WO2015075876A1 - Transparent conductor and method for producing transparent conductor - Google Patents

Transparent conductor and method for producing transparent conductor Download PDF

Info

Publication number
WO2015075876A1
WO2015075876A1 PCT/JP2014/005511 JP2014005511W WO2015075876A1 WO 2015075876 A1 WO2015075876 A1 WO 2015075876A1 JP 2014005511 W JP2014005511 W JP 2014005511W WO 2015075876 A1 WO2015075876 A1 WO 2015075876A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
conductive film
transparent conductive
transparent
transparent conductor
Prior art date
Application number
PCT/JP2014/005511
Other languages
French (fr)
Japanese (ja)
Inventor
井上 純一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201480063011.2A priority Critical patent/CN105745720A/en
Publication of WO2015075876A1 publication Critical patent/WO2015075876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent

Definitions

  • the present invention relates to a transparent conductor and a method for producing the transparent conductor.
  • Transparent conductors provided on the display surface of the display panel, and transparent conductors of information input devices arranged on the display surface side of the display panel, such as transparent conductors that require light transmissivity, have a transparent conductive surface.
  • Metal oxides such as indium tin oxide (ITO) have been used for the film.
  • ITO indium tin oxide
  • transparent conductive films using metal oxides are expensive to produce because they are sputtered in a vacuum environment, and cracks and delamination are likely to occur due to deformation such as bending and deflection. .
  • a transparent conductive film provided with metal nanowires has been studied as a transparent conductive film that can be formed by coating or printing and has high resistance to bending and bending. ing.
  • Such a transparent conductive film has attracted attention as a next-generation transparent conductive film that does not use indium which is a rare metal (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • Patent Document 3 A method suitable for producing a transparent conductive film using metal nanowires as described above is disclosed in Patent Document 3.
  • a plurality of metal nanowires are put on a base material (the metal nanowires are dispersed in a liquid), and the liquid is dried to thereby form metal nanowires on a substrate.
  • a wire network layer (a layer in which a plurality of metal nanowires are connected in a network) is formed.
  • a metal nanowire network layer is formed on a base
  • Patent Document 3 describes that a roll-to-roll process is performed. In this case, the substrate is transported along the transport path by the rotating reel, and the metal nanowire is input along the movement path in the first input part, and the matrix material is input in the second input part. Done along the path.
  • the conductivity of the formed film is different.
  • a transparent conductor having a shape shown in FIG. 2 a laminate of a base material and a transparent conductive film
  • the transport direction (MD direction) during production and the width direction perpendicular thereto are used.
  • the conductivity in the (TD direction) tends to be different.
  • a transparent conductor used for a touch panel or the like it is desired that its surface has conductivity in all directions, that is, has isotropic conductivity. Therefore, it is desired that the transparent conductive film using metal nanowires has isotropic conductivity in addition to manufacturability and bending resistance.
  • This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, it aims at providing the transparent conductor provided with the transparent conductive film using metal nanowire which has isotropic conductivity.
  • the present inventor has found that, in the production of a transparent conductor, an optically isotropic transparent substrate, or an optically isotropic intermediate provided on the transparent substrate. It has been found that by forming a transparent conductive film on a layer (base), a transparent conductor provided with an isotropic conductive transparent conductive film can be produced, and the present invention has been completed.
  • a transparent conductor comprising a base material and a transparent conductive film provided on the base material, wherein the base material is made of an optically isotropic material
  • a transparent conductor comprising a wire and having a surface resistance value ratio (TD / MD) in the TD direction and the MD direction of 0.6 or more and less than 1.5.
  • the transparent conductor according to ⁇ 1> is obtained by providing a transparent conductive film on a substrate made of an optically isotropic material, and the transparent conductive film has no direction dependency on the surface resistance value, Has isotropic conductivity. As shown in FIG.
  • the “MD direction” refers to the transport direction of the base material during the production of the transparent conductor
  • the “TD direction” refers to a direction (base) perpendicular to the transport direction of the base material. (Width direction of the material).
  • a transparent conductor comprising a base material, an intermediate layer provided on the base material, and a transparent conductive film provided on the intermediate layer, wherein the intermediate layer is optically isotropic
  • the transparent conductive film is made of a material, includes metal nanowires, and has a ratio of surface resistance values in the TD direction and the MD direction (TD / MD) of 0.6 or more and less than 1.5, It is a transparent conductor.
  • the transparent conductor according to ⁇ 2> is obtained by providing an intermediate layer made of an optically isotropic material on a base material, and providing a transparent conductive film on the intermediate layer.
  • the surface resistance value has no direction dependency and has isotropic conductivity.
  • ⁇ 3> The method for producing a transparent conductive film according to ⁇ 1> or ⁇ 2>, wherein the retardation value of the optically isotropic material at a wavelength of 550 nm is 30 nm or less.
  • the “retardation value” refers to a value obtained by using the rotational analyzer method.
  • ⁇ 4> The transparent conductor according to any one of ⁇ 1> to ⁇ 3>, wherein the metal nanowire has a length of 1 ⁇ m to 100 ⁇ m.
  • a transparent conductive film comprising: a step of forming a dispersion film by applying the dispersion onto an optically isotropic material; and a step of drying and curing the dispersion film to form a transparent conductive film. It is a manufacturing method of a body.
  • a transparent conductive film containing metal nanowires is formed on an optically isotropic material, thereby providing an isotropic conductive transparent conductive film.
  • a transparent conductor can be manufactured.
  • a transparent conductor having a transparent conductive film using metal nanowires which can solve the above-mentioned problems and achieve the above-mentioned object and has isotropic conductivity. Can do.
  • FIG. 1 is a diagram showing an example of the first embodiment (A) and the second embodiment (B) of the transparent conductor of the present invention.
  • FIG. 2 is a schematic diagram showing the transport direction (MD direction) of the base material and the direction (width direction of the base material) (TD direction) orthogonal to the transport direction in the transparent conductor of the present invention.
  • the transparent conductor of the present invention is a transparent conductor comprising a base material made of an optically isotropic material and a transparent conductive film provided on the base material, or a base material, and provided on the base material.
  • a transparent conductor comprising an intermediate layer made of the optically isotropic material and a transparent conductive film provided on the intermediate layer.
  • the said transparent conductive film contains metal nanowire, and also contains a transparent resin material (binder), a solvent, a dispersing agent, and another component as needed.
  • the transparent conductor of the present invention is formed by forming a transparent conductive film containing metal nanowires on an optically isotropic material, so that the surface has isotropic conductivity, the TD direction (width direction) of the surface, The ratio (TD / MD) of the surface resistance value in the MD direction (conveyance direction) is 0.6 or more and less than 1.5.
  • the following can be considered as a principle capable of forming such an isotropic conductive transparent conductive film.
  • Optical isotropic materials are known to be random with no molecular orientation on their surfaces. By arranging a dispersion of metal nanowires on this optically isotropic material, the metal nanowires are randomly dispersed on the optically isotropic material without causing a biased interaction. Presumed to build no random metal nanowire network.
  • the “metal nanowire network” means a network structure formed by connecting a plurality of metal nanowires in a network.
  • a form using a substrate made of an optically isotropic material is a first embodiment, and a form in which an intermediate layer made of an optically isotropic material is arranged on any substrate is a second. Let it be an embodiment.
  • the first embodiment of the present invention uses a base material made of an optically isotropic material, and forms a transparent conductive film directly on the base material without providing an intermediate layer or the like.
  • FIG. 1A shows a transparent conductor according to the first embodiment of the present invention.
  • 1st Embodiment of this invention is the transparent conductor 10 which provides the transparent conductive film 12 on the base material 11 which consists of an optically isotropic material.
  • the base material is not particularly limited as long as it is a base material made of an optically isotropic material, and can be appropriately selected according to the purpose.
  • a film required for a transparent electrode provided with a transparent conductive film For example, a film-like (sheet-like) base material thinned to such an extent that flexible flexibility can be realized, or a substrate-like film having a thickness enough to realize appropriate flexibility and rigidity.
  • a substrate is preferred.
  • the optically isotropic material is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cyclic olefin copolymer COC
  • cycloolefin polymer COP
  • norbornene resin triacetyl cellulose
  • PC Polycarbonate
  • PES polyethersulfone
  • glass glass
  • norbornene resin and triacetyl cellulose are preferable from the viewpoint of excellent bending resistance and heat resistance, and triacetyl cellulose is more preferable from the viewpoint of low substrate cost. It is also possible to use a commercially available product as the substrate.
  • the film thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of productivity.
  • “Optical isotropic” in the present invention indicates that the birefringence is small, for example, that the retardation value at a wavelength of 550 nm is 30 nm or less.
  • a retardation value in wavelength 550nm of the said base material there is no restriction
  • the retardation for example, it is possible to measure by various ellipsometry such as a rotation analyzer method and a Senarmon method, but the “retardation value” in the present invention is a rotation analyzer method. The value obtained by using shall be indicated.
  • the said transparent conductive film is formed by providing the said dispersion liquid containing metal nanowire on the said base material consisting of an optically isotropic material, drying and hardening.
  • the said base material consisting of an optically isotropic material, drying and hardening.
  • the metal nanowire is made of metal and is a fine wire having a diameter on the order of nm.
  • the constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose.
  • Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
  • Ag and Cu are preferable in terms of high conductivity.
  • the average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
  • the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate.
  • the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
  • the average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 ⁇ m and 1,000 ⁇ m or less, more preferably 10 ⁇ m to 300 ⁇ m.
  • the metal nanowires are hardly connected to each other, and the transparent conductive film containing the metal nanowire may not function as a conductive film, and exceeds 1,000 ⁇ m.
  • the total light transmittance and haze (Haze) of the transparent conductive film containing the said metal nanowire may deteriorate, or the dispersibility of the metal nanowire in the dispersion liquid used when forming a transparent conductive film may deteriorate. .
  • the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape.
  • the length of the metal nanowire is not limited.
  • the weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ⁇ 1.000g / m 2, 0.003g / m 2 ⁇ 0.3 g / m 2 is more preferable.
  • the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate.
  • the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
  • the compounding amount of the metal nanowires in the dispersion is not particularly limited and may be appropriately selected depending on the purpose. However, when the mass of the dispersion is 100 parts by mass, 10.00 parts by mass is preferred.
  • the amount of the metal nanowires is less than 0.01 part by weight, sufficient basis weight to the metal nanowires in the final transparent conductive film obtained (0.001g / m 2 ⁇ 1.000g / m 2 ) May not be obtained, and if it exceeds 10.00 parts by mass, the dispersibility of the metal nanowires may deteriorate.
  • the transparent resin material (binder) is for dispersing the metal nanowires.
  • the transparent resin material (binder) is for dispersing the metal nanowires.
  • a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned,
  • Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
  • the thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
  • the solvent is not particularly limited as long as it can disperse metal nanowires, and can be appropriately selected according to the purpose.
  • water methanol, ethanol, n-propanol, i-propanol, n- Alcohols such as butanol, i-butanol, sec-butanol and tert-butanol; ketones such as cyclohexanone, cyclopentanone and anone; amides such as N, N-dimethylformamide (DMF); sulfides such as dimethyl sulfoxide (DMSO); Etc. These may be used individually by 1 type and may use 2 or more types together.
  • a high boiling point solvent may be further added to the dispersion. Thereby, the evaporation rate of the solvent from the dispersion can be controlled.
  • the high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups.
  • PVP polyvinyl pyrrolidone
  • amino group-containing compounds such as polyethyleneimine
  • sulfo groups including sulfonates
  • Sulfonamide group carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group, epoxy group, isocyanate group, cyano group, vinyl group,
  • a compound having a functional group such as a thiol group or a carbinol group, which can be adsorbed to a metal; These may be used alone or in combination of two or more.
  • the dispersant may be adsorbed on the surface of the metal nanowire. Thereby, the dispersibility of the said metal nanowire can be improved.
  • the dispersant When the dispersant is added to the dispersion, it is preferable to add the dispersant so that the conductivity of the finally obtained transparent conductive film does not deteriorate.
  • the said dispersing agent can be made to adsorb
  • the other components are not particularly limited and may be appropriately selected depending on the intended purpose.
  • surfactants for example, surfactants, viscosity modifiers, curing accelerators, plasticity, stabilizers such as antioxidants and sulfidizing agents, and the like. , Etc. can be added.
  • the thickness of the transparent conductive film formed by applying the above dispersion onto a substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 ⁇ m to 500 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m is more preferable, and 10 ⁇ m to 50 ⁇ m is particularly preferable. If the thickness of the transparent conductive film is less than 0.1 ⁇ m, sufficient conductivity may not be obtained, and if it exceeds 500 ⁇ m, in addition to not forming a sufficient network of metal nanowires, the transparency is May get worse. On the other hand, when the thickness of the transparent conductive film is within the more preferable range or the particularly preferable range, it is advantageous in terms of forming a network of metal nanowires.
  • the ratio (TD / MD) of the surface resistance value in the TD direction (width direction) and the MD direction (transport direction) of the transparent conductive film formed on the substrate as long as it is 0.6 or more and less than 1.5, although there is no restriction
  • the ratio of the surface resistance values is less than 0.6, the conductivity in the TD direction is deteriorated, and when it is 1.5 or more, the conductivity in the MD direction is deteriorated.
  • the ratio of the surface resistance values is within the preferable range, the more preferable range, or the particularly preferable range, it is advantageous in that the anisotropy of the surface resistance is relaxed and isotropic. That is, it is advantageous in terms of in-plane conductivity.
  • Second Embodiment 2nd Embodiment of this invention is the transparent conductor which provided the intermediate
  • FIG. 1B shows a transparent conductor according to the second embodiment of the present invention.
  • 2nd Embodiment of this invention is the transparent conductor 10 which has the intermediate
  • the transparent base material comprised with the material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
  • the transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film, for example, a film-like (sheet-like) substrate thinned to such an extent that flexible flexibility can be realized, Or it shall be a substrate-like base material which has a film thickness which can implement
  • limiting in particular as said inorganic material According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PE polyether sulfone
  • PP polypropylene
  • PP diacetyl cellulose
  • PVC polyvinyl chloride
  • acrylic resin PMMA
  • PC polycarbonate
  • epoxy Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used.
  • the film thickness of the transparent substrate is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • the base material in the second embodiment does not need to be optically isotropic as compared with the base material in the first embodiment, and therefore is selected widely in consideration of other desired physical properties and costs. Can do.
  • an intermediate layer made of an optically isotropic material is provided between the substrate and the transparent conductive film.
  • the intermediate layer is formed, for example, by applying an intermediate layer forming solution containing an intermediate layer forming component and a solvent onto a substrate by spin coating or the like, drying the solvent, and curing the intermediate layer forming component.
  • the intermediate layer made of an optically isotropic material has an advantage that it is relatively inexpensive and easy to manufacture, as compared with a base material made of an optically isotropic material.
  • the intermediate layer forming component is not particularly limited as long as it is a material that is optically isotropic in the final product, can be appropriately selected according to the purpose, and is a transparent layer having transparency to visible light. Those that form are preferred.
  • Specific examples of the intermediate layer forming component are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a photocurable resin, a thermosetting resin, and a radiation curable resin. These may be used individually by 1 type and may use 2 or more types together. There is no restriction
  • thermosetting resin an acrylic resin is preferable in terms of high transparency and excellent bending resistance.
  • thermosetting resin there is no restriction
  • an epoxy resin, an amino resin, a urethane resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
  • an epoxy resin is preferable in that it has high dimensional stability due to less curing shrinkage.
  • the content of the intermediate layer forming component in the intermediate layer forming solution is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the film is formed by wet coating, the content is 0.1% by mass to 20%.
  • 0.0 mass% is preferable, and 0.5 mass% to 10.0 mass% is more preferable.
  • the content of the intermediate layer forming component is less than 0.1% by mass, it may be difficult to produce a uniform film because thick film coating is required.
  • the content of the intermediate layer forming component is within the more preferable range, it is advantageous in terms of workability during coating.
  • the solvent constituting the intermediate layer forming solution is not particularly limited as long as it can dissolve or disperse the intermediate layer forming component, and can be appropriately selected according to the purpose.
  • the thickness of the intermediate layer formed by applying the intermediate layer solution on the substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001 ⁇ m to 10 ⁇ m, preferably 0.005 ⁇ m. Is more preferably 5 ⁇ m, and particularly preferably 0.01 ⁇ m to 1 ⁇ m. If the thickness of the intermediate layer is less than 0.001 ⁇ m, the isotropic conductivity of the transparent conductive film may not be obtained. If the thickness exceeds 10 ⁇ m, the total light transmittance of the transparent conductive film may be deteriorated. .
  • the thickness of the transparent conductive film is within the more preferable range or the particularly preferable range, it is advantageous in that the effect of making the transparent conductive film is isotropic conductivity is easily obtained and the manufacturing is easy. It is.
  • the intermediate layer needs to be optically isotropic.
  • middle layer Although it can select suitably according to the objective, 30 nm or less is preferable, 10 nm or less is more preferable, and 5 nm or less is especially preferable. If the retardation value of the intermediate layer at a wavelength of 550 nm exceeds 30 nm, the optical isotropy of the intermediate layer may be lost. On the other hand, if the retardation value of the intermediate layer at a wavelength of 550 nm is within the more preferable range or the particularly preferable range, it is advantageous in view angle characteristics.
  • the transparent conductive film in the second embodiment of the present invention is the same as the transparent conductive film in the first embodiment of the present invention except that the transparent conductive film is formed not on the base material but on the intermediate layer. is there.
  • the method for producing a transparent conductor of the present invention includes at least a dispersion liquid preparation step, a dispersion film formation step, and a transparent conductive film formation step, and further, an intermediate layer formation step and the like appropriately selected as necessary Including other processes.
  • the production of the transparent conductor of the present invention is started from the step of preparing a metal nanowire dispersion and applying the dispersion onto the prepared substrate, while the second embodiment is performed. In a form, it starts from the process of preparing the solution for intermediate
  • the transparent conductive film is prepared by preparing a dispersion containing metal nanowires (dispersion preparation step), and applying the prepared dispersion onto a substrate or intermediate layer made of an optically isotropic material. It forms (dispersion film formation process), and it forms by performing the drying process and hardening process of the said dispersion film (transparent conductive film formation process).
  • the dispersion preparation step is a step of preparing a dispersion containing the above-described metal nanowires and various blending components.
  • the dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
  • the viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 cP or more and 50 cP or less, more preferably 10 cP or more and 40 cP or less, and particularly preferably 20 cP or more and 30 cP or less.
  • the viscosity of the dispersion is less than 1 cP, the resistance distribution of the transparent conductive film may be deteriorated, and when it exceeds 50 cP, the coatability may be deteriorated.
  • the viscosity of the dispersion is in the more preferable range or the particularly preferable range, it is advantageous in that a transparent conductive film having a desired thickness can be more easily produced.
  • the dispersion film forming step is a step of forming the dispersion film by applying the prepared dispersion on a base material or intermediate layer made of an optically isotropic material.
  • the application method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include spin coating, wire bar coating, applicator coating, and slit die coating. By the application, a metal nanowire dispersion film is formed on the base material or the intermediate layer.
  • the transparent conductive film forming step is a step of forming a transparent conductive film by subjecting the dispersion film to a drying process (drying process) and a curing process (curing process).
  • the drying step is a step of removing the solvent in the dispersion film by drying.
  • the drying method can select suitably, For example, drying with the hot air of a dryer, hotplate drying, oven drying, IR drying, etc. are mentioned.
  • the curing step is a step of curing the transparent resin material.
  • the curing means is not particularly limited and can be appropriately selected depending on the type of transparent resin material and desired physical properties. Examples thereof include heat treatment, ultraviolet irradiation, and pressure treatment. It is done.
  • the heating temperature in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 60 ° C to 140 ° C, more preferably 80 ° C to 120 ° C.
  • the heating temperature in the heat curing treatment is less than 60 ° C., the time required for drying may become long and workability may deteriorate, and when it exceeds 140 ° C., the balance with the glass transition temperature (Tg) of the substrate The substrate may be distorted.
  • the heating temperature in the heat curing treatment is in the more preferable range, it is advantageous in terms of forming a network of metal nanowires.
  • the heating time in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably about 5 minutes. .
  • the heating time in the heat curing treatment is less than 1 minute, drying may be insufficient, and when it exceeds 30 minutes, workability may be deteriorated.
  • the heating time in the heat curing treatment is within the more preferable range or the particularly preferable time, it is advantageous in terms of network formation and workability of the metal nanowires.
  • the intermediate layer forming step includes a step of preparing the intermediate layer forming solution (intermediate layer forming solution preparing step), a step of applying the intermediate layer forming solution onto a substrate (intermediate layer forming solution applying step). And a step of curing the intermediate layer by photocuring or heat curing (intermediate layer curing step).
  • the intermediate layer forming solution preparation step is a step of preparing the intermediate layer forming solution.
  • the intermediate layer forming component and the solvent are mixed to prepare an intermediate layer forming solution.
  • the intermediate layer forming solution application step is a step of applying the intermediate layer forming solution onto a substrate.
  • the application method is not particularly limited and can be appropriately selected depending on the purpose. For example, spin coating, wire bar coating, applicator coating, slit die coating, and spraying. Examples include coating. These may be used individually by 1 type and may use 2 or more types together. Among these, coating by spin coating is preferable because it is excellent in coating orientation and workability resulting from coating.
  • the coating (rotation) speed in the case of applying the intermediate layer forming solution by spin coating is not particularly limited and may be appropriately selected depending on the intended purpose. 000 rpm / 30 seconds is preferred. When the coating speed is within the preferable range, the retardation value of the intermediate layer to be formed can be made lower, that is, more optically isotropic.
  • the intermediate layer curing step is a step of curing the dried intermediate layer by photocuring or heat curing in accordance with the characteristics of the intermediate layer forming component. If the intermediate layer forming component is a photocurable resin, light having a suitable wavelength is irradiated. If the intermediate layer forming component is a thermosetting resin, heat treatment is performed using an oven or a heating roll.
  • Example 1 Preparation of silver nanowire ink (dispersion)> A silver nanowire ink was prepared with the following composition.
  • Metal nanowire Silver nanowire (manufactured by Seashell Technology, AgNW-25, average diameter 25 nm, average length 23 ⁇ m): compounding amount 0.05 part by mass
  • binder hydroxypropyl methylcellulose (manufactured by Aldrich, Viscosity of 2% aqueous solution at 20 ° C. 80 cP to 120 cP (document value)): blending amount 0.15 parts by mass
  • solvent (i) water: blending amount 89.80 parts by mass, (ii) ethanol: blending amount 10 0.00 parts by mass
  • a silver nanowire transparent conductor was prepared by the following procedure.
  • an optically isotropic transparent substrate (norbornene resin film (trade name: ZEONOR (registered trademark) film): manufactured by Nippon Zeon Co., Ltd., model number ZF14, film thickness: 100 ⁇ m) was used.
  • the produced silver nanowire ink (dispersion) was applied onto the substrate with a wire bar (counter 10) to form a silver nanowire dispersion film.
  • the basis weight of the silver nanowires was set to about 0.01 g / m 2 .
  • hot air was applied to the coated surface with a dryer to remove the solvent in the silver nanowire-dispersed film by drying.
  • Measurement was performed by bringing a measuring probe of a resistivity meter EC-80P (manufactured by Napson Co., Ltd.) into contact with the surface of the silver nanowire transparent conductive film. The measurement was performed at any 12 locations, and the average value was taken as the resistance value. The measurement results are shown in Table 1.
  • a line electrode having a width of 5 mm and a length of 50 mm in each of the TD direction and the MD direction was produced by etching the transparent conductive film.
  • TD / MD The ratio of the resistance values in the TD direction and the MD direction (TD / MD) was calculated, and isotropic conductivity was evaluated based on the following evaluation criteria. The evaluation results are shown in Table 1. ⁇ : TD / MD is 0.6 or more and less than 1.5 ⁇ : TD / MD is less than 0.6 or 1.5 or more
  • ⁇ Measurement of retardation value> The retardation of the substrate and the intermediate layer described later was measured using RETS-100, and the value at a measurement wavelength of 550 nm was used as the retardation value.
  • the retardation of the intermediate layer was measured after forming the intermediate layer on glass (isotropic substrate).
  • Example 2 In Example 1, instead of using a norbornene resin film as the optically isotropic transparent substrate, a TAC film (triacetylcellulose, manufactured by Panac Corporation, model number FT-80SZ, film thickness 80 ⁇ m) was used. As in Example 1, a silver nanowire transparent conductor was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. Was measured. The results are shown in Table 1.
  • TAC film triacetylcellulose, manufactured by Panac Corporation, model number FT-80SZ, film thickness 80 ⁇ m
  • Example 1 (Comparative Example 1) In Example 1, instead of using an optically isotropic norbornene resin film, an optically anisotropic PET film (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 ⁇ m) was used as the transparent substrate. Except that, as in Example 1, a silver nanowire transparent conductor was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, and the isotropic conductivity was evaluated. The retardation value was measured. The results are shown in Table 1.
  • an optically anisotropic PET film polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 ⁇ m
  • Comparative Example 2 In Comparative Example 1, the silver nanowire ink was transparent as in Comparative Example 1, except that a spin coater (500 rpm, 30 seconds) was used instead of using a wire bar as a coating method of the silver nanowire ink. Conductors were prepared, resistance values were measured, line electrodes were prepared, resistance values of the line electrodes were measured, isotropic conductivity was evaluated, and retardation values were measured. The results are shown in Table 1.
  • Example 3 In Comparative Example 1, instead of coating the silver nanowire ink on the substrate, as a pre-process for coating the silver nanowire ink, an optically isotropic intermediate layer is formed by the following procedure, and the silver nanowire is formed. Except that the ink was coated on the optically isotropic intermediate layer, similarly to Comparative Example 1, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, and the resistance of the line electrode The value was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
  • optically isotropic intermediate layer forming solution was prepared with the following composition.
  • Binder Pentaerythritol triacrylate (Product name: Aronix M305, manufactured by Toa Gosei Co., Ltd.): 1.50 parts by mass of compound
  • Curing agent 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one (Product name: Irgacure 907, manufactured by Ciba Chemical Co., Ltd.): Compounding amount 0.05 parts by mass
  • Solvent Methyl ethyl ketone: Compounding amount 98.45 parts by mass
  • optically isotropic intermediate layer was formed by the following procedure.
  • As the substrate optically anisotropic PET (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 ⁇ m) was used.
  • the prepared solution for forming an optically isotropic intermediate layer was coated on a substrate under a coating condition of 1,000 rpm for 30 seconds using a spin coater to form a film. Thereafter, heat curing treatment was performed in an oven at 80 ° C. for 5 minutes. Furthermore, using a metal hydride lamp, the binder was cured by irradiating ultraviolet rays with an integrated light quantity of 1,000 J / cm 2 under a nitrogen atmosphere to form an optically isotropic intermediate layer.
  • Example 4 In Example 3, a silver nanowire transparent conductive material was used in the same manner as in Example 3 except that a spin coating apparatus (500 rpm, 30 seconds) was used instead of using a wire bar as a coating method of the silver nanowire ink. The body was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
  • Example 5 As the film forming conditions for the optically isotropic intermediate layer, the coating conditions of the spin coater were set to 500 rpm for 30 seconds instead of 1,000 rpm for 30 seconds.
  • Example 4 Similarly, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, a resistance value of the line electrode was measured, isotropic conductivity was evaluated, and a retardation value was measured. The results are shown in Table 1.
  • Example 6 As the film forming conditions for the optically isotropic intermediate layer, the coating conditions of the spin coater were set to 2500 rpm for 30 seconds instead of 1,000 rpm for 30 seconds. Similarly to Example 4, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. . The results are shown in Table 1.
  • Example 7 In Comparative Example 1, instead of coating the silver nanowire ink on the substrate, as a pre-process for coating the silver nanowire ink, an optically isotropic intermediate layer is formed by the following procedure, and the silver nanowire is formed. Except that the ink was coated on the optically isotropic intermediate layer, similarly to Comparative Example 1, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, and the resistance of the line electrode The value was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
  • optically isotropic intermediate layer forming solution was prepared with the following composition.
  • Binder Pentaerythritol triacrylate (Product name: Aronix M305, manufactured by Toa Gosei Co., Ltd.): Compounding amount 1.50 parts by mass
  • Curing agent Hexamethylene diisocyanate (Product name: Duranate TPA-100, Asahi Kasei Chemicals) Co., Ltd.): 0.25 part by mass
  • Solvent methyl ethyl ketone: 98.25 parts by mass
  • optically isotropic intermediate layer was produced by the following procedure.
  • As the substrate optically anisotropic PET (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 ⁇ m) was used.
  • the produced optically isotropic intermediate layer solution was coated on a substrate under a coating condition of 2,500 rpm for 30 seconds using a spin coater to form a film. Thereafter, a heat curing treatment at 80 ° C. for 60 minutes was performed in an oven.
  • Example 4 (Comparative Example 3)
  • the intermediate layer was formed using the intermediate layer forming solution shown below.
  • a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured.
  • the results are shown in Table 1.
  • An intermediate layer forming solution was prepared with the following composition.
  • Binder Retardation material solution (RMS03-013C, manufactured by Merck & Co., Inc., 30% by mass of liquid crystal): Liquid crystal equivalent 18% by mass (2) Solvent: Propylene glycol monomethyl ether acetate (PGMEA) RMS03-013C (liquid crystal 30% by mass) was diluted with PGMEA so that the liquid crystal mass was 18% by mass.
  • RMS03-013C Retardation material solution
  • Solvent Propylene glycol monomethyl ether acetate
  • Comparative Example 4 In Comparative Example 3, the intermediate layer was formed using a spin coater at 1,000 rpm for 30 seconds, instead of 1,600 rpm for 30 seconds. Other than the above, as in Comparative Example 3, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
  • Comparative Example 5 In Comparative Example 3, the formation of the intermediate layer was performed using a spin coater under the coating conditions of 3,200 rpm for 30 seconds instead of being performed under the conditions of 1,000 rpm for 30 seconds. Other than the above, as in Comparative Example 3, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
  • Example 8 In Comparative Example 3, the intermediate layer was formed using a spin coater under a coating condition of 3,800 rpm for 30 seconds instead of a coating speed of 1,000 rpm for 30 seconds.
  • a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
  • the transparent conductor of the present invention can be suitably used as an alternative to a transparent conductor using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers and smartphones. .
  • a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers and smartphones.

