WO2015076276A1 - プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材 - Google Patents

プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材 Download PDF

Info

Publication number
WO2015076276A1
WO2015076276A1 PCT/JP2014/080556 JP2014080556W WO2015076276A1 WO 2015076276 A1 WO2015076276 A1 WO 2015076276A1 JP 2014080556 W JP2014080556 W JP 2014080556W WO 2015076276 A1 WO2015076276 A1 WO 2015076276A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotational force
main body
view
photosensitive drum
Prior art date
Application number
PCT/JP2014/080556
Other languages
English (en)
French (fr)
Inventor
修一 池田
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2015076276A1 publication Critical patent/WO2015076276A1/ja
Priority to US15/157,860 priority Critical patent/US9851679B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • G03G15/751Details relating to xerographic drum, band or plate, e.g. replacing, testing relating to drum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • G03G15/757Drive mechanisms for photosensitive medium, e.g. gears
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/18Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements using a processing cartridge, whereby the process cartridge comprises at least two image processing means in a single unit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/16Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements
    • G03G21/18Mechanical means for facilitating the maintenance of the apparatus, e.g. modular arrangements using a processing cartridge, whereby the process cartridge comprises at least two image processing means in a single unit
    • G03G21/1839Means for handling the process cartridge in the apparatus body
    • G03G21/1857Means for handling the process cartridge in the apparatus body for transmitting mechanical drive power to the process cartridge, drive mechanisms, gears, couplings, braking mechanisms
    • G03G21/1864Means for handling the process cartridge in the apparatus body for transmitting mechanical drive power to the process cartridge, drive mechanisms, gears, couplings, braking mechanisms associated with a positioning function

