만으로는 자신의 피부 나이가 어떠한지 정확히 알 수 없다. 그리고, 일반적으로 이러한 피부 나이는 전문가의 육안 평가를 통해서만 어느 정도 정확한 진단이 가능하고, 그것마저도 전문가의 주관적인 느낌에 따라 판단 결과가 상이할 수 있다. 본 발명에서는 사람의 피부 나이를 계량화하여 객관적으로 예측하는 수단을 제공함으로써, 피부 나이를 더욱 간단하고 객관적으로 예측할 수 있게 한다.
도 2는 평균적인 실제 나이가 동일한 표본들을 피부 나이에 따라 서로 다른 군으로 분류한 막대 도면이다. 도 2를 참조하면, 평균적인 실제 나이가 동일한 표본들은 피부 나이가 높은 군(H)과 피부 나이가 낮은 군(L)으로 나누어져 막대 그래프(20)로 도시된다.
본 발명의 일 실시 예에서, 피부 나이에 영향을 주는 팩터(이하, 유관 팩터)들을 결정하기 위해, 먼저 전문가 육안 평가 및 설문 평가를 통해 평균 실제 나이가 동일한 표본들을 피부 나이에 따라 서로 다른 군으로 분류하였다. 그리고, 표본들의 피부 상태와 관련된 다양한 팩터들을 측정하고, 측정된 팩터들과 피부 나이 사이의 상관 관계를 분석하여 피부 나이와 직접적으로 관련된 유관 팩터들을 결정하였다.
팩터들과 피부 나이 사이의 상관관계를 분석하기 위해서, 일반적인 통계적 수단인 상관 분석법이 이용된다. 도 3과 같이 평균적인 실제 나이가 동일한 표본을 대상으로 유관 팩터를 결정하면 내인성 요인의 영향을 최소화할 수 있으므로, 환경적 요인에 더욱 집중하여 유관 팩터를 결정할 수 있다.
도 3은 전문가 평가에 의해 다섯 등급으로 나누어진 표본들의 피부 나이를 나타내는 막대 도면이다. 도 3을 참조하면, 표본들의 피부 나이는 전문가들에 의해 5등급으로 분류된 막대 그래프(30)로 도시된다.
본 실시 예에서, 전문가들은 표본들의 실제 나이를 블라인드(blind)한 상태에서 표본들의 피부 상태만을 보고 그들의 피부 나이를 평가하였다. 전문가 평가에 따른 피부 나이 군들(A, B, C, D, E)은 1 내지 5등급으로 분류된다.
실시 예로서, 1등급으로 평가된 군(A)은 전문가 평가에 의해 피부 나이가 35세 미만으로 평가된 군이다. 2등급으로 평가된 군(B)은 전문가 평가에 의해 피부 나이가 35세 내지 41세 사이로 평가된 군이다. 3등급으로 평가된 군(C)은 전문가 평가에 의해 피부 나이가 42세 내지 48세 사이로 평가된 군이다. 4등급으로 평가된 군(D)은 전문가 평가에 의해 피부 나이가 49세 내지 55세 사이로 평가된 군이다. 5등급으로 평가된 군(E)은 전문가 평가에 의해 피부 나이가 56세 이상으로 평가된 군이다.
다만, 이와 같은 피부 나이 분류 기준은 예시적인 것으로서, 본 발명은 이와 다른 분류 기준으로 표본들의 피부 나이를 분류할 수 있다. 예를 들어, 본 발명은 표본들을 피부 나이 1세부터 100세까지, 같은 간격의 또는 같은 크기의 10개의 군으로 분류할 수 있다.
본 실시 예에서는 표본들의 평균적인 실제 나이가 동일할 것을 요구하지 않으며, 전문가들은 관찰한 피부 상태만으로 표본들의 피부 나이를 평가한다. 전문가들의 피부 나이 평가 결과는 일원분산분석을 통해 유의차가 없음이 확인되었고, 이로써 평가 결과의 객관성을 확보하였다.