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a transparent conductor provided with a transparent conductive film using a metal nanowire and having isotropic conductivity. A first transparent conductor provided with a substrate and a transparent conductive film provided on the substrate, wherein the substrate comprises an optically isotropic material, and the transparent conductive film contains a metal nanowire and exhibits a surface resistance ratio (TD/MD) of the TD direction to the MD direction of no less than 0.6 and less than 1.5. A second transparent conductor provided with a substrate, an intermediate layer provided on the substrate, and a transparent conductive film provided on the intermediate layer, wherein the intermediate layer comprises an optically isotropic material, and the transparent conductive film contains a metal nanowire and exhibits a surface resistance ratio (TD/MD) of the TD direction to the MD direction of no less than 0.6 and less than 1.5.

Description

透明導電体及び透明導電体の製造方法Transparent conductor and method for producing transparent conductor 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2013-240134号(2013年11月20日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2013-240134 (filed on November 20, 2013), the entire disclosure of which is incorporated herein by reference.
 本発明は、透明導電体及び透明導電体の製造方法に関する。 The present invention relates to a transparent conductor and a method for producing the transparent conductor.
 表示パネルの表示面に設けられる透明導電体、さらには表示パネルの表示面側に配置される情報入力装置の透明導電体等、光透過性が要求される透明導電体には、表面の透明導電膜にインジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。しかしながら、金属酸化物を用いた透明導電膜は、真空環境下においてスパッタ成膜されるため製造コストがかかるものであり、また曲げやたわみなどの変形によって割れや剥離が発生し易いものであった。 Transparent conductors provided on the display surface of the display panel, and transparent conductors of information input devices arranged on the display surface side of the display panel, such as transparent conductors that require light transmissivity, have a transparent conductive surface. Metal oxides such as indium tin oxide (ITO) have been used for the film. However, transparent conductive films using metal oxides are expensive to produce because they are sputtered in a vacuum environment, and cracks and delamination are likely to occur due to deformation such as bending and deflection. .
 そこで、金属酸化物を用いた透明導電膜に代えて、塗布や印刷による成膜が可能で、しかも曲げやたわみに対する耐性も高い透明導電膜として、金属ナノワイヤーを配した透明導電膜が検討されている。このような透明導電膜は、レアメタルであるインジウムを使わない次世代の透明導電膜としても注目されている(例えば、特許文献1及び2、並びに非特許文献1参照)。 Therefore, instead of a transparent conductive film using a metal oxide, a transparent conductive film provided with metal nanowires has been studied as a transparent conductive film that can be formed by coating or printing and has high resistance to bending and bending. ing. Such a transparent conductive film has attracted attention as a next-generation transparent conductive film that does not use indium which is a rare metal (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
 上記のような金属ナノワイヤーを用いた透明導電膜を製造するのに好適な方法が、特許文献3に開示されている。この特許文献3に記載の方法は、基材上に複数の金属ナノワイヤーを投入して(金属ナノワイヤーは液体中に分散されている)、該液体を乾燥することにより、基体上に金属ナノワイヤーネットワーク層(複数の金属ナノワイヤーが網状につながった層)を形成するようにしている。また、この特許文献3では、基体上に複数の金属ナノワイヤーを投入して、金属ナノワイヤーを液体中に分散させ、該液体を乾燥することにより、基体上に金属ナノワイヤーネットワーク層を形成し、該金属ナノワイヤーネットワーク層上にマトリクス材を投入し、該マトリクス材を硬化してマトリクスとすることで、前記マトリクスと該マトリクスに埋め込まれた金属ナノワイヤーを含む導電層を形成するようにしている。また、特許文献3には、ロール・トゥ・ロール工程にて行うことが記載されている。この場合、基体は、回転リールにより、搬送経路に沿って搬送され、金属ナノワイヤーの投入は、第1投入部において移動経路に沿って行われ、マトリクス材の投入は、第2投入部において移動経路に沿って行われる。 A method suitable for producing a transparent conductive film using metal nanowires as described above is disclosed in Patent Document 3. In the method described in Patent Document 3, a plurality of metal nanowires are put on a base material (the metal nanowires are dispersed in a liquid), and the liquid is dried to thereby form metal nanowires on a substrate. A wire network layer (a layer in which a plurality of metal nanowires are connected in a network) is formed. Moreover, in this patent document 3, a metal nanowire network layer is formed on a base | substrate by throwing several metal nanowires on a base | substrate, disperse | distributing a metal nanowire in a liquid, and drying this liquid. The matrix material is put on the metal nanowire network layer, and the matrix material is cured to form a matrix, thereby forming a conductive layer including the matrix and metal nanowires embedded in the matrix. Yes. Patent Document 3 describes that a roll-to-roll process is performed. In this case, the substrate is transported along the transport path by the rotating reel, and the metal nanowire is input along the movement path in the first input part, and the matrix material is input in the second input part. Done along the path.
 しかしながら、特許文献3に記載されるような、金属ナノワイヤーを液体中に分散させ、該液体を乾燥させることで透明導電膜を形成する製造方法においては、形成された膜の導電性は、異方性が高くなる傾向があり、例えば、図2に示す形状の透明導電体(基材と透明導電膜の積層体)においては、製造時の搬送方向(MD方向)及びこれに垂直な幅方向(TD方向)の導電性が異なる傾向がある、という問題が残されていた。タッチパネル等に使用される透明導電体としては、その表面があらゆる方向においても導電性を有すること、すなわち、等方導電性を有することが望まれる。そのため、金属ナノワイヤーを用いた透明導電膜について、製造容易性、耐屈曲性とともに、さらに、等方導電性を備えることも望まれる。 However, in the manufacturing method in which metal nanowires are dispersed in a liquid and a transparent conductive film is formed by drying the liquid as described in Patent Document 3, the conductivity of the formed film is different. For example, in the case of a transparent conductor having a shape shown in FIG. 2 (a laminate of a base material and a transparent conductive film), the transport direction (MD direction) during production and the width direction perpendicular thereto are used. There remains a problem that the conductivity in the (TD direction) tends to be different. As a transparent conductor used for a touch panel or the like, it is desired that its surface has conductivity in all directions, that is, has isotropic conductivity. Therefore, it is desired that the transparent conductive film using metal nanowires has isotropic conductivity in addition to manufacturability and bending resistance.
特表2010-507199号公報Special table 2010-507199 特表2010-525526号公報Special table 2010-525526 米国特許出願公開第2007/0074316号明細書US Patent Application Publication No. 2007/0074316
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、等方導電性を有する、金属ナノワイヤーを用いた透明導電膜を備えた透明導電体を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, it aims at providing the transparent conductor provided with the transparent conductive film using metal nanowire which has isotropic conductivity.
 本発明者は、前記目的を達成すべく鋭意検討を行った結果、透明導電体の製造において、光学的等方性の透明基材上、又は透明基材上に設けた光学等方性の中間層(下地)上に透明導電膜を形成することにより、等方導電性の透明導電膜を備えた透明導電体を製造できることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventor has found that, in the production of a transparent conductor, an optically isotropic transparent substrate, or an optically isotropic intermediate provided on the transparent substrate. It has been found that by forming a transparent conductive film on a layer (base), a transparent conductor provided with an isotropic conductive transparent conductive film can be produced, and the present invention has been completed.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段は以下の通りである。即ち、
 <1> 基材と、該基材上に設けられた透明導電膜と、を備えた透明導電体であって、前記基材が光学等方性材料からなり、前記透明導電膜は、金属ナノワイヤーを含み、TD方向とMD方向における表面抵抗値の比(TD/MD)が0.6以上1.5未満である、ことを特徴とする、透明導電体である。
 該<1>に記載の透明導電体は、光学等方性材料からなる基材上に透明導電膜を設けることで得られ、該透明導電膜が、その表面抵抗値に方向依存性がなく、等方導電性を有する。
 なお、図2に示すように、本発明において「MD方向」とは透明導電体の製造時の基材の搬送方向を示し、「TD方向」とは基材の搬送方向と直交する方向(基材の幅方向)を示す。
 <2> 基材と、該基材上に設けられた中間層と、該中間層上に設けられた透明導電膜と、を備えた透明導電体であって、前記中間層が光学等方性材料からなり、前記透明導電膜は、金属ナノワイヤーを含み、TD方向とMD方向における表面抵抗値の比(TD/MD)が0.6以上1.5未満である、ことを特徴とする、透明導電体である。
 該<2>に記載の透明導電体は、基材上に光学等方性材料からなる中間層を設け、該中間層上に透明導電膜を設けることで得られ、該透明導電膜が、その表面抵抗値に方向依存性がなく、等方導電性を有する。
 <3> 前記光学等方性材料の波長550nmにおけるリタデーション値が30nm以下である、前記<1>又は<2>に記載の透明導電膜の製造方法である。
 なお、本発明において「リタデーション値」とは、回転検光子法を用いることによって得られる値を指すものとする。
 <4> 前記金属ナノワイヤーの長さが1μm~100μmである、前記<1>から<3>のいずれかに記載の透明導電体である。
 <5> 前記<1>から<4>のいずれかに記載の透明導電体を製造する透明導電体の製造方法であって、金属ナノワイヤーと透明樹脂材料とを含む分散液を調製する工程と、前記分散液を光学等方性材料上に付与して分散膜を形成する工程と、前記分散膜を乾燥及び硬化して透明導電膜を形成する工程と、を含むことを特徴とする透明導電体の製造方法である。
 該<5>に記載の透明導電体の製造方法によれば、金属ナノワイヤーを含む透明導電膜が光学等方性材料上に形成され、これにより、等方導電性の透明導電膜を備えた透明導電体の製造が可能である。
 <6> 前記分散液の粘度が、1cP以上50cP以下である、前記<5>に記載の透明導電体の製造方法である。
This invention is based on the said knowledge by the present inventors, and the means for solving the said subject are as follows. That is,
<1> A transparent conductor comprising a base material and a transparent conductive film provided on the base material, wherein the base material is made of an optically isotropic material, A transparent conductor comprising a wire and having a surface resistance value ratio (TD / MD) in the TD direction and the MD direction of 0.6 or more and less than 1.5.
The transparent conductor according to <1> is obtained by providing a transparent conductive film on a substrate made of an optically isotropic material, and the transparent conductive film has no direction dependency on the surface resistance value, Has isotropic conductivity.
As shown in FIG. 2, in the present invention, the “MD direction” refers to the transport direction of the base material during the production of the transparent conductor, and the “TD direction” refers to a direction (base) perpendicular to the transport direction of the base material. (Width direction of the material).
<2> A transparent conductor comprising a base material, an intermediate layer provided on the base material, and a transparent conductive film provided on the intermediate layer, wherein the intermediate layer is optically isotropic The transparent conductive film is made of a material, includes metal nanowires, and has a ratio of surface resistance values in the TD direction and the MD direction (TD / MD) of 0.6 or more and less than 1.5, It is a transparent conductor.
The transparent conductor according to <2> is obtained by providing an intermediate layer made of an optically isotropic material on a base material, and providing a transparent conductive film on the intermediate layer. The surface resistance value has no direction dependency and has isotropic conductivity.
<3> The method for producing a transparent conductive film according to <1> or <2>, wherein the retardation value of the optically isotropic material at a wavelength of 550 nm is 30 nm or less.
In the present invention, the “retardation value” refers to a value obtained by using the rotational analyzer method.
<4> The transparent conductor according to any one of <1> to <3>, wherein the metal nanowire has a length of 1 μm to 100 μm.
<5> A method for producing a transparent conductor according to any one of <1> to <4>, wherein the dispersion includes metal nanowires and a transparent resin material. A transparent conductive film comprising: a step of forming a dispersion film by applying the dispersion onto an optically isotropic material; and a step of drying and curing the dispersion film to form a transparent conductive film. It is a manufacturing method of a body.
According to the method for producing a transparent conductor according to <5>, a transparent conductive film containing metal nanowires is formed on an optically isotropic material, thereby providing an isotropic conductive transparent conductive film. A transparent conductor can be manufactured.
<6> The method for producing a transparent conductor according to <5>, wherein the dispersion has a viscosity of 1 cP or more and 50 cP or less.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、等方導電性を有する、金属ナノワイヤーを用いた透明導電膜を備えた透明導電体を提供することができる。 According to the present invention, there is provided a transparent conductor having a transparent conductive film using metal nanowires, which can solve the above-mentioned problems and achieve the above-mentioned object and has isotropic conductivity. Can do.
図1は、本発明の透明導電体の第1実施形態(A)及び第2実施形態(B)の例を示す図である。FIG. 1 is a diagram showing an example of the first embodiment (A) and the second embodiment (B) of the transparent conductor of the present invention. 図2は、本発明の透明導電体における基材の搬送方向(MD方向)及び該搬送方向と直交する方向(基材の幅方向)(TD方向)を示す模式図である。FIG. 2 is a schematic diagram showing the transport direction (MD direction) of the base material and the direction (width direction of the base material) (TD direction) orthogonal to the transport direction in the transparent conductor of the present invention.
(透明導電体)
 本発明の透明導電体は、光学等方性材料からなる基材と、該基材上に設けられた透明導電膜とを備えた透明導電体、又は、基材と、該基材上に設けられた光学等方性材料からなる中間層と、該中間層上に設けられた透明導電膜とを備えた透明導電体である。
 前記透明導電膜は、金属ナノワイヤーを含み、さらに、必要に応じて、透明樹脂材料(バインダー)、溶剤、分散剤、その他の成分を含有してなる。
(Transparent conductor)
The transparent conductor of the present invention is a transparent conductor comprising a base material made of an optically isotropic material and a transparent conductive film provided on the base material, or a base material, and provided on the base material. A transparent conductor comprising an intermediate layer made of the optically isotropic material and a transparent conductive film provided on the intermediate layer.
The said transparent conductive film contains metal nanowire, and also contains a transparent resin material (binder), a solvent, a dispersing agent, and another component as needed.
 本発明の透明導電体は、光学等方性材料上に金属ナノワイヤーを含む透明導電膜が形成されることにより、その表面が等方導電性を有し、表面のTD方向(幅方向)、MD方向(搬送方向)の表面抵抗値の比(TD/MD)が、0.6以上1.5未満となる。このような等方導電性の透明導電膜を形成できる原理としては、次のことが考えられる。
 光学等方性材料は、その表面の分子配向に偏りがなく、ランダムであることが知られる。この光学等方性材料上に金属ナノワイヤーの分散液を配することで、偏った相互作用を生じることなく、該光学等方性材料上に金属ナノワイヤーがランダムに分散され、異方性のないランダムな金属ナノワイヤーネットワークを構築するものと推測される。なお、ここでいう「金属ナノワイヤーネットワーク」とは、複数の金属ナノワイヤーが互いに網状に連結されて形成されたネットワーク構造を意味する。
The transparent conductor of the present invention is formed by forming a transparent conductive film containing metal nanowires on an optically isotropic material, so that the surface has isotropic conductivity, the TD direction (width direction) of the surface, The ratio (TD / MD) of the surface resistance value in the MD direction (conveyance direction) is 0.6 or more and less than 1.5. The following can be considered as a principle capable of forming such an isotropic conductive transparent conductive film.
