WO2015076313A1 - 回転機構、工作機械及び半導体製造装置 - Google Patents

回転機構、工作機械及び半導体製造装置 Download PDF

Info

Publication number
WO2015076313A1
WO2015076313A1 PCT/JP2014/080689 JP2014080689W WO2015076313A1 WO 2015076313 A1 WO2015076313 A1 WO 2015076313A1 JP 2014080689 W JP2014080689 W JP 2014080689W WO 2015076313 A1 WO2015076313 A1 WO 2015076313A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
opening
hole
housing
shaft
Prior art date
Application number
PCT/JP2014/080689
Other languages
English (en)
French (fr)
Inventor
中村 剛
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014013801A external-priority patent/JP5796645B2/ja
Priority claimed from JP2014045255A external-priority patent/JP5800047B2/ja
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP14864251.5A priority Critical patent/EP3073160B1/en
Priority to KR1020167008383A priority patent/KR101802907B1/ko
Priority to CN201480051893.0A priority patent/CN105556184B/zh
Publication of WO2015076313A1 publication Critical patent/WO2015076313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/762Sealings of ball or roller bearings by means of a fluid
    • F16C33/763Sealings of ball or roller bearings by means of a fluid retained in the sealing gap
    • F16C33/766Sealings of ball or roller bearings by means of a fluid retained in the sealing gap by pumping action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings

Definitions

  • the present invention relates to a rotation mechanism, a machine tool, and a semiconductor manufacturing apparatus.
  • a rotation mechanism that rotates a rotary stage or rotates a tool or a workpiece is used in a transfer device, a semiconductor manufacturing device, a machine tool, or the like.
  • a seal using a gas is sometimes used for the rotating part in order to suppress entry of liquid or foreign matter from the outside (for example, Patent Document 1).
  • Patent Document 1 a rotating mechanism that rotates by attaching a rotating body to both sides of the shaft.
  • the technique described in Patent Document 1 is intended for a rotating mechanism in which a rotating body is attached to one end of a shaft.
  • the rotating portion is sealed using gas. There is room for improvement.
  • An object of the present invention is to provide a rotation mechanism, a machine tool, and a semiconductor manufacturing apparatus suitable for rotating a rotating part by attaching a rotating body to both sides of a shaft when the rotating part is sealed with gas.
  • the present invention includes a housing, a shaft that is inserted through a first hole and a second hole provided in the housing, a bearing that is installed in the housing and rotatably supports the shaft, and a first end of the shaft
  • a projecting portion that is provided in a portion and rotates together with the shaft and projects to the outside of the first hole in the radial direction and to the side portion of the housing, and the overhanging portion has a predetermined size with respect to the side portion of the housing.
  • This rotating mechanism supplies gas from the first opening to the first gap on the first rotating member side, and supplies gas from the second opening to the second gap on the second rotating member side. Since this gas flows out of the housing through the first gap and the second gap, the first rotating member and the second rotating member, which are rotating bodies, are sealed. As described above, this rotation mechanism is suitable for a structure in which a rotating body is attached and rotated on both sides of the shaft when the rotating portion is sealed with gas.
  • the first rotating member is disposed above the second rotating member.
  • the first gap is formed between the side portion of the housing and the overhanging portion of the first rotating member, and when the first gap on the first rotating member side is disposed above, the gas is below the first opening. The outlet is located. For this reason, when the first rotary member provided with the first gap is disposed above the second rotary member, when the liquid enters the first gap when the gas supply is stopped, The liquid is easily discharged from the first gap.
  • the first gap is larger than the dimension of the first opening in the radial direction of the shaft, and the second gap is larger than the dimension of the second opening in the radial direction of the shaft.
  • gas can be uniformly discharged
  • the first gap is larger than the dimension of the first opening in the radial direction of the shaft, and the second gap is larger than the dimension of the second opening in the radial direction of the shaft, the gas flowing out from the first opening and the second opening Is reliably guided to the first gap and the second gap. For this reason, this rotation mechanism can seal the part in which the 1st rotation member and the 2nd rotation member are provided reliably.
  • the space between the first rotating body and the housing between the first hole and the first opening includes a portion smaller than the dimension of the first opening in the radial direction of the first hole, and the second It is preferable that a portion smaller than the dimension of the second opening in the radial direction of the first hole is included between the second rotating body and the housing between the hole and the second opening.
  • a portion of the housing adjacent to the first gap has a groove along the circumferential direction of the first hole.
  • a portion of the second rotating member adjacent to the second gap has a groove along the circumferential direction of the second hole.
  • the first opening is formed between two parts, extends in a direction orthogonal to the rotation center axis of the shaft, and has a gap smaller than that of the first opening.
  • Gas is supplied, and the second aperture is formed between the two parts in the second opening, extends in a direction orthogonal to the rotation center axis of the shaft, and has a smaller interval than the second opening. It is preferable that the gas is supplied through the section. In this way, there are fewer management items for the accuracy of the two parts forming the first throttle part and the two parts forming the second throttle part.
  • a first spacer is provided between two parts forming the first throttle part, and a second spacer is provided between two parts forming the second throttle part.
  • the machine tool includes the above-described rotation mechanism, the machine tool is suitable for being attached to a rotating body on both sides of the shaft for rotation when sealing the rotating portion with gas.
  • the semiconductor manufacturing apparatus includes the above-described rotation mechanism, it is suitable for a device in which a rotating body is attached and rotated on both sides of the shaft when the rotating portion is sealed with gas.
  • the present invention can provide a rotation mechanism, a machine tool, and a semiconductor manufacturing apparatus suitable for rotating a rotating portion by attaching a rotating body on both sides of a shaft when the rotating portion is sealed with gas.
  • FIG. 1 is a cross-sectional view illustrating a rotation mechanism according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a rotation mechanism according to a modification of the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a rotation mechanism according to the second embodiment.
  • FIG. 4 is a cross-sectional view illustrating a rotation mechanism according to the third embodiment.
  • FIG. 5 is a cross-sectional view illustrating a rotation mechanism according to a modification of the third embodiment.
  • FIG. 6 is a cross-sectional view illustrating a rotation mechanism according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view illustrating a rotation mechanism according to the fifth embodiment.
  • FIG. 8 is a cross-sectional view illustrating a rotation mechanism according to a modification of the fifth embodiment.
  • FIG. 1 is a cross-sectional view showing a rotation mechanism according to the first embodiment.
  • FIG. 1 shows a cross section in which the rotation mechanism 1 is cut along a plane including the rotation center axis Zr of the rotation mechanism 1 and parallel to the rotation center axis Zr.
  • the direction indicated by arrow G in FIG. 1 is the direction in which gravity acts.
  • the rotation mechanism 1 is a mechanical element that transmits rotation, and is applied to, for example, a transport device, a semiconductor manufacturing apparatus, or a flat panel display manufacturing apparatus used in a special environment such as a machine tool or a vacuum chamber.
  • the rotation mechanism 1 is a spindle unit including a spindle as a rotation axis will be described.
  • the application target of the rotation mechanism 1 is not limited to this.
  • the rotating mechanism 1 includes a housing 2, a shaft 4, bearings 7A, 7B, and 7C, a first rotating member 5A as a rotating body, a second rotating member 5B as a rotating body, a first opening 11A, 2 openings 11B.
  • the housing 2 is a member that houses the bearings 7A, 7B, 7C, the electric motor 3, and the like.
  • the housing 2 includes a main body 2S that is a cylindrical member, a first structure 2FA provided at one end of the main body 2S, and a second provided at the other end of the main body 2S. And a structure 2FB.
  • the main body 2S, the first structure 2FA, and the second structure 2FB are a part of the housing 2.
  • the main body 2S is a cylindrical member and has a through hole 2SI from one end to the other end, that is, from the first structure 2FA to the second structure 2FB.
  • the first structure 2FA has a first member 2FAS and a second member 2FAR, and is a structure in which these are combined.
  • the second structure 2FB has a first member 2FBS and a second member 2FBR, and is a structure in which these are combined.
  • the first structure 2FA and the second structure 2FB are both plate-like members.
  • the shapes of the first structure 2FA and the second structure 2FB are circular in plan view, but these shapes are not limited to a circle.
  • the first member 2FAS and the second member 2FAR included in the first structure 2FA are both annular members.
  • the 2nd member 2FAR is attached to this from the one end part of the 1st member 2FAS, and is provided in the radial direction outer side of the 1st member 2FAS.
  • the first member 2FBS and the second member 2FBR included in the second structure 2FB are both annular members.
  • the second member 2FBR is attached to the inside in the radial direction of the first member 2FBS.
  • a predetermined gap 12A is provided between the first member 2FAS and the second member 2FAR of the first structure 2FA.
  • This gap 12A is open to the surface 2FAP of the first structure 2FA facing the first rotating member 5A.
  • This opening is the first opening 11A.
  • the first opening 11A faces the first rotating member 5A.
  • a groove 9A is provided along the circumferential direction on the inner circumferential surface of the second member 2FAR. The groove 9A is connected to the gap 12A.
  • the groove 9A is connected to the first gas passage 10A.
  • a predetermined gap 12B is provided between the first member 2FBS and the second member 2FBR of the second structure 2FB.
  • the gap 12B opens on a surface 2FBP of the second structure 2FB that faces the second rotating member 5B. This opening is the second opening 11B.
  • the first opening 11B faces the second rotating member 5B.
  • a groove 9B is provided along the circumferential direction on the inner peripheral surface of the second member 2FBR. The groove 9B is connected to the gap 12B.
  • the groove 9B is connected to the second gas passage 10B.
  • the first structure 2FA includes a first hole 2HA including the rotation center axis Zr of the shaft 4 and penetrating in the thickness direction.
  • the second structure 2FB includes a second hole 2HB that includes the rotation center axis Zr of the shaft 4 and penetrates in the thickness direction.
  • the shaft 4 is an output shaft of the rotation mechanism 1, and is provided in both the housing 2, more specifically, the first hole 2 HA included in the first structure 2 FA of the housing 2 and the second hole 2 HB included in the second structure 2 FB. Inserted.
  • the bearing 7A is installed on the inner peripheral part of the first member 2FAS of the first structure 2FA in the housing 2, in this embodiment, via the annular preloading member 8, and rotatably supports the shaft 4.
  • the bearings 7B and 7C are installed on the inner periphery of the housing 2, in the present embodiment, on the second rotating member 5B side of the main body 2S, and rotatably support the shaft 4.
  • the bearings 7B and 7C are attached to the second end 4TB side of the shaft 4.
  • the shaft 4 is supported on the housing 2 by the three bearings 7A, 7B, and 7C, but the number of bearings is not limited to two.
  • Bearings 7A, 7B, and 7C include an outer ring 7a, rolling elements 7b, and an inner ring 7c.
  • the inner ring 7c is disposed on the radially inner side of the outer ring 7a.
  • all the bearings 7A, 7B, and 7C are rolling bearings.
  • the rolling element 7b is disposed between the outer ring 7a and the inner ring 7c.
  • the outer ring 7a is in contact with the inner wall of the first member 2FAS of the first structure 2FA included in the housing 2.
  • the outer ring 7a is in contact with the inner wall of the through hole 2SI included in the main body 2S of the housing 2.
  • the bearings 7A, 7B, and 7C are attached to the housing 2.
  • both the bearings 7A, 7B, and 7C are ball bearings, but the types of the bearings 7A, 7B, and 7C as rolling bearings are not limited to ball bearings.
  • the bearings 7A, 7B, and 7C are all rolling bearings, but may be sliding bearings, hydrostatic bearings, or magnetic bearings.
  • the hydrostatic bearing is provided with an exhaust groove along the circumferential direction of the first hole 2HA on the inner peripheral surface of the first hole 2HA included in the first member 2FAS of the first structure 2FA. This can be realized by providing an exhaust groove along the circumferential direction of the second hole 2HB on the inner peripheral surface of the second hole 2HB of the second member 2FBR.
  • the first rotating member 5 ⁇ / b> A is provided at the first end 4 ⁇ / b> TA of the shaft 4 and rotates together with the shaft 4.
  • the first rotating member 5A is attached to the shaft 4 via the first support member 6A.
  • the second rotating member 5B is attached to the shaft 4 via the second support member 6B.
  • the second rotating member 5 ⁇ / b> B is provided at the second end 4 ⁇ / b> TB of the shaft 4 and rotates together with the shaft 4.
  • the first rotating member 5 ⁇ / b> A and the second rotating member 5 ⁇ / b> B rotate together with the shaft 4.
  • the first rotating member 5A is opposed to the side portion of the first structure 2FA with the first gap 13A having a predetermined size.
  • the first rotating member 5A has an overhang portion 5FA in which the outer peripheral portion on the first structure 2FA side extends to the second member 2FAR side of the first structure 2FA.
  • the overhang portion 5FA and the second member 2FAR overlap in the direction of the rotation center axis Zr of the first rotation member 5A.
  • 13 A of 1st clearance gaps are the inner periphery of side part 2FRAS of 2nd member 2FAR of 1st structure 2FA, and extension part 5FA of 1st rotation member 5A in the part where overhang
  • the part 5WI faces the part.
  • the second rotating member 5B faces the housing 2 with a second gap 13B having a predetermined size.
  • the first member 2FBS of the second structure 2FB included in the housing 2 has a protruding portion 2FBE in which the side portion on the second rotating member 5B side extends to the second rotating member 5B side. Yes.
  • the projecting portion 2FBE of the first member 2FBS and the second rotating member 5B overlap with each other in the direction of the rotation center axis Zr of the second rotating member 5B.
  • the second gap 13B is a portion where the second rotating member 5B and the overhanging portion 2FBE of the second member 2FAR overlap with each other, the side portion 5BE of the second rotating member 5B, and the first member 2FBS of the second structure 2FB. This is a portion facing the inner peripheral surface 2FBI of the overhang portion 2FBE.