Definitions

  • the present invention relates to a process cartridge, a photosensitive drum unit, and a set of end members used in an image forming apparatus such as a laser printer and a copying machine.
  • Image forming apparatuses such as laser printers and copiers include a process cartridge that is detachable from a main body of the image forming apparatus (hereinafter sometimes referred to as “apparatus main body”).
  • the process cartridge is a member that forms contents to be represented such as characters and figures in a posture mounted on the apparatus main body and transfers the contents to a recording medium such as paper.
  • the process cartridge is provided with a photosensitive drum on which the content to be transferred is formed, and a charging unit and a developing unit for forming the content to be transferred to the photosensitive drum.
  • the same process cartridge is attached to or detached from the main body for maintenance, or the old process cartridge is detached from the main body to replace it with a new process cartridge. Or put it on.
  • a process cartridge can be attached and detached by the user of the image forming apparatus by himself / herself.
  • the photosensitive drum included in the process cartridge needs to be rotated during its operation. Therefore, the photosensitive drum is provided with an end member so that the driving shaft of the apparatus main body is engaged directly or via another member, and the photosensitive drum is rotated by receiving rotational force from the driving shaft. Yes. Then, in order to attach and detach the process cartridge to and from the apparatus main body as described above, the engagement (disengagement) between the drive shaft of the apparatus main body and the end member provided on the photosensitive drum is performed, and the process cartridge is reused. It is necessary to engage (mount).
  • the photosensitive drum (process cartridge) can be attached and detached by moving in the axial direction of the drive shaft of the apparatus main body, it is relatively easy to configure the apparatus.
  • the process cartridge is detached from the apparatus main body so as to be pulled out in a direction different from the axial direction of the drive shaft, and pushed in this direction. It is preferable to attach to the apparatus main body.
  • Patent Document 1 discloses a configuration for attaching and detaching a process cartridge in a direction different from the axial direction of the drive shaft of the apparatus main body.
  • the coupling member (shaft member) described in Patent Document 1 is swingably attached to the drum flange (bearing member) by including a spherical portion. Accordingly, a portion (rotational force receiving member) of the coupling member that engages with the drive shaft of the apparatus main body swings around the spherical portion to change the angle with respect to the axis of the photosensitive drum. It is possible to easily attach and detach the drive shaft of the apparatus main body and the photosensitive drum.
  • the photosensitive drum included in the process cartridge can be engaged with the apparatus main body via the coupling member and rotated following the drive shaft.
  • the photosensitive drum is moved in the axial direction during the engagement, and the position is not determined, so that proper engagement may not be possible.
  • the drive shaft idles and the photosensitive drum does not rotate, or even if the photosensitive drum rotates, the image area of the photosensitive member becomes unstable and print position deviation or color deviation occurs.
  • Patent Document 1 for example, as shown in FIGS. 24A and 24B of Patent Document 1, the end surface of the bearing member and the rib of the drum frame body are in contact with each other. Movement in the axial direction (longitudinal direction) is regulated and positioned so as to sandwich the bearing member (drum flange) from one side and the other side in the axial direction.
  • an object of the present invention is to provide a process cartridge capable of easily positioning the photosensitive drum in the axial direction.
  • a photoreceptor drum unit and a set of end members are also provided.
  • the present invention relates to a process cartridge including a housing that is detachably attached to an image forming apparatus main body, and a photosensitive drum unit that is disposed in the housing and held by the housing.
  • the photosensitive drum unit has a cylindrical shape.
  • two end members disposed at both ends of the photosensitive drum in the axial direction.
  • One end member is provided with an elastic member and is biased in the axial direction.
  • the other end member includes a cylindrical bearing member and a shaft member held by the bearing member, and the one end member and the other end member are a photosensitive drum.
  • the process cartridge is in contact with the housing on the surface opposite to the surface, and the surface facing the photosensitive drum does not contact the housing.
  • the other end member is held such that the shaft member swings with respect to the bearing member.
  • the shaft member of the other end member includes a rotation shaft that moves in the axial direction of the bearing member and one end portion of the rotation shaft. And a rotational force receiving member having an engaging claw that swings with respect to the axis and engages with the drive shaft of the image forming apparatus main body.
  • the shaft member of the other end member is disposed on the rotation shaft and one end portion of the rotation shaft, and engages with the drive shaft of the image forming apparatus main body.
  • a rotational force receiving member having an engaging member, and a posture in which the engaging member is engaged with or disengaged from the rotating shaft or the rotational force receiving member by being pressed, and an attitude in which the engaging member is engaged with the drive shaft; And a restricting member for switching.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and the shaft moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a rotation shaft that is shaped like a shaft, and a tip member that is disposed coaxially with the rotation shaft, and that has a distal end member on which a rotational force receiving member having an engagement member that engages with the drive shaft of the image forming apparatus main body is disposed. The rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotational shaft, and the bearing member.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and the shaft moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a rotation shaft that is shaped like a shaft, and a tip member that is disposed coaxially with the rotation shaft, and that has a distal end member on which a rotational force receiving member having an engagement member that engages with the drive shaft of the image forming apparatus main body is disposed.
  • the rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotating shaft, and the bearing member, and the rotational force receiving member moves so as to be inclined with respect to the axial line.
  • the present invention is a process cartridge including a housing that is detachably attached to the image forming apparatus main body, and a photosensitive drum unit that is disposed in the housing and held by the housing.
  • the photosensitive drum unit includes: A cylindrical photosensitive drum, and two end members disposed at both ends of the photosensitive drum in the axial direction.
  • One of the end members includes an elastic member and is attached in the axial direction.
  • the other end member includes a cylindrical bearing member and a shaft member held by the bearing member, and the one end member is attached to the axis of the photosensitive drum by the housing.
  • the other end member is a process cartridge in which movement in only one direction is restricted by the housing along the axis of the photosensitive drum.
  • the other end member is held such that the shaft member swings with respect to the bearing member.
  • the shaft member of the other end member includes a rotation shaft that moves in the axial direction of the bearing member and one end portion of the rotation shaft. And a rotational force receiving member having an engaging claw that swings with respect to the axis and engages with the drive shaft of the image forming apparatus main body.
  • the shaft member of the other end member is disposed on the rotation shaft and one end portion of the rotation shaft, and engages with the drive shaft of the image forming apparatus main body.
  • a rotational force receiving member having an engaging member, and a posture in which the engaging member is engaged with or disengaged from the rotating shaft or the rotational force receiving member by being pressed, and an attitude in which the engaging member is engaged with the drive shaft; And a restricting member for switching.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and the shaft moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a rotation shaft that is shaped like a shaft, and a tip member that is disposed coaxially with the rotation shaft, and that has a distal end member on which a rotational force receiving member having an engagement member that engages with the drive shaft of the image forming apparatus main body is disposed. The rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotational shaft, and the bearing member.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and the shaft moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a rotation shaft that is shaped like a shaft, and a tip member that is disposed coaxially with the rotation shaft, and that has a distal end member on which a rotational force receiving member having an engagement member that engages with the drive shaft of the image forming apparatus main body is disposed.
  • the rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotating shaft, and the bearing member, and the rotational force receiving member moves so as to be inclined with respect to the axial line.
  • the present invention also includes a cylindrical photosensitive drum and two end members disposed at both ends in the axial direction of the photosensitive drum, and one end member includes an elastic member.
  • the other end member is provided with a cylindrical bearing member and a shaft member held by the bearing member, and the other end member is provided with a bearing member of the other end member.
  • a gear is formed on the outer peripheral portion, and the outer diameter of the bearing member is a photosensitive drum unit that is equal to or smaller than the outer diameter of the photosensitive drum except for a portion where the gear is formed.
  • the other end member is held so that the shaft member swings with respect to the bearing member.
  • the shaft member of the other end member includes a rotation shaft that moves in the axial direction of the bearing member, and a rotation shaft that is disposed at one end of the rotation shaft. And a rotational force receiving member having an engaging claw that engages with the drive shaft of the image forming apparatus main body.
  • the shaft member of the other end member is disposed at one end of the rotation shaft and the rotation shaft, and engages with the drive shaft of the image forming apparatus main body.
  • a rotational force receiving member having an engaging member, and an attitude in which the engaging member engages or disengages with respect to the rotating shaft or the rotational force receiving member by pressing, and the engaging member engages with the driving shaft and does not engage with the driving shaft.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a pivot shaft that is shaft-shaped, a tip member that is disposed coaxially with the pivot shaft, and a tip member that is provided with a rotational force receiving member that includes an engagement member that engages with the drive shaft of the image forming apparatus main body at the tip; The rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotational shaft, and the bearing member.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and moves in the axial direction by rotating around the axis with respect to the bearing member.
  • a pivot shaft that is shaft-shaped, a tip member that is disposed coaxially with the pivot shaft, and a tip member that is provided with a rotational force receiving member that includes an engagement member that engages with the drive shaft of the image forming apparatus main body at the tip;
  • the rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotating shaft, and the bearing member, and the rotational force receiving member moves so as to be inclined with respect to the axial line.
  • the present invention is a set of end members disposed at the end of the photosensitive drum, and one end member includes an elastic member and can be expanded and contracted while being biased.
  • the end member includes a cylindrical bearing member and a shaft member held by the bearing member.
  • a gear is formed on the outer peripheral portion of the bearing member, and the outer diameter of the bearing member is a gear. It is a set of end members that are formed with the largest part.
  • the other end member is held such that the shaft member swings with respect to the bearing member.
  • the shaft member of the other end member is disposed at the rotation shaft that moves in the axial direction of the bearing member and at one end of the rotation shaft.
  • a rotational force receiving member having an engaging claw that swings with respect to the axis of the rotation shaft and engages with the drive shaft of the image forming apparatus main body.
  • the shaft member of the other end member is disposed at the rotation shaft and one end of the rotation shaft, and the drive shaft of the image forming apparatus main body.
  • a rotational force receiving member that includes an engaging member that engages with the rotary shaft, and a posture that engages or disengages with respect to the rotating shaft or the rotational force receiving member by pressing, and the engaging member engages with the drive shaft.
  • a restricting member that switches a posture that does not match.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and rotates in the axial direction with respect to the bearing member.
  • a rotation shaft that is a shaft that moves to the rotation axis, and a distal end that is disposed coaxially with the rotation shaft and that has a rotational force receiving member that includes an engagement member that engages with the drive shaft of the image forming apparatus main body at the distal end The rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotational shaft, and the bearing member.
  • the shaft member of the other end member is disposed coaxially with the bearing member, and rotates in the axial direction with respect to the bearing member.
  • a rotation shaft that is a shaft that moves to the rotation axis, and a distal end that is disposed coaxially with the rotation shaft and that has a rotational force receiving member that includes an engagement member that engages with the drive shaft of the image forming apparatus main body at the distal end. The rotational force around the axis is transmitted in the order of the rotational force receiving member, the rotating shaft, and the bearing member, and the rotational force receiving member moves so as to be inclined with respect to the axial line.
  • the end member on one side has an urging force and can be expanded and contracted in the axial direction.
  • the length can be easily finely adjusted. Therefore, the positional relationship between the end member on the other side and the drive shaft of the apparatus main body becomes appropriate by the biasing force, and it is possible to prevent problems such as idling.
  • This also eliminates the need to strictly control the movement of the photosensitive drum in the axial direction. Therefore, when assembling the process cartridge, there is no need to provide a restricting portion having a sufficient dimension, and it is not necessary to increase the accuracy of the member. Therefore, management becomes easier and productivity is improved.
  • the difference in the length of the photosensitive drum can be allowed within the range in which the end member expands and contracts, it is possible to share the components of the photosensitive drum unit, and cost reduction due to inventory reduction or the like can be expected.
  • FIG. 1 is a diagram for explaining the first embodiment and is a schematic diagram of an image forming apparatus.
  • FIG. 2 is a diagram conceptually showing the structure of the process cartridge.
  • 3A is an external perspective view of the photosensitive drum unit 10 showing the driving side end member 50 in front
  • FIG. 3B is an external view of the photosensitive drum unit 10 showing the non-driving side end member 20 in front. It is a perspective view.
  • 4A is an external perspective view of the non-driving side end member 20 showing the cap member 31 side in front
  • FIG. 4B is an external view of the non-driving side end member 20 showing the flange member 21 in front. It is a perspective view.
  • FIG. 1 is a diagram for explaining the first embodiment and is a schematic diagram of an image forming apparatus.
  • FIG. 2 is a diagram conceptually showing the structure of the process cartridge.
  • 3A is an external perspective view of the photosensitive drum unit 10 showing the driving side end member 50 in front
  • FIG. 3B is an external view
  • FIG. 5 is a cross-sectional view taken along the line indicated by C 5 -C 5 in FIG.
  • FIG. 6A is an external perspective view of the flange member 21, and FIG. 6B is an external perspective view of the cap member 31.
  • FIG. 7 is an external perspective view of the ground plate 40.
  • FIG. 8A is a perspective view from the same viewpoint as FIG. 4A in another posture of the non-driving side end member 20, and FIG. It is sectional drawing from the same viewpoint.
  • FIG. 9A is an external perspective view of the drive side end member 50
  • FIG. 9B is a cross-sectional view of the shaft member 61.
  • FIG. 10 is a perspective view illustrating a posture in which the driving shaft 70 is engaged with the driving side end member 50.
  • FIG. 11 is a view focusing on the photosensitive drum unit 10 and its periphery in the cross section of the process cartridge in a scene where the process cartridge 3 including the photosensitive drum unit 10 is mounted on the apparatus main body 2.
  • FIG. 12 is an external perspective view of the end member 150.
  • FIG. 13 is an exploded perspective view of the end member 150.
  • FIG. 14 is an exploded perspective view of the bearing member 151.
  • 15A is a plan view of the main body 155
  • FIG. 15B is a cross-sectional view of one of the main bodies 155
  • FIG. 15C is another cross-sectional view of the main body 155.
  • FIG. 16 is a diagram illustrating the holding protrusion 161 of the holding unit 160.
  • 17A is a plan view of the intermediate member 170, FIG.
  • FIG. 17B is a cross-sectional view of one of the intermediate members 170
  • FIG. 17C is another cross-sectional view of the intermediate member 170
  • FIG. 18A is a perspective view of the intermediate member 170 ′
  • FIG. 18B is a plan view of the intermediate member 170 ′
  • FIG. 19A is a cross-sectional view of one end member 150
  • FIG. 19B is another cross-sectional view of the end member 150.
  • 20A is a diagram illustrating an example of a posture in which the shaft member 70 is inclined in one cross section of the end member 150
  • FIG. 20B is a posture in which the shaft member 70 is inclined in another cross section of the end member 150. It is a figure showing the example of.
  • FIG. 20A is a diagram illustrating an example of a posture in which the shaft member 70 is inclined in one cross section of the end member 150
  • FIG. 20B is a posture in which the shaft member 70 is inclined in another cross section of the end member 150. It is a figure
  • FIG. 21 is an external perspective view of the end member 250.
  • FIG. 22 is an exploded perspective view of the bearing member 251.
  • 23A is a plan view of the main body 255 of the bearing member 251
  • FIG. 23B is a perspective view of the main body 255 of the bearing member 251.
  • FIG. 24 is a cross-sectional view of the main body 255 of the bearing member 251.
  • FIG. 25A is a perspective view of the intermediate member 270
  • FIG. 25B is a front view of the intermediate member 270
  • FIG. 25C is a cross-sectional view of the intermediate member 270.
  • 26A is a cross-sectional view of one end member 250
  • FIG. 26B is another cross-sectional view of the end member 250.
  • FIG. 27A is a diagram illustrating an example of a posture in which the shaft member 61 is inclined in one cross section of the end member 250
  • FIG. 27B is a posture in which the shaft member 61 is inclined in another cross section of the end member 250. It is a figure showing the example of.
  • FIG. 28 is a perspective view of the end member 350.
  • FIG. 29 is an exploded perspective view of the bearing member 351.
  • 30A is a plan view of the main body 355 of the bearing member 351
  • FIG. 30B is a perspective view of the main body 355 of the bearing member 351.
  • FIG. 31 is a cross-sectional view of the main body 355 of the bearing member 351.
  • FIG. 32A is another cross-sectional view of the main body 355 of the bearing member 351, and FIG.
  • FIG. 32B is another cross-sectional view of the main body 355 of the bearing member 351.
  • 33 (a) is a perspective view of the intermediate member 370
  • FIG. 33 (b) is a front view of the intermediate member 370
  • FIG. 33 (c) is a cross-sectional view of the intermediate member 370.
  • FIG. 34 is a cross-sectional view of one end member 350.
  • FIG. 35A is another cross-sectional view of the end member 350
  • FIG. 35B is still another cross-sectional view of the end member 350.
  • FIG. 36 is a diagram illustrating an example of a posture in which the shaft member 61 is inclined in one cross section of the end member 350.
  • FIG. 37A is a diagram illustrating an example of a posture in which the shaft member 61 is inclined in another cross section of the end member 350
  • FIG. 37B is a view in which the shaft member 61 is inclined in still another cross section of the end member 350. It is a figure explaining the example of a attitude
  • 38 (a) is a perspective view of the intermediate member 470
  • FIG. 38 (b) is a front view of the intermediate member 470
  • FIG. 38 (c) is a plan view of the intermediate member 470.
  • 39A is a perspective view of a posture in which the shaft member 61 is attached to the intermediate member 470
  • FIG. 39B is a sectional view of the posture in which the shaft member 61 is attached to the intermediate member 470.
  • FIG. 40A is a plan view of the main body 555 of the bearing member 551, and FIG. 40B is a perspective view of the main body 555 of the bearing member 551.
  • FIG. 41 is a cross-sectional view of the main body 555 of the bearing member 551.
  • FIG. 42A is another cross-sectional view of the main body 555 of the bearing member 551, and
  • FIG. 41B is still another cross-sectional view of the main body 555 of the bearing member 551.
  • FIG. 43 is a perspective view of the bearing member 551.
  • 44A is a cross-sectional view of the bearing member 551, and FIG. 44B is another cross-sectional view of the bearing member 551.
  • FIG. 45 is a diagram illustrating a scene in which the intermediate member 370 is attached to the main body 555.
  • FIG. 45 is a diagram illustrating a scene in which the intermediate member 370 is attached to the main body 555.
  • FIG. 46 is a diagram for explaining the inclination of the shaft member 61 and the position of the guide member 375.
  • FIG. 47A is a perspective view of the bearing member 551 ′
  • FIG. 47B is an enlarged perspective view of a part of the bearing member 551 ′.
  • FIG. 48 is a perspective view of the bearing member 551 ′′.
  • 49A is a cross-sectional view of the main body 655
  • FIG. 49B is another cross-sectional view of the main body 655.
  • 50A is a perspective view of the intermediate member 670
  • FIG. 50B is a front view of the intermediate member 670
  • FIG. 50C is a plan view of the intermediate member 670.
  • FIG. 51A is a diagram for explaining a scene in which the intermediate member 670 is attached to the main body 655
  • FIG. 51B is a diagram for explaining one scene in which the intermediate member 670 swings in the main body 655.
  • FIG. FIG. 52 is a perspective view of the end member 730.
  • FIG. 53 is an exploded perspective view of the end member 730.
  • 54A is a perspective view of the bearing member 740
  • FIG. 54B is a plan view of the bearing member 740.
  • 55A is a sectional view of the bearing member 740
  • FIG. 55B is another sectional view of the bearing member 740.
  • FIG. 56A is a perspective view of the rotation shaft 751, and FIG. 56B is a cross-sectional view of the rotation shaft 751.
  • FIG. 57 (a) is a perspective view of the tip member 755
  • FIG. 57 (b) is a plan view of the tip member 755
  • FIG. 57 (c) is a sectional view of one of the tip members 755
  • FIG. 57 (d) is the tip member 755.
  • It is other sectional drawing of. 58 (a) is a perspective view of the claw member 759
  • FIG. 58 (b) is a front view of the claw member 759.
  • 59A is a side view of the claw member 759
  • FIG. 59B is a cross-sectional view of the claw member 759.
  • 60A is a perspective view of a combination of the bearing member 740 and the rotating shaft 751, FIG.
  • FIG. 60B is a plan view of a combination of the bearing member 740 and the rotating shaft 751
  • FIG. 60C is a bearing member.
  • 7 is a cross-sectional view of a combination of 740 and a rotating shaft 751.
  • FIG. 61A is an exploded perspective view of the shaft member 750
  • FIG. 61B is a cross-sectional view of the shaft member 750.
  • FIG. 62 is a cross-sectional view of the end member 730.
  • 63A is a cross-sectional view of the end member 730 in the vicinity of the rotational force transmission member 754, and
  • FIG. 63B is another end member of the end member 730 in the vicinity of the rotational force transmission member 754. It is sectional drawing.
  • FIG. 64A is a perspective view of the shaft member 850
  • FIG. 64B is an exploded perspective view of the shaft member 850
  • FIG. 65 is a perspective view of the rotation shaft 851 and the tip member 855
  • FIG. 66 (a) is a plan view of the rotation shaft 851 and the tip member 855
  • FIG. 66 (b) is a cross-sectional view of one of the rotation shaft 851 and the tip member 855
  • FIG. 66 (c) is the rotation shaft 851 and the tip member.
  • FIG. 52 is another cross-sectional view of the member 855.
  • 67 (a) is a perspective view of the claw member 859
  • FIG. 67 (b) is a front view of the claw member 859
  • FIG. 67 (c) is a cross-sectional view of the claw member 859.
  • 68 (a) is a cross-sectional view of one of the shaft members 850
  • FIG. 25 (b) is another cross-sectional view of the shaft member 850.
  • FIG. 69 is a cross-sectional view of the end member 830.
  • 70A is a cross-sectional view showing the periphery of the claw member 859 in the end member 830
  • FIG. 70B is another cross-sectional view showing the periphery of the claw member 859 in the end member 830.
  • 71 is a perspective view of the rotation shaft 851 and the tip member 955.
  • FIG. 72 (a) is a perspective view of the claw member 1059, FIG.
  • FIG. 72 (b) is a front view of the claw member 1059
  • FIG. 72 (c) is a cross-sectional view of the claw member 1059
  • 73A is a cross-sectional view of one of the shaft members 1050
  • FIG. 73B is another cross-sectional view of the shaft member 1050
  • 74A is a perspective view of the shaft member 1150
  • FIG. 74B is an exploded perspective view of the shaft member 1150.
  • FIG. 75 is a perspective view of the rotating shaft 1151 and the tip member 1155.
  • 76A is a plan view of the rotating shaft 1151 and the tip member 1155
  • FIG. 76B is a sectional view of one of the rotating shaft 1151 and the tip member 1155
  • FIG. 14 is another cross-sectional view of the member 1155.
  • FIG. 77A is a perspective view of the claw member 1159
  • FIG. 77B is a perspective view of the claw member 1159 viewed from the other direction
  • FIG. 77C is a front view of the claw member 1159.
  • 78A is a cross-sectional view of one of the shaft members 1150
  • FIG. 78B is another cross-sectional view of the shaft member 1150.
  • FIG. 79 is a cross-sectional view of the end member 1130.
  • 80A is a cross-sectional view showing the periphery of the claw member 1159 in the end member 1130
  • FIG. 80B is another cross-sectional view showing the periphery of the claw member 1159 in the end member 1130.
  • FIG. 81A is a perspective view of the shaft member 1250
  • FIG. 81B is an exploded perspective view of the shaft member 1250
  • FIG. 82A is a perspective view of the rotating shaft 1251
  • FIG. 82B is a plan view of the rotating shaft 1251
  • FIG. 82C is a cross-sectional view of the rotating shaft 1251
  • 83A is a perspective view of the claw member 1259
  • FIG. 83B is a perspective view of the claw member 1259 seen from the other direction
  • FIG. 83C is a front view of the claw member 1259
  • 84 (a) is a cross-sectional view of one of the shaft members 1250
  • FIG. 84 (b) is another cross-sectional view of the shaft member 1250.
  • FIG. 85 is a cross-sectional view of the end member 1230.
  • 86A is a cross-sectional view showing the periphery of the claw member 1259 in the end member 1230
  • FIG. 86B is another cross-sectional view showing the periphery of the claw member 1259 in the end member 1230. is there.
  • FIG. 87 is an exploded perspective view of the end member 1330.
  • FIG. 88 is an exploded cross-sectional view of the end member 1330.
  • FIG. 89 is a perspective view of the bearing member 1340.
  • 90A is a perspective view of one of the rotating shaft holding members 1346
  • FIG. 90B is another perspective view of the rotating shaft holding member 1346.
  • FIG. 91A is a perspective view of the rotation shaft 1351, and FIG.
  • FIG. 91B is a plan view of the rotation shaft 1351.
  • 92A is a perspective view of the rotational force transmission member 1354
  • FIG. 92B is a plan view of the rotational force transmission member 1354.
  • FIG. 93 is a cross-sectional view of the end member 1330.
  • FIG. 94 is another cross-sectional view of the end member 1330.
  • FIG. 95 is a perspective view of the end member 1430.
  • FIG. 96 is an exploded perspective view of the end member 1430.
  • 97A is a perspective view of the bearing member 1440
  • FIG. 97B is a plan view of the bearing member 1440.
  • FIG. 98A is a sectional view of the bearing member 1440
  • FIG. 98B is another sectional view of the bearing member 1440.
  • FIG. FIG. 99A is a perspective view of the rotating shaft 1451
  • FIG. 99B is a cross-sectional view of the rotating shaft 1451
  • 100 (a) is a perspective view of the rotational force receiving member 1455
  • FIG. 100 (b) is a plan view of the rotational force receiving member 1455
  • FIG. 100 (c) is a cross-sectional view of the rotational force receiving member 1455
  • 101A is a perspective view of the regulating member 1459
  • FIG. 101B is a front view of the regulating member 1459
  • FIG. 101C is a side view of the regulating member 1459
  • 102A is a perspective view of a combination of the bearing member 1440 and the rotating shaft 1451, FIG.
  • FIG. 102B is a plan view of the combination of the bearing member 1440 and the rotating shaft 1451
  • FIG. 11C is a bearing member. It is sectional drawing of the combination of 1440 and the rotating shaft 1451.
  • FIG. 103A is an exploded perspective view of the shaft member 1450
  • FIG. 103A is a cross-sectional view of the shaft member 1450.
  • FIG. 104 is a cross-sectional view of the end member 1430.
  • FIG. 105 is a cross-sectional view of the end member 1430.
  • FIG. 106 is a cross-sectional view of the end member 1430.
  • FIG. 107 is a perspective view of the end member 1530.
  • FIG. 108 is an exploded perspective view of the end member 1530.
  • FIG. 109A is a perspective view of the bearing member 1540
  • FIG. 109B is a plan view of the bearing member 1540
  • 110A is a cross-sectional view of the bearing member 1540
  • FIG. 110B is another cross-sectional view of the bearing member 1540
  • 111 (a) is a perspective view of the rotation shaft 1551 and the rotational force receiving member 1555
  • FIG. 111 (b) is a cross-sectional view of the rotational shaft 1551 and the rotational force receiving member 1555
  • FIG. 111 (c) is the rotational shaft 1551
  • 10 is another cross-sectional view of the rotational force receiving member 1555
  • FIG. 112 (a) is a perspective view of the regulating member 1559
  • FIG. 112 (a) is a perspective view of the regulating member 1559
  • FIG. 112 (a) is a perspective view of the regulating member 1559
  • FIG. 112 (a) is a perspective view of the regulating member 1559
  • FIG. 112 (b) is another perspective view of the regulating member 1559.
  • FIG. 113 is a cross-sectional view of the end member 1530.
  • FIG. 114 is a cross-sectional view of the end member 1530.
  • FIG. 115 is a cross-sectional view of the end member 1530.
  • 116A is a perspective view of the end member 1630, and
  • FIG. 116B is another perspective view of the end member 1630.
  • FIG. 117 is an exploded perspective view of the end member 1630.
  • 118A is a perspective view of the bearing member 1640, and
  • FIG. 118B is a plan view of the bearing member 1640.
  • FIG. 119 is an exploded perspective view of the shaft member 1650.
  • FIG. 118A is a perspective view of the bearing member 1640
  • FIG. 118B is a plan view of the bearing member 1640.
  • FIG. 119 is an exploded perspective view of the shaft member 1650.
  • FIG. 120 is an enlarged perspective view of a part of the shaft member 1650.
  • FIG. 121 is an enlarged perspective view of a part of the shaft member 1650.
  • FIG. 122 is an exploded perspective view of the shaft member 1750.
  • FIG. 123 is a cross-sectional view of the end member 1730.
  • 124 is a cross-sectional view of the posture in which the end member 1730 is deformed.
  • 125 (a) is a front view of the end member 1830, and
  • FIG. 125 (b) is a front view of the end member 1830 cut out.
  • FIG. 126 is a perspective view showing a part of the end member 1830 cut out.
  • FIG. 127 is a cross-sectional view of the end member 1830.
  • FIG. 128 is a perspective view of the bearing member 1840.
  • FIG. 129 is a perspective view of the engaging member 1854.
  • FIG. 130 is a perspective view of the crankshaft 1855.
  • FIG. FIG. 131 is a perspective view of the restriction shaft 1861.
  • FIG. 132 is a cross-sectional view of the end member 1830 in a deformed posture.
  • FIG. 133 is a perspective view of the end member 1930.
  • FIG. 134 is an exploded perspective view of the end member 1930.
  • 135 (a) is a perspective view of the bearing member 1940
  • FIG. 135 (b) is a front view of the bearing member 1940
  • FIG. 135 (c) is a plan view of the bearing member 1940.
  • FIG. 136 (a) is an end view orthogonal to the axial direction of the bearing member 1940, and FIG. 136 (b) is a cross-sectional view along the axial direction of the bearing member 1940.
  • FIG. 137 (a) is a perspective view of the rotating shaft 1951, and FIG. 137 (b) is a cross-sectional view of the rotating shaft 1951.
  • 138 (a) is a perspective view of the tip member 1955, and FIG. 137 (b) is a cross-sectional view of the tip member 1955.
  • FIG. 139 (a) is a perspective view of the rotational force receiving member 1958, and FIG. 139 (b) is a cross-sectional view of the rotational force receiving member 1958.
  • FIG. 140 is a cross-sectional view of the end member 1930.
  • FIG. 141A is an end view orthogonal to the axial direction of the end member 1930, and FIG. 141B is a cross-sectional view of the end member 1930 along the axial direction.
  • 142 is a perspective view of the end member 1930.
  • FIG. FIG. 143 is a cross-sectional view of the end member 1930.
  • 144A is a perspective view of a scene where the drive shaft 70 and the end member 1930 are engaged, and
  • FIG. 144B is an enlarged perspective view of the engaging portion.
  • FIG. 145 is a cross-sectional view along the axial direction of the scene where the drive shaft 70 and the end member 1930 are engaged.
  • FIG. 146 (a) is a schematic diagram for explaining the force generated in the posture where the rotational force is transmitted, and FIG.
  • FIG. 146 (b) is a schematic diagram for explaining the force generated when the process cartridge is detached.
  • FIG. 147 is a diagram illustrating the receiving member 2059.
  • FIG. 148 (a) illustrates a posture in which the receiving member 2059 engages with the drive shaft 70 and transmits a rotational force
  • FIG. 148 (b) illustrates a scene in which the drive shaft 70 is detached from the receiving member 2059. It is.
  • FIG. 149 is a perspective view illustrating the receiving member 2159.
  • FIG. 150A is a view for explaining a posture in which the receiving member 2159 is engaged with the drive shaft 70 to transmit the rotational force
  • FIG. 150B is a view for explaining a scene in which the drive shaft 70 is detached from the receiving member 2159. It is.
  • FIG. 150A is a view for explaining a posture in which the receiving member 2159 is engaged with the drive shaft 70 to transmit the rotational force
  • FIG. 150B is a view for explaining a scene in which the drive shaft 70 is
  • FIG. 151 is another view for explaining a scene where the drive shaft 70 is detached from the receiving member 2159.
  • FIG. 152 is a diagram for explaining the force generated when the drive shaft 70 is detached from the receiving member 2159.
  • FIG. 153 (a) is a cross-sectional view illustrating a posture in which the end member 1930 is engaged with the drive shaft 70
  • FIG. 153 (b) is a cross-sectional view illustrating an example of a scene in which the end member 1930 is detached from the drive shaft 70.
  • FIG. FIG. 154 (a) is a cross-sectional view illustrating a posture in which the end member 1930 is engaged with the drive shaft 70
  • FIG. 154 (b) is a cross-sectional view illustrating another example of a scene where the end member 1930 is detached from the drive shaft 70.
  • FIG. FIG. 155 is an exploded perspective view of the end member 2230.
  • FIG. 156 is an exploded cross-sectional view of the end member 2230 along the axial direction.
  • 157 (a) is a perspective view of the main body 2241 of the bearing member 2240, and
  • FIG. 157 (b) is a plan view of the main body 2241 of the bearing member 2240.
  • FIG. 158 is a perspective view of the rotation shaft 2251.
  • FIG. 159 is an exploded perspective view for explaining a modified bearing member 2240 '.
  • FIG. 160A is an axial sectional view of the end member 2230 ', and FIG.
  • FIG. 160B is an axial sectional view of the end member 2230' in another posture.
  • FIG. 161 is an exploded perspective view illustrating a modified example.
  • FIG. 162 is a perspective view of the end member 2330.
  • FIG. 163 is an exploded perspective view of the end member 2330.
  • FIG. 164 is a sectional view of the bearing member 2340 in the axial direction.
  • 165 (a) is a perspective view of the rotating shaft 2351
  • FIG. 165 (b) is a sectional view in the axial direction of the rotating shaft 2351.
  • FIG. FIG. 166 is a perspective view of the tip member 2355.
  • FIG. 167 is a sectional view in the axial direction of the end member 2330.
  • FIG. 168 (a) is an end view orthogonal to the axial direction of the end member 2330
  • FIG. 168 (b) is a diagram for explaining the relationship between the rotating shaft 2351 and the protrusion 2356.
  • FIG. 169 is a sectional view in the axial direction of the end member 2330.
  • FIG. 170 is an exploded perspective view of the end member 2430.
  • FIG. 171 is an exploded cross-sectional view of the end member 2430.
  • FIG. 172 is a cross-sectional view of the end member 2430.
  • FIG. 173 is an exploded perspective view of the end member 2430 '.
  • FIG. 174 is a perspective view of the tip member 2455 '.
  • FIG. 175 is a cross-sectional view along the axis of the end member 2430 '.
  • FIG. 176 is another cross-sectional view along the axis of the end member 2430 '.
  • FIG. 177 is an exploded perspective view of the end member 2430 ′′.
  • FIG. 178 is an exploded cross-sectional view of the end member 2430 ′′.
  • FIG. 179 is a cross-sectional view of end member 2430 ''.
  • 180A is an external perspective view of the photosensitive drum unit 110 showing the driving side end member 2550 in front
  • FIG. 180B is an external view of the photosensitive drum unit 2510 showing the non-driving side end member 2520 in front. It is a perspective view.
  • FIG. 180A is an external perspective view of the photosensitive drum unit 110 showing the driving side end member 2550 in front
  • FIG. 180B is an external view of the photosensitive drum unit 2510 showing the non-driving side end member 2520 in front. It is a perspective view
  • FIG. 181 (a) is an external perspective view of the drive side end member 2550 showing the bearing portion 2556 in front
  • FIG. 181 (b) is an external perspective view of the drive side end member 2550 showing the fitting portion 154 in front.
  • FIG. 181 (a) is a front view of the driving side end member 2550 as seen from the bearing portion 2556 side
  • FIG. 182 (b) is a cross-sectional view taken along the line indicated by C 182b -C 182b in FIG. 182 (a).
  • 183 (a) is a perspective view of the drive shaft 2570
  • FIG. 183 (b) is a front view of the drive shaft 2570.
  • FIG. 185 is a view for explaining a scene in which the bearing portion 2556 is inserted inside the recess 2571 of the drive shaft 2570.
  • FIG. 1 is a diagram illustrating a first embodiment.
  • a process cartridge 3 and an image forming apparatus main body 2 (hereinafter sometimes referred to as “apparatus main body 2”) that is used with the process cartridge 3 mounted thereon are used.
  • 1 is a perspective view schematically showing an image forming apparatus 1 having the same.
  • the process cartridge 3 can be attached to and detached from the apparatus main body 2 by moving in the direction indicated by I in FIG.
  • FIG. 2 schematically shows the structure of the process cartridge 3.
  • the process cartridge 3 includes a photosensitive drum unit 10 (see FIG. 3), a charging roller 4, a developing roller 5, a regulating member 6, and a cleaning blade 7 inside a housing 3a.
  • the recording medium such as paper moves along the line indicated by II in FIG. 2, whereby the image is transferred to the recording medium.
  • the process cartridge 3 is attached to and detached from the apparatus main body 2 in the following manner. Since the photosensitive drum unit 10 provided in the process cartridge 3 receives a rotational driving force from the apparatus main body 2 and rotates, the driving shaft 70 (see FIG. 10) of the apparatus main body 2 and the shaft member of the photosensitive drum unit 10 are at least operated. 61 (see FIG. 10) is engaged. On the other hand, when the process cartridge 3 is attached to or detached from the apparatus main body 2, the engagement between the drive shaft 70 of the apparatus main body 2 and the shaft member 61 of the photosensitive drum unit 10 is released. That is, the shaft member 61 of the photosensitive drum unit 10 needs to be properly engaged with the drive shaft 70 of the apparatus main body 2 to transmit the rotational driving force. Each configuration will be described below.
  • the process cartridge 3 includes the charging roller 4, the developing roller 5, the regulating member 6, the cleaning blade 7, and the photosensitive drum unit 10, and these are contained inside the housing 3a.
  • Each is as follows.
  • the charging roller 4 charges the photosensitive drum 11 of the photosensitive drum unit 10 by applying a voltage from the image forming apparatus main body 2. This is performed by the charging roller 4 rotating following the photosensitive drum 11 and contacting the outer peripheral surface of the photosensitive drum 11.
  • the developing roller 5 is a roller that supplies a developer to the photosensitive drum 11. Then, the electrostatic latent image formed on the photosensitive drum 11 is developed by the developing roller 5.
  • the developing roller 5 contains a fixed magnet.
  • the regulating member 6 is a member that adjusts the amount of the developer adhering to the outer peripheral surface of the developing roller 5 and imparts triboelectric charge to the developer itself.
  • the cleaning blade 7 is a blade that contacts the outer peripheral surface of the photosensitive drum 11 and removes the developer remaining after the transfer by the tip.
  • FIG. 3 is an external perspective view of the photosensitive drum unit 10.
  • 3A is an external perspective view of the photosensitive drum unit 10 showing the driving side end member 50 in front
  • FIG. 3B is an external view of the photosensitive drum unit 10 showing the non-driving side end member 20 in front. It is a perspective view.
  • the photosensitive drum unit 10 includes a photosensitive drum 11, a non-driving side end member 20 which is one end member of a set of end members, And a driving side end member 50 which is the other end member of the set of end members.
  • the photosensitive drum 11 is a member in which a photosensitive layer is coated on the outer peripheral surface of a drum cylinder (also referred to as a “base”) which is a cylindrical rotating body. That is, the drum cylinder is a conductive cylinder made of aluminum or the like, and is configured by applying a photosensitive layer thereto. Characters, graphics, and the like to be transferred to a recording medium such as paper are formed on the photosensitive layer.
  • the base is formed of a conductive material made of aluminum or aluminum alloy in a cylindrical shape.
  • the type of aluminum alloy used for the substrate is not particularly limited, but is a 6000 series, 5000 series, 3000 series aluminum alloy defined by JIS standards (JIS H 4140) which is often used as a substrate of a photosensitive drum.
  • the photosensitive layer formed on the outer peripheral surface of the substrate is not particularly limited, and a known one can be applied according to the purpose.
  • the substrate can be manufactured by forming a cylindrical shape by cutting, extruding, drawing, or the like.
  • the photosensitive drum 11 can be manufactured by laminating the photosensitive layer on the outer peripheral surface of the substrate.
  • a set of end members is attached to one end of the photosensitive drum 11 in order to rotate the photosensitive drum 11 about its axis as will be described later.
  • One end member is the non-driving side end member 20, and the other end member is the driving side end member 50.
  • the substrate has a hollow cylindrical shape, but may have a solid round bar shape.
  • the non-driving side end member 20 is an end member that is disposed at the end of the photosensitive drum 11 in the axial direction that is not engaged with the driving shaft 70 (see FIG. 10) of the apparatus main body 2.
  • FIG. 4 shows an external perspective view of the non-driving side end member 20.
  • 4A is an external perspective view showing the cap member 31 side in front
  • FIG. 4B is an external perspective view showing the ground plate 40 in front opposite to this. Further, showed an axial sectional view along the line indicated C 5 -C 5 V in FIGS. 4 (a) in FIG.
  • the non-driving side end member 20 includes a flange member 21, a cap member 31, an elastic member 41, and a ground plate 40.
  • the ground plate 40 is provided on the non-driving side end member 20.
  • FIG. 6A shows an external perspective view of the flange member 21.
  • the flange member 21 includes an outer tube portion 22 that is cylindrical, and an inner tube that is coaxial with the outer tube portion 22 is disposed inside the outer tube portion 22.
  • a tube portion 23 is disposed. Therefore, the flange member 21 has a double pipe structure.
  • a bottom portion 24 is provided between one end of the outer tube portion 22 and one end of the inner tube portion 23, and at least a part thereof is blocked. The bottom portion 24 holds the inner tube portion 23 inside the outer tube portion 22.
  • a ring-shaped contact wall 25 provided so as to stand from the outer peripheral surface of the outer tube portion 22 is provided at the end opposite to the bottom portion 24.
  • the contact wall 25 comes into contact with the non-driving side end member 20 mounted on the photosensitive drum 11 so that the end surface of the photosensitive drum 11 abuts. .
  • the insertion depth of the non-driving side end member 20 into the photosensitive drum 11 is restricted.
  • the bottom 24 side that is, the side opposite to the side on which the contact wall 25 is provided is inserted inside the photosensitive drum 11 and fixed to the inner surface of the photosensitive drum 11 with an adhesive. It functions as a fitting part.
  • the non-driving side end member 20 is fixed to the end of the photosensitive drum 11. Therefore, the outer diameter of the outer tube portion 22 is substantially the same as the inner diameter of the photosensitive drum 11 as long as it can be inserted inside the cylindrical shape of the photosensitive drum 11.
  • a groove 22a may be formed on the outer peripheral surface of the portion functioning as the fitting portion. As a result, the groove 22a is filled with an adhesive, and the adhesion between the non-driving side end member 20 and the photosensitive drum 11 is improved by an anchor effect or the like.
  • Cap member engaging means 26 is provided on the inner surface of the outer tube portion 22 at a predetermined interval so as to protrude from the inner surface.
  • the cap member engaging means 26 is means for holding a cap member 31 described later on the flange member 21.
  • the cap member engaging means 26 is configured not to restrict the cap member 31 from moving in the axial direction with respect to the flange member 21 while restricting the cap member 31 from being detached from the flange member 21.
  • the form of the cap member engaging means 26 is not particularly limited as long as it can be regulated in this way. As an example of this, there can be cited a hook-like protrusion having a barb toward the bottom 24 as in the present embodiment shown in FIGS. 5 and 6A. In this embodiment, a hole 24 a is provided in the bottom 24, and this position corresponds to the cap member engaging means 26.
  • the flange member 21 including the cap member engaging means 26 can be integrally manufactured by injection molding.
  • a support shaft member 3b provided on the inner surface of the housing 3a of the process cartridge 3 is inserted into the cylindrical inner side of the inner tube portion 23 (see FIG. 11). Therefore, the hole of the inner pipe part 23 is formed in a size that can function as a bearing.
  • FIG. 6B shows an external perspective view of the cap member 31.
  • the cap member 31 is a cylindrical member having a bottom 32 at one end.
  • the bottom 32 is provided with a circular hole 32 a centering on the cylindrical axis of the cap member 31.
  • the support shaft member 3b provided in the inner surface of the housing 3a of the process cartridge 3 is inserted into the hole 32a (see FIG. 11). Therefore, the hole 32a is formed in a size that allows at least the support shaft member 3b to pass therethrough.
  • the size of the outer peripheral portion of the cap member 31 is formed so as to be accommodated in the outer tube portion 22 of the flange member 21. That is, the outer diameter of the cap member 31 is smaller than the inner diameter of the outer tube portion 22 of the flange member 21.
  • a slit 31 a is provided in the axial direction from the end opposite to the bottom 32 on the outer peripheral portion of the cap member 31.
  • the slit 31a is provided at a position corresponding to the cap member engaging means 26 of the flange member 21, and has a size that allows the cap member engaging means 26 to be disposed inside the slit 31a.
  • flange member engaging means 33 is provided on the inner side of the cap member 31 so as to stand upright from the bottom 32 in a direction parallel to the axial direction.
  • the flange member engaging means 33 is means for engaging the cap member engaging means 26 and holding the cap member 31 on the flange member 21.
  • the flange member engaging means 33 coupled with the cap member engaging means 26, restricts the cap member 31 from being detached from the flange member 21, while the cap member 31 is axial with respect to the flange member 21. It is comprised so that it may not regulate to move along.
  • the flange member engaging means 33 is disposed at a position corresponding to the cap member engaging means 26, and is positioned inside the cylinder of the cap member 31 so as to be aligned with the slit 31a.
  • the form of the flange member engaging means 33 is not particularly limited as long as it acts as described above. As an example of this, there can be cited a hook-shaped protrusion corresponding to the cap member engaging means 26 and having a barb on the slit 31a side toward the bottom 32 side. In this embodiment, a hole 32 b is provided in the bottom 32, and this position corresponds to the flange member engaging means 33.
  • the cap member 31 including the flange member engaging means 33 can be integrally manufactured by injection molding.
  • the elastic member 41 is a means for biasing the flange member 21 and the cap member 31 in a direction separating them when the flange member 21 and the cap member 31 are combined.
  • the specific form of the elastic member 41 is not specifically limited, what is called a string wound spring can be used.
  • a coiled spring having an inner diameter into which the inner tube portion 23 can be inserted and an outer diameter that cannot be removed from the hole 32a can be used.
  • FIG. 7 shows a perspective view of the ground plate 40.
  • the ground plate 40 is a disk-shaped member having conductivity, and a protruding portion 40 a is formed so as to come into contact with the inner surface of the photosensitive drum 11 from the outer peripheral portion thereof.
  • a contact piece 40b that contacts the support shaft member 3b of the process cartridge 3 is provided at the center of the ground plate 40, as will be described later. That is, the ground plate 40 is the same as a known ground plate, and the structure therefor is not particularly limited, and a known shape can be applied.
  • the flange member 21, the cap member 31, the elastic member 41, and the ground plate 40 as described above are combined as follows, for example, to form the non-driving side end member 20. This will be described based on the postures shown in FIGS.
  • the flange member 21 is oriented so that the end of the flange member 21 opposite to the bottom 24 (ie, the open end) and the end of the cap member 31 opposite to the bottom 32 (ie, the open end) face each other.
  • a cap member 31 is inserted inside 21. Therefore, in the non-driving side end member 20, the bottom 24 appears and the bottom 32 appears on the opposite side.
  • the elastic member 41 is sandwiched between the flange member 21 and the cap member 31 as shown in FIG. Specifically, one end of the elastic member 41 in the biasing direction is disposed in contact with the bottom portion 24 and the other end is in contact with the bottom portion 32.
  • the elastic member 41 is a string spring, the inner tube portion 23 is inserted inside thereof. Accordingly, the elastic member 41 is configured to urge the flange member 21 and the cap member 31 in a separating direction, and a part of the cap member 31 protrudes from the flange member 21.
  • the cap member engaging means 26 and the flange member engaging means 33 are engaged at the position where the cap member 31 protrudes from the flange member 21 with a predetermined size. 21 and the cap member 31 are restricted from moving in a direction away from each other. Thereby, it is possible to prevent the cap member 31 from coming out of the flange member 21.
  • a posture in which a part of the cap member 31 protrudes from the flange member 21 in a biased state can be maintained.
  • the ground plate 40 is disposed so as to overlap the outer side of the bottom 24 of the flange member 21 and serves as a non-driving side end member. At this time, as shown in FIG. 5, the tip of the contact piece 40 b of the ground plate 40 is disposed inside the inner tube portion 23 of the flange member 21.
  • FIG. 8 shows a diagram for explanation. 8A is a perspective view from the same viewpoint as FIG. 4A, and FIG. 8B is a cross-sectional view from the same viewpoint as FIG.
  • the cap member 31 can move in a direction parallel to the axial direction in a manner that the cap member 31 penetrates deeper into the flange member 21.
  • the flange member 21 and the cap member 31 are preferably formed of a crystalline resin. If it is a crystalline resin, when it is injection-molded using a mold, the flow is good, so the molding processability is good, and it is released from the mold by crystallization and solidification without cooling to the glass transition point. be able to. Therefore, productivity can be greatly improved.
  • the crystalline resin is excellent in heat resistance, solvent resistance, oil resistance, grease resistance, friction wear resistance and slidability, and also in the end member from the viewpoint of rigidity and hardness. It is preferable as a material to be applied.
  • the crystalline resin examples include polyethylene, polypropylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, methylpentene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, and nylon.
  • a polyacetal resin from the viewpoint of moldability. Further, from the viewpoint of increasing the strength, glass fiber, carbon fiber or the like may be filled.
  • the flange member 21 and the cap member 31 may be made of different materials.
  • the flange member 21 and the cap member 31 slide with each other during expansion / contraction, but if they are formed of the same material, abnormal noise may be generated during expansion / contraction. On the other hand, this can be prevented by configuring both with different types of resins.
  • the drive-side end member 50 is the end on the opposite side to the non-drive-side end member 20 among the ends in the direction along the axis of the photosensitive drum 11 and the end on the side where the drive shaft 70 of the apparatus main body 2 is engaged. It is the edge part member arrange
  • FIG. 9A shows an external perspective view of the driving side end member 50.
  • FIG. 9B is a cross-sectional view along the axial direction of the shaft member 61 constituting the drive side end member 50.
  • the drive side end member 50 includes a bearing member 51 and a shaft member 61.
  • the bearing member 51 includes a cylindrical body 52, a contact wall 53, a fitting portion 54, a gear portion 55, and a holding portion.
  • the cylindrical body 52 is a cylindrical member as a whole, and a contact wall 53 is provided upright from a part of the outer peripheral surface of the cylindrical body 52 so as to come into contact with and engage with the end surface of the photosensitive drum 11.
  • the insertion depth of the driving side end member 50 into the photosensitive drum 11 is regulated in a posture in which the driving side end member 50 is mounted on the photosensitive drum 11.
  • One side of the cylindrical body 52 sandwiching the contact wall 53 serves as a fitting portion 54 to be inserted inside the photosensitive drum 11.
  • the fitting portion 54 is inserted inside the photosensitive drum 11 and is fixed to the inner surface of the photosensitive drum 11 with an adhesive.
  • the driving side end member 50 is fixed to the end of the photosensitive drum 11. Therefore, the outer diameter of the fitting portion 54 is substantially the same as the inner diameter of the photosensitive drum 11 as long as it can be inserted inside the cylindrical shape of the photosensitive drum 11.
  • a groove 54 a may be formed on the outer peripheral surface of the fitting portion 54. As a result, the groove 54a is filled with an adhesive, and adhesion between the bearing member 51 (driving side end member 50) and the photosensitive drum 11 is improved by an anchor effect or the like.
  • the gear part 55 is formed in the outer peripheral surface of the cylindrical body 52 on the opposite side to the fitting part 54 on both sides of the contact wall 53. As shown in FIG.
  • the gear portion 55 is a gear that transmits a rotational force to another member such as a developing roller, and is a helical gear in this embodiment.
  • the type of gear is not particularly limited and may be a spur gear. Further, the gear is not necessarily provided.
  • a holding portion for holding the shaft member 61 is provided inside the cylindrical body 52.
  • the holding portion is a portion that holds the spherical portion 64 and the rotational force transmission pin 1465 of the shaft member 61 and allows the shaft member 61 to swing as will be described later. If a holding
  • the bearing member 51 is preferably formed of a crystalline resin. If it is a crystalline resin, when it is injection-molded using a mold, the flow is good, so the molding processability is good, and it is released from the mold by crystallization and solidification without cooling to the glass transition point. be able to. Therefore, productivity can be greatly improved.
  • the crystalline resin is excellent in heat resistance, solvent resistance, oil resistance, grease resistance, friction wear resistance and slidability, and also in the end member from the viewpoint of rigidity and hardness. It is preferable as a material to be applied.
  • the crystalline resin examples include polyethylene, polypropylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, methylpentene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, and nylon.
  • a polyacetal resin from the viewpoint of moldability. Further, from the viewpoint of increasing the strength, glass fiber, carbon fiber or the like may be filled.
  • the shaft member 61 includes a coupling portion 62, a rotating shaft 63, a spherical body portion 64, and a rotational force transmitting pin 1465.
  • the coupling part 62 is a part that functions as a rotational force receiving part that receives the rotational driving force from the apparatus main body 2. Therefore, it has a shape that can be engaged with the drive shaft 70 of the apparatus main body 2 as described later.
  • the rotary shaft 63 is a cylindrical shaft-shaped member that functions as a rotational force transmission unit that transmits the rotational force received by the coupling unit 62. Accordingly, the coupling portion 62 is provided at one end of the rotating shaft 63. At the other end, a spherical portion 64 described below is formed.
  • the spherical body portion 64 functions as a base end portion.
  • the spherical portion 64 is a spherical portion and is on the opposite side of the end portion of the rotating shaft 63 from the side on which the coupling portion 62 is disposed. Is provided at the end.
  • the center of the spherical portion 64 is disposed on the axis of the rotation shaft 63. Thereby, more stable rotation of the photosensitive drum 11 can be obtained.
  • the rotational force transmission pin 1465 passes through the center of the sphere portion 64 and passes through the sphere portion 64 so that both ends protrude from the sphere portion 64 and are described as a rotational force transmission projection (rotational force transmission projection 65 or rotational force transmission pin 65). It is a columnar shaft-shaped member that forms the same). The axis of the rotational force transmission pin 1465 is provided so as to be orthogonal to the axis of the rotary shaft 63.
  • the material of the shaft member 61 is not particularly limited, but resins such as polyacetal, polycarbonate, and PPS can be used. However, in order to improve the rigidity of the member, glass fiber, carbon fiber, or the like may be blended in the resin according to the load torque. Further, a metal may be inserted into the resin to further increase the rigidity, or the whole may be made of metal.
  • the spherical part 64 and the rotational force transmission pin 1465 of the shaft member 61 are held on the holding part of the bearing member 51 so as to be swingable. As a result, the photosensitive drum unit 10 can be attached to and detached from the apparatus main body.
  • the driving side end member 50 as one embodiment has been described.
  • the driving end member 50 may be configured to be swingable so that the engaging portion (coupling member) is inclined with respect to the axis of the driving shaft of the apparatus main body.
  • the engaging portion coupled member
  • a known one can be applied without particular limitation.
  • the outer tube portion 22 of the non-driving side end member 20 is inserted into one end portion of the photosensitive drum 11 described above until it contacts the contact wall 25.
  • the protrusion 40 a of the ground plate 40 contacts the inner surface of the photosensitive drum 11.
  • the fitting portion 54 of the driving side end member 50 is inserted into the other end of the photosensitive drum 11 until it contacts the contact wall 53, and the photosensitive drum 11 is exposed as shown in FIGS. 3 (a) and 3 (b).
  • the body drum unit 10 is obtained.
  • FIG. 10 shows a scene in which the driving shaft 70 provided in the apparatus main body and applying a rotational driving force to the photosensitive drum unit 10 is engaged with the coupling portion 62 of the driving side end member 50.
  • the drive shaft 70 is a cylindrical shaft member having a hemispherical tip, and is provided with a cylindrical drive protrusion 71 as a rotational force applying portion that protrudes in a direction perpendicular to the rotation axis.
  • the drive shaft 70 is configured so that the drive shaft 70 can be rotated about the axis line on the side opposite to the tip side shown in FIG.
  • FIG. 11 is a cross-sectional view along the axial direction of the photosensitive drum unit 10 focusing on the periphery of the photosensitive drum unit 10 in the process cartridge 3 attached to the apparatus main body 2. Accordingly, FIG. 11 shows the drive shaft 70, the photosensitive drum unit 10, and the housing 3 a that holds the photosensitive drum unit 10.
  • the tip of the driving shaft 70 is abutted against the coupling portion 62.
  • the drive projection 71 of the drive shaft 70 is connected so as to engage the coupling portion 62 and transmit the rotational force. This rotational force is transmitted to the drive side end member 50 to rotate the photosensitive drum 11. At this time, the non-driving side end member 20 also rotates.
  • the support shaft member 3 b extending from the inner surface of the housing 3 a of the process cartridge 3 passes through the hole 32 a provided in the bottom portion 32 of the cap member 31. It is inserted inside the inner tube part 23 of the member 21. As a result, the hole 32a and the inner tube portion 23 function as a bearing, and the photosensitive drum unit 10 is rotatably supported.
  • the non-driving side end member 20 the side surface opposite to the driving shaft 70 comes into contact with the inner surface of the housing 3a as indicated by C11b in FIG.
  • the movement of the photosensitive drum unit 10 in the direction away from the drive shaft 70 is restricted. That is, the non-driving side end member 20 and the driving side end member 50 are in contact with the housing 3a on the surface opposite to the photosensitive drum 11 side and are restricted from moving in the axial direction.
  • the surface facing the body drum is not in contact with the housing 3a and is not regulated.
  • the movement of the photosensitive drum unit 10 in one direction is restricted by the housing 3a by the non-driving side end member 20 in the direction along the axis of the photosensitive drum 11.
  • the drive side end member 50 is restricted from moving in the other direction (direction approaching the drive shaft 70) in the direction along the axis of the photosensitive drum 11 by the housing (3a).
  • a lubricating oil is applied thereto, or a friction prevention sheet (for example, a Teflon (registered trademark) sheet, a nylon sheet, a felt sheet, a PET sheet, or the like).
  • a friction prevention sheet for example, a Teflon (registered trademark) sheet, a nylon sheet, a felt sheet, a PET sheet, or the like.
  • the cap member 31 may be formed of a highly slidable material (for example, Teflon (registered trademark)).
  • the non-driving side end member 20 since the non-driving side end member 20 has an urging force that presses the photosensitive drum unit 10 toward the driving shaft 70, the non-driving side end member 20 can be expanded and contracted.
  • the coupling portion 62 can be reliably engaged with the drive shaft 70. And since this should just be the range which can expand-contract the cap member 31 of the non-driving side edge member 20, the conditions of dimensional accuracy can be eased.
  • the drive-side end member 50 does not need to restrict the movement of the photosensitive drum unit 10 in the direction away from the drive shaft 70 as described in Patent Document 1, and therefore the housing 3a is used for the restriction.
  • the member provided in is not required. Accordingly, since it is not necessary to fit the photosensitive drum in a portion where there is no allowance for dimensions, it is not necessary to increase the accuracy of the member, so that management is facilitated and productivity is improved. Further, since it is not necessary to regulate the drive side end member 50 in this way, it is not necessary to form a portion that is greatly expanded in the radial direction of the drive side end member 50, as can be seen from FIG. Therefore, for example, in the driving side end member 50, the diameter of the gear portion 55 can be maximized with respect to other portions.
  • the outer shape of the portion other than the gear portion 55 can be formed to be equal to or smaller than the outer diameter (diameter) of the photosensitive drum 11. This also simplifies the shape and improves productivity.
  • the contact piece 40b of the ground plate 40 contacts the support shaft member 3b, whereby the photosensitive drum 11, the ground plate 40, the support shaft member 3b, and the apparatus main body 2 are electrically connected. Is connected to the apparatus main body 2 from the photosensitive drum 11.
  • FIG. 12 is a perspective view of the driving side end member 150
  • FIG. 13 is an exploded perspective view of the driving side end member 150.
  • a driving side end member 150 is applied instead of the driving side end member 50 in the first embodiment. Therefore, here, the driving side end member 150 will be described.
  • the drive side end member 150 includes a bearing member 151 and a shaft member 61.
  • the shaft member 61 can be considered to be the same as the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the bearing member 151 is a member fixed to the end portion of the photosensitive drum 11.
  • FIG. 14 is an exploded perspective view of the bearing member 151. As can be seen from FIG. 14, the bearing member 151 includes a main body 155 and an intermediate member 170. Each will be described.
  • FIG. 15A is a plan view of the main body 155 viewed from the side where the intermediate member 170 is inserted
  • FIG. 15B is a cross-sectional view taken along the line C 15b -C 15b in FIG.
  • FIG. 15C is a cross-sectional view taken along the line C 15c -C 15c in FIG. 15A.
  • FIG. 15B and FIG. 15C are cross sections shifted by 90 degrees about the axis of the main body 155.
  • the main body 155 includes a cylindrical body 156 that is cylindrical as can be seen from FIGS.
  • a contact wall 53 and a gear portion 55 that are ring-shaped and are erected along the outer peripheral surface are formed.
  • the outer diameter of the cylindrical body 156 is substantially the same as the inner diameter of the photosensitive drum 11, and the main body 155 is attached to the photosensitive drum 11 by inserting and fitting one end side of the cylindrical body 156 into the photosensitive drum 11. Fix it. At this time, the photosensitive drum 11 is inserted to a depth where the end surface of the photosensitive drum 11 is brought into contact with the contact wall 53. At this time, an adhesive may be used for stronger fixation.
  • the gear portion 55 is a gear that transmits a rotational force to the developing roller unit, and is a helical gear in this embodiment.
  • the type of gear is not particularly limited and may be a spur gear or the like. However, the gear is not necessarily provided.
  • a holding portion 160 that holds the shaft member 61 on the main body 155 via the intermediate member 170 is provided inside the cylindrical body 156 in a cylindrical shape.
  • the holding portion 160 includes two holding protrusions 161 protruding from a part of the inner wall surface of the cylindrical body 156, and the two holding protrusions 161 are arranged to face each other with the axis of the cylindrical body 156 interposed therebetween. Yes. A gap is formed between the two holding protrusions 161, and the intermediate member 170 is disposed here.
  • the holding protrusions 161 function as a pair of two holding protrusions 161 facing each other with the axis of the cylindrical body 156 interposed therebetween.
  • the actually used holding projections 161 may be a pair. However, the holding protrusions 161 to be arranged may be provided with two holding protrusions with four, three pairs with six, or more holding protrusions.
  • the balance of the behavior (sink mark etc.) of the material when the main body 155 is injection-molded can be improved, and a main body with higher accuracy can be formed. Therefore, the number of holding projections may be determined from the viewpoint of the behavior of the material during molding.
  • Each holding protrusion 161 of the present embodiment has a holding groove 162 that opens to the other holding protrusion 161 side of the pair and extends in a direction along the axial direction of the cylindrical body 156.
  • FIG. 16 is an enlarged view of the holding protrusion 161 in FIG.
  • the holding groove 162 has a predetermined shape along the extending direction.
  • the introduction part 162 a, the communication part 162 b, the holding part 162 c, and the formation part 162 d are formed on the axis of the cylindrical body 156. It is arranged continuously along the direction.
  • the introduction portion 162a is a portion of the holding groove 162 that is disposed on the side where the intermediate member 170 is inserted, and the groove width (in the horizontal direction of FIG. Now, the size of the cylindrical body 156 in the inner circumferential direction is narrowed.
  • the end of the introduction portion 162a on the side where the intermediate member 170 is inserted is open, and the main body connection protrusion 171 (see FIG. 14) of the intermediate member 170 can be introduced from here as described later.
  • the introduction portion 162a is provided from the viewpoint of easy insertion of the main body connection protrusion 171.
  • the communication portion 162b described below is provided at the end of the holding groove 162 without providing the introduction portion 162a.
  • the communication part 162b is a groove provided continuously from the end of the introduction part 162a opposite to the side where the intermediate member 170 is inserted, and maintains a narrow groove width of the introduction part 162a. A groove extending in the groove width. Thereby, the communication part 162b functions as a projection part for snap-fit joining.
  • the holding part 162c is a groove provided continuously from the end of the communication part 162b, and has a groove width larger than that of the communication part 162b. As will be described later, the main body connecting projection 171 of the intermediate member 170 is held here.
  • the forming portion 162d is two narrow grooves provided continuously from the end portion of the holding portion 162c, and extends along the axial direction of the cylindrical body 156 from each of both ends of the widest portion in the groove width direction of the holding portion 162c. It extends. Accordingly, no groove is formed between the two forming portions 162d, and the material remains as the main body connecting projection receiving portion 162e.
  • the size between the outer sides of the two forming portions 162d (the width indicated by C16a in FIG. 16) is formed to be the same size as the widest width portion of the holding portion 162c. Accordingly, there is no reverse taper as seen from the forming portion 162d side.
  • the shape has no undercut in injection molding. Thereby, it is easy to release in the integral molding, the mold can also have a simple structure, and the productivity can be improved. An example of a specific manufacturing process will be described later.
  • a communication portion 162b having a narrow groove width is formed between the introduction portion 162a and the holding portion 162c, and this functions as a so-called snap-fit joining protrusion. Therefore, when the main body connection protrusion 171 is disposed on the holding portion 162c, the main body connection protrusion 171 is difficult to be removed from the holding groove 162 due to snap-fit bonding. In addition, since it has a shape that can be easily formed as described above, it is also a structure that can improve productivity.
  • the main body connection protrusion 171 formed in a columnar shape is held by the holding portion 162c (see FIG. 5), it is preferable that at least a part of the surface facing the holding portion 162c has an arc shape. This facilitates smooth oscillation. However, it is not limited to this.
  • the material forming the main body 155 is not particularly limited, but a resin or metal such as polyacetal, polycarbonate, or PPS can be used.
  • a resin or metal such as polyacetal, polycarbonate, or PPS
  • the resin may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • metal powder injection molding method in the case of manufacturing with metal, cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), or the like can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various functions can be applied to improve surface functionality (such as lubricity and corrosion resistance).
  • FIG. 17 shows the intermediate member 170.
  • 17A is a plan view of the axis of the ring viewed from the front / back direction of the drawing
  • FIG. 17B is a cross-sectional view taken along line C 17b -C 17b in FIG. 17A
  • FIG. ) Is a cross-sectional view taken along arrow C 17c -C 17c in FIG.
  • the intermediate member 170 has an annular inner diameter that is larger than the diameter of the spherical portion 64 of the shaft member 61. Accordingly, the intermediate member 170 is appropriately performed without hindering the swinging of the shaft member 61. Further, the annular outer diameter of the intermediate member 170 is set such that the intermediate member 170 does not contact the inside of the cylindrical body 156 even if the intermediate member 170 swings inside the cylindrical body 156.
  • the intermediate member 170 has a pair of cutout portions 170a cut out in parallel to a part of the outer diameter portion among the outer diameter portion and the inner diameter portion forming the annular shape, and two parallel flat surfaces 170b are formed. Has been. The distance between the two surfaces (the distance indicated by C 17d in FIG. 17A) is smaller than the distance between the two holding protrusions 161 (the distance indicated by C 15d in FIG. 15A). . From each of the planes 170b, columnar body connecting projections 171 are erected. Here, as can be seen from FIG.
  • the two main body connecting protrusions 171 are arranged such that the axis of the cylinder is on one diameter of the ring with the axis of the intermediate member 170 interposed therebetween.
  • the columnar diameter of the main body connection protrusion 171 is slightly larger than the groove width of the communication portion 162b of the holding groove 162, and is substantially the same as the groove width of the holding portion 162c.
  • the diameter of the main body connecting projection 171 is made smaller than the groove width of the holding portion 162c for smoother swinging, or conversely the degree of swinging is reduced.
  • the diameter of the main body connecting projection 171 may be slightly increased with respect to the groove width of the holding portion 162c from the viewpoint of slightly regulating and stiffening the movement.
  • the intermediate member 170 is provided with two shaft member connecting grooves 172 extending in a direction connecting the outer side and the inner side along an annular diameter and having a direction along the axis of the ring as a depth direction.
  • the extending direction of the two shaft member connecting grooves 172 is the diameter direction of the ring of the intermediate member 170, and the two shaft member connecting grooves 172 sandwich the axis of the intermediate member 170. It is arranged on one diameter.
  • the shaft member connection groove 172 and the above-described main body connection protrusion 171 are disposed at a position shifted by 90 ° around the axis line of the intermediate member 170.
  • FIG. 17B shows the shape of the shaft member coupling groove 172 in a direction orthogonal to the direction in which the shaft member coupling groove 172 extends.
  • the shaft member connecting groove 172 has a communicating portion 172a disposed on the opening side (the upper side of FIG. 17B), and a holding portion 172b is formed on the deep side continuously from the communicating portion 172a. Yes. Since the holding portion 172b holds the rotational force transmission projection 65 of the shaft member 61 here, the holding portion 172b is formed to have a circular cross section in accordance with the sectional shape of the rotational force transmission projection 65.
  • FIG. 17B shows the shape of the shaft member coupling groove 172 in a direction orthogonal to the direction in which the shaft member coupling groove 172 extends.
  • the shaft member connecting groove 172 has a communicating portion 172a disposed on the opening side (the upper side of FIG. 17B), and a holding portion 172b is formed on the deep side continuously from the communicating portion 172a.
  • the center position of the holding portion 172b is arranged so as to coincide with the axial position of the main body connecting protrusion 171.
  • the shaft member 61 can swing evenly in all directions.
  • the process cartridge can be attached and detached smoothly regardless of the phase of the photosensitive drum by the uniform swing.
  • the example in which the shaft member connecting groove 172 is formed by the communication portion 172a and the holding portion 172b has been described.
  • an introduction portion formed so that the groove width gradually increases along the introduction portion 162a of the holding groove 162 is provided on the opposite side of the communication portion 172a to the end portion communicating with the holding portion 172b. Also good.
  • the largest portion of the groove width of the holding portion 172b (left and right direction in FIG. 17B) is formed larger than the groove width of the communication portion 172a. This functions as a so-called snap-fit bonding projection. Therefore, when the rotational force transmission projection 65 of the drive shaft 70 is disposed on the holding portion 172b, the rotational force transmission projection 65 is difficult to be removed from the shaft member coupling groove 172 due to snap-fit joining.
  • the material which comprises the intermediate member 170 is not specifically limited, The material similar to the main body 155 can be used.
  • FIG. 18 shows the form of the intermediate member 170 ′ according to the modification.
  • FIG. 18A is a perspective view of the intermediate member 170 ′
  • FIG. 18B is a plan view of the intermediate member 170 ′.
  • the outer side of the annular ring of the intermediate member 170 ′ in the direction in which the shaft member connecting groove 172 ′ extends is blocked by a wall and does not communicate with the outside. According to this, in the rotational force transmission protrusion 65 (see FIG. 9B) of the shaft member 61 inserted into the shaft member connecting groove 172 ′, the movement in the direction in which the shaft member connecting groove 172 ′ extends is restricted, and more Stable rocking is possible.
  • the bearing member 151 and the shaft member 61 are combined as follows to form the driving side end member 150.
  • 19A is a cross-sectional view of the end member 150 taken along the line C 19a -C 19a shown in FIG. 12, and
  • FIG. 19B is a cross-sectional view of the C 19b -C 19b shown in FIG.
  • the cross-sectional views of the end member 150 along the line are respectively shown.
  • 20A shows an example of a posture in which the shaft member 61 is inclined at the viewpoint shown in FIG. 19A
  • FIG. 20B shows the shaft member 61 at the viewpoint shown in FIG. 19B. Examples of tilted postures are shown.
  • the spherical body portion 64 is disposed inside the annular ring of the intermediate member 170, and the rotational force transmission pin 65 is inserted into the shaft member connecting groove 172 of the intermediate member 170. Has been inserted. Thereby, the intermediate member 170 and the shaft member 61 are combined. In this combination, the protruding end portions of the rotational force transmission pin 65 (that is, the rotational force transmission projection 65) are passed through the communication portion 172a so as to be pushed from the opening of the shaft member connecting groove 172, and the holding portion. 172b and combined by snap-fit joint. As a result, the shaft member 61 can swing relative to the intermediate member 170 about the axis of the rotational force transmission pin 65 as indicated by the arrow C 20a in FIG.
  • an intermediate member 170 in which the shaft member 61 is combined between the two holding protrusions 161 disposed inside the cylindrical body 156 is disposed. Is done. At this time, the main body connection protrusion 171 of the intermediate member 170 is inserted into the holding groove 162 formed in the holding protrusion 161 of the cylindrical body 156. Thereby, the intermediate member 170 and the main body 155 are combined, and as a result, the main body 155, the intermediate member 170, and the shaft member 61 are combined coaxially.
  • each of the main body connection protrusions 171 of the intermediate member 170 is pushed through the communication part 162b so as to be pushed from the introduction part 162a of the holding groove 162 provided in the holding protrusion 161 of the cylindrical body 156. It arrange
  • the intermediate member 170 is held on the main body 155 so as not to be detached by the snap-fit joint, and the shaft member 61 is held on the intermediate member 170 so as not to be detached by the snap-fit joint. ing. Therefore, the shaft member 61 is not directly held by the main body 155.
  • the end member 150 can be assembled by first placing the shaft member 61 on the intermediate member 170 and attaching it to the main body 155. These are all connected by snap-fit joints. Therefore, the shaft member 61 can be easily assembled to the bearing member 151 with high productivity. In addition to being easy to assemble, separation is also easy, so that reuse can be easily performed.
  • the shaft member 61 does not need to be deformed with a large force during insertion and separation, concerns such as scratches are eliminated. Moreover, since the separation is easy, workability can be improved. Furthermore, according to the intermediate member 170, even if a rotational force transmission protrusion (rotational force transmission pin) is provided and a spherical body is provided at the base end portion thereof, this can be combined with the bearing member 151. Therefore, it is possible to use the kind of shaft member which is often seen in reuse.
  • a rotational force transmission protrusion rotational force transmission pin
  • the shaft member 61 can be rock
  • the swing shown in FIG. 20A and the swing shown in FIG. 20B are swings in directions orthogonal to each other. At this time, as can be seen from FIG.
  • the center position of the holding portion 172b is arranged so as to coincide with the axial position of the main body connecting projection 171.
  • the swing axis is on the same plane, and can swing evenly in all directions. The process cartridge can be attached and detached smoothly regardless of the phase of the photosensitive drum by the uniform swing.
  • the swing of the shaft member 61 in at least one direction is the swing of the intermediate member 170 and the main body 155, and thus the operation is smooth.
  • the swing since the swing is irrelevant to the form of the shaft member, a sufficiently smooth swing can be ensured even if there is some dimensional variation on the shaft member side.
  • the shaft member 61 since the shaft member 61 is not likely to come off even if the swing angle is increased, the swing angle can be increased.
  • the gap between the photosensitive drum (process cartridge) and the rotational force transmission shaft on the apparatus main body side can be reduced, so that the apparatus main body can be downsized.
  • the shaft member 61 is held by the bearing member 151 while rotating (swinging) and transmitting the rotational force.
  • the end member 150 is attached to the photosensitive drum 11 after the end member 150 is assembled as shown in FIGS. 19A and 19B and the shaft member 61 of the end member 150 is assembled. This is performed by inserting the end portion on the side where the toner does not protrude into the photosensitive drum 11. With such an end member 150, when the process cartridge 3 is mounted on the apparatus main body 2, an appropriate rotational force is applied to the photosensitive drum 11, and the process cartridge 3 can be easily attached and detached.
  • FIG. 21 is a perspective view of the driving side end member 250.
  • a driving side end member 250 is applied instead of the driving side end member 50 in the first embodiment. Therefore, here, the driving side end member 250 will be described.
  • the drive side end member 250 includes a bearing member 251 and a shaft member 61.
  • the shaft member 61 can be considered to be the same as the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the bearing member 251 is a member fixed to the end portion of the photosensitive drum 11.
  • FIG. 22 shows an exploded perspective view of the bearing member 251. As can be seen from FIG. 22, the bearing member 251 includes a main body 255 and an intermediate member 270. Each will be described.
  • FIG. 23A is a view (plan view) of the main body 255 viewed from the side where the intermediate member 270 is inserted
  • FIG. 23B is a perspective view of the main body 255 viewed from an angle different from FIG. Represented respectively.
  • FIG. 24 is a cross-sectional view in the axial direction along the line indicated by C 24 -C 24 in FIGS. 22, 23 (a) and 23 (b).
  • the line indicated by C 24 -C 24 is a line obtained by rotating 90 ° about the axis of the main body 255 (shown as C ′ 24 -C ′ 24 in FIG. 23A).
  • the cross section in the axial direction along the line.) Is also the same as FIG.
  • the main body 255 includes a cylindrical body 256 that is cylindrical as can be seen from FIGS. Further, on the outer peripheral surface of the cylindrical body 256, a ring-shaped contact wall 53 and a gear portion 45 are formed so as to stand along the outer peripheral surface.
  • the outer diameter of the cylindrical body 256 is substantially the same as the inner diameter of the photosensitive drum 11, and one end side of the cylindrical body 256 is inserted into and fitted into the photosensitive drum 11, whereby the main body 255 is attached to the photosensitive drum 11. Fix it. At this time, the photosensitive drum 11 is inserted to a depth where the end surface of the photosensitive drum 11 is brought into contact with the contact wall 53. At this time, an adhesive may be used for stronger fixation.
  • the gear portion 55 is a gear that transmits a rotational force to the developing roller unit, and is a helical gear in this embodiment.
  • the type of gear is not particularly limited and may be a spur gear or the like. However, the gear is not necessarily provided.
  • a plate-like bottom portion 259 is provided inside the cylindrical body 256 so as to block at least a part of the inner side of the cylindrical body 256. Further, a holding portion 260 is provided on the inner side of the cylindrical body 256 partitioned by the bottom portion 259 on the inner side opposite to the side fixed to the photosensitive drum 11. Although an example in which the bottom portion 259 is provided has been described here, the bottom portion 259 is not necessarily provided. Since the shaft member 61 and the intermediate member 270 can be held by the holding portion 260, the shaft member 61 and the intermediate member 270 can be held inside the cylindrical body 256 without providing the bottom portion 259.
  • the holding portion 260 forms guide grooves 261, 262, 263, and 264 as intermediate member guides inside the cylindrical body 256. Therefore, the holding part 260 is arranged along the inner peripheral surface of the cylindrical body 256 at a predetermined interval so that the holding part 260 protrudes from the inner surface of the cylindrical body 256 toward the axis of the cylindrical body 256.
  • the gaps between adjacent protrusions 260a form guide grooves 261, 262, 263, and 264.
  • a space (concave portion) is formed in the axial portion surrounded by the protruding portion 260a, and the base end portion (spherical portion 64) of the shaft member 61 is disposed here as described later.
  • the guide groove functions as a pair of two guide grooves facing each other across the axis of the cylindrical body 256.
  • the guide grooves actually used may be a pair as will be described later.
  • four guide grooves 261, 262, 263, 264, that is, two pairs may be provided as in this embodiment, and six (three pairs) or more guide grooves may be provided. .
  • the balance of the behavior of the material (such as sink marks) when the main body 255 is injection-molded can be improved, and a more accurate main body can be manufactured. Therefore, the number of guide grooves may be determined from the viewpoint of the behavior of the material.
  • the guide groove 261 is a groove extending along the direction of the axis of the cylindrical body 256 (indicated by the line O in FIG. 24) formed on the inner peripheral surface of the cylindrical body 256.
  • the guide groove 261 is open on the axis O side of the cylindrical body 256 and has a bottom surface on the inner peripheral surface side of the cylindrical body 256.
  • the guide groove 262 is a groove provided so as to face the opposite side of the guide groove 261 across the axis O of the cylindrical body 256.
  • the inner periphery of the cylindrical body 256 is provided. It is formed on the surface and extends along the direction of the axis O of the cylindrical body 256.
  • the guide groove 262 also has an opening on the axis O side of the cylindrical body 256 and has a bottom surface on the inner peripheral surface side of the cylindrical body 256.
  • curved surfaces 261a and 262a that are curved in the direction along the axis O of the cylindrical body 256 are formed on at least a part of the bottom surfaces of the guide grooves 261 and 262.
  • the curved surfaces 261a and 262a are preferably configured as follows in the cross section shown in FIG.
  • the curved surfaces 261a and 262a are provided facing each other so as to be symmetrical with respect to the axis O of the cylindrical body 256, and the curved surface 261a and the curved surface are separated from the bottom 259 side (the side inserted into the photosensitive drum 11). It is preferable that the distance between the 262a and the curved surface is reduced. Thereby, as will be described later, the intermediate member 270 can be held so as not to be detached from the main body 255.
  • the curved surfaces 261a and 262a are arcuate, and are in a form belonging to the same circle, and the center of this circle is preferably on the axis O.
  • the intermediate member 270 can be held in the main body 255 in the direction along the axis O without rattling, and the rotation of the intermediate member 270 can be smoothly guided (guided) to swing (tilt) the shaft member 61. be able to.
  • the intersection of the axis O of the cylindrical body 256 and the surface of the bottom portion 259 on the curved surfaces 261a and 262a side (FIG. 24). May be arranged so that a point represented by B) exists.
  • FIG. 25 shows the intermediate member 270.
  • 25 (a) is a perspective view
  • FIG. 25 (b) is a front view
  • FIG. 25 (c) is a cross-sectional view taken along the line C 25c -C 25c in FIG. 25 (b).
  • the intermediate member 270 has an annular shape in which a notch 270a is provided in part.
  • the intermediate member 270 is inserted into any one of the pair of guide grooves 261, 262, 263, 264 provided in the holding portion 260 of the main body 255 described above as a guided member. Function. Therefore, the outer diameter of the intermediate member 270 is a size that can be slid inside the pair of guide grooves in which the outer peripheral portion of the intermediate member 270 is disposed.
  • the bottom surfaces of the guide grooves 261, 262, 263, 264 is arcuate, and when the arcs belong to the same circle in a pair of opposing guide grooves, the diameter of the circle and the intermediate member It is preferable that the outer diameter of 270 is the same. As a result, the intermediate member 270 can be smoothly rotated between the guide grooves, and rattling can be suppressed.
  • a base end portion of a shaft member 61 described later is disposed inside the annular member 270 in an annular shape, so that at least a part of the base end portion can be accommodated inside the intermediate member 270. I just need it.
  • the inner diameter of the intermediate member 270 can be the same as the diameter of the sphere portion 90.
  • the inner peripheral surface of the intermediate member 270 is also curved in an arc shape in the direction along the axis of the ring (the vertical direction in FIG. 25 (c)). Yes. This curvature can be matched with the curvature of the outer periphery of the sphere 90. Thereby, the combination of the intermediate member 270 and the spherical body 90 can be made more suitable.
  • the size of the intermediate member 270 in the direction along the axis of the ring is substantially the same as the groove width of the guide grooves 261 and 262 formed in the holding portion 260 of the main body 255 described above. .
  • the notch 270a of the intermediate member 270 is sized and shaped so that at least a part of the rotating shaft 63 of the shaft member 61 described later can be disposed at the inside thereof. Therefore, the end surface 270 b of the intermediate member 270 that forms the notch 270 a can also be matched with the shape of the rotating shaft 63.
  • the intermediate member 270 is provided with two grooves 271 and 272 extending outward from the inner peripheral surface of the ring.
  • the two grooves 271 and 272 are provided at positions facing each other along the diameter of the intermediate member 270.
  • the grooves 271 and 272 are inserted into both ends of a rotational force transmission pin 65 of the shaft member 61 described later. Therefore, the shape and arrangement of the grooves 271 and 272 are configured such that the end of the rotational force transmission pin 65 can be inserted into the grooves 271 and 272, respectively.
  • the pieces 271a and 272a remain in one of the grooves 271 and 272 in the axial direction of the ring of the intermediate member 270, and the grooves 271 and 272 do not penetrate in the direction along the axis.
  • the shaft member 61 is combined with the intermediate member 270, and when the shaft member 61 is given a rotational force from the apparatus main body 2, the rotational force transmission pin 65 is caught by the pieces 271a and 272a, and the rotational force is appropriately applied to the intermediate member 270. Can communicate. Therefore, considering the rotation of the rotational force transmission pin 65, as can be seen from FIGS.
  • the piece 271a of the groove 271 and the piece 272a of the groove 272 are in the axial direction of the intermediate member 270. Are provided on different sides. If the tip of the rotational force transmission pin 65 extends into the guide grooves 261 and 262 of the holding portion 260 of the main body 255, the tip of the rotational force transmission pin 65 is in contact with the side walls of the guide grooves 261 and 262 during rotation. Since the rotational force can be transmitted because it is caught, the pieces 271a and 272a are not necessarily provided. Moreover, the opening part which opposes piece 271a, 272a among groove
  • this opening can be an opening slightly smaller than the diameter of the rotational force transmission pin 65.
  • the material which comprises the intermediate member 270 is not specifically limited, Resins, such as a polyacetal, a polycarbonate, and PPS, can be used.
  • Resins such as a polyacetal, a polycarbonate, and PPS.
  • the resin may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability.
  • the resin may be coated with fluorine or a lubricant may be applied.
  • FIG. 25A is a cross-sectional view of the end member 250 taken along line C 26a -C 26a shown in FIG. 21, and FIG. 26B is a cross-sectional view of C 26b -C 26b shown in FIG. The cross-sectional views of the end member 250 along the line are respectively shown.
  • FIG. 27A shows an example of the posture in which the shaft member 61 is tilted at the viewpoint shown in FIG. 26A
  • FIG. 27B shows the shaft member 61 at the viewpoint shown in FIG. Examples of tilted postures are shown.
  • the spherical portion 64 is disposed inside the annular ring of the intermediate member 270, and the rotational force transmission pin 65 is inserted into the grooves 271 and 272 of the intermediate member 270.
  • the intermediate member 270 and the shaft member 61 are combined. Accordingly, the shaft member 61 can swing relative to the intermediate member 270 around the axis of the rotational force transmission pin 65 as indicated by an arrow C 27a in FIG.
  • the intermediate member 270 on which the shaft member 61 is arranged is a guide in which the thickness direction of the intermediate member 270 is formed in the holding portion 260 of the main body 255.
  • the outer peripheral portion of the intermediate member 270 is fitted into the guide grooves 261 and 262 so as to be in the groove width direction of the grooves 261 and 262. Accordingly, the outer peripheral portion of the intermediate member 270 is disposed in the guide grooves 261 and 262, and the intermediate member 270 can move so as to slide in the guide grooves 261 and 262. As a result, the intermediate member 270 is not shown in FIG.
  • the intermediate member 270 is held by the guide grooves 261, 262, 263, and 264 formed in the main body 255 so that the intermediate member 270 is not removed, and the shaft member 61 is not removed by the intermediate member 270. Is held in. Therefore, the shaft member 61 is not directly held by the main body 255.
  • the end member 250 can be assembled by first arranging the shaft member 61 on the intermediate member 270 and attaching it to the main body 255. In this case, when the intermediate member 270 is disposed in the guide grooves 261 and 262 of the holding portion 260, the intermediate member 270 can be assembled by being elastically deformed by applying a little force.
  • the shaft member 61 can be easily assembled to the bearing member 251 with high productivity.
  • separation is also easy, so that reuse can be easily performed.
  • the shaft member 61 does not need to be deformed during insertion and separation, so that concerns such as scratches are eliminated.
  • the separation is easy, workability can be improved.
  • the shaft member 61 can swing as shown in FIGS. 27 (a) and 27 (b). That is, at the viewpoint shown in FIG. 27A, the shaft member 61 can swing around the axis of the rotational force transmission pin 65 as indicated by the arrow C 27a . On the other hand, the shaft member 61 can swing following the rotation of the intermediate member 270 as indicated by an arrow C 27b at the viewpoint shown in FIG.
  • the swing shown in FIG. 27A and the swing shown in FIG. 27B are swings in directions orthogonal to each other.
  • the end member 250 when the shaft member 61 swings in at least one direction, the intermediate member 270 and the main body 255 can slide and swing, so that the operation is smooth. is there. At this time, since the swing is irrelevant to the form of the shaft member, a sufficiently smooth swing can be ensured even if there is some dimensional variation on the shaft member side. Further, since the shaft member 61 is not likely to come off even if the swing angle is increased, the swing angle can be increased. As a result, the gap between the photosensitive drum (process cartridge) and the drive shaft on the apparatus main body side can be reduced, so that the apparatus main body can be downsized.
  • the shaft member 61 is held by the bearing member 251 while rotating (swinging) and transmitting the rotational force.
  • the end member 250 is attached to the photosensitive drum 11 after the end member 250 is assembled as shown in FIGS. 26A and 26B and the shaft member 61 of the end member 250 is assembled. This is performed by inserting the end portion on the side where the toner does not protrude into the photosensitive drum 11. With such an end member 250, when the process cartridge 3 is mounted on the apparatus main body 2, an appropriate rotational force is applied to the photosensitive drum 11, and the process cartridge 3 can be easily attached and detached.
  • FIG. 28 is a diagram for explaining the fourth embodiment, and is a perspective view of the end member 350.
  • the end member 350 includes a bearing member 351 and a shaft member 61.
  • the shaft member 61 is the same as described above.
  • the bearing member 351 is a member fixed to the end of the photosensitive drum 11.
  • FIG. 29 shows an exploded perspective view of the bearing member 351.
  • the bearing member 351 includes a main body 355 and an intermediate member 370. Each will be described below.
  • FIG. 30A is a view (plan view) of the main body 355 viewed from the side where the intermediate member 370 is inserted
  • FIG. 30B is a perspective view of the main body 355 viewed from an angle different from FIG. expressed
  • FIG. 31 is a cross-sectional view along an axis including the line indicated by C 31 -C 31 in FIGS. 29, 30A, and 30B
  • FIG. 32A shows a cross-sectional view along an axis including the line indicated by C 32a -C 32a in FIG. 32
  • FIG. 32B shows a cross-sectional view along the axial direction including the line indicated by C 32b -C 32b in FIG. 30A and FIG.
  • the main body 355 differs from the above-described main body 255 in the form of the bottom portion 359 and the holding portion as can be seen from FIGS. Since the other cylindrical body 256, the contact wall 47, the gear portion 55, and the like are the same as those of the main body 255, the description thereof is omitted here.
  • a bottom portion 359 extending in a rod shape in the diameter direction of the cylindrical body 256 is provided inside the cylindrical body 256 so as to block at least a part of the inside of the cylindrical body 256. Further, a holding portion 360 is provided on the inner side of the cylindrical body 256 on the inner side opposite to the side fixed to the photosensitive drum 11 with the bottom portion 359 interposed therebetween.
  • the holding portion 360 forms guide surfaces 361 and 362 as intermediate member guides inside the cylindrical body 256. Therefore, the holding portion 360 is disposed so that the two protruding portions 360a face each other so as to protrude from the inner surface of the cylindrical body 256 toward the axis of the cylindrical body 256, and a groove 360b is formed between the two protruding portions 360a. Has been.
  • the two protrusions 360a are arranged to face each other, and a gap is formed between them to form a groove 360b.
  • the protrusion 360a is formed with a recess 360c so as to be hollowed out by a part of a sphere having a center on the axis of the cylindrical body 256 of the protrusion 360a.
  • the spherical surface of the recess 360 c is shaped to receive the spherical body portion 64 of the shaft member 61.
  • the recess 360c is not necessarily spherical.
  • a guide member insertion groove 360d extending in the diameter direction orthogonal to the diameter direction of the cylindrical body 256 in which the groove 360b extends is formed at the bottom of the recess 360c.
  • the guide member insertion groove 360d is configured to be able to insert a guide member 375 of an intermediate member 370 described later.
  • a surface is also formed on the side of the protrusion 360a opposite to the recess 360c (that is, the side of the holding portion 360 that faces the bottom 359). As can be seen from FIG. 18 (b), it is arcuate. This becomes the guide surfaces 361 and 362.
  • the guide surfaces 361 and 362 have curved surfaces formed so as to be curved along the direction in which the groove 360b extends. As the guide member 375 of the intermediate member 370 slides on the guide surfaces 361 and 362, the shaft member 61 swings. The swing will be described later.
  • the guide member insertion groove 360d formed at the bottom of the recess 360c communicates the recess 360c with the back surface of the holding portion 360 (the surface on which the guide surfaces 361 and 362 exist), and the guide member 375 is connected to the guide surfaces 361 and 362. It is a groove to reach.
  • the holding part 360 having such a shape is further formed as follows.
  • the groove width of the groove 360b is not particularly limited, but is preferably about the same as the thickness of the intermediate member 370. Thereby, the shakiness of the shaft member 61 can be suppressed.
  • the inner surface shape of the recess 360 c is not particularly limited as long as the base end portion of the shaft member 61 can be received, but when the base end portion of the shaft member 61 is the sphere portion 64, the same radius as the sphere portion 64 is provided. It is preferable to have a curved surface having This can also prevent the shaft member 61 from rattling.
  • the guide member insertion groove 360d is preferably configured to be able to insert the guide member 375 of the intermediate member 370 and to have a snap-fit (entrance fit at the entrance) to the guide member 375. Thereby, the intermediate member 370 can be prevented from coming off from the main body 355.
  • Examples of the snap fit structure include snap fit structures 360e and 360f which are pieces protruding from the wall surface of the guide member insertion groove 360d.
  • the guide surfaces 361 and 362 are surfaces that guide the intermediate member 370 so that the shaft member 61 swings appropriately, and are surfaces that determine the swing of the shaft member 61. Therefore, from the viewpoint of obtaining stable swing, FIG. In the cross section shown in (b), the guide surfaces 361 and 362 are preferably arcuate.
  • the guide surfaces 361 and 362 have an arc shape centering on the center of swinging of the shaft member. Thereby, smooth rocking is possible.
  • the arc of the recess 360 c is also an arc concentric with the guide surfaces 361 and 362.
  • the material constituting the main body 355 is the same as that of the main body 255 described above.
  • FIG. 33 shows the intermediate member 370.
  • 33 (a) is a perspective view
  • FIG. 33 (b) is a front view
  • FIG. 33 (c) is a cross-sectional view taken along the line C 33c -C 33c in FIG. 33 (b).
  • the intermediate member 370 has an annular shape in which a notch 370a is provided in part.
  • the outer peripheral portion of the intermediate member 370 is disposed in the groove 360b provided in the holding portion 360 of the main body 355 described above. Accordingly, the outer diameter of the intermediate member 370 is large enough to be inserted into the groove 360b.
  • the size and configuration may be any size that allows the base end portion to be stored inside the intermediate member 370.
  • the inner diameter of the intermediate member 370 can be the same as the diameter of the sphere portion 64.
  • the inner peripheral surface of the intermediate member 370 is also curved in an arc shape in the direction along the axis of the ring (vertical direction in FIG. 33 (c)). Yes.
  • This curvature can be matched to the curvature due to the diameter of the sphere portion 64.
  • the size (that is, the thickness) in the axial direction of the ring of the intermediate member 370 is substantially the same as the groove width of the groove 360b formed in the holding portion 360 of the main body 355 described above. As a result, rattling can be prevented.
  • the notch 370a of the intermediate member 370 has such a size and shape that at least the rotating shaft 63 of the shaft member 61 can be disposed inside thereof.
  • the intermediate member 370 is provided with two grooves 371 and 372 extending outward from the inner peripheral surface of the ring.
  • the two grooves 371 and 372 are provided to face each other along the diameter of the intermediate member 370.
  • the grooves 371 and 372 are inserted into both ends of the rotational force transmission pin 65 of the shaft member 61, respectively. Therefore, the shape and arrangement of the grooves 371 and 372 are configured such that the end of the rotational force transmission pin 65 can be inserted into the grooves 371 and 372, respectively.
  • the pieces 371 a and 372 a remain on one side in the direction along the annular axis of the intermediate member 370, and the grooves 371 and 372 do not penetrate in the direction along the axis. Is preferred.
  • the rotational force transmission pin 65 is caught by the pieces 371 a and 372 a, and the rotational force is appropriately applied to the intermediate member 370. Can communicate. Therefore, considering the rotation of the rotational force transmission pin 65, as can be seen from FIGS.
  • the piece 371a of the groove 371 and the piece 372a of the groove 372 are in the axial direction of the intermediate member 370. Are provided on different sides. If the tip of the torque transmission pin 65 extends into the groove 360b of the holding portion 360 of the main body 355, the tip of the torque transmission pin 65 is caught on the side wall of the groove 360b during rotation, so that the torque is transmitted. Since it is possible, the pieces 371a and 372a are not necessarily provided at this time. Moreover, the opening part which opposes the pieces 371a and 372a among the grooves 371 and 372 may be slightly narrower than in the groove. Specifically, this opening can be an opening slightly smaller than the diameter of the rotational force transmission pin 65. As a result, the rotational force transmission pin 65 once inside the grooves 371 and 372 is difficult to be removed from the grooves 371 and 372 due to the narrowed opening.
  • the intermediate member 370 is arranged so that a guide member 375 along the axial direction of the ring protrudes from each of the front and back surfaces that are annular.
  • the guide member 375 is a cylindrical pin.
  • the position at which the guide member 375 is disposed is not particularly limited, and may be disposed at a position where the guide member 375 can slide on the guide surfaces 361 and 362 when the intermediate member 370 is disposed on the main body 355 as described later.
  • the shape of the guide member 375 is not limited to the cylinder according to the present embodiment, and may be a quadrangular prism, a triangular prism, or another shape having a cross section.
  • the material which comprises the intermediate member 370 is not specifically limited, Resins, such as a polyacetal, a polycarbonate, and PPS, can be used.
  • Resins such as a polyacetal, a polycarbonate, and PPS.
  • the resin may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability.
  • the resin may be coated with fluorine or a lubricant may be applied.
  • the bearing member 351 and the shaft member 61 are combined as follows to form an end member 350.
  • 34 is a cross-sectional view of the end member 350 taken along the line C 34 -C 34 shown in FIG. 28, and FIG. 35 (a) is taken along the line C 35a -C 35a shown in FIG.
  • Cross-sectional views of the end member 350 are shown.
  • FIG. 35B shows the positional relationship between the main body 355 and the guide member 375 provided in the intermediate member 370 in the cross section of the end member 350 taken along the line C 35b -C 35b shown in FIG. The figure which paid attention is shown.
  • FIG. 36 shows an example of the posture in which the shaft member 61 is tilted at the viewpoint shown in FIG. 34.
  • FIG. 37A shows an example of the posture in which the shaft member 61 is tilted at the viewpoint shown in FIG.
  • FIG. 37B shows examples of postures in which the shaft member 61 is inclined in the posture shown in FIG.
  • the spherical portion 64 is disposed inside the ring of the intermediate member 370, and the rotational force transmission pin 65 is inserted into the grooves 371 and 372 of the intermediate member 370.
  • the intermediate member 370 and the shaft member 61 are combined. Therefore, it is possible to swing with respect to the shaft member 61 is an intermediate member 370 about the axis of the torque transmission pin 65 as indicated by the arrow C 36 in Figure 36.
  • the guide member 375 of the intermediate member 370 passes through the guide member insertion groove 360d and reaches the bottom 359 side, and can be slid on the guide surfaces 361 and 362. Is arranged. Then, as will be described later, the guide member 375 slides on the guide surfaces 361 and 362 to guide (guide) the intermediate member 370. As a result, the intermediate member 370 becomes intermediate as shown by an arrow C 37a in FIG.
  • the member 370 can be rotated inside the main body 355. 34, 35 (a), and 35 (b), the intermediate member 370 has a thickness direction of the intermediate member 370 that is equal to a groove width direction of the groove 360b formed in the holding portion 360. It arrange
  • the intermediate member 370 is held so as not to be detached by the guide surfaces 361 and 362 formed in the main body 355, and the shaft member 61 is held so as not to be detached by the intermediate member 370.
  • the guide member 375 of the intermediate member 370 engages with the guide surfaces 361 and 362 of the main body 355 to restrict the movement of the shaft member 61 in the direction in which it is removed from the main body 355.
  • the shaft member 61 is not directly held by the main body 355.
  • the movement of the spherical portion 64 of the shaft member 61 is restricted in a direction other than the direction in which the shaft member 61 is removed from the main body 355 by the concave portion 360 c formed in the holding portion 360 of the main body 355.
  • the clearance between the shaft member 61 and the main body 355 is determined by the relative positional relationship between the guide surfaces 361 and 362 and the guide member 375 and the relationship between the dimensions of the spherical body portion 64 and the recess portion 360c. Can be adjusted.
  • the assembly of the end member 350 can be performed by first arranging the shaft member 61 on the intermediate member 370 and attaching it to the main body 355.
  • the guide member 375 of the intermediate member 370 can be assembled by being slightly deformed and elastically deformed. Therefore, the shaft member 61 can be easily assembled to the bearing member 351 with high productivity.
  • separation is also easy, so that reuse can be easily performed.
  • the shaft member 61 does not need to be deformed during insertion and separation, so that concerns such as scratches are eliminated. Moreover, since the separation is easy, workability can be improved.
  • the shaft member 61 can swing as shown in FIGS. 36, 37 (a), and 37 (b). That is, in the perspective of FIG. 36, the shaft member 61 as indicated by arrows C 36 can swing about the axis of the torque transmission pin 65. On the other hand, the shaft member 61 can swing following the rotation of the intermediate member 370 as indicated by the arrow C 37a at the viewpoint shown in FIG. At this time, as shown in FIG. 37B, the guide member 375 slides on the guide surfaces 361 and 362 so that the rotation of the intermediate member 370 is guided (guided). Based on this, the shaft member is guided. 61 can swing.
  • the swing shown in FIG. 36 and the swing shown in FIG. 37A are swings in directions orthogonal to each other.
  • the shaft member 61 when receiving a driving force from the apparatus main body 2, the shaft member 61, Fig. 34, receives a rotational force around its axis as indicated by C 34 in FIG. 35 (a). At this time, both ends of the rotational force transmission pin 65 of the shaft member 61 press the pieces 371a and 372a (see FIG. 33B) of the intermediate member 370, and the intermediate member 370 is caught on the side wall of the groove 360b of the main body 355. The rotational force can be transmitted to the photosensitive drum 11.
  • the tip of the rotational force transmission pin 65 extends to the inside of the groove 360b of the holding portion 360 of the main body 355, the tip of the rotational force transmission pin 65 will be the groove 360b even when the pieces 371a and 372a are not arranged. At this time, the rotational force can be transmitted without pressing the intermediate member 370.
  • Such an end member 350 has the same effect as the end member 250 described above.
  • the shaft member 61 is held by the bearing member 351 while rotating (swinging) and transmitting the rotational force.
  • the end member 350 is inserted into the photosensitive drum 11 at the end on which the shaft member 61 does not protrude. With such an end member 350, when the process cartridge 3 is mounted, a rotational force is appropriately applied to the photosensitive drum 11, and the process cartridge 3 can be easily attached and detached.
  • FIG. 38 is a view for explaining the fifth embodiment and is a view showing the intermediate member 470.