Optical isotropic materials are known to be random with no molecular orientation on their surfaces. By arranging a dispersion of metal nanowires on this optically isotropic material, the metal nanowires are randomly dispersed on the optically isotropic material without causing a biased interaction. Presumed to build no random metal nanowire network. Here, the “metal nanowire network” means a network structure formed by connecting a plurality of metal nanowires in a network.
 本発明の透明導電体において、光学等方性材料からなる基材を使用した形態を第1実施形態とし、任意の基材上に光学等方性材料からなる中間層を配した形態を第2実施形態とする。 In the transparent conductor of the present invention, a form using a substrate made of an optically isotropic material is a first embodiment, and a form in which an intermediate layer made of an optically isotropic material is arranged on any substrate is a second. Let it be an embodiment.
<第1実施形態>
 本発明の第1実施形態は、光学等方性材料からなる基材を使用し、中間層等を設けることなく、基材上に直接透明導電膜を形成する。図1(A)に本発明の第1実施形態の透明導電体の図を示す。本発明の第1実施形態は、光学等方性材料からなる基材11上に透明導電膜12を設けてなる透明導電体10である。
<First Embodiment>
The first embodiment of the present invention uses a base material made of an optically isotropic material, and forms a transparent conductive film directly on the base material without providing an intermediate layer or the like. FIG. 1A shows a transparent conductor according to the first embodiment of the present invention. 1st Embodiment of this invention is the transparent conductor 10 which provides the transparent conductive film 12 on the base material 11 which consists of an optically isotropic material.
<<基材>>
 前記基材としては、光学等方性材料からなる基材である限り、特に制限はなく、目的に応じて適宜選択することができるが、透明導電膜を備えた透明電極に必要とされる膜厚を有しており、例えばフレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)の基材、又は適度の屈曲性と剛性を実現できる程度の膜厚を有する基板状の基材が好ましい。
 前記光学等方性材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、環状オレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ノルボルネン樹脂、トリアセチルセルロース(TAC)、ポリカーボネート(PC)、ポリエーテルサルホン(PES)、ガラス、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ノルボルネン樹脂、トリアセチルセルロースが、耐屈曲性、耐熱性等に優れる点で、好ましく、トリアセチルセルロースが、基材コストが低い点で、さらに好ましい。
 前記基材として市販される製品を使用することも可能である。前記市販される製品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、日本ゼオン株式会社製のゼオノア(登録商標)、ゼオネックス(登録商標);JSR株式会社製のアートン(登録商標);などが挙げられる。
 前記基材の膜厚としては、特に制限はなく、目的に応じて適宜選択することができるが、その生産性の観点から5μm~500μmが好ましい。
 本発明における「光学等方性」とは、複屈折が小さいことを示し、例えば、波長550nmにおけるリタデーション値が30nm以下であることを示す。
 前記基材の波長550nmにおけるリタデーション値としては、特に制限はなく、目的に応じて適宜選択することができるが、30nm以下が好ましく、10nm以下がより好ましく、5nm以下が特に好ましい。
 前記基材の波長550nmにおけるリタデーション値が、30nm超であると、基材の光学等方性が失われることがある。一方、前記基材の波長550nmにおけるリタデーション値が、前記より好ましい範囲内又は前記特に好ましい範囲内であると、該基材を組み込んだ表示装置における視野角特性の点で有利である。具体的には、見る角度による表示色の色調変化、コントラスト低下が少ない点で有利である。
 なお、前記リタデーションとしては、例えば、回転検光子法や、セナルモン法等の種々楕円偏光解析にて測定することが可能なものであるが、本発明における「リタデーション値」は、回転検光子法を用いて得られる値を示すものとする。
<< Base material >>
The base material is not particularly limited as long as it is a base material made of an optically isotropic material, and can be appropriately selected according to the purpose. However, a film required for a transparent electrode provided with a transparent conductive film For example, a film-like (sheet-like) base material thinned to such an extent that flexible flexibility can be realized, or a substrate-like film having a thickness enough to realize appropriate flexibility and rigidity. A substrate is preferred.
The optically isotropic material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, cyclic olefin copolymer (COC), cycloolefin polymer (COP), norbornene resin, triacetyl cellulose (TAC) , Polycarbonate (PC), polyethersulfone (PES), glass, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, norbornene resin and triacetyl cellulose are preferable from the viewpoint of excellent bending resistance and heat resistance, and triacetyl cellulose is more preferable from the viewpoint of low substrate cost.
It is also possible to use a commercially available product as the substrate. There is no restriction | limiting in particular as said product marketed, According to the objective, it can select suitably, For example, ZEONOR (trademark) by Nippon Zeon Co., Ltd., ZEONEX (trademark); Arton by JSR Corporation (Registered trademark);
The film thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm to 500 μm from the viewpoint of productivity.
“Optical isotropic” in the present invention indicates that the birefringence is small, for example, that the retardation value at a wavelength of 550 nm is 30 nm or less.
There is no restriction | limiting in particular as a retardation value in wavelength 550nm of the said base material, Although it can select suitably according to the objective, 30 nm or less is preferable, 10 nm or less is more preferable, and 5 nm or less is especially preferable.
If the retardation value of the substrate at a wavelength of 550 nm is more than 30 nm, the optical isotropy of the substrate may be lost. On the other hand, if the retardation value of the substrate at a wavelength of 550 nm is within the more preferable range or the particularly preferable range, it is advantageous in view angle characteristics in a display device incorporating the substrate. Specifically, it is advantageous in that the change in the color tone of the display color depending on the viewing angle and the decrease in contrast are small.
In addition, as the retardation, for example, it is possible to measure by various ellipsometry such as a rotation analyzer method and a Senarmon method, but the “retardation value” in the present invention is a rotation analyzer method. The value obtained by using shall be indicated.
<<透明導電膜>>
-分散液-
 本発明の第1実施形態において、前記透明導電膜は、金属ナノワイヤーを含む前記分散液を光学等方性材料からなる前記基材上に付与、乾燥及び硬化することで形成される。前記分散液の各種成分及び製造方法について、以下に説明する。
<< Transparent conductive film >>
-Dispersion-
In 1st Embodiment of this invention, the said transparent conductive film is formed by providing the said dispersion liquid containing metal nanowire on the said base material consisting of an optically isotropic material, drying and hardening. Various components of the dispersion and the production method will be described below.
--金属ナノワイヤー--
 前記金属ナノワイヤーは、金属を用いて構成されたものであって、nmオーダーの径を有する微細なワイヤーである。
 前記金属ナノワイヤーの構成元素としては、金属元素である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、Fe、V、Ta、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、AgやCuが、導電性が高い点で、好ましい。
--- Metal nanowires--
The metal nanowire is made of metal and is a fine wire having a diameter on the order of nm.
The constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose. For example, Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, Ag and Cu are preferable in terms of high conductivity.
 前記金属ナノワイヤーの平均短軸径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm超500nm以下が好ましく、10nm~100nmがより好ましい。
 前記金属ナノワイヤーの平均短軸径が、1nm以下であると、金属ナノワイヤーの導電率が劣化して、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、500nmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの平均短軸径が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
When the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate. On the other hand, when the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
 前記金属ナノワイヤーの平均長軸長としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm超1,000μm以下が好ましく、10μm~300μmがより好ましい。
 前記金属ナノワイヤーの平均長軸長が、1μm以下であると、金属ナノワイヤー同士がつながりにくく、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、1,000μmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化したり、透明導電膜を形成する際に用いる分散液における金属ナノワイヤーの分散性が劣化することがある。一方、前記金属ナノワイヤーの平均長軸長が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 なお、金属ナノワイヤーの平均短軸径及び平均長軸長は、走査型電子顕微鏡により測定可能な、数平均短軸径及び数平均長軸長である。より具体的には、金属ナノワイヤーを少なくとも100本以上測定し、電子顕微鏡写真から画像解析装置を用いて、それぞれのナノワイヤーの投影径及び投影面積を算出する。そして、この投影径を、短軸径とした。また、下記式に基づき、長軸長を算出した。
  長軸長=投影面積/投影径
 平均短軸径は、短軸径の算術平均値とした。平均長軸長は、長軸長の算術平均値とした。
The average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 μm and 1,000 μm or less, more preferably 10 μm to 300 μm.
When the average major axis length of the metal nanowire is 1 μm or less, the metal nanowires are hardly connected to each other, and the transparent conductive film containing the metal nanowire may not function as a conductive film, and exceeds 1,000 μm. And the total light transmittance and haze (Haze) of the transparent conductive film containing the said metal nanowire may deteriorate, or the dispersibility of the metal nanowire in the dispersion liquid used when forming a transparent conductive film may deteriorate. . On the other hand, when the average major axis length of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
The average minor axis diameter and the average major axis length of the metal nanowires are the number average minor axis diameter and the number average major axis length that can be measured with a scanning electron microscope. More specifically, at least 100 metal nanowires are measured, and the projected diameter and projected area of each nanowire are calculated from an electron micrograph using an image analyzer. And this projection diameter was made into the short axis diameter. Further, the major axis length was calculated based on the following formula.
Long axis length = projected area / projected diameter The average minor axis diameter was an arithmetic average value of minor axis diameters. The average major axis length was the arithmetic average value of the major axis length.
 さらに、前記金属ナノワイヤーは、金属ナノ粒子が数珠状に繋がってワイヤー形状を有しているものでもよい。この場合、前記金属ナノワイヤーの長さは限定されない。 Furthermore, the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape. In this case, the length of the metal nanowire is not limited.
 前記金属ナノワイヤーの目付量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001g/m2~1.000g/m2が好ましく、0.003g/m2~0.3g/m2がより好ましい。
 前記金属ナノワイヤーの目付量が、0.001g/m2未満であると、金属ナノワイヤーが十分に金属ナノワイヤー層中に存在せず、透明導電膜の導電性が劣化することがあり、1.000g/m2を超えると、透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの目付量が前記より好ましい範囲内であると、透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ~ 1.000g / m 2, 0.003g / m 2 ~ 0.3 g / m 2 is more preferable.
When the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate. On the other hand, when the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
 前記分散液中の金属ナノワイヤーの配合量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記分散液の質量を100質量部とした場合、0.01質量部~10.00質量部が好ましい。
 前記金属ナノワイヤーの配合量が、0.01質量部未満であると、最終的に得られる透明導電膜において金属ナノワイヤーに十分な目付量(0.001g/m2~1.000g/m2)が得られないことがあり、10.00質量部を超えると、金属ナノワイヤーの分散性が劣化することがある。
The compounding amount of the metal nanowires in the dispersion is not particularly limited and may be appropriately selected depending on the purpose. However, when the mass of the dispersion is 100 parts by mass, 10.00 parts by mass is preferred.
The amount of the metal nanowires is less than 0.01 part by weight, sufficient basis weight to the metal nanowires in the final transparent conductive film obtained (0.001g / m 2 ~ 1.000g / m 2 ) May not be obtained, and if it exceeds 10.00 parts by mass, the dispersibility of the metal nanowires may deteriorate.
--透明樹脂材料(バインダー)--
 前記透明樹脂材料(バインダー)は、前記金属ナノワイヤーを分散させるものである。
 前記透明樹脂材料(バインダー)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、既知の透明な、天然高分子樹脂、合成高分子樹脂、などが挙げられ、熱可塑性樹脂であってもよく、また、熱、光、電子線、放射線で硬化する熱(光)硬化性樹脂であってもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
 前記熱(光)硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂、アジド基やジアジリン基などの感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー、などが挙げられる。
-Transparent resin material (binder)-
The transparent resin material (binder) is for dispersing the metal nanowires.
There is no restriction | limiting in particular as said transparent resin material (binder), According to the objective, it can select suitably, For example, a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned, Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
The thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorine Polypropylene, vinylidene fluoride, ethylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, and the like.
The thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
--溶剤--
 前記溶剤としては、金属ナノワイヤーを分散させるものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、水;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール等のアルコール;シクロヘキサノン、シクロペンタノン、アノン等のケトン;N,N-ジメチルホルムアミド(DMF)等のアミド;ジメチルスルホキシド(DMSO)等のスルフィド;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--solvent--
The solvent is not particularly limited as long as it can disperse metal nanowires, and can be appropriately selected according to the purpose. For example, water; methanol, ethanol, n-propanol, i-propanol, n- Alcohols such as butanol, i-butanol, sec-butanol and tert-butanol; ketones such as cyclohexanone, cyclopentanone and anone; amides such as N, N-dimethylformamide (DMF); sulfides such as dimethyl sulfoxide (DMSO); Etc. These may be used individually by 1 type and may use 2 or more types together.
 前記分散液を用いて形成される分散膜の乾燥ムラやクラックを抑えるため、分散液には、さらに高沸点溶剤を添加してもよい。これにより、分散液からの溶剤の蒸発速度をコントロールすることができる。
 前記高沸点溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコール、などが挙げられる。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
In order to suppress drying unevenness and cracks in the dispersion film formed using the dispersion, a high boiling point solvent may be further added to the dispersion. Thereby, the evaporation rate of the solvent from the dispersion can be controlled.
The high boiling point solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl Ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl A Le, dipropylene glycol isopropyl ether, tripropylene glycol isopropyl ether, methyl glycol, and the like.
These may be used individually by 1 type and may use 2 or more types together.
--分散剤--
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルピロリドン(PVP);ポリエチレンイミン等のアミノ基含有化合物;スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基等の官能基を有する化合物で金属に吸着可能なもの;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記分散剤を、前記金属ナノワイヤーの表面に吸着させてもよい。これにより、前記金属ナノワイヤーの分散性を向上させることができる。