  • the first rotating member 5A an object is placed on the surface 5APS opposite to the first end 4TA of the shaft 4.
  • the first rotating member 5A is a plate-like member and has a circular plan view.
  • the first rotating member 5A extends to the outside in the radial direction of the first hole 2HA provided in the first structure 2FA of the housing 2.
  • the portion of the first hole 2HA that protrudes to the outside in the radial direction faces the housing 2 with a predetermined gap 14A.
  • the gap 14A is formed between a surface 2FAP of the housing 2 facing the first rotating member 5A of the first member 2FAS and the second member 2FAR and a surface 5APR of the first rotating member 5A facing the first structure 2FA. Is done.
  • the second rotating member 5B an object is placed on the surface 5BPS opposite to the second end 4TB of the shaft 4.
  • the second rotating member 5B is a plate-like member and has a circular plan view.
  • the second rotating member 5B extends to the outside in the radial direction of the hole 2HB provided in the second structure 2FB of the housing 2.
  • the portion of the hole 2 ⁇ / b> HB that projects to the outside in the radial direction is opposed to the housing 2 with a predetermined gap 14 ⁇ / b> B.
  • the gap 14B is formed between the surface 2FBP of the housing 2 facing the second rotating member 5B of the first member 2FBS and the second member 2FBR and the surface 5BPR of the second rotating member 5B facing the second structure 2FB. Is done.
  • the first gas passage 10A is provided in a portion of the housing 2 that faces the first rotating member 5A, more specifically, in the second member 2FAR of the first structure 2FA of the housing 2.
  • the first gas passage 10A opens to the side portion 2FYA of the second member 2FAR of the first structure 2FA.
  • the second gas passage 10 ⁇ / b> B is provided in a portion facing the second rotating member 5 ⁇ / b> B of the housing 2, more specifically, in the first member 2 ⁇ / b> FBS of the second structure 2 ⁇ / b> FB of the housing 2.
  • the second gas passage 10B opens to the side portion 2FYB of the first member 2FBS of the second structure 2FB.
  • the first gas passage 10A and the second gas passage 10B are connected to the air supply device 50.
  • the air supply device 50 supplies gas (air in this embodiment) to the grooves 9A and 9B via the first gas passage 10A and the second gas passage 10B.
  • the air supply device 50 is, for example, a pump.
  • the gas from the first gas passage 10A flows out from the first opening 11A to the gap 14A and is supplied to the first gap 13A.
  • the gas from the second gas passage 10B flows out from the second opening 11B to the gap 14B and is supplied to the second gap 13B.
  • Gas is supplied to the first gap 13 ⁇ / b> A and the second gap 13 ⁇ / b> B, and the gas flows out of the housing 2, thereby sealing (sealing) the inside and the outside of the housing 2.
  • the rotation mechanism 1 has one first gas passage 10A and one second gas passage 10B, but the number thereof is not limited.
  • the rotation mechanism 1 has a plurality of first gas passages 10A and second gas passages 10B, respectively, it is preferable that these are provided at equal intervals around the rotation center axis Zr.
  • the electric motor 3 is provided inside the housing 2.
  • the electric motor 3 includes a rotor 3R and a stator 3S provided on the radially outer side of the rotor 3R.
  • the stator 3S is attached to the inner wall of the through hole 2SI included in the main body 2S.
  • the rotor 3R is provided between the first end 4TA and the second end 4TB of the shaft 4. With such a structure, the rotor 3R, the shaft 4, the first rotating member 5A, and the second rotating member 5B rotate integrally around the rotation center axis Zr.
  • the type of the electric motor 3 is not limited.
  • dust generated in the bearings 7A, 7B, and 7C is collected by the gas passing through the first hole 2HA and the second hole 2HB.
  • the main body 2 ⁇ / b> S of the housing 2 has an exhaust passage 19 that connects the outside and the through hole 2 ⁇ / b> SI and discharges the gas in the through hole 2 ⁇ / b> SI to the outside of the housing 2.
  • the exhaust passage 19 is preferably provided with a throttle valve. Since this throttle valve suppresses the flow rate of the gas passing through the exhaust passage 19, an increase in the amount of gas supplied from the first gas passage 10A and the second gas passage 10B is suppressed.
  • the gas flowing out from the first opening 11A and the second opening 11B flows out of the housing 2 after being supplied to the first gap 13A and the second gap 13B. For this reason, intrusion of foreign matter from the outside of the rotating mechanism 1 between the shaft 4 and the housing 2, entry of foreign matter into the bearings 7A, 7B, 7C and dust generation from the inside of the housing 2 flow out to the outside. It is suppressed. Dust generation from the inside of the housing 2 includes, for example, dust generation from the bearings 7A, 7B, and 7C and dust generation from the electric motor 3.
  • an exhaust device may be connected to the exhaust passage 19 or the exhaust passage 19 may be connected to a decompressed space so as to ensure the flow rate of the gas flowing through the exhaust passage 19. In this way, it is possible to reduce the possibility that dust from the bearings 7A, 7B, and 7C flows out of the housing 2.
  • the rotation mechanism 1 can use mechanical bearings that do not require gas supply, such as rolling bearings or sliding bearings, for the bearings 7A, 7B, and 7C.
  • rolling bearings are used for the bearings 7A, 7B, and 7C, the displacement of the shaft 4 in the gaps 14A and 14B directions due to reasons other than loads from the objects mounted on the first rotating member 5A and the second rotating member 5B is reduced. It is suppressed.
  • the size tsa of the first gap 13A is larger than the width ta of the first opening 11A, that is, the dimension of the first opening 11A in the radial direction of the hole 2HA.
  • the width ta of the first opening 11A is equal to the width of the gap 12A.
  • the size tsb of the second gap 13B is larger than the width tb of the second opening 11B, that is, the dimension of the second opening 11B in the radial direction of the hole 2HB.
  • the width tb of the second opening 11B is equal to the width of the gap 12B.
  • the first opening 13A has a size tsa larger than the width ta of the first opening 11A and the second gap 13B has a size tsb larger than the width tb of the second opening 11B.
  • the gas flowing out from 11A can be efficiently guided to the first gap 13A, and the gas flowing out from the second opening 11B can be efficiently guided to the second gap 13B, so that the sealing effect can be reliably exhibited.
  • a slot stop of a gas bearing can be used for the first opening 11A and the second opening 11B.
  • the width ta of the first opening 11A and the width tb of the second opening 11B are, for example, about several ⁇ m to several tens of ⁇ m.
  • the size tsa of the first gap 13A and the size tsb of the second gap 13B vary depending on the width ta of the first opening 11A and the width tb of the second opening 11B.
  • various throttle types for hydrostatic bearings such as a porous throttle or a self-made throttle, can be used.
  • the first opening 11A and the second opening 11B are formed along the circumferential direction of the hole 2HA and the hole 2HB. For this reason, the first opening 11A can inject gas uniformly in the circumferential direction between the first rotating member 5A and the first structure 2FA, and the second opening 11B has the second opening 11B. Gas can be uniformly injected in the circumferential direction between the rotating member 5B and the second structure 2FB.
  • an adjustment device for suppressing the flow rate of the gas flowing into the gap 12A and the gap 12B Can be provided in the first gas passage 10A and the second gas passage 10B or in the passage connected thereto.
  • the first opening 11A and the gap 12A are formed between the first member 2FAS and the second member 2FAR of the first structure 2FA. That is, the first opening 11A and the gap 12A are formed between the two members.
  • the second opening 11B and the gap 12B are formed between the first member 2FBS and the second member 2FBR of the second structure 2FB. That is, the first opening 11A and the gap 12A and the second opening 11B and the gap 12B are formed between the two members.
  • the first opening 11A and the second opening 11B do not allow gas to flow out from the gap between the rotating body and the housing.
  • first member 2FAS and the second member 2FAR of the first structure 2FA and the first member 2FBS and the second member 2FBR of the second structure 2FB management of their dimensional accuracy and geometrical tolerances such as cylindricity are given. Can be relaxed. As a result, the manufacturing cost of the first structure 2FA and the second structure 2FB can be reduced. Further, by forming the first opening 11A and the gap 12A and the second opening 11B and the gap 12B by, for example, connecting two members by fitting, the management of these dimensions becomes relatively easy. Furthermore, by forming the first structure 2FA and the second structure 2FB from two members, replacement of parts can be facilitated.
  • a material that is excellent in terms of corrosion resistance with respect to the atmosphere outside the housing 2 to be sealed but can not be employed in terms of workability.
  • a material excellent in corrosion resistance that could not be used so far is applied to the second member 2FBR provided outside the housing 2, or applied to the first member 2FBS of the second structure 2FB. You can do it.
  • the first gap 13A that exhibits the sealing function is a portion where the protruding portion 5FA of the first rotating member 5A and the second member 2FAR of the first structure 2FA overlap.
  • the second gap 13B that exhibits the sealing function is a portion where the side portion 5BE of the second rotating member 5B and the inner peripheral surface 2FBI of the overhang portion 2FBE of the first member 2FBS of the second structure 2FB overlap.
  • the gap 12A reduces the amount of gas supplied from the first opening 11A
  • the gap 12B reduces the amount of gas supplied from the second opening 11B.
  • the rotation mechanism 1 can suppress the intrusion of liquid or the like by the first gap 13A and the second gap 13B even when the supply of gas from the air supply device 50 is stopped. The same applies when liquid or the like is sprayed from the outside of the housing 2 to the first rotating member 5A and the second rotating member 5B.
  • the first rotating member 5A provided with the first gap 13A is disposed above the second rotating member 5B provided with the second gap 13B. That is, the first rotating member 5A is disposed on the side opposite to the direction of gravity and the second rotating member 5B is disposed on the direction of gravity.
  • the first rotating member 5A is disposed on the side opposite to the direction of gravity
  • the second rotating member 5B is disposed on the direction of gravity.
  • FIG. 2 is a cross-sectional view illustrating a rotation mechanism according to a modification of the first embodiment.
  • FIG. 2 shows a cross section of the rotation mechanism 1a taken along a plane including the rotation center axis Zr of the rotation mechanism 1a and parallel to the rotation center axis Zr.
  • the second member 2 ⁇ / b> FBR of the second structure 2 ⁇ / b> FB is in contact with the end of the main body 2 ⁇ / b> S of the housing 2.
  • the second member 2FBRa of the second structure 2FBa is different from the end of the main body 2S of the housing 2a.
  • the first member 2FBBSa of the second structure 2FBa has an overhanging portion 2FBF in which a portion in contact with the main body portion 2S side projects radially inward.
  • the second member 2FBRa of the second structure 2FBa is in contact with the main body portion 2S of the housing 2a via the overhang portion 2FBF.
  • the rotating mechanism 1 a can obtain the same operations and effects as the rotating mechanism 1.
  • the overhang portion 2FBF can position the second member 2FBRa of the second structure 2FBa in the direction of the rotation center axis Zr.
  • the rotation mechanisms 1 and 1a according to the first embodiment and the modifications thereof are suitable for rotating the shaft by attaching a rotating body to both sides of the shaft 4 when sealing the rotating portion with gas.
  • the configurations of the first embodiment and the modifications thereof can be applied as appropriate in the following embodiments. In this case, only a part of the configuration of the first embodiment and its modifications may be applied, or all the configurations may be applied.
  • FIG. 3 is a cross-sectional view illustrating a rotation mechanism according to the second embodiment.
  • FIG. 3 shows a cross section of the rotation mechanism 1b taken along a plane including the rotation center axis Zr of the rotation mechanism 1b and parallel to the rotation center axis Zr.
  • the dimension of the first opening 11A in the radial direction of the first hole 2HA that is, the width ta.
  • a small portion 18A hereinafter, referred to as a small gap portion 18A as appropriate).
  • the portion between the second rotation member 5Bb and the housing 2 between the second hole 2HB and the second opening 11B is a portion smaller than the dimension of the second opening 11B in the radial direction of the second hole 2HB, that is, the width tb. (Hereinafter referred to as small gap portion 18B as appropriate).
  • the small gap portion 18A on the first structure 2FAb side is a gap between the first member 2FASb of the first structure 2FA and the first rotating member 5Ab.
  • the size of the small gap portion 18A that is, the interval between the surface 2FAP of the first member 2FASb and the surface 5APR of the first rotating member 5Ab is tc.
  • the small gap portion 18B on the second structure 2FBb side is a gap between the second member 2FBRb and the second rotating member 5Bb of the second structure 2FB.
  • the size of the small gap portion 18B, that is, the interval between the surface 2FBP of the second member 2FBRb and the surface 5BPR of the second rotating member 5Bb is td.
  • the rotating mechanism 1b has a large gap portion 15A having a gap larger than the small gap portion 18A between the small gap portion 18A on the first structure 2FAb side and the first opening 11A.
  • the size of the large gap portion 15A is te.
  • the large gap portion 15A is connected to the first gap 13A.
  • the rotating mechanism 1b has a large gap portion 15B having a gap larger than the small gap portion 18B between the small gap portion 18B on the second structure 2FBb side and the second opening 11B.
  • the size of the large gap portion 15B is tf.
  • the large gap portion 15B is connected to the second gap 13B.