  • 38A is a perspective view
  • FIG. 38B is a front view
  • FIG. 38C is a plan view.
  • the form of the portion of the intermediate member 470 where the rotational force transmission pin 65 of the shaft member 61 is engaged is different from that of the intermediate member 370. Since the other portions are the same as those of the end member 350 described above, the intermediate member 470 will be described here.
  • the intermediate member 470 is formed in a semicircular annular shape when viewed from the front as shown in FIG. 38 (b), and grooves 471 and 472 extending in the diametrical direction are provided on the end surfaces thereof.
  • the groove widths of the grooves 471 and 472 are substantially the same as the diameter of the rotational force transmission pin 65.
  • snap-fit (entrance-fit) structures 471a and 262a are formed on the end face side of the intermediate member 470.
  • FIG. 39A is a perspective view illustrating a posture in which the shaft member 61 is engaged with the intermediate member 470
  • FIG. 39B is a cross-sectional view taken along the axis of FIG.
  • the rotational force transmission pin 65 is disposed inside the grooves 471 and 472. Further, the rotational force transmission pin 65 is configured not to come out of the grooves 471 and 472 by the snap-fit structures 471a and 472a.
  • the shaft member 61 can be attached to the intermediate member 470 more easily. Therefore, for example, when assembling the photosensitive drum unit, the bearing member having the intermediate member 470 already attached to the main body is first fixed to the end of the photosensitive drum 11, and then the shaft member 61 is attached to the intermediate member 470 of the bearing member. be able to. According to such assembling, the shaft member 61 that swings in an unstable manner can be finally attached alone, and the ease of assembling can be improved.
  • 360f and the intermediate member 470 when the shaft member 61 is pulled out by adjusting the degree of force required to pull out (release the engagement) the guide member 275.
  • the intermediate member 470 can be removed from the main body together with the shaft member 61.
  • the snap-fit structures 471a and 472a are fitted to the snap-fit structures 360e and 360f of the guide member insertion groove 360d.
  • the intermediate member 470 is left behind in the main body 355, so that it is not necessary to separately manage the intermediate member 470 and the main body 355, and reuse becomes easier and workability is improved. Conversely, when only the main body 355 or only the intermediate member 470 is reused, if the intermediate member 470 is not left behind in the main body 355, the number of steps for separating the intermediate member and the main body is reduced, so the snap fit structure 471a. , 472a may be strengthened relatively to the interference fits of the snap fit structures 360e and 360f of the guide member insertion groove 360d, and the workability is improved.
  • FIG. 555 is a plan view of the main body 555 as viewed from the side where the intermediate member 370 is inserted
  • FIG. 40B is a perspective view of the main body 555.
  • FIG. 41 shows a cross-sectional view along the axis including the line indicated by C 41 -C 41 in FIGS.
  • FIG. 42A shows a cross-sectional view along the axial direction including the line indicated by C 42a -C 42a in FIGS. 40A , 40B , and 41.
  • FIG. 42B shows a cross-sectional view along the axial direction including the line C 42b -C 42b shown in FIG. 40A , FIG. 40B , and FIG.
  • a bottom portion 359 extending in a rod shape in the diameter direction of the cylindrical body 256 is provided inside the cylindrical body 256 so as to block at least a part of the inside of the cylindrical body 256. Further, a holding portion 560 is provided on the inner side of the cylindrical body 256 on the opposite side to the side fixed to the photosensitive drum 11 with the bottom portion 359 interposed therebetween.
  • the holding part 560 forms guide surfaces 561 and 562 as intermediate member guides inside the cylindrical body 256. Accordingly, the holding portion 560 is disposed so that the two protruding portions 560a face each other so as to protrude from the inner surface of the cylindrical body 256 toward the axis of the cylindrical body 256, and a groove 560b is formed between the two protruding portions 560a. Has been.
  • the two protrusions 560a are arranged to face each other, and a gap is formed between them to form a groove 560b.
  • the protrusion 560a is formed with a recess 560c that is hollowed out by a part of a sphere having a center on the axis of the cylindrical body 256 of the protrusion 560a.
  • a part of the spherical surface of the concave portion 560 c has a shape that can receive the spherical portion 64 of the shaft member 61.
  • the recess 560c is not necessarily a part of the spherical surface.
  • Guide surfaces 561 and 562 are formed on the surface of the protruding portion 560a opposite to the concave portion 560c.
  • the holding portion 560 is provided with a guide member insertion groove 560d between the cylindrical body 256 and the recessed portion 560c in the end surface of the protruding portion 560a.
  • the guide member insertion groove 560d is provided so as to communicate the recess 560c side and the guide surfaces 561 and 562 side, and one end thereof is opened to the groove 560b.
  • the size and shape of the guide member insertion groove 560d are formed so that the guide member 375 of the intermediate member 370 can be inserted.
  • the guide member insertion groove 560d is provided on each of one side and the other side of the groove 560b.
  • the guide member insertion grooves 560d are not necessarily provided in both, and only one of them may be provided.
  • the guide member insertion groove 360d is formed at the bottom of the recess 360c.
  • the guide member insertion groove 560d is provided at the end of the groove 560b in this manner.
  • the guide member 375 is caught in the guide member insertion groove 560d. Since there is no, it will move smoothly. Further, unintentional dropping of the shaft member 61 can be prevented even if the shaft member 61 is pulled carelessly.
  • a groove communicating in the axial direction can be provided in any of the protrusions 560a (not shown). At this time, the groove is formed thinner than the guide member 165, so that the smooth swinging of the shaft member 61 is maintained.
  • a surface is also formed on the side of the protruding portion 560a opposite to the recessed portion 560c (that is, the side of the holding portion 560 that faces the bottom portion 359), and as shown in FIG. It is arcuate. This becomes the guide surfaces 561 and 562.
  • the guide surfaces 561 and 562 have curved surfaces formed so as to be curved along the direction in which the groove 560b extends. As the guide member 375 of the intermediate member 370 slides on the guide surfaces 561 and 562, the shaft member 61 swings as described above.
  • the guide member insertion groove 560d allows the guide member 375 to reach the guide surfaces 561 and 562 by communicating the concave portion 560c side of the protruding portion 560a with the back surface of the holding portion 560 (the surface on which the guide surfaces 561 and 562 exist).
  • the holding portion 560 having such a shape is further formed as follows.
  • the groove width of the groove 560b is not particularly limited, but is preferably about the same as the thickness of the intermediate member 370. Thereby, the shakiness of the shaft member 61 can be suppressed.
  • the inner surface shape of the recess 560 c is not particularly limited as long as it can receive the base end portion of the shaft member 61. However, when the base end portion of the shaft member 61 is the sphere portion 64, the same radius as the sphere portion 64 is provided. It is preferable to have a curved surface having This can also prevent the shaft member 61 from rattling.
  • the guide member insertion groove 560d preferably has a snap fit (entrance fit at the inlet portion) structure with respect to the guide member 375 while the guide member 375 of the intermediate member 370 can be inserted.
  • the guide surfaces 561 and 562 are surfaces that determine the swing of the shaft member 61, the guide surfaces 561 and 562 may have an arc shape in the cross section shown in FIG. 42B from the viewpoint of obtaining a stable swing. preferable. That is, it is preferable that the guide surfaces 561 and 562 have an arc shape with the center of the swing of the shaft member 61 as the center. Thereby, smooth rocking is possible.
  • the arc of the recess 560c is also an arc belonging to a concentric circle of the circle to which the guide surfaces 561 and 562 belong.
  • FIGS. 43 and 44 show views in which the intermediate member 370 is combined with the main body 555 to form the bearing member 551.
  • 43 is a perspective view
  • FIG. 44 (a) is a view from the same viewpoint as FIG. 42 (a)
  • FIG. 44 (b) is a view from the same viewpoint as FIG. 42 (b).
  • FIG. 43 is a diagram illustrating a state of movement of the guide member 375 when the intermediate member 370 is combined with the main body 555.
  • the guide member 375 of the intermediate member 370 passes through the guide member insertion groove 560d and reaches the bottom portion 359 side (in the order indicated by the straight arrows in FIG. 45), the guide surface 561, 562 is arranged at a position where it can be slid.
  • the guide member 375 slides on the guide surfaces 561 and 562 to guide (guide) the intermediate member 370, and as a result, the intermediate member 370 can rotate inside the main body 555.
  • the intermediate member 370 is disposed in the groove 560b such that the thickness direction of the intermediate member 370 is the groove width direction of the groove 560b formed in the holding portion 560. Accordingly, a part of the intermediate member 370 is disposed in the groove 560b, and the intermediate member 370 can rotate (swing) so as to slide in the groove 560b.
  • both ends of the intermediate member 370 are arranged in a direction perpendicular to the axis of the main body 555 (diameter direction of the main body 555).
  • the grooves 371 and 372 of the intermediate member 370 protrude and protrude from the protruding portion 560a formed in the holding portion 560 of the main body 555. Therefore, in this embodiment, the shaft member 61 can be attached after the intermediate member 370 is combined with the main body 555 in the main body, and the assembly can be performed more simply and with high productivity.
  • it becomes easier to remove only the shaft member 61 it is easy to reuse. In particular, in this case, the shaft member 61 does not need to be deformed during insertion and separation, so that concerns such as scratches are eliminated. Moreover, since the separation is easy, workability can be improved.
  • the shaft member 61 is combined with the intermediate member 370 of the bearing member 551 of the present embodiment to form an end member.
  • the end member is also held by the guide surfaces 561 and 562 formed on the main body 555 so that the intermediate member 370 is not removed, and the shaft member 61 is held by the intermediate member 370 so as not to be removed. Therefore, the shaft member 61 is not directly held by the main body 555.
  • the end member obtained by combining the shaft member 61 with the bearing member 341 can also act in the same manner as the end member 350.
  • FIG. 46 is a cross-sectional view showing a scene in which the shaft member 61 is combined with the bearing member 551 and the shaft member 61 is most inclined.
  • the rotation shaft 63 of the shaft member 61 contacts the main body 555 of the bearing member 551 before the guide member 375 reaches the guide member insertion groove 560d. No. Therefore, there is no possibility that the intermediate member 370 is detached from the main body 555.
  • the guide member 375 does not reach the guide member insertion groove 560d, so that unintended separation does not occur. In the range of swinging of the shaft member 61, the guide member 375 does not get caught in the guide member insertion groove 560d when the guide member 375 of the intermediate member 370 moves along the guide surfaces 561 and 562, so that it is smooth. Move.
  • FIG. 47 is a diagram for explaining a bearing member 551 ′ having a main body 555 ′ according to a modification of the main body 555.
  • 47 (a) is a perspective view of the bearing member 341 '
  • FIG. 47 (b) is an enlarged view of a part of FIG. 47 (a).
  • both ends of the intermediate member 370 are arranged in a direction perpendicular to the axis of the main body 555 ′ (diameter direction of the main body 555 ′)
  • the end of the intermediate member 370 is hidden in the groove 560b ′.
  • the protrusion 560a ′ extends in the direction along the axis.
  • a part of the protruding portion 560a ′ is cut to form a space 560f ′, and the groove of the intermediate member 370 is formed from the space 350f ′. 371 and 372 are formed.
  • FIG. 48 is a view for explaining a bearing member 341 ′′ having a main body 555 ′′ according to another modification of the main body 555.
  • FIG. 48 is a perspective view of the bearing member 341 ′′.
  • a space 560f ′′ larger than the space 560f ′ of the main body 555 ′ is formed.
  • the space 560f ′ and 560f ′′ ensure easy attachment and detachment of the shaft member 61, and on the opposite side of the spaces 560f ′ and 560f ′′, the intermediate member 370 and the main bodies 555 ′ and 555 ′′. Can be increased, and the load during rotation can be distributed.
  • the holding portion 660 of the main body 655 is different from the sixth embodiment described above, and the guide member 675 of the intermediate member 670 is different from the sixth embodiment described above. Since other parts can be considered in the same manner, here, description will be given focusing on portions of the main body 655 and the intermediate member 670 that are different from the sixth embodiment. And what can be considered similarly to the member and site
  • FIG. 49A and 49B are diagrams for explaining the main body 655.
  • FIG. 49A is a view from the same viewpoint as FIG. 42A
  • FIG. 49B is a view from the same viewpoint as FIG. 50A is a perspective view of the intermediate member 670
  • FIG. 50B is a front view of the intermediate member 670
  • FIG. 50C is a plan view of the intermediate member 670.
  • the holding portion 660 provided in the main body 655 is also provided with a guide member insertion groove 560d similarly to the holding portion 560 described above.
  • a return piece 660e extending from the edge continuous with the guide surfaces 561 and 562 to the guide surfaces 561 and 562 (the bottom portion 359 side) is disposed from the edge of the guide member insertion groove 560d.
  • a corner 660f opened to the guide surfaces 561 and 562 is formed between the return piece 660e and the guide surfaces 561 and 562. The corner 660f does not appear when the guide member insertion groove 560d is viewed from the recess 560c side.
  • the intermediate member 670 is provided with a guide member 675 (guided) having a shape different from that of the intermediate member 370 described above. That is, in this embodiment, the guide member 675 has a substantially triangular column shape, and the tip thereof is tapered. Therefore, in the guide member 675, protrusions 675b having apexes of triangles are formed at both ends of the surface 675a that contacts the guide surfaces 561 and 562 of the holding portion 660.
  • FIG. 51 shows a diagram for explanation.
  • 51A shows a scene where the intermediate member 670 is combined with the main body 655
  • FIG. 51B shows a scene where the intermediate member 670 is also swung due to the swing of the shaft member 61.
  • the intermediate member 670 is attached to the main body 655.
  • the guide member 675 of the intermediate member 670 is disposed on the guide surfaces 561 and 562 side through the guide member insertion groove 560d from the recess 560c side.
  • the corner portion 660f formed by the return piece 660e is oriented so as not to obstruct the insertion of the guide member 675. Therefore, the intermediate member 670 can be smoothly attached to the main body 655 as usual.
  • the intermediate member 670 and the main body 655 can be assembled smoothly, and the main body 655 can be used in a situation where the intermediate member 670 is not intended. It can prevent more reliably that it slips out. For example, even when transportation is performed in a state where the intermediate member 670 is assembled to the main body 655, there is no fear that the intermediate member 670 may fall off due to vibration caused by transportation.
  • the guide member 675 of the intermediate member 670 is shaped like a triangular column as described above to make it easy to enter the corner 660f, but the shape of the guide member thus enters the corner. Therefore, the movement (turning) may be restricted, and the shape of the guide member is not particularly limited.
  • FIG. 52 is a perspective view of the driving side end member 730
  • FIG. 53 is an exploded perspective view of the driving side end member 730.
  • a driving side end member 730 is applied instead of the driving side end member 50 in the first embodiment. Therefore, here, the driving side end member 250 will be described.
  • the drive side end member 730 includes a bearing member 251 and a shaft member 61.
  • the shaft member 61 can be considered the same as the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the drive side end member 730 includes a bearing member 740 and a shaft member 750.
  • the bearing member 740 is a member that is joined to the end of the photosensitive drum 11 in the driving side end member 730.
  • 54A is a perspective view of the bearing member 740
  • FIG. 55B is a plan view of the bearing member 740 as viewed from the side where the shaft member 750 is inserted.
  • FIG. 55A is a cross-sectional view taken along the line C 55a -C 55a in FIG. 54B
  • FIG. 55B is a line shown by C 55b -C 55b in FIG. FIG.
  • the end surface (cut surface) in the cross-sectional view may be hatched.
  • the bearing member 740 has a cylindrical body 741, a contact wall 742, a fitting portion 743, a gear portion 744, and a shaft member holding portion 745, as can be seen from FIGS.
  • the cylindrical body 741 is a cylindrical member as a whole, a contact wall 742 and a gear portion 744 are disposed on the outer periphery thereof, and a shaft member holding portion 745 is formed inside the cylindrical body 741.
  • a contact wall 742 that comes into contact with and engages with the end surface of the photosensitive drum 11 is erected. Accordingly, when the driving side end member 730 is mounted on the photosensitive drum 11, the insertion depth of the driving side end member 730 into the photosensitive drum 11 is regulated. Further, one side of the cylindrical body 741 with the contact wall 742 interposed therebetween is a fitting portion 743 that is inserted into the inside of the photosensitive drum 11. The fitting portion 743 is inserted inside the photosensitive drum 11 and fixed to the inner surface of the photosensitive drum 11 with an adhesive. As a result, the driving side end member 730 is fixed to the end of the photosensitive drum 11.
  • the outer diameter of the fitting portion 743 is substantially the same as the inner diameter of the photoconductive drum 11 as long as it can be inserted inside the cylindrical shape of the photoconductive drum 11.
  • a groove may be formed in the outer peripheral surface of the fitting portion 743. As a result, the groove is filled with an adhesive, and the adhesion between the cylindrical body 741 (driving side end member 730) and the photosensitive drum 11 is improved by an anchor effect or the like.
  • the gear part 744 is formed in the outer peripheral surface of the cylindrical body 741 on the opposite side to the fitting part 743 across the contact wall 742.
  • the gear portion 744 is a gear that transmits a rotational force to another member such as a developing roller unit.
  • a helical gear is arranged.
  • the type of gear is not particularly limited, and spur gears may be arranged, or both may be arranged side by side along the axial direction of the cylindrical body. Further, the gear is not necessarily provided.
  • the shaft member holding part 745 is a part that is formed inside the cylindrical body 741 and has a function of holding the shaft member 750 on the bearing member 740. As can be seen from FIGS. 54A to 557B, the shaft member holding portion 745 has a rotating shaft holding member 746, a support member 747, and a guide wall 748.
  • the rotating shaft holding member 746 is a plate-like member formed so as to close the inside of the cylindrical body 741, and a hole 746 a is formed coaxially with the axis of the cylindrical body 741. Since the rotation shaft 751 (see FIG. 56) passes through the hole 746a as will be described later, the hole 746a has such a size and shape that the rotation shaft 751 can pass therethrough. However, in order to prevent the pivot shaft 751 from coming off, the hole 746a is formed so that it can penetrate the main body 752 of the pivot shaft 751, but cannot penetrate the portion where the protrusion 753 is disposed. .
  • the hole 746a has substantially the same shape and size as the outer periphery of the main body 752 of the rotation shaft 751 within a range that does not greatly hinder the movement of the rotation shaft 751 in the axial direction. It is preferable.
  • two slits 746 b extend from the hole 746 a in the rotating shaft holding member 746. The two slits 746b are provided at symmetrical positions across the center of the hole 746a.
  • the size and shape of the slit 746b are formed so that the protrusion 753 of the rotating shaft 751 (see FIG. 56) can penetrate the slit 746b.
  • the support member 747 is a plate-like member that is provided closer to the fitting portion 743 than the rotating shaft holding member 746 and is formed so as to close at least a part of the inside of the cylindrical body 741.
  • the support member 747 is formed in a size and a shape that can support at least a rotating shaft elastic member 763 described later.
  • the guide wall 748 is a cylindrical member that extends in parallel to the axial direction of the cylindrical body 741 from the edge of the hole 746 a of the rotating shaft holding member 746 and has an end connected to the support member 747.
  • the cross-sectional shape inside the guide wall 748 is the same as that of the hole 746a.
  • the guide wall 748 since the main body 752 of the rotation shaft 751 is inserted inside the guide wall 748 and the rotation shaft 751 moves in the axial direction, the guide wall 748 has a shape and size that does not hinder the movement. Is formed.
  • a slit 748 a is formed in the guide wall 748. In FIG. 55A and FIG.
  • a dotted line is shown along the direction in which the slit 748a extends for easy understanding.
  • One end in the longitudinal direction of the slit 748a leads to the slit 746b of the rotation shaft holding member 746, extends parallel to the axis of the cylindrical body 741, reaches the support member 747, and then extends parallel to the axis so as to make a U-turn.
  • the end portion (the other end side) reaches the rotating shaft holding member 746. Therefore, the other end side is closed by the rotating shaft holding member 746.
  • the slit width of the slit 748a is formed so that the protrusion 753 of the rotating shaft 751 (see FIG. 56) can move within the slit 748a.
  • the material which comprises the bearing member 740 is not specifically limited, Resin and metals, such as a polyacetal, a polycarbonate, and PPS, can be used.
  • resin in order to improve the rigidity of a member, you may mix
  • the resin in order to facilitate the attachment and movement of the shaft member, may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • metal powder injection molding method in the case of manufacturing with metal, cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), or the like can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various plating can be performed to improve functionality (such as lubricity and corrosion resistance) on the surface.
  • the shaft member 750 of the driving side end member 730 will be described.
  • the shaft member 750 includes a rotation shaft 751 and a rotational force transmission member 754, and the rotational force transmission member 754 includes a tip member 755, a claw member 759, and a pin 765.
  • the shaft member 750 includes a rotating shaft elastic member 763 and a claw member elastic member 764.
  • the rotating shaft elastic member 763 and the claw member elastic member 764 of this embodiment are both string springs. Each will be described below.
  • the rotation shaft 751 is a shaft-shaped member that transmits the rotational force received by the rotational force transmission member 754 to the bearing member 740.
  • 56 (a) is a perspective view of the rotating shaft 751
  • FIG. 56 (b) is a sectional view taken along the axial direction including the line indicated by C 56b -C 56b in FIG. 56 (a). Indicated.
  • the rotation shaft 751 has a columnar main body 752, and concave portions 752a and 752c are formed on the end surfaces of the column.
  • the recess 752a is a recess formed on one end surface of the main body 752 of the rotation shaft 751, and one end side of the claw member elastic member 764 is inserted therein.
  • a holding projection 752b for fixing the claw member elastic member 764 is provided at the bottom of the recess 752a. In this embodiment, as will be described later, the claw member elastic member 764 is held by inserting the holding projection 752b inside the claw member elastic member 764.
  • the recess 752c is a recess formed on the other end surface of the main body 752 of the rotating shaft 751, that is, the end surface opposite to the side where the recess 752a is formed.
  • One end of the rotating shaft elastic member 763 is inserted into the recess 752c, and one end of the rotating shaft elastic member 763 is in contact with the bottom of the recess 52c. Accordingly, the recess 752c is formed in a size that allows the insertion.
  • Two protrusions 753 are disposed on the end of the outer periphery of the main body 752 on the side where the recess 752c is disposed.
  • the two protrusions 753 are provided on the same line in one diametrical direction of the cylinder of the main body 752 so as to be on the opposite side across the axis of the main body 752. As will be described later, the two protrusions 753 hold the rotating shaft 751 on the bearing member 740, restrict the movement of the main body 752, and transmit the rotational force of the main body 752 to the bearing member 740.
  • the tip member 755 is one member that constitutes the rotational force transmitting member 754, and is a member that holds the engaging claw 760 so as to be swingable and transmits the rotational force from the engaging claw 760 to the rotating shaft 751.
  • . 57 (a) is a perspective view of the tip member 755
  • FIG. 57 (b) is a plan view of the tip member 755 as viewed from the side where the engaging claw 760 is disposed
  • FIG. 57 (c) is a plan view of FIG.
  • FIG. 57B is a cross-sectional view taken along the line indicated by C 57c -C 57c
  • FIG. 57D is a cross-sectional view taken along the line indicated by C 57d -C 57d .
  • the tip member 755 has a disk-shaped base 756 and two holding members 757 arranged on one surface of the base 756. It is configured.
  • the base 756 has a disk shape, and a hole 756a that penetrates the base 756 in the thickness direction is formed at the center thereof.
  • the holding member 757 is two members disposed on one surface of the base portion 756, and has a gap through which the hole 756a is exposed across the hole 756a of the base portion 756 in plan view (FIG. 57B). It is arranged on the other side. Accordingly, a groove 757a is formed between the two holding members 757, and a hole 756a is formed at the bottom of the groove 757a. Further, an inclined surface 757 b is formed on the side surface of the holding member 757 other than the surface forming the groove 757 a so as to approach the axis of the base portion 756 as the distance from the base portion 756 increases.
  • the holding member 757 is provided with a hole 757c passing through the center of the hole 756a of the base 756 in a plan view (FIG. 57B) and orthogonal to the direction in which the groove 757a extends. As will be described later, a pin 765 is inserted into the hole 757c.
  • the claw member 759 is one member that constitutes the rotational force transmission member 754, and is a member that engages with the drive shaft 70 (see FIG. 10) provided in the apparatus main body 2 and transmits the rotational force to the tip member 55.
  • . 58 and 59 show diagrams for explanation.
  • 58 (a) is a perspective view of the claw member 759
  • FIG. 58 (b) is a front view of the claw member 759
  • FIG. 59 (a) is a side view of the claw member 759
  • FIG. 59 (b) is FIG.
  • FIG. 6 is a cross-sectional view taken along line C 59b -C 59b .
  • the claw member 759 has two engaging claws 760 in this embodiment, and includes a connecting piece 761 that connects one ends of the two engaging claws 760.
  • a holding projection 762 is provided at a position on the opposite side of the connecting piece 761 from the two engaging claws 760 and at the center between the two engaging claws.
  • the two engaging claws 760 are members standing in the same direction from both ends of the connecting piece 761.
  • the distance between the two engaging claws 760 is the distance between the leading end of the drive shaft 770 and the driving of the drive shaft 70.
  • the protrusion 71 (see FIG. 10) is formed so as to be caught by the engaging claw 760.
  • the two engaging claws 760 are formed so as to become thinner as the distance from the connecting piece 761 increases, as can be seen from FIG. 58 (b). More specifically, the opposing surface 760 d that is the opposing surface of the two engaging claws 760 forms an arc-shaped recess 759 a including the surface of the connecting piece 761. This is a shape corresponding to the tip of the drive shaft 70 (see FIG.
  • the recess 759a does not necessarily have an arc shape, and the opposing surfaces 760d of the two engaging claws 760 are linearly inclined (tapered) so as to be separated from the connecting piece 761. It may be.
  • the outer surface 760a which is the surface opposite to the concave portion 759a, has an inclined surface (hereinafter, the outer surface 760a and the inclined surface 760a become closer to each other as the distance from the connecting piece 761 increases. It may be described.)
  • the surfaces forming the engaging claws 760 one of the two surfaces 760b and 760c connecting the opposing surface 760d and the inclined surface 760a.
  • the first side surface 760b is parallel to the direction in which the engagement claw 760 stands (the direction in which the axis of the rotation shaft 751 extends).
  • the second side surface 760c which is the other surface, is separated from the connecting piece 761. As it does, it inclines so that it may approach the 1st side 760b.
  • the first side surface 760b and the second side surface 760c are disposed on the opposite sides.
  • the first side surface 760 b is a surface with which the drive protrusion 71 of the drive shaft 70 comes into contact when the rotational force is transmitted from the apparatus main body 2. From this point of view, the first side surface 760b needs to reliably maintain contact with the drive protrusion 71 when receiving the rotational force. Therefore, the first side surface 760b is parallel to the direction in which the engaging claw 760 stands up (the direction in which the axis of the rotation shaft 751 extends) as in this embodiment, or is separated from the second side surface 760c toward the tip. It is preferable to have an inclined surface inclined in the direction. On the other hand, in this embodiment, the second side surface 760c has an inclined surface so as to approach the first side surface 760b as described above, but this inclined surface is not necessarily provided.
  • the holding protrusion 762 is a protrusion that is disposed at a center position between the two engaging claws 760 on the surface of the connecting piece 761 opposite to the engaging claws 760.
  • the holding protrusion 762 is fixed to the claw member elastic member 764.
  • the holding protrusion 762 is inserted and fixed from the end of the claw member elastic member 764 to the inside thereof. Therefore, the holding projection 762 is sized to be inserted into the claw member elastic member 764.
  • the tip of the holding projection 762 is formed in a hemispherical surface so that it can be easily inserted.
  • the holding protrusion 762 is provided with a long hole 762a that penetrates the holding protrusion 762 in a direction orthogonal to the direction in which the two engaging claws 760 are arranged.
  • the long hole 762a is a long hole that is long in the direction in which the engaging claws 760 are erected and short in the direction in which the two engaging claws 760 are arranged.
  • a pin 765 is passed through the elongated hole 762a.
  • the shape of the long hole 762a in the penetrating direction is shown in FIG.
  • the long hole 762a is narrowest at the center in the penetrating direction, and is inclined so that the hole spreads toward the both ends in the penetrating direction over the entire circumference of the long hole 762a (having a tapered shape).
  • the holding protrusion 762 can be inserted into the hole 756a of the tip member 755 and has a thickness that can swing inside the hole 756a.
  • the rotating shaft elastic member 763 and the claw member elastic member 764 are so-called elastic members, and in the present embodiment, are constituted by string-wound springs. Further, the pin 765 is a single bar-shaped member that constitutes the rotational force transmission member 754. The arrangement and operation of these members will be described later.
  • each member of the shaft member 750 is not specifically limited, Resins, such as a polyacetal, a polycarbonate, PPS, can be used. However, in order to improve the rigidity of the member, glass fiber, carbon fiber, or the like may be blended in the resin according to the load torque. Further, a metal may be inserted into the resin to further increase the rigidity, or the whole may be made of metal. In the case of manufacturing with metal, cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), or the like can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • the shaft member 750 and the claw member 759 included in the shaft member 750 are manufactured by bending a metal plate or impregnating a metal, glass, carbon fiber, or the like with a resin from the viewpoint of giving elasticity. May be.
  • the bearing member 740 and the shaft member 750 as described above are combined as follows to form the driving side end member 730.
  • the size and structure of each member and part, the relationship between the size of the member and part, and the like are further understood.
  • 60 (a) is a perspective view in which the rotation shaft 751 is combined with the bearing member 740
  • FIG. 60 (b) is a plan view thereof
  • FIG. 60 (c) is indicated by C 60c -C 60c in FIG. 60 (b).
  • the rotation shaft 751 is passed through the hole 746a of the rotation shaft holding member 746 of the bearing member 740, and the end portion on the side where the protrusion 753 is disposed is the shaft member. It is included inside the holding portion 745 and is disposed so that the opposite end portion protrudes from the bearing member 740. At this time, the protrusion 753 is arranged at the end of the slit 748 a provided on the guide wall 748 on the side closed by the rotating shaft holding member 746 and is caught by the rotating shaft holding member 746. Thus, the rotation shaft 751 is configured not to come off from the bearing member 740. As can be seen from FIG.
  • the rotating shaft elastic member 763 is disposed between the rotating shaft 751 and the support member 747, and the rotating shaft 751 is a direction in which the protrusion 753 is pressed against the rotating shaft holding member 746. Is being energized. Further, since the side surface of the protrusion 753 can be hooked on the slit wall surface of the slit 748a, the protrusion 753 is hooked on the slit wall surface of the slit 748a when the rotating shaft 751 rotates, and transmits the rotational force.
  • the protrusion 753 of the rotation shaft 751 is inserted into the slit 748a from the slit 746b, along the dotted line shown in FIGS. 55 (a) and 55 (b). This can be done by moving the protrusion 753 within the slit 748a.
  • FIG. 61 shows a diagram for explanation.
  • 61A is an exploded perspective view
  • FIG. 61B is a sectional view of the shaft member 750 in the direction along the axis.
  • the claw member elastic member 764 is disposed inside the recess 752 a of the main body 752 of the rotation shaft 751. At this time, one end of the claw member elastic member 764 is inserted into and fixed to the protrusion 752b.
  • the tip member 755 is arranged and fixed so that the surface of the base 756 of the tip member 755 overlaps the end surface of the rotating shaft 751 on the side where the recess 752 a is provided.
  • the fixing method is not particularly limited, and a known method such as an adhesive or welding can be used.
  • the tip member 755 and the rotation shaft 751 may be integrally formed.
  • the axis of the main body 752 of the rotation shaft 751 and the axis of the tip member 755 are positioned so as to coincide with each other.
  • the holding projection 762 of the claw member 759 is inserted into the hole 756a of the tip member 755, and the connecting piece 761 of the claw member 759 is inserted into the groove 757a of the tip member 755.
  • the tip of the holding projection 762 is inserted into the claw member elastic member 764 and fixed.
  • the pin 765 is passed through the hole 757 c of the tip member 755 and the long hole 762 a of the claw member 759, thereby connecting the claw member 759 to the tip member 755.
  • the axes of the respective parts of the bearing member 740 and the shaft member 750 are arranged in alignment.
  • FIG. 62 shows a sectional view in the direction along the axis in one posture of the end member 730.
  • the rotation shaft elastic member 763 is the posture that protrudes most from the bearing member 740 as far as the entire shaft member 750 is possible.
  • the end member 730 is in this posture.
  • the connecting piece 761 of the pawl member 759 is inserted into the groove 757a of the tip member 755, the engaging claws 760 of the claw member 759 as shown in C 62a in FIG. 62
  • the claw member 759 is caught by the holding member 757 of the tip member 755 or the pin 765 is caught by the side surface of the elongated hole 762a, and the rotational force is transmitted. It can be set appropriately according to which aspect the rotational force is transmitted.
  • This rotational force is transmitted to the rotating shaft 751, and this rotational force is further transmitted to the bearing member 740 by the projection 753 of the rotating shaft 751 pressing the slit wall of the slit 748a. Accordingly, the entire end member 730 is rotated by the rotational force received by the engaging claw 760. Further, as indicated by arrow C 62b in FIG. 62, the pressing force toward the bearing member 740 side in the axial direction with the pawl member 759 acts, is pressing force transmitted to the tip member 755, the rotation shaft 751, The entire shaft member 750 moves against the urging force of the rotating shaft elastic member 763 in the direction of being pushed into the bearing member 740 as indicated by C62c in FIG.
  • FIG. 63 the vicinity of the rotational force transmitting member 754 is shown enlarged.
  • 63A is a view from the same viewpoint as FIG. 62
  • FIG. 63B is a cross-sectional view taken along the line C 63b -C 63b in FIG. 63A .
  • the claw member 759 holds the posture shown in FIGS. 62, 63 (a), and 63 (b) when the external force is not applied by the claw member elastic member 764.
  • the pin 765 can be swung around the pin 765 as shown by an arrow C 63a in FIG. 63A against the elastic force of the claw member elastic member 764.
  • the claw member 759 is subjected to an external force other than the oscillation around the pin 765 as shown by an arrow C 63c in FIG. 63 (b) against the elastic force of the claw member elastic member 764. It can swing in all directions. This is because the long hole 762a of the holding projection 762 is a long hole, and the long hole 762a is expanded in diameter (tapered) so as to incline over the entire circumference at both ends in the penetrating direction. Because it is. Therefore, the claw member 759 can swing in all directions with respect to the axis.
  • the claw member elastic member 764 is in the form of a compression spring, but is not limited thereto, and may be in the form of a tension spring.
  • a pin 765 serving as a rotation axis of the claw member 759 is disposed outside the bearing member 740.
  • the swing of the claw member 759 is not limited by the bearing member 740, so that the degree of freedom of the shape of the claw member 759 is increased and a smoother swing is possible.
  • the movement of the shaft member 750 in the axial direction is restricted by the rotating shaft elastic member 763, while the swing of the claw member 759 is controlled by the claw member.
  • the elastic member 764 allows the movement and swinging to be designed independently. Therefore, the degree of freedom in design can be raised from this viewpoint.
  • it is not necessary to have a function of restricting movement in the axial direction so that the design can be made compact, and the design freedom when arranging in a limited space is possible. It can also be increased.
  • FIG. 64A is a perspective view of the shaft member 850 of the drive side end member 830 (see FIG. 69) included in this embodiment
  • FIG. 64B is an exploded perspective view of the shaft member 850.
  • the drive-side end member 830 is an example in which the bearing member 740 has the same form as the drive-side end member 730 already described, and the shaft member 850 is applied instead of the shaft member 750. Accordingly, the configuration of the bearing member 740 is denoted by the same reference numeral and description thereof is omitted.
  • the shaft member 850 will be described.
  • the shaft member 850 includes a rotation shaft 851 and a rotational force transmission member 854.
  • the rotational force transmission member 854 includes a tip member 855 and a claw member. 859 and a rod-shaped pin 865.
  • the shaft member 850 includes a rotating shaft elastic member 763 and a claw member elastic member 764.
  • the rotating shaft elastic member 763 and the claw member elastic member 764 of this embodiment are both string-wound springs, and are the same as in the eighth embodiment described above, and are given the same reference numerals.
  • the rotation shaft 851 is a shaft-shaped member that transmits the rotational force received by the rotational force transmission member 854 to the bearing member 740.
  • Perspective view of a pivot shaft 851 in FIG. 65 a plan view of the tip member 855 is viewed from the arranged side of the rotation shaft 851 in FIG. 66 (a), C 66b in FIG. 66 (a) in FIG. 66 (b) 65C is a cross-sectional view along the axial direction including the line indicated by ⁇ C 66b , and FIG. 65C is a cross-sectional view along the axial direction including the line indicated by C 66c -C 66c . It was. In this embodiment, since the tip member 855 is integrally disposed at one end portion of the rotation shaft 851, the tip member 855 also appears in these drawings.
  • the rotation shaft 851 has a cylindrical main body 852, and recesses 852a and 852c are formed on the end surfaces of the cylinder.
  • the recess 852a is a recess formed on one end surface of the main body 852 of the rotating shaft 851, and one end side of the claw member elastic member 764 is inserted therein.
  • a projection 852b for fixing the claw member elastic member 764 is provided at the bottom of the recess 852a.
  • the holding protrusion 852b is inserted inside the claw member elastic member 764, whereby the claw member elastic member 764 is held.
  • the recess 852c is a recess formed on the other end surface of the main body 852 of the rotating shaft 851, that is, the end surface opposite to the side where the recess 852a is formed.
  • One end of the rotating shaft elastic member 763 is inserted into the recess 852c, and one end of the rotating shaft elastic member 763 comes into contact with the bottom of the recess 852c. Accordingly, the recess 852c is formed in a size that allows one end of the rotating shaft elastic member 763 to be inserted.
  • Two protrusions 753 are arranged at the end of the outer periphery of the main body 852 on the side where the recess 852c is arranged.
  • the two protrusions 753 are the same as the protrusions 753 provided on the main body 752 of the end member 730 described above.
  • a long hole 852d penetrating the main body 852 in the diameter direction of the main body 852 is provided at the end of the outer peripheral portion of the main body 852 on the side where the recess 852a is disposed.
  • the long hole 852d is a long hole that is long in the axial direction of the main body 852 and short in the circumferential direction of the main body 852.
  • a pin 865 passes through the elongated hole 852d.
  • a long hole is used, but it is not necessarily a long hole, and it may be a circular hole or a hole having another shape.
  • the tip member 855 is one member that constitutes the rotational force transmitting member 854, and is a member that transmits the rotational force from the claw member 859 to the rotation shaft 851.
  • the tip member 855 appears in FIG. 65 and FIGS. 66 (a) to 66 (c).
  • the tip member 855 in this embodiment has two end faces disposed on the end surface on the recess 852a side of the main body 852 of the rotating shaft 851.
  • a holding member 857 is included.
  • the holding member 857 is two members disposed on the end surface of the rotation shaft 851 on the concave portion 852a side of the main body 852, and is disposed with a predetermined gap 857a across the axis of the main body 852 of the rotation shaft 851. Yes. Therefore, the concave portion 152a of the main body 152 communicates with the inside and outside through the gap 857a.
  • the surfaces 857b and 857d forming the wall surface of the gap 857a in the holding member 857 are inclined surfaces (taper surfaces) so as to be separated from each other as the distance from the rotation shaft 851 increases.
  • the surface 857b is a flat surface disposed at both ends in the direction in which the gap 857a extends
  • the surface 857d is a curved surface disposed between the two surfaces 857b. It is. Since the surfaces 857b and 857d are inclined as described above, the swinging of the claw member 859 is not hindered and is performed smoothly (see FIG. 70B).
  • the shaft member 850 can be moved in the axial direction (direction indicated by the arrow C 69c in FIG. 69). As a result, the drive shaft 70 can be smoothly detached.
  • a side surface (inclined surface, tapered surface) 857c other than the surface that forms the gap 857a in the holding member 857 is inclined surface (tapered surface) 857c so as to approach the axis of the rotating shaft 851 as the distance from the rotating shaft 851 increases. Is formed.
  • the inclined surface 857c acts in the same manner as the inclined surface 757b of the holding member 757 already described.
  • the claw member 859 is a member that constitutes the rotational force transmission member 854, and is a member that engages with the drive shaft 70 provided in the apparatus main body 2 and transmits the rotational force to the tip member 855.
  • FIG. 67 shows a diagram for explanation. 67 (a) is a perspective view of the claw member 859, FIG. 67 (b) is a front view of the claw member 859, and FIG. 67 (c) is a cross-sectional view taken along C 67c -C 67c in FIG. 67 (b).
  • FIG. 67 shows a diagram for explanation.
  • 67 (a) is a perspective view of the claw member 859
  • FIG. 67 (b) is a front view of the claw member 859
  • FIG. 67 (c) is a cross-sectional view taken along C 67c -C 67c in FIG. 67 (b).
  • the claw member 859 has two engaging claws 860, and has a connecting piece 861 that connects one ends of the two engaging claws 860. Further, a holding projection 862 is provided at a position on the opposite side of the connecting piece 861 from the two engaging claws 860 and at the center between the two engaging claws.
  • the two engaging claws 860 are members standing in the same direction from both ends of the connecting piece 861.
  • the distance between the two engaging claws 860 is the distance between the leading end of the shaft portion of the drive shaft 70 and the drive shaft.
  • 70 driving projections 71 are formed so as to be caught by the engaging claws 860.
  • the two engaging claws 860 are formed so as to become thinner as the distance from the connecting piece 861 increases, as can be seen from FIG. 67 (b). More specifically, the opposing surface of the two engaging claws 860 includes a concave portion 859 a including the surface of the connecting piece 861.
  • the opposing surfaces of the two engaging claws 860 are formed in an inclined shape (tapered shape) so as to be separated from the connecting piece 861.
  • the surface opposite to the recess 859a is an inclined surface 860a so as to approach each other as the distance from the connecting piece 861 increases.
  • the inclined surface 860a acts in the same manner as the inclined surface 760a of the engaging claw 760 already described.
  • the holding protrusion 862 is a protrusion that is disposed on the surface of the connecting piece 861 opposite to the engaging claw 860 and located at the center between the two engaging claws 860.
  • the holding protrusion 862 is fixed to the claw member elastic member 764.
  • the holding projection 862 since the holding projection 862 is inserted and fixed from the end of the claw member elastic member 764 to the inside thereof, the holding projection 862 is sized to be inserted into the claw member elastic member 764.
  • the holding protrusion 862 is provided with a hole 862a that penetrates the holding protrusion 762 in a direction orthogonal to the direction in which the two engaging claws 860 are arranged. As will be described later, a pin 865 passes through the hole 862a.
  • the shape in the penetration direction of the hole 862a is shown in FIG. 67 (c). As can be seen from this figure, the hole 862a is narrowest at the center in the penetrating direction, and has an inclined shape (tapered shape) so that the hole expands toward the both ends in the penetrating direction over the entire circumference of the hole 862a. Has been. As a result, the claw member 859 is smoothly swung.
  • the claw member 859 has a connecting piece 861 disposed inside the gap 857a of the tip member 855 shown in FIG. the size of the connecting piece 861 shown in C (thickness) in is smaller than the width of the narrowest portion of the gap 857a as shown in D 3 in FIG. 66 (b).
  • the holding protrusion 862 is also formed so as to be able to penetrate the gap 857a.
  • the bearing member 740 and the shaft member 850 as described above are combined as follows to form an end member 830.
  • the size and structure of each member and part, the relationship between the size of the member and part, and the like are further understood.
  • the combination of the bearing member 740 and the rotation shaft 851 is the same as the example of the end member 730 already described, the description thereof is omitted.
  • FIG. 68 shows a diagram for explanation.
  • 68A is a cross-sectional view along the axis of the shaft member 850 in a direction orthogonal to the axis of the pin 865
  • FIG. 68B is a cross-section along the axis of the shaft member 850 in the direction along the axis of the pin 865.
  • FIG. 68A is a cross-sectional view along the axis of the shaft member 850 in a direction orthogonal to the axis of the pin 865
  • FIG. 68B is a cross-section along the axis of the shaft member 850 in the direction along the axis of the pin 865.
  • the tip member 855 is integrally formed on the end surface of the rotation shaft 851 on the side where the recess 852a is provided. However, they are not necessarily integrated, and may be formed separately and bonded by adhesion, welding, or other mechanical methods.
  • the holding projection 862 of the claw member 859 is inserted into the recess 852a of the rotating shaft 851 through the gap 857a between the holding members 857 of the tip member 855, and the connecting piece 861 of the claw member 859 is inserted into the gap 857a of the tip member 855. Be placed. Then, the pin 865 is passed through the long hole 852d of the rotation shaft 851 and the hole 862a of the holding projection 862, and the claw member 859 is connected to the rotation shaft 851.
  • the axes of the respective parts of the bearing member 740 and the shaft member 850 are arranged to coincide with each other.
  • FIG. 69 shows a cross-sectional view along the axis in one posture of the end member 830 of this embodiment.
  • the rotation shaft elastic member 763 is configured to protrude most from the bearing member 740 as far as the entire shaft member 850 is possible.
  • the end member 830 is in this posture.
  • the connecting piece 861 of the pawl member 859 is disposed inside the gap 857a of the tip member 855, the engaging claw of the claw member 859 as shown in C 69a in FIG. 69
  • the claw member 859 is caught by the holding member 857 of the tip member 855, or the pin 865 is caught by the side surface of the hole 862a, and the rotational force is transmitted. It can be set appropriately according to which aspect the rotational force is transmitted.
  • This rotational force is transmitted to the rotational shaft 851, and further, the rotational force is transmitted to the bearing member 740 by the protrusion 753 of the rotational shaft 851 pressing the wall of the slit 748 a.
  • the entire end member 830 is rotated by the rotational force received by the engaging claw 860. Further, as indicated by arrow C 69b in FIG. 69, the pressing force toward the bearing member 740 side in the axial direction with the pawl member 859 acts, is pressing force transmitted to the tip member 855, the rotation shaft 851, The entire shaft member 850 moves against the urging force of the rotating shaft elastic member 763 in the direction of being pushed into the bearing member 740 as shown by C69c in FIG.
  • FIG. 70 the vicinity of the rotational force transmitting member 854 is shown enlarged.
  • 70A is a view from the same viewpoint as FIG. 68A
  • FIG. 70B is a view from the same viewpoint as FIG. 68B.
  • the claw member 859 holds the basic posture shown in FIGS. 70A and 70B when an external force is not applied by the claw member elastic member 764.
  • the pin 865 can be swung around the pin 865 as shown by an arrow C 70a in FIG. 70A against the elastic force of the claw member elastic member 764.
  • the claw member 859 is subjected to an external force other than the swinging around the pin 865 as shown by an arrow C 70c in FIG.
  • the claw member elastic member 764 is in the form of a compression spring, but is not limited thereto, and may be in the form of a tension spring.
  • the end member 830 can swing and move in the same manner as the above-described end member 730, so that the end member 830 operates in the same manner as the end member 730 and exhibits its effect.
  • the surfaces 857b and 857d forming the gap 857a in the holding member 857 are inclined surfaces (tapered surfaces) as described above, the swinging of the claw member 859 shown in FIG. It is done smoothly.
  • the drive shaft 70 of the apparatus main body 2 is engaged with the shaft member 850, the tip of the shaft portion of the drive shaft 70 slides on the surfaces 857b and 857d when the drive shaft 70 is detached, and the shaft member 850 is moved. Since a component force that presses the shaft member in the axial direction is generated, the shaft member 850 can be moved in the axial direction in the direction indicated by the arrow C69c in FIG. As a result, the drive shaft 70 can be smoothly detached.
  • FIG. 71 shows a diagram for explaining the tenth embodiment.
  • FIG. 71 is a view from the same viewpoint as FIG. 65, and shows an external perspective view of the rotation shaft 851 and the tip member 955 disposed on the rotation shaft 851.
  • This embodiment is an example in which a tip member 955 is applied instead of the tip member 855 of the end member 830 already described. Therefore, here, the form of the tip member 955 will be described. Since the other parts have the same form, the same reference numerals are given and description thereof is omitted.
  • the tip member 955 in this embodiment is configured to include two holding members 957 arranged on the end surface of the main body 852 of the rotating shaft 851 on the recess 852a side.
  • the holding member 957 is two members disposed on the end surface on the concave portion 852a side of the main body 852 of the rotation shaft 851, and is disposed with a predetermined gap 957a across the axis of the main body 852 of the rotation shaft 851. . Therefore, the concave portion 852a of the main body 852 communicates with the inside and the outside through the gap 957a.
  • the surfaces 957b and 957d forming the wall surface of the gap 957a in the holding member 957 are inclined surfaces (taper surfaces) so as to be separated from each other as the distance from the rotation shaft 851 increases.
  • the surface 957b is a flat surface disposed at both ends in the extending direction of the gap 957a
  • the surface 957d is a curved surface disposed between the two surfaces 957b. It is.
  • the surface 957d is configured to have a larger area than the surface 857d provided on the tip member 855 of the ninth embodiment described above.
  • a side surface of the holding member 957 other than the surface forming the gap 957a is formed with an inclined surface 957c (tapered surface) so as to approach the axis of the rotation shaft 851 as the distance from the rotation shaft 851 increases.
  • the inclined surface 957c functions in the same manner as the inclined surface 757b of the holding member 757 already described.
  • the end member provided with the tip member 955 as described above also acts in the same manner as the end member 830.
  • FIG. 72 is a view from the same viewpoint as FIG. 72 (a) is a perspective view of the claw member 1059
  • FIG. 72 (b) is a front view of the claw member 1059
  • FIG. 72 (c) is a cross-sectional view taken along C 72c -C 72c in FIG. 72 (b).
  • FIG. 73 shows a sectional view of the shaft member 1050.
  • 73A is a cross-sectional view along the axial direction of the shaft member 1050 in a direction orthogonal to the axis of the pin 865, and FIG.
  • FIG. 73B is along the axial direction of the shaft member 1050 in the direction along the axis of the pin 865.
  • the shaft member 1050 is not suitable for the rotation shaft 851, the tip member 955, the claw member 1059, the claw member elastic member 764, and the rotation shaft elastic member 763 (FIGS. 73A and 73B). It has a pin 865.
  • the configuration other than the claw member 1059 is the same as that already described, and therefore the same reference numerals are given and description thereof is omitted.
  • the claw member 1059 has two engagement claws 860, and has a connecting piece 861 that connects one ends of the two engagement claws 860. Further, a holding projection 1062 is provided at a position on the opposite side of the connecting piece 861 from the two engaging claws 860 and at the center between the two engaging claws.
  • the engaging claw 860 and the connecting piece 861 are the same as the claw member 859, the same reference numerals are given here and the description thereof is omitted.
  • the holding protrusion 1062 is a protrusion that is disposed on the surface of the connecting piece 861 opposite to the engaging claw 860 and at the center between the two engaging claws 860.
  • the holding protrusion 1062 of this embodiment is a plate-like member obtained by cutting a sphere so as to have the same thickness as the connecting piece 861. Accordingly, the circular outer periphery of the holding projection 1062 is a part of a spherical surface.
  • the width of the holding projection 1062 (the outer diameter of the holding projection 1062) indicated by E in FIG. 72B is substantially the same as or slightly smaller than the diameter of the recess 152a of the rotating shaft 851.
  • the holding projection 1062 is fixed to one end of the claw member elastic member 764.
  • the fixing method is not particularly limited. For example, a hole or a groove for fixing the claw member elastic member 764 may be provided in the holding protrusion 1062, and the end of the holding protrusion 1062 may be fixed here.
  • the holding projection 1062 is provided with a hole 1062a that penetrates the holding projection 1062 in a direction orthogonal to the direction in which the two engaging claws 860 are arranged.
  • a pin 865 passes through the hole 1062a.
  • the shape of the hole 1062a in the penetration direction is shown in FIG. 72 (c). As can be seen from this figure, the hole 1062a is narrowest at the center in the penetration direction, and has an inclined (taper) shape so that the hole expands toward the both ends in the penetration direction over the entire circumference of the hole 1062a. ing. As a result, the claw member 1059 is smoothly swung.
  • the shaft member 1050 having the claw member 1059 as described above is configured as follows.
  • the shaft member 1050 is combined with the bearing member 740 to form an end member of this embodiment.
  • the size and structure of each member and part, the relationship between the size of the member and part, and the like are further understood.
  • the claw member elastic member 764 is disposed inside the recess 852 a of the main body 852 of the rotation shaft 851. At this time, one end of the claw member elastic member 764 is fixed to the bottom of the recess 852a.
  • the holding projection 1062 of the claw member 1059 is inserted into the recess 852a of the rotating shaft 851 through the gap 957a between the holding members 857 of the tip member 855, and the connecting piece 861 of the claw member 1059 is inserted into the gap 957a of the tip member 956. Be placed.
  • the pin 865 is passed through the hole 852 d (preferably a circular hole instead of a long hole in this embodiment) of the rotation shaft 851 and the hole 1062 a of the holding projection 1062 to connect the claw member 1059 to the rotation shaft 851.
  • the holding projection 1062 is fixed to the end of the claw member elastic member 764.
  • the claw member elastic member 764 may be either a compression spring or a tension spring. In this embodiment, a state of a compression spring is shown. However, it is preferable to use a tension spring because the tension spring is easier to maintain the claw member 1059 in the basic posture (the posture shown in FIGS. 73 (a) and 73 (b)).
  • the axis lines of the respective parts of the bearing member 740 and the shaft member 1050 are arranged to coincide with each other.
  • the claw member 1059 can be swung, and acts in the same manner as the end members of the above-described embodiments.
  • the holding projection 1062 makes it difficult for the holding projection 1062 to move in the recess 852 a of the rotation shaft 851, so that the claw member 1059 is perpendicular to the axis of the rotation shaft 851. The movement to is restricted and it becomes easy to maintain the basic posture. Since the outer peripheral surface of the holding projection 1062 is formed by a part of a spherical surface, the swinging is performed smoothly.
  • FIG. 74 shows a diagram for explaining the twelfth embodiment.
  • 74A is a perspective view of the shaft member 1150 of the end member 1130 (see FIG. 79) included in the twelfth embodiment
  • FIG. 74B is an exploded perspective view of the shaft member 1150.
  • the end member 1130 included in this embodiment is an example in which the bearing member 740 has the same form as the end member 730 already described, and the shaft member 1150 is applied instead of the shaft member 750. Accordingly, the configuration of the bearing member 740 is denoted by the same reference numeral and description thereof is omitted.
  • the shaft member 1150 will be described.
  • the shaft member 1150 includes a rotating shaft 1151 and a rotational force transmitting member 1154.
  • the rotational force transmitting member 1154 includes a tip member 1155, a claw member, and the like. 1159.
  • the shaft member 1150 includes a rotating shaft elastic member 763, a claw member elastic member 1164, and a pin 1165.
  • the rotating shaft elastic member 763 and the claw member elastic member 1164 of this embodiment are both string springs.
  • the rotation shaft 1151 is a shaft-shaped member that transmits the rotational force received by the rotational force transmission member 1154 to the bearing member 740.
  • 75 is a perspective view of the rotating shaft 1151
  • FIG. 76A is a plan view from the side of the rotating shaft 1151 where the tip member 1155 is disposed
  • FIG. 76B is a plan view of FIG. 76b is a cross-sectional view along the axial direction including the line indicated by C 76b
  • FIG. 76C is a cross-sectional view along the axial direction including the line indicated by C 76c -C 76c in FIG. 76A. Shown respectively.
  • the tip member 1155 is integrally disposed at one end of the rotating shaft 1151, and therefore the tip member 1155 also appears in these drawings.
  • the rotation shaft 1151 has a cylindrical main body 1152.
  • three spaces 1151a, 1151b, 1151d having different inner diameters are arranged in the axial direction inside the cylinder.
  • a space 1151a is provided at the end of the main body 1152 on the side where the tip member 1155 is disposed, and a space 1151d is provided at the end on the opposite side, and the space 1151b is disposed through the space 1151a.
  • the space 1151a includes an undercut portion 1151e that is a portion inclined in a direction in which the opening is slightly narrowed in the opening portion on the end face side of the rotating shaft 1151.
  • the undercut portion 1151e functions as a so-called snap-fit convex portion formed so that a holding protrusion 1162 (see FIG.
  • the opening of the space 1151a is formed to be narrower than the diameter of the holding projection 1162.
  • the undercut portion 1151e is formed by an inclined surface.
  • a protrusion may be protruded.
  • Two protrusions 753 are arranged at the end of the outer periphery of the main body 1152 on the side where the space 1151d is arranged.
  • the two protrusions 753 are the same as the protrusions 753 provided on the main body 752 of the end member 730 already described.
  • the slit 1151c extends in the axial direction between the two protrusions 753 at the end where the space 1151d is disposed and communicates with the inside and outside of the main body 1152. Is provided. One end of the slit 1151c in the direction in which the slit extends extends from the end surface of the main body 1152, and the end opposite to the opening reaches the middle of the space 1151b.
  • the tip member 1155 is one member constituting the rotational force transmission member 1154 and is a member that transmits the rotational force from the claw member 1159 to the rotation shaft 1151.
  • the shape of the tip member 1155 appears in FIGS. 75 and 76 (a) to 76 (c).
  • the tip member 1155 in this embodiment is provided on the end surface of the rotating shaft 1151 on the side where the space 1151a of the main body 1152 is disposed.
  • the two holding members 1157 are provided.
  • the holding member 1157 is two members provided on the end surface of the rotating shaft 1151 on the side where the space 1151a of the main body 1152 is disposed, and has a predetermined gap 1157a across the axis of the main body 1152 of the rotating shaft 1151. Are arranged. Accordingly, the space 1151a of the main body 1152 communicates with the inside and outside through the gap 1157a.
  • the surfaces 1157b and 1157d forming the wall surface of the gap 1157a of the holding member 1157 are inclined surfaces (taper surfaces) so as to be separated from each other as the distance from the rotation shaft 1151 increases.
  • the surface 1157b is a flat surface disposed at both ends in the extending direction of the gap 1157a
  • the surface 1157d is a curved surface disposed between the two surfaces 1157b. It is.
  • the surface 1157d is formed to be large like the holding member 957 (see FIG. 71) already described. Since the surfaces 1157b and 1157d are inclined as described above, the swinging of the claw member 1159 is difficult to be inhibited as will be described later (see FIG.
  • side surfaces of the holding member 1157 other than the surface forming the gap 1157a are formed with inclined surfaces (tapered surfaces) 1157c so as to approach the axis of the rotating shaft 1151 as the distance from the rotating shaft 1151 increases.
  • This inclined surface 1157c acts in the same manner as the inclined surface 757b of the holding member 757 already described.
  • the claw member 1159 is one member that constitutes the rotational force transmission member 1154, and is a member that engages with the drive shaft 70 provided in the apparatus main body 2 and transmits the rotational force to the tip member 1155.
  • FIG. 77 shows a diagram for explanation. 77 (a) is a perspective view of the claw member 1159, FIG. 77 (b) is another perspective view of the claw member 1159 viewed from the side opposite to FIG. 77 (a), and FIG. 77 (c) is a view of the claw member 1159. It is a front view.
  • the claw member 1159 has two engaging claws 1160 and has a connecting piece 1161 that connects one ends of the two engaging claws 1160. Further, a holding projection 1162 is provided at a position on the opposite side of the connecting piece 1161 from the two engaging claws 1160 and at the center between the two engaging claws.
  • the two engaging claws 1160 are members standing in the same direction from both ends of the connecting piece 1161.
  • the distance between the two engaging claws 1160 is the distance between the leading end of the shaft portion of the drive shaft 70.
  • 70 driving projections 71 are formed so as to be caught by the engaging claws 1160.
  • the two engaging claws 1160 are formed so as to become narrower as the distance from the connecting piece 1161 increases, as can be seen from FIG. 77 (c).
  • the opposing surface of the two engaging claws 1160 includes a concave portion 1159 a including the surface of the connecting piece 1161.
  • the opposing surfaces of the two engaging claws 1160 are formed so as to be inclined (tapered) so as to be separated from the connecting piece 1161.
  • the surface opposite to the recess 1159a is an inclined surface 1160a so as to approach each other as the distance from the connecting piece 1161 increases.
  • the inclined surface 1160a acts in the same manner as the inclined surface 760a of the engaging claw 760 already described.
  • the holding protrusion 1162 is a protrusion that is disposed on the surface of the connecting piece 1161 opposite to the engaging claw 1160 and at the center between the two engaging claws 1160.
  • the holding protrusion 1162 is a spherical member.
  • the holding projection 1162 has a hole 1162a at a portion opposite to the side where the connecting piece 1161 is disposed.
  • the claw member elastic member 1164 is fixed to the hole 1162a.
  • the claw member 1159 has a size (thickness) of the connecting piece 1161 indicated by F in FIG. 77A from the viewpoint that the connecting piece 1161 is disposed inside the gap 1157a of the tip member 1155 and swings. ) Is formed smaller than the width of the narrowest portion of the gap 1157a.
  • the holding protrusion 1162 has a spherical diameter smaller than the gap 1157a and is substantially the same as or slightly smaller than the inner diameter of the space 1151a formed in the main body 1152 of the rotating shaft 1151.
  • the undercut portion 1151e (or projection) is formed in the opening portion on the side where the holding projection 1162 is inserted in the space 1151a of the rotating shaft 1151, and functions as a retaining. Accordingly, the spherical diameter of the holding projection 1162 is formed to be larger than the opening in which the undercut portion 1151e is formed.
  • the bearing member 740 and the shaft member 1150 as described above are combined as follows to form an end member 1130 (see FIG. 79).
  • the size and structure of each member and part, the relationship between the size of the member and part, and the like are further understood.
  • the combination of the bearing member 740 and the rotating shaft 1151 is the same as the example of the end member 730, the description is omitted.
  • FIG. 78 shows a diagram for explanation.
  • 78A is a cross-sectional view taken along the axis of the shaft member 1150 in the direction in which the engaging claws 1160 are arranged
  • FIG. 78B is a cross-sectional view taken along the axis of the shaft member 1150 in a direction orthogonal to the shaft member 1150.
  • the claw member elastic member 1164 is disposed in the space 1151b of the main body 1152 of the rotating shaft 1151 in this embodiment. Is done. At this time, a pin 1165 is attached to the end portion on the space 1151d side of the claw member elastic member 1164, and the pin 1165 is formed at a step formed by the space 1151b and the space 1151d in the main body 1152. Get caught. As a result, the claw member elastic member 1164 is held inside the main body 1152.
  • the claw member elastic member 1164 When attaching the end of the claw member elastic member 1164 and the pin 1165, an instrument is inserted from the slit 1151c into the inside of the main body 1152 in order to appropriately fix the end of the claw member elastic member 1164 to the pin 1165.
  • the claw member elastic member 1164 may be either a compression spring or a tension spring, but in this embodiment, the state of the tension spring is shown. Since the tension spring is easier to maintain the claw member 1159 in the basic posture (the posture shown in FIGS. 78 (a) and 78 (b)), it is preferable to use the tension spring.
  • a claw member 1159 is inserted from the side of the main body 1152 of the rotating shaft 1151 where the tip member 1155 is disposed. That is, the holding protrusion 1162 of the claw member 1159 is inserted into the space 1151a of the rotating shaft 1151 through the gap 1157a between the holding members 1157 of the tip member 1155, and the connecting piece 1161 of the claw member 1159 is in the gap 1157a of the tip member 1155. Be placed.
  • the holding projection 1162 of the claw member 1159 is fixed to one end of the claw member elastic member 1164 through a hole 1162a provided here.
  • the holding protrusion 1162 is disposed in the space 1151a by slightly pushing the claw member 1159.
  • the holding projection 1162 enters the space 1151a, the holding projection 1162 cannot be removed from the space 1151a under normal use by the undercut portion 1151e.
  • the axis lines of the respective parts of the bearing member 740 and the shaft member 1150 are aligned with each other.
  • FIG. 79 shows a sectional view in the direction along the axis in one posture of the end member 1130 of this embodiment.
  • the shaft member 1150 protrudes from the bearing member 740 as far as possible by the urging force of the rotating shaft elastic member 763.
  • the end member 1130 is in this posture.
  • the pressing force acts toward the bearing member 740 side in the axial direction the pawl member 1159, the pawl member 1159 presses the tip member 1155, further it is rotated
  • the entire shaft member 1150 is transmitted to the shaft 1151 and moves in a direction to be pushed into the bearing member 740 as shown by an arrow C 79c in FIG. 79 against the urging force of the rotating shaft elastic member 763.
  • FIG. 80 the periphery of the rotational force transmission member 1154 is shown in an enlarged manner.
  • 80A is a view from the same viewpoint as FIG. 78A
  • FIG. 80B is a view from the same viewpoint as FIG. 78B.
  • the claw member 1159 holds the basic posture shown in FIGS. 80A and 80B when an external force is not applied by the claw member elastic member 1164.
  • an external force when an external force is applied, it swings around the holding protrusion 1162 that is spherical as shown by the arrow C 80a in FIG. be able to.
  • the holding protrusion 1162 is spherical and the diameter of the holding protrusion 1162 is substantially the same as the inner diameter of the space 1151a in which the holding protrusion 1162 is disposed, the backlash is suppressed and smooth swinging is achieved. Is possible.
  • the claw member 1159 receives the external force and resists the elastic force of the claw member elastic member 1164, as shown by the arrow C 80c in FIG. It can be swung in all directions other than rocking.
  • the holding projection 1162 is spherical and the diameter of the holding projection 1162 is substantially the same as the inner diameter of the space 1151a in which the holding projection 1162 is disposed. Is possible. Accordingly, the claw member 1159 can swing in all directions with respect to the axis.
  • the end member 1130 can swing and move in the same manner as the end member 730 already described. Therefore, the end member 1130 operates in the same manner as the end member 730 and exhibits its effect.
  • the holding protrusion 1162 is formed in a spherical shape, the backlash can be suppressed and can be smoothly swung.
  • FIG. 81 shows a diagram for explaining the thirteenth embodiment.
  • 81A is a perspective view of the shaft member 1250 of the end member 1230 (see FIG. 85) included in the thirteenth embodiment
  • FIG. 81B is an exploded perspective view of the shaft member 1250.
  • the end member 1230 included in this embodiment is an example in which the bearing member 740 has the same form as the end member 730 already described, and the shaft member 1250 is applied instead of the shaft member 750. Accordingly, the configuration of the bearing member 740 is denoted by the same reference numeral and description thereof is omitted.
  • the shaft member 1250 will be described.
  • the shaft member 1250 includes a rotating shaft 1251 and a rotational force transmitting member 1254.
  • the rotational force transmitting member 1254 is formed by a claw member 1259. It is configured.
  • the shaft member 1250 includes a rotating shaft elastic member 763, a claw member elastic member 1164, and a pin 1165.
  • the rotating shaft elastic member 763, the claw member elastic member 1164, and the pin 1165 are the same as the shaft member 1150 described in the twelfth embodiment.
  • the rotation shaft 1251 is a shaft-shaped member that transmits the rotational force received by the rotational force transmission member 1254 to the bearing member 740.
  • 82 (a) is a perspective view of the rotating shaft 1251
  • FIG. 82 (b) is a plan view of the rotating shaft 1151 as viewed from the side where the claw member 1259 is disposed
  • FIG. ) Shows sectional views along the axial direction including the line indicated by C 82c -C 82c .
  • the rotation shaft 1251 has a cylindrical main body 1252. And inside the cylinder, as shown in FIG. 82 (c), three spaces 1251a, 1251b, 1251d having different inner diameters are arranged in the axial direction.
  • a space 1251a is provided at the end of the main body 1252 on the side where the claw member 1259 is disposed, and a space 1251d is provided at the opposite end, and a space 1251b is disposed so as to pass through both.
  • the space 1251a has an undercut portion 1251e which is a portion inclined in a direction in which the opening is slightly narrowed in the opening on the end surface side of the rotating shaft 1251. It has.
  • the undercut portion 1251e functions as a so-called snap-fit convex portion that is formed so that a spherical holding projection 1262 (see FIG.
  • the opening of the space 1251a is formed to be narrower than the diameter of the holding protrusion 1262.
  • the undercut portion 1251e is formed by an inclined surface, but a protrusion may be protruded instead.
  • Two protrusions 753 are arranged at the end of the outer side of the main body 1252 on the side where the space 1251d is arranged.
  • the two protrusions 753 are the same as the protrusions 753 provided on the main body 752 of the end member 730 already described.
  • slits that extend in the axial direction between the two protrusions 753 and communicate with the inside and outside of the main body 1252 at the end where the space 1251 d is disposed. 1251c is provided.
  • One end of the slit 1251c in the direction in which the slit extends extends from the end surface of the main body 1252, and the end opposite to the opening reaches partway in the space 1251b.
  • two slits 1251f are arranged at the end of the cylindrical wall portion of the main body 1252 on the side where the space 1251a is arranged so as to face each other across the axis.
  • the slit 1251f extends in the axial direction of the main body 1252, and communicates with the inside and outside of the main body 1252. In the direction in which the slit 1251f extends, one end opens at the end surface of the main body 1252, and the end opposite to the opening Substantially reaches the end of the space 1251a in the axial direction.
  • FIG. 83 shows a diagram for explanation.
  • 83 (a) is a perspective view of the claw member 1259
  • FIG. 83 (b) is another perspective view of the claw member 1259 viewed from the side opposite to FIG. 83 (a)
  • FIG. 83 (c) is a front view of the claw member 1259.
  • the claw member 1259 has two engagement claws 1260 and is provided with a disk-shaped coupling piece 1261 that couples one ends of the two engagement claws 1260. Further, a holding projection 1262 is provided at the center of the connecting piece 1261 having a disc shape on the opposite side of the connecting piece 1261 from the engaging claw 1260.
  • the two engaging claws 1260 are members erected in the same direction from the edge of one surface of the coupling piece 1261 having a disk shape, and form a wall curved in an arc shape. Accordingly, a container-shaped recess 1259a is formed that is surrounded by the connecting piece 1261 as a bottom and the two engaging claws 1260 as a wall. A gap 1259b is formed between the ends of the two engaging claws 1260.
  • the recess 1259a has a shape in which the tip of the shaft portion of the drive shaft 70 is inserted, and the drive protrusion 71 of the drive shaft 70 can be disposed in the gap 1259b.
  • the two engaging claws 1260 are inclined so that the surface (inner surface) on the recess 1259a side is separated from the connecting piece 1261 and the diameter increases as the distance from the connecting piece 1261 increases. It is formed to become.
  • the outer peripheral surface opposite to the concave portion 1259a is an inclined surface 1260a so as to approach each other as the distance from the connecting piece 1261 increases. This inclined surface 1260a acts in the same manner as the inclined surface 760a of the engaging claw 760 already described.
  • the holding protrusion 1262 is a protrusion disposed on the surface of the connecting piece 1261 opposite to the engaging claw 1260 and at the center of the disk-like connecting piece 1261.
  • the holding protrusion 1262 is a spherical member.
  • Two restricting protrusions 1263 protrude from the surface of the holding protrusion 1262 on one diameter of the sphere of the holding protrusions 1262.
  • the diameter of the sphere in which the restricting protrusion 1263 is arranged is perpendicular to the axis of the end member 1230 and parallel to the direction in which the two gaps 1259b are arranged (this embodiment) or perpendicular to the direction in which the gaps 1259b are arranged. preferable.
  • the restricting protrusion 1263 is disposed inside the slit 1251f of the rotating shaft 1251 described above.
  • a hole 1262a is formed in the holding projection 1262 at a portion opposite to the side where the connecting piece 1261 is disposed.
  • the claw member elastic member 1264 is fixed to the hole 1262a.
  • the holding projection 1262 of the claw member 1259 has a spherical diameter that is substantially the same as or slightly smaller than the inner diameter of the space 1251a formed in the main body 1252 of the rotating shaft 1251.
  • the undercut portion 1251e (or projection) is formed in the opening portion on the side where the holding projection 1262 is inserted in the space 1251a of the rotating shaft 1251, and functions as a retaining. Therefore, the spherical diameter of the holding projection 1262 is formed to be larger than the opening in which the undercut portion 1251e is formed.
  • the bearing member 740 and the shaft member 1250 as described above are combined into the end member 1230 as follows.
  • the size and structure of each member and part, the relationship between the size of the member and part, and the like are further understood.
  • the combination of the bearing member 740 and the rotating shaft 1251 is the same as the example of the end member 730 already described, the description thereof is omitted.
  • FIG. 84 shows a diagram for explanation.
  • 84A is a cross section orthogonal to the diameter direction of the holding protrusion 1262 including the two restricting protrusions 1263, and is a cross sectional view along the axis of the shaft member 1250 in the direction in which the engaging claws 1260 are arranged
  • FIG. 10 is a cross-sectional view along the diameter direction of the holding protrusion 1262 including two restricting protrusions 1263 and along the axis line of the shaft member 1250 in the direction in which the gap 1259b is aligned.
  • the claw member elastic member 1164 is disposed in the space 1251b of the main body 1252 of the rotating shaft 1251. Is done. At this time, a pin 1165 is attached to an end of the claw member elastic member 1164 on the space 1251d side, and the pin 1165 is caught by a step formed by the space 1151b and the space 1151d in the main body 1252. Accordingly, the claw member elastic member 1164 is held inside the main body 1252.
  • the claw member elastic member 1164 may be either a compression spring or a tension spring.
  • an aspect of a tension spring is shown. Since the tension spring is easier to maintain the claw member 1259 in the basic posture (the posture shown in FIGS. 84A and 84B), it is preferable to use the tension spring.
  • a claw member 1259 is inserted from the side of the main body 1252 of the rotating shaft 1251 where the space 1251a is disposed. That is, the holding projection 1262 of the claw member 1259 is inserted into the space 1251a of the rotation shaft 1251. At this time, the restricting protrusion 1263 is disposed inside the slit 1251 f of the main body 1252.
  • the holding protrusion 1162 of the claw member 1259 is fixed to one end of the claw member elastic member 1164 through a hole 1262a provided here.
  • the undercut portion 1251e is formed in the opening portion of the space 1251a, the holding protrusion 1262 is disposed in the space 1251a by pushing the claw member 1259 slightly. When the holding projection 1162 enters the space 1251a, the holding projection 1262 cannot be removed from the space 1251a by normal use due to the undercut portion 1251e.
  • the axial lines of the respective parts of the bearing member 740 and the shaft member 1250 are arranged to coincide with each other.
  • FIG. 85 shows a cross-sectional view in the direction along the axis in one posture of the end member 1230 of this embodiment.
  • the entire shaft member 1250 is projected from the bearing member 740 as much as possible by the biasing force of the rotating shaft elastic member 763.
  • the end member 1230 is in this basic posture.
  • FIG. 86 is an enlarged view of the vicinity of the rotational force transmission member 1254.
  • 86A is a view from the same viewpoint as FIG. 84A
  • FIG. 86B is a view from the same viewpoint as FIG. 84B.
  • the claw member 1259 holds the basic posture shown in FIGS. 86 (a) and 86 (b) when an external force is not applied by the claw member elastic member 1164.
  • the claw member 1259 is centered on the axis of the restricting projection 1263 as shown by the arrow C 86a in FIG. 86A against the elastic force of the claw member elastic member 1164.
  • the restricting projection 1263 is disposed in the slit of the rotating shaft 1251, rattling is suppressed and smooth swinging is possible. Further, the claw member 1259 is restricted around the spherical holding projection 1262 as indicated by an arrow C 86b in FIG. 86 (b) against the elastic force of the claw member elastic member 1164 due to external force.
  • the protrusion 1263 can also oscillate in the plane in which the protrusion 1263 moves in the slit 1251f.
  • the holding protrusion 1262 is spherical, and the diameter of the holding protrusion 1262 is formed to be substantially the same as the inner diameter of the space 1251a in which the holding protrusion 1262 is disposed. Is possible. Accordingly, the claw member 1259 can swing in all directions.
  • FIG. 87 is an exploded perspective view of the end member 1330 included in the fourteenth embodiment
  • FIG. 88 is an exploded cross-sectional view along the axis of the end member 1330.
  • the end member 1330 includes a bearing member 1340 and a shaft member 1350.
  • the bearing member 1340 is a member that is joined to the end of the photosensitive drum 11 in the end member 1330.
  • FIG. 89 shows a perspective view of the main body 1341 of the bearing member 1340.
  • FIG. 88 shows a sectional view in the axial direction of the bearing member 1340.
  • the bearing member 1340 has a main body 1341 and a rotating shaft holding member 1346. As can be seen from FIGS. 87 to 89, the main body 1341 has a cylindrical body 741, a fitting portion 743, a gear portion 744, and a shaft member holding portion. A portion 1345 is provided.
  • the shaft member holding portion 1345 is a portion that is formed inside the cylindrical body 741 and has a function of holding the shaft member 1350 on the bearing member 1340. As can be seen from FIGS. 87 and 88, the shaft member holding portion 1345 includes a rotation shaft holding member 1346, a support member 1347, and a guide wall 1348.
  • the rotating shaft holding member 1346 is a plate-like member formed so as to close the inside of the cylindrical body 741, but is formed in a lid shape that can be attached to and detached from the main body 1341 in this embodiment.
  • FIG. 90 (a) shows one perspective view of the rotating shaft holding member 1346
  • FIG. 90 (b) shows a perspective view seen from the surface side opposite to FIG. 90 (a).
  • the rotation shaft holding member 1346 is formed with a hole 1346 a so as to be coaxial with the axis of the cylindrical body 741 in a posture attached to the main body 1341. As will be described later, the hole 1346a has a size and a shape that allow the rotation shaft 1351 to pass therethrough.
  • the hole 1346a is formed so that it can penetrate the main body 1352 of the pivot shaft 1351, but cannot penetrate the portion where the projection 1353 is disposed. . Further, from the viewpoint of stable movement of the rotation shaft 1351, the hole 1346a has substantially the same shape and size as the outer periphery of the main body 1352 of the rotation shaft 1351 within a range that does not greatly hinder the movement of the rotation shaft 1351 in the axial direction. It is preferable.
  • the rotating shaft holding member 1346 is detachable from the main body 1341, and thus has a claw 1346b that engages with the main body 1341.
  • the mode for attaching the rotating shaft holding member to the main body is not limited to this, and adhesion by an adhesive or fusion by heat or ultrasonic waves can also be applied.
  • the support member 1347 is a plate-like member that is provided closer to the fitting portion 743 than the rotation shaft holding member 1346 and is formed so as to close at least a part of the inside of the cylindrical body 741.
  • the support member 1347 is formed in a size and shape that can support at least a rotating shaft elastic member 763 described later.
  • the support member 1347 is formed with a hole 1347a through which the elastic member holding projection 1353a provided on the rotation shaft 1351 passes.
  • the guide wall 1348 is a cylindrical member that extends in parallel to the axial direction of the cylindrical body 741 from the support member 1347 to the side opposite to the fitting portion 743.
  • the cross-sectional shape of the space 1348a formed on the inner side surrounded by the guide wall 1348 is substantially a triangle (the apex is rounded in an arc shape) as can be seen from FIG. It has substantially the same shape as the protrusion 1353 of 1351. Therefore, the space 1348a surrounded by the guide wall 1348 has a triangular prism shape with the direction along the axis of the bearing member 1340 as the height direction.
  • the material which comprises the bearing member 1340 is not specifically limited, The material similar to the above-mentioned bearing member 740 is applicable.
  • the shaft member 1350 of the end member 1330 will be described.
  • the shaft member 1350 includes a rotating shaft 1351 and a rotational force transmission member 1354, and the rotational force transmission member 1354 includes a tip member 1355 and a claw member 1359.
  • the tip member 1355 and the claw member 1359 are integrally formed.
  • the shaft member 1350 includes a rotating shaft elastic member 763 and a claw member elastic member 764.
  • the rotating shaft elastic member 763 and the claw member elastic member 764 of this embodiment are both string springs. Each will be described below.
  • the rotation shaft 1351 is a shaft-shaped member that transmits the rotational force received by the rotational force transmission member 1354 to the bearing member 1340.
  • Perspective view of a pivot shaft 1351 in FIG. 91 (a) a plan view of the rotating shaft as viewed from the direction indicated by L 1 in FIG. 91 (a) are shown respectively in FIG. 91 (b).
  • FIG. 88 shows a sectional view in the axial direction of the rotating shaft 1351.
  • the rotating shaft 1351 has a cylindrical main body 1352, and one end of the cylindrical wall portion in the direction along the axis.
  • Two notches 1352a having a predetermined width are provided in the direction along the axis from the portion. 1352a notch in this embodiment are rectangular in side view, the width is the size of a central angle of 90 ° in plan view as shown by L 2 in FIG. 91 (b). Therefore, in this embodiment, two notches 1352a having a center angle of 90 ° and a width are provided so as to face each other across the axis. Also shown in L 3 in FIG.
  • the direction of a magnitude along the axis of the cutout 1352a in this embodiment is roughly half the length of the direction along the axis of the body 1352.
  • a convex portion 1352b which is the remaining wall portion of the main body 1352 is formed between the two notches 1352a.
  • One end side of a claw member elastic member 764 is inserted into the cylindrical inside of the main body 1352.
  • a protrusion 1353 is disposed at the end of the main body 1352 opposite to the end where the notch 1352a and the convex portion 1352b are formed. As can be seen from FIG. 91 (b) in particular, the protrusion 1353 forms a portion that protrudes outward from the main body 1352 in a plan view of the rotation shaft 1351.
  • the projection 1353 is a plate-like member having a substantially triangular shape (the apex is rounded with an arc R), which is substantially the same as the cross section of the space 1348a surrounded by the guide wall 1348 of the bearing member 1340 described above. (See FIG. 89).
  • the protrusion 1353 is disposed in the space surrounded by the guide wall 1348, the protrusion 1353 can be moved in the direction along the axis of the rotation shaft 1351, and can be rotated with respect to the rotation around the axis. A rotational force is transmitted from the moving shaft 1351 to the bearing member 1340.
  • a columnar elastic member holding projection 1353a extends on the surface of the projection 1353 opposite to the side where the main body 1352 is disposed.
  • the elastic member holding projection 1353a passes through the inside of the rotating shaft elastic member 763, and the tip thereof is passed through the hole 1347a of the support member 1347. Thereby, the stability of the movement in the direction along the axis of the rotating shaft 1351 is enhanced.
  • the axis of the main body 1352, the position of the center of gravity of the protrusion 1353, and the axis of the elastic member holding protrusion 1353a described above are arranged coaxially.
  • the rotational force transmission member 1354 includes a tip member 1355 and a claw member 1359 that are integrally formed.
  • the tip member 1355 holds the engaging claw 1360 (in this embodiment, the claw member 1359 is composed only of the engaging claw 1360) so as to be swingable, and transmits the rotational force from the engaging claw 1360 to the rotating shaft 1351.
  • FIG. 92A is a perspective view of the rotational force transmitting member 1354
  • FIG. 92B is a bottom view of the rotational force transmitting member 1354 as viewed from the side opposite to the side where the engaging claws 1360 are disposed.
  • FIG. 88 shows a cross-sectional view along the axis of the rotational force transmission member 1354.
  • the tip member 1355 includes a disc-shaped base 1356 and a rotating shaft connecting portion 1357 extending from one surface of the base 1356.
  • the base 1356 has a disc shape, and a concave portion 1356a is provided at the center of the surface of the plate surface opposite to the rotating shaft connecting portion 1357.
  • the tip portion of the drive shaft 70 is disposed in the recess 1356a.
  • an inclined surface 1356b is formed on the outer peripheral surface of the base portion 1356 so that the diameter decreases as the distance from the rotation shaft connecting portion 1357 increases. This inclined surface acts in the same manner as the inclined surface 757b of the holding member 757 described above.
  • the rotating shaft connecting portion 1357 is a cylindrical portion extending from the surface of the base portion 1356 opposite to the concave portion 1356a, and the central axis of the base portion 1356 and the axis of the rotating shaft connecting portion 1357 are formed coaxially. Yes.
  • the rotation shaft connecting portion 1357 is provided with two notches 1357a with a predetermined width in the direction along the axis from the end of the cylindrical wall opposite to the base 1356. 1357a notch in this embodiment are rectangular in side view, the width is the size of a central angle of 90 ° in plan view, as shown in L 5 in FIG. 92 (b).
  • two notches 1357a having a width of 90 ° in the central angle are provided so as to face each other across the axis. Also shown in L 6 in FIG. 92 (a), notch axis in the direction of the size along the 1357a, the size of the cutout 1352a provided in the main body 1352 of the pivot shaft 1351 in this embodiment has been described above ( This is the same as L 3 ) in FIG. As a result, a convex portion 1357b which is the remaining wall portion of the rotation shaft connecting portion 1357 is formed between the two notches 1357a. One end of the claw member elastic member 764 is inserted into the cylindrical inner side of the rotation shaft connecting portion 1357.
  • the convex portion 1352b of the main body 1352 of the rotary shaft 1351 is inserted inside the notch 1357a of the rotary shaft connecting portion 1357, and the convex portion 1357b of the rotary shaft connecting portion 1357 is inserted. Is inserted into a notch 1352a provided in the main body 1352 of the rotating shaft 1351, so that the rotating shaft connecting portion 1357 and the rotating shaft 1351 are connected. It is comprised so that connection is possible.
  • the claw member 1359 is a member that engages with the drive shaft 70 provided in the apparatus main body 2 and transmits the rotational force to the tip member 1355.
  • the claw member 1359 includes two engagement claws 1360, and the engagement claw 1360 is disposed on the surface of the base 1356 of the tip member 1355 on the side opposite to the side where the rotation shaft coupling portion 1357 is disposed. Yes.
  • the two engaging claws 1360 are provided so as to face the outer edge of the surface of the base portion 1356, and the concave portion 1356a provided in the base portion 1356 is positioned between the two engaging claws 1360.
  • the surface of the engaging claw 1360 that is continuous with the inclined surface 1356b of the base 1356 is an inclined surface 660a that is inclined so as to extend the inclined surface 1356b.
  • the inclined surface 1360a acts in the same manner as the inclined surface (outer surface 760a) of the engaging claw 760 described above.
  • the rotating shaft elastic member 763 and the claw member elastic member 764 are so-called elastic members, and in the present embodiment, are constituted by string-wound springs. The arrangement and operation of these members will be described later.
  • each member of the shaft member 1350 is not specifically limited, The material similar to the said shaft member 750 can be used.
  • FIG. 93 shows a cross-sectional view of the shaft member 1350 along the axis.
  • the elastic member holding projection 1353a of the rotation shaft 1351 is passed through the inside of the rotation shaft elastic member 763, and the tip thereof is arranged to penetrate the hole 1347a of the support member 1347. Accordingly, the rotating shaft elastic member 763 is disposed between the protrusion 1353 and the support member 1347, and the rotating shaft 1351 is biased in a direction in which the protrusion 1353 is pressed against the rotating shaft holding member 1346. The stability of movement in the direction along the axis of the rotation shaft 1351 is enhanced by passing the elastic member holding projection 1353a through the hole 1347a. Further, since the protrusion 1353 and the guide wall 1348 are substantially triangular as described above, the protrusion 1353 presses the guide wall 1348 and transmits a rotational force when rotating around the axis of the rotation shaft 1351.
  • one end of the claw member elastic member 764 is inserted and fixed inside the cylindrical inside of the main body 1352 of the rotating shaft 1351.
  • the tip member 1355 is disposed so that the rotation shaft connecting portion 1357 is abutted against the main body 1352 of the rotation shaft 1351.
  • the convex portion 1352b of the main body 1352 of the rotary shaft 1351 described above is inserted inside the notch 1357a of the rotary shaft connecting portion 1357, and the convex portion 1357b of the rotary shaft connecting portion 1357 is the main body of the rotary shaft 1351. It is inserted into a notch 1352 a provided in 1352.
  • the rotation shaft connecting portion 1357 and the rotation shaft 1351 are connected to each other, and a rotational driving force around the axis can be transmitted.
  • the other end of the claw member elastic member 764 is disposed on the cylindrical inner side of the rotation shaft connecting portion 1357 and fixed thereto.
  • the axes of the respective parts of the bearing member 1340 and the shaft member 1350 are arranged in alignment.
  • FIG. 94 shows the posture when the end member 1330 is deformed from the same viewpoint as FIG. 93, the rotation shaft elastic member 763 is configured to protrude most from the bearing member 1340 as far as the entire shaft member 1350 is possible. When no external force is applied to the shaft member 1350, the end member 1330 is in this posture.
  • the end member 1330 can also swing and move in the same manner as the end member 730 already described. Therefore, the end member 1330 operates in the same manner as the end member 730 and exhibits its effect.
  • the return from the posture shown in FIG. 94 to the posture shown in FIG. 93 may be performed manually or by the elastic force of the claw member elastic member 764.
  • FIG. 95 is a perspective view of the end member 1430 included in this embodiment
  • FIG. 96 is an exploded perspective view of the end member 1430. Since configurations other than the end member 1430 can be considered in the same manner as in the first embodiment, the end member 1430 will be described here.
  • the end member 1430 includes a bearing member 1440 and a shaft member 1450.
  • the bearing member 1440 is a member that is joined to the end of the photosensitive drum 11 in the end member 1430.
  • 97A is a perspective view of the bearing member 1440
  • FIG. 97B is a plan view of the bearing member 1440 viewed from the side where the shaft member 1450 is inserted.
  • FIG. 98 (a) is a cross-sectional view taken along the line C 98a -C 98a in FIG. 97 (b)
  • FIG. 98 (b) is a line shown by C 98b -C 98b in FIG. FIG.
  • an end face (cut surface) in a sectional view may be hatched.
  • the bearing member 1440 includes a cylindrical body 1441, a contact wall 1442, a fitting portion 1443, a gear portion 1444, and a shaft member holding portion 1445, as can be seen from FIGS. 95 to 98.
  • the cylindrical body 1441 is a cylindrical member as a whole, a contact wall 1442 and a gear portion 1444 are arranged on the outside thereof, and a shaft member holding portion 1445 is formed on the inside thereof.
  • a contact wall 1442 that comes into contact with and engages with the end surface of the photosensitive drum 11 is provided upright.
  • the insertion depth of the end member 1430 into the photosensitive drum 11 is regulated in a posture in which the end member 1430 is mounted on the photosensitive drum 11.
  • One side of the cylindrical body 1441 with the contact wall 1442 interposed therebetween is a fitting portion 1443 that is inserted into the inside of the photosensitive drum 11.
  • the fitting portion 1443 is inserted inside the photosensitive drum 11 and is fixed to the inner surface of the photosensitive drum 11 with an adhesive.
  • the end member 1430 is fixed to the end of the photosensitive drum 11.
  • the outer diameter of the fitting portion 1443 is substantially the same as the inner diameter of the photoconductive drum 11 as long as it can be inserted inside the cylindrical shape of the photoconductive drum 11.
  • a groove may be formed on the outer peripheral surface of the fitting portion 1443. Thereby, the groove is filled with an adhesive, and the adhesion between the cylindrical body 1441 (end member 1430) and the photosensitive drum 11 is improved by an anchor effect or the like.
  • the gear part 1444 is formed in the outer peripheral surface of the cylindrical body 1441 on the opposite side to the fitting part 1443 across the contact wall 1442.
  • the gear portion 1444 is a gear that transmits a rotational force to other members such as a developing roller unit, and a helical gear is arranged in this embodiment.
  • the type of gear is not particularly limited, and spur gears may be arranged, or both may be arranged side by side along the axial direction of the cylindrical body. Further, the gear is not necessarily provided.
  • the shaft member holding portion 1445 is a portion that is formed inside the cylindrical body 1441 and has a function of holding the shaft member 1450 on the bearing member 1440.
  • the shaft member holding portion 1445 includes a rotating shaft holding member 1446, a support member 1447, and a guide wall 1448, as can be seen from FIGS. 97 (a) to 98 (b).
  • the rotation shaft holding member 1446 is a plate-like member formed so as to close the inside of the cylindrical body 1441, and a hole 1446 a is formed coaxially with the axis of the cylindrical body 1441. Since the rotation shaft 1451 (see FIG. 99) passes through the hole 1446a as described later, the hole 1446a has a size and a shape that allow the rotation shaft 1451 to pass through. However, in order to prevent the pivot shaft 1451 from coming off, only the main body 1452 of the pivot shaft 1451 can be penetrated, but the portion where the projection 1453 is disposed cannot be penetrated.
  • the hole 1446a has substantially the same shape and size as the outer periphery of the main body 1452 of the rotation shaft 1451 as long as the movement of the rotation shaft 1451 in the axial direction is not significantly inhibited. preferable.
  • two slits 1446 b extend from the hole 1446 a in the rotating shaft holding member 1446.
  • the two slits 1446b are provided at symmetrical positions across the axis of the hole 1446a.
  • the size and shape of the slit 46b is formed so that the projection 1453 of the rotating shaft 1451 (see FIG. 99) can penetrate the slit 1446b.
  • the support member 1447 is a plate-like member that is provided closer to the fitting portion 1443 than the rotating shaft holding member 1446 and is formed so as to close at least a part of the inside of the cylindrical body 1441.
  • the support member 1447 is formed in a size that can support at least a rotating shaft elastic member 1463 described later.
  • the guide wall 1448 is a cylindrical member that extends in parallel to the axial direction of the cylindrical body 1441 from the edge of the hole 1446 a of the rotating shaft holding member 1446 and has an end connected to the support member 1447.
  • the cross-sectional shape inside the guide wall 1448 is the same as that of the hole 1446a.
  • the main body 1452 of the rotation shaft 1451 is inserted inside the guide wall 1448 and the rotation shaft 1451 moves in the axial direction. Yes.
  • a slit 1448 a is formed in the guide wall 1448. 98 (a) and 98 (b), the direction in which the slit 1448a extends is indicated by a dotted line for easy understanding.
  • One end in the longitudinal direction of the slit 1448a leads to the slit 1446b of the rotating shaft holding member 1446, extends parallel to the axis of the cylindrical body 1441, reaches the support member 1447, and then extends parallel to the axis so as to make a U-turn.
  • the end portion (the other end side) reaches the rotating shaft holding member 1446. Therefore, the other end side is closed by the rotating shaft holding member 46.
  • the slit width of the slit 1448a is formed so that the protrusion 1453 of the rotating shaft 1451 (see FIG. 99) can move within the slit 1448a.
  • the material which comprises the bearing member 1440 is not specifically limited, Resin and metals, such as polyacetal, a polycarbonate, and PPS, can be used.
  • resin in order to improve the rigidity of a member, you may mix
  • the resin in order to facilitate the attachment and movement of the shaft member, may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • metal powder injection molding method in the case of manufacturing with metal, cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), or the like can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various plating can be performed to improve functionality (such as lubricity and corrosion resistance) on the surface.
  • the shaft member 1450 of the end member 1430 will be described.
  • the shaft member 1450 includes a rotating shaft 1451, a rotational force receiving member 1455, and a regulating member 1459.
  • the shaft member 1450 includes a rotating shaft elastic member 1463, a restricting member elastic member 1464, and a pin 1465.
  • the rotating shaft elastic member 1463 and the restricting member elastic member 1464 of this embodiment are both string springs. Each will be described below.
  • the rotation shaft 1451 is a shaft-like member that functions as a rotational force transmitting portion that transmits the rotational force received by the rotational force receiving member 1455 to the bearing member 1440.
  • FIG. 99 (a) is a perspective view of the rotating shaft 1451.
  • FIG. 99 (b) is an axial sectional view including the line indicated by C 99b -C 99b in FIG. 99 (a).
  • the rotation shaft 1451 has a cylindrical main body 1452, and a partition portion 1452a is provided inside the cylinder so as to close the inside. . Accordingly, concave portions 1452b and 1452c are formed on one side and the other side of the main body 1452 with the partitioning portion 1452a interposed therebetween.
  • Two protrusions 1453 are arranged outside one end of the main body 1452. The two protrusions 53 are provided on the same line in one diametrical direction of the cylinder of the main body 1452 so as to be opposite to each other across the axis.
  • the two protrusions 1453 have a function of holding the rotating shaft 1451 on the bearing member 1440 and restricting the movement of the main body 1452 as will be described later.
  • the rotation shaft 1451 is formed with two holes 1452d penetrating through the inside and outside of the rotating shaft 1451 which are orthogonal to the axis of the cylinder and are arranged in one diameter direction of the cylinder.
  • a pin 1465 (see FIG. 96) is passed through the hole 1452d to hold the restricting member 1459 and restrict the movement of the restricting member 1459.
  • the end surface on the recess 1452 b side extends in the direction of extending the cylinder so as to border the opening of the recess 1452 b (parallel to the axis).
  • An annular rail projection 1454 that protrudes in the direction) is provided.
  • the rail projection 1454 functions as a rail that guides the rotation of the rotational force receiving member 1455 as will be described later.
  • the shape of the rotating shaft is not limited to the rotating shaft 1451 as long as the rotating shaft can operate and exhibit a function as described later.
  • the partitioning portion 1452a of the rotating shaft 1451 is not necessary by forming the rotating shaft elastic member 1463 and the restricting member elastic member 1464 with a two-stage spring.
  • the rotational force receiving member 1455 is secured around the axis by the restricting member 1459, so that the rail protrusion 1454 is not necessarily provided.
  • the rotational force receiving member 1455 is a member that receives the rotational driving force from the apparatus body 2 and transmits the rotational force to the rotating shaft 1451 when the end member 1430 assumes a predetermined posture.
  • 100 (a) is a perspective view of the rotational force receiving member 1455
  • FIG. 100 (b) is a plan view of the rotational force receiving member 1455 as viewed from the direction indicated by the arrow C 100b in FIG. 100
  • (c) is a cross-sectional view taken along the line C 100c -C 100c in FIG. 100 (b).
  • the rotational force receiving member 1455 has a cylindrical base portion 1456 and two engagement members erected from one end of the base portion 1456.
  • a combination member 1458 is included.
  • the base 1456 has a cylindrical shape, and an annular piece 1456a is provided at the opening on one end side so that the opening is narrowed.
  • a guide 1456b which is an annular depression is formed on the surface of the piece 1456a opposite to the base 1456. The guide 1456b is placed on the rail protrusion 1454 (see FIG. 99B) of the rotation shaft 1451 and guides the rotation of the base 1456.
  • two protrusions 1457 are provided on the inner surface of the base 1456 of the piece 1456a so as to face each other.
  • two protrusions 1457 are provided, but at least two protrusions may be provided, and three or more protrusions may be provided. These protrusions are preferably provided at equal intervals around the axis.
  • the guide 1456b is not necessarily provided as described in the rail protrusion 1454.
  • the two engaging members 1458 are disposed at the end of the base 1456 opposite to the side on which the piece 1456a is provided, and are separated by the same distance from the axis of the base 1456, and both are in symmetrical positions with the axis therebetween. Has been placed.
  • the interval between the two engaging members 1458 is formed to be substantially the same as or slightly larger than the diameter of the shaft portion of the drive shaft 70 described later.
  • the interval between the two engaging members 1458 is configured such that the tip of the driving protrusion 71 is caught by the engaging member 1458 in a posture in which the shaft portion of the driving shaft 70 is disposed between the two engaging members 1458. Yes.
  • the restricting member 1459 is a member that switches between a state in which the engaging member 1458 of the rotational force receiving member 1455 can transmit the driving force from the driving shaft 70 to the bearing member 1440 and a state in which it can rotate freely without being transmitted. That is, the posture in which the engaging member 1458 can be engaged with the drive shaft 70 and transmit the rotational force, and the posture in which the engagement is restricted (not engaged) and the rotational force cannot be transmitted.
  • Switch. 101A is a perspective view of the regulating member 1459
  • FIG. 101B is a front view of the regulating member 1459
  • FIG. 101C is a side view of the regulating member 1459.
  • the restricting member 1459 has a cylindrical restricting shaft 1460, which penetrates in a direction perpendicular to the axis of the restricting shaft 1460 and is long in the axial direction.
  • a long hole 1460a which is a hole is provided.
  • a contact portion 1461 that is formed thicker than the restriction shaft 1460 is provided on one end side of the restriction shaft 1460.
  • the contact portion 1461 has an inclined surface 1461 a that is thickest on the regulation shaft 1460 side and becomes thinner as it is separated from the regulation shaft 1460.
  • two protrusions 1462 are disposed on the outer peripheral portion on the side where the contact portion 1461 is disposed in the end portion of the restriction shaft 1460.
  • the two protrusions 1462 are disposed on opposite sides of the axis of the cylinder of the restriction shaft 1460, and are provided on one diametrical line.
  • the two protrusions 1462 restrict the rotational force receiving member 1455 as will be described later.
  • the two protrusions 1462 are illustrated, but it is sufficient that at least two protrusions are arranged, and there may be three or more protrusions.
  • the rotating shaft elastic member 1463 and the restricting member elastic member 1464 are so-called elastic members, and in the present embodiment, are formed by string-wound springs.
  • the pin 1465 is a rod-shaped member. The arrangement and operation of these members will be described later.
  • Resins such as a polyacetal, a polycarbonate, PPS
  • a metal may be inserted into the resin to further increase the rigidity, or the whole may be made of metal.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • the shaft member 1450 and any of the members included in the shaft member 1450 are manufactured by bending a metal plate or impregnating a metal, glass, carbon fiber, or the like with a resin from the viewpoint of giving elasticity. May be.
  • bearing member 1440 and shaft member 1450 are combined as follows to form an end member 1430.
  • size and structure of each member and part, and the relationship between the size of the member and part are further understood.
  • FIG. 102 (a) is a perspective view in which a rotating shaft 1451 is combined with a bearing member 1440
  • FIG. 102 (b) is a plan view thereof
  • FIG. 102 (c) is indicated by C 102c -C 102c in FIG. FIG.
  • the rotation shaft 1451 is passed through the hole 1446a of the rotation shaft holding member 1446 of the bearing member 1440, and the end on the side where the protrusion 1453 is disposed is the shaft member.
  • the inside of the holding portion 1445 and the opposite end thereof are arranged so as to protrude from the bearing member 1440.
  • the protrusion 1453 is disposed at the end of the slit 1448 a provided on the guide wall 1448 on the side closed by the rotating shaft holding member 1446, and is caught by the rotating shaft holding member 1446.
  • the rotation shaft 1451 is configured not to come off from the bearing member 1440.
  • a rotating shaft elastic member 1463 is disposed between the rotating shaft 1451 and the support member 1447, and the protrusion 1453 of the rotating shaft 1451 is pressed against the rotating shaft holding member 1446. It is urged in the direction to be.
  • the shaft 1451 is attached to the bearing member 1440 by inserting the projection 1453 of the rotation shaft 1451 into the slit 1448a from the slit 1446b, along the dotted lines shown in FIGS. 98 (a) and 98 (b). This can be done by moving the slit 1448a.
  • FIG. 103 shows a diagram for explanation.
  • 103 (a) is an exploded perspective view
  • FIG. 103 (b) is a cross-sectional view of the shaft member 1450 in the direction along the axis.
  • the restricting member elastic member 1464 is disposed inside the recess 1452 b of the main body 1452 of the rotating shaft 1451. Therefore, one end of the restricting member elastic member 1464 is supported by the partition 1452 a of the main body 1452.
  • the end of the restricting shaft 1460 on the side where the contact portion 1461 is not disposed is passed through the base 1456 of the rotational force receiving member 1455 and the inside of the recess 1452b of the main body 1452 of the rotating shaft 1451. Plugged into. Accordingly, the rotational force receiving member 1455 is disposed on the end surface of the main body 1452 of the rotating shaft 1451 opposite to the protrusion 1453.
  • the engaging member 1458 of the rotational force receiving member 1455 is disposed so as to protrude to the opposite side of the rotational shaft 1451, and the guide 1456 b of the rotational force receiving member 1455 is disposed on the end surface of the main body 1452 of the rotational shaft 1451.
  • the rail protrusions 1454 are arranged so as to overlap each other.
  • one end of the restricting member 1459 is inserted into a recess 1452b formed in the main body 1452 of the rotating shaft 1451, and an end surface thereof is in contact with the other end of the restricting member elastic member 1464. As a result, the regulating member 1459 is urged in a direction protruding from the main body 1452.
  • the other end of the regulating member 1459 (that is, the end on the side where the contact portion 1461 is disposed) and the contact portion 1461 are disposed inside the base portion 1456 of the rotational force receiving member 1455 and between the two engaging members 1458. .
  • the pin 1465 is disposed so that the elongated hole 1459a provided in the restriction shaft 1460 of the restriction member 1459 is passed through, and both ends of the pin 1465 are passed through the two holes 1452d of the rotation shaft 1451. Thereby, the regulating member 1459 is restricted from coming out of the main body 1452 of the rotating shaft 1451 against the urging force of the regulating member elastic member 1464.
  • the axes of the respective parts of the bearing member 1440 and the shaft member 1450 are arranged to coincide with each other.
  • FIG. 104 shows a cross-sectional view in the direction along the axis in one posture of the end member 1430.
  • the entire shaft member 1450 is projected from the bearing member 1440 as much as possible by the rotating shaft elastic member 1463, and the regulating member is regulated by the regulating member elastic member 1464.
  • 1459 is a posture that protrudes most from the main body 1452. When no external force is applied to the shaft member 1450, the end member 1430 is in this posture.
  • the protrusion 1457 of the rotational force receiving member 1455 and the protrusion 1462 of the restricting member 1459 are present at different positions separated from each other in the axial direction when viewed in the cross-sectional direction of FIG. To do. Therefore, in this posture, the engaging member 1458 of the rotational force receiving member 1455 is freely rotatable as indicated by an arrow C 104a in FIG. In other words, in this posture, the engaging member 1458 is not restricted from rotating relative to the bearing member 1440 and the restricting member 1459 and is free. This rotation is performed while the rail projection 1454 of the rotation shaft 1451 is guided by the guide 1456b of the rotational force receiving member 1455.
  • FIG. 105 is a view from the same viewpoint as FIG. 104 in the posture
  • FIG. 106 is an end face of a part indicated by C 106 -C 106 in FIG.
  • the force is transmitted to the rotating shaft 1451, and the shaft member 1450 is resisted against the urging force of the rotating shaft elastic member 1463. Then, as shown by C 105c in FIG. 105, the bearing member 1440 can be moved in the pushing direction.
  • FIG. 107 is a perspective view of the end member 1530 according to the sixteenth embodiment
  • FIG. 108 is an exploded perspective view of the end member 1530.
  • the description is omitted here.
  • the same portions as those of the above-described end member 1430 are denoted by the same reference numerals, and description thereof is omitted.
  • the end member 1530 also includes a bearing member 1540 and a shaft member 1550.
  • the bearing member 1540 is a member that is joined to the end of the photosensitive drum 11 in the end member 1530.
  • FIG. 109 (a) is a perspective view of the bearing member 1540
  • FIG. 109 (b) is a plan view of the bearing member 1540 viewed from the side where the shaft member 1550 is inserted.
  • FIG. 110 (a) is a cross-sectional view taken along a line indicated by C 110a -C 110a in FIG. 109 (b)
  • FIG. 110 (b) is a line indicated by C 110b -C 110b in FIG. 109 (b).
  • FIG. 110 (a) is a cross-sectional view taken along a line indicated by C 110a -C 110a in FIG. 109 (b)
  • FIG. 110 (b) is a line indicated by C 110b -C 110b in FIG. 109 (b).
  • the bearing member 1540 includes a cylindrical body 1441, a contact wall 1442, a fitting portion 1443, a gear portion 1444, and a shaft member holding portion 1545, as can be seen from FIGS. 107 to 110.
  • the shaft member holding portion 1545 is a portion that is formed inside the cylindrical body 1441 and has a function of holding the shaft member 1550 on the bearing member 1540. As can be seen from FIGS. 109A to 110B, the shaft member holding portion 1545 includes a rotation shaft holding member 1546, a rotation shaft support member 1547, and a regulating member support member 1548.
  • the rotating shaft holding member 1546 is a plate-like member formed so as to close the inside of the cylindrical body 1441, and a hole 1546 a is formed coaxially with the axis of the cylindrical body 1441. As will be described later, the hole 1546a has a size and a shape that allow the rotation shaft 1551 (see FIG. 111) to pass therethrough. However, in order to prevent the pivot shaft 1551 from coming off, only the main body 1552 of the pivot shaft 1551 can be penetrated, but the portion where the outer protrusion 1553 is disposed cannot be penetrated.
  • the hole 1546 a may have substantially the same shape and size as the outer periphery of the main body 1552 of the rotation shaft 1551 within a range that does not greatly inhibit the movement of the rotation shaft 1551 in the axial direction.
  • two slits 1546b extend from the hole 1546a in the rotating shaft holding member 1546.
  • the two slits 1546b are provided at symmetrical positions across the axis of the hole 1546a.
  • the size and shape of the slit 1546b are formed so that the outer protrusion 1553 of the rotation shaft 1551 (see FIG. 111) can penetrate the slit 1546b.
  • the rotation shaft support member 1547 is a member that is provided closer to the fitting portion 1443 than the rotation shaft holding member 1546 and is formed so as to close at least a part of the inside of the cylindrical body 1441. As shown in FIG. 110B, the rotation shaft support member 1547 has a hole 1547 a or a gap through which the first restriction shaft 1560 of the restriction member 1559 (see FIG. 112) passes around the axis of the cylindrical body 1441. Is provided. Further, it is formed so as to hold at least a rotating shaft elastic member 1563 described later. Further, as can be seen from FIG. 110A, the rotation shaft support member 1547 is provided with a groove 1547 b extending in parallel with the axial direction of the cylindrical body 1441.
  • the groove 1547b is closed at the end on the rotating shaft holding member 1546 side, and opens in the circumferential direction of the cylindrical body 1441 on the side of the regulating member support member 1548 which is the opposite side.
  • the groove 1547b is arranged so that the protrusion 1562 of the regulating member 1559 (see FIG. 112) can move inside thereof.
  • the regulating member support member 1548 is a member that is provided on the fitting portion 1443 side further than the rotating shaft support member 1547 and is formed so as to close at least a part of the inside of the cylindrical body 1441.
  • the restriction member support member 1548 is formed in a size that can hold at least a restriction member elastic member 1564 described later.
  • the shaft member 1550 of the end member 1530 will be described.
  • the shaft member 1550 includes a rotation shaft 1551, a rotational force receiving member 1555, a restriction member 1559, a rotation shaft elastic member 1563, and a restriction member elastic member 1564.
  • the rotating shaft elastic member 1563 and the restricting member elastic member 1564 of the present embodiment are both string springs. Each will be described below.
  • FIG. 111 (a) is a perspective view of the rotating shaft 1551
  • FIG. 111 (b) is an axial sectional view including the line indicated by C 111b -C 111b in FIG. 111 (a)
  • FIG. (A) is an axial sectional view including a line indicated by C 111c -C 111c .
  • the rotation shaft 1551 has a cylindrical main body 1552.
  • Two outer protrusions 1553 are disposed outside one end of the main body 1552.
  • the two outer protrusions 1553 are provided on one diametrical line of the cylinder of the main body 1552.
  • the two outer projections 1553 have a function of holding the main body 1552 on the bearing member 1540 and restricting the movement of the main body 1552 as will be described later.
  • the main body 1552 is provided with two inner protrusions 1554 on the inner surface of the cylinder at the same end as the end where the outer protrusion 1553 is provided.
  • the rotational force receiving member 1555 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the main body 1552 when the end member 1430 assumes a predetermined posture. As can be seen from FIGS. 111 (a) to 111 (c), in this embodiment, the rotational force receiving member 1555 is disposed at the end of the main body 1552 opposite to the side on which the outer protrusion 1553 is disposed. A cylindrical base 1556 and two engaging members 1558 erected from one end of the base 1556 are configured.
  • the base 1556 has a cylindrical shape, and is formed so that both the outer diameter and the inner diameter thereof are larger than the main body 1552.
  • the outer peripheral portion of the base portion 1556 has an inclined surface 1556a so that the diameter decreases as the distance from the main body 1552 increases in the axial direction.
  • the drive shaft 70 can smoothly slide on the outer peripheral portion.
  • the inner peripheral portion of the base portion 1556 is inclined so that its diameter increases as it moves away from the main body 1552 in the axial direction. Thereby, the front-end
  • the two engaging members 1558 are provided at the end of the base 1556 opposite to the side on which the rotation shaft 1551 is disposed, and are separated from the axis of the base 1556 by the same distance, and both are symmetrical with respect to the axis. Placed in position.
  • the interval between the two engagement members 1558 is formed to be approximately the same as or slightly larger than the diameter of the shaft portion of the drive shaft 70.
  • the interval between the two engagement members 1558 is configured such that the drive protrusion 71 is caught by the engagement member 1558 in a posture in which the shaft portion of the drive shaft 70 is disposed between the two engagement members 1558.
  • FIG. 112A is a perspective view of the regulating member 1559
  • FIG. 112B is a perspective view of the regulating member 1559 from another angle.
  • the restricting member 1559 includes a columnar first restricting shaft 1560 and a columnar second restricting shaft 1561 having a larger outer diameter than the first restricting shaft 1560. These two are arranged coaxially and have one end connected to each other. Two protrusions 1562 are disposed on the end of the first restriction shaft 1560 opposite to the side on which the second restriction shaft 1561 is disposed. The two protrusions 1562 are provided on the same line in the diametrical direction of the cylinder of the first restriction shaft 1560. The two protrusions 1562 have a function of holding the restricting member 1559 on the bearing member 1540 and restricting movement of the restricting member 1559 as will be described later.
  • the end opposite to the side where the first restriction shaft 1560 is disposed is a contact portion 1561a, and an inclined surface is formed.
  • a restriction groove 1561b that is two grooves opened to the first restriction shaft 1560 side is provided at an end portion of the second restriction shaft 1561 where the first restriction shaft 1560 is disposed.
  • the two restricting grooves 161b are formed on the opposite sides across the axis of the second restricting shaft 1561.
  • FIG. 113 shows a cross-sectional view along the axial direction of the end member 1530 in one posture.
  • a regulating member 1559 is inserted inside the main body 1552 of the rotating shaft 1551.
  • the second restriction shaft 1561 is accommodated in the main body 1552, and the end of the first restriction shaft 1560 on the protrusion 1562 side protrudes from the side opposite to the rotational force receiving member 1555 (that is, the outer protrusion 1553 and the inner protrusion 1554 side).
  • the inner protrusion 1554 of the rotation shaft 1551 is disposed in the restriction groove 1561 b of the restriction member 1559.
  • the rotating shaft 1551 and the regulating member 1559 combined in this way are held by the bearing member 1540 as follows. That is, the rotation shaft 1551 is passed through the hole 1546a of the rotation shaft holding member 1546 of the bearing member 1540, and the end on the side where the outer protrusion 1553 is disposed is the inner side of the shaft member holding portion 1545 and the end on the opposite side. Is arranged so as to protrude from the bearing member 1540. At this time, the outer protrusion 1553 is caught by the rotation shaft holding member 1546 so that the rotation shaft 1551 is not detached from the bearing member 1540. As can be seen from FIG.
  • a rotating shaft elastic member 1563 is disposed between the rotating shaft 1551 and the rotating shaft support member 1547, and the rotating shaft 1551 is urged in a direction of coming out of the bearing member 1540. Yes. At this time, the first restriction shaft 1560 of the restriction member 1559 is passed inside the rotation shaft elastic member 1563.
  • the rotation shaft 1551 is attached to the bearing member 1540 by inserting the outer protrusion 1553 of the rotation shaft 1551 into the bearing member 1540 from the slit 1546b of the rotation shaft holding member 1546 and moving the rotation shaft 1551 around the axis. What is necessary is just to rotate.
  • the first regulating shaft 1560 of the regulating member 1559 is passed through the hole 1547a (see FIG. 110 (b)) of the rotating shaft support member 1547.
  • the protrusion 1562 is placed inside the groove 1547b (see FIG. 110A).
  • the regulating member 1559 can be moved in the axial direction, but is prevented from coming off from the bearing member 1540.
  • a restricting member elastic member 1564 is disposed between the restricting member 1559 and the restricting member support member 1548, and the restricting member 1559 is biased in a direction of coming out of the bearing member 1540.
  • the protrusion 1562 of the restriction member 1559 may be inserted into the groove 1547b from the opening of the groove 1547b of the rotating shaft support member 1547.
  • the axes of the bearing member 1540 and the shaft member 1550 are arranged in alignment.
  • FIG. 114 shows a bearing for the rotational shaft 1551 (rotational force receiving member 1555) against the biasing force of the rotational shaft elastic member 1563 as shown by the arrow C 114a in FIG. 114 from the posture shown in FIG.
  • the posture moved so as to be pushed into the member 1540 side is shown.
  • the rotation shaft 1551 moves in the axial direction.
  • the rotation shaft 1551 and the rotational force receiving member 1555 (engagement member 1558) disposed thereon are rotatable.
  • the engaging member 1558 is not restricted to rotate relative to the bearing member 1540 and the restricting member 1559 and is free.
  • the drive shaft 70 and the rotational force receiving member 1555 provided on the shaft member 1550 of the end member 1530 are engaged with each other in a posture in which the process cartridge including the end member 1530 is mounted on the apparatus main body. Rotational force is transmitted.
  • FIG. 116 (a) is a perspective view in one posture of the end member 1630 in the seventeenth embodiment
  • FIG. 116 (b) is a perspective view in another posture of the end member 1630
  • FIG. 117 shows an exploded perspective view of the end member 1630.
  • the parts other than the end member 1630 are the same as those in the fifteenth embodiment, and the description thereof is omitted here.
  • the same portions as those of the above-described end member 1430 are denoted by the same reference numerals, and description thereof is omitted.
  • the end member 1630 includes a bearing member 1640 and a shaft member 1650.
  • the bearing member 1640 is a member that is joined to the end of the photosensitive drum 11 in the end member 1630.
  • 118A is a perspective view of the bearing member 1640
  • FIG. 118B is a plan view of the bearing portion 240 as viewed from the side where the shaft member 1650 is inserted.
  • the bearing member 1640 includes a cylindrical body 1441, a contact wall 1442, a fitting portion 1443, a gear portion 1444, and a shaft member holding portion 1645.
  • the shaft member holding portion 1645 is a part that is formed inside the cylindrical body 1441 and has a function of holding the shaft member 1650 on the bearing member 1640.
  • the shaft member holding portion 1645 includes a bottom plate 1646 and a holding cylinder 1647 as can be seen from FIGS. 118 (a) and 118 (b).
  • the bottom plate 1646 is a plate-like member arranged so as to close at least a part of the inside of the cylindrical body 1441.
  • the holding cylinder 1647 is a cylindrical member that is erected on the surface of the bottom plate 1646 that is opposite to the fitting portion 1443, and its axis is aligned with the axis of the cylindrical body 1441. Is provided.
  • the holding cylinder 1647 holds the shaft member 1650 by inserting a part of the shaft member 1650 therein.
  • the shaft member 1650 of the end member 1630 will be described.
  • the shaft member 1650 includes a rotation shaft 1651, a rotational force receiving member 1652, a regulating member 1660, a pin 1664, and an elastic member 1665.
  • the pin 1664 is a rod-shaped member.
  • the elastic member 1665 of this embodiment is a string spring.
  • FIG. 119 shows an exploded perspective view in which members other than the pin 1664 are enlarged. Each member will be described with reference to FIGS. 117 and 119.
  • Rotating shaft 1651 is a cylindrical member.
  • the outer diameter is a size that can be inserted into the inside of the holding cylinder 1647 provided in the shaft member holding portion 1645 of the bearing member 1640 described above.
  • the rotational force receiving member 1652 is a member that receives the rotational driving force from the apparatus body 2 and transmits the driving force to the rotating shaft 1651 when the end member 1630 assumes a predetermined posture.
  • the rotational force receiving member 1652 is disposed at the end of one side of the rotating shaft 1651 (the side not inserted into the holding cylinder 1647), and has a cylindrical base 1653 and a plate-like engagement.
  • a member 1656 is included.
  • the base portion 1653 is a cylindrical member, and is disposed coaxially with the rotation shaft 1651 at one end (the side not inserted into the holding cylinder 1647) of the rotation shaft 1651. Both the outer periphery and inner periphery of the base portion 1653 are formed larger than the outer periphery and inner periphery of the rotating shaft 1651.
  • the base portion 1653 is provided with two engaging member storage grooves 1654 which are grooves formed substantially in parallel with the axis therebetween. In this embodiment, the two engaging member storage grooves 1654 are provided in parallel to a position having the same distance from the axis with the axis interposed therebetween, and extend so as to be twisted with respect to the axis.
  • a hole 1653a is provided in the base portion 1653 so as to extend along the diameter of the base portion and in a direction orthogonal to the direction in which the two engaging member storage grooves 1654 extend. In this embodiment, four holes 1653a are formed.
  • the engaging member 1656 has a plate-like shape as a whole, and is formed in a size that fits in the groove of the engaging member storage groove 1654 described above.
  • the engaging member is provided with a through-hole 1656a.
  • One of the through-holes 1656a is an engaging portion 1657 and the other is an operated portion 1658.
  • the engaging portion 1657 is preferably longer than the operated portion 1658.
  • the tip of the engaging portion 1657 may be curved. Thereby, it is possible to stably engage with the drive protrusion 71 of the drive shaft 70.
  • the restriction member 1660 includes a restriction shaft 1661, a contact part 1662, and an operation part 1663.
  • the restriction shaft 1661 is a columnar member, and its outer shape is sized to be inserted inside the cylinder of the rotation shaft 1651.
  • a slit 1661a that penetrates the regulation shaft 1661 so as to be in the diameter direction and extends in a predetermined size in the axial direction is formed.
  • the contact portion 1662 is a part of a cone (a truncated cone) provided coaxially on the end surface of the restriction shaft 1661 on the side not inserted into the rotation shaft 1651, and has a diameter larger than that of the restriction shaft 1661 at the bottom. Has been.
  • the side surface of the contact portion 1662 is an inclined surface 1662a.
  • the operation portion 1663 is a rod-like member extending in a direction away from the axis, and two operation portions 1663 are arranged in the same manner as the engagement member 1656. As will be described later, the operation portion 1663 is formed at a position and a length capable of pressing the operated portion 1658 of the engaging member 1656 in a direction parallel to the axial direction.
  • 120 is an external perspective view in which the portions of the rotational force receiving member 1652 and the regulating member 1660 in one posture in a scene where the members are combined are enlarged.
  • the engaging member 1656 is hatched for easy viewing.
  • the elastic member 1665 is inserted inside the cylindrical shape of the rotation shaft 1651, and the contact portion 1662 of the restriction shaft 1661 of the restriction member 1660 is further disposed. Insert the end on the non-side.
  • the regulating member 1660 is urged in the direction of coming out of the rotating shaft 1651 by the urging force of the elastic member 1665.
  • the engaging member 1656 is disposed in the engaging member storage groove 1654 provided in the base portion 1653 of the rotational force receiving member 1652.
  • the hole 1653a provided in the base portion 1653 and the hole 1656a provided in the engaging member 1656 are aligned in a straight line.
  • the slits 1661a provided on the restriction shaft 1661 of the restriction member 1660 are also included in the straight line.
  • the hole 1653a, the hole 1656a, and the slit 1661a aligned in a straight line in this manner are inserted so as to pass through the pin 1664.
  • the operation portion 1663 of the regulating member 1660 is disposed so as to overlap the operated portion 258 formed on the engagement member 1656 of the rotational force receiving member 1652.
  • the shaft member 1650 is attached to the bearing member 1640 with the end of the rotating shaft 1651 on the side where the rotational force receiving member 1652 is not disposed being the holding cylinder of the bearing member 1640. What is necessary is just to insert in the body 1647 and to join.
  • the end member 1630 combined as described above can take a form as shown in FIG. 120 as one posture. That is, the engaging member 1656 is disposed so as to lie along the inside of the engaging member storage groove 1654.
  • the operation portion 1663 also moves downward, and the engagement member 1656 is operated.
  • the portion 1658 is moved downward. Then, since the engaging member 1656 rotates around the pin 1664, the engaging member 1656 stands up so as to approach parallel to the axial direction as shown in FIG.
  • the end member 1630 can switch between the posture in which the engaging member 1656 is erected (projected posture) and the tilted posture (sunk posture).
  • the drive shaft 70 and the rotational force receiving member 1652 provided on the shaft member 1650 of the end member 1630 are engaged with each other in a posture in which the process cartridge including the end member 1630 is mounted on the apparatus main body. Rotational force is transmitted.
  • FIG. 122 shows an exploded perspective view of the tip portion of the shaft member 1750 in the end member 1730.
  • FIG. 123 is a cross section along the axis of the end member 1730.
  • the end member 1730 of this embodiment includes a bearing member 1640 having the same form as the above-described end member 1630, and a shaft member 1750 is applied to the bearing member 1640. Therefore, here, the shaft member 1750 will be described.
  • the shaft member 1750 includes a rotating shaft 1751, a rotational force receiving member 1752, and a regulating member 1760 as can be seen from FIG.
  • Rotating shaft 1751 is a cylindrical member.
  • the outer diameter is a size that can be inserted inside the holding cylinder 1647 (see FIG. 118A) provided in the shaft member holding portion 245 of the bearing member 1640 described above.
  • one end of the rotation shaft 1751 (the side opposite to the side inserted into the holding cylinder 1647 and the side opposite to the fitting portion 1443) is a part of the rotational force receiving member 1752. Is configured to function as A detailed form will be described with a rotational force receiving member 1752.
  • the rotational force receiving member 1752 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the rotational force to the rotating shaft 1751 when the end member 1730 assumes a predetermined posture.
  • the rotational force receiving member 1752 is arranged at the end of one side of the rotating shaft 1751 (the side opposite to the side inserted into the holding cylinder 1647, the side opposite to the fitting portion 1443). And includes a base portion 1753, an engaging member 1754, and a pin 1755.
  • the base portion 1753 is a portion for connecting the engaging member 1754 to the rotating shaft 1751 via the pin 1755, and is formed at one end portion of the rotating shaft 1751 in this embodiment, and a part of the rotating shaft 1751 (the tip portion). ) Also serves as the base 1753.
  • a concave portion 1753a is formed on the base portion 1753 along the axis from one end face of the rotating shaft 1751, and a protrusion 1753b is provided on the bottom thereof as can be seen from FIG.
  • the base 1753 has two slits 1753c having a length in the direction along the axial direction from the end surface on one side of the rotating shaft 1751 and a depth communicating the side surface of the rotating shaft 1751 and the recess 1753a. Is formed.
  • the two slits 1753c are arranged at a position of 180 ° around the axis so as to be on one diameter of the rotation shaft 1751. Furthermore, holes 1753d and 1753e extending in the width direction of the slit 1753c and penetrating the base 1753 are formed in the base 1753. The hole 1753d and the hole 1753e are arranged side by side in the length direction of the slit 1753c, and the hole 1753d is closer to one end of the rotating shaft 1751.
  • the engaging member 1754 is a rod-like member and is bent at one place in this embodiment.
  • a through hole 1754a orthogonal to the direction in which the engaging member 1754 extends is provided at one end thereof.
  • the pin 1755 is a round bar member.
  • the restriction member 1760 includes a restriction shaft 1761, an operation member 1762, an elastic member 1763, and a pin 1764.
  • the restriction shaft 1761 is a columnar member, and its outer shape is sized so as to be inserted inside a recess 1753 a provided in the base portion 1753.
  • the restriction shaft 1761 is formed with a slit 1761a that penetrates the restriction shaft 1761 so as to be in the diameter direction and extends in a predetermined size in the axial direction.
  • the end portion that is not inserted into the base portion 1753 is a part of a cone (a truncated cone), and an inclined surface 1761b is formed.
  • the operation member 1762 is a rod-shaped member, and two operation members 1762 are arranged in the same manner as the engagement member 1754.
  • the operation member 1762 includes a through hole 1762a orthogonal to the length direction near the center in the length direction.
  • the elastic member 1763 is formed of a string spring.
  • the pin 1764 is a round bar member.
  • the elastic member 363 is inserted inside the concave portion 1753a formed in the base portion 1753, and the end portion of the regulating member 1760 on the side where the projection 1761c is provided is also inserted. To do. One end of the elastic member 1763 is inserted and fixed to the protrusion 1753b in the recess, and the other end of the elastic member 1766 is inserted and fixed to the protrusion 1761c of the regulating shaft 1761.
  • the regulating shaft 1761 is urged in the direction of coming out of the rotating shaft 1751 by the urging force of the elastic member 1762.
  • one end of the operation member 1762 is inserted from the slit 1753c into the slit 1761a of the regulating shaft 1761.
  • the pin 1764 is disposed so as to pass the hole 1753e and the hole 1762a.
  • the operation member 1762 can rotate around the pin 1764.
  • the operation member 1762 is arranged so as to extend in a direction orthogonal to the axis of the restriction shaft 1761 in a posture in which no external force is applied.
  • one end of the engaging member 1754 is disposed in the slit 1761a, and the pin 1755 is disposed so as to pass the hole 1753d and the hole 1754a.
  • the engaging member 1754 can rotate around the pin 1755.
  • the engaging member 1754 is positioned so as to extend in a direction orthogonal to the axis of the regulating shaft 1761 in a posture in which no external force is applied, and to be superimposed on the distal end side of the regulating shaft 1761 rather than the operation member 1762.
  • the engagement member 1754 is disposed so as to contact the tip of the operation member 1762 that is not inserted into the slit 1761a.
  • the bearing member 1640 of the shaft member 1750 is attached to the end of the rotating shaft 1751 on the side where the rotational force receiving member 1752 is not disposed, in accordance with the example of FIG. What is necessary is just to insert in the body 1647 and to join.
  • the end member 1730 combined as described above can take a form as shown in FIG. 123 as one posture.
  • the engaging member 1756 is disposed so as to extend and lie in the radial direction of the rotating shaft 1751.
  • an arrow C 123 in FIG. 123 when the restriction shaft 1761 of the restriction member 1760 is pressed to the bearing member 1640 side (downward in the drawing of FIG. 123), the restriction shaft 1761 moves to the bearing member 1640 side, Of the operating member 1762, the end portion inserted into the slit 1761 a of the regulating shaft 1761 is also pressed in the same direction.
  • the end member 1730 can also switch between the posture in which the engaging member 1754 is erected (projected posture) and the tilted posture (sunk posture). As a result, the end member 1730 can act similarly to the example of the end member 1630.
  • the present invention is not limited to this, and these are linked via a plurality of types of operation units, and finally come closest to the engagement member.
  • the operation unit may be configured to press the engaging member. Further, the operation unit and the engaging member may be integrated without distinction.
  • 125A is a front view of the end member 1830
  • FIG. 125B is a front view of the end member 1830 with a part thereof cut away.
  • 126 is a perspective view of the end member 1830 with a part cut away
  • FIG. 127 is a cross-sectional view taken along the line C 127 -C 127 in FIG. 125 (a).
  • the end member 1830 of this embodiment includes a bearing member 1840 and a shaft member 1850.
  • the bearing member 1840 is a member that is joined to the end of the photosensitive drum 11 in the end member 1830.
  • FIG. 128 shows a perspective view of the bearing member 1840.
  • the bearing member 1840 includes a cylindrical body 1441, a contact wall 1442, a fitting portion 1443, a gear portion 1444, and a shaft member holding portion 1845, as can be seen from FIGS. 125 to 128.
  • the shaft member holding portion 1845 is a part that is formed inside the cylindrical body 1441 and has a function of holding the shaft member 1850 on the bearing member 1840.
  • the shaft member holding portion 1845 includes a bottom plate 1846, a holding cylinder 1847, and a holding groove 1848 as can be seen from FIGS. 127 and 128.
  • the bottom plate 1846 is a plate-like member disposed so as to close at least a part of the inside of the cylindrical body 1441.
  • the holding cylinder 1847 is a bottomed cylindrical member provided in the axial portion of the cylindrical body 1441 in the bottom plate 1846.
  • the holding cylinder body 1847 is provided coaxially with the cylindrical body 1441, and is configured to open on the side opposite to the fitting portion 1443 and have a bottom on the fitting portion 1443 side.
  • the holding groove 1848 is a member protruding from the inner surface of the cylindrical body 1441, and a groove 1848a is formed therein. As can be seen from FIG.
  • the groove 1848a has a depth direction that is parallel to the axial direction of the cylindrical body 1441, the diameter direction of the cylindrical body 1441 is the length direction, and the inner circumferential direction of the cylindrical body 1441 is the width direction. And is open on the side opposite to the fitting portion 1443 and on the surface facing the axis.
  • the opening on the side opposite to the fitting portion 1443 has a narrow groove width, and has a so-called snap-fit structure.
  • two holding grooves 1848 are provided, and the two holding grooves 448 are disposed on one diameter of the cylindrical body 1441 on one side and the other side of the axis line.
  • the shaft member 1850 includes a rotational force receiving member 1852 and a regulating member 1860 as can be seen from FIGS. 125 to 127.
  • the rotational force receiving member 1852 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the bearing member 1840 when the end member 1830 assumes a predetermined posture.
  • the rotational force receiving member 1852 has two engaging members 1854 and a crankshaft 1855.
  • the engaging member 1854 is a rod-shaped member, and is a part that engages and disengages from the drive shaft 70 of the apparatus main body 2.
  • FIG. 129 shows a perspective view of the engaging member 1854.
  • the engaging member 1854 is a rod-like member as a whole, but a claw portion 1854a is provided at one end thereof.
  • the claw portion 1854a is preferably reverse-tapered or hook-shaped. Thereby, rotation can be transmitted more stably.
  • an inclined portion 1854b is provided so that the tip of the claw portion 1854a is tapered.
  • the engagement member 1854 is provided with a slit 1854c through which the crankshaft 1855 passes at the other end.
  • the slit 1854c is a slit having a longitudinal direction in a direction perpendicular to the direction in which the engaging member 1854 extends, and this is substantially the same direction as the direction in which the claw portion 1854a bends.
  • the crankshaft 1855 is a member that holds the engaging member 1854 on the bearing member 1840 and associates the engaging member 1854 with the attitude of the restricting member 1860.
  • a perspective view of the crankshaft 1855 is shown in FIG.
  • the crankshaft 1855 is similar to a known so-called crankshaft, and has a shape in which a rod-like member is bent. More specifically, (indicated by C 130 in FIG. 130.) Axis connecting the both end portions axially central portion central projecting portion 1855a that protrudes to one is provided for the central protruding portion 1855a and the two ends Each is provided with an end protrusion 1855b protruding opposite to the central protrusion 1855a.
  • the restricting member 1860 includes a restricting shaft 1861 and an elastic member 1863.
  • the restriction shaft 1861 is a columnar member.
  • FIG. 131 is an external perspective view of the restriction shaft 1861.
  • One end of the restriction shaft 1861 is a part of a cone (a truncated cone), and an inclined surface 1861a is formed.
  • a slit 1861b through which the crankshaft 1855 passes is provided on the opposite side of the inclined surface 1861a in the end portion of the regulating shaft 1861.
  • the slit 1861b extends in a direction orthogonal to the axis of the restriction shaft 1861.
  • the elastic member 1863 is a string spring.
  • crank shaft 1855 is held in the holding groove 1848 disposed inside the cylindrical body 1441, a crankshaft 1855 is shown in C 130 to the axis (FIG. 130 The two holding grooves 1848 are held so as to be rotatable around the line). At this time, the central protrusion 1855a of the crankshaft 1855 is passed through the slit 1861b of the restriction shaft 1861.
  • the end portion on the inclined surface 1861a side of the regulating shaft 1861 protrudes on the opposite side to the fitting portion 1443 of the cylindrical body 1441.
  • an elastic member 1863 is disposed between the end of the restriction shaft 1861 on the slit 14461b side and the holding cylinder 1847 of the bearing member 1840, and urges the restriction 18461 in the direction opposite to the fitting portion 1443. .
  • the slits 1854c of the engaging member 1854 are passed through the two end protrusions 1855b of the crankshaft 1855, respectively.
  • the claw portion 1854a side of the engaging member 1854 protrudes in the opposite direction to the fitting portion 1443 of the cylindrical body 1441.
  • the end member 1830 combined as described above can take a form as shown in FIG. 127 as one posture. That is, the regulating shaft 1861 protrudes by the urging force of the elastic member 1863, and the engaging member 1854 is retracted toward the fitting portion 1443 by the action of the crankshaft 1855.
  • the regulating shaft 1861 protrudes by the urging force of the elastic member 1863, and the engaging member 1854 is retracted toward the fitting portion 1443 by the action of the crankshaft 1855.
  • the regulating shaft 1861 moves to the fitting portion 1443 side.
  • the engagement member 1854 projects to the opposite side to the fitting portion 1443 by the action of the crankshaft 1855.
  • the end member 1830 can also switch between the posture in which the engaging member 1854 protrudes and the posture in which it has been sunk (retracted). Accordingly, the end member 1830 can act similarly to the example of the end member 1630.
  • the engaging member is not engaged with the drive shaft depending on the posture of the regulating member (the engaging member is idled in the end members 1430 and 1530, the end member 1630, 1730, the engaging member tilts, and the end member 1830 retracts the engaging member).
  • the engaging member engages with the drive shaft. According to this, the inhibition of the engagement due to unnecessary interference in the process of engagement between the drive shaft and the engagement member can be greatly reduced, and smooth engagement becomes possible.
  • the process cartridge is mounted in the normal process. Since it is automatically performed mechanically, no additional operation is required and the convenience is high.
  • FIG. 133 is a perspective view of the end member 1930 included in this embodiment
  • FIG. 134 is an exploded perspective view of the end member 1930. Since configurations other than the end member 1930 can be considered in the same manner as in the first embodiment, the end member 1930 will be described here.
  • the end member 1930 includes a bearing member 1940 and a shaft member 1950.
  • the bearing member 1940 is a member that is joined to the end of the photosensitive drum 11 in the end member 1930.
  • 135 (a) is a perspective view of the bearing member 1940
  • FIG. 135 (b) is a front view of the bearing member 1940
  • FIG. 135 (c) is a side of the bearing member 1940 from the side where the shaft member 1950 is disposed.
  • a plan view was shown.
  • FIG. 136 (a) shows an end view along the line indicated by C 136a -C 136a in FIG. 135 (b). That is, FIG. 136A shows an end surface when the bearing member 1940 is cut by a plane orthogonal to the axis of the bearing member 1940.
  • FIG. 136A shows an end surface when the bearing member 1940 is cut by a plane orthogonal to the axis of the bearing member 1940.
  • FIG. 136 (b) is a cross-sectional view taken along the line indicated by C 136b -C 136b in FIG. 135 (c).
  • FIG. 136B is a cross-sectional view of the bearing member 1940 including the axis of the bearing member 1940 and in a direction along the axis. In each figure shown below, an end face (cut surface) in a sectional view may be hatched.
  • the bearing member 1940 has a cylindrical body 1941, a contact wall 1942, a fitting portion 1943, a gear portion 1944, and a shaft member holding portion 1945, as can be seen from FIGS. 133 to 136.
  • the cylindrical body 1941 is a cylindrical member as a whole, a contact wall 1942 and a gear portion 1944 are disposed on the outside thereof, and a shaft member holding portion 1945 is formed on the inside thereof. Note that at least a portion of the inside of the cylindrical body 1941 in which the shaft member holding portion 1945 is provided has a rotation shaft 1951 (see FIG. 137) of a shaft member 1950 described later that moves smoothly in the axial direction and the center of the axis.
  • the inner diameter of the cylindrical body 1941 is substantially the same as the outer diameter of the rotating shaft 1951 to the extent that it can rotate.
  • a contact wall 1942 that comes into contact with and engages with the end surface of the photosensitive drum 11 is erected.
  • the insertion depth of the end member 1930 into the photosensitive drum 11 is regulated in a posture in which the end member 1930 is mounted on the photosensitive drum 11.
  • one side of the cylindrical body 1941 sandwiching the contact wall 1942 is a fitting portion 1943 that is inserted into the inside of the photosensitive drum 11.
  • a fitting portion 1943 is inserted inside the photosensitive drum 11 and fixed to the inner surface of the photosensitive drum 11 with an adhesive.
  • the end member 1930 is fixed to the end of the photosensitive drum 11.
  • the outer diameter of the fitting portion 1943 is substantially the same as the inner diameter of the photosensitive drum 11 as long as it can be inserted inside the cylindrical shape of the photosensitive drum 11.
  • a groove may be formed on the outer peripheral surface of the fitting portion 1943. As a result, the groove is filled with an adhesive, and adhesion between the cylindrical body 1941 (end member 1930) and the photosensitive drum 11 is improved by an anchor effect or the like.
  • a gear portion 1944 is formed on the outer peripheral surface of the cylindrical body 1941 opposite to the fitting portion 1943 across the contact wall 1942.
  • the gear portion 1944 is a gear that transmits rotational force to other members such as a developing roller unit, and in this embodiment, a helical gear is arranged.
  • the type of gear is not particularly limited, and spur gears may be arranged, or both may be arranged side by side along the axial direction of the cylindrical body. Further, the gear is not necessarily provided.
  • the shaft member holding portion 1945 is formed on the inner side of the cylindrical body 1941 and has a function of holding the shaft member 1950 on the bearing member 1940 while ensuring a predetermined operation of the shaft member 1950. It functions as one of means for moving and rotating the force receiving member 1958.
  • the shaft member holding portion 1945 includes a bottom plate (lid member) 1946 shown in FIGS. 134 and 136 (b) and a screw-shaped groove 1947 shown in FIGS. 1367 (a) and 136 (b).
  • the bottom plate 1946 is a disk-shaped member, and is disposed so as to block and partition the inside of the cylindrical body 1941. Thus, the shaft member 1950 is supported.
  • the bottom plate 1946 can be attached to the cylindrical body 1941 by adhesion, fusion, or the like.
  • the cylindrical body 1941 and the bottom plate 1946 may be integrally formed.
  • Nishijomizo 1947 is a plurality of spiral grooves formed on the inner surface of the cylindrical body 1941, a depth direction as indicated by L 7 in FIG. 136 (a), the axis of the cylindrical body 1941 It is formed radially (in the radial direction) at the center.
  • the longitudinal direction of the spiral groove 1947 is the direction along the axis of the cylindrical body 1941 as shown in FIG. 136 (b), and one end side and the other end side thereof are on the inner circumference of the cylindrical body 1941. It is twisted so as to be displaced in the direction along, and is formed in a spiral shape. Further, as the width direction of Nishijomizo 1947 showed at L 8 in FIG.
  • At least one set of the plurality of spiral grooves 1947 facing each other across the axis of the cylindrical body 1941 is provided.
  • four sets, a total of eight spiral grooves 1947 are formed, but a total of two spiral grooves may be formed in one set.
  • 2 sets, 3 sets, or 5 sets or more of spiral grooves may be provided.
  • the material which comprises the bearing member 1940 is not specifically limited, Resin and metals, such as polyacetal, a polycarbonate, and PPS, can be used.
  • resin in order to improve the rigidity of a member, you may mix
  • the resin in order to facilitate the attachment and movement of the shaft member, may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • metal powder injection molding method in the case of manufacturing with metal, cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), or the like can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various plating can be performed to improve functionality (such as lubricity and corrosion resistance) on the surface.
  • the shaft member 1950 of the end member 1930 will be described.
  • the shaft member 1950 includes a rotation shaft 1951 and a tip member 1955.
  • the shaft member 1950 includes a tip end member elastic member 1965, a rotating shaft elastic member 1966, and a pin 1967.
  • the tip member elastic member 1965 and the rotating shaft elastic member 1966 of this embodiment are both string springs. Each will be described below.
  • the rotating shaft 1951 is a rotating force transmitting portion that transmits the rotating force received by the tip member 1955 to the bearing member 1940 and is a shaft-like member that functions as a means for moving and rotating the rotating force receiving member 1958.
  • FIG. 137 (a) is a perspective view of the rotating shaft 1951
  • FIG. 137 (b) is an axial sectional view cut along the line indicated by C 137b- C 137b in FIG. 137 (a).
  • the rotation shaft 1951 is cylindrical.
  • the inside of the cylinder is sized such that the tip member elastic member 1965 can be inserted.
  • the rotation shaft 1951 is provided with a lid portion 1951a at one end thereof, and an opening portion 1951b narrowed with respect to the inner diameter of the cylinder is formed in the lid portion 1951a.
  • the opening 1951b is rectangular.
  • the shape of the opening is not limited to a rectangular shape, and the shaft 1957 (see FIG. 134) of the tip member 1955 inserted here is caught by the opening 1951b of the rotating shaft 1951 without spinning, so that the rotational force is applied. It only needs to be able to communicate. Therefore, shapes other than circular can be taken.
  • the means is not particularly limited as long as the rotation shaft 1951 is interlocked with the rotation of the tip member 1955 while allowing the tip member 1955 to move in the axial direction.
  • an additional member such as a pin may be used.
  • the rotation shaft 1951 is provided at the end opposite to the end where the lid portion 1951a is disposed, perpendicular to the axis of the cylinder, in one diameter direction of the cylinder, and penetrates the inside and outside of the cylinder.
  • Two pin through holes 1951c are formed.
  • a pin 1967 (see FIG. 134) is passed through the pin through hole 1951c.
  • the tip member 1955 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the rotating shaft 1951.
  • FIG. 138 (a) is a perspective view of the tip member 1955
  • FIG. 138 (b) is an axial sectional view of the tip member 1955 cut along the line indicated by C 138a- C 138a in FIG. 138 (a).
  • FIG. 139 (a) is an enlarged view focusing on the portion of the rotational force transmission member 1958 in FIG. 138 (a)
  • FIG. 139 (b) is a portion of the portion of the rotational force transmission member 1958 in FIG. 138 (b). Each enlarged view is shown with a focus on.
  • the tip member 1955 includes a shaft 1957, a holding member 1956, and a rotational force receiving member 1958.
  • the shaft 1957 is a columnar member, which is a quadrangular column having a rectangular cross section in this embodiment.
  • the cross-sectional shape of the shaft 1957 is substantially the same as the opening 1951b of the rotating shaft 1951 described above, or slightly smaller than the opening 1951b.
  • the holding member 1956 is a plate-like member disposed at one end of the shaft 1957.
  • the holding member 1956 and the shaft 1957 are arranged in a form in which one surface of the holding member 1956 is superposed on one end surface of the holding member 1956. Both may be formed by separate members and bonded or fused, or may be formed integrally.
  • the holding member 1956 is formed larger than the shaft 1957 in the direction orthogonal to the axial direction. This size and shape can be accommodated inside the above-described rotation shaft 1951 and cannot pass through the opening 1951b. Thereby, the tip member 1955 can be held on the rotation shaft 1951.
  • the outer shape of the holding member 1956 is substantially the same (that is, circular) as the sectional shape inside the rotation shaft 1951.
  • the rotational force receiving member 1958 is disposed at the end of the shaft 1957 opposite to the holding member 1956, and has a cylindrical receiving member 1958 and two engaging members erected from one end face of the receiving member 1959. 1960.
  • the shaft 1957 and the rotational force receiving member 1958 may be formed of different members and bonded or fused together, or may be formed integrally.
  • the receiving member 1959 is a member based on a column provided at the end of the shaft 1957 opposite to the holding member 1956 and is disposed coaxially with the shaft 1957.
  • the receiving member 1959 has an inclined surface 1959c that is inclined in the direction along the axial direction at the outer peripheral portion thereof. As shown in FIGS. 138 (b) and 139 (b), the inclined surface 1959 c has an inclination that decreases in diameter toward the engaging member 1960, and its end is a member of the receiving member 1959.
  • the joint member 1960 is connected to the end surface (edge portion 59d) provided. Further, the receiving member 1959 has a recess 1959a on the surface on which the engaging member 1960 is formed.
  • the concave portion 1959a is formed so that a distal end portion of a drive shaft 70, which will be described later, enters here, whereby the axis of the shaft member 1950 (end member 1930) and the axis of the drive shaft 70 coincide.
  • the bottom surface 59b of the recess 1959a is preferably a smooth slope or curved surface from the viewpoint of smooth engagement and disengagement with the drive shaft 70. From this point of view, the recess 1959a is preferably in the form of a part of a spherical surface with the axial line as the deepest part.
  • the two engaging members 1960 are protrusion-like members, and are disposed at the outer peripheral end portion of the receiving member 1959 on the surface opposite to the side connected to the shaft 1957, and are separated by the same distance from the axis of the receiving member 1959. Both are arranged at symmetrical positions across the axis.
  • the interval between the two engaging members 1960 is formed to be approximately the same as or slightly larger than the diameter of the shaft portion 72 of the drive shaft 70.
  • the interval between the two engaging members 1960 is such that the shaft 72 of the driving shaft 70 is disposed between the two engaging members 1960, as can be seen with reference to FIG.
  • the engaging member 1960 is configured to be hooked.
  • the engaging member 1960 is configured as a pair by the two engaging members 1960 as described above. In the present embodiment, an example in which a pair of engagement members 1960 are arranged has been described, but two pairs (four), three pairs (six), or more engagement members may be provided.
  • the engaging member 1960 has the shape shown in FIGS. 138 (a) to 139 (b).
  • the shape of the surface forming the engaging member 1960 is as follows. Of the surfaces of the engaging member 1960, a surface 1960 a that is the outer peripheral side of the receiving member 1959 is a surface 1960 a that is continuous with an inclined surface 1959 c formed on the outer periphery of the receiving member 1959. Accordingly, the surface 1960a is inclined or curved so as to approach the axis as it is separated from the recess 1959a. Of the surfaces of the engaging member 1960, the surface 1960b facing the recess 1959a is a surface 1960b continuous with the bottom surface 1959b of the recess 1959a.
  • the surface 1960b is inclined or curved so as to move away from the axis as it is separated from the recess 1959a.
  • the surface 1960c which is one surface facing the circumferential direction of the receiving member 1959 among the surfaces of the engaging member 1960, has a normal line (for example, a line indicated by N in FIG. 139 (b)) at any portion thereof. It has an inclination or a curvature that faces away from the receiving member 1959.
  • the surface 1960e which is the other surface facing the circumferential direction of the receiving member 1959 on the surface opposite to the surface 1960c among the surfaces of the engaging member 1960 has an inclined or curved surface so as to form a recess 1960d. ing.
  • the recess 1960d is a recess that is recessed in the circumferential direction of the receiving member 1959.
  • the recess 1960d is formed in such a size that a part of the drive projection 71 of the drive shaft 70 enters inside the recess 1960d and the drive projection 71 engages with the engagement member 1960.
  • the two engaging members 1960 are arranged so that the surface 1960e of one engaging member 1960 faces the surface 1960c of the other engaging member 1960 in the circumferential direction of the receiving member 1959.
  • the recess 1960d is formed so as to be recessed in the rotation direction of the engaging member 1960 where the driving force should be transmitted. As a result, as will be described later, the drive protrusion 71 of the drive shaft 70 can be appropriately engaged.
  • the tip member elastic member 1965 and the rotating shaft elastic member 1966 are so-called elastic members, and both function as means for moving and rotating the rotational force receiving member 1958.
  • these are string wound springs.
  • the pin 1967 is a means for moving and rotating the rotational force receiving member 1958 and is a rod-shaped member that functions as a protrusion that moves inside the screw-shaped groove 1947. The arrangement and operation of these members will be described later.
  • the material which comprises each member of the shaft member 1950 is not specifically limited, various resin or metals can be used.
  • resin for example, polyacetal, polycarbonate, PPS (polyphenylene sulfide), PAI (polyamideimide), PEEK (polyetheretherketone), PEI (polyetherimide), PFA (4F perfluoroalkyl vinyl ether), PES (Polyethersulfone), LCP (liquid crystal polymer) resin, PA-MXD6 (polyamide MXD6) and the like can be suitably used.
  • glass fiber, carbon fiber, inorganic filler, or the like may be blended in the resin according to the load torque.
  • a metal may be inserted into the resin to further increase the rigidity.
  • cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), etc. can be used.
  • MIM method metal powder injection molding method
  • metal powder sintering lamination method so-called 3D printer
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various platings can be applied to improve surface functionality (such as lubricity and corrosion resistance).
  • the shaft member 1950 or any member included in the shaft member 1950 is manufactured by bending a metal plate or by impregnating a metal, glass, carbon fiber, or the like with a resin. May be.
  • FIG. 140 is an axial sectional view of the end member 1930.
  • 141A is an end view of the end member 1930 along the line indicated by C 141a -C 141a in FIG. 140
  • FIG. 141B is a line indicated by C 141b -C 141b in FIG. 141A.
  • FIG. However, in FIGS. 141A and 141B, only the pin 1967 is shown for the shaft member 1950 for easy viewing.
  • the shaft 1957 of the tip member 1955 is passed through the opening 1951 b of the rotating shaft 1951.
  • the holding member 1956 of the tip member 1955 is included inside the rotation shaft 1951, and the rotational force receiving member 1958 of the tip member 1955 is disposed so as to protrude from the rotation shaft 1951.
  • the pin 1967 is passed through the two pin passage holes 1951c of the rotating shaft 1951. At this time, both ends of the pin 1967 protrude from the side surfaces of the rotation shaft 1951 and function as protrusions.
  • the tip member elastic member 1965 is disposed between the holding member 1956 of the tip member 1955 and the pin 1967 inside the rotation shaft 1951. Therefore, one end of the elastic member for tip member 1965 contacts the holding member 1956 and the other contacts the pin 1967.
  • the tip member 1955 is biased in a direction in which the tip member elastic member 1965 biases the tip member 1955 and causes the tip member 1955 to protrude from the rotation shaft 1951.
  • the holding member 1956 cannot pass through the opening 1951 b of the rotating shaft 1951, the tip member 1955 is held in a biased state without being detached from the rotating shaft 1951.
  • one of the rotation shaft elastic members 66 contacts the rotation shaft 1951 and the other contacts the bottom plate 1946.
  • the rotating shaft elastic member 66 biases the rotating shaft 1951 and the rotating shaft 1951 is biased in a direction in which the rotating shaft 1951 including the tip member 1955 protrudes from the bearing member 1940.
  • the tip of the pin 1967 is inserted into the threaded groove 1947 of the bearing member 1940 and the both ends of the threaded groove 1947 are closed as described above, the rotating shaft 1951 is disengaged from the bearing member 1940. It is held in an energized state.
  • the axes of the bearing member 1940, the rotation shaft 1951, and the tip member 1955 coincide with each other in a posture in which the respective members are combined.
  • FIG. 142 shows a perspective view of the end member 1930 in one posture.
  • the shaft member 1950 as a whole protrudes from the bearing member 1940 as far as possible by the tip member elastic member 1965 and the rotating shaft elastic member 1966.
  • the end member 1930 is in this posture.
  • the end member 1930 rotates around the axis of the end member 1930 and moves in the direction along the axis of the rotation shaft 1951 and the tip member 1955 by the rotation of the rotational force receiving member 1958.
  • FIG. 143 shows a diagram for explanation.
  • FIG. 143 is a view from the same viewpoint as FIG. That is, in the end member 1930, when a force is applied to the rotational force receiving member 1958 of the tip member 1955 in the axial direction, the other members are not deformed as shown by the arrow C 143 in FIG. Only 1955 moves in the axial direction.
  • the end member 1930 as described above is bonded by inserting the fitting portion 1943 of the end member 1930 into one end of the photosensitive drum 11 (see also FIGS. 144 (a) and 145). Further, the non-driving side end member 20 can be disposed at the other end of the photoconductive drum 11 to form a photoconductive drum unit.
  • FIG. 144 (a) is a perspective view showing a scene in which the rotational force receiving member 1958 of the end member 1930 is engaged with the drive shaft 70.
  • FIG. 144 (b) shows the engaged scene in an enlarged manner.
  • FIG. 145 shows a cross-sectional view along the axial direction.
  • the axis of the drive shaft 70 matches the axis of the shaft member 1950.
  • the tip of the shaft portion 72 of the drive shaft 70 enters between the two engaging members 1960 of the rotational force receiving member 1958 and is disposed inside the recess 1959a of the receiving member 1958.
  • the drive projection 71 of the drive shaft 70 is engaged with the engaging member 1960 of the rotational force receiving member 1958 so as to be hooked from the side surface.
  • the drive protrusion 71 enters the inside of the recess 1960 d of the engagement member 1960.
  • the drive protrusion 71 of the drive shaft 70 enters and engages with the recess 1960d of the engagement member 1960 of the rotational force receiving member 1958, the engagement between the two is not released and the stable connection is maintained.
  • the force to move in the direction indicated by the arrow C 144d becomes a force that pulls the shaft 70, and acts to stabilize the rotation.
  • the pulling force by the threaded groove 1947 is weaker than the force by which the engaging member 1960 engages with the drive shaft 70. More specifically, the following configuration is preferable.
  • FIG. 146 shows a schematic diagram for explaining the premise of the first to third modifications shown below.
  • FIG. 146 (a) is a diagram showing a state in which the rotational force is transmitted from the drive shaft 70 ′ of the apparatus main body to the end member 1930 ′ of the process cartridge.
  • FIG. 146 (a) is a schematic view of the posture corresponding to FIG.
  • FIG. 6B is a schematic diagram of a scene in which the end member 1930 ′ of the process cartridge is detached from the drive shaft 70 ′ of the apparatus main body.
  • the drive protrusion 71 ′ of the drive shaft 70 ′ is engaged with the two engagement members 1960 ′ of the end member 1930 ′, and the drive protrusion 71 ′ is around the axis of the drive shaft 70 ′.
  • Rotating as indicated by arrow C 146a The rotational force transmitted to the engaging member 1960 ′ rotates the shaft 51 ′, and further rotates the pin 1967 ′ around the axis of the shaft 1951 ′. Both ends of the pin 1967 ′ are inserted into a threaded groove 1947 ′ of the bearing member 1940 ′.
  • the engagement member 1960 ′ has an inclined surface inclined in a direction in which the engagement member 1960 ′ is difficult to be detached from the drive shaft 70 ′, and the drive protrusion 71 ′ contacts the inclined surface. Rotational force is transmitted.
  • the pin 1967 ′ presses the side wall of the screw groove 1947 ′ with the force indicated by G in FIG. 146 (a) by the transmitted rotational force, but the side wall of the screw groove 1947 ′ is the axis of the end member 1930 ′. Since the inclined surface is inclined with respect to the direction along, a component force acts downward on the paper surface as indicated by Ga.
  • This component force Ga is a force in the opposite direction to the component force Fa. Since the component force Ga is generated in the same way at both ends of the pin 1967 ', the total is 2 ⁇ Ga.
  • Fa ⁇ Ga (2) Is preferred.
  • FIG. 147 shows a diagram for explaining the first modification.
  • FIG. 147 is a cross-sectional view along the axial direction showing a portion of the receiving member 2059 provided in the modification, and corresponds to FIG. Except for the receiving member 2059, the description of the end member 1930 of the first embodiment is applicable.
  • parts having the same configuration as the receiving member 1959 are denoted by the same reference numerals.
  • a recess 2059a is formed on the end surface of the receiving member 2059 on the side where the engaging member 1960 is formed.
  • the recess 2059a is formed so that the tip of the drive shaft 70 enters here.
  • the side surface 159b of the concave portion 159a is inclined so as to spread toward the opening side, and further has a convex portion 2059c.
  • FIG. 148 shows a scene where the receiving member 2059 is engaged with the drive shaft 70.
  • FIG. 148 (a) shows a posture in which the rotational force is transmitted
  • FIG. 148 (b) shows a scene in which the drive shaft 70 is detached from the receiving member 2059.
  • the receiving member 2059 and the drive shaft 70 are engaged as usual as shown in FIG. 148 (a), and the rotational force is transmitted. At this time, it can be configured to satisfy the above formula (1).
  • FIG. 149 shows a diagram for explaining the second modification.
  • FIG. 149 is a perspective view showing a portion of the receiving member 2159 provided in the modification. Except for the receiving member 2159, the description of the end member 1930 of the first embodiment is applicable. Note that in FIG. 149, the same reference numerals are given to portions having the same configuration as the receiving member 1959.
  • a recess 2159a is formed on the end surface of the receiving member 2159 on the side where the engaging member 1960 is formed.
  • the recess 2159a is formed so that the tip of the drive shaft 70 can enter.
  • a screw-like groove 2159b is formed on the side surface of the recess 2159a so as to extend radially from the axis and bend in the circumferential direction around the axis.
  • Such a receiving member 2159 operates as follows. 150, 151, and 152 show a scene in which the receiving member 2159 is engaged with the drive shaft 70.
  • FIG. FIG. 150 (a) is a posture in which a rotational force is transmitted
  • FIG. 150 (b) is a posture in which a rotational force is transmitted
  • FIG. 152 is a schematic diagram for explanation represented by following FIG. 146 (b).
  • the receiving member 2159 and the drive shaft 70 are engaged as usual, and the rotational force is transmitted. At this time, it can be configured to satisfy the above formula (1).
  • both the formula (1) and the formula (4) can be achieved, and stable transmission of rotational driving force and smooth detachment of the process cartridge from the drive shaft 70 can be ensured more reliably. be able to.
  • the drive shaft In order to efficiently generate J, it is preferable that the drive shaft easily operates along the spiral groove, and therefore it is preferable that the friction between the two is moderately high.
  • the thread groove may be made of rubber (urethane rubber or the like) or may be rubber coated.
  • FIG. 153 and FIG. 154 are diagrams for explaining the third modification. Even in this case, it is possible to achieve both smoother transmission of the rotational force and easier attachment / detachment of the process cartridge with respect to the preferable force relationship being opposite to each other in the comparison between the above formulas (1) and (2). It is possible to eliminate this in response to the risk of difficulty.
  • the basic shape can be the same as that of the end member 1930, so the reference numeral is the same as that of the end member 1930.
  • FIGS. 153 and 154 show diagrams for explanation.
  • FIGS. 153 (a) and 154 (a) are cross-sectional views showing postures in which the end member 1930 is engaged with the drive shaft 70 and torque is transmitted.
  • FIG. 153 (b) is a diagram illustrating an example in which the rotation shaft 1951 and the tip member 1955 are tilted
  • FIG. 154 (b) is a diagram illustrating an example in which the tip member 1955 is tilted.
  • the tip member 1955 drive shaft 70
  • the leading end member 1955 is inclined at an angle of ⁇ 2 with respect to the axis.
  • a method of providing a predetermined gap can be mentioned.
  • the rotation is caused by the inclination ⁇ 1 , the inclination ⁇ 2 , or the inclination ⁇ 1 + ⁇ 2 that is the sum of both.
  • the receiving member 1959 and the drive shaft 70 are engaged as usual, and the rotational force is transmitted. At this time, it can be configured to satisfy the above formula (1).
  • the specific inclination angle is greater than 0 ° and less than or equal to 10 ° (indicated by ⁇ 1 and ⁇ 2 in FIGS. 153 (b) and 154 (b)) with respect to the axis of the end member 30. Is preferred. If it is 0 °, it will not tilt. Further, if the angle is larger than 10 °, the allowable inclination is too large, and there is a risk of rattling or the like even in a posture in which the rotational force is normally transmitted as shown in FIGS. The possibility of inhibiting rotation increases. More preferably, it is larger than 0 ° and not larger than 5 °.
  • the specific form for allowing the inclination in a specific direction is not particularly limited.
  • a hole for restricting the inclination of the shaft member 1950 is formed long in the direction in which the inclination is allowed. be able to.
  • FIG. 155 is an exploded perspective view of the end member 2230 included in the twenty-first form
  • FIG. 156 is an exploded cross-sectional view of the end member 2230 along the axial direction.
  • the end member 2230 includes a bearing member 2240 and a shaft member 2250.
  • the bearing member 2240 is a member that is joined to the end of the photosensitive drum 11 in the end member 2230.
  • FIG. 157 (a) is a perspective view of the main body 2241 of the bearing member 2240
  • FIG. 157 (b) is a plan view of the main body 2241.
  • the bearing member 2240 has a main body 2241 and a lid member 2242. As can be seen from FIGS. 155 to 157, the main body 2241 includes a cylindrical body 1941, a fitting portion 1943, a gear portion 1944, and a shaft member holding portion 2245. It is prepared for.
  • the shaft member holding portion 2245 is formed on the inner side of the cylindrical body 1941 and has a function of holding the shaft member 2250 on the bearing member 2240 while ensuring a predetermined operation of the shaft member 2250. It functions as one of means for moving and rotating the member 1958.
  • the shaft member holding portion 2245 has a bottom plate 2246 and a screw-shaped portion 2247 that is a space whose section is twisted in the axial direction.
  • the bottom plate 2246 is a disk-shaped member and is disposed so as to close and partition at least a part of the inside of the cylindrical body 1941. Thereby, the shaft member 2250 is supported. In this embodiment, a hole 2246a is formed at the center.
  • the bottom plate 2246 can be attached to the cylindrical body 1941 by adhesion, fusion, or the like. Moreover, the cylindrical body 1941 and the bottom plate 2246 may be integrally formed.
  • the screw-like portion 2247 is a space formed on the inner surface of the cylindrical body 1941. As can be seen from FIGS. It is formed so as to rotate little by little around the axis along the axial direction, and is a so-called twisted triangular prism shaped space. (In FIG. 157 (b), the opening edge of the screw-shaped portion is represented by a solid line, and an example of the cross section in the axial direction is represented by a broken line.) One end in the longitudinal direction of the screw-shaped portion 2247 is partially blocked by the bottom plate 2246, and the other end opposite to this is partially blocked by the lid member 2242.
  • the lid member 2242 is a disk-like member disposed on the opposite side of the bottom plate 2246 with the shaft member holding portion 2245 interposed therebetween, and has a hole 2242a at the center thereof.
  • the means for fixing the lid is not limited to this, and other means such as an adhesive or heat or ultrasonic fusion can also be used.
  • the material which comprises each member of the bearing member 2240 is not specifically limited, various resin or metals can be used.
  • resin for example, polyacetal, polycarbonate, PPS (polyphenylene sulfide), PAI (polyamideimide), PEEK (polyetheretherketone), PEI (polyetherimide), PFA (4F perfluoroalkyl vinyl ether), PES (Polyethersulfone), LCP (liquid crystal polymer) resin, PA-MXD6 (polyamide MXD6) and the like can be suitably used.
  • glass fiber, carbon fiber, inorganic filler, or the like may be blended in the resin according to the load torque.
  • a metal may be inserted into the resin to further increase the rigidity.
  • the resin may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • the bearing member 2240 and any member included in the bearing member 2240 are manufactured by bending a metal plate or impregnating a metal, glass, carbon fiber, or the like with a resin from the viewpoint of giving elasticity. Or you may.
  • the shaft member 2250 includes a rotating shaft 2251 and a tip member 2255. Further, the shaft member 2250 includes a tip end member elastic member 2265, a rotation shaft elastic member 2266, and a pin 2267.
  • the tip member elastic member 2265 and the rotating shaft elastic member 2266 of this embodiment are both string springs. Each will be described below.
  • Rotating shaft 2251 is a rotational force transmitting portion that transmits rotational force received by tip member 2255 to bearing member 2240, and is a shaft-like member that functions as a means for moving and rotating rotational force receiving member 1958.
  • FIG. 158 shows a perspective view of the rotating shaft 2251.
  • the rotating shaft 2251 has a cylindrical member 2252 and a columnar member 2253 connected coaxially.
  • the inside of the cylinder is sized so that the elastic member 2265 for the tip member can be inserted.
  • the rotating shaft 2251 is formed with two elongated holes 2251a penetrating in a direction perpendicular to the axial direction in the cylindrical portion.
  • the two long holes 2251 a are arranged on one diameter of the cylindrical member 2252.
  • the long hole 2251a has the longitudinal direction as the longitudinal direction.
  • a twisted spiral columnar portion 2254 corresponding to the shape of the threaded portion 2247 is provided at the boundary between the cylindrical member 2252 and the columnar member 2253 on the outer peripheral portion of the rotating shaft 2251. Yes.
  • the tip member 2255 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the rotating shaft 2251. As can be seen from FIGS. 155 and 156, the tip member 2255 includes a shaft 2257 and a rotational force receiving member 1958.
  • the shaft 2257 is a columnar member and is a cylinder in this embodiment.
  • the shaft 2257 is formed with a hole 2257a penetrating in a direction orthogonal to the axis.
  • Rotational force receiving member 1958 is the same as end member 1930 described above, and a description thereof is omitted.
  • the tip member elastic member 2265 and the rotation shaft elastic member 2266 are so-called elastic members, and both function as means for moving and rotating the rotational force receiving member 1958. In the present embodiment, these are string wound springs.
  • the pin 2267 is a means for holding the tip member 2255 on the rotation shaft 2251 so as to be movable.
  • the material which comprises each member of the shaft member 2250 is not specifically limited, various resin or metals can be used.
  • resin for example, polyacetal, polycarbonate, PPS (polyphenylene sulfide), PAI (polyamideimide), PEEK (polyetheretherketone), PEI (polyetherimide), PFA (4F perfluoroalkyl vinyl ether), PES (Polyethersulfone), LCP (liquid crystal polymer) resin, PA-MXD6 (polyamide MXD6) and the like can be suitably used.
  • glass fiber, carbon fiber, inorganic filler, or the like may be blended in the resin according to the load torque.
  • a metal may be inserted into the resin to further increase the rigidity.
  • cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), etc. can be used.
  • MIM method metal powder injection molding method
  • metal powder sintering lamination method so-called 3D printer
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various platings can be applied to improve surface functionality (such as lubricity and corrosion resistance).
  • the shaft member 2250 and any of the members included in the shaft member 2250 are manufactured by bending a metal plate, or by impregnating a metal, glass, carbon fiber, or the like with a resin from the viewpoint of giving elasticity. May be.
  • bearing member 2240 and shaft member 2250 are combined as follows to form an end member 2230. From the description of the combination, each member, the size of the part, the structure, the relationship between the members, the size of the parts, and the like are further understood.
  • the shaft 2257 of the tip member 2255 is disposed inside the cylindrical member 2252 of the rotation shaft 2251, and the pin 2267 passes through the long hole 2251 a of the rotation shaft 2251 and the hole 2257 a of the tip member 2255. Is done. As a result, the tip member 2255 is held by the rotation shaft 2251. At this time, the tip member elastic member 2265 is disposed inside the cylindrical member 2252, and thereby the tip member 2255 is urged in a direction of protruding from the rotation shaft 2251.
  • the cylindrical member 2253 on the side where the tip member 2255 is not disposed is the main body 2241 of the bearing member 2240.
  • the shaft member holding portion 2245 formed on the inner side is inserted toward the bottom plate 2246 side.
  • the spiral columnar portion 2254 of the rotation shaft 2251 is disposed inside the spiral portion 2247 of the shaft member holding portion 2245.
  • the cylindrical member 2253 is passed through the hole 2246 a of the bottom plate 2246.
  • a rotating shaft elastic member 2266 is disposed between the bottom plate 2246 and the screw-like columnar portion 2254 to urge the rotating shaft 2251 toward the tip member 2255 side.
  • the lid member 2242 is disposed, and the rotation shaft 2251 is held by the bearing member 2240. At this time, the cylindrical member 2252 of the rotating shaft 2251 is disposed in the hole 2242a of the lid member 2242, and the screw-like columnar portion 2254 cannot pass through the hole 2242a. 2254 is held inside the bearing member 2240, and the rotating shaft 2251 is held in a state of being biased without coming off the bearing member 2240.
  • the axes of the bearing member 2240, the rotation shaft 2251, and the tip member 2255 coincide with each other in a posture in which the members are combined.
  • the relationship between the screw-shaped portion 2247 and the screw-shaped columnar portion 2254 works in accordance with the example of the relationship between the screw-shaped groove 1947 and the pin 1967 in the end member 1930. It can operate in the same manner as the part member 1930.
  • FIG. 159 and 160 are views for explaining an end member 2230 'according to a modification.
  • FIG. 159 is an exploded perspective view of the bearing member 2240 ′ included in the end member 2230 ′
  • FIG. 160A is a cross-sectional view along the axial direction of the end member 2230 ′
  • FIG. It is a perspective view along the axial direction which shows the inclined scene.
  • a bearing member 2240 ' is applied instead of the bearing member 2240.
  • the hole 2246'a of the bottom plate 2246 'provided in the main body 2241' is a long hole.
  • the hole 2242'a of the lid member 2242 ' is also a long hole.
  • the longitudinal directions of the two holes 2246'a and 2242'a are the same.
  • the shaft member 2250 (rotating shaft 2251) inserted into the holes 2246′a and 2242′a is inserted into the holes 2246′a and 2242′a. Inclination in the longitudinal direction is allowed, and inclination in the short direction is restricted. At this time, since it is mainly the hole 2242′a that restricts the inclination of the shaft member 2250 (the rotation shaft 2251), the holes 2246a ′ and 2246′a have the same longitudinal size, and the hole 2246′a It is good also as a large circular hole instead of a long hole.
  • the direction of tilting can be controlled as necessary, and a more suitable tilting can be performed.
  • FIG. 161 shows an exploded perspective view of a part of the end member 2230 ′′ according to another modification.
  • the rotation of the main body 2241 ′′ and the shaft member 2250 ′′ of the bearing member 2240 ′′ is shown. Only the moving shaft 2251 "is shown. The other members are the same as those described so far, and the description thereof is omitted.
  • the helical columnar portion 2254 is formed by a helical gear
  • the helical portion 2247 is formed by a helical internal gear. In such a configuration, this is the same as the helical portion 2247 in the end member 2230. It acts in accordance with the example of the relationship with the spiral columnar portion 2254 and can operate in the same manner as the end member 1930.
  • the number of teeth in the helical gear and the helical internal gear is not particularly limited and can be appropriately adjusted.
  • a so-called gear shape such as a thin spur gear or the like is applied instead of the helical gear in the columnar portion 2254 ", and this gear-shaped tooth is inserted in the groove instead of the screw-shaped portion 2247". It is possible to configure a screw-shaped portion that can move the. In that case, regarding the form of the screw-shaped portion, the rotation of the shaft member and the movement in the axial direction can be defined by how many times it is twisted per 1 mm along the axial direction. Further, in addition to gear-shaped teeth and the like, a projecting portion such as a pin can be formed and applied.
  • the rotational force receiving member can be tilted with respect to the axial direction by forming it so as to tilt.
  • FIG. 162 is a diagram for explaining the twenty-second embodiment, and is a perspective view of the end member 2330.
  • the end member 2330 includes a bearing member 2340 and a shaft member 2350.
  • FIG. 163 shows an exploded perspective view of the end member 2330.
  • the bearing member 2340 is a member that is joined to the end of the photosensitive drum 11 in the end member 2330.
  • FIG. 164 shows a cross-sectional view of the bearing member 2340 along the axial direction.
  • the bearing member 2340 includes a cylindrical body 1941, a contact wall 1942, a fitting portion 1943, a gear portion 1944, and a shaft member holding portion 2345, as can be seen from FIGS. 162 to 164.
  • the shaft member holding portion 2345 is formed on the inner side of the cylindrical body 1941 and has a function of holding the shaft member 2350 on the bearing member 2340 while ensuring a predetermined operation of the shaft member 2350. It functions as one of means for moving and rotating the member 1958.
  • the shaft member holding portion 2345 has a lid member (bottom plate) 1946 and a straight groove 2347.
  • the straight grooves 2347 are a plurality of straight grooves formed on the inner surface of the cylindrical body 1941.
  • the depth direction of the linear grooves 2347 is radial (radius) around the axis of the cylindrical body 1941 in the same manner as the screw-shaped groove 1947 described above. Direction).
  • the longitudinal direction of the linear groove 2347 is parallel to the axis of the cylindrical body 1941.
  • the width direction of the linear groove 2347 is approximately the same as the diameter of the pin 1967 so that the end portion of the pin 1967 is inserted in the same manner as the spiral groove 1947 and the end portion of the pin 1967 can smoothly move in the groove. Is formed. Note that one end in the longitudinal direction of the linear groove 2347 is closed by a lid member 1946, and the other end opposite to this is closed without reaching the end surface of the cylindrical body 1941.
  • At least one set of the plurality of linear grooves 2347 facing each other across the axis of the cylindrical body 1941 is provided. Therefore, two or more sets may be provided.
  • the shaft member 2350 of the end member 2330 includes a rotation shaft 2351 and a tip member 2355. Further, the shaft member 2350 includes a tip end member elastic member 1965, a rotating shaft elastic member 1966, and a pin 1967.
  • the tip member elastic member 1965 and the rotating shaft elastic member 1966 of this embodiment are both string springs.
  • the rotating shaft 2351 is a rotating force transmitting portion that transmits the rotating force received by the tip member 2355 to the bearing member 2340 and is a shaft-like member that functions as a means for moving and rotating the rotating force receiving member 1958.
  • FIG. 165 (a) is a perspective view of the rotating shaft 2351
  • FIG. 165 (b) is an axial sectional view cut along a line indicated by C 165b -C 165b in FIG. 165 (a).
  • the rotation shaft 2351 is cylindrical.
  • the inside of the cylinder is sized such that the tip member elastic member 1965 can be inserted.
  • the rotating shaft 2351 is provided with a lid portion 2351a at one end thereof, and a narrowed opening portion 2351b is formed in the lid portion 2351a.
  • the opening 2351b is circular.
  • rotation shaft 2351 is provided at the end opposite to the end where the lid portion 2351a is disposed, perpendicular to the axis of the cylinder, in one diameter direction of the cylinder, and penetrates the inside and outside of the cylinder.
  • Two pin through holes 1951c are formed.
  • a pin 1967 (see FIG. 163) is passed through the pin through hole 1951c.
  • a plurality of screw grooves 2352 are formed on the inner surface of the cylinder of the rotation shaft 2351.
  • the spiral groove 2352 is a spiral groove, and the depth direction thereof is formed radially (in the radial direction) about the axis of the rotation shaft 2351, similar to the above-described spiral groove 1947.
  • the longitudinal direction of the spiral groove 2352 is a direction along the axis of the rotation shaft 2351 and twisted so that one end side and the other end side thereof are shifted in a direction along the inner circumference of the rotation shaft 2351, It is formed in a screw shape.
  • the end portion of the projection 2356 of the tip member 2355 described later is inserted in the same manner as the spiral groove 1947, and the end portion of the projection 2356 is projected to the extent that it can smoothly move in the groove. It is formed to have approximately the same diameter as 2356. Note that one end in the longitudinal direction of the spiral groove 2352 is closed by a lid material 2351a.
  • At least one set of the plurality of spiral grooves 2352 facing each other with the axis of the rotating shaft 2351 interposed therebetween is provided.
  • this embodiment is an example in which a total of six screw-like grooves 2352 are formed, one set may have a total of two screw-like grooves formed.
  • two sets or four or more sets of screw grooves may be provided.
  • the tip member 2355 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the rotating shaft 2351.
  • FIG. 166 shows a perspective view of the tip member 2355.
  • the distal end member 2355 includes a shaft 2357, a protrusion 2356, and a rotational force receiving member 1958.
  • the shaft 2357 is a columnar member and is a cylinder in this embodiment. This cross-sectional shape is substantially the same as the opening 2351b of the rotating shaft 2351 described above, or is slightly smaller than the opening 2351b.
  • the protrusions 2356 are two protrusions that are provided on the opposite side of the shaft 2357 from the side where the rotational force receiving member 1958 is disposed and project from the side surface of the shaft 2357.
  • the two protrusions 2356 are disposed at symmetrical positions with the axis of the shaft 2357 interposed therebetween.
  • FIG. 167 is an axial sectional view of the end member 2330.
  • FIG. 168 (a) is an end view of the end member 2330 along the line indicated by C 168a- C 168a in FIG. 167, and FIG. It is a figure explaining a relationship.
  • the shaft 2357 of the tip member 2355 is passed through the opening 2351 b of the rotating shaft 2351.
  • the protrusion 2356 of the tip member 2355 is included inside the rotation shaft 2351, and the rotational force receiving member 1958 of the tip member 2355 is disposed so as to protrude from the rotation shaft 2351.
  • the protrusion 2356 of the tip member 2355 is disposed in the screw-like groove 2352 of the rotating shaft 2351 as shown in FIGS. 168 (a) and 168 (b).
  • the pin 1967 is passed through the two pin passage holes 1951c of the rotating shaft 2351.
  • both ends of the pin 1967 protrude from the side surfaces of the rotation shaft 2351 and function as protrusions.
  • a tip member elastic member 1965 is disposed between the shaft 2357 of the tip member 2355 and the pin 1967 inside the rotation shaft 2351. Therefore, one end of the elastic member 1965 for the tip member contacts the shaft 2357 and the other contacts the pin 1967. Accordingly, the tip member 2355 is biased in a direction in which the tip member elastic member 1965 biases the tip member 2355 and causes the tip member 2355 to protrude from the rotation shaft 2351.
  • the tip member 2355 since the protrusion 2356 cannot pass through the opening 2351b of the rotating shaft 2351, the tip member 2355 is held in a biased state without being detached from the rotating shaft 2351.
  • the side on which the tip member 2355 is not disposed is the shaft member holding portion 2345 formed inside the bearing member 2340. It is inserted toward the lid member 1946 side. At this time, the end portion of the pin 1967 protruding from the side surface of the rotating shaft 2351 is inserted into the linear groove 2347 formed in the shaft member holding portion 2345 of the bearing member 2340 as shown in FIG. As can be seen from FIG. 167, the rotating shaft elastic member 1966 is disposed between the rotating shaft 2351 and the lid member 1946 inside the bearing member 2340. Therefore, one of the rotating shaft elastic members 1966 contacts the rotating shaft 2351 and the other contacts the lid member 1946.
  • the rotating shaft elastic member 1966 urges the rotating shaft 2351, and the rotating shaft 2351 is urged in a direction in which the rotating shaft 2351 including the tip member 2355 protrudes from the bearing member 2340.
  • the tip of the pin 1967 is inserted into the linear groove 2347 of the bearing member 2340, and both ends of the linear groove 2347 are closed as described above, so that the rotating shaft 2351 is not detached from the bearing member 2340. Held in a biased state.
  • the axis lines of the bearing member 2340, the rotation shaft 2351, and the tip member 2355 coincide with each other in a posture in which the respective members are combined.
  • FIG. 169 shows an explanatory diagram. That is, in the end member 2330, the rotational force receiving member 1958 of the tip member 2355, when a force is applied in the axial direction as indicated by C 169a in FIG. 169, the projection of the tip member 2355 456 spiral groove 2352 in , The tip member 2355 is rotated about the axis as shown by an arrow C 169b in FIG. 169, and the rotary shaft 2351 is moved in the axial direction as shown by an arrow C 169c in FIG. .
  • the rotational force receiving member is formed to be inclined, and by satisfying the above formulas (1) and (3), more stable transmission of the rotational force and smooth detachment from the drive shaft are possible. It can also be.
  • FIG. 170 is an exploded perspective view of the end member 2430 included in the twenty-third form
  • FIG. 171 is an exploded cross-sectional view of the end member 2430 along the axial direction
  • FIG. 172 is a cross-sectional view along the axial direction of the end member 2430 in which the members are combined.
  • the end member 2430 includes a bearing member 2440 and a shaft member 2450.
  • the bearing member 2440 is a member that is joined to the end of the photosensitive drum 11 in the end member 2430.
  • the bearing member 2440 includes a main body 2441 and a lid member 2442, and the main body 2441 includes a cylindrical body 1941, a fitting portion 1943, a gear portion 1944, and a shaft member holding portion 2445.
  • the shaft member holding portion 2445 is formed on the inner side of the cylindrical body 1941 and has a function of holding the shaft member 2450 on the bearing member 2440 while ensuring a predetermined operation of the shaft member 2450. It functions as one of means for moving and rotating the member 1958.
  • the shaft member holding portion 2445 includes a bottom plate 2446 and a screw groove 2447 that functions as a screw portion.
  • the bottom plate 2446 is a disk-shaped member and is disposed so as to close and partition at least a part of the inside of the cylindrical body 1941.
  • the rotating shaft elastic member 2466 is supported.
  • a hole 2446a is formed at the center thereof, and a cylindrical member 2453 of the rotation shaft 2451 is inserted into the hole 2446a to restrict the tilting of the rotation shaft 2451.
  • the bottom plate 2446 can be attached to the cylindrical body 1941 by adhesion, fusion, or the like. Further, the cylindrical body 1941 and the bottom plate 2446 may be integrally formed.
  • the spiral groove 2447 functions as a portion formed in a spiral shape, and is a plurality of spiral grooves formed on the inner surface of the cylindrical body 1941. Based on the same idea as the spiral groove 1947 of the end member 1930 described above. It can be formed following this. One end in the longitudinal direction of the spiral groove 2447 is closed by the bottom plate 546, and the other end opposite to this is closed by the lid member 2442.
  • the lid member 2442 is a disk-like member disposed on the opposite side of the bottom plate 2446 with the shaft member holding portion 2445 in between, and a hole 2442a is formed at the center thereof.
  • a claw 2442b is provided, which engages with the main body 2441 and is fixed by a so-called snap fit.
  • the means for fixing the lid member is not limited to this, and other means such as an adhesive or heat or ultrasonic fusion can be used.
  • the material which comprises each member of the bearing member 2440 is not specifically limited, various resin or metals can be used.
  • resin for example, polyacetal, polycarbonate, PPS (polyphenylene sulfide), PAI (polyamideimide), PEEK (polyetheretherketone), PEI (polyetherimide), PFA (4F perfluoroalkyl vinyl ether), PES (Polyethersulfone), LCP (liquid crystal polymer) resin, PA-MXD6 (polyamide MXD6) and the like can be suitably used.
  • glass fiber, carbon fiber, inorganic filler, or the like may be blended in the resin according to the load torque.
  • a metal may be inserted into the resin to further increase the rigidity.
  • the resin may contain at least one of fluorine, polyethylene, and silicon rubber to improve the slidability. Further, the resin may be coated with fluorine or a lubricant may be applied.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • the metal plate may be bent or manufactured by impregnating a metal, glass, carbon fiber, or the like with a resin. May be.
  • the shaft member 2450 includes a rotation shaft 2451 and a tip member 2455. Further, the shaft member 2450 includes a tip end member elastic member 2465, a rotation shaft elastic member 2466, a pin 2467, and a pin 2468.
  • the tip member elastic member 2465 and the rotating shaft elastic member 2466 of this embodiment are both string springs. Each will be described below.
  • Rotating shaft 2451 is a rotating member that transmits the rotating force received by tip member 2455 to bearing member 2440, and is a shaft-like member that functions as a means for moving and rotating the rotating force receiving member 1958.
  • the rotating shaft 2451 is formed by coaxially connecting a cylindrical member 2452 and a columnar member 2453.
  • the inside of the cylinder is sized such that the shaft 2457 of the tip member 2455 and the tip member elastic member 2465 can be inserted.
  • the rotation shaft 2451 is formed with two holes 2451a penetrating in a direction perpendicular to the axial direction in the cylindrical portion.
  • the two holes 2451a are arranged on one diameter of the cylindrical member 2452.
  • the rotation shaft 2451 is formed with a hole 2451b penetrating in the direction orthogonal to the axial direction at the end on the columnar member 2453 side of the end in the axial direction of the cylindrical member 2452.
  • the two holes 2451a are arranged on one diameter of the cylindrical member 2452.
  • the tip member 2455 is a member that receives the rotational driving force from the apparatus main body 2 and transmits the driving force to the rotating shaft 2451.
  • the tip member 2455 includes a shaft 2457 and a rotational force receiving member 248.
  • the shaft 2457 is a columnar member and is a cylinder in this embodiment.
  • the shaft 2457 is formed with a long hole 2457a penetrating in a direction perpendicular to the axis.
  • the longitudinal direction of the long hole 2457a is a direction along the axis.
  • the end of the shaft 2457 that is opposite to the rotational force receiving member 1958 is formed thin.
  • Rotational force receiving member 1958 is the same as end member 1930 described above, and a description thereof is omitted.
  • the tip member elastic member 2465 and the rotating shaft elastic member 2466 are so-called elastic members, and both function as means for moving and rotating the rotational force receiving member 1958. In the present embodiment, these are string wound springs.
  • the pin 2467 is means for holding the tip member 2455 on the rotation shaft 2451 so as to be movable along the axial direction.
  • the pin 2468 is a means for holding the rotating shaft 2451 on the bearing member 2440 and moving and rotating the rotating shaft 2451 along the screw groove 2447 to move and rotate the rotating shaft 2451.
  • the material which comprises each member of the shaft member 2450 is not specifically limited, various resin or metals can be used.
  • resin for example, polyacetal, polycarbonate, PPS (polyphenylene sulfide), PAI (polyamideimide), PEEK (polyetheretherketone), PEI (polyetherimide), PFA (4F perfluoroalkyl vinyl ether), PES (Polyethersulfone), LCP (liquid crystal polymer) resin, PA-MXD6 (polyamide MXD6) and the like can be suitably used.
  • glass fiber, carbon fiber, inorganic filler, or the like may be blended in the resin according to the load torque.
  • a metal may be inserted into the resin to further increase the rigidity.
  • cutting by cutting, aluminum die casting, zinc die casting, metal powder injection molding method (so-called MIM method), metal powder sintering lamination method (so-called 3D printer), etc. can be used.
  • MIM method metal powder injection molding method
  • 3D printer metal powder sintering lamination method
  • iron, stainless steel, aluminum, brass, copper, zinc, and alloys thereof may be used regardless of the metal material.
  • various platings can be applied to improve surface functionality (such as lubricity and corrosion resistance).
  • the shaft member 2450 or any member included in the shaft member 2450 is manufactured by bending a metal plate, or by impregnating a metal, glass, carbon fiber, or the like with a resin. May be.
  • bearing member 2440 and shaft member 2450 are combined as follows to form an end member 2430. From the description of the combination, each member, the size of the part, the structure, the relationship between the members, the size of the parts, and the like are further understood.
  • the shaft 2457 of the tip member 2455 is disposed inside the cylindrical member 2452 of the rotation shaft 2451, and the pin 2467 passes through the hole 2451a of the rotation shaft 2451 and the long hole 2457a of the tip member 2455. Is done. As a result, the tip member 2455 is held on the rotation shaft 2451. At this time, the tip member elastic member 2465 is disposed inside the cylindrical member 2452, and thereby the tip member 2455 is biased in a direction of protruding from the rotation shaft 2451.
  • the cylindrical member 2453 on the side where the tip member 2455 is not disposed is the main body 2441 of the bearing member 2440.
  • the shaft member holding portion 2445 formed on the inner side is inserted toward the bottom plate 2446 side.
  • the pins 2468 are inserted into the holes 2451b of the rotation shaft 2451, and both ends of the pins 2468 are arranged so as to protrude from the side surfaces of the rotation shaft 2451.
  • the protruding end of the pin 2468 is disposed in the groove of the screw-shaped groove 2447 of the bearing member 2440.
  • the cylindrical member 2453 is passed through the hole 2446a of the bottom plate 2446.
  • a rotating shaft elastic member 2466 is disposed between the bottom plate 2446 and the cylindrical member 2453 to urge the rotating shaft 2451 toward the tip member 2455 side.
  • the lid member 2442 is disposed, and the rotation shaft 2451 is held by the bearing member 2440.
  • the cylindrical member 2452 of the rotation shaft 2451 is disposed in the hole 2442a of the lid member 2442, and the pin 2468 cannot pass through the hole 2442a, so that the rotation shaft 2451 comes out of the bearing member 2440. It is held in an energized state without.
  • the axes of the bearing member 2440, the rotation shaft 2451, and the tip member 2455 coincide with each other in a posture in which the members are combined.
  • the relationship between the screw groove 24547 and the pin 2468 acts in accordance with the example of the relationship between the screw groove 1947 and the pin 1967 in the end member 1930, and the end member 1930 Can operate in the same way.
  • the tip member 2455 can move in the axial direction with respect to the rotation shaft 2451 regardless of the rotation of the shaft member 2450.
  • the rotational force receiving member is formed to be inclined, and by satisfying the above formulas (1) and (3), more stable transmission of the rotational force and smooth detachment from the drive shaft are possible. It can also be.
  • FIG. 173 shows an exploded perspective view of an end member 2430 ′ which is a modification of the end member 2430.
  • a tip member 2455 ′ is applied instead of the tip member 2455 of the end member 2430. Therefore, the tip member 2455 'will be described here.
  • FIG. 174 shows a perspective view of the tip member 2455 ′. Other portions are the same as the end member 2430.
  • the tip member 2455 ' has a form in which one long plate is bent and functions as a rotational force receiving member. Its shape is as follows.
  • the front end member 2455 ′ has two substrates 2455′a whose one plate surface is arranged substantially in parallel with a predetermined interval, and the two substrates 2455′a have a connecting plate 2455 at one end. It is connected with 'b.
  • An expansion plate that is a plate-like member extending in a direction away from each other from the end (the other end) opposite to the side connected by the connection plate 2455′b of the two substrates 2455′a. 2455'c is arranged.
  • An engagement plate 2455'd that functions as an engagement member extending in a direction away from the substrate 2455'a is provided from the tip of the expansion plate 2455'c. Accordingly, the two engagement plates 2455'd are substantially parallel with a predetermined interval so that their plate surfaces face each other.
  • a recess 2455'e is provided at at least one end of the engagement plate 2455'd in the plate width direction.
  • the two depressions 2455'e are arranged on the opposite side in the plate width direction.
  • the interval between the two engagement plates 2455 ′ d is set such that the tip of the shaft portion 72 of the drive shaft 70 can enter.
  • Such a tip member 2455 ' is made of a material having excellent elasticity. Examples thereof include stainless steel and phosphor bronze. Moreover, these metals can raise the elastic limit by carrying out low-frequency annealing (tempering process), and can improve the spring property.
  • FIG. 175 shows a cross section along the axis of the end member 2430 '.
  • the pin 2467 is inserted between the two substrates 2455'a of the tip member 2455 'to be held in the cylindrical member 2452.
  • the engagement plate 2455′d is elastically deformed when detached from the drive shaft 70 as shown in FIG. And the withdrawal is done smoothly.
  • the rotational force is transmitted with the drive shaft 70 engaged with the end member 2430 ′, the rotational force is transmitted in the plate width direction of the engagement plate 2455′d as indicated by Fk in FIG. The rotational force is appropriately transmitted without significant deformation.
  • any of the end members having the screw-like grooves described so far is operated by the shaft member rotating around the axis by the action of the part formed in the screw shape (for example, FIG. 140) and the movement of the rotational force receiving member in the axial direction irrespective of the rotation (for example, see FIG. 143) were possible.
  • the “operation in which the shaft member moves in the axial direction by rotating the shaft member around the axis” by the action of the portion formed in a spiral shape may be used.
  • “operation in which the rotational force receiving member moves in the axial direction regardless of rotation” is added as an auxiliary.
  • FIGS. 177, 178, and 179 are views for explaining an end member 2430 ′′ according to another modification of the end member 2430 of the twenty-third form
  • FIG. 177 is an exploded perspective view of the end member 2430 ′′
  • FIGS. 178 and 178 are exploded sectional views along the axial direction of the end member 2430 ′′
  • FIG. 179 is a sectional view along the axial direction of the end member 2430 ′′ in which the members are combined.
  • the shaft member 2450 ′′ is applied instead of the shaft member 2450 of the end member 2430.
  • the bearing member 2440 is the same as the bearing member 2440 of the end member 2430.
  • the rotation shaft 2451 ′′ and the tip member 2455 ′′ are integrally formed, and the tip member elastic member 2465 is not provided. Therefore, the rotation shaft 2451 ′′ and the tip member 2455 ′′ are relative to each other.
  • “the operation that the rotational force receiving member moves in the axial direction regardless of the rotation” is the same as that of the shaft member 2450.
  • the shaft member 2450 "is an end portion of only the” operation in which the shaft member moves in the axial direction when the shaft member rotates about the axis "by the action of the screw groove 2447 and the pin 2468. It becomes a member.
  • the relationship between the screw groove 2447 and the pin 2468 acts in accordance with the example of the relationship between the screw groove 1947 and the pin 1967 in the end member 1930. It is possible to transmit the rotational force and to smoothly attach and detach the apparatus main body.
  • the rotational force receiving member is formed to be inclined, and by satisfying the above formulas (1) and (3), more stable transmission of the rotational force and smooth detachment from the drive shaft are possible. It can also be.
  • FIG. 180 is an external perspective view of the photosensitive drum unit 2510.
  • FIG. 180A is an external perspective view of the photosensitive drum unit 2510 showing the driving side end member 2550 in front
  • FIG. 180B is an external view of the photosensitive drum unit 110 showing the non-driving side end member 2520 in front. It is a perspective view.
  • the photosensitive drum unit 2510 includes the photosensitive drum 11, a non-driving side end member 2520, and a driving side end member 2550.
  • the forms of the non-driving side end member 2520, the driving side end member 2550, and the driving shaft 2570 see FIG.
  • the apparatus main body 2 are the same as the above described non-driving side end member 20 and driving side end. It differs from the member 50 and the drive shaft 70 of the apparatus main body 2. Since other than this is the same as the first embodiment, the description thereof is omitted.
  • the non-driving side end member 2520 has a form in which the ground plate 40 is excluded from the non-driving side end member 20 described above. As will be described later, in this example, the ground plate 40 is provided on the drive side end member 50 side. Accordingly, the non-driving side end member 2520 is the same as the non-driving side end member 20 except for the ground plate 40, and therefore the description thereof is omitted here.
  • the driving-side end member 2550 is on the side opposite to the non-driving-side end member 2520 among the end portions in the direction along the axial direction of the photosensitive drum 11 and on the side where the driving shaft 2570 of the apparatus main body 2 is engaged. It is an edge part member arrange
  • FIG. 181 shows an external perspective view of the driving side end member 2550.
  • FIG. 181 (a) is an external perspective view showing the bearing portion 2556 on the front side
  • FIG. 181 (b) is an external perspective view showing the fitting portion 2554 on the opposite side.
  • FIG. 182 (a) is a front view of the drive side end member 2550 as viewed from the bearing portion 2556 side.
  • FIG. 182 (b) is a cross-sectional view taken along the line indicated by C 182b- C 182b in FIG. 182 (a).
  • the driving side end member 2550 includes a main body 2551 and conductive means 2561.
  • the main body 2551 has a cylindrical body 2552, a contact wall 2553, a fitting portion 2554, a gear portion 2555, And a bearing portion 2556.
  • the cylindrical body 2552 is a cylindrical member as a whole with irregularities being formed on the outer peripheral surface thereof as necessary. From a part of the outer peripheral surface, the cylindrical body 2552 comes into contact with and engages with the end surface of the photosensitive drum 11. A contact wall 2553 is erected. As a result, the insertion depth of the driving side end member 2550 into the photosensitive drum 11 is regulated in a posture in which the driving side end member 2550 is mounted on the photosensitive drum 11.
  • One side of the cylindrical body 2552 sandwiching the contact wall 2553 serves as a fitting portion 2554 that is inserted into the inside of the photosensitive drum 11.
  • a fitting portion 2554 is inserted inside the photosensitive drum 11 and is fixed to the inner surface of the photosensitive drum 11 with an adhesive.
  • the driving side end member 2550 is fixed to the end portion of the photosensitive drum 11. Therefore, the outer diameter of the fitting portion 2554 is substantially the same as the inner diameter of the photosensitive drum 11 as long as it can be inserted inside the cylindrical shape of the photosensitive drum 11.
  • a groove 2554a may be formed on the outer peripheral surface of the fitting portion 2554. Accordingly, the groove 2554a is filled with an adhesive, and the adhesion between the main body 2551 (driving side end member 2550) and the photosensitive drum 11 is improved by an anchor effect or the like.
  • a gear portion 2555 is formed on the outer peripheral surface of the cylindrical body 2552 opposite to the fitting portion 2554 with the contact wall 2553 interposed therebetween.
  • the gear portion 2555 is a gear that transmits rotational force to other members such as a developing roller.
  • a helical gear and a spur gear are arranged side by side in the axial direction.
  • the type of gear is not particularly limited, and may be only one of them. Further, the gear is not necessarily provided.
  • the outer end of the end of the cylindrical body 2552 in the axial direction opposite to the side that becomes the fitting portion 2554 is formed in a shape that can function as the bearing portion 2556.
  • the bearing 2556 is a part having a function of engaging with a recess 2571 provided in a drive shaft 2570 (to be described later) of the apparatus main body 2 and transmitting a rotational force from the drive shaft 2570 to the drive side end member 2550.
  • the bearing portion 2556 is configured to be detached from the concave portion 2571 of the drive shaft 2570.
  • the bearing portion 2556 of this embodiment has the following shape.
  • the bearing portion 2556 has a cross section orthogonal to the direction in which the axis extends, and the outer peripheral shape is a hexagon.
  • the bearing portion 2556 does not have a so-called twisted shape in the axial direction, and there is no portion that becomes an undercut. That is, when the bearing portion 2556 is viewed in the axial direction from the base side end portion (fitting portion 2554 side) of the bearing portion 2556 (see the bearing portion 2556 from the back side opposite to FIG. 182 (a)). Sometimes, the shape is such that other parts of the bearing portion 2556 are not visible.
  • the driving side end member 2550 including the bearing portion 2556 is formed, the filling of the material into the mold and the release property are improved, and the productivity is improved. Further, since a rotating mechanism such as a slide core and a piece is not necessary for the mold, the structure of the mold itself can be simplified.
  • a driving shaft 2570 which will be described later, is appropriately engaged with a concave portion 2571 formed so that a triangular cross section is continuously twisted to transmit a rotational force, and the attachment / detachment thereof is also facilitated.
  • the main body 2551 is cylindrical as described above, one hole 2551a communicating therewith is formed inside and penetrates in the direction along the axis.
  • the diameter of the hole 2551a is set such that an end portion (see FIG. 183) of a main body side ground member 2572 of the drive shaft 2570 described later can be inserted.
  • the main body 2551 is preferably formed of a crystalline resin. If it is a crystalline resin, when it is injection-molded using a mold, the flow is good, so the molding processability is good, and it is released from the mold by crystallization and solidification without cooling to the glass transition point. be able to. Therefore, productivity can be greatly improved.
  • the crystalline resin is excellent in heat resistance, solvent resistance, oil resistance, grease resistance, friction wear resistance and slidability, and also in the end member from the viewpoint of rigidity and hardness. It is preferable as a material to be applied.
  • the crystalline resin examples include polyethylene, polypropylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, methylpentene, polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, and nylon.
  • a polyacetal resin from the viewpoint of moldability. Further, from the viewpoint of increasing the strength, glass fiber, carbon fiber or the like may be filled.
  • the conductive means 2561 is a means for electrically connecting the photosensitive drum 11 and the apparatus main body 2 and includes a coil spring 2562, a conductive bar 2563, and a ground plate 2564.
  • the coil spring 2562 functions as a conductive material that is elastically deformed.
  • the coil spring 2562 in the present embodiment is a string-wound spring formed so that one wire is wound spirally.
  • the coil spring 2562 is inserted inside the hole 2551a and includes a conductive material so that it can conduct electricity. Accordingly, the coil spring 2562 is preferably formed of a metal such as steel or copper.
  • the conductive rod 2563 is a conductive rod-like member, has a thickness that fits inside the hole 2551a, has one end in contact with the coil spring 2562, and the other end disposed with the ground plate 2564 in the hole 2551a. The length reaches the vicinity of the opening on the side opposite to the opposite side.
  • the conductive rod 2563 can be formed of a metal such as copper or steel.
  • the conductive rod 2563 is provided with means (prevention of retaining) for restricting movement of the conductive rod 2563 in the direction in which the conductive rod 2563 comes out in order to prevent the conductive rod 2563 from moving to the apparatus body unnecessarily. It may be provided. For example, a part of the hole 2551a is narrowed, or a protrusion is provided on the outer peripheral portion of the conductive rod 2563 so as to be hooked.
  • the earth plate 2564 is a disk-shaped member having conductivity, and a protruding portion 2564a is formed so as to be in contact with the inner surface of the photosensitive drum 11 from the outer peripheral portion thereof.
  • the ground plate 2564 is the same as a known ground plate, and the structure therefor is not particularly limited, and a known shape can be applied.
  • the drive body end member 2550 is formed by combining the main body 2551 and the conductive means 2561 described above. That is, as shown in FIG. 182 (b), the ground plate 2564 is arranged so that the end surface of the fitting portion 2554 of the main body 2551 overlaps the surface, and is fixed by caulking. A coil spring 2562 is inserted inside a hole 2551 a formed in the main body 2551. At this time, of the end portions of the coil spring 2562, the end portion disposed on the fitting portion 2554 side is in contact with the ground plate 2564.
  • a conductive rod 2563 is disposed on the opposite side of the coil spring 2562 from the side in contact with the ground plate 2564, and this is also inserted inside the hole 2551 a, and one end of the conductive rod 2563 is connected to the end of the coil spring 2562. Inserted and touching.
  • the outer tube portion 22 of the non-driving side end member 25120 is inserted into one end portion of the photosensitive drum 11 until it contacts the contact wall 25, and the other end portion of the photosensitive drum 11 is connected to the other end portion.
  • the fitting portion 2554 of the driving side end member 2550 is inserted until it comes into contact with the contact wall 2553, so that the photosensitive drum unit 2510 is obtained as shown in FIGS.
  • the protruding portion 2564 a of the ground plate 2564 comes into contact with the inner surface of the photosensitive drum 11.
  • FIG. 183 shows an end portion of the drive shaft 2570 that is provided in the apparatus main body 2 and applies a rotational driving force to the photosensitive drum unit 2510 and that is engaged with the bearing portion 2556.
  • FIG. 183 (a) is a perspective view
  • FIG. 183 (b) is a front view.
  • a part of the concave portion 2571 is seen through and indicated by a broken line.
  • the opposite end of the drive shaft 2570 is directly or indirectly connected to the drive source of the apparatus body 2.
  • a recess 2571 is provided at the end of the drive shaft 2570 as can be seen from FIGS. 183 (a) and 183 (b).
  • the concave portion 2571 has a substantially equilateral triangular cross section, and is a hole having a shape that twists about the axis at a predetermined angle as it proceeds from the end face of the drive shaft 2570 in the axial depth direction. Depending on the rotation transmission direction, the twist direction may be clockwise or counterclockwise.
  • a conductive rod-like body-side ground member 2572 is disposed on the drive shaft 2570 along the rotation axis of the drive shaft 2570.
  • One end side of the main body side ground member 2572 protrudes from the bottom of the recess 2571 as shown in FIGS. 183 (a) and 183 (b).
  • the other end side of the main body side earth member 2572 protrudes from the opposite end of the drive shaft 2570 and is in contact with the earth member of the apparatus main body 2.
  • the concave portion 2571 when the concave portion 2571 is seen through from the front in the axial direction, it is formed at the triangle formed in the opening of the concave portion 2571 (shown by a solid line) and at the bottom of the concave portion 2571.
  • the triangle (represented by a broken line) appears to overlap two triangles rotated around the axis.
  • an example in which the cross section of the concave portion 2571 is a triangle has been described, but a polygon having a slightly cut off vertex may be used, with the triangle as a reference.
  • FIG. 184 shows a cross-sectional view of the photosensitive drum unit 2510 and its periphery in the process cartridge 3 in a scene where the process cartridge 3 including the photosensitive drum unit 2510 is mounted on the apparatus main body 2.
  • FIG. 184 is a cross-sectional view of the photosensitive drum unit 2510 along the axial direction.
  • FIG. 185 shows the insertion posture as viewed from the axial direction. In this way, at least three apexes on the outer periphery which is the hexagon of the bearing portion 2556 are connected so as to be able to contact the sides of the concave portion 2571 which are the triangles and transmit the rotational force. This rotational force is transmitted to the drive side end member 2550 and rotates the photosensitive drum 11. At this time, the non-driving side end member 2520 also rotates.
  • the tip of the main body side ground member 2572 is inserted into the hole 2551a of the driving side end member 2550 and is brought into contact with the tip of the conductive rod 2563.
  • the photosensitive drum 11, the ground plate 2564, the coil spring 2562, the conductive rod 2563, and the main body side ground member 2572 are electrically connected, and the apparatus main body 2 is conducted from the photosensitive drum 11.
  • a coil spring 2562 is arranged between the conductive rod 2563 and the ground plate 2564, and the coil spring 2562 absorbs fluctuations and pressures in the axial direction of the main body side ground member 2572, and the ground plate 2564 strongly presses. Is prevented. As a result, a problem that the ground plate 2564 is detached from the main body 2551 can be prevented.
  • the support shaft member 3 b extending from the inner surface of the housing 3 a of the process cartridge 3 passes through the hole 32 a provided in the bottom portion 32 of the cap member 31. It is inserted inside the inner tube part 23 of the member 21. As a result, the hole 32a and the inner tube portion 23 function as a bearing, and the photosensitive drum unit 2510 is rotatably supported. Further, the outer surface of the bottom 32 of the cap member 31 is in contact with the inner surface of the housing 3a.
  • a lubricating oil is applied thereto, or a friction prevention sheet (for example, a Teflon (registered trademark) sheet, a nylon sheet, a felt sheet, a PET sheet, or the like).
  • a friction prevention sheet for example, a Teflon (registered trademark) sheet, a nylon sheet, a felt sheet, a PET sheet, or the like.
  • the cap member 31 may be formed of a highly slidable material (for example, Teflon (registered trademark)).
  • the non-driving side end member 2520 has an urging force to press the photosensitive drum unit 2510 toward the driving shaft 2570 side and can be expanded and contracted.
  • the bearing portion 2556 can be appropriately inserted into the recess 2571 of the drive shaft 2570 and engaged therewith. And since this should just be the range which the cap member 31 can expand-contract, the conditions of dimensional accuracy can be eased. Therefore, it is possible to easily position the photosensitive drum in the axial direction so as to appropriately transmit the rotational force only by the end members (2520, 2550) without providing any other restricting member.
  • the end member on one side has an urging force and can be expanded and contracted in the axial direction.
  • the length can be easily finely adjusted. Therefore, the positional relationship between the end member on the other side and the drive shaft of the apparatus main body becomes appropriate by the biasing force, and it is possible to prevent problems such as idling.
  • This also eliminates the need to strictly control the movement of the photosensitive drum in the axial direction. Therefore, when assembling the process cartridge, there is no need to provide a restricting portion having a sufficient dimension, and it is not necessary to increase the accuracy of the member. Therefore, management becomes easier and productivity is improved.
  • the difference in the length of the photosensitive drum can be allowed within the range in which the end member expands and contracts, it is possible to share the components of the photosensitive drum unit, and cost reduction due to inventory reduction or the like can be expected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

 筐体と、該筐体内に配置されて該筐体に保持される感光体ドラムユニットと、を備えるプロセスカートリッジであって、感光体ドラムユニットは、円筒状である感光体ドラムと、感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、一方の端部部材は、弾性部材を備えており軸線方向に付勢されつつ伸縮可能とされ、他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、一方の端部部材、及び他方の端部部材は、感光体ドラムとは反対側となる面で筐体に接触し、感光体ドラム側を向いた面は筐体に接触しない。

Description

プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材
 本発明は、レーザープリンタ、複写機等の画像形成装置に用いられるプロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材に関する。
 レーザープリンタ、複写機等の画像形成装置には、該画像形成装置の本体(以下、「装置本体」と記載することがある。)に対して着脱可能にプロセスカートリッジが備えられている。
  プロセスカートリッジは、装置本体に装着された姿勢で文字や図形等、表されるべき内容を形成し、これを紙等の記録媒体に転写する部材である。そのために、プロセスカートリッジには、転写する内容が形成される感光体ドラム、及び該感光体ドラムに対して転写すべき内容を形成するための帯電手段や現像手段等が具備されている。
 プロセスカートリッジは、メンテナンスのために同一のプロセスカートリッジを装置本体に対して着脱したり、新たなプロセスカートリッジに交換するために古いプロセスカートリッジを装置本体から離脱して代わりに新しいプロセスカートリッジを装置本体に装着したりする。このようなプロセスカートリッジの着脱は、画像形成装置の使用者が自らできるものであり、かかる観点からできるだけ容易に行えることが望ましい。
 また、プロセスカートリッジに含まれる感光体ドラムは、その作動時に回転をさせる必要がある。そこで感光体ドラムには、装置本体の駆動軸が直接又は他の部材を介して係合し、これにより感光体ドラムが駆動軸から回転力を受けて回転するように端部部材が備えられている。
  そして、上記のようにプロセスカートリッジを装置本体に対して着脱させるためには、その都度装置本体の駆動軸と感光体ドラムに備えられた端部部材との係合の解除(離脱)、及び再係合(装着)をさせる必要がある。
 ここで、感光体ドラム(プロセスカートリッジ)を装置本体の駆動軸の軸線方向に移動させて着脱することができれば、そのために装置を構成することは比較的容易である。しかしながら、画像形成装置の小型化、プロセスカートリッジの着脱スペース確保等の観点から、プロセスカートリッジを駆動軸の軸線方向とは異なる方向に引き抜くように装置本体から離脱させ、また、この方向に押し込むように装置本体に装着することが好ましい。
 特許文献1には、プロセスカートリッジを装置本体の駆動軸の軸線方向とは異なる方向に着脱するための構成が開示されている。具体的には、特許文献1に記載されているカップリング部材(軸部材)は、球形部を備えることによりドラムフランジ(軸受部材)に揺動可能に取り付けられる。従って、カップリング部材に具備された、装置本体の駆動軸に係合する部分(回転力受け部材)が、球形部を中心に揺動して感光体ドラムの軸線に対して角度を変えることができ、装置本体の駆動軸と感光体ドラムとの装着及び離脱を容易にしている。
 これにより、プロセスカートリッジに含まれた感光体ドラムがカップリング部材を介して装置本体に係合し、駆動軸に追随して回転することができる。ところが、当該係合の際に感光体ドラムがその軸線方向に移動してしまって位置が決まらず、適切な係合をすることができないことがあった。これにより駆動軸が空転して感光体ドラムが回転しなかったり、回転しても感光体の画像領域が不安定となり印字位置ずれや色ずれが発生したりする虞がある。
 これに対して特許文献1では、例えば該特許文献1の図24(a)、図24(b)に表れているように、軸受部材が有する端面とドラム枠体が有するリブとが接触し、軸受部材(ドラムフランジ)を軸線方向の一方及び他方の両側から挟むようにして軸線方向(長手方向)の移動が規制され、その位置決めが行われる。
日本国特開2010-2688号公報
 しかしながら、このように感光体ドラムの軸線方向の移動を厳しく規制してしまうとプロセスカードリッジを組み立てるに際して、寸法に余裕のない部位に感光体ドラムユニットを嵌め込む必要があるので、部材の精度を高める必要がありその管理が厳しくなるとともに生産性にも影響を及ぼす。
 そこで本発明は上記問題点に鑑み、感光体ドラムの軸線方向の位置決めを簡易に行うことができるプロセスカートリッジを提供することを目的とする。また感光体ドラムユニット及び一組の端部部材を提供する。
 以下、本発明について説明する。
 本発明は、画像形成装置本体に着脱され、筐体と、該筐体内に配置されて該筐体に保持される感光体ドラムユニットと、を備えるプロセスカートリッジであって、感光体ドラムユニットは、円筒状である感光体ドラムと、感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、一方の端部部材は、弾性部材を備えており軸線方向に付勢されつつ伸縮可能とされ、他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、一方の端部部材、及び他方の端部部材は、感光体ドラムとは反対側となる面で筐体に接触し、感光体ドラム側を向いた面は筐体に接触しない、プロセスカートリッジである。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材は、軸受部材に対して前記軸部材が揺動するように保持される。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材の軸線方向に移動する回動軸と、回動軸の一方の端部に配置され回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、回動軸と、回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、押圧することにより回動軸又は回転力受け部材に対して係合又は離脱し、係合部材が駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達される。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達されるとともに、回転力受け部材が軸線に対して傾くように動く。
 また、本発明は、画像形成装置本体に着脱され、筐体と、該筐体内に配置されて該筐体に保持される感光体ドラムユニットと、を備えるプロセスカートリッジであって、感光体ドラムユニットは、円筒状である感光体ドラムと、感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、一方の端部部材は、弾性部材を備えており軸線方向に付勢されつつ伸縮可能とされ、他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、一方の端部部材は筐体により感光体ドラムの軸線に沿った方向のうち一方向のみの移動が規制され、他方の端部部材は筐体により感光体ドラムの軸線に沿った方向のうち他方向のみの移動が規制される、プロセスカートリッジである。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材は、軸受部材に対して前記軸部材が揺動するように保持される。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材の軸線方向に移動する回動軸と、回動軸の一方の端部に配置され回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、回動軸と、回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、押圧することにより回動軸又は回転力受け部材に対して係合又は離脱し、係合部材が駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達される。
 本発明のプロセスカートリッジの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達されるとともに、回転力受け部材が軸線に対して傾くように動く。
 また、本発明は、円筒状である感光体ドラムと、感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、一方の端部部材は、弾性部材を備えており軸線方向に付勢されつつ伸縮可能とされ、他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、他方の端部部材の軸受部材の外周部には歯車が形成されており、軸受部材の外径は、歯車が形成された部位を除き、感光体ドラムの外径以下である、感光体ドラムユニットである。
 本発明の感光体ドラムユニットの一態様として、例えば、他方の端部部材は、軸受部材に対して前記軸部材が揺動するように保持される。
 本発明の感光体ドラムユニットの一態様として、例えば、他方の端部部材の軸部材は、軸受部材の軸線方向に移動する回動軸と、回動軸の一方の端部に配置され回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する。
 本発明の感光体ドラムユニットの一態様として、例えば、他方の端部部材の軸部材は、回動軸、回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材、及び、押圧することにより回動軸又は回転力受け部材に対して係合又は離脱し、係合部材が駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材、を備える。
 本発明の感光体ドラムユニットの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達される。
 本発明の感光体ドラムユニットの一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達されるとともに、回転力受け部材が軸線に対して傾くように動く。
 また、本発明は、感光体ドラムの端部に配置される一組の端部部材であって、一方の端部部材は、弾性部材を備えており付勢されつつ伸縮可能とされ、他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、軸受部材の外周部には歯車が形成されており、軸受部材の外径は、歯車が形成された部位が最も大きく形成されている一組の端部部材である。
 本発明の一組の端部部材の一態様として、例えば、他方の端部部材は、軸受部材に対して軸部材が揺動するように保持される。
 本発明の一組の端部部材の一態様として、例えば、他方の端部部材の軸部材は、軸受部材の軸線方向に移動する回動軸と、回動軸の一方の端部に配置され回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する。
 本発明の一組の端部部材の一態様として、例えば、他方の端部部材の軸部材は、回動軸と、回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、押圧することにより回動軸又は回転力受け部材に対して係合又は離脱し、係合部材が駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える。
 本発明の一組の端部部材の一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達される。
 本発明の一組の端部部材の一態様として、例えば、他方の端部部材の軸部材は、軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより軸線方向に移動する軸状である回動軸と、回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、軸線まわりの回転力は、回転力受け部材、回動軸、及び軸受部材の順に伝達されるとともに、回転力受け部材が軸線に対して傾くように動く。
 本発明によれば、感光体ドラムの端部のそれぞれに配置される一組の端部部材において、一方側の端部部材は付勢力を有して軸線方向に伸縮可能とされているので、感光体ドラムユニットとしたとき、その長さを容易に微調整することができる。従って付勢力により他方側の端部部材と装置本体の駆動軸との位置関係が適切となり、空転等の不具合を防止することが可能である。また、これにより、感光体ドラムの軸線方向の移動を厳しく規制する必要がないのでプロセスカードリッジを組み立てるに際して、寸法に余裕のない規制部位を設ける必要がなく、部材の精度を高めることを要しないから、管理が容易になり生産性が向上する。
  また、端部部材が伸縮する範囲において感光体ドラムの長さの違いを許容することができることから、感光体ドラムユニットの部品の共通化が可能になり、在庫削減等によるコストダウンを期待できる。
図1は、第1の形態を説明する図で画像形成装置の模式図である。 図2は、プロセスカートリッジの構造を概念的に示した図である。 図3(a)は駆動側端部部材50を手前に表した感光体ドラムユニット10の外観斜視図、図3(b)は非駆動側端部部材20を手前に表した感光体ドラムユニット10の外観斜視図である。 図4(a)はキャップ部材31側を手前に表した非駆動側端部部材20の外観斜視図、図4(b)はフランジ部材21を手前に表した非駆動側端部部材20の外観斜視図である。 図5は図4(a)にC-Cで示した線に沿った断面図である。 図6(a)にはフランジ部材21の外観斜視図、図6(b)はキャップ部材31の外観斜視図である。 図7は、アース板40の外観斜視図である。 図8(a)は非駆動側端部部材20の他の姿勢における図4(a)と同じ視点による斜視図、図8(b)は非駆動側端部部材20の他の姿勢における図5と同じ視点による断面図である。 図9(a)は駆動側端部部材50の外観斜視図、図9(b)は軸部材61の断面図である。 図10は、駆動側端部部材50に駆動軸70が係合した姿勢を説明する斜視図である。 図11は、感光体ドラムユニット10が含まれるプロセスカートリッジ3が装置本体2に装着された場面における、プロセスカートリッジの断面のうち感光体ドラムユニット10及びその周辺に注目した図である。 図12は、端部部材150の外観斜視図である。 図13は、端部部材150の分解斜視図である。 図14は、軸受部材151の分解斜視図である。 図15(a)は本体155の平面図、図15(b)は本体155の1つの断面図、図15(c)は本体155の他の断面図である。 図16は、保持部160の保持突起161を説明する図である。 図17(a)は中間部材170の平面図、図17(b)は中間部材170の1つの断面図、図17(c)は中間部材170の他の断面図である。 図18(a)は中間部材170’の斜視図、図18(b)は中間部材170’の平面図である。 図19(a)は端部部材150の1つの断面図、図19(b)は端部部材150の他の断面図である。 図20(a)は端部部材150の1つの断面における軸部材70が傾いた姿勢の例を表す図、図20(b)は端部部材150の他の断面における軸部材70が傾いた姿勢の例を表す図である。 図21は、端部部材250の外観斜視図である。 図22は、軸受部材251の分解斜視図である。 図23(a)は軸受部材251の本体255の平面図、図23(b)は軸受部材251の本体255の斜視図である。 図24は、軸受部材251の本体255の断面図である。 図25(a)は中間部材270の斜視図、図25(b)は中間部材270の正面図、図25(c)は中間部材270の断面図である。 図26(a)は端部部材250の1つの断面図、図26(b)は端部部材250の他の断面図である。 図27(a)は端部部材250の1つの断面で軸部材61が傾いた姿勢の例を表す図、図27(b)は端部部材250の他の断面で軸部材61が傾いた姿勢の例を表す図である。 図28は、端部部材350の斜視図である。 図29は、軸受部材351の分解斜視図である。 図30(a)は軸受部材351の本体355の平面図、図30(b)は軸受部材351の本体355の斜視図である。 図31は、軸受部材351の本体355の断面図である。 図32(a)は軸受部材351の本体355の他の断面図、図32(b)は軸受部材351の本体355のさらなる他の断面図である。 図33(a)は中間部材370の斜視図、図33(b)は中間部材370の正面図、図33(c)は中間部材370の断面図である。 図34は、端部部材350の1つの断面図である。 図35(a)は端部部材350の他の断面図、図35(b)は端部部材350のさらなる他の断面図である。 図36は、端部部材350の1つの断面で軸部材61が傾いた姿勢の例を表す図である。 図37(a)は端部部材350の他の断面で軸部材61が傾いた姿勢の例を表す図、図37(b)は端部部材350のさらなる他の断面で軸部材61が傾いた姿勢の例を説明する図である。 図38(a)は中間部材470の斜視図、図38(b)は中間部材470の正面図、図38(c)は中間部材470の平面図である。 図39(a)は中間部材470に軸部材61を取り付けた姿勢の斜視図、図39(b)は中間部材470に軸部材61を取り付けた姿勢の断面図である。 図40(a)は軸受部材551の本体555の平面図、図40(b)は軸受部材551の本体555の斜視図である。 図41は、軸受部材551の本体555の断面図である。 図42(a)は軸受部材551の本体555の他の断面図、図41(b)は軸受部材551の本体555のさらなる他の断面図である。 図43は、軸受部材551の斜視図である。 図44(a)は軸受部材551の断面図、図44(b)は軸受部材551の他の断面図である。 図45は、本体555に中間部材370を取り付ける場面を説明する図である。 図46は、軸部材61の傾きとガイド部材375の位置を説明する図である。 図47(a)は軸受部材551’の斜視図、図47(b)は軸受部材551’の一部を拡大して表した斜視図である。 図48は、軸受部材551”の斜視図である。 図49(a)は本体655の断面図、図49(b)は本体655の他の断面図である。 図50(a)は中間部材670の斜視図、図50(b)は中間部材670の正面図、図50(c)は中間部材670の平面図である。 図51(a)は本体655に中間部材670を取り付ける場面を説明する図、図51(b)は中間部材670が本体655内で揺動する1つの場面を説明する図である。 図52は、端部部材730の斜視図である。 図53は、端部部材730の分解斜視図である。 図54(a)は軸受部材740の斜視図、図54(b)は軸受部材740の平面図である。 図55(a)は軸受部材740の断面図、図55(b)は軸受部材740の他の断面図である。 図56(a)は回動軸751の斜視図、図56(b)は回動軸751の断面図である。 図57(a)は先端部材755の斜視図、図57(b)は先端部材755の平面図、図57(c)は先端部材755の1つの断面図、図57(d)は先端部材755の他の断面図である。 図58(a)は爪部材759の斜視図、図58(b)は爪部材759の正面図である。 図59(a)は爪部材759の側面図、図59(b)は爪部材759の断面図である。 図60(a)は軸受部材740と回動軸751との組み合わせの斜視図、図60(b)は軸受部材740と回動軸751との組み合わせの平面図、図60(c)は軸受部材740と回動軸751との組み合わせの断面図である。 図61(a)は軸部材750の分解斜視図、図61(b)は軸部材750の断面図である。 図62は、端部部材730の断面図である。 図63(a)は端部部材730の断面図のうち回転力伝達部材754近傍に注目した断面図、図63(b)は端部部材730のうち回転力伝達部材754近傍に注目した他の断面図である。 図64(a)は軸部材850の斜視図、図64(b)は軸部材850の分解斜視図である。 図65は、回動軸851、及び先端部材855の斜視図である。 図66(a)は回動軸851及び先端部材855の平面図、図66(b)は回動軸851及び先端部材855の1つの断面図、図66(c)は回動軸851及び先端部材855の他の断面図である。 図67(a)は爪部材859の斜視図、図67(b)は爪部材859の正面図、図67(c)は爪部材859の断面図である。 図68(a)は軸部材850の1つの断面図、図25(b)は軸部材850の他の断面図である。 図69は、端部部材830の断面図である。 図70(a)は端部部材830のうち爪部材859の周辺を表した1つの断面図、図70(b)は端部部材830のうち爪部材859の周辺を表した他の断面図である。 図71は、回動軸851及び先端部材955の斜視図である。 図72(a)は爪部材1059の斜視図、図72(b)は爪部材1059の正面図、図72(c)は爪部材1059の断面図である。 図73(a)は軸部材1050の1つの断面図、図73(b)は軸部材1050の他の断面図である。 図74(a)は軸部材1150の斜視図、図74(b)は軸部材1150の分解斜視図である。 図75は、回動軸1151及び先端部材1155の斜視図である。 図76(a)は回動軸1151及び先端部材1155の平面図、図76(b)は回動軸1151及び先端部材1155の1つの断面図、図76(c)は回動軸1151及び先端部材1155の他の断面図である。 図77(a)は爪部材1159の斜視図、図77(b)は爪部材1159の他の方向からみた斜視図、図77(c)は爪部材1159の正面図である。 図78(a)は軸部材1150の1つの断面図、図78(b)は軸部材1150の他の断面図である。 図79は、端部部材1130の断面図である。 図80(a)は端部部材1130のうち爪部材1159の周辺を表した1つの断面図、図80(b)は端部部材1130のうち爪部材1159の周辺を表した他の断面図である。 図81(a)は軸部材1250の斜視図、図81(b)は軸部材1250の分解斜視図である。 図82(a)は回動軸1251の斜視図、図82(b)は回動軸1251の平面図、図82(c)は回動軸1251の断面図である。 図83(a)は爪部材1259の斜視図、図83(b)は爪部材1259の他の方向からみた斜視図、図83(c)は爪部材1259の正面図である。 図84(a)は軸部材1250の1つの断面図、図84(b)は軸部材1250の他の断面図である。 図85は、端部部材1230の断面図である。 図86(a)は端部部材1230のうち爪部材1259の周辺を表した1つの断面図、図86(b)は端部部材1230のうち爪部材1259の周辺を表した他の断面図である。 図87は、端部部材1330の分解斜視図である。 図88は、端部部材1330の分解断面図である。 図89は、軸受部材1340の斜視図である。 図90(a)は回動軸保持部材1346の1つの斜視図、図90(b)は回動軸保持部材1346の他の斜視図である。 図91(a)は回動軸1351の斜視図、図91(b)は回動軸1351の平面図である。 図92(a)は回転力伝達部材1354の斜視図、図92(b)は回転力伝達部材1354の平面図である。 図93は、端部部材1330の断面図である。 図94は、端部部材1330の他の断面図である。 図95は、端部部材1430の斜視図である。 図96は、端部部材1430の分解斜視図である。 図97(a)は軸受部材1440の斜視図、図97(b)は軸受部材1440の平面図である。 図98(a)は軸受部材1440の断面図、図98(b)は軸受部材1440の他の断面図である。 図99(a)は回動軸1451の斜視図、図99(b)は回動軸1451の断面図である。 図100(a)は回転力受け部材1455の斜視図、図100(b)は回転力受け部材1455の平面図、図100(c)は回転力受け部材1455の断面図である。 図101(a)は規制部材1459の斜視図、図101(b)は規制部材1459の正面図、図101(c)は規制部材1459の側面図である。 図102(a)は軸受部材1440と回動軸1451との組み合わせの斜視図、図102(b)は軸受部材1440と回動軸1451との組み合わせの平面図、図11(c)は軸受部材1440と回動軸1451との組み合わせの断面図である。 図103(a)は軸部材1450の分解斜視図、図103(a)は軸部材1450の断面図である。 図104は、端部部材1430の断面図である。 図105は、端部部材1430の断面図である。 図106は、端部部材1430の断面図である。 図107は、端部部材1530の斜視図である。 図108は、端部部材1530の分解斜視図である。 図109(a)は軸受部材1540の斜視図、図109(b)は軸受部材1540の平面図である。 図110(a)は軸受部材1540の断面図、図110(b)は軸受部材1540の他の断面図である。 図111(a)は回動軸1551及び回転力受け部材1555の斜視図、図111(b)は回動軸1551及び回転力受け部材1555の断面図、図111(c)は回動軸1551及び回転力受け部材1555の他の断面図である。 図112(a)は規制部材1559の斜視図、図112(b)は規制部材1559の他の斜視図である。 図113は、端部部材1530の断面図である。 図114は、端部部材1530の断面図である。 図115は、端部部材1530の断面図である。 図116(a)は端部部材1630の斜視図、図116(b)は端部部材1630の他の斜視図である。 図117は、端部部材1630の分解斜視図である。 図118(a)は軸受部材1640の斜視図、図118(b)は軸受部材1640の平面図である。 図119は、軸部材1650の分解斜視図である。 図120は、軸部材1650の一部を拡大した斜視図である。 図121は、軸部材1650の一部を拡大した斜視図である。 図122は、軸部材1750の分解斜視図である。 図123は、端部部材1730の断面図である。 図124は、端部部材1730が変形した姿勢の断面図である。 図125(a)は端部部材1830の正面図、図125(b)は端部部材1830の一部を切り欠いて表した正面図である。 図126は、端部部材1830の一部を切り欠いて表した斜視図である。 図127は、端部部材1830の断面図である。 図128は、軸受部材1840の斜視図である。 図129は、係合部材1854の斜視図である。 図130は、クランクシャフト1855の斜視図である。 図131は、規制軸1861の斜視図である。 図132は、端部部材1830の変形の姿勢における断面図である。 図133は、端部部材1930の斜視図である。 図134は、端部部材1930の分解斜視図である。 図135(a)は軸受部材1940の斜視図、図135(b)は軸受部材1940の正面図、図135(c)は軸受部材1940の平面図である。 図136(a)は軸受部材1940の軸線方向に直交する端面図、図136(b)は軸受部材1940の軸線方向に沿った断面図である。 図137(a)は回動軸1951の斜視図、図137(b)は回動軸1951の断面図である。 図138(a)は先端部材1955の斜視図、図137(b)は先端部材1955の断面図である。 図139(a)は回転力受け部材1958の斜視図、図139(b)は回転力受け部材1958の断面図である。 図140は、端部部材1930の断面図である。 図141(a)は端部部材1930の軸線方向に直交する端面図、図141(b)は端部部材1930の軸線方向に沿った断面図である。 図142は、端部部材1930の斜視図である。 図143は、端部部材1930の断面図である。 図144(a)は駆動軸70と端部部材1930とが係合した場面の斜視図、図144(b)は係合部分を拡大した斜視図である。 図145は、駆動軸70と端部部材1930とが係合した場面の軸線方向に沿った断面図である。 図146(a)は回転力が伝達されている姿勢において発生する力を説明する模式図、図146(b)はプロセスカートリッジを離脱する場面において発生する力を説明する模式図である。 図147は、受け部材2059を説明する図である。 図148(a)は受け部材2059が駆動軸70と係合して回転力を伝達する姿勢を説明する図、図148(b)は受け部材2059から駆動軸70が離脱する場面を説明する図である。 図149は、受け部材2159を説明する斜視図である。 図150(a)は受け部材2159が駆動軸70と係合して回転力を伝達する姿勢を説明する図、図150(b)は受け部材2159から駆動軸70が離脱する場面を説明する図である。 図151は、受け部材2159から駆動軸70が離脱する場面を説明する他の図である。 図152は、受け部材2159から駆動軸70が離脱するときに生じる力を説明する図である。 図153(a)は駆動軸70に端部部材1930が係合した姿勢を表す断面図、図153(b)は駆動軸70から端部部材1930が離脱する場面の1つの例を説明する断面図である。 図154(a)は駆動軸70に端部部材1930が係合した姿勢を表す断面図、図154(b)は駆動軸70から端部部材1930が離脱する場面の他の例を説明する断面図である。 図155は、端部部材2230の分解斜視図である。 図156は、端部部材2230の軸線方向に沿った分解断面図である。 図157(a)は軸受部材2240の本体2241の斜視図、図157(b)は軸受部材2240の本体2241の平面図である。 図158は、回動軸2251の斜視図である。 図159は、変形例である軸受部材2240’を説明する分解斜視図である。 図160(a)は端部部材2230’の軸線方向断面図、図160(b)は端部部材2230’の他の姿勢における軸線方向断面図である。 図161は、変形例を説明する分解斜視図である。 図162は、端部部材2330の斜視図である。 図163は、端部部材2330の分解斜視図である。 図164は、軸受部材2340の軸線方向断面図である。 図165(a)は回動軸2351の斜視図、図165(b)は回動軸2351の軸線方向断面図である。 図166は、先端部材2355の斜視図である。 図167は、端部部材2330の軸線方向断面図である。 図168(a)は端部部材2330の軸線方向に直交する端面図、図168(b)は回動軸2351と突起2356との関係を説明する図である。 図169は、端部部材2330の軸線方向断面図である。 図170は、端部部材2430の分解斜視図である。 図171は、端部部材2430の分解断面図である。 図172は、端部部材2430の断面図である。 図173は、端部部材2430’の分解斜視図である。 図174は、先端部材2455’の斜視図である。 図175は、端部部材2430’の軸線に沿った断面図である。 図176は、端部部材2430’の軸線に沿った他の断面図である。 図177は、端部部材2430”の分解斜視図である。 図178は、端部部材2430”の分解断面図である。 図179は、端部部材2430”の断面図である。 図180(a)は駆動側端部部材2550を手前に表した感光体ドラムユニット110の外観斜視図、図180(b)は非駆動側端部部材2520を手前に表した感光体ドラムユニット2510の外観斜視図である。 図181(a)は軸受部2556を手前に表した駆動側端部部材2550の外観斜視図、図181(b)は嵌合部154を手前に表した駆動側端部部材2550の外観斜視図である。 図181(a)は軸受部2556側から見た駆動側端部部材2550の正面図、図182(b)は図182(a)にC182b-C182bで示した線に沿った断面図である。 図183(a)は駆動軸2570の斜視図、図183(b)は駆動軸2570の正面図である。 図184は、感光体ドラムユニット2510が含まれるプロセスカートリッジ3が装置本体2に装着された場面における、プロセスカートリッジの断面のうち感光体ドラムユニット2510及びその周辺に注目した図である。 図185は、軸受部2556が駆動軸2570の凹部2571の内側に挿入された場面を説明する図である。
 初めに第1の形態について説明する。図1は第1の形態を説明する図で、プロセスカートリッジ3、及び該プロセスカートリッジ3を装着して使用する画像形成装置本体2(以下、「装置本体2」と記載することがある。)を有する画像形成装置1を模式的に示した斜視図である。プロセスカートリッジ3は、図1にIで示した方向に移動させることにより装置本体2に装着し、及び離脱させることができる。
 図2には、プロセスカートリッジ3の構造を模式的に表した。図2からわかるようにプロセスカートリッジ3は、筐体3aの内側に感光体ドラムユニット10(図3参照)、帯電ローラ4、現像ローラ5、規制部材6、及びクリーニングブレード7を内包している。プロセスカートリッジ3を装置本体2に装着した姿勢で、紙等の記録媒体が図2にIIで示した線に沿って移動することにより、当該記録媒体に画像が転写される。
 また、プロセスカートリッジ3の装置本体2への着脱は概ね次のように行われる。プロセスカートリッジ3に備えられる感光体ドラムユニット10は、装置本体2から回転駆動力を受けて回転することから、少なくとも作動時には装置本体2の駆動軸70(図10参照)と感光体ドラムユニット10の軸部材61(図10参照)とが係合している。一方、プロセスカートリッジ3の装置本体2への着脱時には、装置本体2の駆動軸70と感光体ドラムユニット10の軸部材61との係合は解除されている。
  すなわち、装置本体2の駆動軸70には感光体ドラムユニット10の軸部材61が適切に係合して回転駆動力が伝達される必要がある。
  以下、各構成について説明する。
 上記のようにプロセスカートリッジ3には、帯電ローラ4、現像ローラ5、規制部材6、クリーニングブレード7、及び感光体ドラムユニット10が備えられ、これらが筐体3aの内側に内包されている。それぞれは次のようなものである。
 帯電ローラ4は、画像形成装置本体2からの電圧印加により感光体ドラムユニット10の感光体ドラム11を帯電させる。これは、当該帯電ローラ4が感光体ドラム11に追随して回転し、感光体ドラム11の外周面に接触することにより行われる。
  現像ローラ5は、感光体ドラム11に現像剤を供給するローラである。そして、当該現像ローラ5により、感光体ドラム11に形成された静電潜像が現像される。なお現像ローラ5には、固定磁石が内蔵されている。
  規制部材6は、上記した現像ローラ5の外周面に付着する現像剤の量を調整するとともに、現像剤自体に摩擦帯電電荷を付与する部材である。
  クリーニングブレード7は、感光体ドラム11の外周面に接触してその先端により転写後に残存した現像剤を除去するブレードである。
 図3は感光体ドラムユニット10の外観斜視図である。図3(a)は駆動側端部部材50を手前に表した感光体ドラムユニット10の外観斜視図、図3(b)は非駆動側端部部材20を手前に表した感光体ドラムユニット10の外観斜視図である。図3(a)、図3(b)からわかるように感光体ドラムユニット10は、感光体ドラム11、一組の端部部材のうちの一方の端部部材である非駆動側端部部材20、及び一組の端部部材のうちの他方の端部部材である駆動側端部部材50を備えている。
 感光体ドラム11は、円柱状回転体であるドラムシリンダ(「基体」と呼ぶこともある。)の外周面に感光層を被覆した部材である。すなわちドラムシリンダは、アルミニウム等の導電性のシリンダであり、ここに感光層が塗布されて構成されている。当該感光層に、紙等の記録媒体に転写すべき文字や図形等が形成される。
  基体はアルミニウム、又はアルミニウム合金による導電性材料が円筒形状に形成されたものである。基体に用いられるアルミニウム合金の種類は特に限定されるものではないが、感光体ドラムの基体として用いられることが多いJIS規格(JIS H 4140)で定められる6000系、5000系、3000系のアルミニウム合金であることが好ましい。
  また、基体の外周面に形成される感光層は特に限定されることはなく、その目的に応じて公知のものを適用することができる。
  基体は、切削加工、押し出し加工、引き抜き加工等により円筒形状を形成することにより製造することができる。そして基体の外周面に感光層を塗布する等して積層して感光体ドラム11を作製することが可能である。
 感光体ドラム11の一端には後述するように該感光体ドラム11をその軸線中心に回転させるために一組の端部部材が取り付けられる。一方の端部部材が非駆動側端部部材20、他方の端部部材が駆動側端部部材50である。ここでは基体を中空の円筒状であるものとしたが、中実の丸棒状であってもよい。
 非駆動側端部部材20は感光体ドラム11の軸線方向端部のうち、装置本体2の駆動軸70(図10参照)が係合しない側の端部に配置される端部部材である。図4には非駆動側端部部材20の外観斜視図を示した。図4(a)はキャップ部材31側を手前に表した外観斜視図、図4(b)はこれとは反対にアース板40を手前に表した外観斜視図である。また、図5には図4(a)にC-CV示した線に沿った軸線方向断面図を示した。
 これら図からわかるように、非駆動側端部部材20は、フランジ部材21、キャップ部材31、弾性部材41、及びアース板40を有して構成されている。
  本形態では非駆動側端部部材20にアース板40が設けられている。
 図6(a)にはフランジ部材21の外観斜視図を示した。図4~図6(a)よりわかるようにフランジ部材21は、円筒状である外管部22を備えるとともに、外管部22の内側には該外管部22と同軸の円筒状である内管部23が配置されている。従ってフランジ部材21は二重管構造である。ただし、外管部22の一端と内管部23の一端との間には底部24が設けられておりその少なくとも一部が塞がれている。この底部24により内管部23が外管部22の内側に保持されている。
 外管部22の端部のうち、底部24とは反対側の端部には外管部22の外周面から立設するように設けられたリング状の接触壁25が設けられている。接触壁25は図3(a)、図3(b)からわかるように、非駆動側端部部材20を感光体ドラム11に装着した姿勢で、感光体ドラム11の端面が突き当たるように接触する。これにより非駆動側端部部材20の感光体ドラム11への挿入深さが規制される。
 外管部22の端部のうち、底部24側、すなわち接触壁25が設けられる側とは反対側は感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される嵌合部として機能する。これにより非駆動側端部部材20が感光体ドラム11の端部に固定される。従って、外管部22の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。
  嵌合部として機能する部位には、外周面に溝22aが形成されてもよい。これにより当該溝22aに接着剤が充填され、アンカー効果等により非駆動側端部部材20と感光体ドラム11との接着性が向上する。
 また外管部22の内面には、該内面から突出するように所定の間隔でキャップ部材係合手段26が設けられている。キャップ部材係合手段26は、後述するキャップ部材31をフランジ部材21に保持する手段である。ただし、キャップ部材係合手段26は、キャップ部材31がフランジ部材21から外れてしまうことを規制する一方で、キャップ部材31がフランジ部材21に対して軸線方向に移動することは規制しないように構成されている。
  このように規制をすることができればキャップ部材係合手段26の形態は特に限定されることはない。この1例として図5、図6(a)に表れた本形態のように底部24側に向けて返しを具備する鉤状の突起を挙げることができる。なお、本形態では底部24に穴24aが設けられており、この位置はキャップ部材係合手段26に対応している。これによりキャップ部材係合手段26を含めてフランジ部材21を射出成型により一体で作製することができる。
 また内管部23の円筒状である内側には、後述するようにプロセスカートリッジ3の筐体3aの内面に設けられた支持軸部材3bが挿入される(図11参照)。従って内管部23の穴は軸受として機能できるような大きさで形成されている。
 図6(b)にはキャップ部材31の外観斜視図を示した。図4、図5及び図6(b)からわかるようにキャップ部材31は、一方の端部に底部32を有する円筒状の部材である。底部32には、キャップ部材31の円筒軸を中心とした円形の穴32aが設けられている。この穴32aは後述するようにプロセスカートリッジ3の筐体3aの内面に設けられた支持軸部材3bが挿入される(図11参照)。従って穴32aは少なくとも支持軸部材3bが貫通できるような大きさで形成されている。
 キャップ部材31の外周部の大きさは、フランジ部材21の外管部22内に納めることができるように形成されている。すなわち、キャップ部材31の外径はフランジ部材21の外管部22の内径よりも小さくされている。また、キャップ部材31の外周部には図6(b)からわかるように底部32とは反対側の端部から軸線方向にスリット31aが設けられている。
  スリット31aは、上記したフランジ部材21のキャップ部材係合手段26に対応する位置に設けられており、当該キャップ部材係合手段26をスリット31aの内側に配置できる大きさである。これによりキャップ部材係合手段26がキャップ部材31に干渉することなくフランジ部材21とキャップ部材31とを連結することができる。
 またキャップ部材31内側には、底部32から軸線方向に平行な方向に立設するようにフランジ部材係合手段33が設けられている。フランジ部材係合手段33は、上記したキャップ部材係合手段26に係合してキャップ部材31をフランジ部材21に保持する手段である。上記したように、フランジ部材係合手段33はキャップ部材係合手段26と相まって、キャップ部材31がフランジ部材21から外れてしまうことを規制する一方、キャップ部材31がフランジ部材21に対して軸線方向に沿って移動することは規制しないように構成されている。
  従ってフランジ部材係合手段33は、キャップ部材係合手段26に対応する位置に配置されており、キャップ部材31の円筒の内側に、スリット31aに並ぶように位置づけられている。フランジ部材係合手段33は上記のように作用すればその形態は特に限定されない。この1例としてキャップ部材係合手段26に対応してスリット31a側に底部32側に向けて返しを具備する鉤状の突起を挙げることができる。なお、本形態では底部32に穴32bが設けられており、この位置はフランジ部材係合手段33に対応している。これによりフランジ部材係合手段33を含めてキャップ部材31を射出成型により一体で作製することができる。
 弾性部材41は、フランジ部材21とキャップ部材31とが組み合わされたときに両者を離隔する方向に付勢をする手段である。弾性部材41の具体的な形態は特に限定されることはないが、いわゆる弦巻ばねを用いることができる。このときには図5に表れているようにその内側に内管部23が挿入できる内径を有し、穴32aからは抜けない外径を具備する弦巻ばねを用いることができる。
 図7にアース板40の斜視図を示した。アース板40は、導電性を有する円板状の部材であり、その外周部から感光体ドラム11の内面に接するように突出部40aが形成されている。また、アース板40の中央には後述するようにプロセスカートリッジ3の支持軸部材3bに接触する接触片40bが設けられている。すなわちそのアース板40は公知のアース板と同様であり、そのための構造は特に限定されることなく公知の形状を適用することができる。
 以上のようなフランジ部材21、キャップ部材31、弾性部材41及びアース板40は例えば次のように組み合わされて非駆動側端部部材20とされている。図4、図5に示した姿勢により説明する。
  フランジ部材21のうち底部24とは反対側の端部(すなわち開口端)と、キャップ部材31のうち底部32とは反対側の端部(すなわち開口端)と、を向かい合わせる向きで、フランジ部材21の内側にキャップ部材31が挿入されている。従って、非駆動側端部部材20では、底部24が現れ、その反対側には底部32が現れる。
 そして、その際には図5に示したように、弾性部材41がフランジ部材21とキャップ部材31との間に挟まれる。具体的には、弾性部材41の付勢方向一端が底部24に、他端が底部32に接触して配置される。弾性部材41が弦巻ばねの場合には、その内側に内管部23が挿入されている。
  これにより弾性部材41がフランジ部材21とキャップ部材31とを離隔する方向に付勢し、フランジ部材21からキャップ部材31の一部が飛び出すように構成されている。
 一方、図5からわかるように、フランジ部材21からキャップ部材31が所定の大きさで飛び出す位置で、キャップ部材係合手段26とフランジ部材係合手段33とが係合してこれ以上、フランジ部材21とキャップ部材31とが離隔する方向に移動することを規制している。これにより、フランジ部材21からキャップ部材31が抜け出てしまうことを防止することができる。
  以上より、図4(a)、図5に示したように、キャップ部材31の一部が、付勢された状態でフランジ部材21から突出した姿勢を維持することができる。
 そしてアース板40はフランジ部材21の底部24の外側に重なるように配置されて非駆動側端部部材とされる。このとき、図5に表れているように、アース板40の接触片40bの先端がフランジ部材21の内管部23の内側に配置される。
 ここでキャップ部材係合手段26及びフランジ部材係合手段33は、図4(a)、図5に示した姿勢以上にキャップ部材31がフランジ部材21から離れる方向以外には軸線方向に平行な方向への移動を規制していない。従って図5に示した姿勢から、底部24及び/又は底部32をこれらが近づくように弾性部材41の付勢力に抗して押圧すると、フランジ部材21、キャップ部材31は近づくように軸線方向に平行な方向に相対的に移動することができる。図8に説明のための図を示した。図8(a)は図4(a)と同じ視点による斜視図、図8(b)は図5と同じ視点による断面図である。このように、キャップ部材31がフランジ部材21の内側にさらに深く入り込む態様で両者は相対的に軸線方向に平行な方向に移動することができる。これにより、非駆動側端部部材20の軸線方向長さが変化し、例えば図5の姿勢でTである長さが、図8(b)の姿勢では、Tより短いTとなる。
 フランジ部材21、キャップ部材31は、結晶性樹脂により形成されていることが好ましい。結晶性樹脂であれば、金型を用いて射出成型するに際し、流れが良好であることから成型加工性がよく、ガラス転移点にまで冷却させなくても結晶化して固化することにより離型することができる。従って、生産性を大きく向上させることが可能である。また、結晶性樹脂は、耐熱性、耐溶剤性、耐油性、耐グリース性に優れ、耐摩擦摩耗性や摺動性も良好であり、さらには剛性及び硬さの観点からも端部部材に適用する材料として好ましい。
  結晶性樹脂としては例えばポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、メチルペンテン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ナイロン等を挙げることができる。
  この中でも成型加工性の観点からポリアセタール系樹脂を用いることが好ましい。
  また強度を高める観点から、ガラス繊維、炭素繊維等を充填してもよい。
 なお、フランジ部材21とキャップ部材31とを異なる材料で構成してもよい。フランジ部材21とキャップ部材31とは伸縮時に互いに摺動するが、両者を同種の材料で形成すると当該伸縮時に異音を発生することがある。これに対して両者を異なる種類の樹脂で構成することによりこれを防止できる。
 図3に戻り駆動側端部部材50について説明する。駆動側端部部材50は感光体ドラム11の軸線に沿った方向の端部のうち、非駆動側端部部材20とは反対側で、装置本体2の駆動軸70が係合する側の端部に配置される端部部材である。図9(a)には駆動側端部部材50の外観斜視図を示した。図9(b)は駆動側端部部材50を構成する軸部材61の軸線方向に沿った断面図である。
  駆動側端部部材50は、軸受部材51及び軸部材61を備えている。
 軸受部材51は、図9からわかるように、筒状体52、接触壁53、嵌合部54、歯車部55、及び保持部を有して構成されている。
  筒状体52は全体として筒状の部材で、その外周面の一部からは感光体ドラム11の端面に接触して係止する接触壁53が立設している。これにより駆動側端部部材50を感光体ドラム11に装着した姿勢で該駆動側端部部材50の感光体ドラム11への挿入深さが規制される。
 筒状体52のうち接触壁53を挟んで一方側が感光体ドラム11の内側に挿入される嵌合部54となっている。嵌合部54が感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される。これにより駆動側端部部材50が感光体ドラム11の端部に固定される。従って、嵌合部54の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。
  嵌合部54には外周面に溝54aが形成されてもよい。これにより当該溝54aに接着剤が充填され、アンカー効果等により軸受部材51(駆動側端部部材50)と感光体ドラム11との接着性が向上する。
 接触壁53を挟んで嵌合部54とは反対側の筒状体52の外周面には歯車部55が形成されている。歯車部55は、現像ローラ等他の部材に回転力を伝達する歯車で、本形態では、はす歯歯車である。ただし歯車の種類は特に限定されることはなく、平歯車であってもよい。また歯車は必ずしも設けられている必要はない。
 さらに筒状体52の筒状の内側には軸部材61を保持する保持部が設けられている。保持部は、後述するように軸部材61の球体部64及び回転力伝達ピン1465を保持し、軸部材61を揺動可能とする部位である。保持部はこのように機能すればその形態は特に限定されることはなく公知の形態を適用することができる。これには例えば特許文献1に示したような形態も挙げられる。
 軸受部材51は、結晶性樹脂により形成されていることが好ましい。結晶性樹脂であれば、金型を用いて射出成型するに際し、流れが良好であることから成型加工性がよく、ガラス転移点にまで冷却させなくても結晶化して固化することにより離型することができる。従って、生産性を大きく向上させることが可能である。また、結晶性樹脂は、耐熱性、耐溶剤性、耐油性、耐グリース性に優れ、耐摩擦摩耗性や摺動性も良好であり、さらには剛性及び硬さの観点からも端部部材に適用する材料として好ましい。
  結晶性樹脂としては例えばポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、メチルペンテン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ナイロン等を挙げることができる。
  この中でも成型加工性の観点からポリアセタール系樹脂を用いることが好ましい。
  また強度を高める観点から、ガラス繊維、炭素繊維等を充填してもよい。
 一方、軸部材61は図9(a)、図9(b)からわかるように、カップリング部62、回転軸63、球体部64、回転力伝達ピン1465を有して構成されている。
 カップリング部62は、装置本体2からの回転駆動力を受ける回転力受け部として機能する部位である。従って、後述するように装置本体2の駆動軸70に係合することができる形状を具備している。
 回転軸63は、カップリング部62が受けた回転力を伝達する回転力伝達部として機能する円柱状の軸状部材である。従って回転軸63の一端には上記カップリング部62が設けられている。そして他端には次に説明する球体部64が形成されている。
 球体部64は、基端部として機能し、本形態では図9(b)からわかるように球状の部位で、回転軸63の端部のうちカップリング部62が配置される側とは反対側の端部に具備される。このとき、回転軸63の軸線上に球体部64の中心が配置されることが好ましい。これにより、感光体ドラム11のより安定した回転を得ることができる。
 回転力伝達ピン1465は、球体部64の中心を通るとともに、該球体部64を貫いて両端が球体部64から突出して回転力伝達突起(回転力伝達突起65または回転力伝達ピン65と記載することもある。)を形成する円柱状の軸状部材である。回転力伝達ピン1465の軸線は上記回転軸63の軸線と直交するように設けられている。
 軸部材61の材質は特に限定されるものではないが、ポリアセタール、ポリカーボネート、PPS等の樹脂を用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良いし、全体を金属で製作しても良い。
 このような軸部材61の球体部64及び回転力伝達ピン1465を軸受部材51の保持部に揺動可能に保持する。これにより感光体ドラムユニット10が装置本体に着脱可能となる。
 ここでは1つの形態例としての駆動側端部部材50を説明したが、装置本体の駆動軸の軸線に対してその係合部(カップリング部材)が傾斜するように揺動可能な形態であれば特に限定されることなく、公知のものを適用することができる。
 以上説明した、感光体ドラム11のうち一方の端部に、非駆動側端部部材20の外管部22を接触壁25に接触するまで挿入する。このとき、アース板40の突出部40aが感光体ドラム11の内面に接触する。そして感光体ドラム11のうち他方の端部に、駆動側端部部材50の嵌合部54を接触壁53に接触するまで挿入して図3(a)、図3(b)のように感光体ドラムユニット10となる。
 次に、感光体ドラムユニット10を含むプロセスカートリッジが画像形成装置に装着された姿勢における感光体ドラムユニット10の姿勢について説明する。
  ここで、本形態における装置本体の駆動軸70について説明する。その他の部位については公知の構成を用いることができる。図10には装置本体に備えられ、感光体ドラムユニット10に回転駆動力を与える駆動軸70が駆動側端部部材50のカップリング部62に係合した場面を示した。
 駆動軸70はその先端が半球面である円柱状軸部材であるとともに、回転軸線に直交する方向に突出する回転力付与部としての円柱状の駆動突起71が設けられている。当該駆動軸70のうち図10に示した先端側とは反対側には、駆動軸70を軸線中心に回転させることができるように構成されている。
 図11は、装置本体2に装着されたプロセスカートリッジ3のうち、感光体ドラムユニット10の周辺に注目した感光体ドラムユニット10の軸線方向に沿った断面図である。従って図11には駆動軸70、感光体ドラムユニット10及び感光体ドラムユニット10を保持する部位の筐体3aが表れている。
 図10、図11からわかるように、駆動側端部部材50では、カップリング部62に駆動軸70の先端が突き合わされている。そして、駆動軸70の駆動突起71がカップリング部62に係合して回転力が伝達できるように接続されている。そしてこの回転力は駆動側端部部材50に伝わり、感光体ドラム11を回転させる。このとき合わせて非駆動側端部部材20も回転する。
 一方、図11からわかるように、非駆動側端部部材20ではプロセスカートリッジ3の筐体3aの内面から延びる支持軸部材3bがキャップ部材31の底部32に設けられた穴32aを貫通し、フランジ部材21の内管部23の内側に挿入される。これにより穴32a及び内管部23が軸受として機能し、感光体ドラムユニット10を回転可能に支持する。
 ここで、駆動側端部部材50は、その駆動軸70側の端面の一部が図11にC11aで示したように筐体3aに接触して、感光体ドラムユニット10が駆動軸70に近づく方向への移動が規制されている。一方、非駆動側端部部材20では、駆動軸70とは反対側面が、図11にC11bで示したように、筐体3aの内面に重なるように接触する。これにより感光体ドラムユニット10が駆動軸70から離隔する方向への移動が規制されている。すなわち、非駆動側端部部材20、駆動側端部部材50は、その感光体ドラム11側とは反対側となる面で筐体3aに接触して軸線方向の移動が規制されており、感光体ドラム側を向いた面は筐体3aに接触しておらず規制されていない。
 いいかえると、感光体ドラムユニット10は、非駆動側端部部材20によって筐体3aにより感光体ドラム11の軸線に沿った方向のうち一方向のみ(ここでは駆動軸70から離れる方向)の移動が規制され、駆動側端部部材50は筐体(3a)により感光体ドラム11の軸線に沿った方向のうち他方向のみの移動(駆動軸70に近づく方向)が規制されている。
 このとき底部32の外面と筐体3aとの間の摩擦を低減するため、ここに潤滑油を塗布したり、摩擦防止シート(例えばテフロン(登録商標)シート、ナイロンシート、フェルトシート又はPETシート等)を挟む等してもよい。または、その代わりにキャップ部材31を摺動性の高い材料(例えばテフロン(登録商標)等)で形成してもよい。
 これによれば、非駆動側端部部材20が感光体ドラムユニット10を駆動軸70側に押圧する付勢力を有して伸縮可能とされているので、駆動側端部部材50を駆動軸70側に押圧し、カップリング部62を駆動軸70に確実に係合させることができる。そしてこれは非駆動側端部部材20のキャップ部材31が伸縮できる範囲であればよいので、寸法精度の条件を緩和することができる。
 このとき、駆動側端部部材50は、上記特許文献1に記載のように感光体ドラムユニット10が駆動軸70から離隔する方向の移動を規制する必要がないので、当該規制のために筐体3aに設けられる部材を必要としない。従って、寸法に余裕のない部位に感光体ドラムを嵌め込む必要がないので、部材の精度を高める必要がないから管理が容易となって生産性も向上する。
  また、このように駆動側端部部材50を規制する必要がないので、図11からわかるように、駆動側端部部材50の径方向に大きく拡張された部位を形成する必要がない。従って、例えば駆動側端部部材50では歯車部55の直径を他の部位に対して最も大きくすることができる。そして歯車部55以外の部位における外形については、感光体ドラム11の外径(直径)以下で形成することができる。これによっても形状を簡素化して生産性を向上させることができる。
 なお、非駆動側端部部材20において、アース板40の接触片40bが支持軸部材3bに接触し、これにより感光体ドラム11、アース板40、支持軸部材3b、及び装置本体2が電気的に接続され、感光体ドラム11から装置本体2が導通する。
 次に第2の形態について説明する。図12は駆動側端部部材150の斜視図、図13は駆動側端部部材150の分解斜視図である。本形態では上記した第一の形態に対して駆動側端部部材50の代わりに駆動側端部部材150が適用された形態である。そこでここでは駆動側端部部材150について説明する。図12からわかるように駆動側端部部材150は、軸受部材151及び軸部材61を備えている。ここで軸部材61については第一の形態と同じに考えることができるので同じ符号を付して説明を省略する。
 軸受部材151は、感光体ドラム11の端部に固定される部材である。図14には軸受部材151の分解斜視図を示した。図14からわかるように、軸受部材151は、本体155及び中間部材170を備えている。それぞれについて説明する。
 図15(a)には、本体155を中間部材170が挿入される側から見た平面図、図15(b)には図15(a)にC15b-C15bで示した線による断面図、図15(c)には図15(a)にC15c-C15cで示した線による断面図をそれぞれ表した。図15(b)と図15(c)とは本体155の軸線を中心に90度ずらした断面である。
 本形態では、本体155は、図13~図15よりわかるように円筒状である筒状体156を備えている。また、筒状体156の外周面には、該外周面に沿って立設するリング状である接触壁53、及び、歯車部55が形成されている。筒状体156の外径は上記感光体ドラム11の内径と概ね同じであり、該筒状体156の一端側を感光体ドラム11に差し込んで嵌合することにより本体155を感光体ドラム11に固定する。この際には、感光体ドラム11の端面が接触壁53に当てられる深さまで挿入される。このとき、より強固な固定のために接着剤を用いてもよい。また接着剤が配置される部分の筒状体156には溝156aや凹凸が設けられてもよい。これにより接着剤がこの溝156aや凹部に保持され、感光体ドラム11と本体155との接着がさらに強固になる。
  歯車部55は、現像ローラユニットに回転力を伝達する歯車で、本形態では、はす歯歯車である。歯車の種類は特に限定されることはなく平歯車等であってもよい。ただし歯車は必ずしも設けられている必要はない。
 筒状体156の筒状である内側には、中間部材170を介して軸部材61を本体155に保持する保持部160が設けられている。
 保持部160は、筒状体156の内壁面の一部から突出する2つの保持突起161を備えており、2つの保持突起161は筒状体156の軸線を挟んで対向するように配置されている。この2つの保持突起161の間に間隙が形成され、ここに中間部材170が配置される。
  保持突起161は、筒状体156の軸線を挟んで対向する2つ保持突起161が一対として機能する。そして実際に利用される保持突起161は一対でよい。ただし、配置される保持突起161は、4つで二対、6つで三対、又はこれより多くの保持突起が設けられてもよい。これにより、本体155を射出成形するときにおける材料の挙動(ヒケ等)のバランスを向上させることができ、より精度の高い本体を形成することができる。従って保持突起の数を成形の際の材料の挙動の観点から決定してもよい。
 本形態の各保持突起161は、対をなす他方の保持突起161側に開口し、筒状体156の軸線方向に沿った方向に延びる保持溝162を有している。図16には図15(b)のうち当該保持突起161の部分を拡大した図を示した。図16からわかるように保持溝162は延びる方向に沿って所定の形状を有し、具体的には導入部162a、連通部162b、保持部162c、及び形成部162dが筒状体156の軸線に沿った方向に連続して配列されている。
 導入部162aは保持溝162のうち中間部材170が挿入される側に配置される部位であり、中間部材170が配置される側とは反対側に向かって溝幅(図16の紙面左右方向大きさ、筒状体156の内周方向大きさ)が狭くなる。導入部162aのうち中間部材170が挿入される側の端部は開口しており、後述するようにここから中間部材170の本体連結突起171(図14参照)を導入することができる。本形態では本体連結突起171の挿入し易さの観点から導入部162aを設けたがこれは必ずしも必要ではなく、導入部162aを設けることなく保持溝162の端部に次に説明する連通部162bが配置されてもよい。
  連通部162bは、導入部162aのうちの中間部材170が挿入される側とは反対側の端部から連続して設けられた溝であり、導入部162aのうち狭くなった溝幅を維持する溝幅で延びる溝である。これにより連通部162bはスナップフィット接合用突出部として機能する。
  保持部162cは、連通部162bの端部から連続して設けられた溝であり、連通部162bより溝幅が大きくなる溝である。後述するようにここに中間部材170の本体連結突起171が保持される。
  形成部162dは保持部162cの端部から連続して設けられた2つの細い溝であり、保持部162cの溝幅方向の最も広い部分の両端部のそれぞれから筒状体156の軸線方向に沿って延びている。従って、2つの形成部162dの間には溝が形成されておらず、本体連結突起受け部162eとして材料が残っている。ここで、2つの形成部162dの外側間の大きさ(図16にC16aで示した幅)は保持部162cの最も広い幅部分と同じ大きさとなるように形成されている。従って、ここには形成部162dの側から見て逆テーパがない。すなわち、形成部162dから保持部162cの最も溝幅が広くなる部分の間(図16にC16bで示した区間)では、この幅より狭くなる部位がない。従って射出成形におけるアンダーカットがない形状である。これにより一体成形において離型が容易であり、金型も単純な構造とすることができ、生産性を向上させることができる。具体的な製造過程の例は後で説明する。
 このような保持溝162によれば、導入部162aと保持部162cとの間に溝幅が狭められた連通部162bが形成され、これがいわゆるスナップフィット接合用突出部として機能する。従って、保持部162cに本体連結突起171が配置されるとスナップフィット接合されて本体連結突起171が保持溝162から抜け難くなる。
  また、上記のように一体成形がしやすい形状となっているので、生産性を向上することができる構造でもある。
 なお、保持部162cには円柱状に形成された本体連結突起171が保持されるので(図5参照)、保持部162cに面する面の少なくとも一部が円弧状であることが好ましい。これにより円滑な揺動の促進が図られる。ただしこれに限定されることはない。
 本体155を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂や金属を用いることができる。ここで、樹脂を用いる場合には部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性など)を向上させることができる。
 図14に戻り中間部材170について説明する。図14からわかるように、中間部材170は、全体として円環状の部材である。図17に中間部材170を示した。図17(a)は円環の軸線を紙面手前/奥方向にみた平面図、図17(b)は図17(a)にC17b-C17bで示した矢視断面図、図17(c)は図17(a)にC17c-C17cで示した矢視断面図である。
 中間部材170ではその円環状の内径は軸部材61の球体部64の直径より大きくされている。これにより中間部材170により軸部材61の揺動が阻害されることなく適切に行われる。また、中間部材170の円環状の外径は、中間部材170が筒状体156の内側で揺動しても該中間部材170が筒状体156の内側に接触しない大きさとされている。
 中間部材170は、円環状を形成する外径部及び内径部のうち、外径部の一部に平行に切り欠かれた一対の切り欠き部170aを有し、平行な2つの平面170bが形成されている。この2つの面間の距離(図17(a)にC17dで示した距離)は、2つの保持突起161間(図15(a)にC15dで示した距離)よりも小さく形成されている。
  そしてこの平面170bのそれぞれからは円柱状の本体連結突起171が立設されている。ここで、2つの本体連結突起171は図17(a)からわかるようにその円柱の軸線が中間部材170の軸線を挟んで円環の1つの直径上に配置されている。ここで本体連結突起171の円柱状の直径は上記した保持溝162の連通部162bの溝幅より若干大きく、そして保持部162cの溝幅と概ね同じに形成されている。ただし、揺動のし易さを調整する観点から、例えばより円滑な揺動のため本体連結突起171の当該直径を保持部162cの溝幅に対して小さくしたり、逆に揺動の程度を若干規制して動きを硬くする観点から本体連結突起171の当該直径を保持部162cの溝幅に対して若干大きくしたりすることもできる。
 また、中間部材170は円環状の直径に沿って外側と内側と結ぶ方向に延び、円環の軸線に沿った方向を深さ方向とする2つの軸部材連結溝172が設けられている。この2つの軸部材連結溝172は図17(a)からわかるようにその延びる方向が中間部材170の円環の直径方向であり、2つの軸部材連結溝172は中間部材170の軸線を挟んで1つの直径上に配置されている。そして、軸部材連結溝172と上記した本体連結突起171とは中間部材170の軸線周りに90°ずれた位置に配置されている。
 図17(b)には軸部材連結溝172が延びる方向に直交する方向における軸部材連結溝172の形状が表れている。この図からわかるように、軸部材連結溝172はその開口側(図17(b)の上側)に連通部172aが配置され、連通部172aから連続して深い側に保持部172bが形成されている。保持部172bはここに軸部材61の回転力伝達突起65が保持されるので回転力伝達突起65の断面形状に合わせて円形断面を有して形成されている。ここで、図17(b)からわかるように、中間部材170の厚さ方向において、保持部172bの中心位置は、本体連結突起171の軸線位置に一致するように配置される。これにより軸部材61が全方位に亘って均等に揺動することができる。そして均等な揺動によって感光体ドラムの位相に関わらず、プロセスカートリッジの着脱が円滑になる。
  なお、本形態では軸部材連結溝172が連通部172a及び保持部172bにより形成された例を説明した。これに限らず、連通部172aのうち保持部172bに連通する端部とは反対側に、上記保持溝162の導入部162aに倣って溝幅が次第に広がるように形成された導入部を設けてもよい。
 また、保持部172bの溝幅(図17(b)の紙面左右方向)のうち最も大きい部分は、連通部172aの溝幅より大きく形成されている。これがいわゆるスナップフィット接合用突起として機能する。従って、保持部172bに駆動軸70の回転力伝達突起65が配置されるとスナップフィット接合されて回転力伝達突起65が軸部材連結溝172から抜け難くなる。
 中間部材170を構成する材料は特に限定されることはないが本体155と同様の材料を用いることができる。
 図18には変形例にかかる中間部材170’の形態を表した。図18(a)は中間部材170’の斜視図、図18(b)は中間部材170’の平面図である。中間部材170’では軸部材連結溝172’が延びる方向のうち中間部材170’の円環の外側は壁により閉塞されており、外側には連通していない。これによれば軸部材連結溝172’に挿入される軸部材61の回転力伝達突起65(図9(b)参照)における、軸部材連結溝172’が延びる方向への移動が規制され、より安定した揺動が可能となる。
 軸受部材151と軸部材61とは次のように組み合わされて駆動側端部部材150とされている。この組み合わせの説明により、軸受部材151及び軸部材61が備える形態、並びに部材間の大きさの関係、位置関係等がさらに理解される。図19(a)には、図12に示したC19a-C19aの線に沿った端部部材150の断面図、図19(b)には、図12に示したC19b-C19bの線に沿った端部部材150の断面図をそれぞれ表した。また、図20(a)には図19(a)に示した視点において軸部材61が傾いた姿勢の例、図20(b)には図19(b)に示した視点において軸部材61が傾いた姿勢の例をそれぞれ表した。
 図19(a)、図19(b)から特によくわかるように、中間部材170の円環の内側に球体部64が配置され、回転力伝達ピン65が中間部材170の軸部材連結溝172に挿入されている。これにより中間部材170と軸部材61とが組み合わされている。この組み合わせの際には、回転力伝達ピン65の突出した端部(すなわち回転力伝達突起65)のそれぞれを、軸部材連結溝172の開口部から押し込むようにして連通部172aを通し、保持部172bに配置してスナップフィット接合により組み合わされる。これにより、軸部材61は図20(a)に矢印C20aで示したように回転力伝達ピン65の軸線を中心に中間部材170に対して揺動することができる。
 一方、図19(a)、図19(b)から特によくわかるように、筒状体156の内側に配置された2つの保持突起161の間に軸部材61が組み合わされた中間部材170が配置される。このとき中間部材170の本体連結突起171が筒状体156の保持突起161に形成された保持溝162に挿入される。これにより中間部材170と本体155とが組み合わされ、その結果、本体155、中間部材170、及び軸部材61が同軸に組み合わされる。この組み合わせの際には、中間部材170の本体連結突起171のそれぞれを、筒状体156の保持突起161に備えられた保持溝162の導入部162aから押し込むようにして連通部162bを通し、保持部162cに配置してスナップフィット接合により組み合わされる。また、軸部材61は図20(b)に矢印C20bで示したように、中間部材170の本体連結突起171の軸線を中心に中間部材170ごと揺動することができる。
 このように本形態の端部部材150では、中間部材170は本体155にスナップフィット接合により外れないように保持され、及び、軸部材61は中間部材170にスナップフィット接合により外れないように保持されている。従って、軸部材61は本体155に直接的には保持されていない。
  また、このような端部部材150の組み立ては、初めに軸部材61を中間部材170に配置し、これを本体155に取り付けることにより行うことができる。そしてこれはいずれもスナップフィット接合により連結されている。従って、軸部材61を軸受部材151に容易に生産性よく組み立てることができる。また、組み立てが容易であるだけでなく、分離も同様に容易であるため、リユースも容易に行える。特に軸部材61は挿入及び分離に際して大きな力で変形をさせる必要が無いので傷などの懸念が解消される。また、分離が容易であるので作業性も向上させることができる。
  さらに、中間部材170によれば、回転力伝達突起(回転力伝達ピン)が備えられ、その基端部に球体が設けられていてもこれを軸受部材151に組み合わせることができる。従って、リユースの際によくみられる当該種類の軸部材を用いることが可能である。
 このように軸部材61が軸受部材151の内側に配置されることにより、軸部材61は、図20(a)、図20(b)に示したように揺動することができる。すなわち、図20(a)に示した視点において、矢印C20aで示したように軸部材61は回転力伝達ピン65の軸線を中心に揺動することができる。一方、図20(b)に示した視点において矢印C20bで示したように軸部材61は中間部材170自体の本体連結突起171を中心とする揺動に追随して揺動することができる。図20(a)に示した揺動と図20(b)に示した揺動とは互いに直交する方向への揺動である。
  このとき、図17(b)からわかるように、中間部材170の厚さ方向において、保持部172bの中心位置は、本体連結突起171の軸線位置に一致するように配置されているので、2つの揺動の軸が同一平面上にあり、全方位に亘って均等に揺動することができる。そして均等な揺動によって感光体ドラムの位相に関わらず、プロセスカートリッジの着脱が円滑になる。
 また、装置本体2からの駆動力を受けた時には、軸部材61は、図19(a)、図19(b)に矢印C19で示したようにその軸線を中心とした回転力を受ける。このときには、軸部材61の回転力伝達ピン65の両端部が中間部材170を押圧し、中間部材170の本体連結突起171が本体155の保持溝162の側壁に引っ掛かり、回転力を感光体ドラム11に伝達させることができる。
 このように、端部部材150によれば、軸部材61の少なくとも1つの方向の揺動が、中間部材170と本体155との揺動であるため、その動作は円滑である。このとき、揺動は軸部材の形態とは無関係なので、軸部材側に若干の寸法的なばらつき等があっても十分に円滑な揺動を確保することができる。また、揺動の角度を大きくとっても軸部材61が外れてしまう虞がないので、揺動の角度を大きくすることが可能となる。これにより、感光体ドラム(プロセスカートリッジ)と装置本体側の回転力伝達軸とのギャップを小さくすることができることから、装置本体の小型化が可能となる。
  また、端部部材150によれば回転力伝達ピンを揺動溝に導入するための溝(導入溝)を設ける必要がなく、作動中において不意に軸部材が外れてしまう問題を解消することができる。
 以上のような構造により軸部材61は、回動(揺動)し、かつ、回転力を伝達しつつ、軸受部材151に保持される。
 端部部材150の感光体ドラム11への取り付けは、端部部材150が、図19(a)、図19(b)に示したように組み立てられた後に、端部部材150のうち軸部材61が突出しない側の端部が感光体ドラム11に挿入されることにより行われる。このような端部部材150により、プロセスカートリッジ3の装置本体2への装着時には感光体ドラム11に適切に回転力を付与するとともに、当該プロセスカートリッジ3の容易な着脱が可能となる。
 次に第3の形態について説明する。図21は駆動側端部部材250の斜視図である。本形態では上記した第一の形態に対して駆動側端部部材50の代わりに駆動側端部部材250が適用された形態である。そこでここでは駆動側端部部材250について説明する。図21からわかるように駆動側端部部材250は、軸受部材251及び軸部材61を備えている。ここで軸部材61については第一の形態と同じに考えることができるので同じ符号を付して説明を省略する。
 軸受部材251は、感光体ドラム11の端部に固定される部材である。図22には軸受部材251の分解斜視図を示した。図22からわかるように、軸受部材251は、本体255及び中間部材270を備えている。それぞれについて説明する。
 図23(a)には、本体255を中間部材270が挿入される側から見た図(平面図)、図23(b)には本体255を図22とは異なる角度から見た斜視図をそれぞれ表した。また、図24には、図22、図23(a)及び図23(b)にC24-C24で示した線に沿った軸線方向の断面図を表した。なお、本形態の本体255では、当該C24-C24で示した線を本体255の軸線を中心に90°回転させた線(図23(a)にC’24-C’24で示した線。)に沿った軸線方向の断面も図24と同様である。
 本形態では、本体255は、図21~図24よりわかるように円筒状である筒状体256を備えている。また、筒状体256の外周面には、該外周面に沿って立設するリング状である接触壁53、及び、歯車部45が形成されている。筒状体256の外径は上記感光体ドラム11の内径と概ね同じであり、該筒状体256の一端側を感光体ドラム11に差し込んで嵌合することにより本体255を感光体ドラム11に固定する。この際には、感光体ドラム11の端面が接触壁53に当てられる深さまで挿入される。このとき、より強固な固定のために接着剤を用いてもよい。また接着剤が配置される部分の筒状体256には溝256aや凹凸が設けられてもよい。これにより接着剤がこの溝256aや凹部に保持され、感光体ドラム11と本体255との接着がさらに強固になる。
  歯車部55は、現像ローラユニットに回転力を伝達する歯車で、本形態では、はす歯歯車である。歯車の種類は特に限定されることはなく平歯車等であってもよい。ただし歯車は必ずしも設けられている必要はない。
 筒状体256の筒状である内側には、該筒状体256の内側の少なくとも一部を塞ぐように板状の底部259が設けられている。さらに、底部259で仕切られた筒状体256の内側のうち、感光体ドラム11に固定される側とは反対側の内側には保持部260が設けられている。
  ここでは底部259が具備される例を説明したが、底部259は必ずしも設けられる必要はない。軸部材61及び中間部材270は保持部260により保持することができるので、底部259を設けることなくこれら軸部材61及び中間部材270を筒状体256の内側に保持可能である。
 保持部260は、筒状体256の内側に中間部材ガイドとしてのガイド溝261、262、263、264を形成する。従って保持部260は、筒状体256の内面から筒状体256の軸線に向けて突出するように複数の突出部260aが所定の間隔で筒状体256の内周面に沿って配置され、隣り合う突出部260aの間隙がガイド溝261、262、263、264を形成している。また、突出部260aにより囲まれる軸線部分には空間(凹部)が形成され、ここに後述するように軸部材61の基端部(球体部64)が配置される。
  ここでガイド溝は、筒状体256の軸線を挟んで対向する2つガイド溝が一対として機能する。そして実際に利用されるガイド溝は後で説明するように一対でよい。ただし、本形態のように4つのガイド溝261、262、263、264、すなわち二対設けられてもよく、さらには、6つ(三対)又はこれより多くのガイド溝が設けられてもよい。これにより、本体255を射出成型するときにおける材料の挙動(ヒケ等)のバランスを向上させることができ、より精度の高い本体を作製することができる。従ってガイド溝の数を当該材料の挙動の観点から決定してもよい。
 ここでは図24に断面が表れたガイド溝261及びガイド溝262による一対のガイド溝について説明する。ガイド溝263及びガイド溝264による他の一対のガイド溝は同様であるので説明を省略する。
  上記したように、ガイド溝261は、筒状体256の内周面に形成される筒状体256の軸線(図24に線Oで示した。)の方向に沿って延びる溝である。そしてこのガイド溝261は筒状体256の軸線O側が開口し、筒状体256の内周面側に底面を有する。一方、ガイド溝262は、ガイド溝261に対して筒状体256の軸線Oを挟んで反対側に対向するように設けられた溝であり、ガイド溝261と同様、筒状体256の内周面に形成され、筒状体256の軸線Oの方向に沿って延びている。そしてこのガイド溝262も筒状体256の軸線O側が開口し、筒状体256の内周面側に底面を有する。
 また図24からわかるように、ガイド溝261、262の底面には、その少なくとも一部に筒状体256の軸線Oに沿った方向に対して湾曲した曲面261a、262aが形成されている。この曲面261a、262aは、図24に示した断面において次のように構成されていることが好ましい。
 曲面261a、262aが筒状体256の軸線Oを挟んで線対称となるように対向して設けられ、底部259側(感光体ドラム11に挿入される側)から離隔するにしたがって曲面261aと曲面262aとの間隔が狭くなり、曲面間が近づくように形成されていることが好ましい。これにより後述するように中間部材270が本体255から外れないように保持することができる。
 曲面261a、262aは円弧状であり、これらは同じ円に属する形態であり、この円の中心は軸線Oの上にあることが好ましい。これにより、中間部材270を軸線Oに沿った方向にガタツキなく本体255に保持することができ、中間部材270の回動を円滑に案内(ガイド)して軸部材61を揺動(傾動)させることができる。
  また、底部259を設けた場合には、曲面261a、262aが属する円の円周上に、筒状体256の軸線Oと底部259のうち、曲面261a、262a側の面との交点(図24にBで表した点)が存在するように配置してもよい。
 図22に戻り中間部材270について説明する。図22からわかるように、中間部材270は、一部が切り欠かれた円環状の部材である。図25に中間部材270を示した。図25(a)は斜視図、図25(b)は正面図、図25(c)は図25(b)にC25c-C25cで示した線に沿った断面図である。
 中間部材270は、一部に切欠き270aが設けられた円環状である。
  中間部材270は、その外周の一部が上記した本体255の保持部260に具備されたガイド溝261、262、263、264のうち、いずれか一対のガイド溝の内側に挿入されて被ガイドとして機能する。従って、中間部材270の外径は、中間部材270の外周部が配置される一対のガイド溝の内側に納まってここを摺動することができる大きさである。ガイド溝261、262、263、264の底面の少なくとも一部が上記説明したように円弧状であり、向かい合う一対のガイド溝においてこの円弧が同じ円に属する場合には、当該円の直径と中間部材270の外径とが同じであることが好ましい。これにより中間部材270がガイド溝間で円滑に回動できるとともに、ガタツキも抑制することが可能となる。
  一方、中間部材270の環状である内側には後述する軸部材61の基端部が配置されるので当該基端部の少なくとも一部を中間部材270の内側に納めることができる大きさ及び形態であればよい。本形態では軸部材61の基端部は球体部90とされていることから、中間部材270の内径をこの球体部90の直径と同じとすることができる。また、図25(c)からわかるように、本形態では中間部材270の内周面は円環の軸線に沿った方向(図25(c)の紙面上下方向)にも円弧状に湾曲している。この湾曲は球体部90の外周の湾曲に合わせることができる。これにより中間部材270と球体部90との組み合わせをより適合したものとすることができる。
  そして中間部材270の円環の軸線の沿った方向の大きさ(すなわち厚さ)は、上記した本体255の保持部260に形成されたガイド溝261、262の溝幅と概ね同じとされている。
 中間部材270の切欠き270aは、少なくとも後述する軸部材61の回転軸63の少なくとも一部をその内側に配置できる大きさ及び形状とされている。従って切り欠き270aを形成する中間部材270の端面270bも、回転軸63の形状に合わせることができる。
 中間部材270には、円環の内周面から外側に向けて延びる2つの溝271、272が設けられている。この2つの溝271、272は、中間部材270の直径に沿って対向する位置に設けられている。この溝271、272は、後述する軸部材61の回転力伝達ピン65の両端のそれぞれが挿入される。従って、溝271、272の形状及び配置は回転力伝達ピン65の端部がそれぞれ溝271、272に挿入することができるように構成されている。
 また、溝271、272のうち、中間部材270の円環の軸線方向一方には片271a、272aが残り、溝271、272が当該軸線に沿った方向には貫通していないことが好ましい。これにより軸部材61を中間部材270に組み合わせ、軸部材61が装置本体2から回転力を付与されたとき、回転力伝達ピン65が片271a、272aに引っ掛かり、適切に回転力を中間部材270に伝達できる。従って、回転力伝達ピン65の回転を考慮して、図25(a)~図25(c)よりわかるように、溝271の片271aと溝272の片272aとは、中間部材270の軸線方向で異なる側に設けられている。
  なお、回転力伝達ピン65の先端が、本体255の保持部260のガイド溝261、262内に至るまで延びていれば、回転時に回転力伝達ピン65の先端はガイド溝261、262の側壁に引っ掛かるので回転力を伝達できることから、片271a、272aを必ずしも設ける必要はない。
  また、溝271、272のうち片271a、272aに対向する開口部は溝内に比べて若干狭められてもよい。具体的にはこの開口部を回転力伝達ピン65の直径より若干小さい開口とすることができる。これにより一度溝271、272の内側に入った回転力伝達ピン65が狭められた開口部により該溝271、272から抜け難くなる。
 中間部材270を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂を用いることができる。ここで、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、中間部材270を本体255に取り付けた際に揺動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
 上記軸受部材251と軸部材61とは次のように組み合わされて端部部材250とされている。この組み合わせの説明により、軸受部材251及び軸部材61が備える形状、大きさ、位置関係等がさらに理解される。図26(a)には、図21に示したC26a-C26aの線に沿った端部部材250の断面図、図26(b)には、図21に示したC26b-C26bの線に沿った端部部材250の断面図をそれぞれ表した。また、図27(a)には図26(a)に示した視点における軸部材61が傾いた姿勢の例、図27(b)には図26(b)に示した視点における軸部材61が傾いた姿勢の例をそれぞれ表した。
 図26(b)から特によくわかるように、中間部材270の円環の内側に球体部64が配置され、回転力伝達ピン65が中間部材270の溝271、272に挿入されている。これにより中間部材270と軸部材61とが組み合わされている。従って、軸部材61は図27(a)に矢印C27aで示したように回転力伝達ピン65の軸線を中心に中間部材270に対して揺動することができる。
 一方、図26(a)、図26(b)からよくわかるように、軸部材61が配置された中間部材270は、中間部材270の厚さ方向が本体255の保持部260に形成されたガイド溝261、262の溝幅方向となるように、中間部材270の外周部がガイド溝261、262内に嵌め込まれる。従って、ガイド溝261、262内に中間部材270の外周部が配置されるとともに、中間部材270はガイド溝261、262内を摺動するように移動することができ、その結果中間部材270は図27(b)に矢印C27bで示したように本体255の内側で回動することが可能となる。
  なお、本形態のように、ガイド溝261、262の底面に形成された曲面261a、262aが1つの円上にあり、中間部材270の外周もこの円と概ね同じ直径で形成されていれば、図26(b)のように中間部材270が本体255にガタツキなく納められ、回転伝達精度がさらに優れた端部部材250となる。
 このように本形態の端部部材250では、本体255に形成されたガイド溝261、262、263、264により中間部材270が外れないように保持され、軸部材61は中間部材270により外れないように保持されている。従って、軸部材61は本体255に直接的には保持されていない。
  また、このような端部部材250の組み立ては、初めに軸部材61を中間部材270に配置し、これを本体255に取り付けることにより行うことができる。この場合、中間部材270を保持部260のガイド溝261、262内に配置する際には、少し力を加えて弾性変形させることにより組み立てることができる。従って、軸部材61を軸受部材251に簡便に生産性よく組み立てることができる。また、組み立てが容易であるだけでなく、分離も同様に容易であるため、リユースも容易に行える。特にその際には軸部材61は挿入及び分離に際して変形をさせる必要が無いので傷などの懸念が解消される。また、分離が容易であるので作業性も向上させることができる。
 このように軸部材61が軸受部材251の内側に配置されることにより、軸部材61は、図27(a)、図27(b)に示したように揺動することができる。すなわち、図27(a)に示した視点において、矢印C27aで示したように軸部材61は回転力伝達ピン65の軸線を中心に揺動することができる。一方、図27(b)に示した視点において矢印C27bで示したように軸部材61は中間部材270の回動に追随して揺動することができる。図27(a)に示した揺動と図27(b)に示した揺動とは互いに直交する方向への揺動である。
 また、装置本体2からの駆動力を受けたときには、軸部材61は、図26(a)、図26(b)に矢印C26で示したようにその軸線を中心とした回転力を受ける。このときには、軸部材61の回転力伝達ピン95の両端部が中間部材270を押圧し、中間部材270が本体255のガイド溝261、262の側壁に引っ掛かり、回転力を感光体ドラム11に伝達させることができる。なお、回転力伝達ピン65の先端がガイド溝261、262内に達する構成のときには、片271a、272a(図25(c)参照)が具備されていなくても、回転力伝達ピン65の先端が本体255のガイド溝261、262の側壁に引っ掛かり、回転力を感光体ドラム11に伝達させることができる。
 このように、端部部材250によれば、軸部材61の少なくとも1つの方向の揺動では、中間部材270と本体255とが摺動して揺動することができるため、その動作は円滑である。このとき、揺動は軸部材の形態とは無関係なので、軸部材側に若干の寸法的なばらつき等があっても十分に円滑な揺動を確保することができる。また、揺動の角度を大きくとっても軸部材61が外れてしまう虞がないので、揺動の角度を大きくすることが可能となる。これにより、感光体ドラム(プロセスカートリッジ)と装置本体側の駆動軸とのギャップを小さくすることができることから、装置本体の小型化が可能となる。
  また、端部部材250によれば上記した非特許文献1のような回転力伝達ピンを揺動溝に導入するための溝(導入溝)を設ける必要がなく、作動中において不意に軸部材が外れてしまう問題を解消することができる。
 以上のような構造により軸部材61は、回動(揺動)し、かつ、回転力を伝達しつつ、軸受部材251に保持される。
 端部部材250の感光体ドラム11への取り付けは、端部部材250が、図26(a)、図26(b)に示したように組み立てられた後に、端部部材250のうち軸部材61が突出しない側の端部が感光体ドラム11に挿入されることにより行われる。このような端部部材250により、プロセスカートリッジ3の装置本体2への装着時には感光体ドラム11に適切に回転力を付与するとともに、当該プロセスカートリッジ3の容易な着脱が可能となる。
 次に第4の形態について説明する。第4の形態では第3の形態と共通する部分が多いことから、ここでは、第3の形態と異なる部位に注目して説明するものとし、第3の形態と共通する部分については同じ符号を付して説明を省略する。
 図28は第4の形態を説明する図で、端部部材350の斜視図である。端部部材350は軸受部材351及び軸部材61を備えている。軸部材61は上記説明したものと同じである。
 軸受部材351は、感光体ドラム11の端部に固定される部材である。図29に軸受部材351の分解斜視図を示した。図15からわかるように、軸受部材351は、本体355及び中間部材370を備えている。以下、それぞれについて説明する。
 図30(a)には本体355を中間部材370が挿入される側から見た図(平面図)、図30(b)には本体355を図29とは異なる角度から見た斜視図をそれぞれ表した。また、図31には、図29、図30(a)、図30(b)にC31-C31で示した線を含む軸線に沿った断面図を示した。さらに図32(a)には、図32、図30(a)、図30(b)、図31にC32a-C32aで示した線を含む軸線に沿った断面図を示した。そして図32(b)には、図30(a)、図31にC32b-C32bで示した線を含む軸線方向に沿った断面図を示した。
 本形態では、本体355は、図28~図32よりわかるように底部359及び保持部の形態において上記した本体255と異なる。その他の筒状体256、接触壁47、歯車部55等については、本体255と説明が同じとなるので、ここでは説明を省略する。
 筒状体256の筒状である内側には、該筒状体256の内部の少なくとも一部を塞ぐように筒状体256の直径方向に棒状に延びる底部359が設けられている。さらに、筒状体256の内側のうち底部359を挟んで感光体ドラム11に固定される側とは反対側の内側には保持部360が設けられている。
 保持部360は、筒状体256の内側に中間部材ガイドとしてのガイド面361、362を形成する。そのため保持部360は、筒状体256の内面から筒状体256の軸線に向けて突出するように2つの突出部360aが向かい合うように配置され、2つの突出部360aの間に溝360bが形成されている。
 保持部360の形態についてさらに詳しく説明する。
  図30(a)、図30(b)からよくわかるように、2つの突出部360aが向かい合わせに配置され、その間に間隙が形成されることにより溝360bとされている。また、突出部360aは、該突出部360aのうち、筒状体256の軸線上に中心を有する球の一部にくりぬかれたように凹部360cが形成されている。この凹部360cの球面は軸部材61の球体部64を受けることができる形状とされている。ただし、凹部360cは必ずしも球面である必要はない。
  さらに、当該凹部360cの底には、溝360bが延びる筒状体256の直径方向に直交する直径方向に延びる、ガイド部材挿入溝360dが形成されている。ガイド部材挿入溝360dは、後述する中間部材370のガイド部材375を挿入することができる形態とされている。
 また、図31、図32(b)からよくわかるように、突出部360aのうち凹部360cとは反対側(すなわち保持部360のうち底部359に対向する側)にも面が形成されており、図18(b)からわかるように円弧状である。これが、ガイド面361、362となる。ガイド面361、362は、溝360bが延びる方向に沿って湾曲するように形成された曲面を有している。このガイド面361、362上を中間部材370のガイド部材375が摺動することにより軸部材61が揺動する。揺動については後で説明する。
  従って、凹部360cの底部に形成されたガイド部材挿入溝360dは、凹部360cと保持部360の裏面(ガイド面361、362が存する面)とを連通し、ガイド部材375をガイド面361、362に到達させる溝である。
 このような形状を有する保持部360は、さらに次のように形成されていることが好ましい。
  溝360bの溝幅は特に限定されることはないが、中間部材370の厚さと同じ程度であることが好ましい。これにより軸部材61のガタツキを抑制することができる。
  凹部360cの内面形状は、軸部材61の基端部を受け入れることができる形状であれば特に限定されないが、軸部材61の基端部が球体部64であるときには、当該球体部64と同じ半径を有する曲面を具備していることが好ましい。これによっても軸部材61のガタツキを防止することができる。
  ガイド部材挿入溝360dは、中間部材370のガイド部材375を挿入することができるとともに、該ガイド部材375に対するスナップフィット(入口部のしまりばめ)構造とされることが好ましい。これにより本体355からの中間部材370の抜けが防止できる。スナップフィット構造としては、例えばガイド部材挿入溝360dの壁面から突出する片であるスナップフィット構造360e、360fを挙げることができる。
  ガイド面361、362は軸部材61が適切に揺動するように中間部材370をガイドする面であり軸部材61の揺動を決める面であることから、安定した揺動を得る観点から図32(b)に示した断面においてガイド面361、362は円弧状であることが好ましい。すなわち、ガイド面361、362は軸部材の揺動の中心を中心とした円弧状であることが好ましい。これにより円滑な揺動が可能である。また、本形態では凹部360cの円弧もガイド面361、362と同心円上の円弧とされている。
 本体355を構成する材料は上記した本体255と同様である。
 図29に戻り中間部材370について説明する。図29からわかるように、中間部材370は、一部が切り欠かれた円環状の部材である。図33に中間部材370を示した。図33(a)は斜視図、図33(b)は正面図、図33(c)は図33(b)にC33c-C33cで示した線に沿った断面図である。
 中間部材370は、一部に切欠き370aが設けられた円環状である。
  中間部材370は、その外周部が上記した本体355の保持部360に具備された溝360bに配置される。従って、中間部材370の外径は、溝360b内に挿入できる大きさである。
  一方、中間部材370の環状である内側には軸部材61の基端部が配置されるので当該基端部を中間部材370の内側に納めることができる大きさ及び形態であればよい。本形態では軸部材61の基端部は球体部64とされていることから、中間部材370の内径もこの球体部64の直径と同じとすることができる。また、図33(c)からわかるように、本形態では中間部材370の内周面は円環の軸線に沿った方向(図33(c)の紙面上下方向)にも円弧状に湾曲している。この湾曲は球体部64の直径による湾曲に合わせることができる。これにより中間部材370と球体部64との組み合わせをより適合したものとなる。
  そして中間部材370の円環の軸線方向の大きさ(すなわち厚さ)は、上記した本体355の保持部360に形成された溝360bの溝幅と概ね同じとされている。これによりガタツキを防止することができる。
 中間部材370の切欠き370aは、少なくとも軸部材61の回転軸63がその内側に配置できる大きさ及び形状とされている。
 中間部材370には、円環の内周面から外側に向けて延びる2つの溝371、372が設けられている。この2つの溝371、372は、中間部材370の直径に沿って対向して設けられている。この溝371、372は、軸部材61の回転力伝達ピン65の両端のそれぞれが挿入される。従って、溝371、372の形状及び配置は回転力伝達ピン65の端部がそれぞれ溝371、372に挿入することができるように構成されている。
 また、溝371、372のうち、中間部材370の円環の軸線に沿った方向の一方には片371a、372aが残り、溝371、372が当該軸線に沿った方向には貫通していないことが好ましい。これにより軸部材61を中間部材370に組み合わせ、軸部材61が装置本体2から回転力を付与されたとき、回転力伝達ピン65が片371a、372aに引っ掛かり、適切に回転力を中間部材370に伝達できる。従って、回転力伝達ピン65の回転を考慮して、図33(a)~図33(c)よりわかるように、溝371の片371aと溝372の片372aとは、中間部材370の軸線方向で異なる側に設けられている。
  なお、回転力伝達ピン65の先端が、本体355の保持部360の溝360b内に至るまで延びていれば、回転時に回転力伝達ピン65の先端は溝360bの側壁に引っ掛かるので回転力を伝達できることから、このときには片371a、372aを必ずしも設ける必要はない。
  また、溝371、372のうち片371a、372aに対向する開口部は溝内に比べて若干狭められてもよい。具体的にはこの開口部を回転力伝達ピン65の直径より若干小さい開口とすることができる。これにより一度溝371、372の内側に入った回転力伝達ピン65が、狭められた開口部により溝371、372から抜け難くなる。
 さらに中間部材370には、円環状である表裏面のそれぞれから被ガイドとして機能する、円環の軸線方向に沿ったガイド部材375が突出するように配置されている。本形態ではガイド部材375は円柱状のピンである。ガイド部材375が配置される位置は特に限定されることはなく、後述するように中間部材370を本体355に配置したときにガイド面361、362上を摺動できる位置に配置されていればよい。また、ガイド部材375の形状も本形態の円柱であることに限らず、四角柱、三角柱やその他の断面を有する形状であってもよい。
 中間部材370を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂を用いることができる。ここで、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、中間部材370を本体355に取り付けた際に揺動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
 上記軸受部材351と軸部材61とは次のように組み合わされて端部部材350とされている。この組み合わせの説明により軸受部材351及び軸部材61が備える形態や部材同士の形態、大きさ等がさらに理解される。
  図34には、図28に示したC34-C34の線に沿った端部部材350の断面図、図35(a)には、図28に示したC35a-C35aの線に沿った端部部材350の断面図をそれぞれ表した。図35(b)には、図34に示したC35b-C35bの線に沿った端部部材350の断面のうち、本体355と中間部材370に具備されたガイド部材375との位置関係に注目した図を示した。従って図35(b)では軸部材61は省略されている。
  また、図36には図34に示した視点における軸部材61が傾いた姿勢の例、図37(a)には図36(a)に示した視点における軸部材61が傾いた姿勢の例、図37(b)には図36(b)に示した姿勢における軸部材61が傾いた姿勢の例をそれぞれ表した。
 図35(a)から特によくわかるように、中間部材370の円環の内側に球体部64が配置され、回転力伝達ピン65が中間部材370の溝371、372に挿入されている。これにより中間部材370と軸部材61とが組み合わされている。従って、軸部材61は図36に矢印C36で示したように回転力伝達ピン65の軸線を中心に中間部材370に対して揺動することができる。
 一方、図34、図35(b)からよくわかるように、中間部材370のガイド部材375がガイド部材挿入溝360dを貫通して底部359側に達し、ガイド面361、362に摺動され得る位置に配置されている。そして後で説明するようにガイド部材375がガイド面361、362を摺動することにより中間部材370が案内(ガイド)され、その結果、図37(a)に矢印C37aで示したように中間部材370は本体355の内側で回動することが可能となる。
  また、図34、図35(a)、図35(b)からよくわかるように、中間部材370は、中間部材370の厚さ方向が、保持部360に形成された溝360bの溝幅方向となるように、溝360b内に配置される。従って、溝360b内に中間部材370の一部が配置されるとともに、中間部材370は溝360b内を摺動するように移動することができる。
 このように本形態の端部部材350では、本体355に形成されたガイド面361、362により中間部材370が外れないように保持され、軸部材61は中間部材370により外れないように保持されている。より具体的には、本体355のガイド面361、362に中間部材370のガイド部材375が係合し、軸部材61が本体355から抜ける方向への移動を規制している。
  このように、軸部材61は本体355に直接的には保持されていない。ただし、軸部材61の球体部64は、本体355の保持部360に形成された凹部360cにより、軸部材61が本体355から抜ける方向以外の方向についてその移動を規制している。
  なお、ガイド面361、362とガイド部材375との相対的な位置関係、及び、球体部64と凹部360cとの寸法の関係により、軸部材61と本体355とのクリアランス(いわゆる「遊び」)を調整することができる。
 このような端部部材350の組み立ては、初めに軸部材61を中間部材370に配置し、これを本体355に取り付けることにより行うことができる。この場合、中間部材370のガイド部材375をガイド部材挿入溝360dを貫通させる際には、少し力を加えて弾性変形させることにより組み立てることができる。従って、軸部材61を軸受部材351に簡便に生産性よく組み立てることができる。また、組み立てが容易であるだけでなく、分離も同様に容易であるため、リユースも容易に行える。特にその際には軸部材61は挿入及び分離に際して変形をさせる必要が無いので傷などの懸念が解消される。また、分離が容易であるので作業性も向上させることができる。
 このように軸部材61が軸受部材351の内側に配置されることにより、軸部材61は、図36、図37(a)、図37(b)に示したように揺動することができる。すなわち、図36に示した視点において、矢印C36で示したように軸部材61は回転力伝達ピン65の軸線を中心に揺動することができる。一方、図37(a)に示した視点において矢印C37aで示したように軸部材61は中間部材370の回動に追随して揺動することができる。このとき、図37(b)に表れているようにガイド部材375がガイド面361、362の上を摺動することにより中間部材370の回動が案内(ガイド)され、これに基づいて軸部材61が揺動することが可能となる。
  図36に示した揺動と図37(a)に示した揺動とは互いに直交する方向への揺動である。
 また、装置本体2からの駆動力を受けた時には、軸部材61は、図34、図35(a)にC34で示したようにその軸線を中心とした回転力を受ける。このときには、軸部材61の回転力伝達ピン65の両端部が中間部材370の片371a、372a(図33(b)参照)を押圧し、中間部材370が本体355の溝360bの側壁に引っ掛かり、回転力を感光体ドラム11に伝達させることができる。
  なお、回転力伝達ピン65の先端が、本体355の保持部360の溝360b内に至るまで延びていれば、片371a、372aが配置されない場合でも回転時に回転力伝達ピン65の先端は溝360bの側壁に引っ掛かるので、このときには中間部材370を押圧しなくても回転力を伝達できる。
 このような端部部材350によっても上記した端部部材250と同様の効果を奏するものとなる。
 以上のような構造により軸部材61は、回動(揺動)し、かつ、回転力を伝達しつつ、軸受部材351に保持される。端部部材350は組み立てられた後に、端部部材350のうち、軸部材61が突出しない側の端部が感光体ドラム11に挿入されることにより行われる。このような端部部材350により、プロセスカートリッジ3の装着時には感光体ドラム11に適切に回転力を付与するとともに、当該プロセスカートリッジ3の容易な着脱が可能となる。
 次に第5の形態について説明する。図38は第5の形態を説明する図で、中間部材470を表した図である。図38(a)は斜視図、図38(b)は正面図、図38(c)は平面図である。
  本形態では、中間部材470のうち軸部材61の回転力伝達ピン65が係合される部位の形態が中間部材370と異なる。他の部分については上記した端部部材350と同じなので、ここでは中間部材470について説明する。
 中間部材470は、図38(b)のように正面視で半円の円環状に形成されており、その端面に直径方向に延びる溝471、472が設けられている。この溝471、472の溝幅は回転力伝達ピン65の直径と概ね同じとされている。そしてこの溝471、472には中間部材470の端面側にスナップフィット(入口がしまりばめ)構造471a、262aが形成されている。これにより溝471、472に軸部材61の回転力伝達ピン95が外れることなく係合することができる。図39に説明のための図を示した。
 図39(a)は、中間部材470に軸部材61を組み合わせて係合した姿勢を表す斜視図であり、図39(b)は、図39(a)の軸線に沿った断面図である。図39(a)、図39(b)からわかるように、回転力伝達ピン65の両端部の少なくとも一部が溝471、472の内側に配置されている。また、スナップフィット構造471a、472aにより、回転力伝達ピン65が溝471、472から抜けないように構成されている。
 このような中間部材470によれば、中間部材470への軸部材61の取り付けをさらに簡易に行うことができる。従って例えば、感光体ドラムユニットを組み立てるに際し、中間部材470を本体に既に装着した軸受部材を先に感光体ドラム11の端部に固定し、その後に軸部材61を軸受部材の中間部材470に装着することができる。このような組み立てによれば、不安定に揺動する軸部材61を最後に単独で取り付けることができ、組立ての容易性を向上させることができる。
 また、回転力伝達ピン65の抜け(係合の解除)を規制するスナップフィット構造471a、472aと、ガイド部材375の抜け(係合の解除)を規制するガイド部材挿入溝360dのスナップフィット構造360e、360fと、における回転力伝達ピン95、ガイド部材275を抜く(係合を解除する)ために必要とされる力の程度を調整することにより、軸部材61を抜き取る際に中間部材470を本体側に残すようにすることも、軸部材61と一緒に中間部材470を本体から取り外せるようにすることも可能である。例えば、本体355と中間部材470とを組みしてリユースしたい場合、スナップフィット構造471a、472aの締まりばめの具合を、ガイド部材挿入溝360dのスナップフィット構造360e、360fの締まりばめに対して相対的に弱くすれば、中間部材470は本体355に取り残されるため、中間部材470と本体355とを別々に管理する必要がなくなり、リユースが更に容易になり作業性が向上する。逆に、本体355のみ、又は中間部材470のみをリユースする際には、中間部材470が本体355に取り残されない方が、後から中間部材と本体を分離する工数が減るため、スナップフィット構造471a、472aの締まりばめの具合を、ガイド部材挿入溝360dのスナップフィット構造360e、360fの締まりばめに対して相対的に強くすればよく、作業性が向上する。
 次に第6の形態について説明する。当該第6の形態では、本体555の形態が上記した本体355の形態と異なり、他の部分は同様に考えることができるので、ここでは本体355について説明する。なお、ここまで説明した部材及び部位と同様に考えることができるものについては同じ符号を付して説明を省略することがある。
  図40(a)には本体555を中間部材370が挿入される側から見た平面図、図40(b)には本体555の斜視図を示した。また、図41には、図40(a)、図40(b)にC41-C41で示した線を含む軸線に沿った断面図を示した。さらに図42(a)には、図40(a)、図40(b)、図41にC42a-C42aで示した線を含む軸線方向に沿ったの断面図を示した。そして図42(b)には、図40(a)、図40(b)、図41にC42b-C42bで示した線を含む軸線方向に沿った断面図を示した。
 筒状体256の筒状である内側には、該筒状体256の内部の少なくとも一部を塞ぐように筒状体256の直径方向に棒状に延びる底部359が設けられている。さらに、筒状体256の内側のうち底部359を挟んで感光体ドラム11に固定される側とは反対側の内側には保持部560が設けられている。
 保持部560は、筒状体256の内側に中間部材ガイドとしてのガイド面561、562を形成する。従って保持部560は、筒状体256の内面から筒状体256の軸線に向けて突出するように2つの突出部560aが向かい合うように配置され、2つの突出部560aの間に溝560bが形成されている。
 保持部560の形態についてさらに詳しく説明する。
  図40(a)、図40(b)からよくわかるように、2つの突出部560aが向かい合わせに配置され、その間に間隙が形成されることにより溝560bとされている。また、突出部560aは、該突出部560aのうち、筒状体256の軸線上に中心を有する球の一部によりにくりぬかれたような凹部560cが形成されている。この凹部560cの球面の一部は軸部材61の球体部64を受けることができる形状とされている。ただし、凹部560cは必ずしも球面の一部である必要はない。
  そして突出部560aのうち凹部560cとは反対の面にガイド面561、562が形成されている。
 さらに保持部560には突出部560aの端面のうち、筒状体256と凹部560cとの間にガイド部材挿入溝560dが設けられている。ガイド部材挿入溝560dは、凹部560c側とガイド面561、562側とを連通するように設けられ、さらにその一端が溝560bに通じて開放されている。ガイド部材挿入溝560dの大きさ及び形状は、中間部材370のガイド部材375を挿入することができるように形成されている。
 本形態では、ガイド部材挿入溝560dは、溝560bの一方側及び他方側のそれぞれに設けられている。ただし、必ずしも両方にガイド部材挿入溝560dが設けられている必要はなく、いずれか一方のみであってもよい。上記した本体355では凹部360cの底にガイド部材挿入溝360dが形成されているが、本形態ではこのように溝560bの端部にガイド部材挿入溝560dが設けられている。これにより、ガイド部材挿入溝350dが中間部材370の移動に与える影響をなくすことができる。すなわち、後で説明するように中間部材370のガイド部材375が保持部560のガイド面561、562(図41参照)に沿って移動する際に、ガイド部材375がガイド部材挿入溝560dに引っ掛かることがないため円滑な移動となる。また、不用意に軸部材61を引っ張る等しても意図しない軸部材61の脱落を防止することもできる。
  なお、金型を配置する等のように端部部材を製造する観点から突出部560aのいずれかに軸線方向に連通する溝を設けることもできる(不図示)。このとき当該溝はガイド部材165より細く形成されることにより軸部材61の揺動の円滑が維持される。
 上記したように、突出部560aのうち凹部560cとは反対側(すなわち保持部560のうち底部359に対向する側)にも面が形成されており、図42(b)等からわかるように円弧状である。これが、ガイド面561、562となる。ガイド面561、562は、溝560bが延びる方向に沿って湾曲するように形成された曲面を有している。このガイド面561、562上を中間部材370のガイド部材375が摺動することにより上記したと同様に軸部材61が揺動する。
  従って、ガイド部材挿入溝560dは、突出部560aの凹部560c側と保持部560の裏面(ガイド面561、562が存する面)とを連通し、ガイド部材375をガイド面561、562に到達させる。
 このような形状を有する保持部560は、さらに次のように形成されていることが好ましい。
  溝560bの溝幅は特に限定されることはないが、中間部材370の厚さと同じ程度であることが好ましい。これにより軸部材61のガタツキを抑制することができる。
  凹部560cの内面形状は、軸部材61の基端部を受け入れることができる形状であれば特に限定されないが、軸部材61の基端部が球体部64であるときには、当該球体部64と同じ半径を有する曲面を具備していることが好ましい。これによっても軸部材61のガタツキを防止することができる。
  ガイド部材挿入溝560dは、中間部材370のガイド部材375を挿入することができるとともに、該ガイド部材375に対するスナップフィット(入口部のしまりばめ)構造とされることが好ましい。
  ガイド面561、562は軸部材61の揺動を決める面であることから、安定した揺動を得る観点から図42(b)に示した断面においてガイド面561、562は円弧状であることが好ましい。すなわち、ガイド面561、562が軸部材61の揺動の中心を中心とした円弧状であることが好ましい。これにより円滑な揺動が可能である。また、本形態では凹部560cの円弧もガイド面561、562が属する円の同心円に属する円弧とされている。
 図43、図44には本体555に中間部材370を組み合わせて軸受部材551とした図を示した。図43は斜視図、図44(a)は図42(a)と同じ視点による図、図44(b)は図42(b)と同じ視点による図である。図43は、本体555に中間部材370を組み合わせる際のガイド部材375の移動の様子を表した図である。
 これら図からわかるように、軸受部材551では、中間部材370のガイド部材375がガイド部材挿入溝560dを貫通して底部359側に達し(図45に直線矢印に示した順)、ガイド面561、562に摺動され得る位置に配置される。そして上記した軸受部材551と同様にガイド部材375がガイド面561、562を摺動することにより中間部材370が案内(ガイド)され、その結果中間部材370は本体555の内側で回動することが可能となる。
  また、図43からよくわかるように、中間部材370は、中間部材370の厚さ方向が、保持部560に形成された溝560bの溝幅方向となるように、溝560b内に配置される。従って、溝560b内に中間部材370の一部が配置されるとともに、中間部材370は溝560b内を摺動するように回動(揺動)することができる。
 さらに本形態の軸受部材341では、図43、図44(a)からよくわかるように、中間部材370の両端が本体555の軸線に直交する方向(本体555の直径方向)に並ぶ姿勢となったときに、中間部材370の溝371、372が、本体555の保持部560に形成された突出部560aから突出して露出する構造とされている。従って、本形態では、本体に555に中間部材370を組み合わせてから軸部材61を取り付けることもでき、より簡便に生産性よく組み立てることができる。また、軸部材61のみの取り外しもさらに容易になるため、リユースも行いやすい。特にその際には軸部材61は挿入及び分離に際して変形をさせる必要が無いので傷などの懸念が解消される。また、分離が容易であるので作業性も向上させることができる。
 このように本形態の軸受部材551の中間部材370に軸部材61が組み合わされて端部部材となる。そしてこの端部部材でも、本体555に形成されたガイド面561、562により中間部材370が外れないように保持され、軸部材61は中間部材370により外れないように保持されている。従って、軸部材61は本体555に直接的には保持されていない。そして軸受部材341に軸部材61を組み合わせた端部部材も上記端部部材350と同様に作用することができる。
 図46は、軸受部材551に軸部材61が組み合わされ、軸部材61が最も傾けられた場面を表した断面図である。図46からわかるように、軸部材61が傾けられても、ガイド部材375がガイド部材挿入溝560dに達する前に軸部材61の回転軸63が軸受部材551の本体555に接触するためこれ以上傾かない。従って、中間部材370が本体555から抜けてしまう虞がない。また、軸部材61を引っ張る等してもガイド部材375がガイド部材挿入溝560dに達することがないので意図しない離脱も起こらない。
  そして、軸部材61の揺動の範囲において、中間部材370のガイド部材375がガイド面561、562に沿って移動する際に、ガイド部材375がガイド部材挿入溝560dに引っ掛かることがないため円滑な移動となる。
 図47は本体555の変形例にかかる本体555’を有する軸受部材551’を説明する図である。図47(a)は軸受部材341’の斜視図、図47(b)は図47(a)の一部を拡大して表した図である。本例では、中間部材370の両端が本体555’の軸線に直交する方向(本体555’の直径方向)に並ぶ姿勢となったときに、中間部材370の端部まで溝560b’内に隠れるように突出部560a’が軸線に沿った方向に延出している。ただし、中間部材370の溝371、372に軸部材61を係合させることができるように、突出部560a’の一部が切りかかれ空間560f’が形成され、空間350f’から中間部材370の溝371、372に通じるように形成されている。
 図48は本体555の他の変形例にかかる本体555”を有する軸受部材341”を説明する図である。図48は軸受部材341”の斜視図である。本例では、本体555’の空間560f’よりも大きな空間560f”が形成されている。
 本体555’、555”によれば、空間560f’、560f”により軸部材61の着脱の容易が確保されるとともに、空間560f’、560f”の反対側では中間部材370と本体555’、555”との接触部を増やすことができ、回転の際の負荷を分散させることができる。
 次に第7の形態について説明する。当該第7の形態では、本体655の保持部660が上記した第6の形態と異なり、及び中間部材670のガイド部材675が上記した第6の形態と異なる。他の部分は同様に考えることができるので、ここでは本体655、及び中間部材670のうち第6の形態とは異なる部位に注目して説明する。そして、ここまで説明した部材及び部位と同様に考えることができるものについては同じ符号を付して説明を省略することがある。
 図49(a)、図49(b)には本体655を説明する図を示した。図49(a)は図42(a)と同じ視点による図、図49(b)は図42(b)と同じ視点による図である。また図50(a)には中間部材670の斜視図、図50(b)には中間部材670の正面図、図50(c)には中間部材670の平面図をそれぞれ表した。
 図49(a)、図49(b)からわかるように、本体655に具備される保持部660にも上記した保持部560と同様にガイド部材挿入溝560dが設けられている。保持部660では、ガイド部材挿入溝560dの縁のうち、ガイド面561、562に連続する縁からは、ガイド面561、562側(底部359側)に延びる返し片660eが配置されている。これにより返し片660eとガイド面561、562との間に、ガイド面561、562側に開放された入隅部660fが形成される。そしてこの入隅部660fは、凹部560c側からガイド部材挿入溝560dを見たときには表れない。
 一方、図50(a)~図50(c)よりわかるように、中間部材670には上記した中間部材370とは異なる形状のガイド部材675(被ガイド)が設けられている。すなわち、本形態ではガイド部材675は略三角形の柱状であり、その先端は錐状に細くなっている。
  従って、ガイド部材675では、保持部660のガイド面561、562に接触する面675aの両端に三角形の頂点からなる突起675bが形成される。
 以上の構成を備えることにより、中間部材670が本体655に組み合わされたあとに、中間部材670が本体655から一層抜けにくくなる。図51に説明のための図を示した。図51(a)は本体655に中間部材670を組み合わせる場面、図51(b)は軸部材61の揺動により中間部材670も揺動した場面をそれぞれ断面で表している。
 初めに中間部材670を本体655に取り付ける場面を考える。当該場面では図51(a)に矢印C51aで示したように中間部材670のガイド部材675を凹部560c側からガイド部材挿入溝560dを貫通させてガイド面561、562側に配置する。このときには、上記のように返し片660eによる入隅部660fはガイド部材675の挿入を阻害しない向きとされている。従って通常通りに中間部材670を本体655に円滑に取り付けることができる。
 次に、中間部材670及び軸部材61が本体655に取り付けられた後、軸部材61及び中間部材670が揺動した場面を考える。当該場面では図51(b)に矢印C51bで示したように中間部材670のガイド部材675が本体655のガイド面561にガイドされて移動する。このとき、揺動が大きくなりガイド部材675が返し片660eに達すると、ガイド部材675の突起465bがガイド面561、562と返し片660eとが形成する入隅部660fに入り込む。従って、ガイド部材675はこれ以上の移動ができず、ガイド部材675がガイド部材挿入溝560dから抜け出すことがない。
 以上のように本形態によれば、上記説明した端部部材としての機能を有するとともに、中間部材670と本体655との組み付けは円滑に行われ、さらには中間部材670が意図しない場面で本体655から抜けてしまうことをより確実に防止することができる。例えば、本体655に中間部材670を組み付けた状態で輸送をおこなう場合でも、輸送による振動などで中間部材670が抜け落ちる心配がない。
  本形態では、中間部材670のガイド部材675を上記のように三角形の柱状にすることにより入隅部660fに入り込みやすくする形状を示したが、ガイド部材の形状はこのように入隅部に入り込むことによりその移動(回動)が規制されればよく、ガイド部材の形状は特に限定されることはない。
 次に第8の形態について説明する。図52は駆動側端部部材730の斜視図、図53は駆動側端部部材730の分解斜視図である。本形態では上記した第1の形態に対して駆動側端部部材50の代わりに駆動側端部部材730が適用された形態である。そこでここでは駆動側端部部材250について説明する。図52からわかるように駆動側端部部材730は、軸受部材251及び軸部材61を備えている。ここで軸部材61については第1の形態と同じに考えることができるので同じ符号を付して説明を省略する。
  図52、図53からわかるように駆動側端部部材730は、軸受部材740及び軸部材750を備えている。
 軸受部材740は、駆動側端部部材730のうち感光体ドラム11の端部に接合される部材である。図54(a)には軸受部材740の斜視図、図55(b)には軸受部材740のうち、軸部材750を挿入する側から見た平面図を表した。さらに図55(a)は図54(b)にC55a-C55aで示した線に沿った断面図、図55(b)は図54(b)にC55b-C55bで示した線に沿った断面図である。なお、以下に示す各図では、断面図における端面(切断面)にハッチングをして表すことがある。
 軸受部材740は、図52~図55よりわかるように、筒状体741、接触壁742、嵌合部743、歯車部744、及び軸部材保持部745を有して構成されている。
 筒状体741は、全体として円筒状の部材であり、その外周に接触壁742及び歯車部744が配置され、筒状体741の内側に軸部材保持部745が形成されている。
 筒状体741の外周面の一部からは感光体ドラム11の端面に接触して係止する接触壁742が立設している。これにより駆動側端部部材730を感光体ドラム11に装着するときに駆動側端部部材730の感光体ドラム11への挿入深さが規制される。
  また、筒状体741のうち接触壁742を挟んで一方側が感光体ドラム11の内側に挿入される嵌合部743となっている。嵌合部743が感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される。これにより駆動側端部部材730が感光体ドラム11の端部に固定される。従って、嵌合部743の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。嵌合部743には外周面に溝が形成されてもよい。これにより当該溝に接着剤が充填され、アンカー効果等により筒状体741(駆動側端部部材730)と感光体ドラム11との接着性が向上する。
 接触壁742を挟んで嵌合部743とは反対側の筒状体741の外周面には歯車部744が形成されている。歯車部744は、現像ローラユニット等の他の部材に回転力を伝達する歯車で、本形態では、はす歯歯車が配置してある。ただし歯車の種類は特に限定されることはなく、平歯車が配置されていたり、両者が筒状体の軸線方向に沿って並べて配置されていたりしてもよい。また歯車は必ずしも設けられている必要もない。
 軸部材保持部745は、筒状体741の内側に形成され、軸部材750を軸受部材740に保持する機能を有する部位である。軸部材保持部745は、図54(a)~図557(b)よりわかるように、回動軸保持部材746、支持部材747、及びガイド壁748を有している。
 回動軸保持部材746は、筒状体741の内側を塞ぐように形成された板状の部材であるが、筒状体741の軸線と同軸に孔746aが形成されている。この孔746aは後述するように回動軸751(図56参照)が貫通するので、該回動軸751が貫通することができる大きさ及び形状とされている。ただし、回動軸751が抜けてしまうことを防止するため、孔746aは回動軸751の本体752は貫通できるが、突起753が配置された部位は貫通することができないように形成されている。また、回動軸751の安定した移動の観点から、孔746aは回動軸751の軸線方向の移動を大きく阻害しない範囲で回動軸751の本体752の外周と概ね同じ形状及び大きさであることが好ましい。
  また、回動軸保持部材746には、孔746aから2つのスリット746bが延びている。この2つのスリット746bは孔746aの中心を挟んで対称位置に設けられている。またスリット746bの大きさ及び形状は、回動軸751(図56参照)の突起753がスリット746bを貫通することができるように形成されている。
 支持部材747は、回動軸保持部材746よりも嵌合部743側に設けられ、筒状体741の内側の少なくとも一部を塞ぐように形成された板状の部材である。支持部材747は、少なくとも後述する回動軸用弾性部材763を支持できる大きさ及び形状に形成されている。
 ガイド壁748は、回動軸保持部材746の孔746aの縁から筒状体741の軸線方向に平行に延び、その端部が支持部材747に接続している筒状の部材である。本形態でガイド壁748の内側の断面形状は孔746aと同じとされている。ただし後述するように、このガイド壁748の内側には回動軸751の本体752が挿入され、該回動軸751が軸線方向に移動するので、ガイド壁748は当該移動が阻害されない形状及び大きさに形成されている。
  また、ガイド壁748にはスリット748aが形成されている。図55(a)、図557(b)には分かり易さのためスリット748aが延びる方向に沿って点線を表している。スリット748aはその長手方向一端側が回動軸保持部材746のスリット746bに通じ、筒状体741の軸線に平行に延び、支持部材747に達した後、Uターンするように軸線方向に平行に延び、その端部(他端側)が回動軸保持部材746に達している。従って当該他端側は回動軸保持部材746により塞がれている。スリット748aのスリット幅はスリット748a内を回動軸751(図56参照)の突起753が移動できるように形成されている。
 軸受部材740を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂や金属を用いることができる。ここで、樹脂を用いる場合には部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面に機能性(潤滑性や耐腐食性など)を向上させることができる。
 図52、図53に戻り、駆動側端部部材730のうち軸部材750について説明する。軸部材750は、図53からわかるように、回動軸751、及び回転力伝達部材754を具備し、この回転力伝達部材754は、先端部材755、爪部材759、及びピン765を備えて構成されている。さらに軸部材750は回動軸用弾性部材763、及び爪部材用弾性部材764を具備している。本形態の回動軸用弾性部材763、及び爪部材用弾性部材764はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸751は、回転力伝達部材754が受けた回転力を軸受部材740に伝達する軸状の部材である。図56(a)に回動軸751の斜視図、図56(b)に図56(a)にC56b-C56bで示した線を含む軸線方向に沿って切断したときの断面図をそれぞれ示した。
 図56(a)、図56(b)からわかるように、回動軸751は円柱状の本体752を有し、円柱の端面のそれぞれには凹部752a、752cが形成されている。
  凹部752aは、回動軸751の本体752の一方の端面に形成される凹部であり、ここに爪部材用弾性部材764の一端側が挿入される。そして、凹部752aの底部にはこの爪部材用弾性部材764を固定するための保持突起752bが設けられている。本形態では後述するように保持突起752bを爪部材用弾性部材764の内側に挿入することにより該爪部材用弾性部材764が保持される。
  凹部752cは、回動軸751の本体752の他方の端面、すなわち凹部752aが形成された側とは反対側の端面に形成された凹部である。凹部752cには回動軸用弾性部材763の一端が挿入され、凹部52cの底部に当該回動軸用弾性部材763の一端が接触する。従って凹部752cは当該挿入が可能な大きさに形成されている。
 本体752の外周部のうち凹部752cが配置された側の端部には2つの突起753が配置されている。2つの突起753は、本体752の軸線を挟んで反対側になるように、本体752の円柱の1つの直径方向の同一線上に設けられている。この2つの突起753は後述するように回動軸751を軸受部材740に保持し、該本体752の移動を規制するとともに、本体752の回転力を軸受部材740に伝達する機能を有する。
 図53に戻って他の部材について説明を続ける。先端部材755は、回転力伝達部材754を構成する1つの部材であり、係合爪760を揺動可能に保持するとともに、係合爪760からの回転力を回動軸751に伝える部材である。図57(a)には先端部材755の斜視図、図57(b)には係合爪760が配置される側から見た先端部材755の平面図、図57(c)には図57(b)にC57c-C57cで示した線による断面図、図57(d)には図57(b)にC57d-C57dで示した線による断面図をそれぞれ表した。
 図52、図53及び図57(a)~図57(d)よりわかるように、先端部材755は、円板状の基部756及び基部756の一方の面に配置された2つの保持部材757を有して構成されている。
  本形態で基部756は円板状であり、その中心には基部756を厚さ方向に貫通する孔756aが形成されている。
 保持部材757は基部756の一方の面に配置された2つの部材であり、平面視(図57(b))で基部756の孔756aを挟んで孔756aが露出する間隙を有して一方と他方とに配置されている。従って、2つの保持部材757の間には溝757aが形成され、該溝757aの底部に孔756aが形成されている形態となる。また保持部材757のうち溝757aを形成する面以外の側面は、基部756から遠ざかるにつれて基部756の軸線に近づくように傾斜面757bが形成されている。
  また、保持部材757には、平面視(図57(b))で基部756の孔756aの中心を通り、溝757aが延びる方向に直交する孔757cが設けられている。この孔757cには後述するように、ピン765が挿入される。
 図53に戻り爪部材759について説明する。爪部材759は、回転力伝達部材754を構成する1つの部材であり、装置本体2に備えられた駆動軸70(図10参照)に係合し、回転力を先端部材55に伝える部材である。図58、図59に説明のための図を示した。図58(a)は爪部材759の斜視図、図58(b)は爪部材759の正面図、図59(a)は爪部材759の側面図、図59(b)は図58(b)にC59b-C59bで示した矢視断面図である。
 爪部材759は、本形態では2つの係合爪760を有し、該2つの係合爪760の一方の端部同士を連結する連結片761を具備している。また、連結片761のうち2つの係合爪760とは反対側で、該2つの係合爪間の中心となる位置には保持突起762が設けられている。
 2つの係合爪760は、連結片761の両端部から同じ方向に立設する部材であり、2つの係合爪760の間隔はこの間隔に駆動軸770の先端が入り、駆動軸70の駆動突起71(図10参照)が係合爪760に引っ掛かるように形成されている。また、本形態では、2つの係合爪760は、図58(b)からよくわかるように連結片761から離隔するにしたがって細くなるように形成されている。より具体的には、2つの係合爪760のうち対向する面である対向面760dは、連結片761の面を含めて円弧状の凹部759aを形成している。これは装置本体の駆動軸70(図10参照)の先端部に対応した形状である。ただし、この凹部759aは必ずしも円弧状である必要はなく、2つの係合爪760の対向面760dが、連結片761から離隔するに従って離れるように直線状に傾斜して(テーパ状に)形成されていてもよい。
  そして、2つの係合爪760のうち、凹部759aとは反対側となる面である外面760aは、連結片761から離隔するにしたがって互いに近づくように傾斜面(以降、外面760aを傾斜面760aと記載することがある。)とされている。
 さらに、図59(a)、図59(b)からわかるように、係合爪760を形成する面のうち、対向面760dと傾斜面760aとを結ぶ2つの面760b、760cにおいて、一方の面である第一側面760bは係合爪760が立設する方向(回動軸751の軸線が延びる方向)に平行であり、本形態では他方の面である第二側面760cは連結片761から離隔するにしたがって、第一側面760bに近づくように傾斜している。そして、2つの係合爪760では第一側面760bと第二側面760cとは反対側に配置されている。
  第一側面760bは、装置本体2から回転力が伝達される際に駆動軸70の駆動突起71が接触する面である。かかる観点から第一側面760bは回転力を受ける際に確実に駆動突起71との接触を維持する必要がある。そのため第一側面760bは本形態のように係合爪760が立設する方向(回動軸751の軸線が延びる方向)に平行であること、又は、先端に向かうにつれて第二側面760cとは離れる方向に傾斜する傾斜面を有していることが好ましい。
  一方、第二側面760cは本形態では上記のように第一側面760bに近づくように傾斜面を有しているがこの傾斜面は必ずしも設けられている必要はない。
 保持突起762は、連結片761のうち係合爪760とは反対側の面で、2つの係合爪760間の中心となる位置に配置される突起である。保持突起762は爪部材用弾性部材764に固定される。本形態では保持突起762が爪部材用弾性部材764の端部からその内側に挿入されて固定される。従って、保持突起762は爪部材用弾性部材764に挿入できる大きさとされている。また、本形態では挿入しやすいように保持突起762の先端は半球面に形成されている。
 また、保持突起762には、2つの係合爪760が並ぶ方向に直交する方向に保持突起762を貫通する長孔762aが設けられている。長孔762aは係合爪760の立設方向に長く、2つの係合爪760が並ぶ方向に短い長孔である。後述するようにこの長孔762aにはピン765が通される。
  長孔762aの貫通方向の形状が図59(b)に表れている。この図からわかるように、長孔762aは貫通方向の中央で最も狭く、長孔762aの全周に亘って、貫通方向両端に向かうにつれて孔が広がるように傾斜するように(テーパ形状を有して)拡径されている。これにより後述するように爪部材759の円滑な揺動を図っている。
 ここで、後述する爪部材759における、図59(b)にDで示す連結片761の大きさ(厚さ)は、その連結片761が図59(b)に示した先端部材755の溝757aの内側に配置されて揺動する観点から、図57(b)にDで示した溝757aの幅より小さく形成される。また、保持突起762は先端部材755の孔756aに挿入することができるとともに、孔756aの内側で揺動することができる太さとされている。
 図53に戻り、軸部材750に備えられる他の構成について説明する。回動軸用弾性部材763、及び爪部材用弾性部材764はいわゆる弾性部材であり、本形態では弦巻バネからなる。また、ピン765は回転力伝達部材754を構成する1つの棒状の部材である。これらの各部材の配置及び作用については後で説明する。
 軸部材750の各部材を構成する材料は特に限定されないが、ポリアセタール、ポリカーボネート、PPS等の樹脂を用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良いし、全体を金属で製作しても良い。金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面に機能性(潤滑性や耐腐食性など)を向上させることができる。
  また、軸部材750、軸部材750に含まれる爪部材759については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 上記のような軸受部材740と軸部材750とは次のように組み合わせられることにより、駆動側端部部材730とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。
 初めに軸受部材740と回動軸751との組み合わせについて説明する。図60(a)は軸受部材740に回動軸751が組み合わされた斜視図、図60(b)はその平面図、図60(c)は図60(b)にC60c-C60cで示した矢視断面図である。
 図60(a)~図60(c)よりわかるように回動軸751は軸受部材740の回動軸保持部材746の孔746aを通され、突起753が配置された側の端部が軸部材保持部745の内側に含まれ、その反対側の端部が軸受部材740から突出するように配置される。このとき、突起753はガイド壁748に設けれらたスリット748aの端部のうち回動軸保持部材746により塞がれている側の端部に配置され、該回動軸保持部材746に引っ掛かることにより軸受部材740から回動軸751が抜けないように構成されている。
  図60(c)からわかるように回動軸751と支持部材747との間に回動軸用弾性部材763が配置され、回動軸751は突起753が回動軸保持部材746に押し付けられる方向に付勢されている。また、突起753の側面はスリット748aのスリット壁面に引っ掛かることができるため、回動軸751の回転時には突起753がスリット748aのスリット壁面に引っ掛かり回転力を伝達する。
 軸受部材740への回動軸751への取り付けは、回動軸751の突起753をスリット746bからスリット748a内に挿入し、図55(a)、図55(b)に示した点線に沿って突起753をスリット748a内で移動させることにより行うことができる。
 次に、軸部材750における回動軸751に対する他の部材の組み合わせについて説明する。図61に説明のための図を示した。図61(a)は分解斜視図、図61(b)は軸線に沿った方向の軸部材750の断面図である。
 図61(b)からわかるように、回動軸751の本体752の凹部752aの内側に爪部材用弾性部材764が配置される。このとき該爪部材用弾性部材764の一端が突起752bに差し込まれて固定されている。
  先端部材755は図61(b)からわかるように、回動軸751の凹部752aが設けられた側の端面に、先端部材755の基部756の面を重ねるように配置して固定される。固定の方法は特に限定されることはなく、接着剤や溶着等の公知の方法を用いることができる。先端部材755と回動軸751とを一体に形成してもよい。また、このときには、回動軸751の本体752の軸線と先端部材755の軸線(孔756aの中心)とが一致するように位置づけられる。
  そして、爪部材759の保持突起762が先端部材755の孔756aに挿入され、及び爪部材759の連結片761が先端部材755の溝757aに挿入される。このとき保持突起762の先端が爪部材用弾性部材764に差し込まれて固定される。そして、ピン765を先端部材755の孔757c及び爪部材759の長孔762aに通して、爪部材759を先端部材755に連結する。
 以上のように組み合わされることにより軸受部材740及び軸部材750の各部の軸線が一致して配置される。
 次に上記のように組み合わされた端部部材730がどのように変形、移動、回動できるかについて説明する。図62には端部部材730の1つの姿勢における軸線に沿った方向の断面図を表した。
  図62に示した姿勢では、回動軸用弾性部材763により、軸部材750の全体が可能な範囲で最も軸受部材740から突出した姿勢とされている。軸部材750に何ら外力が加わらないときには端部部材730はこの姿勢にある。
 この姿勢では図62からわかるように、爪部材759の連結片761が先端部材755の溝757aに挿入されているので、図62にC62aで示したように爪部材759の係合爪760に対して回転力が加わると、爪部材759が先端部材755の保持部材757に引っ掛かり、又は長孔762aの側面にピン765が引っ掛かり、回転力が伝達される。いずれの態様により回転力が伝達されるかは適宜設定することができる。そしてこの回転力は回動軸751に伝わり、さらにこの回転力は回動軸751の突起753がスリット748aのスリット壁を押圧して軸受部材740に伝達される。従って、係合爪760で受けた回転力により端部部材730の全体が回転する。
  また、図62に矢印C62bで示したように、爪部材759に軸線方向のうち軸受部材740側に向けて押圧力が働くと、該押圧力が先端部材755、回動軸751に伝わり、軸部材750の全体が回動軸用弾性部材763の付勢力に抗して図62にC62cに示したように軸受部材740に押し込まれる方向に移動する。
 図63には、回転力伝達部材754の付近を拡大して表した。図63(a)は図62と同じ視点による図、図63(b)は図63(a)のC63b-C63bによる矢視断面図である。爪部材759は爪部材用弾性部材764により、外力が加わらないときには、図62、図63(a)、図63(b)に示した姿勢を保持している。
  これに対して、外力が加わることにより、爪部材用弾性部材764の弾性力に抗して図63(a)に矢印C63aで示したようにピン765を中心に揺動することができる。
  さらに爪部材759は、外力が加わることにより、爪部材用弾性部材764の弾性力に抗して図63(b)に矢印C63cで示したように、ピン765を中心とした揺動以外の全方位に揺動することができる。これは保持突起762の長孔762aが長孔とされているとともに、長孔762aがその貫通方向両端部で全周に亘って傾斜するように(テーパ状に)拡径された形態とされていることによる。
  従って爪部材759は、軸線に対して全方向に揺動することができる。なお、本形態で爪部材用弾性部材764は圧縮バネの形態であるがこれに限らず引張バネの形態であってもよい。
 また、本形態では、爪部材759の回動の軸となるピン765が軸受部材740の外側に配置される。これにより、爪部材759の揺動が軸受部材740に制限を受けることがないので、爪部材759の形状の自由度を高め、より円滑な揺動が可能となる。
  さらに、本形態の駆動側端部部材730では、軸部材750の軸線方向への移動は回動軸用弾性部材763により規制される一方、爪部材759の揺動を制御するのは爪部材用弾性部材764であり、移動と揺動とをそれぞれ独立に設計することが可能となる。そのため、かかる観点からも設計の自由度を挙げることができる。また、爪部材759の揺動の制御の際には、軸線方向への移動を規制する機能を持たせる必要がないためコンパクトに設計することができ、限られたスペースに配置する際の設計自由度も高めることができる。
 次に第9の形態について説明する。図64(a)には本形態に含まれる駆動側端部部材830(図69参照)のうち軸部材850の斜視図、図64(b)は軸部材850の分解斜視図である。駆動側端部部材830は既に説明した駆動側端部部材730に対して軸受部材740は同じ形態であり、軸部材750の代わりに軸部材850が適用された例である。従って軸受部材740の構成については同じ符号を付して説明を省略する。以下、軸部材850について説明する。
 軸部材850は、図64(a)、図64(b)からわかるように、回動軸851、及び回転力伝達部材854を具備し、この回転力伝達部材854は、先端部材855、爪部材859、及び棒状のピン865を備えて構成されている。さらに軸部材850は回動軸用弾性部材763、及び爪部材用弾性部材764を具備している。本形態の回動軸用弾性部材763、及び爪部材用弾性部材764はいずれも弦巻バネであり、上記した第8の形態と同じなので同じ符号を付す。
 回動軸851は、回転力伝達部材854が受けた回転力を軸受部材740に伝達する軸状の部材である。図65に回動軸851の斜視図、図66(a)に回動軸851のうち先端部材855が配置された側からみた平面図、図66(b)に図66(a)にC66b-C66bで示した線を含む軸線方向に沿った断面図、図65(c)に図65(a)にC66c-C66cで示した線を含む軸線方向に沿った断面図をそれぞれ示した。なお、本形態では回動軸851の一方の端部には先端部材855が一体に配置されているのでこれら図面には先端部材855も表れている。
 図65、図66(a)~図66(c)よりわかるように、回動軸851は円柱状の本体852を有し、円柱の端面のそれぞれには凹部852a、852cが形成されている。
  凹部852aは、回動軸851の本体852の一方の端面に形成される凹部であり、ここに爪部材用弾性部材764の一端側が挿入される。そして、凹部852aの底部にはこの爪部材用弾性部材764を固定するための突起852bが設けられている。本形態では保持突起852bを爪部材用弾性部材764の内側に挿入することにより該爪部材用弾性部材764が保持される。
  凹部852cは、回動軸851の本体852の他方の端面、すなわち凹部852aが形成された側とは反対側の端面に形成された凹部である。凹部852cには回動軸用弾性部材763の一端が挿入され、凹部852cの底に当該回動軸用弾性部材763の一端が接触する。従って凹部852cは回動軸用弾性部材763の一端を挿入することが可能な大きさに形成されている。
 本体852の外周部のうち、凹部852cが配置された側の端部には2つの突起753が配置されている。2つの突起753は、上記した端部部材730の本体752に具備された突起753と同じである。
 また、本体852の外周部のうち凹部852aが配置された側の端部には本体852の直径方向に該本体852を貫通する長孔852dが設けられている。長孔852dは本体852の軸線方向に長く、本体852の周方向に短い長孔である。後述するようにこの長孔852dにはピン865が通される。本形態では長孔としたが、必ずしも長孔である必要はなく、円形の孔や他の形状の孔であってもよい。
 先端部材855は、回転力伝達部材854を構成する1つの部材であり、爪部材859からの回転力を回動軸851に伝える部材である。図65、及び図66(a)~図66(c)には先端部材855が表れている。
 図64、図65、及び図66(a)~図66(c)よりわかるように、本形態における先端部材855は、回動軸851の本体852の凹部852a側の端面に配置された2つの保持部材857を有して構成されている。
 保持部材857は回動軸851の本体852の凹部852a側の端面に配置された2つの部材であり、回動軸851の本体852の軸線を挟んで所定の間隙857aを有して配置されている。従って、当該間隙857aを介して本体152の凹部152aは内外に連通している。
 また、保持部材857のうち間隙857aの壁面を形成する面857b、857dは回動軸851から離隔するにしたがって互いに離れるように傾斜面(テーパ面)とされている。ここで面857b、857dのうち、面857bは間隙857aが延びる方向において両端のそれぞれに配置される平面であり、面857dは2つの面857bの間に配置される曲面であり本形態では円弧状である。
  このように面857b、857dが傾斜面とされていることにより、爪部材859の揺動が阻害され難く円滑に行われる(図70(b)参照)。さらには、装置本体2の駆動軸70が軸部材850に係合した姿勢から、駆動軸70を離脱する際に面857b、857dの上を駆動軸70の軸部の先端が滑り、軸部材850を軸線方向に押圧する分力が生じるため軸部材850を軸線方向に移動させることができる(図69の矢印C69cで示した方向)。これにより駆動軸70の円滑な離脱が可能となる。
 一方、保持部材857のうち間隙857aを形成する面以外の側面(傾斜面、テーパ面)857cは回動軸851から離隔するにつれて回動軸851の軸線に近づくように傾斜面(テーパ面)857cが形成されている。この傾斜面857cは既に説明した保持部材757の傾斜面757bと同様に作用する。
 図64に戻り爪部材859について説明する。爪部材859は、回転力伝達部材854を構成する1つの部材であり、装置本体2に備えられた駆動軸70に係合し、回転力を先端部材855に伝える部材である。図67に説明のための図を示した。図67(a)は爪部材859の斜視図、図67(b)は爪部材859の正面図、図67(c)は、図67(b)にC67c-C67cで示した矢視断面図である。
 爪部材859は、2つの係合爪860を有し、該2つの係合爪860の一方の端部同士を連結する連結片861を有している。また、連結片861のうち2つの係合爪860とは反対側で、該2つの係合爪間の中央となる位置には保持突起862が設けられている。
 2つの係合爪860は、連結片861の両端部から同じ方向に立設する部材であり、2つの係合爪860の間隔はこの間隔に駆動軸70の軸部の先端が入り、駆動軸70の駆動突起71が係合爪860に引っ掛かるように形成されている。また、本形態では、2つの係合爪860は、図67(b)からよくわかるように連結片861から離隔するにしたがって細くなるように形成されている。より具体的には、2つの係合爪860のうち対向する面は、連結片861の面を含めて凹部859aが形成されている。本形態では2つの係合爪860の対向する面が、連結片861から離隔するに従って離れるような傾斜状(テーパ状)に形成されている。
  そして、2つの係合爪860のうち、凹部859aとは反対側となる面は、連結片861から離隔するにしたがって互いに近づくように傾斜面860aとされている。この傾斜面860aは既に説明した係合爪760の傾斜面760aと同様に作用する。
 保持突起862は、連結片861のうち係合爪860とは反対側の面で、2つの係合爪860間の中央となる位置に配置される突起である。保持突起862は爪部材用弾性部材764に固定される。本形態では保持突起862が爪部材用弾性部材764の端部からその内側に挿入されて固定されることから、保持突起862は爪部材用弾性部材764に挿入できる大きさとされている。
 また、保持突起862には、2つの係合爪860が並ぶ方向に直交する方向に保持突起762を貫通する孔862aが設けられている。後述するようにこの孔862aにはピン865が通される。
  孔862aの貫通方向の形状が図67(c)に表れている。この図からわかるように、孔862aは貫通方向の中央で最も狭く、孔862aの全周に亘って、貫通方向両端に向かうにつれて孔が広がるように傾斜形状(テーパ形状)を有して拡径されている。これにより爪部材859の円滑な揺動を図っている。
 ここで、後で説明するように爪部材859は、その連結片861が図66(b)に示した先端部材855の間隙857aの内側に配置されて揺動する観点から、図67(c)にCで示した連結片861の大きさ(厚さ)は、図66(b)にDで示した間隙857aの最も狭い部分の幅より小さく形成される。また、保持突起862も間隙857aを貫通することができるように形成されている。
 上記のような軸受部材740と軸部材850とは次のように組み合わせられることにより、端部部材830とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。ここで軸受部材740と回動軸851との組み合わせについては既に説明した端部部材730の例と同じなので説明は省略する。
 軸部材850における回動軸851に対する部材の組み合わせについて説明する。図68に説明のための図を示した。図68(a)はピン865の軸線に直交する方向における軸部材850の軸線に沿った断面図、図68(b)はピン865の軸線に沿った方向における軸部材850の軸線に沿った断面図である。
 図64(a)、図64(b)、図64(a)及び図68(b)からわかるように、本形態では回動軸851の本体852の凹部852aの内側に爪部材用弾性部材764が配置される。このとき該爪部材用弾性部材764の一端が突起852bに差し込まれて固定されている。
  本形態では、先端部材855は回動軸851の凹部852aが設けられた側の端面に一体で形成されている。ただし必ずしも一体である必要はなく、別体で形成して接着、溶着、その他機械的な方法により接合してよい。
  そして、爪部材859の保持突起862が先端部材855の保持部材857間の間隙857aを通して回動軸851の凹部852aに挿入され、及び爪部材859の連結片861が先端部材855の間隙857a内に配置される。そして、ピン865を回動軸851の長孔852d及び保持突起862の孔862aに通して、爪部材859を回動軸851に連結する。
 以上のように組み合わされることにより軸受部材740及び軸部材850の各部の軸線が一致して配置される。
 次に組み合わされた端部部材830がどのように変形、移動、回動できるかについて説明する。図69には本形態の端部部材830の1つの姿勢における軸線に沿った断面図を表した。
  図69に示した姿勢では、回動軸用弾性部材763により、軸部材850の全体が可能な範囲で最も軸受部材740から突出した姿勢とされている。軸部材850に何ら外力が加わらないときには端部部材830はこの姿勢にある。
 この姿勢では図69からわかるように、爪部材859の連結片861が先端部材855の間隙857aの内側に配置されているので、図69にC69aで示したように爪部材859の係合爪860に対して回転力が加わると、爪部材859が先端部材855の保持部材857に引っ掛かり、又は孔862aの側面にピン865が引っ掛かり、回転力が伝達される。いずれの態様により回転力が伝達されるかは適宜設定することができる。そしてこの回転力は回動軸851に伝わり、さらにこの回転力は回動軸851の突起753がスリット748aの壁を押圧して軸受部材740に伝達される。従って、係合爪860で受けた回転力により端部部材830の全体が回転する。
  また、図69に矢印C69bで示したように、爪部材859に軸線方向のうち軸受部材740側に向けて押圧力が働くと、該押圧力が先端部材855、回動軸851に伝わり、軸部材850全体が回動軸用弾性部材763の付勢力に抗して図69にC69cに示したように軸受部材740に押し込まれる方向に移動する。
 図70には、回転力伝達部材854の付近を拡大して表した。図70(a)は図68(a)と同じ視点による図、図70(b)は図68(b)と同じ視点による図である。爪部材859は爪部材用弾性部材764により、外力が加わらないときには、図70(a)、図70(b)に示した基本姿勢を保持している。
  これに対して、外力が加わることにより、爪部材用弾性部材764の弾性力に抗して図70(a)に矢印C70aで示したようにピン865を中心に揺動することができる。
  さらに爪部材859は、外力が加わることにより、爪部材用弾性部材764の弾性力に抗して図70(b)に矢印C70cで示したように、ピン865を中心とした揺動以外の全方位に揺動することができる。これは保持突起862の孔862aがその貫通方向両端部で傾斜状(テーパ状)に拡径された形態とされていることによる。
  従って爪部材859は、軸線に対して全方向に揺動することができる。なお、本形態で爪部材用弾性部材764は圧縮バネの形態であるがこれに限らず引張バネの形態であってもよい。
 以上のように端部部材830は、上記説明した端部部材730と同様に揺動及び移動することができるので、当該端部部材730と同様に作用し、その効果を奏するものとなる。  なお本形態では、保持部材857のうち間隙857aを形成する面857b、857dが上記のように傾斜面(テーパ面)なので、図70(b)に示した爪部材859の揺動が阻害され難く円滑に行われる。さらには、装置本体2の駆動軸70が軸部材850に係合した姿勢から、駆動軸70を離脱する際に面857b、857dの上を駆動軸70の軸部の先端が滑り、軸部材850を軸線方向に押圧する分力が生じるため図69の矢印C69cで示した方向に軸部材850を軸線方向に移動させることができる。これにより駆動軸70の円滑な離脱が可能となる。
 次に第10の形態について説明する。図71には第10の形態を説明する図を示した。図71は図65と同じ視点による図であり、回動軸851及び回動軸851に配置された先端部材955の外観斜視図を示した。本形態は既に説明した端部部材830の先端部材855に変えて先端部材955を適用した例である。そこで、ここでは先端部材955の形態について説明する。他の部位については形態が同じなので、同じ符号を付して説明を省略する。
 本形態における先端部材955は、回動軸851の本体852の凹部852a側の端面に配置された2つの保持部材957を有して構成されている。
 保持部材957は回動軸851の本体852の凹部852a側の端面に配置された2つの部材であり、回動軸851の本体852の軸線を挟んで所定の間隙957a有して配置されている。従って、当該間隙957aを介して本体852の凹部852aは内外に連通している。
 また、保持部材957のうち間隙957aの壁面を形成する面957b、957dは回動軸851から離隔するにしたがって互いに離れるように傾斜面(テーパ面)とされている。ここで面957b、957dのうち、面957bは間隙957aが延びる方向において両端のそれぞれに配置される平面であり、面957dは2つの面957bの間に配置される曲面であり本形態では円弧状である。また、本形態では、面957dが上記した第9の形態の先端部材855に具備された面857dよりも大きな面積となるように構成されている。
  一方、保持部材957のうち間隙957aを形成する面以外の側面は回動軸851から離隔するにつれて回動軸851の軸線に近づくように傾斜面957c(テーパ面)が形成されている。この傾斜面957cは既に説明した保持部材757の傾斜面757bと同様に機能する。
 以上のような先端部材955を備える端部部材によっても端部部材830と同様に作用する。
 次に第11の形態について説明する。図72、図73には第11の形態を説明する図を示した。図72は図67と同じ視点の図である。図72(a)は爪部材1059の斜視図、図72(b)は爪部材1059の正面図、図72(c)は、図72(b)にC72c-C72cで示した矢視断面図である。また、図73には軸部材1050の断面図を表している。図73(a)はピン865の軸線に直交する方向における軸部材1050の軸線方向に沿った断面図、図73(b)はピン865の軸線に沿った方向における軸部材1050の軸線方向に沿った断面図である。
  本形態は軸部材1050が、回動軸851、先端部材955、爪部材1059、爪部材用弾性部材764、回動軸用弾性部材763(図73(a)、図73(b)には不図示)、ピン865を有している。ここで、爪部材1059以外は既に説明した形態と同様なので同じ符号を付して説明を省略する。
 爪部材1059は、2つの係合爪860を有し、該2つの係合爪860の一方の端部同士を連結する連結片861を有している。また、連結片861のうち2つの係合爪860とは反対側で、該2つの係合爪間の中央となる位置には保持突起1062が設けられている。ここで係合爪860、及び連結片861については爪部材859と同じなのでここでは同じ符号を付して説明を省略する。
 本形態において保持突起1062は、連結片861のうち係合爪860とは反対側の面で、2つの係合爪860間の中央となる位置に配置される突起である。本形態の保持突起1062は、球体を連結片861と同じ厚さとなるように切断して得られた形態の板状の部材である。従って保持突起1062の円形の外周は球面の一部となっている。そして図72(b)にEで示した保持突起1062の幅(保持突起1062の外径)は、回動軸851の凹部152aの直径に対して概ね同じ、又は若干小さくされている。
  保持突起1062は爪部材用弾性部材764の一端に固定される。固定の方法は特に限定されることはないが、例えば保持突起1062に爪部材用弾性部材764を固定するための孔や溝を設け、ここに保持突起1062の端部を固定することができる。
 また、保持突起1062には、2つの係合爪860が並ぶ方向に直交する方向に保持突起1062を貫通する孔1062aが設けられている。この孔1062aにはピン865が通される。
  孔1062aの貫通方向の形状が図72(c)に表れている。この図からわかるように、孔1062aは貫通方向の中央で最も狭く、孔1062aの全周に亘って、貫通方向両端に向かうにつれて孔が広がるように傾斜(テーパ)形状を有して拡径されている。これにより爪部材1059の円滑な揺動を図っている。
 上記のような爪部材1059を有する軸部材1050は次のように構成されている。そしてこの軸部材1050が軸受部材740と組み合わされることにより本形態の端部部材となる。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。
 軸部材1050における回動軸851に対する部材の組み合わせについて説明する。図72、図73(a)、図73(b)からわかるように、本形態では回動軸851の本体852の凹部852aの内側に爪部材用弾性部材764が配置される。このとき該爪部材用弾性部材764の一端が凹部852aの底部に固定される。
  そして、爪部材1059の保持突起1062が先端部材855の保持部材857間の間隙957aを通して回動軸851の凹部852aに挿入され、及び爪部材1059の連結片861が先端部材956の間隙957a内に配置される。そして、ピン865を回動軸851の孔852d(本形態では長孔でなく円形の孔が好ましい。)及び保持突起1062の孔1062aに通して、爪部材1059を回動軸851に連結する。このとき保持突起1062は爪部材用弾性部材764の端部に固定される。
  ここで、爪部材用弾性部材764は圧縮バネ、引張バネのどちらでもよい。本形態では圧縮バネの様態を示している。ただし、引張バネの方が爪部材1059を基本姿勢(図73(a)、図73(b)に示した姿勢)に維持しやすいことから、引張バネを用いることが好ましい。
 以上のように組み合わされることにより軸受部材740及び軸部材1050の各部の軸線が一致して配置される。
 軸受部材740と軸部材1050とが組み合わされた端部部材によれば、図69の例に倣って回転力の伝達、及び軸部材1050軸線方向の移動が可能であり、図70(a)、図70(b)の例に倣って爪部材1059の揺動が可能であり、上記した各形態の端部部材と同様に作用する。これに加え、本形態では保持突起1062の形態により、該保持突起1062が回動軸851の凹部852a内を移動し難くされているので、爪部材1059が回動軸851の軸線に直交する方向への移動が規制され、基本姿勢を維持しやすくなる。そして、保持突起1062の外周面が球面の一部により形成されているので、揺動は円滑に行われる。
 次に第12の形態について説明する。図74に第12の形態を説明する図を示した。図74(a)は第12の形態に含まれる端部部材1130(図79参照)のうち軸部材1150の斜視図、図74(b)は軸部材1150の分解斜視図である。本形態に含まれる端部部材1130は既に説明した端部部材730に対して軸受部材740は同じ形態であり、軸部材750の代わりに軸部材1150が適用された例である。従って軸受部材740の構成については同じ符号を付して説明を省略する。以下、軸部材1150について説明する。
 軸部材1150は、図74(a)、図74(b)からわかるように、回動軸1151、及び回転力伝達部材1154を具備し、この回転力伝達部材1154は、先端部材1155、爪部材1159を備えて構成されている。さらに軸部材1150は回動軸用弾性部材763、爪部材用弾性部材1164、及びピン1165を具備している。本形態の回動軸用弾性部材763、及び爪部材用弾性部材1164はいずれも弦巻バネである。
 回動軸1151は、回転力伝達部材1154が受けた回転力を軸受部材740に伝達する軸状の部材である。図75に回動軸1151の斜視図、図76(a)に回動軸1151のうち先端部材1155が配置された側からの平面図、図76(b)には図76(a)にC76b-C76bで示した線を含む軸線方向に沿った断面図、図76(c)には図76(a)にC76c-C76cで示した線を含む軸線方向に沿った断面図をそれぞれ示した。なお、本形態では回動軸1151の一方の端部に先端部材1155が一体に配置されているのでこれらの図面には先端部材1155も表れている。
 図75、図76(a)~図76(c)よりわかるように、回動軸1151は円筒状の本体1152を有している。そして円筒の内側は図76(b)、図76(c)からわかるように内径が異なる3つの空間1151a、1151b、1151dが軸線方向に配列されている。本体1152のうち先端部材1155が配置される側の端部に空間1151a、その反対側の端部に空間1151dが設けられ、両者を通じるように空間1151bが配置されている。本形態では空間1151bの内径が最も小さいので、空間1151aと空間1151bとの連結部、及び空間1151dと空間1151bとの連結部にはそれぞれ内径の差に基づく段差が生じている。
  また、空間1151aは、図76(c)からわかるように、回動軸1151の端面側における開口部に該開口を若干狭める方向に傾斜した部位であるアンダーカット部1151eを具備している。このアンダーカット部1151eは後述する爪部材1159の球形である保持突起1162(図77参照)が空間1151aから抜け出さないように形成された、いわゆるスナップフィットの凸部として機能する。従って空間1151aの当該開口部は保持突起1162の直径よりも狭くなるように形成されている。本形態ではアンダーカット部1151eを傾斜面により形成したが、この代わりに突起を突出させる形態であってもよい。
 本体1152の外周部のうち、空間1151dが配置された側の端部には2つの突起753が配置されている。2つの突起753は、既に説明した端部部材730の本体752に具備された突起753と同じである。
 また、本体1152の筒状である壁部のうち、空間1151dが配置された側の端部で、2つの突起753の間のそれぞれには軸線方向に延び、本体1152の内外を連通するスリット1151cが設けられている。スリット1151cは、スリットが延びる方向において一方側の端部は本体1152の端面で開口し、該開口と反対側の端部は空間1151bの途中にまで達している。
 先端部材1155は、回転力伝達部材1154を構成する1つの部材であり、爪部材1159からの回転力を回動軸1151に伝える部材である。図75、及び図76(a)~図76(c)に先端部材1155の形状が表れている。
 図74、図75、及び図76(a)~図76(c)よりわかるように、本形態における先端部材1155は、回動軸1151の本体1152の空間1151aが配置された側の端面に設けられた2つの保持部材1157を有して構成されている。
 保持部材1157は回動軸1151の本体1152の空間1151aが配置された側の端面に設けられた2つの部材であり、回動軸1151の本体1152の軸線を挟んで所定の間隙1157aを有して配置されている。従って、当該間隙1157aを介して本体1152の空間1151aは内外に連通している。
 また、保持部材1157のうち間隙1157aの壁面を形成する面1157b、1157dは回動軸1151から離隔するにしたがって互いに離れるように傾斜面(テーパ面)とされている。ここで面1157b、1157dのうち、面1157bは間隙1157aが延びる方向において両端のそれぞれに配置される平面であり、面1157dは2つの面1157bの間に配置される曲面であり本形態では円弧状である。本形態では既に説明した保持部材957(図71参照)と同様、面1157dが大きく形成されている。
  このように面1157b、1157dが傾斜面とされていることにより、後述するように爪部材1159の揺動が阻害され難く円滑に行われる(図80(b)参照)。さらには、装置本体2の駆動軸70が軸部材1150に係合した姿勢から、駆動軸70を離脱する際に面1157b、1157dを駆動軸70の軸部の先端が滑り、軸部材850を軸線方向に押圧する分力が生じるため軸部材1150を軸線方向に移動させることができる(図79の矢印C79cに示した方向)。これにより駆動軸70の円滑な離脱が可能となる。
 一方、保持部材1157のうち間隙1157aを形成する面以外の側面は回動軸1151から離隔するにつれて回動軸1151の軸線に近づくように傾斜面(テーパ面)1157cが形成されている。この傾斜面1157cは既に説明した保持部材757の傾斜面757bと同様に作用する。
 図74に戻り爪部材1159について説明する。爪部材1159は、回転力伝達部材1154を構成する1つの部材であり、装置本体2に備えられた駆動軸70に係合し、回転力を先端部材1155に伝える部材である。図77に説明のための図を示した。図77(a)は爪部材1159の斜視図、図77(b)は図77(a)とは反対側から見た爪部材1159の他の斜視図、図77(c)は爪部材1159の正面図である。
 爪部材1159は、2つの係合爪1160を有し、該2つの係合爪1160の一方の端部同士を連結する連結片1161を有している。また、連結片1161のうち2つの係合爪1160とは反対側で、該2つの係合爪間の中央となる位置には保持突起1162が設けられている。
 2つの係合爪1160は、連結片1161の両端部から同じ方向に立設する部材であり、2つの係合爪1160の間隔はこの間隔に駆動軸70の軸部の先端が入り、駆動軸70の駆動突起71が係合爪1160に引っ掛かるように形成されている。また、本形態では、2つの係合爪1160は、図77(c)からよくわかるように連結片1161から離隔するにしたがって細くなるように形成されている。より具体的には、2つの係合爪1160のうち対向する面は、連結片1161の面を含めて凹部1159aが形成されている。本形態では2つの係合爪1160の対向する面が、連結片1161から離隔するに従って離れるように傾斜して(テーパ状に)形成されている。
  そして、2つの係合爪1160のうち、凹部1159aとは反対側となる面は、連結片1161から離隔するにしたがって互いに近づくように傾斜面1160aとされている。この傾斜面1160aは既に説明した係合爪760の傾斜面760aと同様に作用する。
 保持突起1162は、連結片1161のうち係合爪1160とは反対側の面で、2つの係合爪1160間の中央となる位置に配置される突起である。本形態では保持突起1162は球形の部材である。そして図77(b)からよくわかるように、保持突起1162には連結片1161が配置された側とは反対となる部位に孔1162aが形成されている。後で説明するように、この孔1162aに爪部材用弾性部材1164が固定される。
 ここで、爪部材1159は、その連結片1161が先端部材1155の間隙1157aの内側に配置されて揺動する観点から、図77(a)にFで示した連結片1161の大きさ(厚さ)は、間隙1157aの最も狭い部分の幅より小さく形成される。また、保持突起1162は球形の直径が、間隙1157aよりも小さいとともに、回動軸1151の本体1152に形成された空間1151aの内径と概ね同じ、又はこれより若干小さく形成されている。ただし、上記したように回動軸1151の空間1151aのうち保持突起1162が挿入される側の開口部にはアンダーカット部1151e(又は突起)が形成されており、抜け止めとして機能する。従って、保持突起1162の球形の直径は当該アンダーカット部1151eが形成された開口部よりは大きくなるように形成されている。
 上記のような軸受部材740と軸部材1150とは次のように組み合わせられることにより、端部部材1130(図79参照)とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。ここで軸受部材740と回動軸1151との組み合わせについては端部部材730の例と同じなので説明は省略する。
 軸部材1150における回動軸1151に対する部材の組み合わせについて説明する。図78に説明のための図を示した。図78(a)は係合爪1160が並ぶ方向における軸部材1150の軸線に沿った断面図、図78(b)はこれに直交する方向における軸部材1150の軸線に沿った断面図である。
 図74(a)、図74(b)、図78(a)及び図78(b)からわかるように、本形態では回動軸1151の本体1152の空間1151bに爪部材用弾性部材1164が配置される。このとき、このとき爪部材用弾性部材1164のうち、空間1151d側の端部にはピン1165が取り付けられており、このピン1165が本体1152内の空間1151bと空間1151dとにより形成される段差に引っ掛かる。これにより爪部材用弾性部材1164が本体1152の内側に保持される。なお、爪部材用弾性部材1164の端部とピン1165とを取り付けるに際し、爪部材用弾性部材1164の端部をピン1165に適切に固定するためにスリット1151cから本体1152の内側に器具を差し込む等して行うことができ、組立ての容易が図られている。ここで、爪部材用弾性部材1164は圧縮バネ、引張バネのどちらでもよいが、本形態では引張バネの様態を示している。引張バネの方が爪部材1159を基本姿勢(図78(a)、図78(b)に示した姿勢)に維持しやすいことから、引張バネを用いることが好ましい。
 一方、回動軸1151の本体1152のうち、先端部材1155が配置された側からは、爪部材1159が挿入されている。すなわち、爪部材1159の保持突起1162が先端部材1155の保持部材1157間の間隙1157aを通して回動軸1151の空間1151aに挿入され、及び爪部材1159の連結片1161が先端部材1155の間隙1157a内に配置される。そして、爪部材1159の保持突起1162は、ここに設けられた孔1162aで爪部材用弾性部材1164の一端に固定される。このとき、空間1151aの開口部にはアンダーカット部1151eが形成されているので、爪部材1159を若干押し込むことで、保持突起1162が空間1151a内に配置される。保持突起1162が空間内1151aに入るとアンダーカット部1151eにより保持突起1162は通常の使用では空間1151aから抜けなくなる。
 以上のように組み合わされることにより軸受部材740及び軸部材1150の各部の軸線が一致して配置される。
 次に上記のように組み合わされた端部部材1130がどのように変形、移動、回動できるかについて説明する。図79には本形態の端部部材1130の1つの姿勢における軸線に沿った方向の断面図を表した。
  図79に示した姿勢では、回動軸用弾性部材763の付勢力により、軸部材1150の全体が可能な範囲で最も軸受部材740から突出した姿勢とされている。軸部材1150に何ら外力が加わらないときには端部部材1130はこの姿勢にある。
 この姿勢では図79からわかるように、爪部材1159の連結片1161が先端部材1155の間隙1157aの内側に配置されているので、図79にC79aで示したように爪部材1159の係合爪1160に対して回転力が加わると、爪部材1159が先端部材1155の保持部材1157に引っ掛かり、回転力が伝達される。そしてこの回転力は回動軸1151に伝わり、さらにこの回転力は回動軸1151の突起753がスリット748aのスリット壁を押圧して軸受部材740に伝達される。従って、係合爪1160で受けた回転力により端部部材1130の全体が回転する。
  また、図79に矢印C79bで示したように、爪部材1159に軸線方向のうち軸受部材740側に向けて押圧力が働くと、爪部材1159が先端部材1155を押圧し、さらにこれが回動軸1151に伝わって軸部材1150の全体が回動軸用弾性部材763の付勢力に抗して図79に矢印C79cに示したように軸受部材740に押し込まれる方向に移動する。
 図80には、回転力伝達部材1154の周辺を拡大して表した。図80(a)は図78(a)と同じ視点による図、図80(b)は図78(b)と同じ視点による図である。爪部材1159は爪部材用弾性部材1164により、外力が加わらないときには、図80(a)、図80(b)に示した基本姿勢を保持している。
  これに対して、外力が加わることにより、爪部材用弾性部材1164の弾性力に抗して図80(a)に矢印C80aで示したように球状である保持突起1162を中心に揺動することができる。このとき、保持突起1162が球状であるとともに、保持突起1162の直径が、該保持突起1162が配置される空間1151aの内径と概ね同じに形成されているので、ガタツキが抑えられて円滑な揺動が可能となっている。
  さらに爪部材1159は、外力が加わることにより、爪部材用弾性部材1164の弾性力に抗して図80(b)に矢印C80cで示したように、球状である保持突起1162を中心に上記揺動以外の全方位にも揺動することができる。このときも、保持突起1162が球状であるとともに、保持突起1162の直径が、該保持突起1162が配置される空間1151aの内径と概ね同じに形成されているので、ガタツキが抑えられて円滑な揺動が可能となっている。
  従って爪部材1159は、軸線に対して全方向に揺動することができる。
 以上のように端部部材1130は、既に説明した端部部材730と同様に揺動及び移動することができるので、当該端部部材730と同様に作用し、その効果を奏するものとなる。
  なお本形態では、保持突起1162が球状に形成されていることから、ガタツキが抑えられて円滑に揺動させることができる。
 次に第13の形態について説明する。図81に第13の形態を説明する図を示した。図81(a)は第13の形態に含まれる端部部材1230(図85参照)のうち軸部材1250の斜視図、図81(b)は軸部材1250の分解斜視図である。本形態に含まれる端部部材1230は既に説明した端部部材730に対して軸受部材740は同じ形態であり、軸部材750の代わりに軸部材1250が適用された例である。従って軸受部材740の構成については同じ符号を付して説明を省略する。以下、軸部材1250について説明する。
 軸部材1250は、図81(a)、図81(b)からわかるように、回動軸1251、及び回転力伝達部材1254を具備し、本形態では回転力伝達部材1254は、爪部材1259により構成されている。さらに軸部材1250は回動軸用弾性部材763、爪部材用弾性部材1164、及びピン1165を具備している。回動軸用弾性部材763、爪部材用弾性部材1164、及びピン1165は、第12の形態で説明した軸部材1150と同じである。
 回動軸1251は、回転力伝達部材1254が受けた回転力を軸受部材740に伝達する軸状の部材である。図82(a)に回動軸1251の斜視図、図82(b)に回動軸1151のうち爪部材1259が配置される側からみた平面図、図82(c)には図82(b)にC82c-C82cで示した線を含む軸線方向に沿った断面図をそれぞれ示した。
 図82(a)~図82(c)よりわかるように、回動軸1251は円筒状の本体1252を有している。そして円筒の内側は図82(c)に表れているように内径が異なる3つの空間1251a、1251b、1251dが軸線方向に配列されている。本体1252のうち爪部材1259が配置される側の端部に空間1251a、その反対側の端部に空間1251dが設けられ、両者を通じるように空間1251bが配置されている。本形態では空間1251bの内径が最も小さいので、空間1251aと空間1251bとの連結部、及び空間1251dと空間1251bとの連結部にはそれぞれ内径の差に基づく段差が生じている。
  また、空間1251aは、図82(b)、図82(c)からわかるように、回動軸1251の端面側における開口部に該開口を若干狭める方向に傾斜した部位であるアンダーカット部1251eを具備している。このアンダーカット部1251eは後述する爪部材1259の球形である保持突起1262(図83参照)が空間1251aから抜け出さないように形成された、いわゆるスナップフィットの凸部として機能する。従って空間1251aの当該開口部は保持突起1262の直径よりも狭くなるように形成されている。本形態ではアンダーカット部1251eを傾斜面により形成したが、この代わりに突起を突出させる形態であってもよい。
 本体1252の外周部のうち、空間1251dが配置された側の端部には2つの突起753が配置されている。2つの突起753は、既に説明した端部部材730の本体752に具備された突起753と同じである。
 また、本体1252の筒状である壁部のうち、空間1251dが配置された側の端部で、2つの突起753の間のそれぞれには、軸線方向に延び、本体1252の内外を連通するスリット1251cが設けられている。スリット1251cは、スリットが延びる方向において一方側の端部は本体1252の端面で開口し、該開口と反対側の端部は空間1251bの途中にまで達している。
  さらに、本体1252の筒状である壁部のうち、空間1251aが配置された側の端部には軸線を挟んで向かい合うように2つのスリット1251fが配置されている。スリット1251fは本体1252の軸線方向に延び、本体1252の内外を連通するスリットであり、スリット1251fが延びる方向において一方側の端部は本体1252の端面で開口し、該開口と反対側の端部は概ね空間1251aの軸線方向端部にまで達している。
 図81(a)、図81(b)に戻り爪部材1259について説明する。爪部材1259は、回転力伝達部材1254を構成する部材であり、装置本体2に備えられた駆動軸70に係合し、回転力を回動軸1251に伝える部材である。図83に説明のための図を示した。図83(a)は爪部材1259の斜視図、図83(b)は図83(a)とは反対側からみた爪部材1259の他の斜視図、図83(c)は爪部材1259の正面図である。
 爪部材1259は、2つの係合爪1260を有し、該2つの係合爪1260の一方の端部同士を連結する円板状の連結片1261を備えている。また、連結片1261のうち係合爪1260とは反対側で、円板状である連結片1261の中央には保持突起1262が設けられている。
 2つの係合爪1260は、円板状である連結片1261の一方側の面の縁から同じ方向に立設する部材であり円弧状に湾曲した壁を形成している。従って、連結片1261を底部とし2つの係合爪1260を壁として囲まれる容器状の凹部1259aが形成される。そして、2つの係合爪1260の端部間には間隙1259bが形成される。凹部1259aには駆動軸70の軸部の先端が入り、間隙1259bには駆動軸70の駆動突起71が配置できる形状とされている。
  また、本形態では、2つの係合爪1260は、凹部1259a側の面(内面)については連結片1261から離隔するにしたがって互いに離れるように傾斜しており、連結片1261から離れるに従って直径が大きくなるように形成されている。一方、2つの係合爪1260のうち、凹部1259aとは反対側となる外周面は、連結片1261から離隔するにしたがって互いに近づくように傾斜面1260aとされている。この傾斜面1260aは既に説明した係合爪760の傾斜面760aと同様に作用する。
 保持突起1262は、連結片1261のうち係合爪1260とは反対側の面で、円板状である連結片1261の中央となる位置に配置される突起である。本形態では保持突起1262は球形の部材である。そして、保持突起1262のうち球の1つの直径上には保持突起1262の表面から2つの規制突起1263が突出している。規制突起1263が配置される球の直径は、端部部材1230の軸線に直交するとともに2つの間隙1259bが並ぶ方向に平行(本形態)、又は間隙1259bが並ぶ方向に直交する方向であることが好ましい。この規制突起1263は上記した回動軸1251のスリット1251fの内側に配置される。
  そして図83(b)からよくわかるように、保持突起1262には連結片1261が配置された側とは反対となる部位に孔1262aが形成されている。後で説明するように、この孔1262aに爪部材用弾性部材1264が固定される。
 ここで、後で説明するように爪部材1259の保持突起1262は球形の直径が回動軸1251の本体1252に形成された空間1251aの内径と概ね同じ、又はこれより若干小さく形成されている。ただし、上記したように回動軸1251の空間1251aのうち保持突起1262が挿入される側の開口部にはアンダーカット部1251e(又は突起)が形成されており、抜け止めとして機能する。従って、保持突起1262の球形の直径は当該アンダーカット部1251eが形成された開口部よりは大きくなるように形成されている。
 以上のような軸受部材740と軸部材1250とは次のように組み合わせられることにより、端部部材1230とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。ここで軸受部材740と回動軸1251との組み合わせについては既に説明した端部部材730の例と同じなので説明は省略する。
 軸部材1250における回動軸1251に対する部材の組み合わせについて説明する。図84に説明のための図を示した。図84(a)は、2つの規制突起1263を含む保持突起1262の直径方向に直交する断面で、係合爪1260が並ぶ方向における軸部材1250の軸線に沿った断面図、図84(b)は2つの規制突起1263を含む保持突起1262の直径方向に沿っ断面で、間隙1259bが並ぶ方向における軸部材1250の軸線に沿った断面図である。
 図81(a)、図81(b)、図84(a)及び図84(b)からわかるように、本形態では回動軸1251の本体1252の空間1251bに爪部材用弾性部材1164が配置される。このとき爪部材用弾性部材1164のうち、空間1251d側の端部にはピン1165が取り付けられており、このピン1165が本体1252内の空間1151bと空間1151dとにより形成される段差に引っ掛かる。これにより爪部材用弾性部材1164が本体1252の内側に保持される。なお、爪部材用弾性部材1164の端部とピン1165とを取り付けるに際し、爪部材用弾性部材1164の端部をピン1165に適切に固定するためにスリット1251cから本体1252の内側に器具を差し込む等して作業することができ、組立ての容易が図られている。ここで、爪部材用弾性部材1164は圧縮バネ、引張バネのどちらでもよい。本形態では引張バネの様態を示している。引張バネの方が爪部材1259を基本姿勢(図84(a)、図84(b)に示した姿勢)に維持しやすいことから、引張バネを用いることが好ましい。
 一方、回動軸1251の本体1252のうち、空間1251aが配置された側からは、爪部材1259が挿入されている。すなわち、爪部材1259の保持突起1262が回動軸1251の空間1251aに挿入される。このとき規制突起1263が本体1252のスリット1251fの内側に配置される。そして、爪部材1259の保持突起1162は、ここに設けられた孔1262aで爪部材用弾性部材1164の一端に固定される。このとき、空間1251aの開口部にはアンダーカット部1251eが形成されているので、爪部材1259を若干押し込むことで、保持突起1262が空間1251a内に配置される。保持突起1162が空間内1251aに入るとアンダーカット部1251eにより保持突起1262は通常の使用では空間1251aから抜けなくなる。
 以上のように組み合わされることにより軸受部材740及び軸部材1250の各部の軸線が一致して配置される。
 次に端部部材1230がどのように変形、移動、回動できるかについて説明する。図85には本形態の端部部材1230の1つの姿勢における軸線に沿った方向の断面図を表した。
  図85に示した姿勢では、回動軸用弾性部材763の付勢力により軸部材1250の全体が、可能な範囲で最も軸受部材740から突出した姿勢とされている。軸部材1250に何ら外力が加わらないときには端部部材1230はこの基本姿勢にある。
 この姿勢では図85からわかるように、爪部材1259の規制突起1263が回動軸1251のスリット1251fの内側に配置されているので、図85にC85aで示したように爪部材1259の係合爪1260に対して回転力が加わると、爪部材1259の規制突起1263が回動軸1251のスリット1251fの側面に引っ掛かり、回転力が伝達される。そしてこの回転力は回動軸1251の突起753がスリット748aのスリット壁を押圧して軸受部材740に伝達される。従って、係合爪1260で受けた回転力により端部部材1230の全体が回転する。
  また、図85に矢印C85bで示したように、爪部材1259に軸線方向のうち軸受部材740側に向けて押圧力が働くと、爪部材1259が回動軸1251を押圧し軸部材1250全体が回動軸用弾性部材763の付勢力に抗して図85に矢印C85cで示したように軸受部材740に押し込まれる方向に移動する。
 図86には、回転力伝達部材1254の付近を拡大して表した。図86(a)は図84(a)と同じ視点による図、図86(b)は図84(b)と同じ視点による図である。爪部材1259は爪部材用弾性部材1164により、外力が加わらないときには、図86(a)、図86(b)に示した基本姿勢を保持している。
  これに対して、外力が加わることにより、爪部材1259は、爪部材用弾性部材1164の弾性力に抗して図86(a)に矢印C86aで示したように規制突起1263の軸線を中心に揺動する。このとき、規制突起1263は回動軸1251のスリット内に配置されているのでガタツキが抑えられて円滑な揺動が可能となっている。
  さらに爪部材1259は、外力が加わることにより、爪部材用弾性部材1164の弾性力に抗して図86(b)に矢印C86bで示したように、球状である保持突起1262を中心に規制突起1263がスリット1251f内を移動する面内でも揺動することができる。このときには、保持突起1262が球状であるとともに、保持突起1262の直径が、該保持突起1262が配置される空間1251aの内径と概ね同じに形成されているので、ガタツキが抑えられて円滑な揺動が可能となっている。
  従って爪部材1259は全方位に揺動することができる。
 次に第14の形態について説明する。図87は当該第14の形態に含まれる端部部材1330の分解斜視図、図88は端部部材1330の軸線に沿った分解断面図である。端部部材1330は、軸受部材1340および軸部材1350を備えている。
 軸受部材1340は、端部部材1330のうち感光体ドラム11の端部に接合される部材である。図89には軸受部材1340の本体1341の斜視図を示した。また、図88には軸受部材1340の軸線方向断面図が表れている。
 軸受部材1340は、本体1341、及び回動軸保持部材1346を有し、本体1341は図87~図89よりわかるように、筒状体741、嵌合部743、歯車部744、および軸部材保持部1345を備えて構成されている。
 筒状体741、嵌合部743及び歯車部744は上記した端部部材730と同様なので同じ符号を付して説明を省略する。
 軸部材保持部1345は、筒状体741の内側に形成され、軸部材1350を軸受部材1340に保持する機能を有する部位である。軸部材保持部1345は、図87、図88よりわかるように、回動軸保持部材1346、支持部材1347、及びガイド壁1348を有している。
 回動軸保持部材1346は、筒状体741の内側を塞ぐように形成される板状の部材であるが、本形態では本体1341に対して着脱できるフタ状に形成されている。図90(a)に回動軸保持部材1346の1つの斜視図、図90(b)には図90(a)とは反対側の面側からみた斜視図を示した。
  回動軸保持部材1346は、本体1341に装着した姿勢で筒状体741の軸線と同軸となるに孔1346aが形成されている。この孔1346aは後述するように回動軸1351が貫通するので、該回動軸1351が貫通することができる大きさ及び形状とされている。ただし、回動軸1351が抜けてしまうことを防止するため、孔1346aは回動軸1351の本体1352は貫通できるが、突起1353が配置された部位は貫通することができないように形成されている。また、回動軸1351の安定した移動の観点から、孔1346aは回動軸1351の軸線方向の移動を大きく阻害しない範囲で回動軸1351の本体1352の外周と概ね同じ形状及び大きさであることが好ましい。
 また、本形態では回動軸保持部材1346は本体1341に対して着脱できる形態であるため、本体1341に対して係合する爪1346bを有している。ただし回転軸保持部材を本体に取り付けるための態様はこれに限定されることはなく、接着剤による接着や、熱又は超音波による融着を適用することもできる。
 支持部材1347は、回動軸保持部材1346よりも嵌合部743側に設けられ、筒状体741の内側の少なくとも一部を塞ぐように形成された板状の部材である。支持部材1347は、少なくとも後述する回動軸用弾性部材763を支持できる大きさ及び形状に形成されている。また、本形態では支持部材1347には、回動軸1351に設けられた弾性部材保持突起1353aが貫通する孔1347aが形成されている。
 ガイド壁1348は、支持部材1347から嵌合部743とは反対側に筒状体741の軸線方向に平行に延びる筒状の部材である。本形態でガイド壁1348に囲まれる内側に形成される空間1348aの断面形状は図89からわかるように略三角形(頂点が円弧状にRが取られている。)であり、これは回動軸1351の突起1353と概ね同じ形状を有している。従ってガイド壁1348で囲まれる空間1348aは軸受部材1340の軸線に沿った方向を高さ方向とする三角柱状である。
 軸受部材1340を構成する材料は特に限定されることはないが上記した軸受部材740と同様の材料を適用することができる。
 図87、図88に戻り、端部部材1330のうち軸部材1350について説明する。軸部材1350は、図88からわかるように、回動軸1351、及び回転力伝達部材1354を具備し、この回転力伝達部材1354は、先端部材1355、及び爪部材1359を備えて構成されている。本形態では先端部材1355と爪部材1359とが一体に形成されている。
  さらに軸部材1350は回動軸用弾性部材763、及び爪部材用弾性部材764を具備している。本形態の回動軸用弾性部材763、及び爪部材用弾性部材764はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸1351は、回転力伝達部材1354が受けた回転力を軸受部材1340に伝達する軸状の部材である。図91(a)に回動軸1351の斜視図、図91(b)に図91(a)にLで示した方向からみた回動軸の平面図をそれぞれ示した。また、図88には回動軸1351の軸線方向断面図が表れている。
 図88、図91(a)、図91(b)からわかるように、回動軸1351は円筒状の本体1352を有し、円筒の壁部のうち、軸線に沿った方向の一方側の端部から軸線に沿った方向に所定の幅で2か所の切り欠き1352aが設けられている。本形態で切り欠き1352aは側面視で矩形であり、その幅は図91(b)にLで示したように平面視で中心角90°となる大きさである。従って本形態では中心角90°の大きさで幅を有する切り欠き1352aが軸線を挟んで対向するように2つ設けられている。また図91(a)にLで示した、切り欠き1352aの軸線に沿った方向の大きさは本形態では本体1352の軸線に沿った方向の長さの概ね半分とされている。これにより2つの切り欠き1352aの間には本体1352の壁部の残りである凸部1352bが形成される。
  本体1352の筒状である内側には爪部材用弾性部材764の一端側が挿入される。
 本体1352の端部のうち、切り欠き1352a及び凸部1352bが形成された側の端部とは反対側の端部には、突起1353が配置されている。突起1353により特に図91(b)からわかるように回動軸1351の平面視で、本体1352から外に向けて突出する部位が形成される。本形態では突起1353が略三角形(頂点が円弧状にRが取られている。)の板状部材であり、これは上記した軸受部材1340のガイド壁1348に囲まれる空間1348aの断面と概ね同じである(図89参照)。そして図91(a)にLで示した突起1353の厚さは、ガイド壁1348の軸線に沿った方向の長さよりも薄くされている。これにより、突起1353がガイド壁1348で囲まれた空間内に配置されたとき、回動軸1351の軸線に沿った方向への移動が可能であるとともに、軸線まわりの回動に対しては回動軸1351から軸受部材1340に回転力が伝達される。
 さらに、本形態では突起1353のうち、本体1352が配置された側とは反対側の面には、円柱状の弾性部材保持突起1353aが延びている。後述するように弾性部材保持突起1353aは回動軸用弾性部材763の内側を貫通し、さらにその先端が支持部材1347の孔1347aに通される。これにより回動軸1351の軸線に沿った方向の移動の安定性が高められる。
 以上説明した本体1352の軸線、突起1353の重心位置、及び弾性部材保持突起1353aの軸線は同軸上に配置されることが好ましい。
 図87、図88に戻って他の部材について説明を続ける。本形態で回転力伝達部材1354は、先端部材1355と爪部材1359とが一体に構成されている。先端部材1355は係合爪1360(本形態では爪部材1359は係合爪1360のみからなる。)を揺動可能に保持するとともに、係合爪1360からの回転力を回動軸1351に伝える部材である。図92(a)には回転力伝達部材1354の斜視図、図92(b)には係合爪1360が配置される側とは反対側から見た回転力伝達部材1354の底面図を示した。また、図88には回転力伝達部材1354の軸線に沿った断面図が表れている。
 これら図からわかるように先端部材1355は、円板状の基部1356及び基部1356の一方の面から延びる回動軸連結部1357を有して構成されている。
 本形態で基部1356は円板状であり、板面のうち回動軸連結部1357とは反対側の面の中心には凹部1356aが設けられている。この凹部1356aには上記した駆動軸70の先端部分が配置される。
  また基部1356の外周面には、回動軸連結部1357から離隔するにつれて径が小さくなるように傾斜面1356bが形成されている。この傾斜面は上記した保持部材757の傾斜面757bと同様に作用する。
 回動軸連結部1357は基部1356のうち凹部1356aとは反対側の面から延びる円筒状の部位であり、基部1356の中心軸と回動軸連結部1357の軸線とは同軸上に形成されている。そして、回動軸連結部1357は、円筒の壁部のうち、基部1356とは反対側の端部から軸線に沿った方向に所定の幅で2か所の切り欠き1357aが設けられている。本形態で切り欠き1357aは側面視で矩形であり、その幅は図92(b)にLで示したように平面視で中心角90°となる大きさである。従って本形態では中心角90°となる幅を有する切り欠き1357aが軸線を挟んで対向するように2つ設けられている。また図92(a)にLで示した、切り欠き1357aの軸線に沿った方向の大きさは、本形態では上記した回動軸1351の本体1352に設けられた切り欠き1352aの大きさ(図91(a)のL)と同じとされている。これにより2つの切り欠き1357aの間には回動軸連結部1357の壁部の残りである凸部1357bが形成される。
  回動軸連結部1357の筒状である内側には爪部材用弾性部材764の一端側が挿入される。
 なお、後で説明するように、回動軸連結部1357の切り欠き1357aの内側には上記した回動軸1351の本体1352の凸部1352bが挿入され、回動軸連結部1357の凸部1357bは回動軸1351の本体1352に設けられた切り欠き1352aに挿入されることで、回動軸連結部1357と回動軸1351とが連結するので両者の円筒の外径及び内径はこのような連結が可能であるように構成されている。
 爪部材1359は、上記した装置本体2に備えられた駆動軸70に係合し、回転力を先端部材1355に伝える部材である。
  本形態では爪部材1359は2つの係合爪1360からなり、係合爪1360は先端部材1355の基部1356のうち回動軸連結部1357が配置された側とは反対側の面に配置されている。2つの係合爪1360は基部1356の面の外側縁部に対向するように設けられ、2つの係合爪1360の間に基部1356に設けられた凹部1356aが位置づけられる。
  また、係合爪1360のうち、基部1356の傾斜面1356bに連続する面は、傾斜面1356bを延長するように傾斜する傾斜面660aとされている。この傾斜面1360aは上記した係合爪760の傾斜面(外面760a)と同様に作用する。
 図87、図88に戻り、軸部材1350に備えられる他の構成について説明する。回動軸用弾性部材763、及び爪部材用弾性部材764はいわゆる弾性部材であり、本形態では弦巻バネからなる。これらの各部材の配置及び作用については後で説明する。
 軸部材1350の各部材を構成する材料は特に限定されないが、上記軸部材750と同様の材料を用いることができる。
 上記のような軸受部材1340と軸部材1350とは次のように組み合わせられることにより、端部部材1330とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係等がさらに理解される。図93に軸部材1350の軸線に沿った断面図を示した。
 図93よりわかるように、軸受部材1340において本体1341に回動軸保持部材1346が装着された姿勢で、回動軸1351は軸受部材1340の回動軸保持部材1346の孔1346aを通され、突起1353が配置された側の端部が軸部材保持部1345の内側に含まれ、その反対側の端部が軸受部材1340から突出するように配置される。このとき、突起1353はガイド壁1348に囲まれた空間内に配置され孔1346aを通過することができないので、当該突起1353が回動軸保持部材1346に引っ掛かることにより軸受部材1340から回動軸1351が抜けないように構成されている。
  またその際には、回動軸1351の弾性部材保持突起1353aが回動軸用弾性部材763の内側を通され、その先端が支持部材1347の孔1347aを貫通するように配置される。これにより、突起1353と支持部材1347との間に回動軸用弾性部材763が配置され、回動軸1351は突起1353が回動軸保持部材1346に押し付けられる方向に付勢されている。そして弾性部材保持突起1353aが孔1347aを通されることで回動軸1351の軸線に沿った方向の移動の安定性が高められる。
  また、突起1353とガイド壁1348とは上記のように略三角形とされているので、回動軸1351の軸線まわりの回転時には突起1353がガイド壁1348を押圧して回転力を伝達する。
 一方、回動軸1351の本体1352の筒状の内側に爪部材用弾性部材764の一端が挿入されて固定される。
  先端部材1355は、回動軸連結部1357を回動軸1351の本体1352に突き合わせるように配置する。このとき、回動軸連結部1357の切り欠き1357aの内側に上記した回動軸1351の本体1352の凸部1352bが挿入され、回動軸連結部1357の凸部1357bは回動軸1351の本体1352に設けられた切り欠き1352aに挿入される。これにより、回動軸連結部1357と回動軸1351とが連結され軸線まわりの回転駆動力を伝達することができる。このとき、爪部材用弾性部材764の他端は回動軸連結部1357の筒状の内側に配置されここに固定される。
 以上のように組み合わされることにより軸受部材1340及び軸部材1350の各部の軸線が一致して配置される。
 次に上記のように組み合わされた端部部材1330がどのように変形、移動、回動できるかについて説明する。図94には図93と同じ視点で、端部部材1330が変形したときの姿勢を表した。
  図93に示した姿勢では、回動軸用弾性部材763により、軸部材1350の全体が可能な範囲で最も軸受部材1340から突出した姿勢とされている。軸部材1350に何ら外力が加わらないときには端部部材1330はこの姿勢にある。
 この姿勢で図93に矢印C93aで示したように爪部材1359の係合爪1360に対して回転力が加わると、爪部材1359が一体に形成されている先端部材1355に回転力が伝達される。そして、この回転力は回動軸1351に伝わり、さらにこの回転力は回動軸1351の突起1353がガイド壁1348を押圧して軸受部材1340に伝達される。従って、係合爪1360で受けた回転力により端部部材1330の全体が回転する。
  また、図93に矢印C93bで示したように、爪部材1359に軸線方向のうち軸受部材1340側に向けて押圧力が働くと、該押圧力が先端部材1355、回動軸1351に伝わり、軸部材1350の全体が回動軸用弾性部材763の付勢力に抗して図93に矢印C93cに示したように軸受部材1340に押し込まれる方向に移動する。
 一方、回転力伝達部材1354に対して、所定の力以上で軸線方向とは異なる方向からの外力が加わることにより、爪部材用弾性部材764の弾性力に抗して図94に示したように回転力伝達部材1354は揺動するように変形する。これは回動軸連結部1357の回動軸連結部1357と本体1352との上記した連結形態によるものである。
 以上のように端部部材1330も、既に説明した端部部材730と同様に揺動及び移動することができるので、当該端部部材730と同様に作用し、その効果を奏するものとなる。
  なお、図94に示した姿勢から図93に示した姿勢への復帰は、手動によるものであってもよいし、爪部材用弾性部材764の弾性力によるものであってもよい。
 次に第15の形態を説明する。図95に本形態に含まれる端部部材1430の斜視図、図96に端部部材1430の分解斜視図を示した。端部部材1430以外の構成については第1の形態と同様に考えることができるので、ここでは端部部材1430について説明する。図95、図96からわかるように端部部材1430は軸受部材1440及び軸部材1450を備えている。
 軸受部材1440は、端部部材1430のうち感光体ドラム11の端部に接合される部材である。図97(a)には軸受部材1440の斜視図、図97(b)には軸受部材1440のうち、軸部材1450を挿入する側から見た平面図を表した。さらに図98(a)は図97(b)にC98a-C98aで示した線に沿った断面図、図98(b)は図97(b)にC98b-C98bで示した線に沿った断面図である。なお、以下に示す各図では、断面図における端面(切断面)はハッチングをして表すことがある。
 軸受部材1440は、図95~図98よりわかるように、筒状体1441、接触壁1442、嵌合部1443、歯車部1444、及び軸部材保持部1445を有して構成されている。
 筒状体1441は、全体として円筒状の部材であり、その外側に接触壁1442及び歯車部1444が配置され、その内側に軸部材保持部1445が形成されている。
 筒状体1441の外周面の一部からは感光体ドラム11の端面に接触して係止する接触壁1442が立設している。これにより端部部材1430を感光体ドラム11に装着した姿勢で端部部材1430の感光体ドラム11への挿入深さが規制される。
  また、筒状体1441のうち接触壁1442を挟んで一方側が感光体ドラム11の内側に挿入される嵌合部1443となっている。嵌合部1443が感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される。これにより端部部材1430が感光体ドラム11の端部に固定される。従って、嵌合部1443の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。嵌合部1443には外周面に溝が形成されてもよい。これにより当該溝に接着剤が充填され、アンカー効果等により筒状体1441(端部部材1430)と感光体ドラム11との接着性が向上する。
 接触壁1442を挟んで嵌合部1443とは反対側の筒状体1441の外周面には歯車部1444が形成されている。歯車部1444は、現像ローラユニット等の他の部材に回転力を伝達する歯車で、本形態でははす歯歯車が配置してある。ただし歯車の種類は特に限定されることはなく、平歯車が配置されていたり、両者が筒状体の軸線方向に沿って並べて配置されていたりしてもよい。また歯車は必ずしも設けられている必要もない。
 軸部材保持部1445は、筒状体1441の内側に形成され、軸部材1450を軸受部材1440に保持する機能を有する部位である。軸部材保持部1445は、図97(a)~図98(b)よりわかるように、回動軸保持部材1446、支持部材1447、及びガイド壁1448を有している。
 回動軸保持部材1446は、筒状体1441の内側を塞ぐように形成された板状の部材であるが、筒状体1441の軸線と同軸に孔1446aが形成されている。この孔1446aは後述するように回動軸1451(図99参照)が貫通するので、該回動軸1451が貫通することができる大きさ及び形状とされている。ただし、回動軸1451が抜けてしまうことを防止するため、回動軸1451の本体1452のみは貫通できるが、突起1453が配置された部位は貫通することができないように形成されている。回動軸1451の安定した移動の観点から、孔1446aは回動軸1451の軸線方向の移動を大きく阻害しない範囲で回動軸1451の本体1452の外周と概ね同じ形状及び大きさであることが好ましい。
  また、回動軸保持部材1446には、孔1446aから2つのスリット1446bが延びている。この2つのスリット1446bは孔1446aの軸線を挟んで対称位置に設けられている。またスリット46bの大きさ及び形状は、該スリット1446bを回動軸1451(図99参照)の突起1453が貫通することができるように形成されている。
 支持部材1447は、回動軸保持部材1446よりも嵌合部1443側に設けられ、筒状体1441の内側の少なくとも一部を塞ぐように形成された板状の部材である。支持部材1447は、少なくとも後述する回動軸用弾性部材1463を支持できる大きさに形成されている。
 ガイド壁1448は、回動軸保持部材1446の孔1446aの縁から筒状体1441の軸線方向に平行に延び、その端部が支持部材1447に接続している筒状の部材である。本形態でガイド壁1448の内側の断面形状は孔1446aと同じとされている。ただし後述するように、このガイド壁1448の内側には回動軸1451の本体1452が挿入され該回動軸1451が軸線方向に移動するので、当該移動が可能な形状及び大きさに形成されている。
  また、ガイド壁1448にはスリット1448aが形成されている。図98(a)、図98(b)には分かり易さのためスリット1448aが延びる方向を点線で表している。スリット1448aはその長手方向一端側が回動軸保持部材1446のスリット1446bに通じ、筒状体1441の軸線に平行に延び、支持部材1447に達した後、Uターンするように軸線方向に平行に延び、その端部(他端側)が回動軸保持部材1446に達している。従って当該他端側は回動軸保持部材46により塞がれている。スリット1448aのスリット幅はスリット1448a内を回動軸1451(図99参照)の突起1453が移動できるように形成されている。
 軸受部材1440を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂や金属を用いることができる。ここで、樹脂を用いる場合には部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面に機能性(潤滑性や耐腐食性など)を向上させることができる。
 図D1、図96に戻り、端部部材1430のうち軸部材1450について説明する。軸部材1450は、図96からわかるように、回動軸1451、回転力受け部材1455、及び規制部材1459を備えている。さらに軸部材1450は回動軸用弾性部材1463、規制部材用弾性部材1464、及びピン1465を具備している。本形態の回動軸用弾性部材1463、及び規制部材用弾性部材1464はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸1451は、回転力受け部材1455が受けた回転力を軸受部材1440に伝達する回転力伝達部として機能する軸状部材である。図99(a)に回動軸1451の斜視図99(b)に図99(a)にC99b-C99bで示した線を含む軸線方向断面図をそれぞれ示した。
 図99(a)、図99(b)からわかるように、回動軸1451は円筒状の本体1452を有し、円筒の内部には該内部を閉鎖するように仕切り部1452aが設けられている。従って、本体1452の内側には仕切り部1452aを挟んで一方と他方に凹部1452b、1452cが形成されている。
  本体1452の一方の端部のうちその外側には2つの突起1453が配置されている。2つの突起53は、軸線を挟んで反対側になるように、本体1452の円筒の1つの直径方向の同一線上に設けられている。この2つの突起1453は後述するように回動軸1451を軸受部材1440に保持するとともに該本体1452の移動を規制する機能を有する。
  また、回動軸1451には、円筒の軸線に直交し円筒の1つの直径方向に配置された内外を貫通する2つの孔1452dが形成されている。この孔1452dには後で説明するようにピン1465(図96参照)が通され、規制部材1459を保持するとともに該規制部材1459の移動を規制する。
  さらに本体1452の端面のうち、凹部1452b側の端面(突起1453側とは反対側に形成される端面)には、凹部1452bの開口部を縁取るように円筒を延長する方向(軸線に平行な方向)に突出する環状のレール突起1454が設けられている。このレール突起1454は後述するように回転力受け部材1455の回動をガイドするレールとして機能する。
 ここでは1つの例の回動軸1451について説明したが、回動軸は後述するように作動して機能を発揮することができればその形状は回動軸1451に限定されない。例えば回動軸用弾性部材1463と規制部材用弾性部材1464とを2段バネで形成することにより回動軸1451の仕切り部1452aは必要なくなる。また、回転力受け部材1455は基本的に後述するように規制部材1459により軸線周りの回転は確保されるので、必ずしもレール突起1454は設ける必要はない。
 回転力受け部材1455は、端部部材1430が所定の姿勢となったときに、装置本体2からの回転駆動力を受けて回動軸1451に当該駆動力を伝達する部材である。図100(a)には回転力受け部材1455の斜視図、図100(b)には図100(a)に矢印C100bで示した方向から見た回転力受け部材1455の平面図、及び図100(c)には、図100(b)にC100c-C100cで示した線による断面図をそれぞれ表した。
 図95、図96及び図100(a)~図100(c)よりわかるように、回転力受け部材1455は、円筒状の基部1456及び基部1456の一方の端部から立設された2つの係合部材1458を有して構成されている。
  基部1456は円筒状であり、その一端側の開口部には、該開口部が狭められるように環状の片1456aが設けられている。この片1456aのうち基部1456とは反対側となる面には環状の窪みであるガイド1456bが形成されている。当該ガイド1456bは上記した回動軸1451のレール突起1454(図99(b)参照)に載置されて基部1456の回動をガイドする。
  また、該片1456aのうち基部1456の内側の面には対向するように2つの突起1457が設けられている。ここでは2つの突起1457が設けられた例を示したが、突起は少なくとも2つ設けられていればよく3つ以上であってもよい。なお、これら突起は軸線を中心に等間隔で設けられていることが好ましい。
  なおレール突起1454で説明した通りガイド1456bは、必ずしも設けられる必要はない。
 2つの係合部材1458は、基部1456のうち片1456aが設けられた側とは反対側の端部に配置され、基部1456の軸線から同じ距離離隔し、両者は当該軸線を挟んで対称位置に配置されている。2つの係合部材1458の間隔は、後で説明する駆動軸70の軸部の直径と概ね同じ、又はこれより若干大きく形成されている。2つの係合部材1458の間隔は、2つの係合部材1458の間に駆動軸70の軸部が配置された姿勢で、駆動突起71の先端部が係合部材1458に引っ掛かるように構成されている。
 規制部材1459は、回転力受け部材1455の係合部材1458が駆動軸70からの駆動力を軸受部材1440に伝達できる状態と伝達できず自由に回転する状態とを切り替える部材である。すなわち、係合部材1458が駆動軸70に係合して回転力を伝達することができる姿勢と、係合が規制されて(係合しないで)回転力を伝達することができない姿勢と、を切り替える。
  図101(a)に規制部材1459の斜視図、図101(b)に規制部材1459の正面図、図101(c)に規制部材1459の側面図をそれぞれ表した。
 図101(a)~図101(c)よりわかるように、規制部材1459は円柱状の規制軸1460を有し、ここには規制軸1460の軸線に直交する方向に貫通し、軸線方向に長い孔である長孔1460aが設けられている。
 また、規制軸1460の一端側には規制軸1460よりも太く形成された接触部1461が設けられている。この接触部1461は図10(b)、図10(c)からよくわかるように、規制軸1460側で最も太く、規制軸1460から離隔するにしたがって細くなるように傾斜面1461aを有している。
  さらに規制軸1460の端部のうち、接触部1461が配置された側の外周部には2つの突起1462が配置されている。この2つの突起1462は、規制軸1460の円柱における軸線を挟んで反対側に配置され、1つの直径方向の同一線上に設けられている。2つの突起1462は後述するように回転力受け部材1455を規制する。なお、本形態では2つの突起1462を例示したが、突起は少なくとも2つ配置されていればよく、3つ以上であってもよい。
 図96に戻り、軸部材1450に備えられる他の構成について説明する。回動軸用弾性部材1463、及び規制部材用弾性部材1464はいわゆる弾性部材であり、本形態では弦巻ばねによりなる。また、ピン1465は棒状の部材である。これらの各部材の配置及び作用については後で説明する。
 軸部材1450の各部材を構成する材料は特に限定されないが、ポリアセタール、ポリカーボネート、PPS等の樹脂を用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良いし、全体を金属で製作しても良い。金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性など)を向上させることができる。
  また、軸部材1450、軸部材1450に含まれるいずれかの部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 上記のような軸受部材1440と軸部材1450とは次のように組み合わせられることにより、端部部材1430とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係がさらに理解される。
 初めに軸受部材1440と回動軸1451との組み合わせについて説明する。図102(a)は軸受部材1440に回動軸1451が組み合わされた斜視図、図102(b)はその平面図、図102(c)は図102(b)にC102c-C102cで示した矢視断面図である。
 図102(a)~図102(c)からわかるように回動軸1451は軸受部材1440の回動軸保持部材1446の孔1446aを通され、突起1453が配置された側の端部が軸部材保持部1445の内側、その反対側の端部が軸受部材1440から突出するように配置される。このとき、突起1453はガイド壁1448に設けれらたスリット1448aの端部のうち回動軸保持部材1446により塞がれている側の端部に配置され、該回動軸保持部材1446に引っ掛かることにより軸受部材1440から回動軸1451が抜けないように構成されている。
  また、図102(c)からわかるように回動軸1451と支持部材1447との間に回動軸用弾性部材1463が配置され、回動軸1451は突起1453が回動軸保持部材1446に押し付けられる方向に付勢されている。
 軸受部材1440への回動軸1451への取り付けは、回動軸1451の突起1453をスリット1446bからスリット1448a内に挿入し、図98(a)、図98(b)に示した点線に沿ってスリット1448a内を移動させることにより行うことができる。
 次に、軸部材1450における回動軸1451に対する他の部材の組み合わせについて説明する。図103に説明のための図を示した。図103(a)は分解斜視図、図103(b)は軸線に沿った方向の軸部材1450の断面図である。
 図103(b)からわかるように、回動軸1451の本体1452の凹部1452bの内側に規制部材用弾性部材1464が配置される。従って規制部材用弾性部材1464の一方の端部が本体1452の仕切り部1452aに支持される。
  一方、規制部材1459はその規制軸1460のうち接触部1461が配置されていない側の端部が、回転力受け部材1455の基部1456を通され、さらに回動軸1451の本体1452の凹部1452b内に差し込まれる。これにより回転力受け部材1455が回動軸1451の本体1452のうち突起1453とは反対側の端面に配置される。このとき、回転力受け部材1455の係合部材1458が回動軸1451とは反対側に突出するように配置され、回転力受け部材1455のガイド1456bが回動軸1451の本体1452の端面に配置されたレール突起1454に重ねられて配置される。
  また、規制部材1459はその一端が回動軸1451の本体1452に形成された凹部1452bに挿入され、その端面が規制部材用弾性部材1464の他方の端部に接触する。これにより規制部材1459は本体1452から突出する方向に付勢される。そして規制部材1459の他端(すなわち接触部1461が配置された側の端部)及び接触部1461は回転力受け部材1455の基部1456の内側、及び2つの係合部材1458の間に配置される。
 さらに、ピン1465が規制部材1459の規制軸1460に設けられた長孔1459aを通され、ピン1465の両端が回動軸1451の2つの孔1452dを渡されるように配置される。これにより、規制部材1459は、規制部材用弾性部材1464の付勢力に抗して回動軸1451の本体1452から抜け出ることが規制されている。
 以上のように組み合わされることにより軸受部材1440及び軸部材1450の各部の軸線が一致して配置される。
 次に上記のように組み合わされた端部部材1430がどのように変形、移動、回動することができるかについて説明する。図104には端部部材1430の1つの姿勢における軸線に沿った方向の断面図を表した。
  図104に示した姿勢では、回動軸用弾性部材1463により軸部材1450の全体が、可能な範囲で最も軸受部材1440から突出した姿勢とされているとともに、規制部材用弾性部材1464により規制部材1459が本体1452から最も突出した姿勢とされている。軸部材1450に何ら外力が加わらないときには端部部材1430はこの姿勢にある。
 この姿勢では図104からわかるように、回転力受け部材1455の突起1457と、規制部材1459の突起1462と、が図104の断面方向でみて(正面視)で軸線方向で離隔した異なる位置に存在する。従ってこの姿勢では、回転力受け部材1455の係合部材1458は図104に矢印C104aで示したように回転が自在である。即ちこの姿勢では係合部材1458が軸受部材1440、規制部材1459に対して相対的に回動が規制されておらず自在である。
  なお、この回動は回動軸1451のレール突起1454が、回転力受け部材1455のガイド1456bによりガイドされつつ行われる。従ってこの姿勢で回転力受け部材1455に回転力を与えても該回転力受け部材1455が回転するだけで、他の部材への回転力の伝達は行われず、係合部材1458が係合しない姿勢にある。
  また、この姿勢では、図104に矢印C104bで示したように、回転力受け部材1455の係合部材1458を軸線方向に軸受部材1440側に押圧すれば、直接軸部材1450に力が伝わり、軸部材1450を回動軸用弾性部材1463の付勢力に抗して図104に矢印C104cで示したように軸受部材1440に押し込む方向に移動させることができる。
 次に、図104で示した姿勢から、規制部材1459を回動軸1451の本体1452側に押し込むように移動させた姿勢について説明する。図105は当該姿勢における図104と同じ視点による図、図106は、図105にC106-C106で示した部位の端面である。
 この姿勢では図105にC105bで示したように、規制部材1459が、規制部材用弾性部材1464の付勢力に抗して回動軸1451の本体1452に押し込まれるように移動する。すると規制部材1459の突起1462が、回転力受け部材1455の突起1457の回動の軌道内に入り込む姿勢となる。これにより、この姿勢では、回転力受け部材1455の係合部材1458が軸受部材1440、規制部材1459に対して相対的に回動が規制されており、自在に回転することができない。例えば図106に示したように、回転力受け部材1455が回転してこれに追随して突起1457が回転すると、いずれかの部位で規制部材1459の突起1462に係合する。従ってこのように係合した姿勢では、規制部材1459に図105にC105aで示したように回転駆動力が加わると、係合した規制部材1459、規制部材1459にピン1465で係合した回動軸1451、及び回動軸1451の突起1453で係合した軸受部材1440が同じように回動する。すなわち、回転力受け部材1455に与えられた回転駆動力が端部部材1430全体に伝達される。
  また、この姿勢からさらに図105に矢印C105bで示した方向に規制部材1459を押圧すれば、回動軸1451に力が伝わり、軸部材1450を回動軸用弾性部材1463の付勢力に抗して図105にC105cに示したように軸受部材1440に押し込む方向に移動させることができる。
 次に第16の形態について説明する。図107は当該第16の形態における端部部材1530の斜視図、図108は端部部材1530の分解斜視図である。第16の形態では端部部材1530以外については上記第15の形態と同じなのでここでは説明を省略する。また、端部部材1530についても上記した端部部材1430と同じ部位については同じ符号を付して説明は省略する。
 端部部材1530も軸受部材1540及び軸部材1550を備えている。
 軸受部材1540は、端部部材1530のうち感光体ドラム11の端部に接合される部材である。図109(a)には軸受部材1540の斜視図、図109(b)には軸受部材1540のうち、軸部材1550を挿入する側から見た平面図を表した。さらに図110(a)は図109(b)にC110a-C110aで示した線に沿った断面図、図110(b)は図109(b)にC110b-C110bで示した線に沿った断面図である。
 軸受部材1540は、図107~図110よりわかるように、筒状体1441、接触壁1442、嵌合部1443、歯車部1444、及び軸部材保持部1545を有して構成されている。
 軸部材保持部1545は、筒状体1441の内側に形成され、軸部材1550を軸受部材1540に保持する機能を有する部位である。軸部材保持部1545は、図109(a)~図110(b)よりわかるように、回動軸保持部材1546、回動軸支持部材1547、及び規制部材支持部材1548を有している。
 回動軸保持部材1546は、筒状体1441の内側を塞ぐように形成された板状の部材であるが、筒状体1441の軸線と同軸に孔1546aが形成されている。この孔1546aは後述するように回動軸1551が貫通するので、回動軸1551(図111参照)が貫通することができる大きさ及び形状とされている。ただし、回動軸1551が抜けてしまうことを防止するため、回動軸1551の本体1552のみは貫通できるが、外側突起1553が配置された部位は貫通することができないように形成されている。回動軸1551の安定した移動の観点から、孔1546aは回動軸1551の軸線方向の移動を大きく阻害しない範囲で回動軸1551の本体1552の外周と概ね同じ形状及び大きさであることが好ましい。
  また、回動軸保持部材1546には、孔1546aから2つのスリット1546bが延びている。この2つのスリット1546bは孔1546aの軸線を挟んで対称位置に設けられている。またスリット1546bの大きさ及び形状は、該スリット1546bを回動軸1551(図111参照)の外側突起1553が貫通することができるように形成されている。
 回動軸支持部材1547は、回動軸保持部材1546よりも嵌合部1443側に設けられ、筒状体1441の内側の少なくとも一部を塞ぐように形成された部材である。回動軸支持部材1547は、図110(b)に表れているように筒状体1441の軸線を中心にして規制部材1559(図112参照)の第一規制軸1560が貫通する孔1547a又は間隙が設けられている。さらに少なくとも後述する回動軸用弾性部材1563を保持できるように形成されている。
  また、回動軸支持部材1547は、図110(a)からわかるように、筒状体1441の軸線方向に平行に延びる溝1547bが設けられている。この溝1547bは、回動軸保持部材1546側の端部が塞がれており、その反対側である規制部材支持部材1548側で筒状体1441の周方向に開口している。この溝1547bはその内側に規制部材1559(図112参照)の突起1562が移動できるように配置されている。
 規制部材支持部材1548は、回動軸支持部材1547よりもさらに嵌合部1443側に設けられ、筒状体1441の内側の少なくとも一部を塞ぐように形成された部材である。規制部材支持部材1548は、少なくとも後述する規制部材用弾性部材1564を保持できる大きさに形成されている。
 図107、図108に戻り、端部部材1530のうち軸部材1550について説明する。軸部材1550は、図108からわかるように、回動軸1551、回転力受け部材1555、規制部材1559、回動軸用弾性部材1563、及び規制部材用弾性部材1564を備えている。本形態の回動軸用弾性部材1563、及び規制部材用弾性部材1564はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 図111(a)に回動軸1551の斜視図、図111(b)に図111(a)にC111b-C111bで示した線を含む軸線方向断面図、図111(c)に図111(a)にC111c-C111cで示した線を含む軸線方向断面図をそれぞれ示した。
 図111(a)~図111(c)よりわかるように、回動軸1551は円筒状の本体1552を有している。
  そして本体1552の一方の端部のうちその外側には2つの外側突起1553が配置されている。2つの外側突起1553は、本体1552の円筒の1つの直径方向の同一線上に設けられている。この2つの外側突起1553は後述するように本体1552を軸受部材1540に保持するとともに該本体1552の移動を規制する機能を有する。
  また、本体1552には、外側突起1553が設けられた端部と同じ端部の円筒内面に2つの内側突起1554が設けられている。
 回転力受け部材1555は、端部部材1430が所定の姿勢となったときに、装置本体2からの回転駆動力を受けて本体1552に当該駆動力を伝達する部材である。図111(a)~図111(c)からわかるように、本形態で回転力受け部材1555は、本体1552のうち外側突起1553が配置された側とは反対側の端部に配置されており、円筒状の基部1556及び基部1556の一方の端部から立設された2つの係合部材1558を有して構成されている。
 基部1556は円筒状であり、その外径及び内径とも本体1552よりも大きくなるように形成されている。基部1556の外周部は本体1552から軸線方向に遠ざかるにつれて径が小さくなるように傾斜面1556aを有している。これにより駆動軸70が円滑に外周部を摺動することができる。一方、基部1556の内周部は逆に本体1552から軸線方向に遠ざかるにつれて径が大きくなるように傾斜している。これにより駆動軸70の先端が安定して納まることができる。
 2つの係合部材1558は、基部1556のうち回動軸1551が配置された側とは反対側の端部に設けられ、基部1556の軸線から同じ距離離隔し、両者は当該軸線を挟んで対称位置に配置されている。2つの係合部材1558の間隔は、駆動軸70の軸部の直径と概ね同じ、又はこれより若干大きく形成されている。2つの係合部材1558の間隔は、2つの係合部材1558の間に駆動軸70の軸部が配置された姿勢で、駆動突起71が係合部材1558に引っ掛かるように構成されている。
 規制部材1559は、回転力受け部材1555の係合部材1558が駆動軸70に係合して駆動力を軸受部材1440に伝達できる状態と、係合しないことにより駆動力を伝達できず自由に回転する状態と、を切り替える。図112(a)に規制部材1559の斜視図、図112(b)に規制部材1559の他の角度からの斜視図をそれぞれ表した。
 図112(a)、図112(b)よりわかるように、規制部材1559は、円柱状の第一規制軸1560、及び第一規制軸1560よりも外径が太い円柱状の第二規制軸1561を有し、この2つが同軸で並べられ一端同士が連結された構造を有している。
  第一規制軸1560のうち、第二規制軸1561が配置された側とは反対側の端部には、2つの突起1562が配置されている。2つの突起1562は、第一規制軸1560の円柱の1つの直径方向の同一線上に設けられている。この2つの突起1562は後述するように規制部材1559を軸受部材1540に保持するとともに該規制部材1559の移動を規制する機能を有する。
 第二規制軸1561では、第一規制軸1560が配置された側とは反対側の端部が接触部1561aとされており傾斜面が形成されている。また第二規制軸1561のうち第一規制軸1560が配置された端部には第一規制軸1560側に開放された2つの溝である規制溝1561bが設けられている。この2つの規制溝161bは第二規制軸1561の軸線を挟んで反対側に形成されている。
 上記のような軸受部材1540と軸部材1550とは次のように組み合わせられることにより、端部部材1530とされている。図113には、1つの姿勢における端部部材1530の軸線方向に沿った断面図を表した。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係がさらに理解される。
 図108及び図113からわかるように、軸部材1550では、回動軸1551の本体1552の内側に規制部材1559が挿入されている。このとき、本体1552内に第二規制軸1561が収まり、第一規制軸1560は突起1562側の端部が回転力受け部材1555とは反対側(すなわち外側突起1553、内側突起1554側)から突出するように配置される。そして、図113の姿勢において、回動軸1551の内側突起1554が規制部材1559の規制溝1561b内に配置されている。
 このようにして組み合わされた回動軸1551及び規制部材1559は次のようにして軸受部材1540に保持される。すなわち、回動軸1551は軸受部材1540の回動軸保持部材1546の孔1546aを通され、外側突起1553が配置された側の端部が軸部材保持部1545の内側、その反対側の端部が軸受部材1540から突出するように配置される。このとき、外側突起1553が回動軸保持部材1546に引っ掛かることにより軸受部材1540から回動軸1551が抜けないように構成されている。
  また、図113からわかるように回動軸1551と回動軸支持部材1547との間に回動軸用弾性部材1563が配置され、回動軸1551は軸受部材1540から抜け出る方向に付勢されている。このとき、回動軸用弾性部材1563の内側に規制部材1559の第一規制軸1560が通される。
 軸受部材1540への回動軸1551への取り付けは、回動軸1551の外側突起1553を回動軸保持部材1546のスリット1546bから軸受部材1540の内側に挿入し、回動軸1551を軸線まわりに回動させればよい。
 一方、規制部材1559は、その第一規制軸1560が回動軸支持部材1547の孔1547a(図110(b)参照)を通される。そしてその突起1562が溝1547b(図110(a)参照)の内側に納められる。これにより規制部材1559は軸線方向への移動を可能としつつも軸受部材1540からの抜けが防止される。
  また、図113からわかるように規制部材1559と規制部材支持部材1548との間に規制部材用弾性部材1564が配置され、規制部材1559は軸受部材1540から抜け出る方向に付勢されている。
 軸受部材1540への規制部材1559への取り付けは、規制部材1559の突起1562を回動軸支持部材1547の溝1547bの開口部から該溝1547b内側に挿入すればよい。
 このように組み合わされた端部部材1530の姿勢では、回動軸1551及びこれに配置された回転力受け部材1555は、回動軸用弾性部材1563により軸受部材1540から抜け出す方向に付勢され、外側突起1553が軸受部材1540の軸部材保持部1545に係合することで抜けることなく保持されている。一方、規制部材1559は、規制部材用弾性部材1564により軸受部材1540から抜け出す方向に付勢され、突起1562が軸受部材1540の軸部材保持部1545に係合することで抜けることなく保持されている。
  なお、図113に示したこの姿勢では、規制部材1559の規制溝1561b内側に回動軸1551の内側突起1554が入っているので、回動軸1551及びこれに配置される回転力受け部材1555は軸線中心の回動が規制されている。
 以上のように組み合わされることにより、軸受部材1540と軸部材1550の各部との軸線が一致して配置される。
 次に上記のように組み合わされた端部部材1530がどのように変形、移動、回動することができるかについて説明する。図114、図115には端部部材1530の異なる2つの姿勢における軸線に沿った方向の断面図を表した。
 図114は、図113に示した姿勢から図114に矢印C114aで示したように、回動軸用弾性部材1563の付勢力に抗して回動軸1551(回転力受け部材1555)を軸受部材1540側に押し込むように移動した姿勢を表している。これにより図114からわかるように、回動軸1551が軸線方向に移動するので、回動軸1551の内側突起1554が規制部材1559の規制溝1561bから離脱し、両者の係合が解除される。従って、図114に矢印C114bで示したように回動軸1551及びこれに配置されている回転力受け部材1555(係合部材1558)は回転自在となる。即ちこの姿勢では係合部材1558が軸受部材1540、規制部材1559に対して相対的に回動が規制されておらず自在である。
 図115は、図114に示した姿勢からさらに図115に矢印C115aで示したように、規制部材用弾性部材1564の付勢力に抗して規制部材1559を軸受部材1540側に押し込むように移動した姿勢を表している。これにより図115からわかるように、規制部材1559が軸線方向に移動するので、回動軸1551の内側突起1554が規制部材1559の規制溝1561bの内側に再び入り込み、両者が係合される。従ってこの姿勢では係合部材1558が軸受部材1540、規制部材1559に対して相対的に回動が規制されており、例えば回転力受け部材1555に矢印C115bで示したように回転力を付与すると回動軸1551、規制部材1559、軸受部材1540に回転力が伝わり、最終的に端部部材1530(感光体ドラムユニット)を軸線中心に回動する。
 以上のような端部部材1530を具備するプロセスカートリッジが装置本体に装着された姿勢で、駆動軸70と端部部材1530の軸部材1550に具備される回転力受け部材1555とが係合して回転力が伝達される。
 次に第17の形態について説明する。図116(a)は当該第17の形態における端部部材1630の1つの姿勢における斜視図、図116(b)は端部部材1630の他の姿勢における斜視図である。また、図117には端部部材1630の分解斜視図を示した。第17の形態では端部部材1630以外については上記第15の形態と同じなのでここでは説明を省略する。また、端部部材1630についても上記した端部部材1430と同じ部位については同じ符号を付して説明は省略する。
 端部部材1630は軸受部材1640及び軸部材1650を備えている。
 軸受部材1640は、端部部材1630のうち感光体ドラム11の端部に接合される部材である。図118(a)には軸受部材1640の斜視図、図118(b)には軸受部240のうち、軸部材1650を挿入する側から見た平面図を表した。
 軸受部材1640は、図116~図118よりわかるように、筒状体1441、接触壁1442、嵌合部1443、歯車部1444、及び軸部材保持部1645を有して構成されている。
 軸部材保持部1645は、筒状体1441の内側に形成され、軸部材1650を軸受部材1640に保持する機能を有する部位である。本形態で軸部材保持部1645は、図118(a)、図118(b)からわかるように底板1646及び保持筒体1647を有して構成されている。
  底板1646は、筒状体1441の内側の少なくとも一部を塞ぐように配置された板状の部材である。
  一方、保持筒体1647は底板1646の面のうち嵌合部1443側とは反対側となる面に立設された筒状の部材であり、その軸線が筒状体1441の軸線と一致するように設けられている。保持筒体1647はその内側に軸部材1650の一部が挿入されることで軸部材1650を保持する。
 図116、図117に戻り、端部部材1630のうち軸部材1650について説明する。軸部材1650は、図117からわかるように回動軸1651、回転力受け部材1652、規制部材1660、ピン1664、及び弾性部材1665を有して構成されている。ここでピン1664は棒状の部材である。また本形態の弾性部材1665は弦巻バネである。
  図119にはピン1664以外の部材について拡大した分解斜視図を表している。図117、図119を参照しつつそれぞれの部材について説明する。
 回動軸1651は円筒状の部材である。その外径は上記した軸受部材1640の軸部材保持部1645に具備された保持筒体1647の内側に挿入することができる大きさである。
 回転力受け部材1652は、端部部材1630が所定の姿勢となったときに、装置本体2からの回転駆動力を受けて回動軸1651に当該駆動力を伝達する部材である。本形態で回転力受け部材1652は、回動軸1651のうちの一方側(保持筒体1647に挿入されない側)の端部に配置されており、円筒状の基部1653、及び板状の係合部材1656を有して構成されている。
 基部1653は円筒状の部材であり、回動軸1651のうちの一方側(保持筒体1647に挿入されない側)の端部に該回動軸1651と同軸で配置されている。基部1653の外周及び内周とも、回動軸1651の外周及び内周よりも大きく形成されている。
  基部1653には、軸線を挟んで略平行に形成された溝である係合部材収納溝1654が2つ設けられている。本形態では2つの係合部材収納溝1654は、軸線を挟んで該軸線から同じ距離となる位置に平行に設けられるとともに、軸線に対して捻じれの位置となるように延びている。
  また、基部1653には基部の直径に沿うとともに、2つの係合部材収納溝1654が延びる方向に対して直交する方向に貫通するように孔1653aが設けられている。本形態では4つの孔1653aが形成されている。
 係合部材1656は全体として板状であり、上記した係合部材収納溝1654の溝内に納まる大きさで形成されている。係合部材には貫通孔1656aが設けられており、該貫通孔1656aを挟んで一方が係合部1657、他方が被操作部1658となる。特に限定されることはないが、係合部1657は被操作部1658に比べて長くなることが好ましい。また、係合部1657の先端は湾曲していてもよい。これにより駆動軸70の駆動突起71に安定して係合することができる。
 規制部材1660は、規制軸1661、接触部1662、及び操作部1663を有して構成されている。
  規制軸1661は円柱状の部材であり、その外形は回動軸1651の円筒の内側に挿入できる大きさとされている。また、規制軸1661には直径方向となるように貫通し、軸線方向に所定の大きさで延びるスリット1661aが形成されている。
  接触部1662は規制軸1661の端面のうち、回動軸1651に挿入されない側に同軸に設けられた円錐の一部(截頭円錐)の部材であり、その底部では規制軸1661より径が大きくされている。従って、接触部1662はその側面が傾斜面1662aとなっている。
  操作部1663は、軸線から離隔する方向に延びる棒状の部材であり、係合部材1656と同じで2つ配置されている。この操作部1663は後で説明するように、係合部材1656の被操作部1658を軸線方向に平行な方向に押圧することができる位置及び長さに形成されている。
 以上説明した各部材が次のように組み合わされて端部部材1630とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係がさらに理解される。
 初めに軸部材1650について説明する。図120には、各部材が組み合わされた場面における1つの姿勢の回転力受け部材1652、及び規制部材1660の部位を拡大した外観斜視図である。なお、図120、及び後で用いる図121では見易さのため係合部材1656にのみハッチングをして表している。
  図116、図117、図119、図120からわかるように、回動軸1651の円筒である内側に弾性部材1665が挿入され、さらに規制部材1660の規制軸1661のうち接触部1662が配置されていない側の端部も挿入する。これにより、規制部材1660は弾性部材1665の付勢力により回動軸1651から抜け出る方向に付勢される。
  一方、回転力受け部材1652の基部1653に設けられた係合部材収納溝1654内に係合部材1656を配置する。このとき、基部1653に設けられた孔1653aと係合部材1656に設けられた孔1656aとが一直線上に並ぶようにする。また、この一直線の中に、規制部材1660の規制軸1661に具備されたスリット1661aも含まれるように配置する。そして、このように一直線上に揃えられた孔1653a、孔1656a及びスリット1661aをピン1664で通すように挿入する。これにより図120に示した姿勢とすることができる。
  なお、このときに規制部材1660の操作部1663が回転力受け部材1652の係合部材1656に形成されている被操作部258に重なるように配置される。
 また、軸部材1650の軸受部材1640の取り付けは、図117等から明らかなように、回動軸1651のうち、回転力受け部材1652が配置されていない側の端部を軸受部材1640の保持筒体1647に挿入して接合すればよい。
 上記のように組み合わされた端部部材1630は、1つの姿勢として図120のような形態をとり得る。すなわち、係合部材1656が、係合部材収納溝1654の内側に沿って横たわるように配置される姿勢である。
  これに対して図120にC120で示したように、規制部材1660を軸受部材1640側(図120の紙面下方)に押圧すると、操作部1663も下方に移動し、係合部材1656の被操作部1658を下方に移動させる。すると、係合部材1656はピン1664を中心に回動するので、図121に示したように係合部材1656は軸線方向に平行に近づくように起立する。
 すなわち、端部部材1630は、係合部材1656が立設した姿勢(突出した姿勢)と傾倒した姿勢(没した姿勢)とを切り替えることが可能である。
 以上のような端部部材1630を具備するプロセスカートリッジが装置本体に装着された姿勢で、駆動軸70と端部部材1630の軸部材1650に具備される回転力受け部材1652とが係合して回転力が伝達される。
 次に第18の形態について説明する。図122には端部部材1730のうち、軸部材1750の先端部分の分解斜視図を示した。図123は端部部材1730の軸線に沿った断面である。本形態の端部部材1730は、上記した端部部材1630と同じ形態の軸受部材1640を備えるとともに、この軸受部材1640に軸部材1750が適用される。そこでここでは、軸部材1750について説明する。
 軸部材1750は、図122からわかるように回動軸1751、回転力受け部材1752、規制部材1760を有して構成されている。
 回動軸1751は円筒状の部材である。その外径は上記した軸受部材1640の軸部材保持部245に具備された保持筒体1647(図118(a)参照)の内側に挿入することができる大きさである。本形態では回動軸1751の端部のうち一方側(保持筒体1647に挿入される側とは反対側、嵌合部1443とは反対側)の端部が回転力受け部材1752の一部として機能するように構成されている。詳しい形態は回転力受け部材1752で説明する。
 回転力受け部材1752は、端部部材1730が所定の姿勢となったときに、装置本体2からの回転駆動力を受けて回動軸1751に当該駆動力を伝達する部材である。本形態で回転力受け部材1752は、回動軸1751のうちの一方側(保持筒体1647に挿入される側とは反対側、嵌合部1443とは反対側)の端部に配置されており、基部1753、係合部材1754、及びピン1755を有して構成されている。
 基部1753は係合部材1754をピン1755を介して回動軸1751に連結する部位であり、本形態では回動軸1751の一方側端部に形成され、回動軸1751の一部(先端部)が基部1753を兼ねている。
  基部1753には、回動軸1751の一方側の端面から軸線に沿って凹部1753aが形成されており、その底部には図123からわかるように突起1753bが設けられている。また、基部1753には回動軸1751の一方側の端面から軸線方向に沿った方向を長さ方向とし、回動軸1751の側面と凹部1753aとを連通する深さを具備する2つのスリット1753cが形成されている。本形態で2つのスリット1753cは回動軸1751の1つの直径上となるように軸線まわり180°の位置に配置されている。
  さらに基部1753には、スリット1753cの幅方向に延び、基部1753を貫通する孔1753d、1753eが形成されている。孔1753dと孔1753eとはスリット1753cの長さ方向に並んで配置され、孔1753dの方が回動軸1751の一方側端部に近い側とされている。
 係合部材1754は棒状の部材であり、本形態では一か所で屈曲している。そしてその一方の端部には、係合部材1754が延びる方向に直交する貫通孔1754aが設けられている。
 ピン1755は丸棒状の部材である。
 規制部材1760は、規制軸1761、操作部材1762、弾性部材1763、及びピン1764を有して構成されている。
  規制軸1761は円柱状の部材であり、その外形は基部1753に設けられた凹部1753aの内側に挿入できる大きさとされている。また、規制軸1761には直径方向となるように規制軸1761を貫通し、軸線方向に所定の大きさで延びるスリット1761aが形成されている。規制軸1761の端部のうち、基部1753に挿入されない側の端部は円錐の一部(截頭円錐)とされており、傾斜面1761bが形成されている。また規制軸1761の端部のうち、傾斜面1761bとは反対側には突起1761cが設けらている。
  操作部材1762は、棒状の部材であり、係合部材1754と同じで2つ配置されている。操作部材1762はその長さ方向中央付近に長さ方向に直交する貫通孔1762aを備えている。  弾性部材1763は本形態では弦巻ばねにより形成されている。またピン1764は丸棒状の部材である。
 以上説明した各部材が次のように組み合わされて端部部材1730とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係がさらに理解される。
  図122、図123からわかるように、基部1753に形成された凹部1753aの内側に弾性部材363が挿入され、さらに規制部材1760の規制軸1761のうち突起1761cが設けられた側の端部も挿入する。弾性部材1763の一端は凹部内の突起1753bに挿入されて固定され、弾性部材1763の他端は規制軸1761の突起1761cに挿入されて固定される。これにより、規制軸1761は弾性部材1763の付勢力により回動軸1751から抜け出る方向に付勢される。
  図123からわかるように、操作部材1762はその一端側がスリット1753cから規制軸1761のスリット1761aに挿入される。そしてピン1764が孔1753e及び孔1762aを通すように配置される。これにより操作部材1762はピン1764を軸に回動することができる。このとき、外力が加わっていない姿勢で操作部材1762は規制軸1761の軸線に直交する方向に延びるように配置されている。
 一方、係合部材1754は、その一端側がスリット1761aに配置され、ピン1755が孔1753d及び孔1754aを通すように配置される。これにより係合部材1754はピン1755を軸に回動することができる。このとき、係合部材1754は外力が加わっていない姿勢で規制軸1761の軸線に直交する方向に延び、操作部材1762よりも規制軸1761の先端側に重ねられるように位置づけられる。そして、係合部材1754は操作部材1762のうちスリット1761aに挿入されていない側の先端に接触するように配置されている。
 また、軸部材1750の軸受部材1640の取り付けは、図117等の例に倣って、回動軸1751のうち、回転力受け部材1752が配置されていない側の端部を軸受部材1640の保持筒体1647に挿入して接合すればよい。
 上記のように組み合わされた端部部材1730は、1つの姿勢として図123のような形態をとり得る。すなわち、係合部材1756が、回動軸1751の半径方向に延びて横たわるように配置される姿勢である。
  これに対して図123に矢印C123で示したように、規制部材1760の規制軸1761を軸受部材1640側(図123の紙面下方)に押圧すると規制軸1761が軸受部材1640側に移動し、操作部材1762のうち規制軸1761のスリット1761aに挿入された端部も同じ方向に押圧される。すると操作部材1762はピン1764を中心に回動し、反対側の端部は軸受部材1640とは反対側に移動する。これにより当該反対側の端部は係合部材1754を押圧し、係合部材1754はピン1755を中心に回動するので、図124に示したように係合部材1754は軸線方向に平行に近づくように起立する。
 すなわち、端部部材1730も、係合部材1754が立設した姿勢(突出した姿勢)と傾倒した姿勢(没した姿勢)とを切り替えることが可能である。これにより端部部材1730も端部部材1630の例に倣って同様に作用することができる。
 本形態では1種類の操作部が直接係合部材を押圧する例を示したが、これに限らず、複数種類の操作部を介してこれらが連動し、最終的に最も係合部材に近接する操作部が該係合部材を押圧する形態であってもよい。また、操作部と係合部材とが区別なく一体であってもよい。
 次に第19の形態について説明する。図125(a)は端部部材1830の正面図、図125(b)は端部部材1830の一部を切り欠いて示した正面図である。図126は端部部材1830の一部を切り欠いて示した斜視図、図127は図125(a)にC127-C127で示した矢視断面図である。本形態の端部部材1830は、軸受部材1840、及び、軸部材1850とを備えている。
 軸受部材1840は、端部部材1830のうち感光体ドラム11の端部に接合される部材である。図128には軸受部材1840の斜視図を表した。
 軸受部材1840は、図125~図128よりわかるように、筒状体1441、接触壁1442、嵌合部1443、歯車部1444、及び軸部材保持部1845を有して構成されている。
 軸部材保持部1845は、筒状体1441の内側に形成され、軸部材1850を軸受部材1840に保持する機能を有する部位である。本形態で軸部材保持部1845は、図127、図128からわかるように底板1846、保持筒体1847、及び保持溝1848を有して構成されている。
 底板1846は、筒状体1441の内側の少なくとも一部を塞ぐように配置された板状の部材である。
  保持筒体1847は底板1846のうち筒状体1441の軸線部分に設けられた有底円筒状の部材である。保持筒体1847は筒状体1441と同軸に設けられるとともに、嵌合部1443とは反対側に開口し、嵌合部1443側に底を有するように構成されている。
  保持溝1848は筒状体1441の内面から突出した部材であり、ここに溝1848aが形成されている。溝1848aは図128からわかるように、筒状体1441の軸線方向に平行な方向を深さ方向とし、筒状体1441の直径方向を長さ方向、筒状体1441の内周方向を幅方向とする溝であり、嵌合部1443とは反対側、及び軸線に対向する面に開口している。嵌合部1443とは反対側における開口部は溝幅が狭められており、いわゆるスナップフィット構造とされている。保持溝1848は、図127からわかるように、2つ設けられており、2つの保持溝448は筒状体1441の1つの直径上に軸線を挟んで一方と他方のそれぞれに配置されている。
 軸部材1850は、図125~図127よりわかるように回転力受け部材1852、規制部材1860を有して構成されている。
 回転力受け部材1852は、端部部材1830が所定の姿勢となったときに、装置本体2からの回転駆動力を受けて軸受部材1840に当該駆動力を伝達する部材である。本形態で回転力受け部材1852は、2つの係合部材1854、及びクランクシャフト1855を有して構成されている。
 係合部材1854は棒状の部材であり、装置本体2の駆動軸70に係合、離脱する部位である。図129に係合部材1854の斜視図を示した。係合部材1854は全体として棒状の部材であるが、その一方の端部に屈曲した爪部1854aが備えられている。この爪部1854aは逆テーパ状又は鉤状であることが好ましい。これにより回転の伝達をより安定して行うことができる。本形態では爪部1854aの先端は先細になるように傾斜部1854bが設けられている。
  係合部材1854にはその他方の端部にクランクシャフト1855を通すスリット1854cが設けられている。スリット1854cは係合部材1854が延びる方向に直交する方向に長手方向を有するスリットであり、これは爪部1854aが屈曲する方向と概ね同じ方向である。
 クランクシャフト1855は係合部材1854を軸受部材1840に保持するとともに、係合部材1854を規制部材1860の姿勢に関連付ける部材である。図130にクランクシャフト1855の斜視図を示した。クランクシャフト1855は公知のいわゆるクランクシャフトと同様であり、棒状部材を屈曲させた形状を具備している。より具体的には、両端部間を結ぶ軸線(図130にC130で示した。)に対して軸線方向中央部分が一方に突出した中央突出部1855aが設けられ、中央突出部1855aと両端との間のそれぞれには中央突出部1855aとは反対側に突出した端部突出部1855bとが備えられている。
 規制部材1860は、規制軸1861、及び弾性部材1863を有して構成されている。
  規制軸1861は円柱状の部材である。図131には規制軸1861の外観斜視図を示した。規制軸1861の一方の端部は円錐の一部(截頭円錐)とされており、傾斜面1861aが形成されている。これにより駆動軸70からの押圧力を規制軸1861の棒状の長手方向に押圧する力に変換し、駆動軸70へのさらなる円滑な着脱が可能となる。また規制軸1861の端部のうち、傾斜面1861aとは反対側にはクランクシャフト1855を通すスリット1861bが設けらている。スリット1861bは規制軸1861の軸線と直交する方向に延びている。
  弾性部材1863は弦巻ばねである。
 以上説明した各部材が次のように組み合わされて端部部材1830とされている。なお、当該組み合わせの説明から、各部材及び部位の大きさ、構造、並びに部材及び部位同士の大きさの関係がさらに理解される。
  図125~図127よりわかるように、クランクシャフト1855の両端のそれぞれが、筒状体1441の内側に配置された保持溝1848に保持され、クランクシャフト1855が軸線(図130にC130で示した線)を中心に回転可能に2つの保持溝1848を渡すように保持される。
  このとき、クランクシャフト1855の中央突出部1855aが規制軸1861のスリット1861bに通される。そして規制軸1861の傾斜面1861a側の端部は筒状体1441の嵌合部1443とは反対側に突出する。また、規制軸1861のスリット14461b側の端部と、軸受部材1840の保持筒体1847との間に弾性部材1863が配置され、規制18461を嵌合部1443とは反対方向に付勢している。
 一方、クランクシャフト1855の2つの端部突出部1855bのそれぞれには係合部材1854のスリット1854cが通される。そして係合部材1854の爪部1854a側が筒状体1441の嵌合部1443とは反対方向に突出している。
 上記のように組み合わされた端部部材1830は、1つの姿勢として図127のような形態をとり得る。すなわち、弾性部材1863の付勢力により規制軸1861が突出し、クランクシャフト1855の作用により、係合部材1854が嵌合部1443側に後退している。
  これに対して図127に矢印C127で示したように、規制軸1861を嵌合部1443側(図127の紙面下方)に押圧すると規制軸1861が嵌合部1443側に移動する。これにより、図132に示したようにクランクシャフト1855の作用により、係合部材1854が嵌合部1443とは反対側に突出する。
 すなわち、端部部材1830も、係合部材1854が突出した姿勢と没した(後退した)姿勢とを切り替えることが可能である。これにより端部部材1830も端部部材1630の例に倣って同様に作用することができる。
 以上示した各形態の端部部材では、いずれも規制部材の姿勢により、係合部材が駆動軸と係合しない形態(端部部材1430、1530では係合部材が空転し、端部部材1630、1730では係合部材が傾倒し、端部部材1830では係合部材が後退している。)とすることができる。そして駆動軸からの回転力の伝達が必要なときに係合部材が駆動軸に係合する。これによれば、駆動軸と係合部材との係合の過程で不要な干渉による当該係合の阻害を大幅に減らすことができ、円滑な係合が可能となる。
  特に、駆動軸は最終的に軸部材を押圧した状態で係合することを鑑み、駆動軸が規制部材を押圧することにより作動する機構によれば、プロセスカートリッジを装着するという通常の過程の中で機械的に自動に行われるので、付加的な操作が必要なく利便性も高い。
 次に第20の形態を説明する。図133に本形態に含まれる端部部材1930の斜視図、図134に端部部材1930の分解斜視図を示した。端部部材1930以外の構成については第1の形態と同様に考えることができるので、ここでは端部部材1930について説明する。図133、図134からわかるように端部部材1930は軸受部材1940及び軸部材1950を備えている。
 軸受部材1940は、端部部材1930のうち感光体ドラム11の端部に接合される部材である。図135(a)には軸受部材1940の斜視図、図135(b)には軸受部材1940の正面図、図135(c)には軸受部材1940のうち、軸部材1950が配置される側から見た平面図を表した。さらに図136(a)には図135(b)にC136a-C136aで示した線に沿った端面図を示した。すなわち図136(a)は軸受部材1940の軸線に対して直交する面で軸受部材1940を切断したときの端面が表れている。図136(b)は図135(c)にC136b-C136bで示した線に沿った断面図である。すなわち図136(b)は軸受部材1940の軸線を含み、該軸線に沿った方向における軸受部材1940の断面図である。
  なお、以下に示す各図では、断面図における端面(切断面)はハッチングをして表すことがある。
 軸受部材1940は、図133~図136よりわかるように、筒状体1941、接触壁1942、嵌合部1943、歯車部1944、および軸部材保持部1945を有して構成されている。
 筒状体1941は、全体として円筒状の部材であり、その外側に接触壁1942および歯車部1944が配置され、その内側に軸部材保持部1945が形成されている。なお、筒状体1941の内側のうち少なくとも軸部材保持部1945が具備される部位については、後述する軸部材1950の回動軸1951(図137参照)が円滑に軸線方向に移動するおよび軸線中心に回転できる程度に、筒状体1941の内径が回動軸1951の外径と概ね同じとされている。
 筒状体1941の外周面の一部からは感光体ドラム11の端面に接触して係止する接触壁1942が立設している。これにより端部部材1930を感光体ドラム11に装着した姿勢で端部部材1930の感光体ドラム11への挿入深さが規制される。
  また、筒状体1941のうち接触壁1942を挟んで一方側が感光体ドラム11の内側に挿入される嵌合部1943となっている。嵌合部1943が感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される。これにより端部部材1930が感光体ドラム11の端部に固定される。従って、嵌合部1943の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。嵌合部1943には外周面に溝が形成されてもよい。これにより当該溝に接着剤が充填され、アンカー効果等により筒状体1941(端部部材1930)と感光体ドラム11との接着性が向上する。
 接触壁1942を挟んで嵌合部1943とは反対側の筒状体1941の外周面には歯車部1944が形成されている。歯車部1944は、現像ローラユニット等の他の部材に回転力を伝達する歯車で、本形態でははす歯歯車が配置してある。ただし歯車の種類は特に限定されることはなく、平歯車が配置されていたり、両者が筒状体の軸線方向に沿って並べて配置されていたりしてもよい。また歯車は必ずしも設けられている必要もない。
 軸部材保持部1945は、筒状体1941の内側に形成され、軸部材1950の所定の動作を確保しつつ、該軸部材1950を軸受部材1940に保持する機能を有する部位であり、後述する回転力受け部材1958を移動および回動させる手段の1つとして機能する。軸部材保持部1945は、図134、図136(b)に表れた底板(フタ部材)1946および図1367(a)、図136(b)に表れた螺状溝1947を有している。
 底板1946は円盤状の部材であり筒状体1941の内側を塞いで仕切るように配置される。これにより軸部材1950を支持する。筒状体1941への底板1946の取り付けは接着や融着等により行うことができる。また、筒状体1941と底板1946とは一体に形成されてもよい。
 螺状溝1947は筒状体1941の内面に形成された複数の螺状の溝であり、その深さ方向は図136(a)にLで示したように、筒状体1941の軸線を中心に放射状(半径方向)に形成されている。一方、螺状溝1947の長手方向は図136(b)に表れるように筒状体1941の軸線に沿った方向であるとともに、その一端側と他端側とが筒状体1941の内周に沿った方向にずれるようにねじれ、螺状に形成されている。また、螺状溝1947の幅方向は図136(a)にLで示したように、後述する軸部材1950のピン1967の端部が挿入され、該ピン1967の端部が円滑に溝内を移動できる程度にピン1967の直径と概ね同じ程度に形成されている。
  なお、螺状溝1947の長手方向一端は底板1946により塞がれており、これとは反対の他端は筒状体1941の端面にまで達することなく塞がれている。
  また、螺状溝1947のねじれの程度を表す指標として、「ねじれ率」を定義することができる。すなわち、「ねじれ率」は、螺状溝の軸線方向の距離(図136にLで示した大きさ)及びこの間における螺状溝が軸線を中心に周方向にねじれた角度である総ねじれ角度から定義し、次式で表される。
  ねじれ率(°/mm)=総ねじれ角度(°)/螺状溝の軸線方向の距離(mm)
 さらに、複数の螺状溝1947は筒状体1941の軸線を挟んで対向する少なくとも1組が設けられている。本形態では4組、合計8つの螺状溝1947が形成された例であるが、1組で合計2つの螺状溝が形成されていてもよい。一方、2組、3組、又は5組以上の螺状溝が設けられてもよい。このような螺状溝を射出成形する際には、材料の射出後に金型を回しながら離型することにより行う。
 軸受部材1940を構成する材料は特に限定されることはないが、ポリアセタール、ポリカーボネート、PPS等の樹脂や金属を用いることができる。ここで、樹脂を用いる場合には部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維等を配合してもよい。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、及びシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面に機能性(潤滑性や耐腐食性など)を向上させることができる。
 図133、図134に戻り、端部部材1930のうち軸部材1950について説明する。軸部材1950は、図134からわかるように、回動軸1951、および先端部材1955を備えている。さらに軸部材1950は先端部材用弾性部材1965、回動軸用弾性部材1966、およびピン1967を具備している。本形態の先端部材用弾性部材1965、および回動軸用弾性部材1966はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸1951は、先端部材1955が受けた回転力を軸受部材1940に伝達する回転力伝達部であるとともに、回転力受け部材1958を移動および回動させる手段として機能する軸状部材である。図137(a)に回動軸1951の斜視図、図137(b)に図137(a)にC137b-C137bで示した線により切断した軸線方向断面図をそれぞれ表した。
 図137(a)、図137(b)からわかるように、回動軸1951は円筒状である。円筒の内側は、先端部材用弾性部材1965が挿入できる大きさとされている。回動軸1951には、その一方の端部にはフタ部1951aが設けられており、フタ部1951aには円筒の内径に対して狭められた開口部1951bが形成されている。そして本形態ではこの開口部1951bは矩形である。ただし開口部の形状は矩形に限定されることはなく、ここに挿入される先端部材1955の軸1957(図134参照)が空転することなく回動軸1951の開口部1951bに引っ掛かって回転力を伝達できればよい。従って円形以外の形状をとることができる。先端部材1955の軸線方向の移動を可能としつつ先端部材1955の回動に回動軸1951が連動すればその手段は特に限定されることはなく、例えばピンなどの付加部材を用いてもよい。
 また、回動軸1951には、フタ部1951aが配置された端部とは反対側の端部に、円筒の軸線に直交し、円筒の1つの直径方向に設けられ、円筒の内外を貫通する2つのピン通し孔1951cが形成されている。このピン通し孔1951cには後で説明するようにピン1967(図134参照)が通される。
 先端部材1955は、装置本体2からの回転駆動力を受けて回動軸1951に当該駆動力を伝達する部材である。図138(a)には先端部材1955の斜視図、図138(b)は図138(a)にC138a-C138aで示した線により切断した先端部材1955の軸線方向断面図である。図139(a)には図138(a)のうち回転力伝達部材1958の部位に注目して拡大した図、図139(b)には図138(b)のうち回転力伝達部材1958の部位に注目して拡大した図をそれぞれ示した。
 図138(a)、図138(b)よりわかるように、先端部材1955は、軸1957、保持部材1956、および回転力受け部材1958を有して構成されている。
  軸1957は柱状の部材であり、本形態では矩形断面を有する四角柱である。軸1957の断面形状は上記した回動軸1951の開口部1951bと概ね同じ形状、又は該開口部1951bより若干小さく形成されている。
 保持部材1956は軸1957の一方の端部に配置された板状の部材である。保持部材1956と軸1957とは、保持部材1956の一方の端面に保持部材1956の一方の面が重ねられる形態で配置されている。両者は別の部材で形成されて接着又は融着してもよいし、一体で形成されていてもよい。
  保持部材1956は図138(a)、図138(b)に表れているように軸線方向に直交する方向において、軸1957より大きく形成されている。この大きさおよび形状は、上記した回動軸1951の内側に納まることができるとともに、開口部1951bを通ることができないように構成される。これにより回動軸1951に先端部材1955を保持することができる。本形態では保持部材1956の外形は回動軸1951の内側の断面形状と概ね同じ形態(すなわち円形)とされている。
 回転力受け部材1958は、軸1957のうち保持部材1956とは反対側の端部に配置され、円柱状の受け部材1959および該受け部材1959の一方の端面から立設された2つの係合部材1960を有して構成されている。軸1957と回転力受け部材1958とは別の部材で形成されて接着又は融着してもよいし、一体で形成されていてもよい。
 受け部材1959は、軸1957の端部のうち保持部材1956とは反対側の端部に設けられた円柱を基本とした部材で軸1957と同軸に配置されている。
  受け部材1959はその外周部において軸線方向に沿った方向で傾斜する傾斜面1959cを有している。この傾斜面1959cは図138(b)、図139(b)に表れているように、係合部材1960側に向かうにしたがって直径が小さくなる傾斜であり、その端部は受け部材1959のうち係合部材1960が設けられた端面(縁部59d)に接続している。
  さらに受け部材1959は係合部材1960が形成された側の面に凹部1959aが形成されている。この凹部1959aは後述する駆動軸70の先端部がここに入るように形成され、これにより軸部材1950(端部部材1930)の軸線と駆動軸70の軸線とが一致する。また、凹部1959aの底面59bは駆動軸70との係合および離脱の円滑の観点から滑らかな斜面又は曲面であることが好ましい。かかる観点から凹部1959aは軸線部を最深部とした球面の一部となる形態であることが好ましい。
 2つの係合部材1960は突起状の部材であり、受け部材1959のうち軸1957と接続された側とは反対側の面における外周端部に配置され、受け部材1959の軸線から同じ距離離隔し、両者は当該軸線を挟んで対称位置に配置されている。2つの係合部材1960の間隔は、駆動軸70の軸部72の直径と概ね同じ、又はこれより若干大きく形成されている。また、2つの係合部材1960の間隔は、図144(a)を参照するとわかるように2つの係合部材1960の間に駆動軸70の軸部72が配置された姿勢で、駆動突起71が係合部材1960に引っ掛かる位置に構成されている。
  ここで係合部材1960はこのように2つの係合部材1960により対を成して構成されている。本形態では1対の係合部材1960が配置される例を説明したが、2対(4つ)、3対(6つ)又はそれ以上の係合部材を具備してもよい。
 係合部材1960は図138(a)~図139(b)に表れる形状を有しているが、係合部材1960を形成する面の形状は次の通りである。係合部材1960の面のうち受け部材1959の外周側となる面1960aは、受け部材1959の外周に形成された傾斜面1959cに連続した面1960aとされている。従って、面1960aは凹部1959aから離隔するにしたがって軸線に近づくように傾斜又は湾曲している。
  係合部材1960の面のうち凹部1959a側に面する面1960bは、凹部1959aの底面1959bに連続した面1960bとされている。従って、面1960bは凹部1959aから離隔するにしたがって軸線から遠ざかるように傾斜又は湾曲している。
  係合部材1960の面のうち受け部材1959の周方向に面する1つの面である面1960cはそのいずれの部位でも当該部位における法線(例えば図139(b)にNで示した線)が受け部材1959から遠ざかる方向に向く傾斜又は湾曲を有している。
  係合部材1960の面のうち面1960cと反対側となる面で受け部材1959の周方向に面する他の1つの面である面1960eは凹部1960dを形成するように傾斜又は湾曲面を有している。従ってこの凹部1960dは受け部材1959の周方向において凹となる凹部である。凹部1960dは、該凹部1960dの内側に駆動軸70の駆動突起71の一部が入り、係合部材1960に駆動突起71が係合する大きさに形成されている。
  ここで2つの係合部材1960では、受け部材1959の周方向において、一方の係合部材1960の面1960eが他方の係合部材1960の面1960cを向くように並べられている。また、この凹部1960dは係合部材1960のうち、駆動力を伝達すべき回転方向に凹となるように形成される。これにより後述するように適切に駆動軸70の駆動突起71を係合することができる。
 図134に戻り、軸部材1950に備えられる他の構成について説明する。先端部材用弾性部材1965、および回動軸用弾性部材1966はいわゆる弾性部材であり、いずれも回転力受け部材1958を移動および回動させる手段として機能する。本形態ではこれらは弦巻ばねである。また、ピン1967は回転力受け部材1958を移動および回動させる手段で、螺状溝1947の内側を移動する突起として機能する棒状の部材である。これらの各部材の配置および作用については後で説明する。
 軸部材1950の各部材を構成する材料は特に限定されないが各種の樹脂又は金属を用いることができる。
  樹脂で作製する場合には、例えばポリアセタール、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PAI(ポリアミドイミド)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PFA(4Fパーフルオロアルキルビニルエーテル)、PES(ポリエーテルサルフォン)、LCP(液晶ポリマー)樹脂、PA-MXD6(ポリアミドMXD6)等を好適に用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維や無機フィラー等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良い。
  一方、金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性等)を向上させることができる。
  また、軸部材1950、軸部材1950に含まれるいずれかの部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 上記のような軸受部材1940、および軸部材1950とは次のように組み合わせられることにより端部部材1930とされている。なお、当該組み合わせの説明から、各部材、部位の大きさ、構造、および部材、部位同士の大きさの関係等がさらに理解される。図140は端部部材1930の軸線方向断面図である。図141(a)は図140にC141a-C141aで示した線に沿った端部部材1930の端面図、図141(b)は図141(a)にC141b-C141bで示した線による端部部材1930の断面図である。ただし図141(a)、図141(b)では見易さのため軸部材1950についてはピン1967のみを表している。
 図140からわかるように、先端部材1955の軸1957が回動軸1951の開口部1951bを通される。このとき先端部材1955の保持部材1956が回動軸1951の内側に内包され、先端部材1955の回転力受け部材1958が回動軸1951から突出するように配置される。
  一方、ピン1967が回動軸1951の2つのピン通し孔1951cを渡すように通される。このときピン1967の両端はそれぞれ回動軸1951の側面から突出し、突起として機能する。
  そして、回動軸1951の内側で先端部材1955の保持部材1956とピン1967との間に先端部材用弾性部材1965が配置される。従って先端部材用弾性部材1965の一方が保持部材1956、他方がピン1967に接触する。これにより、先端部材用弾性部材1965が先端部材1955を付勢し回動軸1951から先端部材1955を突出させる方向に先端部材1955が付勢される。ただし、保持部材1956は回動軸1951の開口部1951bを通ることができないので、先端部材1955は回動軸1951から外れることなく付勢された状態で保持される。
 このように先端部材1955、先端部材用弾性部材1965、およびピン1967が組み合わされた回動軸1951のうち、先端部材1955が配置されない側が軸受部材1940の内側に形成された軸部材保持部1945の底板1946側に向けて挿入される。このとき、回動軸1951の側面から突出したピン1967の端部が図141(a)、図141(b)に示したように軸受部材1940の軸部材保持部1945に形成された螺状溝1947に挿入される。
  また、図140からわかるように、軸受部材1940の内側で、回動軸1951と底板1946との間に回動軸用弾性部材1966が配置される。従って回動軸用弾性部材66の一方が回動軸1951、他方が底板1946に接触する。これにより、回動軸用弾性部材66が回動軸1951を付勢し軸受部材1940から先端部材1955を含む回動軸1951を突出させる方向に回動軸1951が付勢される。ただし、ピン1967の先端が軸受部材1940の螺状溝1947に挿入され、該螺状溝1947はその両端が上記のように塞がれているので、回動軸1951は軸受部材1940から外れることなく付勢された状態で保持される。
 以上により、各部材が組み合わされた姿勢で、軸受部材1940、回動軸1951、および先端部材1955の軸線が一致する。
 次に、端部部材1930がどのように変形、移動、回動することができるかについて説明する。図142には端部部材1930の1つの姿勢における斜視図を表した。
  図140~図142に示した姿勢では、先端部材用弾性部材1965、回動軸用弾性部材1966により軸部材1950の全体が、可能な範囲で最も軸受部材1940から突出した姿勢とされている。軸部材1950に何ら外力が加わらないときには端部部材1930はこの姿勢にある。
 この姿勢から、図140、図142に矢印C140aで示したように先端部材1955の回転力受け部材1958に軸線まわりの回転力を与えると、これに追随して軸1957が回動する。軸1957と回動軸1951の開口部1951bとは空転しない形態なので、回転力が回動軸1951に伝わり図140、図142に矢印C140bで示したように回動軸1951も回動する。
 回動軸1951がこのように回動すると合わせてピン1967も回動する。すると、第一に、ピン1967が螺状溝1947の側壁を押圧し、回転を軸受部材1940に伝達し、図140、図142に矢印C140cで示したように軸受部材1940が回動する。これにより軸受部材1940に取り付けられた感光体ドラム11も軸線まわりに回転する。
  第二に、ピン1967の先端が螺状溝1947に挿入されているので、回動軸1951が回動するとピン1967が図141(b)に矢印C141cで示したように、軸線方向にも移動する。これにより、ピン1967が取り付けられた回動軸1951およびこれに取り付けられた先端部材1955も図140、図142に矢印C140dで示したように回動軸用弾性部材1966の付勢力に抗して、又は付勢方向に移動する。
 従って、端部部材1930では回転力受け部材1958の回転により、端部部材1930の軸線まわりの回動、並びに回動軸1951および先端部材1955の軸線に沿った方向への移動もする。
 上記の他、端部部材1930は次のような変形も可能である。図143に説明のための図を示した。図143は図140と同じ視点による図である。すなわち、端部部材1930では、先端部材1955の回転力受け部材1958に、軸線方向に力がかかったときには、図143に矢印C143で示したように他の部材は変形することなく、先端部材1955のみが軸線方向に移動する。
 以上のような端部部材1930を、該端部部材1930の嵌合部1943を感光体ドラム11の一方の端部に差し込み接着する(図144(a)、図145も参照)。また、感光体ドラム11の他方の端部に非駆動側端部部材20を配置して感光体ドラムユニットとすることができる。
 プロセスカートリッジ3が装置本体2に装着された姿勢で、駆動軸70と端部部材1930の軸部材1950に具備される回転力受け部材1958とが係合して回転力が伝達される。図144(a)には駆動軸70に端部部材1930の回転力受け部材1958が係合した場面を斜視図で示した。また、図144(b)には当該係合した場面を拡大して表した。さらに図145には軸線方向に沿った断面図を表した。
 図144(a)、図144(b)、および図145からわかるように駆動軸70と回転力受け部材1958とが係合した姿勢では、駆動軸70の軸線と軸部材1950の軸線とが一致するように突き合わされて配置される。このとき、駆動軸70の軸部72の先端が回転力受け部材1958の2つの係合部材1960の間に入り込み、受け部材1959の凹部1959aの内側に配置される。
  そして駆動軸70の駆動突起71が回転力受け部材1958の係合部材1960に側面から引っ掛かるように係合している。このとき駆動突起71が係合部材1960の凹部1960dの内側に入り込んでいる。
 かかる姿勢で図144(b)に矢印C144bで示したように、駆動軸70が回転力伝達方向に回転したとき、駆動突起71が係合部材1960の凹部1960dに入り該係合部材1960に引っ掛かって図144(b)に矢印C144cに示したように回転力が伝達される。その際、回動軸1951は軸受部材1940の上記螺状溝1947とピン1967の作用により図144(b)にC144dで示した方向に移動しようとする。しかし、駆動軸70の駆動突起71が回転力受け部材1958の係合部材1960の凹部1960dに入り込み係合しているので両者の係合は外れることなく安定した連結が維持される。この矢印C144dで示した方向へ移動しようとする力は軸70を引き寄せる力となって、より回動を安定したものにするように作用する。
  ただし、その際には螺状溝1947による当該引き寄せる力は、係合部材1960が駆動軸70と係合する力よりも弱いものとする。より具体的には次のように構成されることが好ましい。
 図145に模式的に示したように、Pで表した係合部材による引き込み力、Qで表した回動軸用弾性部材の付勢力、Rで表した螺状溝による軸線方向力において次式が成立することを回転駆動の条件とすることが好ましい。
  R≦P+Q
  ここで、Pは先端部材の係合部材が有する形状により駆動回転時に装置本体の駆動軸に近づく方向に移動させる力、Qは回動軸用弾性部材により発生し、装置本体の駆動軸に近づく方向に移動させる力、Rは回転駆動時に本体の螺状溝により発生し、回動軸を装置本体の駆動軸から離れる方向に移動させる力である。
 次に本形態の変形例について説明する。プロセスカートリッジ3を装置本体2に対して円滑に着脱することができる。これに対してさらに円滑な着脱を可能とするため次のように構成することもできる。図146に以下に示す第一~第三の変形例における前提となる考え方を説明するための模式図を示した。図146(a)は装置本体の駆動軸70’からプロセスカートリッジの端部部材1930’に回転力が伝達されている状態の図で図144(a)に相当する姿勢の模式図、図146(b)はプロセスカートリッジの端部部材1930’を装置本体の駆動軸70’から離脱する場面の図の模式図である。
 図146(a)では、駆動軸70’の駆動突起71’が、端部部材1930’の2つの係合部材1960’に係合した姿勢で、駆動突起71’が駆動軸70’の軸線周りに矢印C146aに示したように回転している。そして係合部材1960’に伝わった回転力は軸51’を回転させ、さらにピン1967’を軸1951’の軸線周りに回転させる。ピン1967’の両端は軸受部材1940’の螺状溝1947’に挿入されている。ここで、本説明では係合部材1960’には、該係合部材1960’が駆動軸70’から離脱し難い方向に傾斜した傾斜面を有し、この傾斜面に駆動突起71’が接触して回転力が伝達されるものとする。
 図146(a)に示した姿勢では、駆動軸70’の回転により駆動突起71’から係合部材1960’に対して図146(a)にFで示しように力が働く、このとき、上記のように係合部材1960’は傾斜面で駆動突起71’に接しているので、Faで示したように紙面上向きに分力が働く。この分力Faは2つの係合部材1960’のそれぞれで同じように発生しているので、合わせると2・Faである。
 一方、伝達した回転力によってピン1967’が螺状溝1947’の側壁を図146(a)にGで示した力で押圧するが、螺状溝1947’の側壁は端部部材1930’の軸線に沿った方向に対して傾斜した傾斜面であるから、Gaで示したように紙面下向きに分力が働く。この分力Gaは上記分力Faとは反対向きの力である。分力Gaはピン1967’の両端のそれぞれで同じように発生しているので合わせると2・Gaである。
 図146(a)の場面では安定して回転力を伝達するという観点から、係合部材1960’と駆動軸70’が離脱しないことが必要なので、2・Fa>2・Ga、すなわち、
    Fa>Ga   …(1)
が好ましい。
 一方、図146(b)では、駆動軸70’の駆動突起71’が、端部部材1930’の2つの係合部材1960’に係合した姿勢で、端部部材1930’を矢印C146bの方向に移動させる。すると、2つの係合部材1960’のうちの1つに力Fがかかったと仮定することができる。そしてこれによりピン1967’が軸51’の軸線を中心に矢印C146cの方向に回転すると考える。
 すると図146(b)に示した姿勢では、駆動突起71’から係合部材1960’に対して図146(b)にFで示しように力が働く、このとき、上記のように係合部材1960’は傾斜面で駆動突起71’に接しているので、Faで示したように紙面上向きに分力が働く。この分力Faは一方の係合部材1960’で発生しているので合計もFaである。
 一方、伝達した回転力によってピン1967’が軸受部材1940’の螺状溝1947’の側壁を押圧するが、このときの力は図146(a)の場合に比べて半分であるからG/2の力で押圧することになる。そして、螺状溝1947’の側壁は傾斜面であるから、Ga/2で示したように紙面下向きに分力が働く。すなわちこの分力Ga/2は上記Faとは反対向きの力である。分力Ga/2はピン1967’の両端のそれぞれで発生しているので合わせるとGaである。
 図146(b)の場面では端部部材1930’と駆動軸70’とが容易に離脱するという観点から、
    Fa<Ga    …(2)
が好ましい。
 ここで式(1)と式(2)を比べてみると、好ましい力関係が互いに反対である。従ってより円滑な回転力伝達の確保と、より簡易なプロセスカートリッジの着脱と、の両立が困難になる虞がある。これに対しては例えば次の形態により解消することが可能である。
 図147には第一の変形例を説明する図を表した。図147は当該変形例に具備される受け部材2059の部分を表した軸線方向に沿った断面図であり、図10(b)に相当する図である。受け部材2059以外は上記第一の形態の端部部材1930の説明が該当する。なお図147では受け部材1959と同じ構成の部位については同じ符号を付している。
 本形態では受け部材2059のうち係合部材1960が形成された側の端面に凹部2059aが形成されている。この凹部2059aは駆動軸70の先端部がここに入るように形成されている。そして凹部159aの側面159bは図147からわかるように開口側に広がるように傾斜しつつ、さらに凸部2059cを有している。
 このような受け部材2059は次のように作用する。図148には受け部材2059が駆動軸70に係合した場面を示した。図148(a)は回転力が伝達される姿勢、図148(b)は駆動軸70を受け部材2059から離脱する場面をそれぞれ表している。
  回転力が伝達される姿勢では図148(a)に示したように通常通りに受け部材2059と駆動軸70とが係合され、回転力が伝達される。このときには上記式(1)を満たすように構成することができる。
 一方、受け部材2059(すなわちプロセスカートリッジ)を駆動軸70から離脱する場面では、図148(b)に示したようにプロセスカートリッジを移動させると駆動軸70の先端部が凸部159cの面上を摺動する。このとき凸部2059cは凸とされているので、図148(b)にHで示したように軸線方向にGaと同じ方向に大きな力が発生する。従って本変形例では式(2)の代わりに式(3)を適用することができる。
    Fa-H<Ga    …(3)
  これによれば、式(1)と式(3)とを両立させることができ、安定した回転駆動力の伝達と、駆動軸70からのプロセスカートリッジの円滑な離脱をより確実に確保すること
ができる。
 図149には第二の変形例を説明する図を表した。図149は当該変形例に具備される受け部材2159の部分を表した斜視図である。受け部材2159以外は上記第1の形態の端部部材1930の説明が該当する。なお図149では受け部材1959と同じ構成の部位については同じ符号を付している。
 本形態では受け部材2159のうち係合部材1960が形成された側の端面に凹部2159aが形成されている。この凹部2159aは駆動軸70の先端部が入るように形成されている。そして凹部2159aの側面には図149からわかるように軸線からみて放射状に延び、かつ軸線を中心とした周方向に湾曲するように形成された螺状の溝2159bが設けられている。
 このような受け部材2159は次のように作用する。図150、図151、及び図152には受け部材2159が駆動軸70に係合した場面を示した。図150(a)は回転力が伝達される姿勢、図150(b)、図151は駆動軸70を受け部材2159から離脱する場面、及び図152は離脱する場面で発生する力を説明する図である。図152は図146(b)に倣って表した説明のための模式図である。
  回転力が伝達される場面では図150(a)に示したように通常通りに受け部材2159と駆動軸70とが係合され、回転力が伝達される。このときには上記式(1)を満たすように構成することができる。
 一方、受け部材2159(すなわちプロセスカートリッジ)を駆動軸70から離脱する場面では、図150(b)、図151に示したようにプロセスカートリッジを移動させると駆動軸70の先端部が螺状の溝2159b上を摺動する。これにより図151にJで示したように回転力が発生する。このJは図152に示したように係合部材1960’とは異なる部位で発生し、軸1951’を回転させ、さらにピン1967’を軸1951’の軸線周りに回転させる。そして伝達した回転力によってピン1967’が軸受部材1940’の螺状溝1947’の側壁を押圧するが、このときの力は図152のようにJ/2の力で押圧することになる。そして、螺状溝1947’の側壁は傾斜面であるから、Ja/2で示したように紙面下向きに分力が働く。すなわちこの分力Ja/2は上記Faとは反対向きの力である。分力Ja/2はピン1967’の両端のそれぞれで発生しているので合わせるとJaである。このJaは図146(b)に示したGaと同じ向きに作用する力である。従って、本変形例では、図146(b)に示したような係合部材1960により発生するF、Gの関係に加えて、当該Jに基づく上記力が作用し、式(2)の代わりに式(4)を適用することができる。
    Fa<Ga+Ja    …(4)
 本変形例によれば、式(1)と式(4)とを両立させることができ、安定した回転駆動力の伝達と、駆動軸70からのプロセスカートリッジの円滑な離脱をより確実に確保することができる。また、Jを効率よく発生させるために駆動軸が螺状溝に沿って作動しやすいことが好ましいので、両者の摩擦が程よく高いことが好ましい。そのために、螺状溝をゴム(ウレタンゴム等)で製作したり、ラバーコーティングしたりしてもよい。
 図153、図154には第三の変形例を説明するための図を示した。これによっても上記式(1)と式(2)との比較において好ましい力関係が互いに反対であることに対してより円滑な回転力伝達の確保と、より簡易なプロセスカートリッジの着脱と、の両立が困難になる虞に対応してこれを解消することが可能である。なお、本変形例では基本的な形状は端部部材1930と同じに構成することができるので、符号は端部部材1930と同じとした。
 すなわち、上記した離脱の過程において、回動軸1951及び/又は先端部材1955の弾性変形や部材同士のクリアランスに基づき、回転力受け部材1958が若干傾動することにより、係合部材1960がさらに駆動軸70から離脱し易くなり、より円滑な離脱が可能となる。具体的に図153、図154に説明のための図を示した。図153(a)、図154(a)は、駆動軸70に端部部材1930が係合し、回転力が伝達する姿勢を表した断面図である。図153(b)は回動軸1951及び先端部材1955が傾く例を説明する図、図154(b)は先端部材1955が傾く例を説明する図である。
 図153(b)の例によれば、図153(a)に示した姿勢から、図153(b)に矢印C153で示したようにプロセスカートリッジを移動させると、先端部材1955が駆動軸70に引っ掛かり、回動軸1951、先端部材1955、及びピン1967が全体として軸線に対してθの角度で傾く。このように回動軸1951、先端部材1955、及びピン1967が傾くことを可能とするためには例えば回動軸1951の外周と、軸受部材1940のうち回動軸1951が挿入される部位と、の間に所定の間隙を設ける方法を挙げることができる。
 図154(b)の例によれば、図154(a)に示した姿勢から、図154(b)に矢印C154で示したようにプロセスカートリッジを移動させると、先端部材1955が駆動軸70に引っ掛かり先端部材1955が軸線に対してθの角度で傾く。このように先端部材1955が傾くことを可能とするためには例えば先端部材1955の軸1957の外周と、回動軸1951のうち軸1957が挿入される部である開口部1951bと、の間に所定の間隙を設ける方法を挙げることができる。
 このような形態の端部部材によれば、図153(a)、図154(a)に示したように、傾きθ、傾きθ、又は両者を合計した傾きθ+θにより、回転力が伝達される場面では通常通りに受け部材1959と駆動軸70とが係合され、回転力が伝達される。このときには上記式(1)を満たすように構成することができる。
 一方、端部部材1930(すなわちプロセスカートリッジ)を駆動軸70から離脱する場面では、図153(b)、図154(b)に示したようにプロセスカートリッジを移動させることにより上記のように回転力受け部材1959が傾く。すると、図146(b)で示した分力Faがその傾きの程度により小さくなる。具体的には傾きの程度により決まる係数を0<x<1とすれば、傾くことにより小さくなった分力は、x・Faで表すことができる。従ってこの場合には式(2)の代わりに式(3)を適用することができる。
    xFa<Ga    …(3)
  これによれば、式(1)と式(3)とを両立させることができ、安定した回転駆動力の伝達と、駆動軸70からのプロセスカートリッジの円滑な離脱をより確実に確保することができる。
 具体的な傾きの角度は、端部部材30の軸線に対して、(図153(b)、図154(b)にθ、θで示した)0°より大きく10°以下であることが好ましい。0°であれば傾かないことになる。また、10°よりも大きいと許容される傾きが大きすぎ、図153(a)、図154(a)のように通常に回転力を伝達する姿勢においてもガタツキ等を生じる虞があり、安定した回転を阻害する可能性が高まる。より好ましくは0°より大きく5°以下である。
  また、軸線に対して全方位に同じように傾くことが許容されてもよいし、特定の方向への傾きのみが許容されてもよい。特定の方向へ傾きが許容されるための具体的な形態は特に限定されることはないが、例えば軸部材1950の傾動を規制する孔を、傾きが許容される方向に長く形成することにより行うことができる。
 次に第21の形態について説明する。図155は当該第21の形態に含まれる端部部材2230の分解斜視図、図156は端部部材2230の軸線方向に沿った分解断面図である。端部部材2230は軸受部材2240および軸部材2250を備えている。
 軸受部材2240は、端部部材2230のうち感光体ドラム11の端部に接合される部材である。図157(a)には軸受部材2240の本体2241の斜視図、図157(b)には本体2241の平面図を示した。
 軸受部材2240は、本体2241、及びフタ部材2242を有し、本体2241は図155~図157よりわかるように、筒状体1941、嵌合部1943、歯車部1944、および軸部材保持部2245を備えて構成されている。
 筒状体1941、嵌合部1943及び歯車部1944は上記した端部部材1930と同様なので同じ符号を付して説明を省略する。
 軸部材保持部2245は、筒状体1941の内側に形成され、軸部材2250の所定の動作を確保しつつ、該軸部材2250を軸受部材2240に保持する機能を有する部位であり、回転力受け部材1958を移動および回動させる手段の1つとして機能する。軸部材保持部2245は、底板2246および断面が軸線方向にねじれた空間である螺状部2247を有している。
 底板2246は円盤状の部材であり筒状体1941の内側の少なくとも一部を塞いで仕切るように配置される。これにより軸部材2250を支持する。本形態ではその中心部に孔2246aが形成されている。筒状体1941への底板2246の取り付けは接着や融着等により行うことができる。また、筒状体1941と底板2246とは一体に形成されてもよい。
 螺状部2247は筒状体1941の内面に形成された空間であり、図156、図157(b)からわかるように本形態では軸線方向に直交する断面が略三角形であるとともに、当該断面は軸線方向に沿って軸線を中心に少しずつ回転するように形成され、いわゆる捻じれた三角柱形状の空間とされている。(図157(b)には螺状部の開口縁を実線で表し、軸線方向奥における一例の断面を破線で表している。)。
  なお、螺状部2247の長手方向一端は底板2246によりその一部が塞がれており、これとは反対の他端はフタ部材2242でその一部が塞がれている。
 フタ部材2242は軸部材保持部2245を挟んで底板2246とは反対側に配置される円板状の部材であり、その中心には孔2242aを備えている。本形態では爪2242bを有し、これが本体2241に係合し、いわゆるスナップフィットにより固定される。ただし、フタを固定する手段はこれに限定されることなく、その他の手段として接着剤や、熱または超音波による融着を用いることもできる。
 軸受部材2240の各部材を構成する材料は特に限定されないが各種の樹脂又は金属を用いることができる。
  樹脂で作製する場合には、例えばポリアセタール、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PAI(ポリアミドイミド)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PFA(4Fパーフルオロアルキルビニルエーテル)、PES(ポリエーテルサルフォン)、LCP(液晶ポリマー)樹脂、PA-MXD6(ポリアミドMXD6)等を好適に用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維や無機フィラー等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良い。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、およびシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  一方、金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性等)を向上させることができる。
  また、軸受部材2240及び該軸受部材2240に含まれるいずれかの部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 軸部材2250は、図155、図156からわかるように、回動軸2251、および先端部材2255を備えている。さらに軸部材2250は先端部材用弾性部材2265、回動軸用弾性部材2266、およびピン2267を具備している。本形態の先端部材用弾性部材2265、および回動軸用弾性部材2266はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸2251は、先端部材2255が受けた回転力を軸受部材2240に伝達する回転力伝達部であるとともに、回転力受け部材1958を移動および回動させる手段として機能する軸状部材である。図158に回動軸2251の斜視図を表した。
 図155、図156、及び図158よりわかるように、回動軸2251は円筒状の部材2252と円柱状の部材2253とが同軸で連結されている。円筒の内側は、先端部材用弾性部材2265が挿入できる大きさとされている。回動軸2251には、その円筒である部位に軸線方向に直交する方向に貫通する2つの長孔2251aが形成される。2つの長孔2251aは円筒状の部材2252の1つの直径上に配置されている。また、この長孔2251aは軸線方向を長手方向としている。
  そして、回動軸2251の外周部には円筒状の部材2252と円柱状の部材2253との境界部分に上記螺状部2247の形状に対応した捻じれた螺状の柱状部2254が設けられている。
 先端部材2255は、装置本体2からの回転駆動力を受けて回動軸2251に当該駆動力を伝達する部材である。図155、図156よりわかるように、先端部材2255は、軸2257、および回転力受け部材1958を有して構成されている。
  軸2257は柱状の部材であり本形態では円柱である。また軸2257には軸線に直交する方向に貫通する孔2257aが形成されている。
 回転力受け部材1958は、上記した端部部材1930と同様なので説明を省略する。
 図155に戻り、軸部材2250に備えられる他の構成について説明する。先端部材用弾性部材2265、および回動軸用弾性部材2266はいわゆる弾性部材であり、いずれも回転力受け部材1958を移動および回動させる手段として機能する。本形態ではこれらは弦巻ばねである。また、ピン2267は先端部材2255を移動可能に回動軸2251に保持する手段である。
 軸部材2250の各部材を構成する材料は特に限定されないが各種の樹脂又は金属を用いることができる。
  樹脂で作製する場合には、例えばポリアセタール、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PAI(ポリアミドイミド)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PFA(4Fパーフルオロアルキルビニルエーテル)、PES(ポリエーテルサルフォン)、LCP(液晶ポリマー)樹脂、PA-MXD6(ポリアミドMXD6)等を好適に用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維や無機フィラー等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良い。
  一方、金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性等)を向上させることができる。
  また、軸部材2250、軸部材2250に含まれるいずれかの部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 上記のような軸受部材2240、および軸部材2250とは次のように組み合わせられることにより端部部材2230とされている。なお、当該組み合わせの説明から、各部材、部位の大きさ、構造、および部材、部位同士の大きさの関係等がさらに理解される。
 図156からわかるように、先端部材2255の軸2257が回動軸2251の円筒状の部材2252の内側に配置され、ピン2267が回動軸2251の長孔2251a及び先端部材2255の孔2257aに通される。これにより先端部材2255が回動軸2251に保持される。このとき円筒状の部材2252の内側には先端部材用弾性部材2265が配置され、これにより先端部材2255が回動軸2251から飛び出す方向に付勢されている。
 このように先端部材2255、先端部材用弾性部材2265、およびピン2267が組み合わされた回動軸2251のうち、先端部材2255が配置されない側である円柱状の部材2253が軸受部材2240の本体2241の内側に形成された軸部材保持部2245の底板2246側に向けて挿入される。このとき、回動軸2251の螺状の柱状部2254が軸部材保持部2245の螺状部2247の内側に配置される。また、円柱状の部材2253は底板2246の孔2246aに通される。そして底板2246と螺状の柱状部2254との間に回動軸用弾性部材2266が配置され回動軸2251を先端部材2255側に向けて付勢している。
  そしてフタ部材2242が配置され、回動軸2251が軸受部材2240に保持される。このとき、フタ部材2242の孔2242a内には回動軸2251のうち円筒状の部材2252が配置され、螺状の柱状部2254は孔2242aを通過することができないので、この螺状の柱状部2254が軸受部材2240の内側に保持され、回動軸2251が軸受部材2240から抜けることなく付勢された状態で保持される。
 以上により、各部材が組み合わされた姿勢で、軸受部材2240、回動軸2251、および先端部材2255の軸線が一致する。
 以上のような端部部材2230によっても、螺状部2247と螺状の柱状部2254との関係が端部部材1930における螺状溝1947とピン1967との関係の例に倣って作用し、端部部材1930と同じように作動することができる。
 図159、図160には変形例にかかる端部部材2230’について説明する図である。図159は端部部材2230’に含まれる軸受部材2240’の分解斜視図、図160(a)は端部部材2230’の軸線方向に沿った断面図、図160(b)は軸部材2250が傾いた場面を示す軸線方向に沿った斜視図である。
 本変形例では軸受部材2240のかわりに軸受部材2240’が適用されている。その中でも、図159からわかるように本体2241’に具備される底板2246’の孔2246’aが長孔となっている。さらにフタ部材2242’の孔2242’aも長孔とされている。この2つの孔2246’a、2242’aの長手方向は同じ方向である。
 これにより図160(a)、図160(b)からわかるように、孔2246’a、2242’aに挿入された軸部材2250(回動軸2251)が、該孔2246’a、2242’aの長手方向への傾きが許容され、短い方向への傾きが規制される。
  このとき軸部材2250(回動軸2251)の傾きを規制するのは主として孔2242’aなので、孔2242a’と孔2246’aとの長手方向大きさを同じとする他、孔2246’aは長孔ではなく大きい円の孔としてもよい。
 このように、必要に応じて傾く方向を制御することができ、より好適な傾動をさせることが可能である。
 図161には他の変形例にかかる端部部材2230”の一部の部材について分解斜視図を示した。図161ではわかりやすさのため、軸受部材2240”の本体2241”及び軸部材2250”の回動軸2251”のみを表している。他の部材についてはここまでに説明した部材と同様なので説明は省略する。
  この変形例では螺状の柱状部2254”がはす歯歯車、螺状部2247”がはす歯内歯車により形成されており、このような形態でもこれが端部部材2230における螺状部2247と螺状の柱状部2254との関係の例に倣って作用し、端部部材1930と同じように作動することができる。
  はす歯歯車及びはす歯内歯車における歯数は特に限定されることはなく適宜調整することができる。
 また、この例の他、柱状部2254”におけるはす歯歯車の代わりに厚さが薄い平歯車等のいわゆるギア形状を適用し、螺状部2247”の代わりにこのギア形状の歯が溝内を移動できる螺状部を構成することができる。その際には、螺状部の形態に関し、軸線方向に沿った1mmあたりに何度ねじれているかで軸部材の回動及び軸線方向への移動を規定することができる。またギア形状の歯等の他にもピン等の突起状の部位を形成して適用することもできる。
 この例でも回転力受け部材を傾くように形成することによりこれを軸線方向に対して傾かせることが可能となる。
 次に第22の形態について説明する。図162は第22の形態を説明する図であり、端部部材2330の斜視図である。端部部材2330では端部部材1930と同じ構成については、端部部材1930と同じ符号を付して説明を省略する。端部部材2330は軸受部材2340および軸部材2350を備えている。図163に端部部材2330の分解斜視図を示した。
 軸受部材2340は、端部部材2330のうち感光体ドラム11の端部に接合される部材である。図164には軸受部材2340の軸線方向に沿った断面図を示した。
 軸受部材2340は、図162~図164よりわかるように、筒状体1941、接触壁1942、嵌合部1943、歯車部1944、および軸部材保持部2345を有して構成されている。
 軸部材保持部2345は、筒状体1941の内側に形成され、軸部材2350の所定の動作を確保しつつ、該軸部材2350を軸受部材2340に保持する機能を有する部位であり、回転力受け部材1958を移動および回動させる手段の1つとして機能する。軸部材保持部2345は、フタ部材(底板)1946および直線溝2347を有している。
 直線溝2347は筒状体1941の内面に形成された複数の直線状の溝であり、その深さ方向は上記した螺状溝1947と同様に、筒状体1941の軸線を中心に放射状(半径方向)に形成されている。一方、直線溝2347の長手方向は筒状体1941の軸線に平行である。また、直線溝2347の幅方向は上記螺状溝1947と同様にピン1967の端部が挿入され、該ピン1967の端部が円滑に溝内を移動できる程度にピン1967の直径と概ね同じ程度に形成されている。
  なお、直線溝2347の長手方向一端はフタ部材1946により塞がれており、これとは反対の他端は筒状体1941の端面にまで達することなく塞がれている。
 さらに、複数の直線溝2347は筒状体1941の軸線を挟んで対向する少なくとも1組が設けられている。従って2組以上設けられていてもよい。
 次に端部部材2330のうち軸部材2350について説明する。軸部材2350は、図37からわかるように、回動軸2351、および先端部材2355を備えている。さらに軸部材2350は先端部材用弾性部材1965、回動軸用弾性部材1966、およびピン1967を具備している。本形態の先端部材用弾性部材1965、および回動軸用弾性部材1966はいずれも弦巻バネである。
 回動軸2351は、先端部材2355が受けた回転力を軸受部材2340に伝達する回転力伝達部であるとともに、回転力受け部材1958を移動および回動させる手段として機能する軸状部材である。図165(a)に回動軸2351の斜視図、図165(b)に図165(a)にC165b-C165bで示した線により切断した軸線方向断面図をそれぞれ表した。
 図165(a)、図165(b)からわかるように、回動軸2351は円筒状である。円筒の内側は、先端部材用弾性部材1965が挿入できる大きさとされている。回動軸2351には、その一方の端部にはフタ部2351aが設けられており、フタ部2351aには狭められた開口部2351bが形成されている。そして本形態ではこの開口部2351bは円形である。
 また、回動軸2351には、フタ部2351aが配置された端部とは反対側の端部に、円筒の軸線に直交し、円筒の1つの直径方向に設けられ、円筒の内外を貫通する2つのピン通し孔1951cが形成されている。このピン通し孔1951cにはピン1967(図163参照)が通される。
 さらに本形態では回動軸2351の円筒の内面に複数の螺状溝2352が形成されている。螺状溝2352は螺状の溝であり、その深さ方向は上記した螺状溝1947と同様に回動軸2351の軸線を中心に放射状(半径方向)に形成されている。一方、螺状溝2352の長手方向は回動軸2351の軸線に沿った方向であるとともに、その一端側と他端側とが回動軸2351の内周に沿った方向にずれるようにねじれ、螺状に形成されている。また、螺状溝2352の幅方向は上記螺状溝1947と同様に後述する先端部材2355の突起2356の端部が挿入され、該突起2356の端部が円滑に溝内を移動できる程度に突起2356の直径と概ね同じ程度に形成されている。
  なお、螺状溝2352の長手方向一端はフタ材2351aにより塞がれている。
 さらに、複数の螺状溝2352は回動軸2351の軸線を挟んで対向する少なくとも1組が設けられている。本形態では3組、合計6つの螺状溝2352が形成された例であるが、1組で合計2つの螺状溝が形成されていてもよい。一方、2組、又は4組以上の螺状溝が設けられてもよい。このような螺状溝を射出成形する際には、材料の射出後に金型を回しながら離型することにより行う。
 先端部材2355は、装置本体2からの回転駆動力を受けて回動軸2351に当該駆動力を伝達する部材である。図166に先端部材2355の斜視図を示した。
 図166よりわかるように、先端部材2355は、軸2357、突起2356、および回転力受け部材1958を有して構成されている。
  軸2357は柱状の部材であり、本形態では円柱である。この断面形状は上記した回動軸2351の開口部2351bと概ね同じ形状、又は該開口部2351bより若干小さく形成されている。
 突起2356は軸2357のうち回転力受け部材1958が配置された側とは反対側設けられ、軸2357の側面から突出する2つの突起である。2つの突起2356は軸2357の軸線を挟んで対称位置に配置されている。
 上記のような軸受部材2340、および軸部材2350とは次のように組み合わせられることにより端部部材2330とされている。なお、当該組み合わせの説明から、各部材、部位の大きさ、構造、および部材、部位同士の大きさの関係がさらに理解される。図167は端部部材2330の軸線方向断面図である。図168(a)は図167にC168a-C168aで示した線に沿った端部部材2330の端面図、図168(b)は回動軸2351の軸線方向断面図で、突起2356との関係を説明する図である。
 図167からわかるように、先端部材2355の軸2357が回動軸2351の開口部2351bを通される。このとき先端部材2355の突起2356が回動軸2351の内側に内包され、先端部材2355の回転力受け部材1958が回動軸2351から突出するように配置される。また、先端部材2355の突起2356は図168(a)、図168(b)に示したように、回動軸2351の螺状溝2352内に配置される。
  一方、ピン1967が回動軸2351の2つのピン通し孔1951cを渡すように通される。このときピン1967の両端はそれぞれ回動軸2351の側面から突出し、突起として機能する。
  そして、回動軸2351の内側で先端部材2355の軸2357とピン1967との間に先端部材用弾性部材1965が配置される。従って先端部材用弾性部材1965の一方が軸2357、他方がピン1967に接触する。これにより、先端部材用弾性部材1965が先端部材2355を付勢し回動軸2351から先端部材2355を突出させる方向に先端部材2355が付勢される。ただし、突起2356は回動軸2351の開口部2351bを通ることができないので、先端部材2355は回動軸2351から外れることなく付勢された状態で保持される。
 このように先端部材2355、先端部材用弾性部材1965、およびピン1967が組み合わされた回動軸2351のうち、先端部材2355が配置されない側が軸受部材2340の内側に形成された軸部材保持部2345のフタ部材1946側に向けて挿入される。このとき、回動軸2351の側面から突出したピン1967の端部が図167に示したように軸受部材2340の軸部材保持部2345に形成された直線溝2347に挿入される。
  また、図167からわかるように、軸受部材2340の内側で、回動軸2351とフタ部材1946との間に回動軸用弾性部材1966が配置される。従って回動軸用弾性部材1966の一方が回動軸2351、他方がフタ部材1946に接触する。これにより、回動軸用弾性部材1966が回動軸2351を付勢し軸受部材2340から先端部材2355を含む回動軸2351を突出させる方向に回動軸2351が付勢される。ただし、ピン1967の先端が軸受部材2340の直線溝2347に挿入され、該直線溝2347はその両端が上記のように塞がれているので、回動軸2351は軸受部材2340から外れることなく付勢された状態で保持される。
 以上により、各部材が組み合わされた姿勢で、軸受部材2340、回動軸2351、および先端部材2355の軸線が一致する。
 次に、端部部材2330がどのように変形、移動、回動することができるかについて説明する。
  図167に示した姿勢では、先端部材用弾性部材1965、回動軸用弾性部材1966により軸部材2350の全体が、可能な範囲で最も軸受部材2340から突出した姿勢とされている。軸部材2350に何ら外力が加わらないときには端部部材2330はこの姿勢にある。
 この姿勢から、図167に矢印C167aで示したように先端部材2355の回転力受け部材1958に軸線まわりの回転力を与えると、これに追随して軸2357が回動し、さらに突起2356も軸線まわりに回動する。これにより突起2356は螺状溝2352の側面に係合しているので、該側面を押圧して図167に矢印C167bで示したように回動軸2351も回動する。さらには回動軸2351はピン1967が軸受部材2340の直線溝2347に係合しているので軸受部材440も図167に矢印C167cで示したように回動する。従って端部部材2330が軸線まわりに回動する。
 一方、先端部材2355が図167に矢印C167aで示したように回動すれば、突起2356は図168(b)に直線矢印で示したように、螺状溝2352内を移動するので、先端部材2355を軸線方向に移動させる力も発生し、先端部材2355は図167に矢印C167dで示したように軸線方向にも移動する。
 上記の他、端部部材2330は次のような変形も可能である。図169に説明のための図を表した。すなわち、端部部材2330では、先端部材2355の回転力受け部材1958に、図169にC169aで示したように軸線方向に力がかかったときには、先端部材2355の突起456が螺状溝2352内を移動する際に、図169に矢印C169bで示したように先端部材2355を軸線まわりに回動させるとともに、回動軸2351を図169に矢印C169cで示したように軸線方向に移動させる。
 端部部材2330によるこのような移動及び回動によっても、端部部材1930と同様の効果を奏するものとなる。
  なお、本形態でも回転力受け部材が傾くように形成され、上記式(1)と式(3)を満たすことにより、さらに安定した回転力の伝達及び駆動軸からの円滑な離脱が可能な形態とすることもできる。
 次に第23の形態について説明する。図170は当該第23の形態に含まれる端部部材2430の分解斜視図、図171は端部部材2430の軸線方向に沿った分解断面図である。図172は各部材が組み合わされた端部部材2430の軸線方向に沿った断面図である。端部部材2430は軸受部材2440および軸部材2450を備えている。
 軸受部材2440は、端部部材2430のうち感光体ドラム11の端部に接合される部材である。軸受部材2440は、本体2441、及びフタ部材2442を有し、本体2441は筒状体1941、嵌合部1943、歯車部1944、および軸部材保持部2445を備えて構成されている。
 筒状体1941、嵌合部1943及び歯車部1944は上記した端部部材1930と同様なので同じ符号を付して説明を省略する。
 軸部材保持部2445は、筒状体1941の内側に形成され、軸部材2450の所定の動作を確保しつつ、該軸部材2450を軸受部材2440に保持する機能を有する部位であり、回転力受け部材1958を移動および回動させる手段の1つとして機能する。軸部材保持部2445は、底板2446および螺状部として機能する螺状溝2447を有している。
 底板2446は円盤状の部材であり筒状体1941の内側の少なくとも一部を塞いで仕切るように配置される。これにより回動軸用弾性部材2466を支持する。また本形態ではその中心部に孔2446aが形成され、この孔2446aに回動軸2451の円柱状の部材2453が挿入されて回動軸2451の傾動を規制する。
  筒状体1941への底板2446の取り付けは接着や融着等により行うことができる。また、筒状体1941と底板2446とは一体に形成されてもよい。
 螺状溝2447は螺状に形成された部位として機能し、筒状体1941の内面に形成された複数の螺状の溝であり、上記した端部部材1930の螺状溝1947と同じ考えによりこれに倣って形成することができる。螺状溝2447の長手方向一端は底板546により塞がれており、これとは反対の他端はフタ部材2442により塞がれている。
 フタ部材2442は軸部材保持部2445を挟んで底板2446とは反対側に配置される円板状の部材であり、その中心には孔2442aが形成されている。本形態では爪2442bを有し、これが本体2441に係合し、いわゆるスナップフィットにより固定される。ただし、フタ部材を固定する手段はこれに限定されることなく、その他の手段として接着剤や、熱または超音波による融着を用いることもできる。
 軸受部材2440の各部材を構成する材料は特に限定されないが各種樹脂又は金属を用いることができる。
  樹脂で作製する場合には、例えばポリアセタール、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PAI(ポリアミドイミド)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PFA(4Fパーフルオロアルキルビニルエーテル)、PES(ポリエーテルサルフォン)、LCP(液晶ポリマー)樹脂、PA-MXD6(ポリアミドMXD6)等を好適に用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維や無機フィラー等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良い。また、軸部材の取り付けや移動を円滑にするために、樹脂にフッ素、ポリエチレン、およびシリコンゴムの少なくとも1種類を含有して摺動性を向上させてもよい。また、樹脂をフッ素コーティングしたり、潤滑剤を塗布してもよい。
  一方、金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性等)を向上させることができる。
  また、軸受部材2440、軸受部材2440に含まれるいずれか部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 軸部材2450は、回動軸2451、および先端部材2455を備えている。さらに軸部材2450は先端部材用弾性部材2465、回動軸用弾性部材2466、ピン2467、ピン2468を具備している。本形態の先端部材用弾性部材2465、および回動軸用弾性部材2466はいずれも弦巻バネである。
  以下にそれぞれについて説明する。
 回動軸2451は、先端部材2455が受けた回転力を軸受部材2440に伝達する回転力伝達部であるとともに、回転力受け部材1958を移動および回動させる手段として機能する軸状部材である。
 回動軸2451は円筒状の部材2452と円柱状の部材2453とが同軸で連結されている。円筒の内側は、先端部材2455の軸2457及び先端部材用弾性部材2465が挿入できる大きさとされている。回動軸2451には、その円筒である部位に軸線方向に直交する方向に貫通する2つの孔2451aが形成される。2つの孔2451aは円筒状の部材2452の1つの直径上に配置されている。
  そして、回動軸2451には円筒状の部材2452の軸線方向端部のうち円柱状の部材2453側の端部に軸線方向に直交する方向に貫通する孔2451bが形成される。2つの孔2451aは円筒状の部材2452の1つの直径上に配置されている。
 先端部材2455は、装置本体2からの回転駆動力を受けて回動軸2451に当該駆動力を伝達する部材である。先端部材2455は、軸2457、および回転力受け部材248を有して構成されている。
  軸2457は柱状の部材であり本形態では円柱である。また軸2457には軸線に直交する方向に貫通する長孔2457aが形成されている。長孔2457aの長手方向は軸線に沿った方向である。なお、本形態では軸2457のうち回転力受け部材1958とは反対となる端部が細く形成されている。
 回転力受け部材1958は、上記した端部部材1930と同様なので説明を省略する。
 先端部材用弾性部材2465、および回動軸用弾性部材2466はいわゆる弾性部材であり、いずれも回転力受け部材1958を移動および回動させる手段として機能する。本形態ではこれらは弦巻ばねである。また、ピン2467は先端部材2455を軸線方向に沿って移動可能に回動軸2451に保持する手段である。そしてピン2468は回動軸2451を軸受部材2440に保持するとともに、螺状溝2447に沿って移動及び回転して回動軸2451を移動及び回転させる手段である。
 軸部材2450の各部材を構成する材料は特に限定されないが各種樹脂又は金属を用いることができる。
  樹脂で作製する場合には、例えばポリアセタール、ポリカーボネート、PPS(ポリフェニレンサルファイド)、PAI(ポリアミドイミド)、PEEK(ポリエーテルエーテルケトン)、PEI(ポリエーテルイミド)、PFA(4Fパーフルオロアルキルビニルエーテル)、PES(ポリエーテルサルフォン)、LCP(液晶ポリマー)樹脂、PA-MXD6(ポリアミドMXD6)等を好適に用いることができる。ただし、部材の剛性を向上させるために、負荷トルクに応じて樹脂中にガラス繊維、カーボン繊維や無機フィラー等を配合しても良い。また、樹脂中に金属をインサートしてさらに剛性を上げても良い。
  一方、金属で作製する場合は、切削による削り出し、アルミダイキャスト、亜鉛ダイキャスト、金属粉末射出成形法(いわゆるMIM法)、金属粉末焼結積層法(いわゆる3Dプリンタ)などを用いることができる。また、金属の材質は問わず、鉄、ステンレス、アルミニウム、真鍮、銅、亜鉛やこれらの合金等を用いてもよい。また、各種メッキを施して表面の機能性(潤滑性や耐腐食性等)を向上させることができる。
  また、軸部材2450、軸部材2450に含まれるいずれかの部材については弾性を持たせる観点から、金属板を折り曲げて作製したり、金属、ガラス、炭素繊維等を樹脂に含浸させて作製したりしてもよい。
 上記のような軸受部材2440、および軸部材2450とは次のように組み合わせられることにより端部部材2430とされている。なお、当該組み合わせの説明から、各部材、部位の大きさ、構造、および部材、部位同士の大きさの関係等がさらに理解される。
 図172からわかるように、先端部材2455の軸2457が回動軸2451の円筒状の部材2452の内側に配置され、ピン2467が回動軸2451の孔2451a及び先端部材2455の長孔2457aに通される。これにより先端部材2455が回動軸2451に保持される。このとき円筒状の部材2452の内側には先端部材用弾性部材2465が配置され、これにより先端部材2455が回動軸2451から飛び出す方向に付勢されている。
 このように先端部材2455、先端部材用弾性部材2465、およびピン2467が組み合わされた回動軸2451のうち、先端部材2455が配置されない側である円柱状の部材2453が軸受部材2440の本体2441の内側に形成された軸部材保持部2445の底板2446側に向けて挿入される。その際には、回動軸2451の孔2451bにピン2468が挿入され、ピン2468の両端のそれぞれが回動軸2451の側面から突出するように配置されている。そして、ピン2468の当該突出した端部が軸受部材2440の螺状溝2447の溝内に配置される。また、円柱状の部材2453は底板2446の孔2446aに通される。そして底板2446と筒状の部材2453との間に回動軸用弾性部材2466が配置され回動軸2451を先端部材2455側に向けて付勢している。
  そしてフタ部材2442が配置され、回動軸2451が軸受部材2440に保持される。このとき、フタ部材2442の孔2442a内には回動軸2451のうち円筒状の部材2452が配置され、ピン2468は孔2442aを通過することができないので、回動軸2451が軸受部材2440から抜けることなく付勢された状態で保持される。
 以上により、各部材が組み合わされた姿勢で、軸受部材2440、回動軸2451、および先端部材2455の軸線が一致する。
 以上のような端部部材2430によっても、螺状溝24547とピン2468との関係が端部部材1930における螺状溝1947とピン1967との関係の例に倣って作用し、端部部材1930と同じように作動することができる。また、先端部材2455は、軸部材2450の回転とは無関係に回動軸2451に対して軸線方向に移動することが可能である。
  なお、本形態でも回転力受け部材が傾くように形成され、上記式(1)と式(3)を満たすことにより、さらに安定した回転力の伝達及び駆動軸からの円滑な離脱が可能な形態とすることもできる。
 図173には端部部材2430の変形例である端部部材2430’の分解斜視図を示した。本例の端部部材2430’では端部部材2430の先端部材2455の代わりに、先端部材2455’が適用されている。そこでここでは先端部材2455’について説明する。図174には先端部材2455’の斜視図を示した。他の部分は端部部材2430と同じである。
 先端部材2455’は図173、図174からわかるように、1枚の長い板が折り曲げて形成されたような形態を有し、回転力受け部材として機能する。その形状は次の通りである。  先端部材2455’は、一方の板面が所定の間隔を有して略平行に配置される2つの基板2455’aを有し、2つの基板2455’aは一方の端部同士で連結板2455’bで連結されている。2つの基板2455’aのうち連結板2455’bで連結された側とは反対側の端部(他方の端部)のそれぞれからは、互いに離隔する方向に延びる板状部材である拡間板2455’cが配置されている。そして拡間板2455’cの先端からは基板2455’aから離れる方向に延びる係合部材として機能する係合板2455’dが具備されている。従って2つの係合板2455’dはその板面が対向するように所定の間隔を有して略平行となっている。
 ここで、係合板2455’dのうち、板幅方向の少なくとも一方の端部には窪み2455’eが設けられている。ここには上記した駆動軸70の駆動突起71が当たるように配置される。従って2つの窪み2455’eは板幅方向の反対側に配置されている。また2つの係合板2455’dの間隔は駆動軸70の軸部72の先端が入り込むことができる間隔とされている。
 このような先端部材2455’は弾性に優れる材料により形成されている。これには例えばステンレス鋼やリン青銅等を挙げることができる。また、これらの金属は低音焼鈍(テンパー処理)をすることによって弾性限を増大させ、そのばね性を向上することができる。
 図175には端部部材2430’の軸線に沿った断面を示した。図175からわかるように、本形態では、先端部材2455’の2つの基板2455’aの間にピン2467が挿入されることにより円筒状の部材2452内に保持される。
 このような端部部材2430’によれば、上記した端部部材2430と同様の効果に加え、図176に示したように、駆動軸70からの離脱の際に係合板2455’dが弾性変形して離脱が円滑におこなわれる。なお、駆動軸70が端部部材2430’に係合した状態における回転力の伝達時には、図174にFkで示したように係合板2455’dの板幅方向に回転力が伝わるので係合板2455’dは大きく変形することなく適切に回転力が伝達される。
 ここまで説明した螺状溝を有する端部部材はいずれも、螺状に形成された部位の作用により、軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作(例えば図140参照)、及び回動とは無関係に回転力受け部材が軸線方向に移動する動作(例え図143参照)の両方の動作が可能であった。これについては、螺状に形成された部位の作用による「軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作」のみであってもよいが、より円滑なプロセスカートリッジの着脱の観点から、補助として「回動とは無関係に回転力受け部材が軸線方向に移動する動作」を付加したものである。従って、これら螺状溝を有する形態では「軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作」のみであってもよい。また、「回動とは無関係に回転力受け部材が軸線方向に移動する動作」も適用する際には、そのために供される手段による力(例えば先端部材用弾性部材の弾性力)は、「軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作」を行うために供される手段による力(例えば回動軸用弾性部材66の弾性力)より弱いことが好ましい。
  そこで、次に「軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作」のみにより構成される形態例を説明する。
 図177、図178、図179は、上記第23の形態の端部部材2430の他の変形例にかかる端部部材2430”を説明する図であり、図177は端部部材2430”の分解斜視図、図178は端部部材2430”の軸線方向に沿った分解断面図である。図179は各部材が組み合わされた端部部材2430”の軸線方向に沿った断面図である。端部部材2430”は、端部部材2430の軸部材2450の代わりに軸部材2450”が適用されている。軸受部材2440は端部部材2430の軸受部材2440と同じである。
 軸部材2450”は、回動軸2451”と先端部材2455”とが一体に形成されており、先端部材用弾性部材2465が具備されない。従って回動軸2451”と先端部材2455”とは相対的な移動はできず、常に一体に移動及び回動する。これ以外は軸部材2450と同じである。従って、本例では、「回動とは無関係に回転力受け部材が軸線方向に移動する動作」をおこなうことができず、軸部材2450”は螺状溝2447及びピン2468の作用により、「軸部材が軸線周りに回動することにより該軸部材が軸線方向移動する動作」のみの端部部材となる。
 このような端部部材2430”によっても、螺状溝2447とピン2468との関係が端部部材1930における螺状溝1947とピン1967との関係の例に倣って作用するので、従来と同等の回転力の伝達が可能であるとともに、装置本体との着脱をより円滑に行うことができる。
  なお、本形態でも回転力受け部材が傾くように形成され、上記式(1)と式(3)を満たすことにより、さらに安定した回転力の伝達及び駆動軸からの円滑な離脱が可能な形態とすることもできる。
 次に第24の形態について説明する。図180に感光体ドラムユニット2510の外観斜視図を示した。図180(a)は駆動側端部部材2550を手前に表した感光体ドラムユニット2510の外観斜視図、図180(b)は非駆動側端部部材2520を手前に表した感光体ドラムユニット110の外観斜視図である。図180(a)、図181(b)からわかるように感光体ドラムユニット2510は、感光体ドラム11、非駆動側端部部材2520、及び駆動側端部部材2550を備えている。
  本形態では、非駆動側端部部材2520、駆動側端部部材2550、及び装置本体2の駆動軸2570(図183参照)の形態が、上記した非駆動側端部部材20、駆動側端部部材50、及び装置本体2の駆動軸70と異なる。これ以外は上記第1の形態と同様であることから説明を省略する。
 非駆動側端部部材2520は、上記説明した非駆動側端部部材20からアース板40を除外した形態である。後で説明する通り、本例ではアース板40が駆動側端部部材50側に設けられている。従って、非駆動側端部部材2520はアース板40以外において非駆動側端部部材20と同様であるからここでは説明を省略する。
 駆動側端部部材2550は感光体ドラム11の軸線方向に沿った方向の端部のうち、非駆動側端部部材2520とは反対側で、装置本体2の駆動軸2570が係合する側の端部に配置される端部部材である。図181には駆動側端部部材2550の外観斜視図を示した。図181(a)は軸受部2556を手前に表した外観斜視図、図181(b)はこれとは反対に嵌合部2554を手前に表した外観斜視図である。また、図182(a)は軸受部2556側から見た駆動側端部部材2550の正面図である。図182(b)は図182(a)にC182b-C182bで示した線に沿った断面図である。
  駆動側端部部材2550は、本体2551及び導電手段2561を備えている。
 本体2551は、図181(a)、図181(b)、図182(a)、図182(b)からわかるように、筒状体2552、接触壁2553、嵌合部2554、歯車部2555、及び軸受部2556を有して構成されている。
  筒状体2552は、その外周面に必要に応じて凹凸が形成されているものの全体として筒状の部材で、その外周面の一部からは感光体ドラム11の端面に接触して係止する接触壁2553が立設している。これにより駆動側端部部材2550を感光体ドラム11に装着した姿勢で該駆動側端部部材2550の感光体ドラム11への挿入深さが規制される。
 筒状体2552のうち接触壁2553を挟んで一方側が感光体ドラム11の内側に挿入される嵌合部2554となっている。嵌合部2554が感光体ドラム11の内側に挿入され、接着剤により感光体ドラム11の内面に固定される。これにより駆動側端部部材2550が感光体ドラム11の端部に固定される。従って、嵌合部2554の外径は、感光体ドラム11の円筒形状の内側に挿入可能な範囲で、感光体ドラム11の内径と概ね同じである。
  嵌合部2554には外周面に溝2554aが形成されてもよい。これにより当該溝2554aに接着剤が充填され、アンカー効果等により本体2551(駆動側端部部材2550)と感光体ドラム11との接着性が向上する。
 接触壁2553を挟んで嵌合部2554とは反対側の筒状体2552の外周面には歯車部2555が形成されている。歯車部2555は、現像ローラ等他の部材に回転力を伝達する歯車で、本形態では、はす歯歯車と平歯車が軸方向に並べて配置してある。ただし歯車の種類は特に限定されることはなく、いずれか一方のみであってもよい。また歯車は必ずしも設けられている必要はない。
 さらに筒状体2552の軸線方向の端部のうち嵌合部2554となる側とは反対側端部はその外周が、軸受部2556として機能できる形状に形成されている。軸受部2556は、装置本体2の後述する駆動軸2570に設けられた凹部2571に係合し、駆動軸2570からの回転力を駆動側端部部材2550に伝達する機能を有する部位である。また、プロセスカートリッジ3が装置本体2に着脱される際には、軸受部2556は駆動軸2570の凹部2571から離脱するように構成されている。本形態の軸受部2556は具体的には次のような形状を有している。
 軸受部2556は図181(a)、図181(a)からわかるように、軸線が延びる方向に直交する断面で外周形状は六角形とされている。そして軸受部2556は、軸線方向にいわゆるねじれた形状でなく、アンダーカットとなる部位が存在しない。すなわち、軸受部2556の根元側端部(嵌合部2554側)から軸線方向に軸受部2556を見たときに(図182(a)とは反対側である背面側から軸受部2556を見たときに)、軸受部2556の他の部位が見えない形状である。
  これにより、軸受部2556を含めた駆動側端部部材2550を形成する際に金型への材料の充填、及び離型性がよくなり、生産性が向上する。また、金型にスライドコア、コマ等の回転機構が不要になるので、金型自体の構成を簡素化することも可能となる。また、後述する駆動軸2570の三角形断面が連続してねじれたように形成された凹部2571に適切に係合して回転力を伝達するとともに、その着脱も容易となる。
 ここで本体2551は上記のように円筒状であることから、その内側には連通する1つの穴2551aが形成されて軸線に沿った方向に貫通している。穴2551aの径は後述する駆動軸2570の本体側アース部材2572の端部(図183参照)が挿入できる大きさとされている。
 本体2551は、結晶性樹脂により形成されていることが好ましい。結晶性樹脂であれば、金型を用いて射出成型するに際し、流れが良好であることから成型加工性がよく、ガラス転移点にまで冷却させなくても結晶化して固化することにより離型することができる。従って、生産性を大きく向上させることが可能である。また、結晶性樹脂は、耐熱性、耐溶剤性、耐油性、耐グリース性に優れ、耐摩擦摩耗性や摺動性も良好であり、さらには剛性及び硬さの観点からも端部部材に適用する材料として好ましい。
  結晶性樹脂としては例えばポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、メチルペンテン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ナイロン等を挙げることができる。
  この中でも成型加工性の観点からポリアセタール系樹脂を用いることが好ましい。
  また強度を高める観点から、ガラス繊維、炭素繊維等を充填してもよい。
 導電手段2561は、感光体ドラム11と装置本体2とを電気的に接続する手段であり、コイルばね2562、導電棒2563、及びアース板2564を備えている。
 コイルばね2562は弾性的に変形する導電性材料として機能する。具体的には本形態におけるコイルばね2562は一本の線材が螺旋状に巻かれるように形成された弦巻ばねである。コイルばね2562は穴2551aの内側に挿入されており導電性の材料を含むことにより、導電可能に形成されている。従ってコイルばね2562は鋼や銅等の金属により形成されていることが好ましい。
 導電棒2563は、導電性を有する棒状の部材であり、穴2551aの内側に収まる太さを有するとともに、その一端がコイルばね2562に接触し、他端が穴2551aのうちアース板2564が配置された側とは反対側の開口部付近にまで達する長さとされている。導電棒2563は銅や鋼等の金属で形成することができる。
  ここで導電棒2563には、該導電棒2563が不必要に装置本体側に移動することを防止する目的で導電棒2563が抜け出る方向への移動を所定の位置で規制する手段(抜け止め)が設けられてもよい。これには例えば穴2551aの一部を狭くすることや導電棒2563の外周部に突起を設けて引っ掛かるように構成することが挙げられる。
 アース板2564は、導電性を有する円板状の部材であり、その外周部から感光体ドラム11の内面に接するように突出部2564aが形成されている。そのアース板2564は公知のアース板と同様であり、そのための構造は特に限定されることなく公知の形状を適用することができる。
 上記した本体2551と導電手段2561とが組み合わされて駆動側端部部材2550とされる。すなわち、図182(b)に表れるように、本体2551の嵌合部2554の端面にアース板2564がその面が重なるように配置され、カシメにより固定されている。本体2551に形成された穴2551aの内側にコイルばね2562が挿入されている。このときコイルばね2562の端部のうち嵌合部2554側に配置された端部は、アース板2564に接触している。コイルばね2562のうち、アース板2564に接触する側とは反対側に導電棒2563が配置されており、これも穴2551aの内側に挿入され、導電棒2563の一端がコイルばね2562の端部に挿入されて接触している。
 以上説明した、感光体ドラム11のうち一方の端部に非駆動側端部部材25120の外管部22が接触壁25に接触するまで挿入され、感光体ドラム11のうち他方の端部に、駆動側端部部材2550の嵌合部2554を接触壁2553に接触するまで挿入し、図180(a)、図180(b)のように感光体ドラムユニット2510となる。このとき、アース板2564の突出部2564aが感光体ドラム11の内面に接触する。
 次に、感光体ドラムユニット2510を含むプロセスカートリッジ3が画像形成装置に装着された姿勢における感光体ドラムユニット2510の姿勢について説明する。
  ここで、装置本体2の駆動軸2570について説明する。その他の部位については公知の構成を用いることができる。図183には装置本体2に備えられ、感光体ドラムユニット2510に回転駆動力を与える駆動軸2570のうち、軸受部2556に係合する側の端部を表した。図183(a)が斜視図、図183(b)が正面図である。図183(a)、図183(b)では、凹部2571の一部を透視して破線で示している。駆動軸2570の反対側の端部は装置本体2の駆動源に直接又は間接的に連結されている。
 駆動軸2570の端部には、図183(a)、図183(b)からわかるように、凹部2571が設けられている。凹部2571は、略正三角形の断面を有し、駆動軸2570の端面から軸方向の深さ方向に進むにつれて所定の角度で軸を中心にねじれるような形状を有する穴である。このねじれの方向は回転伝達方向によって、時計回りの例も反時計回りの例もある。
 また駆動軸2570には、該駆動軸2570の回転軸に沿って導電性で棒状の本体側アース部材2572が配置されている。本体側アース部材2572の一端側は図183(a)、図183(b)に表れているように凹部2571の底から立設するように突出している。一方、本体側アース部材2572の他端側は駆動軸2570の反対側端部から突出し、装置本体2のアース用の部材に接している。
 図183(b)からわかるように、凹部2571を軸線方向正面から透視して見たとき、凹部2571の開口に形成されている三角形(実線で表した。)と、凹部2571の底に形成されている三角形(破線で表した。)とは軸を中心に回転した2つの三角形が重なっているように見える。なお、ここでは、凹部2571の断面が三角形である例を説明したが、三角形を基準としつつもその頂点が少し切り欠かれた多角形であってもよい。
 図184には、感光体ドラムユニット2510が含まれるプロセスカートリッジ3が装置本体2に装着された場面における、プロセスカートリッジ3のうち、感光体ドラムユニット2510及びその周辺における断面図を表した。図184は感光体ドラムユニット2510の軸線方向に沿った断面図である。
 図184からわかるように、駆動側端部部材2550では、軸受部2556が駆動軸2570の凹部2571の内側に挿入されている。図185に当該挿入の姿勢を軸方向から見た図で表した。このように、軸受部2556の六角である外周の少なくとも3つの頂部が凹部2571の三角形である辺に接触して回転力が伝達できるように接続されている。そしてこの回転力は駆動側端部部材2550に伝わり、感光体ドラム11を回転させる。このとき合わせて非駆動側端部部材2520も回転する。
 また、本体側アース部材2572の先端が駆動側端部部材2550の穴2551aに挿入され、導電棒2563の先端に接触される。これにより感光体ドラム11、アース板2564、コイルばね2562、導電棒2563、及び本体側アース部材2572が電気的に接続され、感光体ドラム11から装置本体2が導通する。
  このとき、導電棒2563とアース板2564との間にはコイルばね2562が配置されており、本体側アース部材2572の軸線方向の変動や押圧をコイルばね2562により吸収し、アース板2564が強く押圧されることを防止している。これによりアース板2564が本体2551から離脱してしまう不具合を防止することができる。
 一方、図184からわかるように、非駆動側端部部材2520ではプロセスカートリッジ3の筐体3aの内面から延びる支持軸部材3bがキャップ部材31の底部32に設けられた穴32aを貫通し、フランジ部材21の内管部23の内側に挿入される。これにより穴32a及び内管部23が軸受として機能し、感光体ドラムユニット2510を回転可能に支持する。また、キャップ部材31の底部32の外面は筐体3aの内面に重なるように接触する。このとき底部32の外面と筐体3aとの間の摩擦を低減するため、ここに潤滑油を塗布したり、摩擦防止シート(例えばテフロン(登録商標)シート、ナイロンシート、フェルトシート又はPETシート等)を挟む等してもよい。または、その代わりにキャップ部材31を摺動性の高い材料(例えばテフロン(登録商標)等)で形成してもよい。
 これによれば、非駆動側端部部材2520が感光体ドラムユニット2510を駆動軸2570側に押圧する付勢力を有して伸縮可能とされているので、駆動側端部部材2550を駆動軸2570側に押圧し、軸受部2556を適切に駆動軸2570の凹部2571内に挿入させ係合することができる。そしてこれはキャップ部材31が伸縮できる範囲であればよいので、寸法精度の条件を緩和することができる。
  従って、他に規制部材を設けることとなく、端部部材(2520、2550)のみにより適切に回転力を伝達するように感光体ドラムの軸方向の位置決めを簡易に行うことが可能である。
 本出願は、2013年11月19日出願の日本特許出願、特願2013-238840に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、感光体ドラムの端部のそれぞれに配置される一組の端部部材において、一方側の端部部材は付勢力を有して軸線方向に伸縮可能とされているので、感光体ドラムユニットとしたとき、その長さを容易に微調整することができる。従って付勢力により他方側の端部部材と装置本体の駆動軸との位置関係が適切となり、空転等の不具合を防止することが可能である。また、これにより、感光体ドラムの軸線方向の移動を厳しく規制する必要がないのでプロセスカードリッジを組み立てるに際して、寸法に余裕のない規制部位を設ける必要がなく、部材の精度を高めることを要しないから、管理が容易になり生産性が向上する。
  また、端部部材が伸縮する範囲において感光体ドラムの長さの違いを許容することができることから、感光体ドラムユニットの部品の共通化が可能になり、在庫削減等によるコストダウンを期待できる。
  1 画像形成装置
  2 画像形成装置本体
  3 プロセスカートリッジ
  10、2510 感光体ドラムユニット
  11 感光体ドラム
  20、2520 端部部材(一方の端部部材、非駆動側端部部材)
  21 フランジ部材
  31 キャップ部材
  41 弾性部材
  50、2550 端部部材(他方の端部部材、駆動側端部部材)
 

Claims (24)

  1.  画像形成装置本体に着脱され、筐体と、該筐体内に配置されて該筐体に保持される感光体ドラムユニットと、を備えるプロセスカートリッジであって、
     前記感光体ドラムユニットは、
     円筒状である感光体ドラムと、
     前記感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、
     一方の端部部材は、弾性部材を備えており前記軸線方向に付勢されつつ伸縮可能とされ、
     他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、
     前記一方の端部部材、及び前記他方の端部部材は、前記感光体ドラムとは反対側となる面で前記筐体に接触し、前記感光体ドラム側を向いた面は前記筐体に接触しない、プロセスカートリッジ。
  2.  前記他方の端部部材は、前記軸受部材に対して前記軸部材が揺動するように保持される請求項1に記載のプロセスカートリッジ。
  3.  前記他方の端部部材の前記軸部材は、
     前記軸受部材の軸線方向に移動する回動軸と、
     前記回動軸の一方の端部に配置され前記回動軸の軸線に対して揺動し、前記画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する、請求項1に記載のプロセスカートリッジ。
  4.  前記他方の端部部材の前記軸部材は、
     回動軸と、
     前記回動軸の一方の端部に配置され、前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、
     押圧することにより前記回動軸又は前記回転力受け部材に対して係合又は離脱し、前記係合部材が前記駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える、請求項1に記載のプロセスカートリッジ。
  5.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達される、請求項1に記載のプロセスカートリッジ。
  6.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達されるとともに、前記回転力受け部材が軸線に対して傾くように動く、請求項1に記載のプロセスカートリッジ。
  7.  画像形成装置本体に着脱され、筐体と、該筐体内に配置されて該筐体に保持される感光体ドラムユニットと、を備えるプロセスカートリッジであって、
     前記感光体ドラムユニットは、
     円筒状である感光体ドラムと、
     前記感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、
     一方の端部部材は、弾性部材を備えており前記軸線方向に付勢されつつ伸縮可能とされ、
     他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、
     前記一方の端部部材は前記筐体により前記感光体ドラムの軸線に沿った方向のうち一方向のみの移動が規制され、前記他方の端部部材は前記筐体により前記感光体ドラムの軸線に沿った方向のうち他方向のみの移動が規制される、プロセスカートリッジ。
  8.  前記他方の端部部材は、前記軸受部材に対して前記軸部材が揺動するように保持される請求項7に記載のプロセスカートリッジ。
  9.  前記他方の端部部材の前記軸部材は、
     前記軸受部材の軸線方向に移動する回動軸と、
     前記回動軸の一方の端部に配置され前記回動軸の軸線に対して揺動し、前記画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する、請求項7に記載のプロセスカートリッジ。
  10.  前記他方の端部部材の前記軸部材は、
     回動軸と、
     前記回動軸の一方の端部に配置され、前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、
     押圧することにより前記回動軸又は前記回転力受け部材に対して係合又は離脱し、前記係合部材が前記駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える、請求項7に記載のプロセスカートリッジ。
  11.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達される、請求項7に記載のプロセスカートリッジ。
  12.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には前記画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達されるとともに、前記回転力受け部材が軸線に対して傾くように動く、請求項7に記載のプロセスカートリッジ。
  13.  円筒状である感光体ドラムと、
     前記感光体ドラムの軸線方向両端のそれぞれに配置される2つの端部部材と、を有し、
     一方の端部部材は、弾性部材を備えており前記軸線方向に付勢されつつ伸縮可能とされ、
     他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、
     前記他方の端部部材の前記軸受部材の外周部には歯車が形成されており、前記軸受部材の外径は、前記歯車が形成された部位を除き、前記感光体ドラムの外径以下である、感光体ドラムユニット。
  14.  前記他方の端部部材は、前記軸受部材に対して前記軸部材が揺動するように保持される請求項13に記載の感光体ドラムユニット。
  15.  前記他方の端部部材の前記軸部材は、
     前記軸受部材の軸線方向に移動する回動軸と、
    前記回動軸の一方の端部に配置され前記回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する、請求項13に記載の感光体ドラムユニット。
  16.  前記他方の端部部材の前記軸部材は、
     回動軸、
    前記回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材、及び、
    押圧することにより前記回動軸又は前記回転力受け部材に対して係合又は離脱し、前記係合部材が前記駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材、を備える、請求項13に記載の感光体ドラムユニット。
  17.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達される、請求項13に記載の感光体ドラムユニット。
  18.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達されるとともに、前記回転力受け部材が軸線に対して傾くように動く、
    請求項13に記載の感光体ドラムユニット。
  19.  感光体ドラムの端部に配置される一組の端部部材であって、
     一方の端部部材は、弾性部材を備えており付勢されつつ伸縮可能とされ、
     他方の端部部材は、円筒状である軸受部材、及び該軸受部材に保持される軸部材を備え、
     前記軸受部材の外周部には歯車が形成されており、前記軸受部材の外径は、前記歯車が形成された部位が最も大きく形成されている一組の端部部材。
  20.  前記他方の端部部材は、前記軸受部材に対して前記軸部材が揺動するように保持される請求項19に記載の一組の端部部材。
  21.  前記他方の端部部材の前記軸部材は、
     前記軸受部材の軸線方向に移動する回動軸と、
     前記回動軸の一方の端部に配置され前記回動軸の軸線に対して揺動し、画像形成装置本体の駆動軸に係合する係合爪を具備する回転力受け部材と、を有する、請求項19に記載の一組の端部部材。
  22.  前記他方の端部部材の前記軸部材は、
     回動軸と、
     前記回動軸の一方の端部に配置され、画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材と、
     押圧することにより前記回動軸又は前記回転力受け部材に対して係合又は離脱し、前記係合部材が前記駆動軸に係合する姿勢と係合しない姿勢とを切り替える規制部材と、を備える、請求項19に記載の一組の端部部材。
  23.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達される、請求項19に記載の一組の端部部材。
  24.  前記他方の端部部材の前記軸部材は、
     前記軸受部材に同軸に配置され、該軸受部材に対して軸線まわりに回動することにより前記軸線方向に移動する軸状である回動軸と、
     前記回動軸に同軸に配置され、先端には画像形成装置本体の駆動軸に係合する係合部材を具備する回転力受け部材が配置された先端部材と、を有し、
     前記軸線まわりの回転力は、前記回転力受け部材、前記回動軸、及び前記軸受部材の順に伝達されるとともに、前記回転力受け部材が軸線に対して傾くように動く、請求項19に記載の一組の端部部材。
PCT/JP2014/080556 2013-11-19 2014-11-18 プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材 WO2015076276A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/157,860 US9851679B2 (en) 2013-11-19 2016-05-18 Processing cartridge, photoreceptor drum unit, and end member pair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013238840 2013-11-19
JP2013-238840 2013-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/157,860 Continuation US9851679B2 (en) 2013-11-19 2016-05-18 Processing cartridge, photoreceptor drum unit, and end member pair

Publications (1)

Publication Number Publication Date
WO2015076276A1 true WO2015076276A1 (ja) 2015-05-28

Family

ID=53179537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080556 WO2015076276A1 (ja) 2013-11-19 2014-11-18 プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材

Country Status (3)

Country Link
US (1) US9851679B2 (ja)
JP (1) JP2015121776A (ja)
WO (1) WO2015076276A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589313A (zh) * 2016-02-04 2016-05-18 上福全球科技股份有限公司 碳粉匣的传动组件
US20180087580A1 (en) * 2015-03-10 2018-03-29 Canon Kabushiki Kaisha Drum cylinder unit, method for attaching coupling member, and drum unit
CN108153129A (zh) * 2017-08-14 2018-06-12 珠海市拓佳科技有限公司 动力传递装置以及处理盒

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014850A (ja) * 2014-06-09 2016-01-28 三菱化学株式会社 軸部材、端部部材、感光体ドラムユニット、現像ローラユニット、プロセスカートリッジ
JP6265080B2 (ja) * 2014-07-10 2018-01-24 三菱ケミカル株式会社 端部部材、感光体ドラムユニット、現像ローラユニットおよびプロセスカートリッジ
JP6562655B2 (ja) 2015-02-27 2019-08-21 キヤノン株式会社 カートリッジおよび画像形成装置
JP6771899B2 (ja) 2015-03-10 2020-10-21 キヤノン株式会社 カートリッジ、及び駆動伝達ユニットの組み立て方法
WO2016143333A1 (en) * 2015-03-10 2016-09-15 Canon Kabushiki Kaisha Drum cylinder unit, method for attaching coupling member, and drum unit
JP1543378S (ja) * 2015-07-22 2016-02-08
JP6922188B2 (ja) * 2015-11-12 2021-08-18 三菱ケミカル株式会社 端部部材、感光体ドラムユニット、プロセスカートリッジ
TWI647549B (zh) 2017-07-18 2019-01-11 上福全球科技股份有限公司 Transmission assembly and transmission member, and photosensitive drum unit having the transmission member
JP2019040157A (ja) * 2017-08-29 2019-03-14 富士ゼロックス株式会社 像保持体、画像形成ユニット、画像形成装置
TWI795637B (zh) * 2019-03-18 2023-03-11 日商佳能股份有限公司 電子照相圖像形成裝置、匣盒及光鼓單元

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332353A (ja) * 1992-05-27 1993-12-14 Mitsubishi Electric Corp 軸体取付装置
JPH09230654A (ja) * 1996-02-21 1997-09-05 Ricoh Co Ltd 画像形成装置
JP2001117308A (ja) * 1999-10-21 2001-04-27 Ricoh Co Ltd 画像形成装置
JP2010002690A (ja) * 2008-06-20 2010-01-07 Canon Inc プロセスカートリッジ、及び、電子写真感光体ドラムユニット
JP2011133682A (ja) * 2009-12-24 2011-07-07 Brother Industries Ltd カートリッジ
JP2011145670A (ja) * 2009-12-16 2011-07-28 Canon Inc プロセスカートリッジ、感光ドラムユニット、現像ユニット、及び、電子写真画像形成装置
JP2012053402A (ja) * 2010-09-03 2012-03-15 Canon Inc プロセスカートリッジ及び画像形成装置
WO2012113289A1 (zh) * 2011-02-22 2012-08-30 珠海天威飞马打印耗材有限公司 旋转驱动力接收头和驱动组件
WO2012113299A1 (zh) * 2011-02-21 2012-08-30 珠海天威飞马打印耗材有限公司 旋转驱动力接收头和驱动组件
WO2013006996A1 (zh) * 2011-07-13 2013-01-17 江西亿铂电子科技有限公司 感光鼓及处理盒

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948382B2 (ja) * 2006-12-22 2012-06-06 キヤノン株式会社 感光ドラム取り付け用カップリング部材
JP5288900B2 (ja) 2008-06-20 2013-09-11 キヤノン株式会社 プロセスカートリッジ及び電子写真画像形成装置
JP5159507B2 (ja) * 2008-06-20 2013-03-06 キヤノン株式会社 カップリング部材の取り外し方法、カップリング部材の取り付け方法、及び、電子写真感光体ドラムユニット
US20120183331A1 (en) * 2011-01-18 2012-07-19 Shih-Chieh Huang Transmission device for photo conductor drum

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332353A (ja) * 1992-05-27 1993-12-14 Mitsubishi Electric Corp 軸体取付装置
JPH09230654A (ja) * 1996-02-21 1997-09-05 Ricoh Co Ltd 画像形成装置
JP2001117308A (ja) * 1999-10-21 2001-04-27 Ricoh Co Ltd 画像形成装置
JP2010002690A (ja) * 2008-06-20 2010-01-07 Canon Inc プロセスカートリッジ、及び、電子写真感光体ドラムユニット
JP2011145670A (ja) * 2009-12-16 2011-07-28 Canon Inc プロセスカートリッジ、感光ドラムユニット、現像ユニット、及び、電子写真画像形成装置
JP2011133682A (ja) * 2009-12-24 2011-07-07 Brother Industries Ltd カートリッジ
JP2012053402A (ja) * 2010-09-03 2012-03-15 Canon Inc プロセスカートリッジ及び画像形成装置
WO2012113299A1 (zh) * 2011-02-21 2012-08-30 珠海天威飞马打印耗材有限公司 旋转驱动力接收头和驱动组件
WO2012113289A1 (zh) * 2011-02-22 2012-08-30 珠海天威飞马打印耗材有限公司 旋转驱动力接收头和驱动组件
WO2013006996A1 (zh) * 2011-07-13 2013-01-17 江西亿铂电子科技有限公司 感光鼓及处理盒

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180087580A1 (en) * 2015-03-10 2018-03-29 Canon Kabushiki Kaisha Drum cylinder unit, method for attaching coupling member, and drum unit
US10613465B2 (en) 2015-03-10 2020-04-07 Canon Kabushiki Kaisha Drum cylinder unit, method for attaching coupling member, and drum unit
CN105589313A (zh) * 2016-02-04 2016-05-18 上福全球科技股份有限公司 碳粉匣的传动组件
CN108153129A (zh) * 2017-08-14 2018-06-12 珠海市拓佳科技有限公司 动力传递装置以及处理盒
CN108153129B (zh) * 2017-08-14 2024-01-30 珠海市拓佳科技有限公司 动力传递装置以及处理盒

Also Published As

Publication number Publication date
US20160259290A1 (en) 2016-09-08
US9851679B2 (en) 2017-12-26
JP2015121776A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2015076276A1 (ja) プロセスカートリッジ、感光体ドラムユニット、及び一組の端部部材
JP6292077B2 (ja) 端部部材、感光体ドラムユニット、現像ローラユニットおよびプロセスカートリッジ
US11619905B2 (en) Cartridge detachably mountable to main assembly of electrophotographic image forming apparatus, assembling method for drive transmitting device for photosensitive drum, and electrophotographic image forming apparatus
JP6299446B2 (ja) 軸受部材、端部部材、感光体ドラムユニット、現像ローラユニット、プロセスカートリッジ、中間部材、及び軸受部材の本体
RU2690046C1 (ru) Технологический картридж и электрофотографическое устройство формирования изображения
JP6265080B2 (ja) 端部部材、感光体ドラムユニット、現像ローラユニットおよびプロセスカートリッジ
JP5344580B2 (ja) カートリッジ及び電子写真画像形成装置
US10133235B2 (en) Shaft member, end member, photoreceptor drum unit, developing roller unit, and process cartridge
KR101982107B1 (ko) 카트리지, 회전 유닛 및 화상형성장치
US9494917B2 (en) Process cartridge for image forming apparatus and method of separating process cartridge from image forming apparatus
US10534308B2 (en) Transmission device for a photosensitive drum
WO2015190448A1 (ja) 軸部材、端部部材、感光体ドラムユニット、現像ローラユニット、プロセスカートリッジ
US10254702B2 (en) End member, photosensitive drum unit, and process cartridge
WO2017099083A1 (ja) 端部部材、感光体ドラムユニット、プロセスカートリッジ
JP2016151625A (ja) 軸部材、端部部材、感光体ドラムユニット、現像ローラユニット、プロセスカートリッジ
US10459403B2 (en) End member, photoreceptor drum unit, and process cartridge
WO2015186811A1 (ja) 軸受部材、端部部材、感光体ドラムユニット、現像ローラユニット、プロセスカートリッジ、及び軸受部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864401

Country of ref document: EP

Kind code of ref document: A1