-Dispersant-
The dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups. , Sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group, epoxy group, isocyanate group, cyano group, vinyl group, A compound having a functional group such as a thiol group or a carbinol group, which can be adsorbed to a metal; These may be used alone or in combination of two or more.
The dispersant may be adsorbed on the surface of the metal nanowire. Thereby, the dispersibility of the said metal nanowire can be improved.
 前記分散剤を前記分散液に対して添加する場合は、最終的に得られる透明導電膜の導電性が劣化しない程度の添加量にすることが好ましい。これにより、前記分散剤を、透明導電膜の導電性が劣化しない程度の量で金属ナノワイヤーに吸着させることができる。 When the dispersant is added to the dispersion, it is preferable to add the dispersant so that the conductivity of the finally obtained transparent conductive film does not deteriorate. Thereby, the said dispersing agent can be made to adsorb | suck to metal nanowire by the quantity of the grade which the electroconductivity of a transparent conductive film does not deteriorate.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、粘度調整剤、硬化促進触媒、可塑性、酸化防止剤や硫化防止剤等の安定剤、などを添加することができる。
-Other ingredients-
The other components are not particularly limited and may be appropriately selected depending on the intended purpose. For example, surfactants, viscosity modifiers, curing accelerators, plasticity, stabilizers such as antioxidants and sulfidizing agents, and the like. , Etc. can be added.
-透明導電膜の厚み-
 上記の分散液を基材上に付与して形成された透明導電膜の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.1μm~500μmが好ましく、1μm~100μmがより好ましく、10μm~50μmが特に好ましい。
 前記透明導電膜の厚みが、0.1μm未満であると、充分な導電性が得られないことがあり、500μmを超えると、充分な金属ナノワイヤーのネットワークを形成しないことに加え、透明性が悪化することがある。一方、前記透明導電膜の厚みが、前記より好ましい範囲内又は前記特に好ましい範囲内であると、金属ナノワイヤーのネットワーク形成の点で有利である。
-Thickness of transparent conductive film-
The thickness of the transparent conductive film formed by applying the above dispersion onto a substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 μm to 500 μm, preferably 1 μm to 100 μm is more preferable, and 10 μm to 50 μm is particularly preferable.
If the thickness of the transparent conductive film is less than 0.1 μm, sufficient conductivity may not be obtained, and if it exceeds 500 μm, in addition to not forming a sufficient network of metal nanowires, the transparency is May get worse. On the other hand, when the thickness of the transparent conductive film is within the more preferable range or the particularly preferable range, it is advantageous in terms of forming a network of metal nanowires.
-透明導電膜の等方導電性-
 基材上に形成された透明導電膜のTD方向(幅方向)とMD方向(搬送方向)における表面抵抗値の比(TD/MD)としては、0.6以上1.5未満である限り、特に制限はなく、目的に応じて適宜選択することができるが、0.8以上1.2未満が好ましく、0.9以上1.1未満が特に好ましい。
 前記表面抵抗値の比が、0.6未満であると、TD方向の導電性が悪くなってしまい、1.5以上であると、MD方向の導電性が悪くなってしまう。一方、前記表面抵抗値の比が、前記好ましい範囲内、前記より好ましい範囲内又は前記特に好ましい範囲内であると、表面抵抗の異方性が緩和し等方性を有する点で有利である。つまり面内導電性の点で有利である。
-Isotropic conductivity of transparent conductive film-
As the ratio (TD / MD) of the surface resistance value in the TD direction (width direction) and the MD direction (transport direction) of the transparent conductive film formed on the substrate, as long as it is 0.6 or more and less than 1.5, Although there is no restriction | limiting in particular, Although it can select suitably according to the objective, 0.8 or more and less than 1.2 are preferable, and 0.9 or more and less than 1.1 are especially preferable.
When the ratio of the surface resistance values is less than 0.6, the conductivity in the TD direction is deteriorated, and when it is 1.5 or more, the conductivity in the MD direction is deteriorated. On the other hand, when the ratio of the surface resistance values is within the preferable range, the more preferable range, or the particularly preferable range, it is advantageous in that the anisotropy of the surface resistance is relaxed and isotropic. That is, it is advantageous in terms of in-plane conductivity.
<第2実施形態>
 本発明の第2実施形態は、基材上に光学等方性材料からなる中間層を設け、該中間層上に透明導電膜を形成した透明導電体である。図1(B)に本発明の第2実施形態の透明導電体の図を示す。本発明の第2実施形態は、基材11上に中間層13を有し、該中間層13上に透明導電膜12を設けてなる透明導電体10である。
Second Embodiment
2nd Embodiment of this invention is the transparent conductor which provided the intermediate | middle layer which consists of an optically isotropic material on a base material, and formed the transparent conductive film on this intermediate | middle layer. FIG. 1B shows a transparent conductor according to the second embodiment of the present invention. 2nd Embodiment of this invention is the transparent conductor 10 which has the intermediate | middle layer 13 on the base material 11, and provided the transparent conductive film 12 on this intermediate | middle layer 13. As shown in FIG.
<<基材>>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができるが、無機材料、プラスチック材料等の可視光に対して透過性を有する材料で構成された透明基材が好ましい。前記透明基材は、透明導電膜を有する透明電極に必要とされる膜厚を有しており、例えばフレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)の基材、又は適度の屈曲性と剛性を実現できる程度の膜厚を有する基板状の基材であることとする。
 前記無機材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、石英、サファイア、ガラス、などが挙げられる。
 前記プラスチック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、などの公知の高分子材料が挙げられる。斯かるプラスチック材料を用いて透明基材を構成した場合、生産性の観点から透明基材の膜厚を5μm~500μmとすることが好ましいが、この範囲に特に限定されるものではない。
 第2実施形態における基材は、第1実施形態における基材と比して、光学等方性であることを要しないため、他の所望の物性や、コスト等を考慮して広く選択することができる。
<< Base material >>
There is no restriction | limiting in particular as said base material, Although it can select suitably according to the objective, The transparent base material comprised with the material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable. The transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film, for example, a film-like (sheet-like) substrate thinned to such an extent that flexible flexibility can be realized, Or it shall be a substrate-like base material which has a film thickness which can implement | achieve moderate flexibility and rigidity.
There is no restriction | limiting in particular as said inorganic material, According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
There is no restriction | limiting in particular as said plastic material, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), a polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used. When a transparent substrate is constituted using such a plastic material, the film thickness of the transparent substrate is preferably 5 μm to 500 μm from the viewpoint of productivity, but is not particularly limited to this range.
The base material in the second embodiment does not need to be optically isotropic as compared with the base material in the first embodiment, and therefore is selected widely in consideration of other desired physical properties and costs. Can do.
<<中間層>>
 本発明の透明導電体の第2実施形態は、基材と透明導電膜との間に光学等方性材料からなる中間層が設けられる。該中間層は、例えば、中間層形成成分及び溶剤を含む中間層形成用溶液を、スピンコート等により基材上に付与し、前記溶剤を乾燥させ、中間層形成成分を硬化することにより形成される。光学等方性材料からなる中間層は、光学等方性材料からなる基材と比して、比較的安価であり、かつ、製造が容易である、という利点を有する。
<< Intermediate layer >>
In the second embodiment of the transparent conductor of the present invention, an intermediate layer made of an optically isotropic material is provided between the substrate and the transparent conductive film. The intermediate layer is formed, for example, by applying an intermediate layer forming solution containing an intermediate layer forming component and a solvent onto a substrate by spin coating or the like, drying the solvent, and curing the intermediate layer forming component. The The intermediate layer made of an optically isotropic material has an advantage that it is relatively inexpensive and easy to manufacture, as compared with a base material made of an optically isotropic material.
-中間層形成成分-
 前記中間層形成成分としては、最終製品において光学等方性となる材料である限り、特に制限はなく、目的に応じて適宜選択することができ、可視光に対して透過性を有する透明な層を形成するものが好ましい。
 前記中間層形成成分の具体例としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光硬化性樹脂、熱硬化性樹脂、放射線硬化樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記光硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、ビニール樹脂、ポリエステル樹脂、ポリアミド樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、アクリル樹脂が、透明性が高く、耐屈曲性に優れる点で、好ましい。
 また、前記熱硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アミノ樹脂、ウレタン樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、エポキシ樹脂が、硬化収縮が少ないことにより寸法安定性が高い点で、好ましい。
 前記中間層形成用溶液中における中間層形成成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、wetコーティングで成膜するため、0.1質量%~20.0質量%が好ましく、0.5質量%~10.0質量%がより好ましい。
 前記中間層形成成分の含有量が、0.1質量%未満であると、厚膜塗工が必要なために均一な膜の作製が困難となることがあり、20.0質量%を超えると、所望の薄膜作製が困難となることがある。一方、前記中間層形成成分の含有量が、前記より好ましい範囲内であると、塗膜時の作業性の点で有利である。
-Intermediate layer forming component-
The intermediate layer forming component is not particularly limited as long as it is a material that is optically isotropic in the final product, can be appropriately selected according to the purpose, and is a transparent layer having transparency to visible light. Those that form are preferred.
Specific examples of the intermediate layer forming component are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a photocurable resin, a thermosetting resin, and a radiation curable resin. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as said photocurable resin, According to the objective, it can select suitably, For example, an acrylic resin, a vinyl resin, a polyester resin, a polyamide resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, an acrylic resin is preferable in terms of high transparency and excellent bending resistance.
Moreover, there is no restriction | limiting in particular as said thermosetting resin, According to the objective, it can select suitably, For example, an epoxy resin, an amino resin, a urethane resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, an epoxy resin is preferable in that it has high dimensional stability due to less curing shrinkage.
The content of the intermediate layer forming component in the intermediate layer forming solution is not particularly limited and may be appropriately selected depending on the intended purpose. However, since the film is formed by wet coating, the content is 0.1% by mass to 20%. 0.0 mass% is preferable, and 0.5 mass% to 10.0 mass% is more preferable.
When the content of the intermediate layer forming component is less than 0.1% by mass, it may be difficult to produce a uniform film because thick film coating is required. When the content exceeds 20.0% by mass Therefore, it may be difficult to produce a desired thin film. On the other hand, when the content of the intermediate layer forming component is within the more preferable range, it is advantageous in terms of workability during coating.
-溶剤-
 前記中間層形成用溶液を構成する溶剤としては、前記中間層形成成分を溶解又は分散可能なものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール等のアルコール;シクロヘキサノン、シクロペンタノン、アノン、メチルエチルケトン、ジメチルケトン等のケトン;N,N-ジメチルホルムアミド(DMF)等のアミド;ジメチルスルホキシド(DMSO)等のスルフィド;などが挙げられる。
-solvent-
The solvent constituting the intermediate layer forming solution is not particularly limited as long as it can dissolve or disperse the intermediate layer forming component, and can be appropriately selected according to the purpose. For example, methanol, ethanol , N-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol and other alcohols; cyclohexanone, cyclopentanone, anone, methyl ethyl ketone, dimethyl ketone and other ketones; N, N-dimethylformamide Amides such as (DMF); sulfides such as dimethyl sulfoxide (DMSO); and the like.
-中間層の物性-
 前記中間層溶液を基材上に付与して形成された中間層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.001μm~10μmが好ましく、0.005μm~5μmがより好ましく、0.01μm~1μmが特に好ましい。
 前記中間層の厚みが、0.001μm未満であると、透明導電膜の等方導電性を得られないことがあり、10μmを超えると、透明導電膜の全光線透過率が悪化することがある。一方、前記透明導電膜の厚みが、前記より好ましい範囲内又は前記特に好ましい範囲内であると、透明導電膜を等方導電性とする効果が得られやすく、かつ製造も容易である点で有利である。
 前記中間層は光学等方性であることを要する。
 前記中間層の波長550nmにおけるリタデーション値としては、特に制限はなく、目的に応じて適宜選択することができるが、30nm以下が好ましく、10nm以下がより好ましく、5nm以下が特に好ましい。
 前記中間層の波長550nmにおけるリタデーション値が、30nm超であると、中間層の光学等方性が失われることがある。一方、前記中間層の波長550nmにおけるリタデーション値が、前記より好ましい範囲内又は前記特に好ましい範囲内であると、視野角特性の点で有利である。
-Physical properties of the intermediate layer-
The thickness of the intermediate layer formed by applying the intermediate layer solution on the substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001 μm to 10 μm, preferably 0.005 μm. Is more preferably 5 μm, and particularly preferably 0.01 μm to 1 μm.
If the thickness of the intermediate layer is less than 0.001 μm, the isotropic conductivity of the transparent conductive film may not be obtained. If the thickness exceeds 10 μm, the total light transmittance of the transparent conductive film may be deteriorated. . On the other hand, when the thickness of the transparent conductive film is within the more preferable range or the particularly preferable range, it is advantageous in that the effect of making the transparent conductive film is isotropic conductivity is easily obtained and the manufacturing is easy. It is.
The intermediate layer needs to be optically isotropic.
There is no restriction | limiting in particular as a retardation value in wavelength 550nm of the said intermediate | middle layer, Although it can select suitably according to the objective, 30 nm or less is preferable, 10 nm or less is more preferable, and 5 nm or less is especially preferable.
If the retardation value of the intermediate layer at a wavelength of 550 nm exceeds 30 nm, the optical isotropy of the intermediate layer may be lost. On the other hand, if the retardation value of the intermediate layer at a wavelength of 550 nm is within the more preferable range or the particularly preferable range, it is advantageous in view angle characteristics.
<<透明導電膜>>
 本発明の第2実施形態における透明導電膜は、基材上ではなく、中間層上に形成されること以外は、構成、物性等いずれも本発明の第1実施形態における透明導電膜と同様である。
<< Transparent conductive film >>
The transparent conductive film in the second embodiment of the present invention is the same as the transparent conductive film in the first embodiment of the present invention except that the transparent conductive film is formed not on the base material but on the intermediate layer. is there.
(透明導電体の製造方法)
 本発明の透明導電体の製造方法は、少なくとも、分散液調製工程と、分散膜形成工程と、透明導電膜形成工程と、を含み、さらに、必要に応じて適宜選択した、中間層形成工程等のその他の工程を含む。
 本発明の透明導電体の製造は、前記第1実施形態においては、金属ナノワイヤー分散液を調製し、準備した基材上へ該分散液を付与する工程から開始され、一方、前記第2実施形態においては、中間層形成用溶液を調製し、基材上に前記中間層形成用溶液を付与する工程から開始される。
(Method for producing transparent conductor)
The method for producing a transparent conductor of the present invention includes at least a dispersion liquid preparation step, a dispersion film formation step, and a transparent conductive film formation step, and further, an intermediate layer formation step and the like appropriately selected as necessary Including other processes.
In the first embodiment, the production of the transparent conductor of the present invention is started from the step of preparing a metal nanowire dispersion and applying the dispersion onto the prepared substrate, while the second embodiment is performed. In a form, it starts from the process of preparing the solution for intermediate | middle layer formation, and providing the said solution for intermediate | middle layer formation on a base material.
 前記透明導電膜は、金属ナノワイヤーを含む分散液を調製し(分散液調製工程)、前記調製された分散液を光学等方性材料からなる基材又は中間層上に付与して分散膜を形成し(分散膜形成工程)、前記分散膜の乾燥処理及び硬化処理を行うことで形成される(透明導電膜形成工程)。 The transparent conductive film is prepared by preparing a dispersion containing metal nanowires (dispersion preparation step), and applying the prepared dispersion onto a substrate or intermediate layer made of an optically isotropic material. It forms (dispersion film formation process), and it forms by performing the drying process and hardening process of the said dispersion film (transparent conductive film formation process).
<分散液調製工程>
 前記分散液調製工程は、前述した金属ナノワイヤー、各種配合成分を含む分散液を調製する工程である。前記分散液の分散手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理、加圧分散処理、などが好適に挙げられる。
<Dispersion preparation process>
The dispersion preparation step is a step of preparing a dispersion containing the above-described metal nanowires and various blending components. The dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
 前記分散液の粘度は、特に制限はなく、目的に応じて適宜選択することができるが、1cP以上50cP以下が好ましく、10cP以上40cP以下がより好ましく、20cP以上30cP以下が特に好ましい。
 前記分散液の粘度が、1cP未満であると、透明導電膜の抵抗分布が悪化することがあり、50cPを超えると、塗工性が悪くなることがある。一方、前記分散液の粘度が前記より好ましい範囲内又は前記特に好ましい範囲であると、所望の厚さを有する透明導電膜をより容易に製造することができる点で有利である。
The viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 cP or more and 50 cP or less, more preferably 10 cP or more and 40 cP or less, and particularly preferably 20 cP or more and 30 cP or less.
When the viscosity of the dispersion is less than 1 cP, the resistance distribution of the transparent conductive film may be deteriorated, and when it exceeds 50 cP, the coatability may be deteriorated. On the other hand, when the viscosity of the dispersion is in the more preferable range or the particularly preferable range, it is advantageous in that a transparent conductive film having a desired thickness can be more easily produced.
<分散膜形成工程>
 前記分散膜形成工程は、前記調製された分散液を、光学等方性材料からなる基材又は中間層上に付与して分散膜を形成する工程である。
 前記付与の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコートによる塗布、ワイヤーバーによる塗布、アプリケーターによる塗布、スリットダイによる塗布、などが挙げられる。前記付与により、前記基材又は中間層上に金属ナノワイヤーの分散膜が形成される。
<Dispersion film formation process>
The dispersion film forming step is a step of forming the dispersion film by applying the prepared dispersion on a base material or intermediate layer made of an optically isotropic material.
The application method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include spin coating, wire bar coating, applicator coating, and slit die coating. By the application, a metal nanowire dispersion film is formed on the base material or the intermediate layer.
<透明導電膜形成工程>
 前記透明導電膜形成工程は、前記分散膜を、乾燥処理(乾燥工程)及び硬化処理(硬化工程)することで透明導電膜を形成する工程である。
<Transparent conductive film formation process>
The transparent conductive film forming step is a step of forming a transparent conductive film by subjecting the dispersion film to a drying process (drying process) and a curing process (curing process).
<<乾燥工程>>
 前記乾燥工程は、前記分散膜中の溶剤を乾燥除去する工程である。前記乾燥の手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ドライヤーの熱風による乾燥、ホットプレート乾燥、オーブン乾燥、IR乾燥、などが挙げられる。
<< Drying process >>
The drying step is a step of removing the solvent in the dispersion film by drying. There is no restriction | limiting in particular as said drying method, According to the objective, it can select suitably, For example, drying with the hot air of a dryer, hotplate drying, oven drying, IR drying, etc. are mentioned.
<<硬化工程>>
 前記硬化工程は、透明樹脂材料の硬化を行う工程である。前記硬化の手段としては、特に制限はなく、透明樹脂材料の種類や、所望の物性等の目的に応じて適宜選択することができ、例えば、加熱処理、紫外線照射、加圧処理、などが挙げられる。以下、熱硬化性樹脂を用いた場合の加熱硬化処理について説明する。
 前記加熱硬化処理における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃~140℃が好ましく、80℃~120℃がより好ましい。
 前記加熱硬化処理における加熱温度が、60℃未満であると、乾燥に要する時間が長くなり作業性が悪化することがあり、140℃を超えると、基材のガラス転移温度(Tg)の兼ね合いで基材が歪曲することがある。一方、前記加熱硬化処理における加熱温度が、前記より好ましい範囲内であると、金属ナノワイヤーのネットワーク形成の点で有利である。
 前記加熱硬化処理における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間~30分間が好ましく、2分間~10分間がより好ましく、約5分間が特に好ましい。
 前記加熱硬化処理における加熱時間が、1分間未満であると、乾燥が不十分なことがあり、30分間を超えると、作業性が悪化することがある。一方、前記加熱硬化処理における加熱時間が、前記より好ましい範囲内又は前記特に好ましい時間であると、金属ナノワイヤーのネットワーク形成および作業性の点で有利である。
<< Curing process >>
The curing step is a step of curing the transparent resin material. The curing means is not particularly limited and can be appropriately selected depending on the type of transparent resin material and desired physical properties. Examples thereof include heat treatment, ultraviolet irradiation, and pressure treatment. It is done. Hereinafter, the heat curing process in the case of using a thermosetting resin will be described.
The heating temperature in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 60 ° C to 140 ° C, more preferably 80 ° C to 120 ° C.
When the heating temperature in the heat curing treatment is less than 60 ° C., the time required for drying may become long and workability may deteriorate, and when it exceeds 140 ° C., the balance with the glass transition temperature (Tg) of the substrate The substrate may be distorted. On the other hand, when the heating temperature in the heat curing treatment is in the more preferable range, it is advantageous in terms of forming a network of metal nanowires.
The heating time in the heat curing treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably about 5 minutes. .
When the heating time in the heat curing treatment is less than 1 minute, drying may be insufficient, and when it exceeds 30 minutes, workability may be deteriorated. On the other hand, when the heating time in the heat curing treatment is within the more preferable range or the particularly preferable time, it is advantageous in terms of network formation and workability of the metal nanowires.
<中間層形成工程>
 本発明の透明導電体の第2実施形態の製造においては、基材上に中間層を形成する中間層形成工程を要する。前記中間層形成工程は、前記中間層形成用溶液を調製する工程(中間層形成用溶液調製工程)、前記中間層形成用溶液を基材上に付与する工程(中間層形成用溶液付与工程)、及び中間層を光硬化又は熱硬化により硬化させる工程(中間層硬化工程)を含む。
<Intermediate layer forming step>
In the production of the second embodiment of the transparent conductor of the present invention, an intermediate layer forming step of forming an intermediate layer on the substrate is required. The intermediate layer forming step includes a step of preparing the intermediate layer forming solution (intermediate layer forming solution preparing step), a step of applying the intermediate layer forming solution onto a substrate (intermediate layer forming solution applying step). And a step of curing the intermediate layer by photocuring or heat curing (intermediate layer curing step).
<<中間層形成用溶液調製工程>>
 前記中間層形成用溶液調製工程は、前記中間層形成用溶液を調製する工程である。前記中間層形成用溶液調製工程において、前述の中間層形成成分及び溶剤を混合し、中間層形成用溶液を調製する。
<< Intermediate layer forming solution preparation process >>
The intermediate layer forming solution preparation step is a step of preparing the intermediate layer forming solution. In the intermediate layer forming solution preparation step, the intermediate layer forming component and the solvent are mixed to prepare an intermediate layer forming solution.
<<中間層形成用溶液付与工程>>
 前記中間層形成用溶液付与工程は、前記中間層形成用溶液を基材上に付与する工程である。前記付与の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコートによる塗工、ワイヤーバーによる塗工、アプリケーターによる塗工、スリットダイによる塗工、スプレーによる塗工などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、スピンコートによる塗工が、塗工起因の塗料配向性及び作業性で優れる点で、好ましい。
 前記中間層形成用溶液をスピンコートを用いて塗工する場合における塗工(回転)速度としては、特に制限はなく、目的に応じて適宜選択することができるが、500rpm/30秒間~5,000rpm/30秒間が好ましい。前記塗工速度が前記好ましい範囲内であると、形成される中間層のリタデーション値をより低くする、すなわち、より光学等方性とすることができる。
<< Intermediate layer forming solution application process >>
The intermediate layer forming solution application step is a step of applying the intermediate layer forming solution onto a substrate. The application method is not particularly limited and can be appropriately selected depending on the purpose. For example, spin coating, wire bar coating, applicator coating, slit die coating, and spraying. Examples include coating. These may be used individually by 1 type and may use 2 or more types together.
Among these, coating by spin coating is preferable because it is excellent in coating orientation and workability resulting from coating.
The coating (rotation) speed in the case of applying the intermediate layer forming solution by spin coating is not particularly limited and may be appropriately selected depending on the intended purpose. 000 rpm / 30 seconds is preferred. When the coating speed is within the preferable range, the retardation value of the intermediate layer to be formed can be made lower, that is, more optically isotropic.
<<中間層硬化工程>>
 前記中間層硬化工程は、乾燥させた前記中間層を、その中間層形成成分の特性に合わせて光硬化又は熱硬化により硬化させる工程である。中間層形成成分が、光硬化性樹脂であれば、適した波長の光を照射し、熱硬化性樹脂であれば、オーブンや加熱ロールによる熱処理を行う。
<< Intermediate layer curing process >>
The intermediate layer curing step is a step of curing the dried intermediate layer by photocuring or heat curing in accordance with the characteristics of the intermediate layer forming component. If the intermediate layer forming component is a photocurable resin, light having a suitable wavelength is irradiated. If the intermediate layer forming component is a thermosetting resin, heat treatment is performed using an oven or a heating roll.
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
<銀ナノワイヤーインク(分散液)の作製>
 下記の配合にて、銀ナノワイヤーインクを作製した。
(1)金属ナノワイヤー:銀ナノワイヤー(Seashell Technology社製、AgNW-25、平均径25nm、平均長さ23μm):配合量0.05質量部
(2)バインダー:ヒドロキシプロピルメチルセルロース(アルドリッチ社製、2%水溶液の20℃における粘度80cP~120cP(文献値)):配合量0.15質量部
(3)溶剤:(i)水:配合量89.80質量部、(ii)エタノール:配合量10.00質量部
Example 1
<Preparation of silver nanowire ink (dispersion)>
A silver nanowire ink was prepared with the following composition.
(1) Metal nanowire: Silver nanowire (manufactured by Seashell Technology, AgNW-25, average diameter 25 nm, average length 23 μm): compounding amount 0.05 part by mass (2) binder: hydroxypropyl methylcellulose (manufactured by Aldrich, Viscosity of 2% aqueous solution at 20 ° C. 80 cP to 120 cP (document value)): blending amount 0.15 parts by mass (3) solvent: (i) water: blending amount 89.80 parts by mass, (ii) ethanol: blending amount 10 0.00 parts by mass
<銀ナノワイヤー透明導電体の作製>
 以下の手順で、銀ナノワイヤー透明導電体を作製した。
 基材としては、光学等方性の透明基材(ノルボルネン樹脂フィルム(商品名:ゼオノア(登録商標)フィルム):日本ゼオン株式会社製、型番ZF14、膜厚100μm)を使用した。
 作製した銀ナノワイヤーインク(分散液)を、ワイヤーバー(番手10)で上記基材上に塗布して銀ナノワイヤー分散膜を形成した。ここで、銀ナノワイヤーの目付量を約0.01g/m2とした。
 次いで、大気中において、塗布面にドライヤーで熱風をあて、銀ナノワイヤー分散膜中の溶剤を乾燥除去した。
 その後、オーブン中で120℃5分間の加熱硬化処理を行った。
 その後、円柱状のプレスロール及びバックロールを備えるカレンダー処理装置を使用して、加圧処理を行った。プレスロール、バックロール共にスチールロールを用いて、加重4.0kN、搬送速度1m/分で処理した。
<Preparation of silver nanowire transparent conductor>
A silver nanowire transparent conductor was prepared by the following procedure.
As the substrate, an optically isotropic transparent substrate (norbornene resin film (trade name: ZEONOR (registered trademark) film): manufactured by Nippon Zeon Co., Ltd., model number ZF14, film thickness: 100 μm) was used.
The produced silver nanowire ink (dispersion) was applied onto the substrate with a wire bar (counter 10) to form a silver nanowire dispersion film. Here, the basis weight of the silver nanowires was set to about 0.01 g / m 2 .
Next, in the atmosphere, hot air was applied to the coated surface with a dryer to remove the solvent in the silver nanowire-dispersed film by drying.
Thereafter, a heat curing treatment at 120 ° C. for 5 minutes was performed in an oven.
Then, the pressurization process was performed using the calendar processing apparatus provided with a column-shaped press roll and a back roll. Both the press roll and the back roll were processed using a steel roll at a load of 4.0 kN and a conveyance speed of 1 m / min.
<抵抗値の測定>
 銀ナノワイヤー透明導電膜の表面に抵抗率計EC-80P(ナプソン株式会社製)の測定プローブを接触させ、測定を行った。測定は任意の12箇所で行い、その平均値を抵抗値とした。測定結果を表1に示す。
<Measurement of resistance value>
Measurement was performed by bringing a measuring probe of a resistivity meter EC-80P (manufactured by Napson Co., Ltd.) into contact with the surface of the silver nanowire transparent conductive film. The measurement was performed at any 12 locations, and the average value was taken as the resistance value. The measurement results are shown in Table 1.
<線電極の作製>
 透明導電膜のエッチング処理により、TD方向、MD方向のそれぞれに幅5mm、長さ50mmの線電極を作製した。
<Production of wire electrode>
A line electrode having a width of 5 mm and a length of 50 mm in each of the TD direction and the MD direction was produced by etching the transparent conductive film.
<線電極の抵抗値の測定>
 前記線電極の両端に銀ペーストAF6100を添付し、90℃30分間焼成した後、電極抵抗測定器「Fluke社製、117 TRUE RMS MULTIMETER」を用いて抵抗値を測定した。測定結果を表1に示す。
<Measurement of resistance value of wire electrode>
Silver paste AF6100 was attached to both ends of the wire electrode, and after firing at 90 ° C. for 30 minutes, the resistance value was measured using an electrode resistance measuring instrument “117 TRUE RMS MULTITIMER” manufactured by Fluke. The measurement results are shown in Table 1.
<等方導電性の評価>
 TD方向とMD方向の抵抗値の比(TD/MD)を算出し、以下の評価基準に基づき、等方導電性の評価を行った。評価結果を表1に示す。
○:TD/MDが0.6以上1.5未満
×:TD/MDが0.6未満又は1.5以上
<Evaluation of isotropic conductivity>
The ratio of the resistance values in the TD direction and the MD direction (TD / MD) was calculated, and isotropic conductivity was evaluated based on the following evaluation criteria. The evaluation results are shown in Table 1.
○: TD / MD is 0.6 or more and less than 1.5 ×: TD / MD is less than 0.6 or 1.5 or more
<リタデーション値の測定>
 基材及び後述の中間層のリタデーションは、RETS-100を用いて測定し、測定波長550nmの値をリタデーション値とした。中間層のリタデーションは、ガラス(等方性基材)上に中間層を製膜した後に測定した。
<Measurement of retardation value>
The retardation of the substrate and the intermediate layer described later was measured using RETS-100, and the value at a measurement wavelength of 550 nm was used as the retardation value. The retardation of the intermediate layer was measured after forming the intermediate layer on glass (isotropic substrate).
(実施例2)
 実施例1において、光学等方性の透明基材として、ノルボルネン樹脂フィルムを使用する代わりに、TACフィルム(トリアセチルセルロース、パナック株式会社製、型番FT-80SZ、膜厚80μm)を使用したこと以外は、実施例1と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Example 2)
In Example 1, instead of using a norbornene resin film as the optically isotropic transparent substrate, a TAC film (triacetylcellulose, manufactured by Panac Corporation, model number FT-80SZ, film thickness 80 μm) was used. As in Example 1, a silver nanowire transparent conductor was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. Was measured. The results are shown in Table 1.
(比較例1)
 実施例1において、透明基材として、光学等方性のノルボルネン樹脂フィルムを使用する代わりに、光学異方性のPETフィルム(ポリエチレンテレフタレート、東レ株式会社製、型番U34、膜厚125μm)を使用したこと以外は、実施例1と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Comparative Example 1)
In Example 1, instead of using an optically isotropic norbornene resin film, an optically anisotropic PET film (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 μm) was used as the transparent substrate. Except that, as in Example 1, a silver nanowire transparent conductor was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, and the isotropic conductivity was evaluated. The retardation value was measured. The results are shown in Table 1.
(比較例2)
 比較例1において、銀ナノワイヤーインクの塗工方法として、ワイヤーバーを使用する代わりに、スピンコート装置(500rpm、30秒間)を使用したこと以外は、比較例1と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Comparative Example 2)
In Comparative Example 1, the silver nanowire ink was transparent as in Comparative Example 1, except that a spin coater (500 rpm, 30 seconds) was used instead of using a wire bar as a coating method of the silver nanowire ink. Conductors were prepared, resistance values were measured, line electrodes were prepared, resistance values of the line electrodes were measured, isotropic conductivity was evaluated, and retardation values were measured. The results are shown in Table 1.
(実施例3)
 比較例1において、銀ナノワイヤーインクを基材上に塗工する代わりに、銀ナノワイヤーインクを塗工する前工程として、以下の手順で光学等方性中間層を製膜し、銀ナノワイヤーインクを光学等方性中間層上に塗工したこと以外は、比較例1と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
Example 3
In Comparative Example 1, instead of coating the silver nanowire ink on the substrate, as a pre-process for coating the silver nanowire ink, an optically isotropic intermediate layer is formed by the following procedure, and the silver nanowire is formed. Except that the ink was coated on the optically isotropic intermediate layer, similarly to Comparative Example 1, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, and the resistance of the line electrode The value was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
<光学等方性中間層形成用溶液の作製>
 下記の配合にて、光学等方性中間層形成用溶液を作製した。
(1)バインダー:ペンタエリスリトールトリアクリレート(製品名:アロニックスM305、東亜合成株式会社製):配合量1.50質量部
(2)硬化剤:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(製品名:イルガキュア907、チバケミカル社製):配合量0.05質量部
(3)溶剤:メチルエチルケトン:配合量98.45質量部
<Preparation of optical isotropic intermediate layer forming solution>
An optically isotropic intermediate layer forming solution was prepared with the following composition.
(1) Binder: Pentaerythritol triacrylate (Product name: Aronix M305, manufactured by Toa Gosei Co., Ltd.): 1.50 parts by mass of compound (2) Curing agent: 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one (Product name: Irgacure 907, manufactured by Ciba Chemical Co., Ltd.): Compounding amount 0.05 parts by mass (3) Solvent: Methyl ethyl ketone: Compounding amount 98.45 parts by mass
<光学等方性中間層の形成>
 以下の手順で、光学等方性中間層を形成した。
 基材としては、光学異方性のPET(ポリエチレンテレフタレート、東レ株式会社製、型番U34、膜厚125μm)を使用した。
 作製した光学等方性中間層形成用溶液を、スピンコート装置を用いて、1,000rpm、30秒間の塗工条件にて基材上に塗工し、製膜した。その後、オーブン中で80℃5分間の加熱硬化処理を行った。さらに、メタルハイドライトランプを用いて、窒素雰囲気下にて積算光量1,000J/cm2の紫外線を照射してバインダーを硬化させ光学等方性中間層を形成した。
<Formation of optical isotropic intermediate layer>
The optically isotropic intermediate layer was formed by the following procedure.
As the substrate, optically anisotropic PET (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 μm) was used.
The prepared solution for forming an optically isotropic intermediate layer was coated on a substrate under a coating condition of 1,000 rpm for 30 seconds using a spin coater to form a film. Thereafter, heat curing treatment was performed in an oven at 80 ° C. for 5 minutes. Furthermore, using a metal hydride lamp, the binder was cured by irradiating ultraviolet rays with an integrated light quantity of 1,000 J / cm 2 under a nitrogen atmosphere to form an optically isotropic intermediate layer.
(実施例4)
 実施例3において、銀ナノワイヤーインクの塗工方法として、ワイヤーバーを使用する代わりに、スピンコート装置(500rpm、30秒間)を使用した以外は、実施例3と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
Example 4
In Example 3, a silver nanowire transparent conductive material was used in the same manner as in Example 3 except that a spin coating apparatus (500 rpm, 30 seconds) was used instead of using a wire bar as a coating method of the silver nanowire ink. The body was produced, the resistance value was measured, the line electrode was produced, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
(実施例5)
 実施例4において、光学等方性中間層の製膜条件として、スピンコート装置の塗工条件を、1,000rpm、30秒間とする代わりに、500rpm、30秒間としたこと以外は、実施例4と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Example 5)
In Example 4, as the film forming conditions for the optically isotropic intermediate layer, the coating conditions of the spin coater were set to 500 rpm for 30 seconds instead of 1,000 rpm for 30 seconds. Example 4 Similarly, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, a resistance value of the line electrode was measured, isotropic conductivity was evaluated, and a retardation value was measured. The results are shown in Table 1.
(実施例6)
 実施例4において、光学等方性中間層の製膜条件として、スピンコート装置の塗工条件を、1,000rpm、30秒間とする代わりに、2,500rpm、30秒間としたこと以外は、実施例4と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Example 6)
In Example 4, as the film forming conditions for the optically isotropic intermediate layer, the coating conditions of the spin coater were set to 2500 rpm for 30 seconds instead of 1,000 rpm for 30 seconds. Similarly to Example 4, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. . The results are shown in Table 1.
(実施例7)
 比較例1において、銀ナノワイヤーインクを基材上に塗工する代わりに、銀ナノワイヤーインクを塗工する前工程として、以下の手順で光学等方性中間層を製膜し、銀ナノワイヤーインクを光学等方性中間層上に塗工したこと以外は、比較例1と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Example 7)
In Comparative Example 1, instead of coating the silver nanowire ink on the substrate, as a pre-process for coating the silver nanowire ink, an optically isotropic intermediate layer is formed by the following procedure, and the silver nanowire is formed. Except that the ink was coated on the optically isotropic intermediate layer, similarly to Comparative Example 1, a silver nanowire transparent conductor was prepared, a resistance value was measured, a line electrode was prepared, and the resistance of the line electrode The value was measured, the isotropic conductivity was evaluated, and the retardation value was measured. The results are shown in Table 1.
<光学等方性中間層溶液の作製>
 下記の配合にて、光学等方性中間層形成用溶液を作製した。
(1)バインダー:ペンタエリスリトールトリアクリレート(製品名:アロニックスM305、東亜合成株式会社製):配合量1.50質量部
(2)硬化剤:ヘキサメチレンジイソシアネート(製品名:デュラネートTPA-100、旭化成ケミカルズ株式会社製):配合量0.25質量部
(3)溶剤:メチルエチルケトン:配合量98.25質量部
<Preparation of optical isotropic intermediate layer solution>
An optically isotropic intermediate layer forming solution was prepared with the following composition.
(1) Binder: Pentaerythritol triacrylate (Product name: Aronix M305, manufactured by Toa Gosei Co., Ltd.): Compounding amount 1.50 parts by mass (2) Curing agent: Hexamethylene diisocyanate (Product name: Duranate TPA-100, Asahi Kasei Chemicals) Co., Ltd.): 0.25 part by mass (3) Solvent: methyl ethyl ketone: 98.25 parts by mass
<光学等方性中間層の作製>
 以下の手順で、光学等方性中間層を作製した。
 基材としては、光学異方性のPET(ポリエチレンテレフタレート、東レ株式会社製、型番U34、膜厚125μm)を使用した。
 作製した光学等方性中間層溶液を、スピンコート装置を用いて、2,500rpm、30秒間の塗工条件にて基材上に塗工し、製膜した。その後、オーブン中で80℃60分間の加熱硬化処理を行った。
<Preparation of optical isotropic intermediate layer>
An optically isotropic intermediate layer was produced by the following procedure.
As the substrate, optically anisotropic PET (polyethylene terephthalate, manufactured by Toray Industries, Inc., model number U34, film thickness 125 μm) was used.
The produced optically isotropic intermediate layer solution was coated on a substrate under a coating condition of 2,500 rpm for 30 seconds using a spin coater to form a film. Thereafter, a heat curing treatment at 80 ° C. for 60 minutes was performed in an oven.
(比較例3)
 実施例4において、銀ナノワイヤーインクを塗工する前工程として、光学等方性中間層を形成する代わりに、以下に示す中間層形成用溶液を用いて中間層を形成したこと以外は、実施例4と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
<中間層形成用溶液の作製>
 下記の配合にて、中間層形成用溶液を作製した。
(1)バインダー:位相差材料溶液(RMS03-013C、メルク社製、液晶30質量%):液晶相当量18質量%
(2)溶剤:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 RMS03-013C(液晶30質量%)を、液晶質量が18質量%となるように、PGMEAを用いて希釈した。
(Comparative Example 3)
In Example 4, as a pre-process for applying the silver nanowire ink, instead of forming the optically isotropic intermediate layer, it was carried out except that the intermediate layer was formed using the intermediate layer forming solution shown below. Similarly to Example 4, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation value was measured. . The results are shown in Table 1.
<Preparation of intermediate layer forming solution>
An intermediate layer forming solution was prepared with the following composition.
(1) Binder: Retardation material solution (RMS03-013C, manufactured by Merck & Co., Inc., 30% by mass of liquid crystal): Liquid crystal equivalent 18% by mass
(2) Solvent: Propylene glycol monomethyl ether acetate (PGMEA)
RMS03-013C (liquid crystal 30% by mass) was diluted with PGMEA so that the liquid crystal mass was 18% by mass.
(比較例4)
 比較例3において、中間層の形成を、スピンコート装置を用いて、1,000rpm、30秒間の塗工条件にて実施する代わりに、1,600rpm、30秒間の塗工条件にて実施したこと以外は、比較例3と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Comparative Example 4)
In Comparative Example 3, the intermediate layer was formed using a spin coater at 1,000 rpm for 30 seconds, instead of 1,600 rpm for 30 seconds. Other than the above, as in Comparative Example 3, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
(比較例5)
 比較例3において、中間層の形成を、スピンコート装置を用いて、1,000rpm、30秒間の塗工条件にて実施する代わりに、3,200rpm、30秒間の塗工条件にて実施したこと以外は、比較例3と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Comparative Example 5)
In Comparative Example 3, the formation of the intermediate layer was performed using a spin coater under the coating conditions of 3,200 rpm for 30 seconds instead of being performed under the conditions of 1,000 rpm for 30 seconds. Other than the above, as in Comparative Example 3, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
(実施例8)
 比較例3において、中間層の形成を、スピンコート装置を用いて、1,000rpm、30秒間の塗工条件にて実施する代わりに、3,800rpm、30秒間の塗工条件にて実施したこと以外は、比較例3と同様に、銀ナノワイヤー透明導電体を作製し、抵抗値を測定し、線電極を作製し、線電極の抵抗値を測定し、等方導電性を評価し、リタデーション値を測定した。結果を表1に示す。
(Example 8)
In Comparative Example 3, the intermediate layer was formed using a spin coater under a coating condition of 3,800 rpm for 30 seconds instead of a coating speed of 1,000 rpm for 30 seconds. Other than the above, as in Comparative Example 3, a silver nanowire transparent conductor was prepared, the resistance value was measured, the line electrode was prepared, the resistance value of the line electrode was measured, the isotropic conductivity was evaluated, and the retardation was measured. The value was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、銀ナノワイヤーを含む透明導電膜を直接形成した基材又は中間層のリタデーション値が30nm以下の透明導電体において、良好な等方導電性が得られることが分かった。
 また、中間層として液晶溶液を用いた場合(実施例8)においても、スピンコート塗工時の回転数を高めることにより形成される中間層のリタデーション値を低くすることができ、この場合、良好な等方導電性が得られることが判明した。したがって、本願発明の等方導電性の透明導電体は、基材又は中間層に特定の材質を使用することで達成されるものではなく、材質によらず、光学等方性の基材又は中間層を使用することにより達成可能であることが判明した。
From Table 1, it was found that good isotropic conductivity was obtained in a transparent conductor having a retardation value of 30 nm or less of a base material or an intermediate layer directly formed with a transparent conductive film containing silver nanowires.
Further, also in the case of using a liquid crystal solution as the intermediate layer (Example 8), the retardation value of the intermediate layer formed by increasing the number of rotations during spin coating can be lowered. It was found that isotropic conductivity can be obtained. Therefore, the isotropic conductive transparent conductor of the present invention is not achieved by using a specific material for the base material or the intermediate layer, and does not depend on the material, and is an optically isotropic base material or intermediate material. It has been found that this can be achieved by using a layer.
 本発明の透明導電体は、ノートパソコン、スマートフォン等の電子機器に用いられているインジウムスズ酸化物(ITO)等の金属酸化物を用いた透明導電体の代替物として、好適に利用可能である。 The transparent conductor of the present invention can be suitably used as an alternative to a transparent conductor using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers and smartphones. .
10 透明導電体
11 基材
12 透明導電膜
13 中間層
DESCRIPTION OF SYMBOLS 10 Transparent conductor 11 Base material 12 Transparent conductive film 13 Intermediate | middle layer

Claims (6)

  1.  基材と、該基材上に設けられた透明導電膜と、を備えた透明導電体であって、
     前記基材が光学等方性材料からなり、
     前記透明導電膜は、金属ナノワイヤーを含み、TD方向とMD方向における表面抵抗値の比(TD/MD)が0.6以上1.5未満である、ことを特徴とする、透明導電体。
    A transparent conductor comprising a substrate and a transparent conductive film provided on the substrate,
    The substrate is made of an optically isotropic material;
    The said transparent conductive film contains metal nanowire, and ratio (TD / MD) of the surface resistance value in TD direction and MD direction is 0.6 or more and less than 1.5, The transparent conductor characterized by the above-mentioned.
  2.  基材と、該基材上に設けられた中間層と、該中間層上に設けられた透明導電膜と、を備えた透明導電体であって、
     前記中間層が光学等方性材料からなり、
     前記透明導電膜は、金属ナノワイヤーを含み、TD方向とMD方向における表面抵抗値の比(TD/MD)が0.6以上1.5未満である、ことを特徴とする、透明導電体。
    A transparent conductor comprising a base material, an intermediate layer provided on the base material, and a transparent conductive film provided on the intermediate layer,
    The intermediate layer is made of an optically isotropic material;
    The said transparent conductive film contains metal nanowire, and ratio (TD / MD) of the surface resistance value in TD direction and MD direction is 0.6 or more and less than 1.5, The transparent conductor characterized by the above-mentioned.
  3.  前記光学等方性材料の波長550nmにおけるリタデーション値が30nm以下である、請求項1または2に記載の透明導電体。 The transparent conductor according to claim 1 or 2, wherein the retardation value of the optically isotropic material at a wavelength of 550 nm is 30 nm or less.
  4.  前記金属ナノワイヤーの長さが1μm~100μmである、請求項1または2に記載の透明導電体。 3. The transparent conductor according to claim 1, wherein the metal nanowire has a length of 1 μm to 100 μm.
  5.  請求項1または2に記載の透明導電体を製造する透明導電体の製造方法であって、
     金属ナノワイヤーと透明樹脂材料とを含む分散液を調製する工程と、
     前記分散液を光学等方性材料上に付与して分散膜を形成する工程と、
     前記分散膜を乾燥及び硬化して透明導電膜を形成する工程と、を含む、ことを特徴とする、透明導電体の製造方法。
    It is a manufacturing method of the transparent conductor which manufactures the transparent conductor according to claim 1 or 2,
    Preparing a dispersion containing metal nanowires and a transparent resin material;
    Applying the dispersion onto an optically isotropic material to form a dispersion film;
    A step of drying and curing the dispersion film to form a transparent conductive film.
  6.  前記分散液の粘度が、1cP以上50cP以下である、請求項5に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to claim 5, wherein the dispersion has a viscosity of 1 cP or more and 50 cP or less.
PCT/JP2014/005511 2013-11-20 2014-10-30 Transparent conductor and method for producing transparent conductor WO2015075876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480063011.2A CN105745720A (en) 2013-11-20 2014-10-30 Transparent conductor and method for producing transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-240134 2013-11-20
JP2013240134A JP2015099748A (en) 2013-11-20 2013-11-20 Transparent conductor and method for manufacturing transparent conductor

Publications (1)

Publication Number Publication Date
WO2015075876A1 true WO2015075876A1 (en) 2015-05-28

Family

ID=53179171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005511 WO2015075876A1 (en) 2013-11-20 2014-10-30 Transparent conductor and method for producing transparent conductor

Country Status (4)

Country Link
JP (1) JP2015099748A (en)
CN (1) CN105745720A (en)
TW (1) TW201523649A (en)
WO (1) WO2015075876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895196A (en) * 2016-04-07 2016-08-24 江苏三月光电科技有限公司 Novel transparent conductive thin film and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435406B2 (en) 2015-05-20 2018-12-05 株式会社フジクラ Structure with conductor layer and touch panel
WO2018062517A1 (en) 2016-09-30 2018-04-05 大日本印刷株式会社 Electroconductive film, touch panel, and image display device
JP7339064B2 (en) * 2019-08-19 2023-09-05 大倉工業株式会社 Method for producing transparent conductive film
JP6999071B1 (en) 2020-08-26 2022-02-14 昭和電工株式会社 Transparent conductive substrate
KR102504439B1 (en) * 2020-09-25 2023-03-02 주식회사 디케이티 Producting Apparatus for Transparent Electrodes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209431A (en) * 2004-01-21 2005-08-04 Teijin Ltd Transparent conductive laminate and transparent touch panel using the same
WO2010018733A1 (en) * 2008-08-11 2010-02-18 コニカミノルタホールディングス株式会社 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
JP2011090879A (en) * 2009-10-22 2011-05-06 Fujifilm Corp Method of manufacturing transparent conductor
JP2011198642A (en) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method thereof
JP2013016312A (en) * 2011-07-01 2013-01-24 Asahi Kasei Chemicals Corp Conductive substrate
JP2013161404A (en) * 2012-02-08 2013-08-19 Konica Minolta Inc Conductive film and touch panel
WO2013121556A1 (en) * 2012-02-16 2013-08-22 大倉工業株式会社 Method for manufacturing transparent conductive base material, and transparent conductive base material
WO2014069624A1 (en) * 2012-11-02 2014-05-08 日東電工株式会社 Transparent conductive film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209431A (en) * 2004-01-21 2005-08-04 Teijin Ltd Transparent conductive laminate and transparent touch panel using the same
WO2010018733A1 (en) * 2008-08-11 2010-02-18 コニカミノルタホールディングス株式会社 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
JP2011090879A (en) * 2009-10-22 2011-05-06 Fujifilm Corp Method of manufacturing transparent conductor
JP2011198642A (en) * 2010-03-19 2011-10-06 Panasonic Electric Works Co Ltd Base material with transparent conductive film, and manufacturing method thereof
JP2013016312A (en) * 2011-07-01 2013-01-24 Asahi Kasei Chemicals Corp Conductive substrate
JP2013161404A (en) * 2012-02-08 2013-08-19 Konica Minolta Inc Conductive film and touch panel
WO2013121556A1 (en) * 2012-02-16 2013-08-22 大倉工業株式会社 Method for manufacturing transparent conductive base material, and transparent conductive base material
WO2014069624A1 (en) * 2012-11-02 2014-05-08 日東電工株式会社 Transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895196A (en) * 2016-04-07 2016-08-24 江苏三月光电科技有限公司 Novel transparent conductive thin film and preparation method thereof

Also Published As

Publication number Publication date
CN105745720A (en) 2016-07-06
TW201523649A (en) 2015-06-16
JP2015099748A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
WO2015075876A1 (en) Transparent conductor and method for producing transparent conductor
TWI446062B (en) Transparent conductive films containing carbon nanotubes and the touch panel
TW201447921A (en) Conductive film and image display device
TWI654625B (en) Transparent conductive film and method for producing the same, information input device and electronic equipment
CN107039098B (en) Silver nanowire population, method for producing same, and electric conductor and electronic device comprising same
KR20100088155A (en) Method for producing carbon nanotube-containing conductor
WO2015177967A1 (en) Method for manufacturing transparent electrically-conductive film and transparent electrically-conductive film
JP6234798B2 (en) Transparent conductive film and use thereof
JP6890920B2 (en) Transparent conductive film with adhesive layer
JP2015040316A (en) Nanoparticle carrying metal nanowire, dispersion, transparent conductive film and production method thereof, as well as touch panel
WO2022050243A1 (en) Method for manufacturing transparent electroconductive film
WO2016129270A1 (en) Electrode, method for producing same, and touch panel and organic el lighting element each provided with said electrode
WO2015177963A1 (en) Coating method
JP5928029B2 (en) Method for manufacturing conductive film and laminate
JP6712910B2 (en) Transparent conductive film
WO2015079626A1 (en) Method for producing transparent conductive film
TW201618947A (en) Conductive sheet
JP2016224727A (en) Method for manufacturing electrode, electrode, touch panel and organic el illumination element
WO2016038821A1 (en) Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode
WO2015107603A1 (en) Dispersion, transparent conductive film, information-input device, electronic appliance, and process for producing transparent conductive film
CN107531032A (en) The manufacture method of conductive laminate, contact panel and conductive laminate
JP6655413B2 (en) Optical laminate and image display device using the optical laminate
JP6744104B2 (en) Transparent conductive film
WO2016038820A1 (en) Method for forming of electrode wiring, structure body, and touch panel
JP2016062639A (en) Electrode and method for producing the same, and organic el lighting device including electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864594

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864594

Country of ref document: EP

Kind code of ref document: A1