  • the relationship between the size te of the large gap portion 15A, the width ta of the first opening 11A, and the size tc of the small gap portion 18A is te> ta> tc.
  • the relationship between the size tf of the large gap portion 15B, the width tb of the second opening 11B, and the size td of the small gap portion 18B is tf> tb> td.
  • the width ta of the first opening 11A and the width tb of the second opening 11B are several ⁇ m to several tens ⁇ m.
  • the size tc of the small gap portion 18A and the size tf of the small gap portion 18B are about several ⁇ m to 20 ⁇ m, and the size te of the large gap portion 15A and the size tf of the large gap portion 15B are more than several tens of ⁇ m. large.
  • liquid can be accumulated between the first rotating member 5Ab and the first structure 2FA or between the second rotating member 5Bb and the second structure 2FBb due to an abnormality in the external environment of the housing 2b. There is sex.
  • the small gap portion 18A and the small gap portion 18B exhibit a sealing function, even when liquid enters the large gap portion 15A and the large gap portion 15B from the first gap 13A and the second gap 13B, This liquid can be prevented from reaching the portion of the shaft 4. In particular, it is preferable because the liquid can be effectively prevented from entering the portion of the shaft 4 even when the gas supply to the first opening 11A and the second opening 11B is stopped.
  • the rotation mechanism 1b according to the second embodiment is suitable for a structure in which a rotating body is attached and rotated on both sides of the shaft 4 when the rotating portion is sealed with gas.
  • the configuration of the second embodiment can be applied as appropriate in the following embodiments. In this case, only a part of the configuration of the second embodiment may be applied, or all the configurations may be applied.
  • FIG. 4 is a cross-sectional view illustrating a rotation mechanism according to the third embodiment.
  • FIG. 4 shows a cross section in which the rotation mechanism 1c is cut along a plane including the rotation center axis Zr of the rotation mechanism 1c and parallel to the rotation center axis Zr.
  • the rotation mechanism 1 and the rotation mechanism 1c described above have the second gap 13B extending in a direction parallel to the rotation center axis Zr.
  • the rotation mechanism 1c of Embodiment 3 has a second gap 13Bc between the surface 5BPR of the second rotation member 5Bc and the surface 2FBP of the second structure 2FBc of the housing 2c. That is, the rotation mechanism 1c is different in that it has a second gap 13Bc extending in a direction intersecting (orthogonal in this example) with the rotation center axis Zr.
  • the first member 2FBSc needs to have high strength. Since the second member 2FBRc is highly likely to come into contact with the liquid, corrosion resistance and the like are necessary.
  • a material having characteristics can be used. In this example, a high-strength material can be used for the first member 2FBSc, and a highly corrosion-resistant material can be used for the second member 2FBRc. As a result, the performance of the second structure 2FBc is improved.
  • the second rotating member 5Bc has a member 5BI and a member 5BJ.
  • the member 5BI is attached to the shaft 4, and the member 5BJ is attached to the outside of the member 5BI.
  • the second opening 11B is provided at a position facing the member 5BJ.
  • the member 5BI attached to the shaft 4 does not directly contact the environment outside the rotating mechanism 1c because the member 5BJ is attached to the outside. Since the member 5BJ directly contacts the environment outside the rotation mechanism 1c, corrosion resistance is required.
  • the member 5BI is required to be strong because the rotational force from the shaft 4 is transmitted.
  • the second rotating member 5B is formed of the two members 5BI and 5BJ
  • a material having properties suitable for the members 5BI and 5BI can be used.
  • a high-strength material can be used for the member 5BI
  • a material having high corrosion resistance can be used for the member 5BJ.
  • the diameter DR of the second rotating member 5Bc is larger than the diameter DS of the second structure 2FBc, but the size of both is not limited to this.
  • the second gap 13Bc extends in a direction intersecting the rotation center axis Zr.
  • the first gap 13A shown in FIG. 1 is arranged in a direction intersecting (for example, orthogonal to) the rotation center axis Zr. It may be extended.
  • FIG. 5 is a cross-sectional view illustrating a rotation mechanism according to a modification of the third embodiment.
  • FIG. 5 shows a cross section of the rotation mechanism 1d taken along a plane including the rotation center axis Zr of the rotation mechanism 1d and parallel to the rotation center axis Zr.
  • the rotation mechanism 1d extends the protruding portion 5FAd of the first rotation member 5Ad to the main body 2Sd of the housing 2d.
  • the first gap 13A is formed between the inner peripheral portion 5WI of the overhang portion 5FAd and the side portion 2FSAS of the first member 2FASd and the side portion 2FRAS of the second member 2FRAS of the first structure 2FAd. It is formed.
  • the end of the main body 2Sd of the housing 2d on the second rotating member 5Bd side has an overhang 2SHd that projects to the position of the second rotating member 5Bd.
  • the first member 2FBSd and the second member 2FBRd of the second structure 2FBd are attached to the inner peripheral portion 2SI of the overhang portion 2SHd.
  • the diameter DR of the second rotating member 5Bd is smaller than the inner diameter DI of the overhang portion 2SHd.
  • the side part 5BJd of the second rotating member 5Bd faces the inner peripheral part 2SI of the overhang part 2SHd.
  • a second gap 13Bd is formed between the second rotating member 5Bd and the second member 2FBRd of the second structure 2FBd.
  • the diameter DR of the second rotating member 5Bd is smaller than the inner diameter DI of the overhang portion 2SHd.
  • the parts described above are the first member 2FASd and the second member 2FARd of the first structure 2FAd, and the first member 2FBSd and the second member 2FBRd of the second structure 2FBd.
  • the rotation mechanisms 1c and 1d according to the third embodiment and the modifications thereof are suitable for rotating by attaching a rotating body to both sides of the shaft 4 when sealing the rotating portion with gas.
  • the third embodiment and the modifications thereof have been described, the configurations of the third embodiment and the modifications can be applied as appropriate in the following embodiments. In this case, only a part of the configuration of the third embodiment and its modification may be applied, or all the configurations may be applied.
  • FIG. 6 is a cross-sectional view illustrating a rotation mechanism according to the fourth embodiment.
  • FIG. 6 shows a cross section of the rotation mechanism 1e taken along a plane that includes the rotation center axis Zr of the rotation mechanism 1e and is parallel to the rotation center axis Zr.
  • the rotating mechanism 1e according to the fourth embodiment includes a groove 16 along the circumferential direction of the first hole 2HA in a portion adjacent to the first gap 13A of the housing 2e, and is adjacent to the second gap 13B of the second rotating member 5Be.
  • channel 17 along the circumferential direction of 2nd hole 2HB in the part to perform differs from the rotation mechanism 1 of Embodiment 1 mentioned above.
  • the groove 16 extends to the position of the overhanging portion 5FAe of the first rotating member 5Ae in the direction of the rotation center axis Zr.
  • the second rotating member 5Be is formed of two members, a member 5BIe and a member 5BJe, but the second rotating member 5Be may be a single member.
  • the rotation mechanisms 1, 1b, 1c, and 1d are all installed so that the rotation center axis Zr is parallel to the direction in which gravity acts.
  • the rotation mechanism 1e is installed so that the rotation center axis Zr intersects with the direction in which gravity acts (in the present embodiment, it is orthogonal). If liquid is contained in the external atmosphere of the housing 2e, there is a possibility that the liquid accumulates in the first gap 13A and the second gap 13B. For this reason, the rotation mechanism 1e has the groove 16 in the portion adjacent to the first gap 13A of the housing 2e, that is, the second member 2FBRe included in the first structure 2FAe in the present embodiment. Further, the rotation mechanism 1e has a groove 17 in a portion adjacent to the second gap 13B of the second rotation member 5Be, that is, a portion facing the first member 2FBSe included in the second structure 2FBe in the present embodiment.
  • the rotating mechanism 1e according to the fourth embodiment is suitable for a rotating portion that is attached with a rotating body on both sides of the shaft 4 and rotated when the rotating portion is sealed with gas.
  • the rotation center axis Zr intersects with the direction of gravity action. It is suitable for.
  • FIG. 7 is a cross-sectional view illustrating a rotation mechanism according to the fifth embodiment.
  • FIG. 7 shows a cross section of the rotation mechanism 1f taken along a plane including the rotation center axis Zr of the rotation mechanism 1f and parallel to the rotation center axis Zr.
  • the first member 2FARf and the second member 2FASf of the first structure 2FAf are in contact with each other at their outer peripheral portions.
  • the second member 2FASf has an annular groove 9Af extending along the circumferential direction on the radially outer side.
  • the surface 2FARP of the first member 2FARf and the second member 2FASf surface 2FASP are in contact with each other on the radially outer side of the groove 9Af.
  • squeeze parts are formed between 1st member 2FARf and 2nd member 2FASf.
  • squeeze parts are formed between two components, ie, 1st member 2FARf, and 2nd member 2FASf, and are extended in the direction orthogonal to the rotation center axis Zr of the rotation mechanism 1f.
  • the first member 2FARf has a step in a portion of the surface 2FAEP and a portion radially inward of the surface 2FAEP in order to form the first diaphragm portion 30A.
  • the rotation mechanism 1f is provided with a protruding portion 2ST, a part of which protrudes in the direction of the rotation center axis Zr at the end of the main body 2Sf on the side where the second structure 2FBf is attached.
  • the second structure 2FBf is attached to the outside of the protrusion 2ST.
  • a part of the surface 2FBPf of the second structure 2FBf and a part of the end surface 2SP on the side where the second structure 2FBf of the main body 2Sf is attached are in contact with each other on the outside in the radial direction.
  • a second diaphragm 30B is formed between the end surface 2SP and the second structure 2FBf.
  • the second structure 2FBf has a step between a portion of the surface 2FBP and a portion radially inward of the surface 2FBP in order to form the second diaphragm portion 30B.
  • the interval between the second aperture portions 30B is about several ⁇ m to several tens of ⁇ m, and is smaller than the interval between the gaps 12B.
  • the second structure 2FBf has an annular groove 9Bf extending along the circumferential direction on the radially outer side.
  • the second throttle portion 30B is connected to the gap 12B on the radially inner side of the second structure 2FBf, and is connected to the groove 9Bf on the radially inner side of the second structure 2FBf.
  • the groove 9Bf is connected to the second gas passage 10B.
  • the rotation mechanism 1f requires only the flatness and level difference of the surface 2FARP for the first member 2FARf and only the flatness of the surface 2FASP for the second member 2FASf in order to form the first diaphragm portion 30A. .
  • the second structure 2FBf only requires the flatness and the level difference of the surface 2FBPf in order to form the second diaphragm portion 30B. For this reason, since the rotation mechanism 1f does not need to manage the diameter tolerance of the first member 2FARf, the second member 2FASf, and the second structure 2FBf, there is an advantage that the number of management items for the component accuracy can be reduced. As a result, the yield is improved.
  • FIG. 8 is a cross-sectional view illustrating a rotation mechanism according to a modification of the fifth embodiment.
  • FIG. 8 shows a cross section of the rotating mechanism 1g taken along a plane including the rotating center axis Zr of the rotating mechanism 1e and parallel to the rotating center axis Zr.
  • the rotating mechanism 1g of this modification includes a first spacer 31A between the first member 2FARf and the second member 2FASf of the rotating mechanism 1f of the fifth embodiment, and is between the main body 2Sf and the second structure 2FBf. The difference is that the second spacer 31B is provided.
  • the first diaphragm portion 30A and the second diaphragm portion 30B are formed by the thicknesses of the first spacer 31A and the second spacer 31B.
  • the rotation mechanism 1g can change the sizes of the first aperture portion 30A and the second aperture portion 30B by changing the thicknesses of the first spacer 31A and the second spacer 31B in accordance with the intended use.
  • the rotation mechanism 1g forms the first aperture portion 30A and the second aperture portion 30B by the first spacer 31A and the second spacer 31B
  • the first member 2FARg is required to have only the flatness of the surface 2FARP
  • the second member Only the flatness of the surface 2 FASP is required for 2FASg.
  • Only the flatness of the surface 2FBPg is required for the second structure 2FBg to form the second diaphragm portion 30B.
  • the rotation mechanism 1g does not require management of the diameter tolerances of the first member 2FARg, the second member 2FASg, and the second structure 2FBg, and therefore has an advantage that the number of component accuracy management items can be further reduced. As a result, the yield is further improved.
  • the first to fifth embodiments have been described.
  • the first to fifth embodiments are not limited to the above-described contents.
  • the above-described constituent elements include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range.
  • the above-described components can be appropriately combined.
  • at least one of various omissions, substitutions, and changes of the components can be made without departing from the spirit of the first to fifth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 回転機構は、ハウジングと、シャフトと、シャフトを回転可能に支持する軸受と、シャフトの第1端部に設けられ、かつ第1孔の径方向外側かつハウジングの側部まで張り出した張出部を有し、張出部がハウジングの側部と所定の大きさの第1隙間を有して対向する第1回転部材と、シャフトの第2端部に設けられ、かつ第2孔の径方向外側まで張り出して第2端部側におけるハウジングと所定の大きさの第2隙間を有して対向する第2回転部材と、ハウジングの第1孔の径方向外側に開口して第1回転部材と対向し、かつ第1孔の周方向に沿って延在して、第1隙間に気体を供給する第1開口と、ハウジングの第2孔の径方向外側に開口して第2回転部材と対向し、かつ第2孔の周方向に沿って延在して、第2隙間に気体を供給する第2開口と、を含む。