한편, 본 실시 예에서는 도 2와 마찬가지로, 피부 나이에 영향을 주는 팩터(factor)들을 결정하기 위해, 표본들의 피부 상태와 관련된 다양한 팩터들을 측정하고, 측정된 팩터들과 피부 나이 사이의 상관 관계를 분석하여 피부 나이와 직접적으로 관련된 유관 팩터들을 결정한다. 팩터들과 피부 나이 사이의 상관관계를 분석하기 위해, 일반적인 통계적 수단인 상관 분석법을 이용하였다. 본 실시 예에 따른 상관 분석 방법에 대한 구체적인 예가 도 4와 함께 후술된다.
도 4는 본 발명의 실시 예에 따른, 유관 팩터를 결정하기 위한 상관 분석의 결과를 나타내는 테이블이다. 도 4를 참조하면, 테이블(40)은 피부 상태를 나타내는 팩터들(41)과 그들의 상관 분석 결과를 포함한다.
도 4에서, n은 표본의 총 수를 나타내고, r은 상관 분석법에 따라 산출된 상관 계수를 나타내고, p-value는 유의 확률(significant probability)을 나타내고, Q19는 전문가 평가 결과를 나타낸다. 여기서 Q19는 전문가 평가 결과로서, 피부 나이가 1등급 내지 5등급인 경우 각각 1 내지 5의 값에 대응될 수 있다(즉, 도 3의 A군의 Q19는 1이다). 한편, 테이블(40)에서 *는 2-테일드(2-tailed) 분석에 있어서 0.05 수준에서 유의성이 있음을 나타내고, **는 2-테일드(2-tailed) 분석에 있어서 0.01 수준에서 유의성이 있음을 나타낸다.
도 4에서 테이블(40)은 팩터들(41)과 Q19 사이의 상관 관계를 나타낸다. 구체적으로, 상관 계수(r)는 -1 내지 1 사이의 값으로서 각 팩터들(41)과 Q19가 어느 정도의 선형 관계를 갖는지를 나타낸다.
예를 들어, r<-0.7이면 팩터와 Q19는 강한 음적 선형 관계를 갖는 것을 의미하고, -0.7<r<-0.3이면 팩터와 Q19는 어느정도 뚜렷한 음적 선형 관계를 갖는 것을 의미하고, -0.3<r<-0.1이면 팩터와 Q19는 약한 음적 선형 관계를 갖는 것을 의미한다. 반면에, 0.7<r이면 팩터와 Q19는 강한 음적 선형 관계를 갖는 것을 의미하고, 0.3<r<0.7이면 팩터와 Q19는 어느정도 뚜렷한 음적 선형 관계를 갖는 것을 의미하고, 0.1<r<0.3이면 팩터와 Q19는 약한 음적 선형 관계를 갖는 것을 의미한다. -0.1<r<0.1이면 팩터와 Q19는 유의미한 선형 관계를 갖지 않는 것으로 간주한다(N.S).
도 4에서 팩터들(41) 중 대부분(수분, 유분, 탄력, 피부결, 모공 크기, 모공 개수, 피지 크기, 피지 개수)은 피부 나이를 나타내는 Q19와 유의미한 상관 관계를 갖지 않는 것(N.S)으로 분석되었다(42). 그리고, 팩터들(41) 중 눈가 주름 면적 및 색소 면적이 Q19과 유의미한 상관 관계를 갖는 것으로 분석되었다(43, 44)
눈가 주름 면적과 Q19 사이의 상관 계수(r)는 -0.532이며(유의 수준 0.05), 그 때의 유의 확률은 0.011이다(43). 색소 면적과 Q19 사이의 상관 계수(r)는 -0.561이며(유의 수준 0.01), 그 때의 유의 확률은 0.007이다(44). Q19와 상관 관계를 갖는 것으로 분석된 팩터들(눈가 주름 면적 및 색소 면적)은 본 발명에서의 유관 팩터가 된다. 다만, 여기서 결정된 유관 팩터들은 예시적인 것으로서, 여기서 설명되지 않은 다른 팩터(예를 들어, 피부결)가 유관 팩터로서 추가될 수 있다.
한편, 본 실시 예에서, 상관 분석법(또는, 이후의 다중 회귀 분석법)에 사용된 팩터들(41)의 측정값은 절대적인 개수, 함량 또는 면적을 나타내는 값이 아닐 수 있다. 구체적으로, 팩터들(41)의 측정값은 절대적인 개수, 함량 또는 면적이 스케일링된 상대적인 값으로서, 절대적인 개수, 함량 또는 면적에 비례하는 가공된 수치일 수 있다. 예를 들어, 본 실시 예에서 사용된 눈가 주름 면적의 측정값이 30일 때, 이것은 30㎟ 또는 30㎠와 같은 절대적인 면적을 의미하는 것이 아니라, 상대적인 크기로서 면적의 크기 정도가 30이라는 것을 의미한다. 즉, 측정값 30은 10㎟를 의미할 수도 있다. 다만, 이때에도 측정값은 절대적인 면적에 비례하는 값이므로, 측정값이 30에서 60으로 두 배 증가하면, 절대적인 면적도 두 배 증가하였음을 의미한다.
실시 예로서, 눈가 주름 면적 및 색소 면적을 측정하기 위해, 미리 결정된 피부 상태 측정 수단이 사용될 수 있다. 이러한 피부 상태 측정 수단의 일 예로서 주식회사 아모레퍼시픽이 사용하는 스킨터치 시스템(Skin Touch System, STS)이 사용될 수 있다. 스킨터치 시스템은 AP 스코프와 AP 센서의 두 부분을 이용하여 피부 상태를 측정한다. 여기서 AP 스코프는 대상자의 피부를 확대하여 볼 수 있는 확대 촬영용 스코프로서 30의 확대 렌즈가 장착되어 있으며, 좌측 레버를 선택함으로써 일반 모드와 편광 모드의 두 가지 형태로 피부 영상을 획득할 수 있는 장치이다.
실시 예로서, 눈가 주름 면적은 주름 부위를 충분히 확대 촬영한 후, 2D 이미지와 3D 이미지 사이의 변환 작업을 통해 주름의 개수의 면적을 계산하고, 그에 따른 전체 주름 면적을 산출하는 방법을 통해 측정될 수 있다.
실시 예로서, 색소 면적은 피부 표면을 편광모드에서 촬영하고, 촬영된 피부 이미지 중 색소침착 영역을 따로 분리한 후 그 면적을 산출하는 방법을 통해 측정될 수 있다.
도 5는 본 발명의 실시 예에 따른, 유관 팩터가 피부 나이에 미치는 영향을 나타내는 다중 회귀 분석 결과를 나타내는 테이블이다. 도 5를 참조하면, 테이블(50)은 유관 팩터들(색소 면적, 눈가 주름 면적)과 그들의 다중 회귀 분석 결과를 도시한다.
도 5에서, 다중 회귀 분석은 유관 팩터들이 Q19에 미치는 영향을 통계적으로 객관화 및 구체화하기 위해 사용되었다. 테이블(50)에서, n은 표본의 총 수를 나타내고, 상수는 유관 팩터와 Q19 사이의 선형 관계를 나타내는 회귀식의 회귀 상수(또는, 회귀 그래프의 Y절편)이고, 베타는 회귀식의 베타 값(또는, 회귀 그래프의 기울기)이고, p-value는 단순 회귀 분석의 유의 확률(significant probability)이고, R2는 회귀식의 결정 계수(또는, 회귀 그래프의 결정 계수)이다. 여기서, 결정 계수(R2)는 유관 팩터들과 Q19 사이의 변동 비율을 나타내는 값으로서 결정 계수가 클수록 유관 팩터들과 Q19 사이의 회귀 관계는 선형 관계에 가까워진다,
테이블(50)을 참조하면, 회귀 분석 결과 색소 면적과 눈가 주름 면적이 Q19에 대해 유의 수준의 영향을 미치는 것으로 나타났으며, 테이블(50)의 분석 결과에 따라 구성된 피부 나이 예측식(또는, 다중 회귀 분석 모델)은 수학식 1과 같다.
[수학식 1]
Figure PCTKR2014011271-appb-I000002
단, 여기서 Q19는 전문가 평가에 의한 피부 나이이고, X1은 측정된 색소 면적 값이고, X2는 측정된 눈가 주름 면적 값이고, 7.414는 결정된 회귀 상수 값이고, -0.0000558 및 -0.0000576은 각각 색소 면적 및 눈가 주름 면적의 베타 값이다.
본 실시 예에서는, 측정된 색소 면적 및 측정된 눈가 주름 면적 값을 피부 나이 예측식(수학식 1)의 변수들(X1, X2)에 각각 대입한다. 대입한 결과는 Q19로서 산출되고, 산출된 값은 통계적인 유의수준 내에서 전문가가 평가한 피부 나이와 동일한 값을 의미한다. 이러한 방법을 통하면 전문가 평가를 거치지 않더라도, 전문가가 평가한 결과와 유의수준 내에서 동일한 결과 값을 산출할 수 있다.
한편, 앞에서 전문가 평가에 의한 피부 나이는 1 내지 5의 값을 갖도록 설계되었으므로, 수학식 1에 의해 산출된 Q19의 값도 일반적으로 1 내지 5 사이의 값이 된다. 예를 들어, 산출된 Q19의 값이 2이면, 대상자의 피부 나이는 1등급에 속하고, 피부 나이 35세 내지 41세에 대응한다.
실시 예로서, 이로부터 대상자의 구체적인 피부 나이를 산출하기 위해 산출된 Q19 값을 스케일링할 수 있다. 예를 들어, 산출된 Q19의 값이 2이면, 대상자의 피부 나이는 1등급에 속하는 동시에 피부 나이가 35세와 41세 사이임을 의미한다. 이때, 각 등급의 간격은 7이므로 1등급의 상한에서 등급 간격의 1/2을 뺀 값(즉, 31.5)을 1등급의 대표값으로 정의하면(즉, 31.5), 산출된 Q19에서 1을 뺀 값을 7배 스케일링하고 1등급의 대표값을 기준값으로서 더하면(7×(2-1)+31.5), Q19의 값 2에 대응하여 피부 나이 38.5세가 산출된다. 산출된 38.5세는 2등급의 중간값이다. 다만, 이와 같은 스케일링 방법은 예시적인 것으로서, 여기서 설명한 것과 다른 다양한 스케일링 방법이 본 발명의 범위 내에서 적용될 수 있다.
위와 같은 본 발명의 구성에 따르면, 통계적 계량 수단을 이용하여 사람의 피부 나이를 예측할 수 있고, 전문가의 전문적인 분석이 없더라도, 손쉽게 사람의 피부 나이를 계량화하여 평가할 수 있다. 나아가, 제안된 방법을 통해 대상자의 피부 나이를 예측함으로써, 대상자의 피부에 적합한 화장품을 제안하기 위한 기초 정보를 얻을 수 있다.
도 6은 본 발명의 실시 예에 따른, 피부 나이 예측식을 결정하는 방법을 나타내는 순서도이다. 도 6을 참조하면, 예측식 결정 방법은 S110 단계 내지 S130 단계를 포함한다.
S110 단계에서, 표본들을 상관 분석하여 유관 팩터를 결정한다. 구체적으로, 표본들의 피부 상태로부터 다양한 팩터 값들을 측정하고, 측정된 값들과 표본들의 피부 나이를 상관 분석하여 피부 나이에 영향을 주는 유관 팩터들을 결정한다. 유관 팩터들을 결정하는 구체적인 방법은 도 4 내지 도 5에서 설명한 바와 같으며, 본 발명의 실시 예들에서, 유관 팩터는 색소 면적과 눈가 주름 면적으로 분석되었다.
S120 단계에서, 결정된 유관 팩터들에 대해 표본들을 다중회귀분석하여, 유관 팩터들이 피부 나이에 미치는 영향의 정도를 구체적으로 결정한다. 유관 팩터들에 대한 다중회귀분석 방법은 도 4 내지 도 5에서 설명한 바와 동일하다.
S130 단계에서, 다중회귀분석의 결과에 따라 피부 나이 예측식을 결정한다. 결정된 피부 나이 예측식은 수학식 1에서 설명된 바와 같으며, 다중회귀분석에 따른 회귀 상수와, 각각의 베타 값과 곱해진 측정된 색소 면적 및 눈가 주름 면적의 선형 조합으로써 예측식이 구성된다.
도 7은 본 발명의 실시 예에 따른, 피부 나이 예측 방법을 나타내는 순서도이다. 도 7을 참조하면, 피부 나이 예측 방법은 S210 단계 내지 S230 단계를 포함한다.
본 실시 예에서, 피부 나이 예측을 위한 예측식은 도 6의 방법에 의해 미리 결정된 것으로 가정된다.
본 실시 예에서, 피부 나이 예측 방법은 적어도 하나의 컴퓨팅 장치에 의해 수행될 수 있다. 컴퓨팅 장치는 피부 나이 예측식 또는 예측식을 나타내는 알고리즘을 저장하는 저장부와, 유관 팩터들의 측정값을 예측식 또는 알고리즘에 대입하여 피부 나이를 산출하는 프로세서를 포함할 수 있다. 실시 예로서, 컴퓨팅 장치는 대상자의 유관 팩터들을 측정하는 측정부를 더 포함할 수 있다. 데이터를 저장하고, 저장된 데이터를 참조하여 미리 결정된 알고리즘을 구동하는 일반적인 컴퓨팅 장치에 관한 내용은 당해 기술 분야에 널리 알려져 있으므로, 여기서는 그에 대한 구체적인 설명을 생략한다.
S210 단계에서, 대상자의 유관 팩터들을 측정한다. 실시 예로서, 유관 팩터는 색소 면적 및 눈가 주름 면적일 수 있다.
S220 단계에서, 측정된 유관 팩터 값들을 피부 나이 예측식에 대입하여 피부 나이 등급을 산출한다. 예를 들어, 색소 면적은 수학식 1의 X1에 눈가 주름 면적은 수학식 1의 X2에 각각 대입되고, 대입된 결과로서 Q19 값이 대상자의 피부 나이 등급이 된다. 산출된 피부 나이 등급은 대상자의 피부 나이 수준을 가리키는 미리 결정된 등급일 수 있고, 또는 대상자의 피부 나이를 직접 계량화한 수치일 수도 있다.
S230 단계에서, 산출된 피부 나이 등급으로부터 대상자의 구체적인 피부 나이를 결정한다. 실시 예로서, 피부 나이 예측 방법은 산출된 피부 나이 등급을 미리 결정된 방법에 따라 스케일링하여 대상자의 피부 나이를 결정할 수 있다. 피부 나이 등급을 스케일링하는 구체적인 방법 또는 예시는 도 5에서 설명한 바와 동일하다.
상기와 같은 본 발명의 피부 나이 예측 방법에 따르면, 통계적 계량 수단을 이용하여 사람의 피부 나이를 예측할 수 있고, 전문가의 전문적인 분석이 없더라도, 손쉽게 사람의 피부 나이를 계량화하여 평가할 수 있다. 나아가, 제안된 방법을 통해 대상자의 피부 나이를 예측함으로써, 대상자의 피부에 적합한 화장품을 제안하기 위한 기초 정보를 얻을 수 있다.
본 명세서의 상세한 설명에서는 구체적인 실시 예를 들어 설명하였으나, 본 명세서의 범위에서 벗어나지 않는 한 각 실시 예는 여러 가지 형태로 변형될 수 있다.
또한, 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 명세서의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 명세서의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위 및 그 균등물에 의해 정해져야 한다.

Claims (10)

  1. 대상자의 피부 상태를 나타내는 적어도 하나의 유관 팩터들을 피부 나이 예측식에 대입하여 피부 나이 등급을 산출하는 단계를 포함하고,상기 피부 나이 예측식은 회귀 상수 및 상기 적어도 하나의 유관 팩터들에 각각 대응하는 적어도 하나의 변수항들의 선형 조합으로써 구성되는, 피부 나이 예측 방법.
  2. 제 1 항에 있어서,
    상기 적어도 하나의 유관 팩터들을 측정하거나 입력받는 단계를 더 포함하는, 피부 나이 예측 방법.
  3. 제 1 항에 있어서,
    상기 유관 팩터들은 상기 대상자의 색소 면적 및 눈가 주름 면적을 포함하는, 피부 나이 예측 방법.
  4. 제 3 항에 있어서,
    상기 피부 나이 예측식은,
    복수의 표본들을 상관 분석하여 사람의 피부 상태를 나타내는 복수의 팩터들 중 상기 적어도 하나의 유관 팩터들을 결정하고, 상기 결정된 유관 팩터들에 대해 상기 복수의 표본들을 다중 회귀 분석하여 상기 회귀 상수 및 상기 적어도 하나의 변수항들을 결정하고, 상기 결정된 회귀 상수 및 적어도 하나의 변수항들을 선형 조합하여 결정되는, 피부 나이 예측 방법.
  5. 제 4 항에 있어서,
    상기 적어도 하나의 변수항들은, 각각 상기 색소 면적 및 눈가 주름 면적 중 어느 하나에 대응하는 변수와 상기 변수에 대응하는 베타 값의 곱으로 표현되는, 피부 나이 예측 방법.
  6. 제 5 항에 있어서,
    상기 피부 나이 예측식은,
    수학식
    Figure PCTKR2014011271-appb-I000003
    으로 표현되고,
    상기 Q19는 상기 피부 나이 등급이고,
    상기 X1은 상기 색소 면적에 대응하는 변수이고,
    상기 X2는 상기 눈가 주름 면적에 대응하는 변수이고,
    상기 7.414는 상기 회귀 상수이고,
    상기 -0.0000558 및 상기 -0.0000576은 각각 상기 X1 및 상기 X2에 대응하는 베타 값인, 피부 나이 예측 방법.
  7. 제 1 항에 있어서,
    상기 산출된 피부 나이 등급으로부터 상기 대상자의 피부 나이를 결정하는 단계를 더 포함하는, 피부 나이 예측 방법.
  8. 제 7 항에 있어서,
    상기 대상자의 피부 나이를 결정하는 단계는,
    상기 산출된 피부 나이 등급을 미리 결정된 방법에 따라 스케일링하는 단계; 및
    상기 스케일링 결과로서 상기 대상자의 피부 나이를 산출하는 단계를 포함하는, 피부 나이 예측 방법.
  9. 피부 나이 예측식을 저장하는 저장부; 및
    대상자의 피부 상태를 나타내는 적어도 하나의 유관 팩터들을 상기 저장된 피부 나이 예측식에 대입하여 피부 나이 등급을 산출하는 프로세서를 포함하고,
    상기 피부 나이 예측식은 회귀 상수 및 상기 적어도 하나의 유관 팩터들에 각각 대응하는 적어도 하나의 변수항들의 선형 조합으로써 구성되는, 피부 나이 예측 장치.
  10. 제 9 항에 있어서,
    상기 적어도 하나의 유관 팩터들을 측정하는 측정부를 더 포함하는, 피부 나이 예측 장치.
PCT/KR2014/011271 2013-11-22 2014-11-21 계량화 수단을 이용한 피부 나이 예측 장치 및 방법 WO2015076617A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/037,636 US20160292380A1 (en) 2013-11-22 2014-11-21 Device and method for predicting skin age by using quantifying means
JP2016532601A JP2016537124A (ja) 2013-11-22 2014-11-21 計量化手段を用いた肌年齢予測装置および方法
CN201480063368.0A CN105745657A (zh) 2013-11-22 2014-11-21 用于通过使用量化手段来预测皮肤年龄的设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130142938A KR20150059394A (ko) 2013-11-22 2013-11-22 계량화 수단을 이용한 피부 나이 예측 장치 및 방법
KR10-2013-0142938 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076617A1 true WO2015076617A1 (ko) 2015-05-28

Family

ID=53179813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011271 WO2015076617A1 (ko) 2013-11-22 2014-11-21 계량화 수단을 이용한 피부 나이 예측 장치 및 방법

Country Status (6)

Country Link
US (1) US20160292380A1 (ko)
JP (1) JP2016537124A (ko)
KR (1) KR20150059394A (ko)
CN (1) CN105745657A (ko)
HK (1) HK1225477A1 (ko)
WO (1) WO2015076617A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049103A1 (en) * 2015-09-17 2017-03-23 Prodermiq, Inc. Predicting skin age based on the analysis of skin flora and lifestyle data

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105760850B (zh) * 2016-03-11 2019-02-15 重庆医科大学 基于皮肤纹理信息的无创年龄估计方法
US11055762B2 (en) * 2016-03-21 2021-07-06 The Procter & Gamble Company Systems and methods for providing customized product recommendations
CN105962892A (zh) * 2016-04-22 2016-09-28 深圳还是威健康科技有限公司 测量皮肤年龄的可穿戴设备及其方法
KR102297301B1 (ko) 2017-05-31 2021-09-06 더 프록터 앤드 갬블 캄파니 겉보기 피부 나이를 결정하기 위한 시스템 및 방법
CN110678875B (zh) 2017-05-31 2023-07-11 宝洁公司 用于引导用户拍摄自拍照的系统和方法
CN107832738B (zh) * 2017-11-28 2018-09-11 北京工商大学 一种确定皮肤pH值变化的年龄拐点的方法
CN107958709A (zh) * 2017-11-28 2018-04-24 北京工商大学 一种确定皮肤肤色变化的年龄拐点的方法
EP3747013A4 (en) * 2018-01-23 2021-09-29 Spring Discovery, Inc. METHODS AND SYSTEMS FOR DETERMINING THE BIOLOGICAL AGE OF SAMPLES
KR102228569B1 (ko) * 2019-04-16 2021-03-16 아이이씨코리아 주식회사 피부 나이 추정 방법 및 장치
JP7438819B2 (ja) * 2020-03-30 2024-02-27 株式会社ナリス化粧品 頭皮角層細胞性状を用いた毛髪、顔面性状等の推測方法
CN113796826A (zh) * 2020-06-11 2021-12-17 懿奈(上海)生物科技有限公司 一种用于检测华人人脸皮肤年龄的方法
KR102422876B1 (ko) * 2020-06-23 2022-07-25 피엔케이피부임상연구센타 주식회사 피부 나이 진단방법 및 이를 실행시키기 위한 프로그램을 기록한 저장매체
CN111967447A (zh) * 2020-09-07 2020-11-20 深圳安道客网络科技有限公司 一种局部皮肤图像分析方法
US11033516B1 (en) 2020-09-18 2021-06-15 Spring Discovery, Inc. Combination therapies with disulfiram

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095326A (ja) * 2003-09-24 2005-04-14 Kishohin Kagaku Kaiho Kenkyusho:Kk 皮膚測定値より肌年齢を算出する方法及びその表示方法
US20070086651A1 (en) * 2005-10-04 2007-04-19 Lvmh Recherche Method and apparatus for characterizing the imperfections of skin and method of assessing the anti-aging effect of a cosmetic product
JP2007159798A (ja) * 2005-12-14 2007-06-28 Hiroshima Univ 肌年齢の測定方法及びその装置
KR20100091038A (ko) * 2009-02-09 2010-08-18 손정영 피부 노화측정방법
KR20110083615A (ko) * 2008-09-04 2011-07-20 이엘씨 매니지먼트 엘엘씨 겉보기 연령의 객관적 모델, 방법 및 용도

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291773B2 (ja) * 1992-07-13 2002-06-10 井関農機株式会社 メロンの糖度測定方法
JP3426052B2 (ja) * 1995-05-23 2003-07-14 ポーラ化成工業株式会社 肌の評価装置
JPH10201740A (ja) * 1997-01-28 1998-08-04 Matsushita Electric Works Ltd 肌の表面形状計測・判定装置
CN1506042A (zh) * 2002-12-11 2004-06-23 苏加璐 使用来自胎儿细胞和组织的化合物改善皮肤状况的方法和组合物
US20050197542A1 (en) * 2004-01-29 2005-09-08 L'oreal Method and a system for determining a physical condition, in particular the apparent age, of at least one region of the body or the face of an individual
JP4800008B2 (ja) * 2005-11-11 2011-10-26 ポーラ化成工業株式会社 肌の美しさの鑑別法
JP2009082338A (ja) * 2007-09-28 2009-04-23 Masahiro Nakagawa エントロピーを用いた肌の鑑別方法
US20110033894A1 (en) * 2009-04-13 2011-02-10 Price Ii William N Engineering surface epitopes to improve protein crystallization
AU2011270457A1 (en) * 2010-06-21 2012-11-29 Pola Chemical Industries, Inc. Age estimation method and gender determination method
DK2888353T3 (en) * 2012-08-23 2019-01-07 Pell Cell Medicals Nv PROCEDURE FOR INSULATING AND CLEANING SKIN EPITHEL CELLS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095326A (ja) * 2003-09-24 2005-04-14 Kishohin Kagaku Kaiho Kenkyusho:Kk 皮膚測定値より肌年齢を算出する方法及びその表示方法
US20070086651A1 (en) * 2005-10-04 2007-04-19 Lvmh Recherche Method and apparatus for characterizing the imperfections of skin and method of assessing the anti-aging effect of a cosmetic product
JP2007159798A (ja) * 2005-12-14 2007-06-28 Hiroshima Univ 肌年齢の測定方法及びその装置
KR20110083615A (ko) * 2008-09-04 2011-07-20 이엘씨 매니지먼트 엘엘씨 겉보기 연령의 객관적 모델, 방법 및 용도
KR20100091038A (ko) * 2009-02-09 2010-08-18 손정영 피부 노화측정방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049103A1 (en) * 2015-09-17 2017-03-23 Prodermiq, Inc. Predicting skin age based on the analysis of skin flora and lifestyle data
EP3350761A4 (en) * 2015-09-17 2019-05-29 Prodermiq, Inc. PREDICTION OF SKIN AGING BASED ON THE ANALYSIS OF SKIN FLORA AND LIFE STAGES
US10679725B2 (en) 2015-09-17 2020-06-09 Prodermiq, Inc. Predicting skin age based on the analysis of skin flora and lifestyle data
US11211143B2 (en) 2015-09-17 2021-12-28 Prodermiq, Inc. Predicting skin age based on the analysis of skin flora and lifestyle data
EP4345725A3 (en) * 2015-09-17 2024-06-19 Prodermiq, Inc. Predicting skin age based on the analysis of skin flora and lifestyle data

Also Published As

Publication number Publication date
CN105745657A (zh) 2016-07-06
JP2016537124A (ja) 2016-12-01
HK1225477A1 (zh) 2017-09-08
US20160292380A1 (en) 2016-10-06
KR20150059394A (ko) 2015-06-01

Similar Documents

Publication Publication Date Title
WO2015076617A1 (ko) 계량화 수단을 이용한 피부 나이 예측 장치 및 방법
Van Lummel et al. The instrumented sit-to-stand test (iSTS) has greater clinical relevance than the manually recorded sit-to-stand test in older adults
Kang et al. Facial nerve grading systems (1985–2002): beyond the House-Brackmann scale
WO2015186963A1 (ko) 생물학적 뇌연령 산출 장치 및 그 산출 방법
Dimauro et al. Detecting clinical signs of anaemia from digital images of the palpebral conjunctiva
Andersen et al. Genetic analyses of the human eye colours using a novel objective method for eye colour classification
WO2007067536A1 (en) Method of evaluating the effects of exogenous and endogenous factors on the skin
Cameriere et al. The measurement of open apices of teeth to test chronological age of over 14-year olds in living subjects
Cao et al. Expanded Disability Status Scale (EDSS) estimation in multiple sclerosis from posturographic data
JPWO2012077476A1 (ja) 属性値推定装置、属性値推定方法、プログラム及び記録媒体
JP2004201797A (ja) 肌分析方法
WO2019194480A1 (ko) 운동 능력 파라미터들에 기초한 노쇠 정도 측정기
KR20170117840A (ko) 맞춤형 피부 진단 및 관리 시스템
WO2017155158A1 (ko) 피부결 블랍을 기초로한 피부결 평가 장치 및 그 방법
JP2007252891A (ja) 肌の美しさの目視評価値の推定方法
Liu et al. Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration
JP5544065B2 (ja) 肌状態の評価方法
Das et al. Non-invasive haemoglobin estimation by observing nail color: A pca based approach
Liu et al. Analysis of the distribution of urine color and its relationship with urine dry chemical parameters among college students in Beijing, China–a cross-sectional study
Marcozzi et al. Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n= 546) of geriatric C57BL/6 J mice
Paulis What can glove impression evidence reveal about assailants? A pilot study
JP2018196427A (ja) 肌状態評価方法及び肌状態評価装置
Vaughn et al. A comparison of hair colour measurement by digital image analysis with reflective spectrophotometry
Gonzales et al. Bmi estimation from 2d face images using support vector machine
WO2020138719A1 (ko) 개인 맞춤형 마스크 팩 정보제공 분석 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037636

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016532601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864494

Country of ref document: EP

Kind code of ref document: A1