Description

回転機構、工作機械及び半導体製造装置
 この発明は、回転機構、工作機械及び半導体製造装置に関する。
 搬送装置、半導体製造装置又は工作機械等には、回転ステージを回転させたり、工具又は工作物を回転させたりする回転機構が用いられる。このような回転機構は、外部からの液体又は異物等の侵入を抑制するため、回転部に気体を用いたシールが使用されることがある(例えば、特許文献1)。
特開平9-150336号公報
 ところで、シャフトの両側に回転体を取り付けて回転させる回転機構がある。特許文献1に記載された技術は、シャフトの一端に回転体が取り付けられた回転機構を対象としており、シャフトの両側に回転体を取り付けて回転させる回転機構について、気体を用いて回転部を封止することについては改善の余地がある。
 本発明は、回転部分を気体によって封止するにあたって、シャフトの両側に回転体を取り付けて回転させるものに適した回転機構、工作機械及び半導体製造装置を提供することを目的とする。
 本発明は、ハウジングと、前記ハウジングに設けられた第1孔及び第2孔に挿通されるシャフトと、前記ハウジングに設置されて前記シャフトを回転可能に支持する軸受と、前記シャフトの第1端部に設けられて前記シャフトともに回転し、前記第1孔の径方向外側かつ前記ハウジングの側部まで張り出した張出部を有し、前記張出部が前記ハウジングの側部と所定の大きさの第1隙間を有して対向する第1回転部材と、前記シャフトの第2端部に設けられて前記シャフトともに回転し、かつ前記第2孔の径方向外側まで張り出して前記第2端部側における前記ハウジングと所定の大きさの第2隙間を有して対向する第2回転部材と、前記ハウジングの前記第1孔の径方向外側に開口して前記第1回転部材と対向し、かつ前記第1孔の周方向に沿って延在して、前記第1隙間に気体を供給する第1開口と、前記ハウジングの前記第2孔の径方向外側に開口して前記第2回転部材と対向し、かつ前記第2孔の周方向に沿って延在して、前記第2隙間に気体を供給する第2開口と、を含む、回転機構である。
 この回転機構は、第1開口から第1回転部材側の第1隙間に気体を供給し、第2開口から第2回転部材側に第2隙間に気体を供給する。この気体が第1隙間及び第2隙間からハウジングの外部に流出するので、回転体である第1回転部材及び第2回転部材の部分が封止される。このように、この回転機構は、回転部分を気体によって封止するにあたって、シャフトの両側に回転体を取り付けて回転させるものに適している。
 前記第1回転部材は前記第2回転部材よりも上に配置されることが好ましい。第1隙間は、ハウジングの側部と第1回転部材の張出部との間に形成され、第1回転部材側の第1隙間が上方に配置されると、第1開口よりも下方に気体の排出口が位置する。このため、第1隙間が設けられる第1回転部材が第2回転部材よりも上方に配置されることで、気体の供給が停止されたときに第1隙間に液体が浸入したような場合は、液体が第1隙間から排出されやすくなる。
 前記第1隙間は、前記シャフトの径方向における前記第1開口の寸法よりも大きく、前記第2隙間は、前記シャフトの径方向における前記第2開口の寸法よりも大きいことが好ましい。このようにすることで、第1開口及び第2開口からは、第1回転部材及び第2回転部材の周方向に沿って均一に気体を放出できる。また、第1隙間はシャフトの径方向における第1開口の寸法よりも大きく、第2隙間はシャフトの径方向における第2開口の寸法よりも大きいので、第1開口及び第2開口から流出した気体は、第1隙間及び第2隙間へ確実に導かれる。このため、この回転機構は、第1回転部材及び第2回転部材が設けられている部分を確実に封止することができる。
 前記第1孔と前記第1開口との間における前記第1回転体と前記ハウジングとの間は、前記第1孔の径方向における前記第1開口の寸法よりも小さい部分を含み、前記第2孔と前記第2開口との間における前記第2回転体と前記ハウジングとの間は、前記第1孔の径方向における前記第2開口の寸法よりも小さい部分を含むことが好ましい。このようにすることで、第1開口の寸法よりも小さい部分及び第2開口の寸法よりも小さい部分が封止機能を発揮するので、第1隙間及び第2隙間からハウジング内に液体が浸入した場合でも、この液体がシャフトの部分まで到達することを抑制できる。
 前記ハウジングの前記第1隙間と隣接する部分に、前記第1孔の周方向に沿った溝を有することが好ましい。このような構造により、第1回転部材及び第2回転部材の回転中心軸が重力の作用する方向に対して傾斜している場合でも、溝が第1隙間に溜まった液体をハウジングの外部に排出することができる。
 前記第2回転部材の前記第2隙間と隣接する部分に、前記第2孔の周方向に沿った溝を有することが好ましい。このような構造により、第1回転部材及び第2回転部材の回転中心軸が重力の作用する方向に対して傾斜している場合でも、溝が第2隙間に溜まった液体をハウジングの外部に排出することができる。
 前記第1開口には、2つの部品の間に形成されて、前記シャフトの回転中心軸と直交する方向に延在し、かつ前記第1開口よりも間隔が小さい第1絞り部を介して前記気体が供給され、前記第2開口には、2つの部品の間に形成されて、前記シャフトの回転中心軸と直交する方向に延在し、かつ前記第2開口よりも間隔が小さい第2絞り部を介して前記気体が供給されることが好ましい。このようにすれば、第1絞り部を形成する2つの部品及び第2絞り部を形成する2つの部品の精度の管理項目が少なくて済む。
 前記第1絞り部を形成する2つの部品の間には、第1スペーサが設けられ、前記第2絞り部を形成する2つの部品の間には、第2スペーサが設けられることが好ましい。第1スペーサ及び第2スペーサによって、第1絞り部を形成する2つの部品及び第2絞り部を形成する2つの部品の精度の管理項目をさらに少なくすることができる。
 本発明に係る工作機械は、前述した回転機構を備えるので、回転部分を気体によって封止するにあたって、シャフトの両側に回転体を取り付けて回転させるものに適している。
 本発明に係る半導体製造装置は、前述した回転機構を備えるので、回転部分を気体によって封止するにあたって、シャフトの両側に回転体を取り付けて回転させるものに適している。
 本発明は、回転部分を気体によって封止するにあたって、シャフトの両側に回転体を取り付けて回転させるものに適した回転機構、工作機械及び半導体製造装置を提供することができる。
図1は、実施形態1に係る回転機構を示す断面図である。 図2は、実施形態1の変形例に係る回転機構を示す断面図である。 図3は、実施形態2に係る回転機構を示す断面図である。 図4は、実施形態3に係る回転機構を示す断面図である。 図5は、実施形態3の変形例に係る回転機構を示す断面図である。 図6は、実施形態4に係る回転機構を示す断面図である。 図7は、実施形態5に係る回転機構を示す断面図である。 図8は、実施形態5の変形例に係る回転機構を示す断面図である。
(実施形態1)
 以下、本発明を実施するための形態(以下、実施形態1という)につき、図面を参照しつつ説明する。
 図1は、実施形態1に係る回転機構を示す断面図である。図1は、回転機構1の回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1を切った断面を示している。図1の矢印Gで示す方向は、重力の作用する方向である。回転機構1は、回転を伝達する機械要素であり、例えば、工作機械、真空チャンバ等の特殊環境下で使用される搬送装置、半導体製造装置又はフラットパネルディスプレイ製造装置等に適用される。ここでは、一例として、回転機構1が、スピンドルを回転軸として備えるスピンドルユニットである場合を説明するが、回転機構1の適用対象はこれに限定されるものではない。
 回転機構1は、ハウジング2と、シャフト4と、軸受7A、7B、7Cと、回転体としての第1回転部材5Aと、回転体としての第2回転部材5Bと、第1開口11Aと、第2開口11Bとを含む。ハウジング2は、軸受7A、7B、7C及び電動機3等を収容する部材である。本実施形態において、ハウジング2は、筒状の部材である本体部2Sと、本体部2Sの一端部に設けられた第1構造体2FAと、本体部2Sの他端部に設けられた第2構造体2FBとを有する。本体部2S、第1構造体2FA及び第2構造体2FBは、ハウジング2の一部である。本実施形態において、本体部2Sは円筒形状の部材であり、一端部から他端部、すなわち第1構造体2FAから第2構造体2FBに向かう貫通孔2SIを有している。
 第1構造体2FAは、第1部材2FASと、第2部材2FARとを有し、これらが組み合わせられた構造体である。第2構造体2FBは、第1部材2FBSと、第2部材2FBRとを有し、これらが組み合わせられた構造体である。第1構造体2FA及び第2構造体2FBは、いずれも板状の部材である。本実施形態において、第1構造体2FA及び第2構造体2FBの形状は、平面視が円形であるが、これらの形状は円形に限定されない。
 第1構造体2FAが有する第1部材2FAS及び第2部材2FARは、いずれも環状の部材である。第2部材2FARは、第1部材2FASの一端部からこれに取り付けられ、第1部材2FASの径方向外側に設けられる。第2構造体2FBが有する第1部材2FBS及び第2部材2FBRは、いずれも環状の部材である。第2部材2FBRは、第1部材2FBSの径方向内側に取り付けられる。
 孔2HAの径方向において、第1構造体2FAの第1部材2FASと第2部材2FARとの間には、所定の隙間12Aが設けられている。この隙間12Aは、第1構造体2FAの、第1回転部材5A側と対向する面2FAPに開口している。この開口が第1開口11Aである。第1開口11Aは、第1回転部材5Aと対向している。第2部材2FARの内周面には、周方向に沿って溝9Aが設けられている。溝9Aは、隙間12Aと接続している。溝9Aは、第1気体通路10Aと接続している。
 孔2HBの径方向において、第2構造体2FBの第1部材2FBSと第2部材2FBRとの間には、所定の隙間12Bが設けられている。この隙間12Bは、第2構造体2FBの、第2回転部材5B側と対向する面2FBPに開口している。この開口が第2開口11Bである。第1開口11Bは、第2回転部材5Bと対向している。第2部材2FBRの内周面には、周方向に沿って溝9Bが設けられている。溝9Bは、隙間12Bと接続している。溝9Bは、第2気体通路10Bと接続している。
 第1構造体2FAは、シャフト4の回転中心軸Zrを含み、かつ厚さ方向に貫通する第1孔2HAを有している。第2構造体2FBは、シャフト4の回転中心軸Zrを含み、かつ厚さ方向に貫通する第2孔2HBを有している。シャフト4は、回転機構1の出力軸であり、ハウジング2、より具体的にはハウジング2の第1構造体2FAが有する第1孔2HA及び第2構造体2FBが有する第2孔2HBの両方に挿入される。
 軸受7Aは、ハウジング2、本実施形態では第1構造体2FAの第1部材2FASの内周部に、環状の予圧部材8を介して設置されてシャフト4を回転可能に支持する。軸受7B、7Cは、ハウジング2、本実施形態では本体部2Sの第2回転部材5B側の内周部に設置されて、シャフト4を回転可能に支持する。軸受7B、7Cはシャフト4の第2端部4TB側に取り付けられる。本実施形態において、シャフト4は、3個の軸受7A、7B、7Cによってハウジング2に支持されるが、軸受の数は2個に限定されない。
 軸受7A、7B、7Cは、外輪7aと、転動体7bと、内輪7cとを含む。内輪7cは、外輪7aの径方向内側に配置される。このように、本実施形態において、軸受7A、7B、7Cは、いずれも転がり軸受である。転動体7bは、外輪7aと内輪7cとの間に配置される。軸受7Aは、ハウジング2が有する第1構造体2FAの第1部材2FASの内壁に外輪7aが接している。軸受7B、7Cは、ハウジング2の本体部2Sが有する貫通孔2SIの内壁に外輪7aが接している。このような構造により、軸受7A、7B、7Cは、ハウジング2に取り付けられる。本実施形態において、両方の軸受7A、7B、7Cは、いずれも玉軸受であるが、転がり軸受としての軸受7A、7B、7Cの種類は玉軸受に限定されない。また、本実施形態において、軸受7A、7B、7Cは、いずれも転がり軸受であるが、滑り軸受、静圧軸受又は磁気軸受であってもよい。静圧軸受は、例えば、第1構造体2FAの第1部材2FASが有する第1孔2HAの内周面に、第1孔2HAの周方向に沿った排気溝を設け、第2構造体2FBの第2部材2FBRが有する第2孔2HBの内周面に、第2孔2HBの周方向に沿った排気溝を設けることにより実現できる。
 第1回転部材5Aは、シャフト4の第1端部4TAに設けられてシャフト4とともに回転する。本実施形態において、第1回転部材5Aは、第1支持部材6Aを介してシャフト4に取り付けられている。第2回転部材5Bは、第2支持部材6Bを介してシャフト4に取り付けられている。第2回転部材5Bは、シャフト4の第2端部4TBに設けられてシャフト4とともに回転する。このように、第1回転部材5A及び第2回転部材5Bは、シャフト4とともに回転する。
 第1回転部材5Aは、第1構造体2FAの側部と所定の大きさの第1隙間13Aを有して対向する。本実施形態において、第1回転部材5Aは、第1構造体2FA側の外周部が、第1構造体2FAの第2部材2FAR側まで延在した張出部5FAを有している。この張出部5FAと第2部材2FARとが、第1回転部材5Aの回転中心軸Zr方向において重なっている。第1隙間13Aは、張出部5FAと第2部材2FARとが重なった部分において、第1構造体2FAの第2部材2FARの側部2FRASと第1回転部材5Aの張出部5FAの内周部5WIとが対向した部分である。
 第2回転部材5Bは、ハウジング2と所定の大きさの第2隙間13Bを有して対向する。本実施形態において、ハウジング2が有する第2構造体2FBの第1部材2FBSは、第2回転部材5B側の側部が、第2回転部材5B側まで延在した張出部2FBEを有している。この第1部材2FBSの張出部2FBEと第2回転部材5Bとが、第2回転部材5Bの回転中心軸Zr方向において重なっている。第2隙間13Bは、第2回転部材5Bと第2部材2FARの張出部2FBEとが重なった部分において、第2回転部材5Bの側部5BEと、第2構造体2FBが有する第1部材2FBSの張出部2FBEの内周面2FBIとが対向した部分である。
 第1回転部材5Aは、シャフト4の第1端部4TAとは反対側の面5APSに物体が載置される。本実施形態において、第1回転部材5Aは、板状の部材であって平面視が円形である。第1回転部材5Aは、ハウジング2の第1構造体2FAに設けられた第1孔2HAの径方向外側まで張り出している。第1孔2HAの径方向外側まで張り出した部分は、図1に示すように、ハウジング2と所定の隙間14Aを有して対向している。隙間14Aは、ハウジング2の第1部材2FAS及び第2部材2FARの第1回転部材5Aと対向する面2FAPと、第1回転部材5Aの第1構造体2FAと対向する面5APRとの間に形成される。
 第2回転部材5Bは、シャフト4の第2端部4TBとは反対側の面5BPSに物体が載置される。本実施形態において、第2回転部材5Bは、板状の部材であって平面視が円形である。第2回転部材5Bは、ハウジング2の第2構造体2FBに設けられた孔2HBの径方向外側まで張り出している。孔2HBの径方向外側まで張り出した部分は、図1に示すように、ハウジング2と所定の隙間14Bを有して対向している。隙間14Bは、ハウジング2の第1部材2FBS及び第2部材2FBRの第2回転部材5Bと対向する面2FBPと、第2回転部材5Bの第2構造体2FBと対向する面5BPRとの間に形成される。
 第1気体通路10Aは、ハウジング2の第1回転部材5Aと対向する部分、より具体的にはハウジング2の第1構造体2FAの第2部材2FARに設けられる。第1気体通路10Aは、第1構造体2FAの第2部材2FARの側部2FYAに開口している。第2気体通路10Bは、ハウジング2の第2回転部材5Bと対向する部分、より具体的にはハウジング2の第2構造体2FBの第1部材2FBSに設けられる。第2気体通路10Bは、第2構造体2FBの第1部材2FBSの側部2FYBに開口している。
 第1気体通路10A及び第2気体通路10Bは、給気装置50と接続されている。給気装置50は、第1気体通路10A及び第2気体通路10Bを介して、溝9A及び溝9Bに気体(本実施形態では空気)を供給する。給気装置50は、例えば、ポンプである。第1気体通路10Aからの気体は、第1開口11Aから隙間14Aに流出し、第1隙間13Aに供給される。第2気体通路10Bからの気体は、第2開口11Bから隙間14Bに流出し、第2隙間13Bに供給される。第1隙間13A及び第2隙間13Bに気体が供給され、この気体がハウジング2の外部に流出することにより、ハウジング2の内部と外部とを封止(シール)する。
 本実施形態において、回転機構1が有する第1気体通路10A及び第2気体通路10Bはそれぞれ1個であるが、これらの数は限定されない。回転機構1がそれぞれ複数の第1気体通路10A及び第2気体通路10Bを有する場合、これらは、回転中心軸Zrの周りに等間隔で設けられることが好ましい。
 ハウジング2の内部には、電動機3が設けられている。電動機3は、ローター3Rと、ローター3Rの径方向外側に設けられたステーター3Sとを含む。ステーター3Sは、本体部2Sが有する貫通孔2SIの内壁に取り付けられる。ローター3Rは、シャフト4の第1端部4TAと第2端部4TBとの間に設けられる。このような構造により、ローター3Rとシャフト4と第1回転部材5Aと第2回転部材5Bとは、一体となって回転中心軸Zrの周りを回転する。本実施形態において、電動機3の形式は問わない。
 本実施形態では、第1孔2HA及び第2孔2HBを通過する気体により、軸受7A、7B、7Cの発塵を回収する。貫通孔2SI内が密封されると、第1孔2HA及び第2孔2HBを気体が通過しにくくなるので、貫通孔2SI内が密閉されないようにする。ハウジング2の本体部2Sは、外部と貫通孔2SIとを接続して、貫通孔2SI内の気体をハウジング2の外部に排出する排気通路19を有している。排気通路19には絞り弁が設けられると好ましい。この絞り弁は、排気通路19を通過する気体の流量を抑制するので、第1気体通路10A及び第2気体通路10Bから供給される気体の供給量の増加が抑制される。
 本実施形態においては、前述したように、第1開口11A及び第2開口11Bから流出した気体が、第1隙間13A及び第2隙間13Bに供給された後、ハウジング2の外部に流出する。このため、回転機構1の外部からシャフト4とハウジング2との間への異物の侵入、軸受7A、7B、7Cへの異物の侵入及びハウジング2の内部からの発塵が、その外側に流出することが抑制される。ハウジング2の内部からの発塵は、例えば、軸受7A、7B、7Cからの発塵及び電動機3からの発塵がある。
 排気通路19が細かったり、長かったり又はその両方であったりした場合には、排気の抵抗が大きくなるため、貫通孔2SIから気体が排出されにくくなる可能性がある。結果として、貫通孔2SI内の気体が第1開口11A及び第2開口11Bから流出した気体の流れに巻き込まれて、軸受7A、7B、7Cの発塵がハウジング2の外部に流出する可能性がある。これを回避するため、排気通路19に排気装置を接続したり、減圧された空間に排気通路19を接続したりして、排気通路19を流れる気体の流量を確保するようにしてもよい。このようにすれば、軸受7A、7B、7Cの発塵がハウジング2の外部に流出する可能性を低減できる。
 回転機構1は、軸受7A、7B、7Cに、転がり軸受又は滑り軸受等のように、気体供給を必要としない機械式の軸受を用いることができる。軸受7A、7B、7Cに転がり軸受を用いると、第1回転部材5A及び第2回転部材5Bに搭載される物体からの荷重以外に起因する理由による、隙間14A、14B方向におけるシャフト4の変位が抑制される。
 本実施形態において、第1隙間13Aの大きさtsaは、第1開口11Aの幅ta、すなわち孔2HAの径方向における第1開口11Aの寸法よりも大きい。第1開口11Aの幅taは、隙間12Aの幅に等しい。第2隙間13Bの大きさtsbは、第2開口11Bの幅tb、すなわち孔2HBの径方向における第2開口11Bの寸法よりも大きい。第2開口11Bの幅tbは、隙間12Bの幅に等しい。このように、第1隙間13Aの大きさtsaを第1開口11Aの幅taよりも大きく、第2隙間13Bの大きさtsbを第2開口11Bの幅tbよりも大きくすることで、第1開口11Aから流出した気体を効率よく第1隙間13Aに、第2開口11Bから流出した気体を効率よく第2隙間13Bに導いて、封止効果を確実に発揮させることができる。
 第1開口11A及び第2開口11Bには、例えば、気体軸受のスロット絞りが利用できる。第1開口11Aの幅ta及び第2開口11Bの幅tbは、例えば、数μm~数十μm程度である。第1隙間13Aの大きさtsa及び第2隙間13Bの大きさtsbは、第1開口11Aの幅ta及び第2開口11Bの幅tbの大きさによって異なる。第1開口11A及び第2開口11Bには、例えば、多孔質絞り又は自成絞り等、静圧軸受用の様々な絞り形式を用いることができる。
 第1開口11A及び第2開口11Bは、孔2HA及び孔2HBの周方向に沿って形成されている。このため、第1開口11Aは、第1回転部材5Aと第1構造体2FAとの間に、これらの周方向に向かって均一に気体を噴射することができ、第2開口11Bは、第2回転部材5Bと第2構造体2FBとの間に、これらの周方向に向かって均一に気体を噴射することができる。気体を均一に噴射させることを目的として、1開口11Aの幅ta及び第2開口11Bの幅tbを大きくしたい場合には、隙間12A及び隙間12Bに流入する気体の流量を抑制するための調整機器を、第1気体通路10A及び第2気体通路10B又はこれらに接続された通路に設けることができる。
 第1開口11A及び隙間12Aは、第1構造体2FAの第1部材2FASと第2部材2FARとの間に形成される。すなわち、第1開口11A及び隙間12Aは、2つの部材の間に形成される。第2開口11B及び隙間12Bは、第2構造体2FBの第1部材2FBSと第2部材2FBRとの間に形成される。すなわち、第1開口11A及び隙間12A並びに第2開口11B及び隙間12Bは、2つの部材の間に形成される。このように、第1開口11A及び第2開口11Bは、回転体と筐体との間の隙間から気体を流出させるものではない。このため、第1構造体2FAの第1部材2FAS及び第2部材2FAR並びに第2構造体2FBの第1部材2FBSと第2部材2FBRについて、これらの寸法精度の管理及び円筒度等の幾何公差を緩和できる。その結果、第1構造体2FA及び第2構造体2FBの製造コストを低減できる。また、2つの部材を嵌め合いにより結合する等によって、第1開口11A及び隙間12A並びに第2開口11B及び隙間12Bを形成することで、これらの寸法の管理も比較的容易になる。さらに、第1構造体2FA及び第2構造体2FBを2つの部材から形成することにより、部品の交換も容易になる。
 また、封止すべきハウジング2の外部の雰囲気に対して、耐食性の観点で優れた材料であるが、加工性の観点から採用できない材料を採用することができる。例えば、第1構造体2FAにおいて、これまで採用できなかった耐食性に優れた材料を、ハウジング2の外側に設けられる第2部材2FBRに適用したり、第2構造体2FBの第1部材2FBSに適用したりすることができる。
 封止機能を発揮する第1隙間13Aは、第1回転部材5Aの張出部5FAと第1構造体2FAの第2部材2FARとが重なった部分である。封止機能を発揮する第2隙間13Bは、第2回転部材5Bの側部5BEと第2構造体2FBが有する第1部材2FBSの張出部2FBEの内周面2FBIとが重なった部分である。隙間12Aは第1開口11Aからの気体の供給量を、隙間12Bは第2開口11Bからの気体の供給量を低減する。
 回転機構1は、第1隙間13A及び第2隙間13Bによって、給気装置50からの気体の供給が停止した場合でも、液体等の浸入を抑制できる。ハウジング2の外部から第1回転部材5A及び第2回転部材5Bに液体等が吹き付けられた場合も同様である。
 本実施形態において、第1隙間13Aが設けられている第1回転部材5Aは、第2隙間13Bが設けられている第2回転部材5Bよりも上に配置される。すなわち、第1回転部材5Aは、重力の作用方向とは反対側に、第2回転部材5Bは重力の作用方向側に配置される。このように配置すると、第1回転部材5A側の第1隙間13Aに液体等が流入した場合、重力の作用により第1隙間13Aの下方(重力が作用する方向側)から液体が排出されやすくなる。また、第2回転部材5B側の第2隙間13Bは、第2回転部材5Bの、シャフト4の第2端部4TBとは反対側の面5BPSが下方を向いている。このため、第2隙間13Bに液体等が流入した場合、重力の作用により第2隙間13Bから液体が排出されやすくなる。さらに、給気装置50殻の気体の供給が停止した場合でも、液体等の浸入を抑制できる。
(変形例)
 図2は、実施形態1の変形例に係る回転機構を示す断面図である。図2は、回転機構1aの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1aを切った断面を示している。実施形態1の回転機構1は、図1に示すように、第2構造体2FBの第2部材2FBRがハウジング2の本体部2Sの端部と接しているが、本変形例の回転機構1aは、第2構造体2FBaの第2部材2FBRaがハウジング2aの本体部2Sの端部と接している点が異なる。このために、第2構造体2FBaの第1部材2FBSaは、本体部2S側と接する部分が径方向内側に張り出す張出部2FBFを有している。第2構造体2FBaの第2部材2FBRaは、張出部2FBFを介してハウジング2aの本体部2Sと接している。このような構造であっても回転機構1aは、回転機構1と同様の作用及び効果が得られる。また、回転機構1aは、張出部2FBFが、回転中心軸Zr方向における第2構造体2FBaの第2部材2FBRaの位置決めをすることもできる。
 以上説明したように、実施形態1及びその変形例の回転機構1、1aは、回転部分を気体によって封止するにあたって、シャフト4の両側に回転体を取り付けて回転させるものに適している。実施形態1及びその変形例の構成は、以下の実施形態においても適宜適用することができる。この場合、実施形態1及びその変形例の一部の構成のみを適用してもよいし、すべての構成を適用してもよい。
(実施形態2)
 図3は、実施形態2に係る回転機構を示す断面図である。図3は、回転機構1bの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1bを切った断面を示している。回転機構1bは、第1孔2HAと第1開口11Aとの間における第1回転部材5Abとハウジング2bとの間は、第1孔2HAの径方向における第1開口11Aの寸法、すなわち幅taよりも小さい部分18A(以下、適宜小隙間部分18Aという)を含む。また、第2孔2HBと第2開口11Bとの間における第2回転部材5Bbとハウジング2との間は、第2孔2HBの径方向における第2開口11Bの寸法、すなわち幅tbよりも小さい部分(以下、適宜小隙間部分18Bという)を含む。
 第1構造体2FAb側の小隙間部分18Aは、第1構造体2FAの第1部材2FASbと第1回転部材5Abとの間の隙間である。小隙間部分18Aの大きさ、すなわち、第1部材2FASbの面2FAPと第1回転部材5Abの面5APRとの間隔は、tcである。第2構造体2FBb側の小隙間部分18Bは、第2構造体2FBの第2部材2FBRbと第2回転部材5Bbとの間の隙間である。小隙間部分18Bの大きさ、すなわち、第2部材2FBRbの面2FBPと第2回転部材5Bbの面5BPRとの間隔は、tdである。
 回転機構1bは、第1構造体2FAb側の小隙間部分18Aと第1開口11Aとの間に、小隙間部分18Aよりも大きい隙間を有する大隙間部分15Aを有する。大隙間部分15Aの大きさはteである。大隙間部分15Aは、第1隙間13Aと接続している。また、回転機構1bは、第2構造体2FBb側の小隙間部分18Bと第2開口11Bとの間に、小隙間部分18Bよりも大きい隙間を有する大隙間部分15Bを有する。大隙間部分15Bの大きさはtfである。大隙間部分15Bは、第2隙間13Bと接続している。
 第1回転部材5Ab側において、大隙間部分15Aの大きさteと、第1開口11Aの幅taと、小隙間部分18Aの大きさtcとの関係は、te>ta>tcとなる。第2回転部材5Bb側において、大隙間部分15Bの大きさtfと、第2開口11Bの幅tbと、小隙間部分18Bの大きさtdとの関係は、tf>tb>tdとなる。
 前述したように、第1開口11Aの幅ta及び第2開口11Bの幅tbは数μm~数十μmである。小隙間部分18Aの大きさtc及び小隙間部分18Bの大きさtfは数μm~20μm程度であり、大隙間部分15Aの大きさte及び大隙間部分15Bの大きさtfは、数十μmよりも大きい。
 第1開口11Aから大隙間部分15Aに流出した気体は、第1隙間13Aに供給されて、この部分を封止する。第2開口11Bから大隙間部分15Bに流出した気体は、第2隙間13Bに供給されて、この部分を封止する。回転機構1bは、ハウジング2bの外部環境の異常等によって第1回転部材5Abと第1構造体2FAとの間又は第2回転部材5Bbと第2構造体2FBbとの間に液体が蓄積される可能性がある。
 回転機構1bは、小隙間部分18A及び小隙間部分18Bが封止機能を発揮するので、第1隙間13A及び第2隙間13Bから大隙間部分15A及び大隙間部分15Bに液体が浸入した場合でも、この液体がシャフト4の部分まで到達することを抑制できる。特に、第1開口11A及び第2開口11Bに対する気体の供給が停止した場合にもシャフト4の部分への液体の浸入を効果的に抑制できるので好ましい。
 以上説明したように、実施形態2の回転機構1bは、回転部分を気体によって封止するにあたって、シャフト4の両側に回転体を取り付けて回転させるものに適している。実施形態2の構成は、以下の実施形態においても適宜適用することができる。この場合、実施形態2の一部の構成のみを適用してもよいし、すべての構成を適用してもよい。
(実施形態3)
 図4は、実施形態3に係る回転機構を示す断面図である。図4は、回転機構1cの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1cを切った断面を示している。前述した回転機構1及び回転機構1c等は、回転中心軸Zrと平行な方向に延在する第2隙間13Bを有していた。実施形態3の回転機構1cは、第2回転部材5Bcの面5BPRと、ハウジング2cの第2構造体2FBcの面2FBPとの間に、第2隙間13Bcを有している。すなわち、回転機構1cは、回転中心軸Zrと交差(この例では直交)する方向に延在する第2隙間13Bcを有している点が異なる。
 例えば、第1部材2FBScは高強度が必要である。第2部材2FBRcは液体に接触する可能性が高いことから耐食性等が必要である。第2隙間13Bcを、回転中心軸Zrと交差(この例では直交)する方向に延在させることにより、第2構造体2FBcの第1部材2FBScと第2部材2FBRcとに、それぞれが必要とする特性を有する材料を用いることができる。この例では、第1部材2FBScに高強度材料を、第2部材2FBRcに耐食性の高い材料を用いることができる。その結果、第2構造体2FBcの性能が向上する。
 本実施形態において、第2回転部材5Bcは、部材5BIと、部材5BJとを有する。部材5BIはシャフト4に取り付けられ、部材5BJは部材5BIの外側に取り付けられる。第2開口11Bは、部材5BJと対向する位置に設けられる。シャフト4に取り付けられる部材5BIは、外側に部材5BJが取り付けられるため、回転機構1cの外部に環境には直接接触しない。部材5BJは、回転機構1cの外部に環境には直接接触するので、耐食性が要求される。部材5BIは、シャフト4からの回転力が伝達されるため強度が要求される。
 第2回転部材5Bが、2つの部材5BI及び5BJで形成されることにより、それぞれの部材5BI及び5BIに適した性質を有する材料を用いることができる。この例では、部材5BIに高強度材料を、部材5BJに耐食性の高い材料を用いることができる。その結果、第2回転部材5Bcの性能が向上する。第2回転部材5Bcの直径DRは、第2構造体2FBcの直径DSよりも大きいが、両者の大きさは、これに限定されない。また、本実施形態では、第2隙間13Bcを、回転中心軸Zrと交差する方向に延在させたが、図1に示す第1隙間13Aを回転中心軸Zrと交差(例えば直交)する方向に延在させてもよい。
(変形例)
 図5は、実施形態3の変形例に係る回転機構を示す断面図である。図5は、回転機構1dの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1dを切った断面を示している。回転機構1dは、第1回転部材5Adの張出部5FAdを、ハウジング2dの本体部2Sdまで延在させている。このような構造により、第1隙間13Aは、張出部5FAdの内周部5WIと、第1構造体2FAdの第1部材2FASdの側部2FSAS及び第2部材2FRASの側部2FRASとの間に形成される。
 ハウジング2dの本体部2Sdの第2回転部材5Bd側における端部は、第2回転部材5Bdの位置まで張り出す張出部2SHdを有している。張出部2SHdの内周部2SIには、第2構造体2FBdの第1部材2FBSd及び第2部材2FBRdが取り付けられる。第2回転部材5Bdの直径DRは、張出部2SHdの内径DIよりも小さい。このため、第2回転部材5Bdの側部5BJdは、張出部2SHdの内周部2SIと対向する。第2回転部材5Bdと第2構造体2FBdの第2部材2FBRdとの間に、第2隙間13Bdが形成される。第2回転部材5Bdの直径DRは、張出部2SHdの内径DIよりも小さい。
 このような構造により、第1開口11A及びこれに接続される隙間12A並びに第2開口11B及びこれに接続される隙間12Bを形成するための部品の材料を選定する際の自由度を向上させることができる。前述した部品は、第1構造体2FAdの第1部材2FASd及び第2部材2FARd並びに第2構造体2FBdの第1部材2FBSd及び第2部材2FBRdである。
 以上説明したように、実施形態3及びその変形例の回転機構1c、1dは、回転部分を気体によって封止するにあたって、シャフト4の両側に回転体を取り付けて回転させるものに適している。実施形態3及びその変形例について説明したが、実施形態3及びその変形例の構成は、以下の実施形態においても適宜適用することができる。この場合、実施形態3及びその変形例の一部の構成のみを適用してもよいし、すべての構成を適用してもよい。
(実施形態4)
 図6は、実施形態4に係る回転機構を示す断面図である。図6は、回転機構1eの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1eを切った断面を示している。実施形態4の回転機構1eは、ハウジング2eの第1隙間13Aと隣接する部分に、第1孔2HAの周方向に沿った溝16を有し、第2回転部材5Beの第2隙間13Bと隣接する部分に、第2孔2HBの周方向に沿った溝17を有する点が、前述した実施形態1の回転機構1と異なる。溝16は、回転中心軸Zrの方向において、第1回転部材5Aeの張出部5FAeの位置まで延在している。本実施形態において、第2回転部材5Beは、部材5BIe及び部材5BJeの2つから形成されるが、第2回転部材5Beは1つの部材であってもよい。
 実施形態1から実施形態3において、回転機構1、1b、1c、1dは、いずれも回転中心軸Zrが重力の作用する方向と平行になるように設置される。本実施形態において、回転機構1eは、回転中心軸Zrが重力の作用する方向と交差(本実施形態では直交)するように設置される。ハウジング2eの外部雰囲気中に液体が含まれていると、第1隙間13A及び第2隙間13Bに液体が溜まる可能性がある。このため、回転機構1eは、ハウジング2eの第1隙間13Aと隣接する部分、本実施形態では第1構造体2FAeが有する第2部材2FBReに、溝16を有する。また、回転機構1eは、第2回転部材5Beの第2隙間13Bと隣接する部分、本実施形態では第2構造体2FBeが有する第1部材2FBSeと対向する部分に、溝17を有する。
 溝16は、第1隙間13Aに溜まった液体をハウジング2eの外部に排出する。溝17は、第2隙間13Bに溜まった液体をハウジング2eの外部に排出する。その結果、第1隙間13A及び第2隙間13Bに液体が溜まることを抑制できる。実施形態4の回転機構1eは、回転部分を気体によって封止するにあたって、シャフト4の両側に回転体を取り付けて回転させるものに適し、特に、回転中心軸Zrが重力の作用方向と交差する場合に好適である。実施形態4について説明したが、実施形態4の構成は、以下の実施形態においても適宜適用することができる。この場合、実施形態4の一部の構成のみを適用してもよいし、すべての構成を適用してもよい。
(実施形態5)
 図7は、実施形態5に係る回転機構を示す断面図である。図7は、回転機構1fの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1fを切った断面を示している。実施形態5の回転機構1fは、第1構造体2FAfが有する第1部材2FARfと第2部材2FASfとが、それぞれの外周部で接している。第2部材2FASfは、径方向外側に、周方向に沿って延在する環状の溝9Afを有している。第1部材2FARfと第2部材2FASfとは、第1部材2FARfの面2FARPと第2部材2FASf面2FASPとが溝9Afの径方向外側で接している。
 第1部材2FARfと第2部材2FASfとの間には、第1絞り部30Aが形成される。第1絞り部30Aは、2つの部品、すなわち第1部材2FARfと第2部材2FASfとの間に形成されて、回転機構1fの回転中心軸Zrと直交する方向に延在している。第1部材2FARfは、第1絞り部30Aを形成するために、面2FAEPの部分と面2FAEPよりも径方向内側の部分とに段差を有している。第1絞り部30Aは、第1構造体2FAfの径方向内側で隙間12Aと接続し、第1構造体2FAfの径方向内側で溝9Afと接続している。溝9Afは、第1気体通路10Aと接続している。このような構造により、給気装置50から供給された気体は、第1気体通路10A及び溝9Afを通って第1絞り部30Aに流入する。第1絞り部30Aに流入した気体は、隙間12Aを通って、第1開口11Aから流出する。第1絞り部30Aの間隔は、数μm~数十μm程度であり、隙間12Aの間隔よりも小さい。
 回転機構1fは、本体部2Sfの第2構造体2FBfが取り付けられている側の端部に、一部が回転中心軸Zr方向に向かって突出した突起部2STが設けられる。この突起部2STの外側に、第2構造体2FBfが取り付けられる。第2構造体2FBfの面2FBPfの一部と、本体部2Sfの第2構造体2FBfが取り付けられている側の端面2SPの一部とは、それぞれの径方向外側で接している。端面2SPと第2構造体2FBfとの間には、第2絞り部30Bが形成される。第2絞り部30Aは、本体部2SFと第2構造体2FBfとの間に形成されて、回転機構1fの回転中心軸Zrと直交する方向に延在している。第2構造体2FBfは、第2絞り部30Bを形成するために、面2FBPの部分と面2FBPよりも径方向内側の部分とに段差を有している。第2絞り部30Bの間隔は、数μm~数十μm程度であり、隙間12Bの間隔よりも小さい。
 第2構造体2FBfは、径方向外側に、周方向に沿って延在する環状の溝9Bfを有している。第2絞り部30Bは、第2構造体2FBfの径方向内側で隙間12Bと接続し、第2構造体2FBfの径方向内側で溝9Bfと接続している。溝9Bfは、第2気体通路10Bと接続している。このような構造により、給気装置50から供給された気体は、第2気体通路10B及び溝9Bfを通って第2絞り部30Bに流入する。第2絞り部30Bに流入した気体は、隙間12Bを通って、第2開口11Bから流出する。
 回転機構1fは、第1絞り部30Aを形成するために、第1部材2FARfには面2FARPの平面度及び段差のみが要求され、第2部材2FASfには面2FASPの平面度のみが要求される。第2構造体2FBfは、第2絞り部30Bを形成するために、面2FBPfの平面度及び段差のみが要求される。このため、回転機構1fは、第1部材2FARf、第2部材2FASf及び第2構造体2FBfの直径公差の管理が不要になるので、部品精度の管理項目が少なくて済むという利点がある。その結果、歩留まりが向上する。
(変形例)
 図8は、実施形態5の変形例に係る回転機構を示す断面図である。図8は、回転機構1eの回転中心軸Zrを含み、かつ回転中心軸Zrと平行な平面で回転機構1gを切った断面を示している。この変形例の回転機構1gは、実施形態5の回転機構1fの第1部材2FARfと第2部材2FASfとの間に第1スペーサ31Aを備え、本体部2Sfと第2構造体2FBfとの間に第2スペーサ31Bを備える点が異なる。回転機構1gは、第1スペーサ31A及び第2スペーサ31Bの厚みによって第1絞り部30A及び第2絞り部30Bが形成される。回転機構1gは、例えば、使用用途に応じて第1スペーサ31A及び第2スペーサ31Bの厚みを変更することにより、第1絞り部30A及び第2絞り部30Bの大きさを変更することができる。
 回転機構1gは、第1スペーサ31A及び第2スペーサ31Bによって第1絞り部30A及び第2絞り部30Bを形成するため、第1部材2FARgには面2FARPの平面度のみが要求され、第2部材2FASgには面2FASPの平面度のみが要求される。第2構造体2FBgは、第2絞り部30Bを形成するために、面2FBPgの平面度のみが要求される。このため、回転機構1gは、第1部材2FARg、第2部材2FASg及び第2構造体2FBgの直径公差の管理が不要になるので、部品精度の管理項目がさらに少なくて済むという利点がある。その結果、歩留まりがさらに向上する。
 以上、実施形態1から実施形態5を説明したが、前述した内容により実施形態1から実施形態5が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、実施形態1から実施形態5の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
1、1a、1b、1c、1d、1e 回転機構
2、2a、2b、2c、2d、2e ハウジング
2SI 貫通孔
2HA 第1孔
2HB 第2孔
2FA、2FBa、2FAb、2FAd、2FAe 第1構造体
2FB、2FBa、2FBb、2FBc、2FBd、2FBd 第2構造体
2FAP、2FBP 面
2FAS、2FASb、2FASd、2FBS、2FBSa、2FBSc、2FBSd、2FBSe 第1部材
2FAR、2FARd、2FBR、2FBRa、2FBRb、2FBRc、2FBRd、2FBRe 第2部材
2FRAS、2FSAS、2FYA、2FYB 側部
2FBE、2FBF 張出部
2FBI 内周面
2S、2Sd 本体部
2SI 内周部
2SHd 張出部
3 電動機
4 シャフト
4TA 第1端部
4TB 第2端部
5A、5Ab、5Ac、5Ad 第1回転部材
5B、5Bb、5Bc、5Bd、5Be 第2回転部材
5BE、5BEd 側部
5FA、5FAd 張出部
5WI 内周部
5BJ、5BJe、5BI、5BIe 部材
5APS、5APR、5BPS、5BPR 面
6A 第1支持部材
6B 第2支持部材
7A、7B、7C 軸受
8 予圧部材
9A、9B 溝
10A 第1気体通路
10B 第2気体通路
11A 第1開口
11B 第2開口
12A、12B、14A、14B 隙間
13A 第1隙間
13B、13Bc、13Bd 第2隙間
15A、15B 部分(大隙間部分)
16、17 溝
18A、18B 部分(小隙間部分)
50 給気装置
Zr 回転中心軸

Claims (10)

  1.  ハウジングと、
     前記ハウジングに設けられた第1孔及び第2孔に挿通されるシャフトと、
     前記ハウジングに設置されて前記シャフトを回転可能に支持する軸受と、
     前記シャフトの第1端部に設けられて前記シャフトともに回転し、前記第1孔の径方向外側かつ前記ハウジングの側部まで張り出した張出部を有し、前記張出部が前記ハウジングの側部と所定の大きさの第1隙間を有して対向する第1回転部材と、
     前記シャフトの第2端部に設けられて前記シャフトともに回転し、かつ前記第2孔の径方向外側まで張り出して前記第2端部側における前記ハウジングと所定の大きさの第2隙間を有して対向する第2回転部材と、
     前記ハウジングの前記第1孔の径方向外側に開口して前記第1回転部材と対向し、かつ前記第1孔の周方向に沿って延在して、前記第1隙間に気体を供給する第1開口と、
     前記ハウジングの前記第2孔の径方向外側に開口して前記第2回転部材と対向し、かつ前記第2孔の周方向に沿って延在して、前記第2隙間に気体を供給する第2開口と、
     を含む、回転機構。
  2.  前記第1回転部材は前記第2回転部材よりも上に配置される、請求項1に記載の回転機構。
  3.  前記第1隙間は、前記シャフトの径方向における前記第1開口の寸法よりも大きく、前記第2隙間は、前記シャフトの径方向における前記第2開口の寸法よりも大きい、請求項1又は請求項2に記載の回転機構。
  4.  前記第1孔と前記第1開口との間における前記第1回転体と前記ハウジングとの間は、前記第1孔の径方向における前記第1開口の寸法よりも小さい部分を含み、前記第2孔と前記第2開口との間における前記第2回転体と前記ハウジングとの間は、前記第1孔の径方向における前記第2開口の寸法よりも小さい部分を含む、請求項1から請求項3のいずれか1項に記載の回転機構。
  5.  前記ハウジングの前記第1隙間と隣接する部分に、前記第1孔の周方向に沿った溝を有する、請求項1から請求項4のいずれか1項に記載の回転機構。
  6.  前記第2回転部材の前記第2隙間と隣接する部分に、前記第2孔の周方向に沿った溝を有する、請求項1から請求項5のいずれか1項に記載の回転機構。
  7.  前記第1開口には、2つの部品の間に形成されて、前記シャフトの回転中心軸と直交する方向に延在し、かつ前記第1開口よりも間隔が小さい第1絞り部を介して前記気体が供給され、
     前記第2開口には、2つの部品の間に形成されて、前記シャフトの回転中心軸と直交する方向に延在し、かつ前記第2開口よりも間隔が小さい第2絞り部を介して前記気体が供給される、請求項1から請求項6のいずれか1項に記載の回転機構。
  8.  前記第1絞り部を形成する2つの部品の間には、第1スペーサが設けられ、前記第2絞り部を形成する2つの部品の間には、第2スペーサが設けられる、請求項7に記載の回転機構。
  9.  請求項1から請求項8のいずれか1項に記載の回転機構を備える、工作機械。
  10.  請求項1から請求項8のいずれか1項に記載の回転機構を備える、半導体製造装置。
PCT/JP2014/080689 2013-11-20 2014-11-19 回転機構、工作機械及び半導体製造装置 WO2015076313A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14864251.5A EP3073160B1 (en) 2013-11-20 2014-11-19 Rotation mechanism, machine tool, and semiconductor manufacturing device
KR1020167008383A KR101802907B1 (ko) 2013-11-20 2014-11-19 회전 기구, 공작 기계 및 반도체 제조 장치
CN201480051893.0A CN105556184B (zh) 2013-11-20 2014-11-19 旋转机构、机床以及半导体制造装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013240386 2013-11-20
JP2013-240386 2013-11-20
JP2014-004632 2014-01-14
JP2014004632 2014-01-14
JP2014-013801 2014-01-28
JP2014013801A JP5796645B2 (ja) 2013-11-20 2014-01-28 回転機構、工作機械及び半導体製造装置
JP2014-025850 2014-02-13
JP2014025850 2014-02-13
JP2014-045255 2014-03-07
JP2014045255A JP5800047B2 (ja) 2014-02-13 2014-03-07 回転機構、工作機械及び半導体製造装置

Publications (1)

Publication Number Publication Date
WO2015076313A1 true WO2015076313A1 (ja) 2015-05-28

Family

ID=53179573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080689 WO2015076313A1 (ja) 2013-11-20 2014-11-19 回転機構、工作機械及び半導体製造装置

Country Status (1)

Country Link
WO (1) WO2015076313A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169253U (ja) * 1987-04-22 1988-11-04
JPH09150336A (ja) 1995-11-24 1997-06-10 Toyoda Mach Works Ltd 主軸装置
JP2004197786A (ja) * 2002-12-17 2004-07-15 Tamagawa Machinery Co Ltd 濃縮装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169253U (ja) * 1987-04-22 1988-11-04
JPH09150336A (ja) 1995-11-24 1997-06-10 Toyoda Mach Works Ltd 主軸装置
JP2004197786A (ja) * 2002-12-17 2004-07-15 Tamagawa Machinery Co Ltd 濃縮装置

Similar Documents

Publication Publication Date Title
JP5999176B2 (ja) 真空ポンプ
US10788076B2 (en) Rotation mechanism, machine tool, and semiconductor manufacturing device
JP2011024406A (ja) 中空減速機内蔵アクチュエータ
US20100201216A1 (en) Bearing device for non-contacting bearing of a rotor with respect to a stator
JP5800047B2 (ja) 回転機構、工作機械及び半導体製造装置
KR101802907B1 (ko) 회전 기구, 공작 기계 및 반도체 제조 장치
JP6540165B2 (ja) 回転機構、搬送装置、工作機械及び半導体製造装置
WO2015076313A1 (ja) 回転機構、工作機械及び半導体製造装置
JP6370995B2 (ja) 静圧シール付きモーター
JP5718327B2 (ja) シール用回転出力ユニットおよびシール用モータアセンブリ
EP3258577A1 (en) Motor, actuator, semiconductor manufacturing device, and flat display manufacturing device
TWI678866B (zh) 旋轉致動器
JP6118718B2 (ja) スクロール式流体機械
JP5796645B2 (ja) 回転機構、工作機械及び半導体製造装置
JP6707964B2 (ja) 位置決め装置及び回転機構
JP6451906B2 (ja) モータ、アクチュエータ、半導体製造装置、及びフラットディスプレイ製造装置
WO2020049715A1 (ja) 電動機
JP2015152133A (ja) 歯車装置
WO2015107845A1 (ja) 回転機構、工作機械及び半導体製造装置
TW202018210A (zh) 致動器
JP2018071619A (ja) シール構造、及び回転装置
JP2011019321A (ja) 電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051893.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008383

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014864251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE