WO2016038821A1 - Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode - Google Patents

Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode Download PDF

Info

Publication number
WO2016038821A1
WO2016038821A1 PCT/JP2015/004273 JP2015004273W WO2016038821A1 WO 2016038821 A1 WO2016038821 A1 WO 2016038821A1 JP 2015004273 W JP2015004273 W JP 2015004273W WO 2016038821 A1 WO2016038821 A1 WO 2016038821A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
metal nanowire
dispersion
base material
Prior art date
Application number
PCT/JP2015/004273
Other languages
French (fr)
Japanese (ja)
Inventor
井上 純一
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016038821A1 publication Critical patent/WO2016038821A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an electrode, a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate, and in particular, an electrode on which a metal nanowire layer including a metal nanowire is formed as a conductive film, a manufacturing method thereof, and the electrode.
  • the present invention relates to a touch panel and an organic EL substrate.
  • Metal oxides such as indium tin oxide (ITO) have been used for transparent conductive films that require light transmission, such as transparent conductive films formed on plastic substrates.
  • the transparent conductive film using the metal nanowire is, for example, a dispersion containing the metal nanowire is formed by using a coating method such as flat plate slit die coating, wire bar coating, applicator coating, capillary coating, and spin coating. It is formed on the base material by being applied onto the substrate and drying the applied dispersion.
  • a transparent conductive film using metal nanowires can not only reduce resistance, but can also be formed by coating by dispersing in a solvent, so it can be constructed with simple equipment unlike ITO. It is advantageous in some respects.
  • the transparent conductive film obtained by coating using the above coating method has no problem as long as the thickness of the base material is uniform, but when the thickness of the base material is not uniform, that is, the in-plane thickness of the base material.
  • the distribution ⁇ T (Tmax ⁇ Tmin) is large, the in-plane distribution ⁇ of the resistance value in a sufficiently narrow range cannot be obtained (for example, when the in-plane thickness distribution ⁇ T of the substrate is 30 ⁇ m, the resistance value in-plane The distribution ⁇ is 20 ⁇ / sq).
  • Patent Document 3 does not suppress the flow after the droplets reach (land) the substrate, and does not relate to nanowires.
  • the present invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can easily form a low-resistance metal nanowire layer (conductive film) and has a non-uniform thickness (low smoothness) (for example, 50 in FIG. 3). It is another object of the present invention to provide an electrode capable of forming a metal nanowire layer (for example, 30 in FIG. 3) having a uniform thickness, a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate.
  • the present inventors have sprayed a dispersion when spraying a dispersion containing metal nanowires on a substrate having a non-uniform thickness by a spray method.
  • a spray method By adjusting the average droplet diameter of the liquid and the boiling point of the solvent, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the thickness is non-uniform (low smoothness).
  • the present inventors have found that a metal nanowire layer having a uniform thickness can be formed even on a substrate, and have completed the present invention.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> A spray process of spraying a dispersion liquid in which metal nanowires are dispersed in a solvent toward a base material by spraying, and drying a dispersion film formed of the dispersion liquid formed on the base material. And a metal nanowire layer forming step of forming a metal nanowire layer on the electrode, wherein the dispersion liquid sprayed in the spraying step has an average droplet diameter of 5 ⁇ m to 50 ⁇ m, and the solvent The electrode has a boiling point of 138 ° C. or lower.
  • the droplets are sprayed to reach the substrate (landing) ),
  • the solvent in the droplets volatilizes, and after the droplets reach (land) the substrate, it becomes difficult to flow, and a film having a uniform thickness is formed.
  • a low-resistance metal nanowire layer conductive film
  • the thickness is non-uniform (low smoothness).
  • a metal nanowire layer having a uniform thickness can be formed on the substrate.
  • spraying means that the discharge port of the spray nozzle is directed toward the substrate, and the dispersion (droplet) is directed from the spray toward the substrate.
  • the discharge port of the spray nozzle is directed in the opposite direction to the substrate, and the dispersion liquid (droplet) is discharged from the spray in the opposite direction to the substrate. This includes the case where the dispersion liquid (droplet) is sprayed toward the substrate due to the influence of external force (gravity, wind, etc.).
  • the “electrode” means “a structure including a base material and a metal nanowire layer formed on the base material”.
  • average droplet diameter is the cumulative value calculated from the small diameter side in the particle size distribution measured using a laser diffraction spray particle size distribution measuring device. It refers to the “particle diameter at which the volume is 50%”.
  • ⁇ 3> The method for producing an electrode according to ⁇ 1> or ⁇ 2>, wherein the metal nanowire content in the dispersion is less than 1% by mass.
  • ⁇ 4> The electrode manufacturing method according to any one of ⁇ 1> to ⁇ 3>, wherein a standard deviation of a resistance value of the metal nanowire layer is 20 or less.
  • the substrate is a method for producing an electrode according to any one of ⁇ 1> to ⁇ 4>, wherein a difference between a maximum value and a minimum value of the thickness is 38 ⁇ m or more. is there.
  • ⁇ 6> The method for producing an electrode according to any one of ⁇ 1> to ⁇ 5>, wherein the spray is a two-fluid spray.
  • ⁇ 7> The method for producing an electrode according to any one of ⁇ 1> to ⁇ 6>, wherein the metal nanowire is a silver nanowire.
  • ⁇ 8> The method for producing an electrode according to any one of ⁇ 1> to ⁇ 7>, further including a patterning step of patterning the metal nanowire layer formed on the substrate.
  • a touch panel comprising the electrode according to ⁇ 9>.
  • ⁇ 11> An organic EL substrate comprising the electrode according to ⁇ 9>.
  • the conventional problems can be solved, the object can be achieved, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the thickness is not uniform. It is possible to provide an electrode capable of forming a metal nanowire layer having a uniform thickness even on a non-smooth substrate (low smoothness), a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate.
  • FIG. 1 is a schematic diagram of a touch panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an organic EL substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of an electrode according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a process of a conventional electrode manufacturing method.
  • the method for producing a transparent conductive film of the present invention includes at least a spraying step and a metal nanowire layer forming step, and further includes other steps such as a patterning step, which are appropriately selected as necessary.
  • the said spraying process is a process of spraying the dispersion liquid which metal nanowire disperse
  • the transparent base material which consists of material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
  • the transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film.
  • the film is formed into a film (sheet) thinned to such an extent that flexible flexibility can be realized, or an appropriate amount. It can be made into the flat form which has a film thickness of the grade which can implement
  • limiting in particular as said inorganic material According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyimide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PE polyether sulfone
  • PP polypropylene
  • PP diacetyl cellulose
  • PVC polyvinyl chloride
  • acrylic resin PMMA
  • PC polycarbonate
  • Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used.
  • the film thickness of the transparent substrate is preferably 5 ⁇ m to 500 ⁇ m from the viewpoint of productivity, but is not particularly limited to this range.
  • the difference between the maximum value and the minimum value of the thickness of the base material is less than 38 ⁇ m, for example, a metal nanowire layer having a uniform thickness is formed even when coating with a flat plate slit die or a wire bar is performed. There are things you can do. However, when the difference between the maximum value and the minimum value of the thickness of the base material is 38 ⁇ m or more, the coating thickness of the metal nanowire layer varies greatly without using the electrode manufacturing method of the present invention. The resistance value of the nanowire layer also varies. In addition, the thickness of a base material can be measured in MD direction (flow direction) and TD direction (perpendicular to a flow) using a micro gauge.
  • the dispersion includes at least metal nanowires and a solvent, and further includes carbon nanotubes, a transparent resin material (binder), a dispersant, and other components as necessary.
  • the dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
  • the viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 mPa ⁇ s to 50 mPa ⁇ s, and more preferably 10 mPa ⁇ s to 40 mPa ⁇ s.
  • the viscosity of the dispersion is less than 1 mPa ⁇ s or more than 50 mPa ⁇ s, it may cause a poor formation of the dispersion film in the dispersion film forming step, and the surface resistance distribution may be non-uniform.
  • the viscosity of the dispersion is within the more preferable range, it is advantageous in that formation failure of the dispersion film can be prevented and the distribution of surface resistance can be made uniform.
  • the metal nanowire is composed of a metal and is a fine wire having a diameter on the order of nm, and has an aspect ratio of 1: 100 or more.
  • the aspect ratio is not particularly limited as long as it is 1: 100 or more, and can be appropriately selected according to the purpose. However, it is preferably 1: 500 or more from the viewpoint of forming a conductive film network.
  • metal nanowires are used in the electrode manufacturing method of the present invention.
  • the constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose.
  • a metal element for example, Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, Ag and Cu are preferable in terms of low resistance and high conductivity.
  • the average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
  • the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate.
  • the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
  • the average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 1 ⁇ m to 100 ⁇ m.
  • the metal nanowires are not easily connected to each other, and the transparent conductive film containing the metal nanowires may not function as a conductive film.
  • the total light transmittance and haze of the transparent conductive film containing the metal nanowire may be deteriorated, or the dispersibility of the metal nanowire in the dispersion used when forming the transparent conductive film may be deteriorated.
  • the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape.
  • the length of the metal nanowire is not limited.
  • the weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ⁇ 1.000g / m 2, 0.003g / m 2 ⁇ 0.3 g / m 2 is more preferable.
  • the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate.
  • the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
  • the content of the metal nanowires in the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably less than 1% by mass, preferably 0.05% by mass to 0.5% by mass. Is more preferable.
  • the average droplet diameter average particle diameter of the droplets
  • the spray head may be clogged.
  • the average droplet diameter the average particle diameter of the droplets
  • the metal nanowire network means a network structure formed by connecting a plurality of metal nanowires to each other in a network.
  • the said metal nanowire network is formed by passing through the pressurization process mentioned later.
  • the solvent is not particularly limited as long as it is a highly volatile solvent having a boiling point of 138 ° C. or lower, and can be appropriately selected according to the purpose.
  • water (boiling point 100 ° C.); methanol (boiling point 65 ° C.) Ethanol (boiling point 78 ° C.), n-propyl alcohol (boiling point 97 ° C.), i-propyl alcohol (boiling point 82 ° C.), n-butyl alcohol (boiling point 117 ° C.), i-butyl alcohol (boiling point 108 ° C.), sec- Examples thereof include alcohols such as butyl alcohol (boiling point 100 ° C.) and tert-butyl alcohol (boiling point 83 ° C.); aromatic compounds such as p-xylene.
  • a mixed solvent of water and ethanol is preferable in terms of dispersibility of the metal nanowires.
  • a dispersion film having a uniform thickness can be formed by using a highly volatile solvent. Since the boiling point is generally used as a high volatility index, the use of a low boiling point solvent of 138 ° C. or lower is effective for this application.
  • combined by the conventional synthesis method may be sufficient, and a commercially available thing may be used.
  • combining method of the said carbon nanotube According to the objective, it can select suitably, For example, an arc discharge method, a laser evaporation method, a thermal CVD method etc. are mentioned.
  • limiting in particular as said carbon nanotube According to the objective, it can select suitably, A single-walled carbon nanotube (SWNT) may be sufficient, and a multi-walled carbon nanotube (MWNT) may be sufficient. However, the single-walled carbon nanotube is preferable.
  • the carbon nanotube may be a mixture of metallic and semiconducting carbon nanotubes, or may be a selectively separated semiconducting carbon nanotube.
  • Carbon nanotube network-- The carbon nanotube network means a network structure formed by connecting a plurality of carbon nanotubes in a network.
  • the carbon nanotube network is formed through a pressure treatment described later.
  • the transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
  • transparent resin material (binder) there is no restriction
  • a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned,
  • Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
  • the thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
  • the dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups.
  • PVP polyvinyl pyrrolidone
  • amino group-containing compounds such as polyethyleneimine
  • sulfo groups including sulfonates
  • the dispersant when added to the dispersion, it is preferable to add the dispersant so as not to deteriorate the conductivity of the finally obtained conductive film.
  • the said dispersing agent can be made to adsorb
  • the other components are not particularly limited and may be appropriately selected depending on the purpose.
  • a leveling agent e.g., a surfactant, a viscosity modifier, a curing accelerator catalyst, plasticity, an antioxidant, an antioxidant, and the like.
  • Stabilizers e.g., sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium metabisulfite, sodium
  • the spray is not particularly limited as long as the dispersion can be sprayed onto the substrate, and can be appropriately selected according to the purpose.
  • a two-fluid nozzle for spraying may be used.
  • the two-fluid nozzle is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a two-fluid nozzle disclosed in Japanese Patent Application Laid-Open No. 2010-199087.
  • the smoothness of the coating surface (base material) contributes to the surface accuracy of the coating film.
  • MEMS micromachines
  • the droplet diameter of the droplets discharged from the spray nozzle can be reduced, so that the droplets are quickly dried after reaching (landing) the coating surface (base material). It is possible. As a result, a metal nanowire layer excellent in resistance distribution can be formed regardless of the smoothness of the coating surface (base material).
  • the average droplet diameter (average particle diameter of the droplet) of the dispersion (droplet) sprayed by the spray is not particularly limited as long as it is 5 ⁇ m to 50 ⁇ m, and can be appropriately selected according to the purpose. Is preferably 5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m.
  • the average droplet diameter (average particle size of the droplet) is less than 5 ⁇ m, the metal nanowires clog the nozzle, and when it exceeds 50 ⁇ m, the ratio of the surface area to the volume becomes small, and the solvent volatilization in the droplets occurs. Is not enough.
  • the average droplet diameter (average particle diameter of the droplets) can be adjusted by adjusting the size of the nozzle used for the spray and the position of the needle disposed on the nozzle used for the spray.
  • the average droplet diameter (average particle diameter of the droplet) can be measured based on a laser diffraction method using a spray particle size distribution measuring device “LDASA-3500A” manufactured by Nikkiso Co., Ltd.
  • the time from when the droplets are ejected from the spray until they reach the substrate There is no particular limitation on the time from when the droplets are ejected from the spray until the droplets reach the substrate, and can be appropriately selected according to the purpose, but is preferably 0.01 seconds to 3 seconds, 0 .01 seconds to 1 second is more preferable. If the time from when the droplets are ejected from the spray to reach the substrate is less than 0.01 seconds, the degree of volatilization of the solvent in the droplets may not be sufficient, and 0.5 seconds If it exceeds 1, the spray pressure is insufficient or the distance between the spray nozzle and the substrate is inappropriate, so that the necessary conductivity cannot be obtained.
  • the time from when the droplets are ejected from the spray to when the droplets reach the substrate is within the more preferable range.
  • the time from when the droplet is ejected from the spray until it reaches the substrate is the distance between the substrate and the spray, the ejection speed of the droplet, the surface of the substrate in the spray direction of the droplet It can be controlled by adjusting the angle with respect to.
  • the distance between the substrate and the spray is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 mm to 150 mm, more preferably 50 mm to 120 mm. If the distance between the substrate and the spray is less than 30 mm, the degree of volatilization of the solvent in the droplets may not be sufficient, and if it exceeds 150 mm, the required conductivity cannot be obtained due to poor deposition. There is. On the other hand, when the distance between the substrate and the spray is within the more preferable range, it is advantageous from the viewpoint of volatilization degree and droplet deposition stability.
  • the angle of the droplet spraying direction with respect to the surface of the base material is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° to 50 °, more preferably 10 ° to 40 °. If the angle of the droplet spraying direction relative to the surface of the substrate is less than 5 °, the coating may not be possible over a wide area, and if it exceeds 50 °, the required conductivity may not be obtained. On the other hand, if the angle of the droplet spraying direction relative to the surface of the substrate is within the more preferable range, it is advantageous from the viewpoint of droplet landing stability.
  • the said metal nanowire layer formation process is a process of drying the dispersion film which consists of a dispersion formed on the said base material, and forming a metal nanowire layer on the said base material.
  • the heating temperature in the drying is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 60 ° C to 140 ° C, more preferably 80 ° C to 120 ° C, and particularly preferably about 120 ° C.
  • the heating temperature in the drying is less than 60 ° C., the time required for drying becomes long and workability may be deteriorated.
  • the heating temperature exceeds 140 ° C. it is based on the balance with the glass transition temperature (Tg) of the substrate. The material may be distorted.
  • Tg glass transition temperature
  • the heating temperature is within the more preferable range or the particularly preferable temperature, it is advantageous in terms of forming a network of metal nanowires.
  • the heating time in the drying is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably about 5 minutes. If the heating time in the drying is less than 1 minute, the solvent may not be sufficiently removed, and if it exceeds 30 minutes, workability and electrode productivity may be deteriorated. On the other hand, when the heating time is within the more preferable range or the particularly preferable time, it is advantageous in terms of network formation of metal nanowires, workability, and electrode productivity.
  • Metal nanowire layer is formed using a dispersion, and the dispersion is as described above. Further, the metal nanowires, the solvent, the carbon nanotubes, the transparent resin material (binder), the dispersant, and other components that can be contained in the dispersion are all as described above in the description of the dispersion.
  • the resistance value of the metal nanowire layer is measured in the MD direction (flow direction) and the TD direction (perpendicular to the flow) by using a resistivity meter EC-80P to bring the measurement probe into contact with the surface of the metal nanowire layer. It can be measured every 20 mm. Usually, 20 points or more are measured.
  • the thickness of the metal nanowire layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the wet thickness of the dispersion film is preferably 3 ⁇ m to 20 ⁇ m, and more preferably 5 ⁇ m to 15 ⁇ m. If the dispersion film has a wet thickness of less than 3 ⁇ m, it may be difficult to form a metal nanowire layer. If the thickness of the dispersion film exceeds 20 ⁇ m, the distribution of the surface resistance of the transparent conductive film obtained may be uneven. is there. On the other hand, when the wet thickness of the dispersion film is within the more preferable range, it is advantageous in terms of good formation of the dispersion film and uniformity of the surface resistance distribution of the transparent conductive film obtained.
  • the said patterning process is a process of patterning the metal nanowire layer formed on the said base material.
  • the method of the said patterning According to the objective, it can select suitably, For example, the patterning using a mask, the patterning by a laser, etc. are mentioned. Among these, laser patterning is preferable in that finer processing is possible than patterning using a mask.
  • the electrode of the present invention is an electrode manufactured by the manufacturing method of the present invention, and has at least a base material and a metal nanowire layer formed on the base material. It has a member.
  • the base material and the metal nanowire layer are as described above. There is no restriction
  • FIG. 1 is a schematic diagram of a touch panel according to an embodiment of the present invention.
  • a touch panel 100 is formed on an image display member 1 having an electrode of the present invention, a light-transmitting cured resin layer 2 formed on the image display member 1, and a light-transmitting cured resin layer 2.
  • a light transmissive cover member 4 and a light shielding layer 3 interposed between the light transmissive cured resin layer 2 and the light transmissive cover member 4 are provided.
  • FIG. 2 is a schematic diagram of an organic EL substrate according to an embodiment of the present invention.
  • the organic EL substrate 200 of the present invention includes a base material 11 made of glass or the like, an anode 12 formed on the surface of the base material 11, and an organic light emitting layer 13 formed on the surface of the anode 12.
  • An adhesive 17 for bonding the material 11 and the periphery of the sealing material 15 is provided.
  • the base material 11 and the anode 12 constitute an electrode of the present invention.
  • a silver nanowire ink (dispersion) was prepared with the following composition.
  • Metal nanowire Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 ⁇ m (maker value)): compounding amount 0.500 parts by mass (2 )
  • Binder Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass
  • solvent (i) water: blending amount 89.375 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
  • ⁇ Preparation of silver nanowire transparent conductive film The prepared silver nanowire ink (dispersion) was spray-coated using a two-fluid nozzle (manufactured by Acing Technology) to produce a base material A-1 (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-”). 2000 ”, thickness of about 100 ⁇ m) was applied so as to have the wet thickness shown in Table 1, and then dried at 100 ° C./60 minutes in a clean oven to prepare a transparent conductive film.
  • the coating conditions by the spray coating method were as follows.
  • the resistance value of the silver nanowire transparent conductive film was measured as follows. An effective coating area on the surface of the transparent conductive film (silver nanowire layer) by contacting a measurement probe of a manual nondestructive resistance measuring device (Napson Co., Ltd., EC-80P) to the surface of the transparent conductive film (silver nanowire layer) (MD direction: 200 mm, TD direction: 360 mm), the average value ave and the in-plane distribution ⁇ were calculated from the measured values after measurement every 20 mm. The calculation results are shown in Table 1. ⁇ Evaluation of in-plane distribution ⁇ >> The in-plane distribution ⁇ of the resistance value calculated as described above was evaluated in four stages.
  • Example 2 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, a base material A-2 having a thickness of about 180 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution ⁇ . The evaluation results are shown in Table 1.
  • Example 3 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, a base material A-3 having a thickness of about 300 ⁇ m (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-2000”) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution ⁇ . The evaluation results are shown in Table 1.
  • Example 4 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, the base material A-4 having a thickness of about 500 ⁇ m (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-2000”) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution ⁇ . The evaluation results are shown in Table 1.
  • Example 5 (Example 5) In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, the base material B-1 having a thickness of about 100 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. A transparent electrode was prepared in the same manner as in Example 1 except that the following post-treatment was used), and evaluation of the base material, measurement of resistance value, and surface were performed on the produced transparent electrode. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Example 6 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, the base material B-2 having a thickness of about 180 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Example 7 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, the base material B-3 having a thickness of about 300 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Example 8 In Example 1, instead of using the base material A-1 having a thickness of about 100 ⁇ m, the base material B-4 having a thickness of about 500 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Example 9 In Example 4, as a solvent for the silver nanowire ink (dispersion), water (boiling point 100 ° C.) was used instead of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.). In the same manner as in Example 4, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example 10 (Example 10) In Example 4, instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.) as a solvent for the silver nanowire ink (dispersion), ethanol (boiling point 78 ° C.) was used. In the same manner as in Example 4, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example 11 In Example 4, p-xylene (boiling point 138 ° C.) was used as a solvent for the silver nanowire ink (dispersion) instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.). Except for the above, a transparent electrode was produced in the same manner as in Example 4, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example 4 (Comparative Example 1) In Example 4, instead of using a mixed liquid of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.) as a solvent for the silver nanowire ink (dispersion), N, N-dimethylformamide (boiling point 153 ° C.) was used. A transparent electrode was produced in the same manner as in Example 4 except that it was used, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution ⁇ . The evaluation results are shown in Table 1.
  • Example 2 Comparative Example 2
  • ⁇ -butyrolactone (boiling point 204 ° C.) was used as a solvent for the silver nanowire ink (dispersion) instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.).
  • a transparent electrode was produced in the same manner as in Example 4, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example 3 a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 ⁇ m to 3 ⁇ m. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed. The evaluation results are shown in Table 1.
  • Example 12 In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 ⁇ m to 5 ⁇ m. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed. The evaluation results are shown in Table 1.
  • Example 13 In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 ⁇ m to 50 ⁇ m. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed. The evaluation results are shown in Table 1.
  • Example 4 a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 ⁇ m to 60 ⁇ m. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed. The evaluation results are shown in Table 1.
  • Example 14 In Example 1, instead of using the silver nanowire ink having the composition described in Example 1 (the silver nanowire content is 0.50% by mass: the dilution concentration is 99.50% by mass), the silver nanowire having the following composition is used. A transparent electrode was prepared in the same manner as in Example 1 except that the wire ink (the content of silver nanowires was 1.0 mass%: the dilution concentration was 99.00 mass%) was used. The substrate was evaluated, the resistance value was measured, and the in-plane distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Metal nanowire Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 ⁇ m (manufacturer value)): 1.00 parts by mass (2 )
  • Binder Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass (3) solvent: (i) water: blending amount 88.875 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
  • Example 15 In Example 1, instead of using the silver nanowire ink having the composition described in Example 1 (the silver nanowire content is 0.50% by mass: the dilution concentration is 99.50% by mass), the silver nanowire having the following composition is used.
  • a transparent electrode was produced in the same manner as in Example 1 except that wire ink (silver nanowire content: 0.10% by mass: dilution concentration: 99.90% by mass) was used.
  • the substrate was evaluated, the resistance value was measured, and the in-plane distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Metal nanowire Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 ⁇ m (manufacturer value)): compounding amount 0.10 parts by mass (2 )
  • Binder Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass (3) solvent: (i) water: blending amount 89.775 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
  • Example 5 (Comparative Example 5) In Example 1, instead of using silver nanowires, a transparent electrode was prepared in the same manner as in Example 1 except that silver nanoparticles (trade name “T-YP808” manufactured by Seiko PMC) were used. The produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example A In Example 1, instead of using silver nanowires, Example 1 was used except that copper nanowires (manufactured by NOVARILS, manufactured by the company, trade name “NovaWireCu01”, average minor axis diameter 30 nm (manufacturer value)) were used. In the same manner as described above, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution ⁇ evaluation. The evaluation results are shown in Table 1.
  • Example 6 (Comparative Example 6) In Example 4, instead of coating the prepared silver nanowire ink (dispersed liquid) by spray coating, the prepared silver nanowire ink (dispersed liquid) was used with a flat plate slit die (manufactured by Toray Engineering Co., Ltd.). A transparent electrode was prepared in the same manner as in Example 4 except that coating was performed by a flat plate slit die coating method. Evaluation of the substrate, measurement of resistance value, and in-plane distribution ⁇ Evaluation was performed. The evaluation results are shown in Table 1. The coating conditions by the flat plate slit die coating method were as follows. (1) Slit gap: 100um (2) Coating gap: 100um (3) Coating thickness: 20um (4) Coating speed: 100 mm / second
  • Comparative Example 7 In Comparative Example 6, instead of using the base material A-4 having a thickness of about 500 ⁇ m, a base material B-3 having a thickness of about 300 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Comparative Example 6 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance measurement, and surface The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 8 In Comparative Example 6, instead of using the base material A-4 having a thickness of about 500 ⁇ m, the base material B-4 having a thickness of about 500 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company, Inc.) In the same manner as in Comparative Example 6 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance measurement, and surface The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Example 3 In Example 3, instead of applying the prepared silver nanowire ink (dispersion) by spray coating, the prepared silver nanowire ink (dispersion) was applied to a wire bar using a wire bar (count 10). A transparent electrode was produced in the same manner as in Example 3 except that the coating was applied in the same manner as in Example 3. Evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed on the produced transparent electrode. The evaluation results are shown in Table 1. The basis weight of the silver nanowires was about 0.01 g / m 2 .
  • Comparative Example 10 a transparent electrode was produced in the same manner as in Comparative Example 9 except that instead of using the base material A-3 having a thickness of about 300 ⁇ m, the base material A-4 having a thickness of about 500 ⁇ m was used. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution ⁇ were performed. The evaluation results are shown in Table 1.
  • Comparative Example 11 In Comparative Example 9, instead of using the base material A-3 having a thickness of about 300 ⁇ m, a base material B-3 having a thickness of about 300 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company, Inc.) In the same manner as in Comparative Example 9 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Comparative Example 12 In Comparative Example 9, instead of using the base material A-3 having a thickness of about 300 ⁇ m, a base material B-4 having a thickness of about 500 ⁇ m (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Comparative Example 9 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution ⁇ was evaluated. The evaluation results are shown in Table 1.
  • Examples 1 to 16 in which the average droplet diameter of the dispersion liquid is 5 ⁇ m to 50 ⁇ m and the boiling point of the solvent is 138 ° C. or less are as follows: A low-resistance metal nanowire layer (conductive film) can be easily formed, and a metal nanowire layer with a uniform thickness can be formed on a substrate with a non-uniform thickness (low smoothness) You can see that you can.
  • the electrode of the present invention is an alternative to an electrode formed with a conductive film using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers, smartphones, touch panels, LEDs, and liquid crystal panels.
  • ITO indium tin oxide

Abstract

Provided are: an electrode wherein a metal nanowire layer (conductive film) having a low resistance is able to be easily formed and a metal nanowire layer having a uniform thickness is able to be formed even on a base that has an uneven thickness (low smoothness); a method for producing this electrode; and a touch panel and an organic EL substrate, each of which is provided with this electrode. A method for producing an electrode according to the present invention comprises: a spraying step wherein a dispersion liquid, which is obtained by dispersing metal nanowires in a solvent, is sprayed onto a base by means of a spray; and a metal nanowire layer formation step wherein a metal nanowire layer is formed on the base by drying a dispersion film that is formed of the dispersion liquid and is formed on the base. The average droplet diameter of the dispersion liquid sprayed in the spraying step is 5-50 μm, and the boiling point of the solvent is 138°C or less.

Description

電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機EL基板ELECTRODE, ITS MANUFACTURING METHOD, TOUCH PANEL EQUIPPED WITH THE ELECTRODE 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2014-185517号(2014年9月11日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2014-185517 (filed on September 11, 2014), the entire disclosure of which is incorporated herein by reference.
 本発明は、電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機EL基板に関し、特に、導電膜として金属ナノワイヤーを含む金属ナノワイヤー層が形成された電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機EL基板に関する。 The present invention relates to an electrode, a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate, and in particular, an electrode on which a metal nanowire layer including a metal nanowire is formed as a conductive film, a manufacturing method thereof, and the electrode. The present invention relates to a touch panel and an organic EL substrate.
 タッチパネル等の表示パネルの表示面に設けられる透明導電膜、表示パネルの表示面側に配置される情報入力装置の透明導電膜、更には、有機EL基板のガラス基材又はポリエチレンテレフタレート(PET)等のプラスチック基材上に形成される透明導電膜等、光透過性が要求される透明導電膜には、インジウムスズ酸化物(ITO)のような金属酸化物が用いられてきた。 A transparent conductive film provided on the display surface of a display panel such as a touch panel, a transparent conductive film of an information input device arranged on the display surface side of the display panel, a glass substrate of an organic EL substrate, polyethylene terephthalate (PET), or the like Metal oxides such as indium tin oxide (ITO) have been used for transparent conductive films that require light transmission, such as transparent conductive films formed on plastic substrates.
 また、近年、金属酸化物を用いた透明導電膜に代えて、塗布や印刷による成膜が可能で、しかも曲げやたわみに対する耐性も高く、且つ低抵抗を実現可能な金属ナノワイヤーを用いた透明導電膜が検討されている。金属ナノワイヤーを用いた透明導電膜は、レアメタルであるインジウムを使わない次世代の透明導電膜としても注目されている(例えば、特許文献1,2参照)。 In recent years, instead of a transparent conductive film using a metal oxide, transparent using metal nanowires that can be formed by coating or printing, have high resistance to bending and bending, and can realize low resistance. Conductive films have been studied. A transparent conductive film using metal nanowires has attracted attention as a next-generation transparent conductive film that does not use indium, which is a rare metal (see, for example, Patent Documents 1 and 2).
 この金属ナノワイヤーを用いた透明導電膜は、例えば、金属ナノワイヤーを含む分散液が、平盤スリットダイ塗布、ワイヤーバー塗布、アプリケーター塗布、キャピラリー塗布、スピンコート等の塗布方式を用いて基材上に塗布され、塗布された分散液が乾燥されることにより、基材上に形成される。金属ナノワイヤーを用いた透明導電膜は、低抵抗化が可能であるのみならず、溶剤に分散させて塗工により形成することができるため、ITO等とは異なり簡易な設備で施工が可能である点で有利である。 The transparent conductive film using the metal nanowire is, for example, a dispersion containing the metal nanowire is formed by using a coating method such as flat plate slit die coating, wire bar coating, applicator coating, capillary coating, and spin coating. It is formed on the base material by being applied onto the substrate and drying the applied dispersion. A transparent conductive film using metal nanowires can not only reduce resistance, but can also be formed by coating by dispersing in a solvent, so it can be constructed with simple equipment unlike ITO. It is advantageous in some respects.
 しかしながら、上記塗布方式を用いた塗布により得られた透明導電膜は、基材の厚みが均一であれば問題ないが、基材の厚みが不均一である場合、即ち、基材の面内厚み分布ΔT(Tmax-Tmin)が大きい場合は、十分に狭い範囲の抵抗値の面内分布σが得られない(例えば、基材の面内厚み分布ΔTが30μmの場合は、抵抗値の面内分布σが20Ω/sqである)という問題があった。 However, the transparent conductive film obtained by coating using the above coating method has no problem as long as the thickness of the base material is uniform, but when the thickness of the base material is not uniform, that is, the in-plane thickness of the base material. When the distribution ΔT (Tmax−Tmin) is large, the in-plane distribution σ of the resistance value in a sufficiently narrow range cannot be obtained (for example, when the in-plane thickness distribution ΔT of the substrate is 30 μm, the resistance value in-plane The distribution σ is 20Ω / sq).
 斯かる問題を解決すべく、上記塗布方式の代わりに、スプレー塗布方式を用いることが検討されている。 In order to solve such a problem, it is considered to use a spray coating method instead of the above coating method.
 しかしながら、通常のスプレー塗布方式を用いるだけでは、スプレー塗布により基板に到達(着弾)した分散液の液滴が流動して、塗布厚みが不均一となり、図4に示すように、塗布層40の厚い部分(基板50の薄い部分)では抵抗値が増加し、塗布層40の薄い部分(基板50の厚い部分)では抵抗値が減少して、十分に狭い範囲の抵抗値の面内分布σが得られないという問題があった。 However, if only a normal spray coating method is used, the droplets of the dispersion liquid that reaches (lands) the substrate by spray coating flow and the coating thickness becomes non-uniform, and as shown in FIG. The resistance value increases in the thick part (thin part of the substrate 50), and the resistance value decreases in the thin part of the coating layer 40 (thick part of the substrate 50), and the in-plane distribution σ of the resistance value in a sufficiently narrow range is obtained. There was a problem that it could not be obtained.
 また、厚みが不均一な基材に対して金属ナノ粒子をスプレー法にて塗布し、電極を作製する技術が知られている(例えば、特許文献3参照)。 Also, a technique is known in which metal nanoparticles are applied to a substrate having a non-uniform thickness by a spray method to produce an electrode (see, for example, Patent Document 3).
 しかしながら、特許文献3の技術は、液滴が基材に到達(着弾)した後の流動を抑えるものではなく、ナノワイヤーに関するものでもない。 However, the technique of Patent Document 3 does not suppress the flow after the droplets reach (land) the substrate, and does not relate to nanowires.
特表2010-507199号公報Special table 2010-507199 特表2010-525526号公報Special table 2010-525526 特開2010-137220号公報JP 2010-137220 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、厚みが不均一な(平滑性が低い)基材(例えば、図3における50)に対しても均一な厚みの金属ナノワイヤー層(例えば、図3における30)を形成することができる電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機EL基板を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention can easily form a low-resistance metal nanowire layer (conductive film) and has a non-uniform thickness (low smoothness) (for example, 50 in FIG. 3). It is another object of the present invention to provide an electrode capable of forming a metal nanowire layer (for example, 30 in FIG. 3) having a uniform thickness, a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate.
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、厚みが不均一な基材に対して金属ナノワイヤーを含む分散液をスプレー法にて噴霧する際に、噴霧された分散液の平均液滴径と溶剤の沸点とを調整することにより、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、厚みが不均一な(平滑性が低い)基材に対しても均一な厚みの金属ナノワイヤー層を形成することができることを見出し、本発明の完成に至った。 As a result of diligent studies to achieve the above-mentioned object, the present inventors have sprayed a dispersion when spraying a dispersion containing metal nanowires on a substrate having a non-uniform thickness by a spray method. By adjusting the average droplet diameter of the liquid and the boiling point of the solvent, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the thickness is non-uniform (low smoothness). The present inventors have found that a metal nanowire layer having a uniform thickness can be formed even on a substrate, and have completed the present invention.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
 <1> 金属ナノワイヤーが溶剤に分散した分散液をスプレーにより基材に向かって噴霧する噴霧工程と、前記基材上に形成された分散液からなる分散膜を乾燥して、前記基材上に金属ナノワイヤー層を形成する金属ナノワイヤー層形成工程とを含む電極の製造方法であって、前記噴霧工程において噴霧された分散液の平均液滴径が5μm~50μmであり、かつ、前記溶剤の沸点が138℃以下であることを特徴とする、電極の製造方法である。
 該<1>に記載の電極の製造方法において、平均液滴径(液滴の平均粒径)と溶剤の沸点とを調整することで、前記液滴が噴霧されて前記基材に到達(着弾)するまでの間に、前記液滴における溶剤が揮発して、前記液滴が前記基材に到達(着弾)した後に流動し難くなり、均一な厚みの膜を形成する。その結果、該<1>に記載の電極の製造方法によれば、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、厚みが不均一な(平滑性が低い)基材に対しても均一な厚みの金属ナノワイヤー層を形成することができる。また、金属ナノワイヤーを使用することで、低濃度の金属ナノワイヤー分散液であっても沈降無しでスプレー塗布を実施することが可能である。
 なお、本明細書において、「分散液をスプレーにより基材に向かって噴霧する」は、スプレーのノズルの吐出口が基材方向に向かっていて、分散液(液滴)がスプレーから基材方向に吐出される場合のみならず、例えば、スプレーのノズルの吐出口が基材と反対方向に向かっていて、分散液(液滴)がスプレーから基材と反対方向に吐出され、該吐出された分散液(液滴)が外力(重力、風等)の影響により基材に向かって噴霧される場合をも含む。
 また、本明細書において、「電極」は、「基材と、該基材上に形成された金属ナノワイヤー層とを備える構造体」を意味する。
 また、本明細書において、「平均液滴径(液滴の平均粒径)」は、「レーザー回折式スプレー粒子径分布測定装置を用いて測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径」を指す。
 <2> 前記液滴が前記スプレーから吐出されてから前記基材上に到達するまでの時間が0.01秒間~1.0秒間である、前記<1>に記載の電極の製造方法である。
 <3> 前記分散液中における金属ナノワイヤー含有量が1質量%未満である、前記<1>又は<2>に記載の電極の製造方法である。
 <4> 前記金属ナノワイヤー層の抵抗値の標準偏差が20以下である、前記<1>から<3>のいずれかに記載の電極の製造方法である。
 <5> 前記噴霧工程の前において、前記基材は、厚みの最大値と最小値との差が38μm以上である、前記<1>から<4>のいずれかに記載の電極の製造方法である。
 <6> 前記スプレーが2流体スプレーである、前記<1>から<5>のいずれかに記載の電極の製造方法である。
 <7> 前記金属ナノワイヤーが、銀ナノワイヤーである、前記<1>から<6>のいずれかに記載の電極の製造方法である。
 <8> 前記基材上に形成された金属ナノワイヤー層をパターニングするパターニング工程をさらに含む、前記<1>から<7>のいずれかに記載の電極の製造方法である。
 <9> 前記<1>から<8>のいずれかに記載の電極の製造方法により製造されたことを特徴とする、電極である。
 <10> 前記<9>に記載の電極を備えることを特徴とする、タッチパネルである。
 <11> 前記<9>に記載の電極を備えることを特徴とする、有機EL基板である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A spray process of spraying a dispersion liquid in which metal nanowires are dispersed in a solvent toward a base material by spraying, and drying a dispersion film formed of the dispersion liquid formed on the base material. And a metal nanowire layer forming step of forming a metal nanowire layer on the electrode, wherein the dispersion liquid sprayed in the spraying step has an average droplet diameter of 5 μm to 50 μm, and the solvent The electrode has a boiling point of 138 ° C. or lower.
In the method for producing an electrode according to <1>, by adjusting the average droplet diameter (average particle diameter of the droplet) and the boiling point of the solvent, the droplets are sprayed to reach the substrate (landing) ), The solvent in the droplets volatilizes, and after the droplets reach (land) the substrate, it becomes difficult to flow, and a film having a uniform thickness is formed. As a result, according to the electrode manufacturing method described in <1>, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the thickness is non-uniform (low smoothness). ) A metal nanowire layer having a uniform thickness can be formed on the substrate. Moreover, even if it is a low concentration metal nanowire dispersion liquid by using metal nanowire, it is possible to implement spray application without sedimentation.
In this specification, “spraying the dispersion toward the substrate by spraying” means that the discharge port of the spray nozzle is directed toward the substrate, and the dispersion (droplet) is directed from the spray toward the substrate. For example, the discharge port of the spray nozzle is directed in the opposite direction to the substrate, and the dispersion liquid (droplet) is discharged from the spray in the opposite direction to the substrate. This includes the case where the dispersion liquid (droplet) is sprayed toward the substrate due to the influence of external force (gravity, wind, etc.).
Further, in the present specification, the “electrode” means “a structure including a base material and a metal nanowire layer formed on the base material”.
Further, in this specification, “average droplet diameter (average particle diameter of droplet)” is the cumulative value calculated from the small diameter side in the particle size distribution measured using a laser diffraction spray particle size distribution measuring device. It refers to the “particle diameter at which the volume is 50%”.
<2> The method for producing an electrode according to <1>, wherein the time from when the droplets are ejected from the spray to when the droplets reach the substrate is 0.01 seconds to 1.0 seconds. .
<3> The method for producing an electrode according to <1> or <2>, wherein the metal nanowire content in the dispersion is less than 1% by mass.
<4> The electrode manufacturing method according to any one of <1> to <3>, wherein a standard deviation of a resistance value of the metal nanowire layer is 20 or less.
<5> Before the spraying step, the substrate is a method for producing an electrode according to any one of <1> to <4>, wherein a difference between a maximum value and a minimum value of the thickness is 38 μm or more. is there.
<6> The method for producing an electrode according to any one of <1> to <5>, wherein the spray is a two-fluid spray.
<7> The method for producing an electrode according to any one of <1> to <6>, wherein the metal nanowire is a silver nanowire.
<8> The method for producing an electrode according to any one of <1> to <7>, further including a patterning step of patterning the metal nanowire layer formed on the substrate.
<9> An electrode manufactured by the method for manufacturing an electrode according to any one of <1> to <8>.
<10> A touch panel comprising the electrode according to <9>.
<11> An organic EL substrate comprising the electrode according to <9>.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、厚みが不均一な(平滑性が低い)基材に対しても均一な厚みの金属ナノワイヤー層を形成することができる電極及びその製造方法、並びに前記電極を備えるタッチパネル及び有機EL基板を提供することができる。 According to the present invention, the conventional problems can be solved, the object can be achieved, a low-resistance metal nanowire layer (conductive film) can be easily formed, and the thickness is not uniform. It is possible to provide an electrode capable of forming a metal nanowire layer having a uniform thickness even on a non-smooth substrate (low smoothness), a manufacturing method thereof, a touch panel including the electrode, and an organic EL substrate.
図1は、本発明の一実施形態に係るタッチパネルの模式図である。FIG. 1 is a schematic diagram of a touch panel according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る有機EL基板の模式図である。FIG. 2 is a schematic diagram of an organic EL substrate according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る電極の模式図である。FIG. 3 is a schematic view of an electrode according to an embodiment of the present invention. 図4は、従来の電極の製造方法の過程を示す模式図である。FIG. 4 is a schematic view showing a process of a conventional electrode manufacturing method.
(電極の製造方法)
 本発明の透明導電膜の製造方法は、少なくとも、噴霧工程と、金属ナノワイヤー層形成工程とを含み、更に、必要に応じて適宜選択した、パターニング工程等のその他の工程を含む。
(Method for manufacturing electrode)
The method for producing a transparent conductive film of the present invention includes at least a spraying step and a metal nanowire layer forming step, and further includes other steps such as a patterning step, which are appropriately selected as necessary.
<噴霧工程>
 前記噴霧工程は、金属ナノワイヤーが溶剤に分散した分散液をスプレーにより基材に向かって噴霧する工程である。
<Spraying process>
The said spraying process is a process of spraying the dispersion liquid which metal nanowire disperse | distributed to the solvent toward a base material with a spray.
 <<基材>>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができるが、無機材料、プラスチック材料等の可視光に対して透過性を有する材料からなる透明基材が好ましい。
 前記透明基材は、透明導電膜を有する透明電極に必要とされる膜厚を有しており、例えばフレキシブルな屈曲性を実現できる程度に薄膜化されたフィルム状(シート状)、又は適度の屈曲性と剛性を実現できる程度の膜厚を有する平板状とすることができる。
 前記無機材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、石英、サファイア、ガラス、などが挙げられる。
 前記プラスチック材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)、などの公知の高分子材料が挙げられる。斯かるプラスチック材料を用いて透明基材を構成した場合、生産性の観点から透明基材の膜厚を5μm~500μmとすることが好ましいが、この範囲に特に限定されるものではない。
<< Base material >>
There is no restriction | limiting in particular as said base material, Although it can select suitably according to the objective, The transparent base material which consists of material which has transparency with respect to visible light, such as an inorganic material and a plastic material, is preferable.
The transparent substrate has a film thickness required for a transparent electrode having a transparent conductive film. For example, the film is formed into a film (sheet) thinned to such an extent that flexible flexibility can be realized, or an appropriate amount. It can be made into the flat form which has a film thickness of the grade which can implement | achieve flexibility and rigidity.
There is no restriction | limiting in particular as said inorganic material, According to the objective, it can select suitably, For example, quartz, sapphire, glass, etc. are mentioned.
There is no restriction | limiting in particular as said plastic material, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), a polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy Known polymer materials such as resin, urea resin, urethane resin, melamine resin, and cycloolefin polymer (COP) can be used. When a transparent substrate is constituted using such a plastic material, the film thickness of the transparent substrate is preferably 5 μm to 500 μm from the viewpoint of productivity, but is not particularly limited to this range.
 前記基材の厚みの最大値と最小値との差が38μm未満であれば、例えば、平板スリットダイやワイヤーバー等による塗布を行った場合でも、均一な厚みの金属ナノワイヤー層を形成することができることがある。しかしながら、前記基材の厚みの最大値と最小値との差が38μm以上の場合は、本発明の電極の製造方法を用いなければ、金属ナノワイヤー層の塗布厚みに大きなバラツキが生じて、金属ナノワイヤー層の抵抗値にもバラツキが生じてしまう。
 なお、基材の厚みは、マイクロゲージを用いて、MD方向(流れ方向)及びTD方向(流れに直角方向)に測定することができる。
If the difference between the maximum value and the minimum value of the thickness of the base material is less than 38 μm, for example, a metal nanowire layer having a uniform thickness is formed even when coating with a flat plate slit die or a wire bar is performed. There are things you can do. However, when the difference between the maximum value and the minimum value of the thickness of the base material is 38 μm or more, the coating thickness of the metal nanowire layer varies greatly without using the electrode manufacturing method of the present invention. The resistance value of the nanowire layer also varies.
In addition, the thickness of a base material can be measured in MD direction (flow direction) and TD direction (perpendicular to a flow) using a micro gauge.
<<分散液>>
 前記分散液は、少なくとも、金属ナノワイヤーと、溶剤とを含んでなり、更に必要に応じて、カーボンナノチューブ、透明樹脂材料(バインダー)、分散剤、その他の成分、などを含んでなる。
<< Dispersion >>
The dispersion includes at least metal nanowires and a solvent, and further includes carbon nanotubes, a transparent resin material (binder), a dispersant, and other components as necessary.
 前記分散液の分散手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、攪拌、超音波分散、ビーズ分散、混錬、ホモジナイザー処理、加圧分散処理、などが好適に挙げられる。
 前記分散液の粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、1mPa・s~50mPa・sが好ましく、10mPa・s~40mPa・sがより好ましい。
 前記分散液の粘度が、1mPa・s未満又は50mPa・s超であると、分散膜形成工程において分散膜の形成不良を引き起こし、表面抵抗の分布を不均一にすることがある。一方、前記分散液の粘度が、前記より好ましい範囲内であると、分散膜の形成不良を防止して、表面抵抗の分布を均一化できる点で有利である。
The dispersion method of the dispersion is not particularly limited and may be appropriately selected depending on the purpose. For example, stirring, ultrasonic dispersion, bead dispersion, kneading, homogenizer treatment, pressure dispersion treatment, and the like are preferable. It is mentioned in.
The viscosity of the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 mPa · s to 50 mPa · s, and more preferably 10 mPa · s to 40 mPa · s.
If the viscosity of the dispersion is less than 1 mPa · s or more than 50 mPa · s, it may cause a poor formation of the dispersion film in the dispersion film forming step, and the surface resistance distribution may be non-uniform. On the other hand, when the viscosity of the dispersion is within the more preferable range, it is advantageous in that formation failure of the dispersion film can be prevented and the distribution of surface resistance can be made uniform.
-金属ナノワイヤー-
 前記金属ナノワイヤーは、金属を用いて構成されたものであって、nmオーダーの径を有する微細なワイヤーであり、アスペクト比が1:100以上である。
 前記アスペクト比としては、1:100以上である限り、特に制限はなく、目的に応じて適宜選択することができるが、導電膜のネットワーク形成の点で、1:500以上が好ましい。
 本発明の電極の製造方法において、金属ナノワイヤーの代わりに金属ナノ粒子を使用すると、分散液内での金属ナノ粒子の沈降が大きくなり、塗布時にムラが生じやすい。よって、本発明の電極の製造方法では、金属ナノワイヤーを使用する。
 前記金属ナノワイヤーの構成元素としては、金属元素である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Sn、Al、Tl、Zn、Nb、Ti、In、W、Mo、Cr、Fe、V、Ta、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、AgやCuが、低抵抗で導電性が高い点で、好ましい。
-Metal nanowires-
The metal nanowire is composed of a metal and is a fine wire having a diameter on the order of nm, and has an aspect ratio of 1: 100 or more.
The aspect ratio is not particularly limited as long as it is 1: 100 or more, and can be appropriately selected according to the purpose. However, it is preferably 1: 500 or more from the viewpoint of forming a conductive film network.
In the method for producing an electrode of the present invention, when metal nanoparticles are used instead of metal nanowires, the precipitation of metal nanoparticles in the dispersion increases, and unevenness tends to occur during coating. Therefore, metal nanowires are used in the electrode manufacturing method of the present invention.
The constituent element of the metal nanowire is not particularly limited as long as it is a metal element, and can be appropriately selected according to the purpose. For example, Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Examples include Ru, Os, Fe, Co, Sn, Al, Tl, Zn, Nb, Ti, In, W, Mo, Cr, Fe, V, Ta, and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, Ag and Cu are preferable in terms of low resistance and high conductivity.
 前記金属ナノワイヤーの平均短軸径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm超500nm以下が好ましく、10nm~100nmがより好ましい。
 前記金属ナノワイヤーの平均短軸径が、1nm以下であると、金属ナノワイヤーの導電率が劣化して、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、500nmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの平均短軸径が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The average minor axis diameter of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably more than 1 nm and not more than 500 nm, and more preferably 10 nm to 100 nm.
When the average minor axis diameter of the metal nanowire is 1 nm or less, the conductivity of the metal nanowire deteriorates, and the transparent conductive film containing the metal nanowire may not function as a conductive film. If it exceeds, the total light transmittance and haze of the transparent conductive film containing the metal nanowires may deteriorate. On the other hand, when the average minor axis diameter of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
 前記金属ナノワイヤーの平均長軸長としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~1000μmが好ましく、1μm~100μmがより好ましい。
 前記金属ナノワイヤーの平均長軸長が、1μm未満であると、金属ナノワイヤー同士がつながりにくく、該金属ナノワイヤーを含む透明導電膜が導電膜として機能しにくいことがあり、1000μmを超えると、前記金属ナノワイヤーを含む透明導電膜の全光線透過率やヘイズ(Haze)が劣化したり、透明導電膜を形成する際に用いる分散液における金属ナノワイヤーの分散性が劣化することがある。一方、前記金属ナノワイヤーの平均長軸長が前記より好ましい範囲内であると、前記金属ナノワイヤーを含む透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
 なお、金属ナノワイヤーの平均短軸径及び平均長軸長は、走査型電子顕微鏡により測定可能な、数平均短軸径及び数平均長軸長である。より具体的には、金属ナノワイヤーを少なくとも100本以上測定し、電子顕微鏡写真から画像解析装置を用いて、それぞれのナノワイヤーの投影径及び投影面積を算出する。投影径を、短軸径とした。また、下記式に基づき、長軸長を算出した。
長軸長=投影面積/投影径
 平均短軸径は、短軸径の算術平均値とした。平均長軸長は、長軸長の算術平均値とした。
The average major axis length of the metal nanowire is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 1000 μm, and more preferably 1 μm to 100 μm.
When the average major axis length of the metal nanowires is less than 1 μm, the metal nanowires are not easily connected to each other, and the transparent conductive film containing the metal nanowires may not function as a conductive film. The total light transmittance and haze of the transparent conductive film containing the metal nanowire may be deteriorated, or the dispersibility of the metal nanowire in the dispersion used when forming the transparent conductive film may be deteriorated. On the other hand, when the average major axis length of the metal nanowire is within the more preferable range, it is advantageous in that the transparent conductive film including the metal nanowire has high conductivity and high transparency.
The average minor axis diameter and the average major axis length of the metal nanowires are the number average minor axis diameter and the number average major axis length that can be measured with a scanning electron microscope. More specifically, at least 100 metal nanowires are measured, and the projected diameter and projected area of each nanowire are calculated from an electron micrograph using an image analyzer. The projected diameter was the minor axis diameter. Further, the major axis length was calculated based on the following formula.
Long axis length = projected area / projected diameter The average minor axis diameter was an arithmetic average value of minor axis diameters. The average major axis length was the arithmetic average value of the major axis length.
 更に、前記金属ナノワイヤーは、金属ナノ粒子が数珠状に繋がってワイヤー形状を有しているものでもよい。この場合、前記金属ナノワイヤーの長さは限定されない。 Furthermore, the metal nanowire may have a wire shape in which metal nanoparticles are connected in a bead shape. In this case, the length of the metal nanowire is not limited.
 前記金属ナノワイヤーの目付量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001g/m2~1.000g/m2が好ましく、0.003g/m2~0.3g/m2がより好ましい。
 前記金属ナノワイヤーの目付量が、0.001g/m2未満であると、金属ナノワイヤーが十分に金属ナノワイヤー層中に存在せず、透明導電膜の導電性が劣化することがあり、1.000g/m2を超えると、透明導電膜の全光線透過率やヘイズ(Haze)が劣化することがある。一方、前記金属ナノワイヤーの目付量が前記より好ましい範囲内であると、透明導電膜の導電性が高く、且つ透明性が高い点で有利である。
The weight per unit area of the metal nanowires is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001g / m 2 ~ 1.000g / m 2, 0.003g / m 2 ~ 0.3 g / m 2 is more preferable.
When the basis weight of the metal nanowire is less than 0.001 g / m 2 , the metal nanowire is not sufficiently present in the metal nanowire layer, and the conductivity of the transparent conductive film may be deteriorated. If it exceeds .000 g / m 2 , the total light transmittance and haze of the transparent conductive film may deteriorate. On the other hand, when the basis weight of the metal nanowire is within the more preferable range, it is advantageous in that the conductivity of the transparent conductive film is high and the transparency is high.
 前記分散液中における前記金属ナノワイヤーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%未満が好ましく、0.05質量%~0.5質量%がより好ましい。
 前記含有量が、1質量%以上であると、平均液滴径(液滴の平均粒径)を制御できなかったり、スプレーヘッドが詰まったりすることがある。一方、前記含有量が、前記より好ましい範囲内であると、平均液滴径(液滴の平均粒径)を容易に制御できる点で有利である。
The content of the metal nanowires in the dispersion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably less than 1% by mass, preferably 0.05% by mass to 0.5% by mass. Is more preferable.
When the content is 1% by mass or more, the average droplet diameter (average particle diameter of the droplets) may not be controlled, or the spray head may be clogged. On the other hand, when the content is within the more preferable range, it is advantageous in that the average droplet diameter (the average particle diameter of the droplets) can be easily controlled.
--金属ナノワイヤーネットワーク--
 なお、前記金属ナノワイヤーネットワークとは、複数の金属ナノワイヤーが互いに網状に連結されて形成されたネットワーク構造を意味する。前記金属ナノワイヤーネットワークは、後述する加圧処理を経ることにより形成される。
-Metal nanowire network-
The metal nanowire network means a network structure formed by connecting a plurality of metal nanowires to each other in a network. The said metal nanowire network is formed by passing through the pressurization process mentioned later.
-溶剤-
 前記溶剤としては、沸点が138℃以下の高揮発性溶剤である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、水(沸点100℃);メタノール(沸点65℃)、エタノール(沸点78℃)、n-プロピルアルコール(沸点97℃)、i-プロピルアルコール(沸点82℃)、n-ブチルアルコール(沸点117℃)、i-ブチルアルコール(沸点108℃)、sec-ブチルアルコール(沸点100℃)、tert-ブチルアルコール(沸点83℃)等のアルコール;p-キシレン等の芳香族化合物;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、水とエタノールの混合溶剤が、金属ナノワイヤーの分散性の点で、好ましい。
 このように、高揮発性溶剤を使用することにより、均一な厚みの分散膜を形成することができる。高揮発性の指標としては、一般に沸点が用いられるため、138℃以下の低沸点溶剤の使用が、本用途には効果的である。
-solvent-
The solvent is not particularly limited as long as it is a highly volatile solvent having a boiling point of 138 ° C. or lower, and can be appropriately selected according to the purpose. For example, water (boiling point 100 ° C.); methanol (boiling point 65 ° C.) Ethanol (boiling point 78 ° C.), n-propyl alcohol (boiling point 97 ° C.), i-propyl alcohol (boiling point 82 ° C.), n-butyl alcohol (boiling point 117 ° C.), i-butyl alcohol (boiling point 108 ° C.), sec- Examples thereof include alcohols such as butyl alcohol (boiling point 100 ° C.) and tert-butyl alcohol (boiling point 83 ° C.); aromatic compounds such as p-xylene. These may be used individually by 1 type and may use 2 or more types together.
Among these, a mixed solvent of water and ethanol is preferable in terms of dispersibility of the metal nanowires.
Thus, a dispersion film having a uniform thickness can be formed by using a highly volatile solvent. Since the boiling point is generally used as a high volatility index, the use of a low boiling point solvent of 138 ° C. or lower is effective for this application.
-カーボンナノチューブ-
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、従来の合成法で合成されるものでもよく、また、市販のものであってもよい。
 前記カーボンナノチューブの合成法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アーク放電法、レーザー蒸発法、熱CVD法、などが挙げられる。
 前記カーボンナノチューブとしては、特に制限はなく、目的に応じて適宜選択することができ、単層カーボンナノチューブ(SWNT)であってもよく、多層カーボンナノチューブ(MWNT)であってもよい。但し、前記単層カーボンナノチューブが好ましい。
 前記カーボンナノチューブとしては、金属性と半導体性のカーボンナノチューブの混合物であってよく、また、また選択的に分離された半導体性カーボンナノチューブであってもよい。
-carbon nanotube-
There is no restriction | limiting in particular as said carbon nanotube, According to the objective, it can select suitably, The thing synthesize | combined by the conventional synthesis method may be sufficient, and a commercially available thing may be used.
There is no restriction | limiting in particular as the synthesis | combining method of the said carbon nanotube, According to the objective, it can select suitably, For example, an arc discharge method, a laser evaporation method, a thermal CVD method etc. are mentioned.
There is no restriction | limiting in particular as said carbon nanotube, According to the objective, it can select suitably, A single-walled carbon nanotube (SWNT) may be sufficient, and a multi-walled carbon nanotube (MWNT) may be sufficient. However, the single-walled carbon nanotube is preferable.
The carbon nanotube may be a mixture of metallic and semiconducting carbon nanotubes, or may be a selectively separated semiconducting carbon nanotube.
--カーボンナノチューブネットワーク--
 前記カーボンナノチューブネットワークとは、複数のカーボンナノチューブが互いに網状に連結されて形成されたネットワーク構造を意味する。前記カーボンナノチューブネットワークは、後述する加圧処理を経ることにより形成される。
--- Carbon nanotube network--
The carbon nanotube network means a network structure formed by connecting a plurality of carbon nanotubes in a network. The carbon nanotube network is formed through a pressure treatment described later.
-透明樹脂材料(バインダー)-
 前記透明樹脂材料(バインダー)は、前記金属ナノワイヤー、及び任意に含まれる前記カーボンナノチューブを分散させるものである。
 前記透明樹脂材料(バインダー)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、既知の透明な、天然高分子樹脂、合成高分子樹脂、などが挙げられ、熱可塑性樹脂であってもよく、また、熱、光、電子線、放射線で硬化する熱(光)硬化性樹脂であってもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記熱可塑性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、などが挙げられる。
 前記熱(光)硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂、アジド基やジアジリン基などの感光基を主鎖及び側鎖の少なくともいずれかに導入したポリマー、などが挙げられる。
-Transparent resin material (binder)-
The transparent resin material (binder) disperses the metal nanowires and the carbon nanotubes optionally included.
There is no restriction | limiting in particular as said transparent resin material (binder), According to the objective, it can select suitably, For example, a known transparent natural polymer resin, synthetic polymer resin, etc. are mentioned, Thermoplastic It may be a resin, or may be a heat (light) curable resin that is cured by heat, light, electron beam, or radiation. These may be used individually by 1 type and may use 2 or more types together.
The thermoplastic resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorine Polypropylene, vinylidene fluoride, ethylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, and the like.
The thermosetting (photo) curable resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silicon resins such as melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, and acrylic-modified silicate. And a polymer in which a photosensitive group such as an azide group or a diazirine group is introduced into at least one of a main chain and a side chain.
-分散剤-
 前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルピロリドン(PVP);ポリエチレンイミン等のアミノ基含有化合物;スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基等の官能基を有する化合物で金属に吸着可能なもの;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記分散剤を、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの表面に吸着させてもよい。これにより、前記金属ナノワイヤー又は任意に含まれるカーボンナノチューブの分散性を向上させることができる。
-Dispersant-
The dispersant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polyvinyl pyrrolidone (PVP); amino group-containing compounds such as polyethyleneimine; sulfo groups (including sulfonates) and sulfonyl groups. , Sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group, epoxy group, isocyanate group, cyano group, vinyl group, A compound having a functional group such as a thiol group or a carbinol group, which can be adsorbed to a metal; These may be used alone or in combination of two or more.
You may make the said dispersing agent adsorb | suck to the surface of the said metal nanowire or the carbon nanotube contained arbitrarily. Thereby, the dispersibility of the said metal nanowire or the carbon nanotube contained arbitrarily can be improved.
 また、前記分散剤を前記分散液に対して添加する場合は、最終的に得られる導電膜の導電性が劣化しない程度の添加量にすることが好ましい。これにより、前記分散剤を、導電膜の導電性が劣化しない程度の量で金属ナノワイヤー又は任意に含まれるカーボンナノチューブに吸着させることができる。 In addition, when the dispersant is added to the dispersion, it is preferable to add the dispersant so as not to deteriorate the conductivity of the finally obtained conductive film. Thereby, the said dispersing agent can be made to adsorb | suck to the metal nanowire or the carbon nanotube arbitrarily contained in the quantity which is the extent which the electroconductivity of an electrically conductive film does not deteriorate.
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、レベリング剤、界面活性剤、粘度調整剤、硬化促進触媒、可塑性、酸化防止剤や硫化防止剤等の安定剤、などが挙げられる。
-Other ingredients-
The other components are not particularly limited and may be appropriately selected depending on the purpose. For example, a leveling agent, a surfactant, a viscosity modifier, a curing accelerator catalyst, plasticity, an antioxidant, an antioxidant, and the like. Stabilizers, and the like.
<<スプレーによる噴霧>>
-スプレー-
 前記スプレーとしては、前記分散液を基材上に向けて噴霧可能なものである限り、特に制限はなく、目的に応じて適宜選択することができ、一流体ノズルであってもよく、気体とともに噴霧する二流体ノズルであってもよい。これらの中でも、噴霧する分散液の平均液滴径(液滴の平均粒径)をより小さくできる観点、及び、平均液滴径(液滴の平均粒径)を容易に調節できる観点から、二流体ノズルが好ましい。
 前記二流体ノズルとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開2010-199087号公報等に示される二流体ノズル、などが挙げられる。
<< Spray spray >>
-spray-
The spray is not particularly limited as long as the dispersion can be sprayed onto the substrate, and can be appropriately selected according to the purpose. A two-fluid nozzle for spraying may be used. Among these, from the viewpoint that the average droplet diameter (average particle diameter of the droplet) of the dispersion to be sprayed can be further reduced and the average droplet diameter (average particle diameter of the droplet) can be easily adjusted, two A fluid nozzle is preferred.
The two-fluid nozzle is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a two-fluid nozzle disclosed in Japanese Patent Application Laid-Open No. 2010-199087.
 塗布方式としてスプレーによる噴霧を用いることで、曲面塗布が可能となる。
 スピンコートやスリットダイコート等の従来のウェットコーティングの場合、塗布膜の面精度は被塗膜面(基材)の平滑性が寄与する。例えば、マイクロマシン(MEMS)などのnmあるいはumオーダーの構造体、サングラスあるいはメガネなどの曲面を有する構造体へのウェットコーティングが困難であった。しかしながら、スプレーによる噴霧の場合は、スプレーノズルから吐出した液滴の飛沫粒径を小さくすることができるため、被塗膜面(基材)に到達(着弾)した後に、液滴を速乾させることが可能である。その結果、被塗膜面(基材)の平滑性によらず、抵抗分布に優れた金属ナノワイヤー層を形成することができる。
By using spraying as a coating method, curved surface coating is possible.
In the case of conventional wet coating such as spin coating and slit die coating, the smoothness of the coating surface (base material) contributes to the surface accuracy of the coating film. For example, it has been difficult to perform wet coating on nm- or um-order structures such as micromachines (MEMS) and structures having curved surfaces such as sunglasses or glasses. However, in the case of spraying by spraying, the droplet diameter of the droplets discharged from the spray nozzle can be reduced, so that the droplets are quickly dried after reaching (landing) the coating surface (base material). It is possible. As a result, a metal nanowire layer excellent in resistance distribution can be formed regardless of the smoothness of the coating surface (base material).
-平均液滴径(液滴の平均粒径)-
 前記スプレーにより噴霧された分散液(液滴)の平均液滴径(液滴の平均粒径)としては、5μm~50μmである限り、特に制限はなく、目的に応じて適宜選択することができるが、5μm~40μmが好ましく、5μm~30μmがより好ましい。
 前記平均液滴径(液滴の平均粒径)が、5μm未満であると、金属ナノワイヤーがノズル詰まりを生じ、50μmを超えると、体積に対する表面積の比が小さくなり、液滴における溶剤の揮発の程度が十分でない。一方、前記平均液滴径(液滴の平均粒径)が前記好ましい範囲内、又は、前記より好ましい範囲内であると、揮発の程度及びノズル詰まり防止の観点で有利である。
 前記平均液滴径(液滴の平均粒径)は、前記スプレーに用いるノズルの径の大きさや、前記スプレーに用いるノズル部に配したニードルの位置を調整することにより、調整することができる。
 また、前記平均液滴径(液滴の平均粒径)は、日機装株式会社製スプレー粒子径分布測定装置「LDASA-3500A」を用い、レーザー回折法に基づいて測定することができる。
-Average droplet size (average droplet size)-
The average droplet diameter (average particle diameter of the droplet) of the dispersion (droplet) sprayed by the spray is not particularly limited as long as it is 5 μm to 50 μm, and can be appropriately selected according to the purpose. Is preferably 5 μm to 40 μm, more preferably 5 μm to 30 μm.
When the average droplet diameter (average particle size of the droplet) is less than 5 μm, the metal nanowires clog the nozzle, and when it exceeds 50 μm, the ratio of the surface area to the volume becomes small, and the solvent volatilization in the droplets occurs. Is not enough. On the other hand, it is advantageous in terms of the degree of volatilization and prevention of nozzle clogging when the average droplet diameter (average particle diameter of the droplets) is within the preferable range or the more preferable range.
The average droplet diameter (average particle diameter of the droplets) can be adjusted by adjusting the size of the nozzle used for the spray and the position of the needle disposed on the nozzle used for the spray.
The average droplet diameter (average particle diameter of the droplet) can be measured based on a laser diffraction method using a spray particle size distribution measuring device “LDASA-3500A” manufactured by Nikkiso Co., Ltd.
-液滴がスプレーから吐出されてから基材上に到達するまでの時間-
 前記液滴がスプレーから吐出されてから基材上に到達するまでの時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01秒間~3秒間が好ましく、0.01秒間~1秒間がより好ましい。
 前記液滴がスプレーから吐出されてから基材上に到達するまでの時間が、0.01秒間未満であると、液滴における溶剤の揮発の程度が十分でないことがあり、0.5秒間秒間を超えると、噴霧圧が不充分あるいはスプレーノズルと基材との距離が不適当であるため必要な導電性が得られない。一方、前記液滴がスプレーから吐出されてから基材上に到達するまでの時間が、前記より好ましい範囲内であると、揮発の程度及び着滴安定性の観点で有利である。
 前記液滴がスプレーから吐出されてから基材上に到達するまでの時間は、前記基材と前記スプレーとの距離、前記液滴の吐出速度、前記液滴の噴霧方向の前記基材の表面に対する角度、などを調整することにより、制御することができる。
-Time from when the droplets are ejected from the spray until they reach the substrate-
There is no particular limitation on the time from when the droplets are ejected from the spray until the droplets reach the substrate, and can be appropriately selected according to the purpose, but is preferably 0.01 seconds to 3 seconds, 0 .01 seconds to 1 second is more preferable.
If the time from when the droplets are ejected from the spray to reach the substrate is less than 0.01 seconds, the degree of volatilization of the solvent in the droplets may not be sufficient, and 0.5 seconds If it exceeds 1, the spray pressure is insufficient or the distance between the spray nozzle and the substrate is inappropriate, so that the necessary conductivity cannot be obtained. On the other hand, it is advantageous from the viewpoint of the degree of volatilization and droplet landing stability that the time from when the droplets are ejected from the spray to when the droplets reach the substrate is within the more preferable range.
The time from when the droplet is ejected from the spray until it reaches the substrate is the distance between the substrate and the spray, the ejection speed of the droplet, the surface of the substrate in the spray direction of the droplet It can be controlled by adjusting the angle with respect to.
-基材とスプレーとの距離-
 前記基材と前記スプレーとの距離としては、特に制限はなく、目的に応じて適宜選択することができるが、30mm~150mmが好ましく、50mm~120mmがより好ましい。
 前記基材と前記スプレーとの距離が、30mm未満であると、液滴における溶剤の揮発の程度が十分でないことがあり、150mmを超えると、着滴不良により必要な導電性を得られないことがある。一方、前記基材と前記スプレーとの距離が、前記より好ましい範囲内であると、揮発の程度及び着滴安定性の観点で有利である。
-Distance between substrate and spray-
The distance between the substrate and the spray is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 mm to 150 mm, more preferably 50 mm to 120 mm.
If the distance between the substrate and the spray is less than 30 mm, the degree of volatilization of the solvent in the droplets may not be sufficient, and if it exceeds 150 mm, the required conductivity cannot be obtained due to poor deposition. There is. On the other hand, when the distance between the substrate and the spray is within the more preferable range, it is advantageous from the viewpoint of volatilization degree and droplet deposition stability.
-液滴の噴霧方向の基材の表面に対する角度-
 前記液滴の噴霧方向の基材の表面に対する角度としては、特に制限はなく、目的に応じて適宜選択することができるが、5°~50°が好ましく、10°~40°がより好ましい。
 前記液滴の噴霧方向の基材の表面に対する角度が、5°未満であると、広域に塗膜できないことがあり、50°を超えると、必要な導電性が得られないことがある。一方、前記液滴の噴霧方向の基材の表面に対する角度が、前記より好ましい範囲内であると、着滴安定性の観点で有利である。
-Angle of droplet spraying direction with respect to substrate surface-
The angle of the droplet spraying direction with respect to the surface of the base material is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° to 50 °, more preferably 10 ° to 40 °.
If the angle of the droplet spraying direction relative to the surface of the substrate is less than 5 °, the coating may not be possible over a wide area, and if it exceeds 50 °, the required conductivity may not be obtained. On the other hand, if the angle of the droplet spraying direction relative to the surface of the substrate is within the more preferable range, it is advantageous from the viewpoint of droplet landing stability.
<金属ナノワイヤー層形成工程>
 前記金属ナノワイヤー層形成工程は、前記基材上に形成された分散液からなる分散膜を乾燥して、前記基材上に金属ナノワイヤー層を形成する工程である。
<Metal nanowire layer formation process>
The said metal nanowire layer formation process is a process of drying the dispersion film which consists of a dispersion formed on the said base material, and forming a metal nanowire layer on the said base material.
<<乾燥>>
 前記乾燥における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、60℃~140℃が好ましく、80℃~120℃がより好ましく、約120℃が特に好ましい。
 前記乾燥における加熱温度が、60℃未満であると、乾燥に要する時間が長くなり作業性が悪化することがあり、140℃を超えると、基材のガラス転移温度(Tg)との兼ね合いで基材が歪曲することがある。一方、前記加熱温度が、前記より好ましい範囲内又は前記特に好ましい温度であると、金属ナノワイヤーのネットワーク形成の点で有利である。
 前記乾燥における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間~30分間が好ましく、2分間~10分間がより好ましく、約5分間が特に好ましい。
 前記乾燥における加熱時間が、1分間未満であると、溶媒を十分に除去することができないことがあり、30分間を超えると、作業性及び電極の生産性が悪化することがある。
一方、前記加熱時間が、前記より好ましい範囲内又は前記特に好ましい時間であると、金属ナノワイヤーのネットワーク形成、作業性及び電極の生産性の向上の点で有利である。
<< Dry >>
The heating temperature in the drying is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 60 ° C to 140 ° C, more preferably 80 ° C to 120 ° C, and particularly preferably about 120 ° C.
When the heating temperature in the drying is less than 60 ° C., the time required for drying becomes long and workability may be deteriorated. When the heating temperature exceeds 140 ° C., it is based on the balance with the glass transition temperature (Tg) of the substrate. The material may be distorted. On the other hand, when the heating temperature is within the more preferable range or the particularly preferable temperature, it is advantageous in terms of forming a network of metal nanowires.
The heating time in the drying is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 minute to 30 minutes, more preferably 2 minutes to 10 minutes, and particularly preferably about 5 minutes.
If the heating time in the drying is less than 1 minute, the solvent may not be sufficiently removed, and if it exceeds 30 minutes, workability and electrode productivity may be deteriorated.
On the other hand, when the heating time is within the more preferable range or the particularly preferable time, it is advantageous in terms of network formation of metal nanowires, workability, and electrode productivity.
<<金属ナノワイヤー層>>
 前記金属ナノワイヤー層は、分散液を用いて形成され、該分散液は、前述した通りである。また、前記分散液に含まれ得る金属ナノワイヤー、溶剤、カーボンナノチューブ、透明樹脂材料(バインダー)、分散剤、その他の成分は、いずれも、分散液の説明で前述した通りである。
<< Metal nanowire layer >>
The metal nanowire layer is formed using a dispersion, and the dispersion is as described above. Further, the metal nanowires, the solvent, the carbon nanotubes, the transparent resin material (binder), the dispersant, and other components that can be contained in the dispersion are all as described above in the description of the dispersion.
 前記金属ナノワイヤー層の抵抗値の標準偏差σとしては、特に制限はなく、目的に応じて適宜選択することができるが、20Ω/sq以下が好ましく、15Ω/sq以下がより好ましく、10Ω/sq以下が特に好ましい。
 前記金属ナノワイヤー層の抵抗値の標準偏差σが20を超えると、抵抗値の均一性が低いため、電気回路として問題が生じることがある。例えば、前記金属ナノワイヤー層を備えるタッチパネルは、パネルの場所によってタッチ部位の検出精度に差が生じ、消費電力が増大するという問題があり、また、前記金属ナノワイヤー層を備える有機EL発光体基板は、輝度ムラや発熱が生じる。
 前記金属ナノワイヤー層の抵抗値は、抵抗率計EC-80Pを用いて、測定プローブを金属ナノワイヤー層の表面に接触させて、MD方向(流れ方向)及びTD方向(流れに直角方向)に20mm毎に測定することができる。なお、通常、20点以上測定する。
There is no restriction | limiting in particular as standard deviation (sigma) of the resistance value of the said metal nanowire layer, Although it can select suitably according to the objective, 20 ohm / sq or less is preferable, 15 ohm / sq or less is more preferable, 10 ohm / sq The following are particularly preferred:
When the standard deviation σ of the resistance value of the metal nanowire layer exceeds 20, the uniformity of the resistance value is low, and thus a problem may occur as an electric circuit. For example, the touch panel provided with the metal nanowire layer has a problem that a difference in detection accuracy of a touch site occurs depending on a location of the panel, and power consumption increases, and an organic EL light emitting substrate provided with the metal nanowire layer. Causes luminance unevenness and heat generation.
The resistance value of the metal nanowire layer is measured in the MD direction (flow direction) and the TD direction (perpendicular to the flow) by using a resistivity meter EC-80P to bring the measurement probe into contact with the surface of the metal nanowire layer. It can be measured every 20 mm. Usually, 20 points or more are measured.
 前記金属ナノワイヤー層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、分散膜のウェット厚として3μm~20μmが好ましく、5μm~15μmがより好ましい。
 前記分散膜のウェット厚が、3μm未満であると、金属ナノワイヤー層の形成が困難になることがあり、20μmを超えると、得られる透明導電膜の表面抵抗の分布が不均一になることがある。一方、前記分散膜のウェット厚が、前記より好ましい範囲内であると、分散膜の良好な形成及び得られる透明導電膜の表面抵抗の分布の均一性の点で有利である。
The thickness of the metal nanowire layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, the wet thickness of the dispersion film is preferably 3 μm to 20 μm, and more preferably 5 μm to 15 μm.
If the dispersion film has a wet thickness of less than 3 μm, it may be difficult to form a metal nanowire layer. If the thickness of the dispersion film exceeds 20 μm, the distribution of the surface resistance of the transparent conductive film obtained may be uneven. is there. On the other hand, when the wet thickness of the dispersion film is within the more preferable range, it is advantageous in terms of good formation of the dispersion film and uniformity of the surface resistance distribution of the transparent conductive film obtained.
<パターニング工程>
 前記パターニング工程は、前記基材上に形成された金属ナノワイヤー層をパターニングする工程である。
 前記パターニングの手法としては、特に制限はなく、目的に応じて、適宜選択することができ、例えば、マスクを使用したパターニング、レーザーによるパターニング、などが挙げられる。
 これらの中でも、レーザーによるパターニングが、マスクを使用したパターニングよりも微細な加工が可能である点で、好ましい。
<Patterning process>
The said patterning process is a process of patterning the metal nanowire layer formed on the said base material.
There is no restriction | limiting in particular as the method of the said patterning, According to the objective, it can select suitably, For example, the patterning using a mask, the patterning by a laser, etc. are mentioned.
Among these, laser patterning is preferable in that finer processing is possible than patterning using a mask.
(電極)
 本発明の電極は、本発明の製造方法により製造された電極であって、少なくとも、基材と、該基材上に形成された金属ナノワイヤー層とを有し、必要に応じて、その他の部材を有する。
 なお、前記基材及び前記金属ナノワイヤー層は、前述した通りである。
 前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オーバーコート層、などが挙げられる。
(electrode)
The electrode of the present invention is an electrode manufactured by the manufacturing method of the present invention, and has at least a base material and a metal nanowire layer formed on the base material. It has a member.
The base material and the metal nanowire layer are as described above.
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, an overcoat layer etc. are mentioned.
(タッチパネル)
 本発明のタッチパネルは、少なくとも、本発明の電極を有し、必要に応じて、その他の部材を有する。
 図1は、本発明の一実施形態に係るタッチパネルの模式図である。
 図1において、タッチパネル100は、本発明の電極を有する画像表示部材1と、画像表示部材1上に形成された光透過性硬化樹脂層2と、光透過性硬化樹脂層2上に形成された光透過性カバー部材4と、光透過性硬化樹脂層2と光透過性カバー部材4との間に介装された遮光層3とを備える。
(Touch panel)
The touch panel of the present invention has at least the electrode of the present invention and, if necessary, other members.
FIG. 1 is a schematic diagram of a touch panel according to an embodiment of the present invention.
In FIG. 1, a touch panel 100 is formed on an image display member 1 having an electrode of the present invention, a light-transmitting cured resin layer 2 formed on the image display member 1, and a light-transmitting cured resin layer 2. A light transmissive cover member 4 and a light shielding layer 3 interposed between the light transmissive cured resin layer 2 and the light transmissive cover member 4 are provided.
(有機EL基板)
 本発明の有機EL基板は、少なくとも、本発明の電極を有し、必要に応じて、その他の部材を有する。
 図2は、本発明の一実施形態に係る有機EL基板の模式図である。
 図2において、本発明の有機EL基板200は、ガラス等からなる基材11と、この基材11の表面に成膜された陽極12、陽極12の表面に成膜された有機発光層13と、有機発光層13の表面に成膜された陰極14と、これらの表面を封止するガラス製の封止材15と、封止材15の内側面に形成された乾燥剤膜16と、基材11と封止材15の周囲とを接着する接着剤17とを備える。ここで、基材11と陽極12とが、本発明の電極を構成する。
(Organic EL substrate)
The organic EL substrate of the present invention has at least the electrode of the present invention and, if necessary, other members.
FIG. 2 is a schematic diagram of an organic EL substrate according to an embodiment of the present invention.
In FIG. 2, the organic EL substrate 200 of the present invention includes a base material 11 made of glass or the like, an anode 12 formed on the surface of the base material 11, and an organic light emitting layer 13 formed on the surface of the anode 12. A cathode 14 formed on the surface of the organic light emitting layer 13, a glass sealing material 15 for sealing these surfaces, a desiccant film 16 formed on the inner surface of the sealing material 15, An adhesive 17 for bonding the material 11 and the periphery of the sealing material 15 is provided. Here, the base material 11 and the anode 12 constitute an electrode of the present invention.
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
<銀ナノワイヤーインク(分散液)の調製>
 下記の配合にて、銀ナノワイヤーインク(分散液)を作製した。
(1)金属ナノワイヤー:銀ナノワイヤー(Seashell Technology社製、AgNW-25、平均短軸径25nm(メーカー値)、平均長軸長23μm(メーカー値)):配合量0.500質量部
(2)バインダー:ヒドロキシプロピルメチルセルロース(アルドリッチ社製、2%水溶液の20℃における粘度80cP~120cP(文献値)):配合量0.125質量部
(3)溶剤:(i)水:配合量89.375質量部、(ii)エタノール:配合量10.000質量部
(Example 1)
<Preparation of silver nanowire ink (dispersion)>
A silver nanowire ink (dispersion) was prepared with the following composition.
(1) Metal nanowire: Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 μm (maker value)): compounding amount 0.500 parts by mass (2 ) Binder: Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass (3) solvent: (i) water: blending amount 89.375 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
<銀ナノワイヤー透明導電膜の作製>
 調製した銀ナノワイヤーインク(分散液)を、2流体ノズル(エーシングテクノロジー社製)を用いたスプレー塗布法により、基材A-1(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」、厚み約100um)上に表1に記載のウェット厚みになるように塗工し、その後、クリーンオーブンにて100℃/60分間で乾燥して、透明導電膜を作製した。
 なお、スプレー塗布法による塗工条件は、以下の通りであった。
(1)霧化圧:0.1MPa
(2)ノズル開度:0.8mm
(3)塗工速度:100mm/秒
(4)送りピッチ:2mm
(5)塗工回数:2回(1回の塗工時間:10秒間(但し、描画面積によって変動))
(6)平均液滴径(液滴の平均粒径):10μm
(7)基材Aとノズルとの距離:80mm
(8)液滴の噴霧方向の基材Aの表面に対する角度:90°
 なお、上記「(6)平均液滴径(液滴の平均粒径)」は、レーザー回折式スプレー粒子径分布測定装置を用いて測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を指す。
<Preparation of silver nanowire transparent conductive film>
The prepared silver nanowire ink (dispersion) was spray-coated using a two-fluid nozzle (manufactured by Acing Technology) to produce a base material A-1 (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-”). 2000 ”, thickness of about 100 μm) was applied so as to have the wet thickness shown in Table 1, and then dried at 100 ° C./60 minutes in a clean oven to prepare a transparent conductive film.
In addition, the coating conditions by the spray coating method were as follows.
(1) Atomization pressure: 0.1 MPa
(2) Nozzle opening: 0.8mm
(3) Coating speed: 100 mm / sec (4) Feed pitch: 2 mm
(5) Number of coating times: 2 times (one coating time: 10 seconds (however, it varies depending on the drawing area))
(6) Average droplet diameter (average droplet diameter): 10 μm
(7) Distance between substrate A and nozzle: 80 mm
(8) Angle of droplet spraying direction with respect to the surface of the substrate A: 90 °
The “(6) average droplet diameter (average particle diameter of the droplet)” is the cumulative volume calculated from the small diameter side in the particle size distribution measured using a laser diffraction spray particle size distribution measuring apparatus. The particle diameter is 50%.
<基材の評価>
 マイクロゲージ(ミツトヨ社製、商品名:「MDC-MX」)を用いて、基材A(シートサイズ:MD方向250mm、TD方向400mm)の厚みを20mm毎に測定した後、厚みの測定値から平均値Tave、最大値Tmax、最小値Tmin、ΔT=Tmax-Tminを算出した。算出結果を表1に示す。
<Evaluation of substrate>
After measuring the thickness of the base material A (sheet size: 250 mm in the MD direction, 400 mm in the TD direction) every 20 mm using a micro gauge (manufactured by Mitutoyo Corporation, trade name: “MDC-MX”), from the measured thickness value The average value Tave, the maximum value Tmax, the minimum value Tmin, and ΔT = Tmax−Tmin were calculated. The calculation results are shown in Table 1.
<抵抗値の測定>
 銀ナノワイヤー透明導電膜の抵抗値を、以下のように測定した。銀ナノワイヤー透明導電膜表面に、手動式非破壊抵抗測定器(ナプソン株式会社製、EC-80P)の測定プローブを接触させて、透明導電膜(銀ナノワイヤー層)表面上の塗布有効領域(MD方向:200mm、TD方向:360mm)に対して、20mm毎に測定したのち測定値から平均値ave、面内分布σを算出した。算出結果を表1に示す。
<<面内分布σの評価>>
 上述したように算出した抵抗値の面内分布σを4段階で評価した。評価結果を表1に示す。
◎:5Ω/sq未満
○:5Ω/sq以上、10Ω/sq未満
△:10Ω/sq以上、20Ω/sq未満
×:20Ω/sq以上
<Measurement of resistance value>
The resistance value of the silver nanowire transparent conductive film was measured as follows. An effective coating area on the surface of the transparent conductive film (silver nanowire layer) by contacting a measurement probe of a manual nondestructive resistance measuring device (Napson Co., Ltd., EC-80P) to the surface of the transparent conductive film (silver nanowire layer) (MD direction: 200 mm, TD direction: 360 mm), the average value ave and the in-plane distribution σ were calculated from the measured values after measurement every 20 mm. The calculation results are shown in Table 1.
<< Evaluation of in-plane distribution σ >>
The in-plane distribution σ of the resistance value calculated as described above was evaluated in four stages. The evaluation results are shown in Table 1.
◎: Less than 5Ω / sq ○: 5Ω / sq or more, less than 10Ω / sq Δ: 10Ω / sq or more, less than 20Ω / sq ×: 20Ω / sq or more
(実施例2)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約180umの基材A-2(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 2)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, a base material A-2 having a thickness of about 180 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution σ. The evaluation results are shown in Table 1.
(実施例3)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約300umの基材A-3(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 3)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, a base material A-3 having a thickness of about 300 μm (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-2000”) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution σ. The evaluation results are shown in Table 1.
(実施例4)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約500umの基材A-4(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
Example 4
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, the base material A-4 having a thickness of about 500 μm (manufactured by Mitsubishi Gas Chemical Company, trade name: “Iupilon Sheet FE-2000”) was used. Except for the above, a transparent electrode was produced in the same manner as in Example 1, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution σ. The evaluation results are shown in Table 1.
(実施例5)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約100umの基材B-1(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、下記の後処理を施したもの)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
<後処理>
 基材全面にコロナ処理を施したのち、透明インク(サンユレック製RL-9262)を用いて、基材上へシルクスクリーン印刷(メッシュ#200)を行い、110℃30分間で乾燥させて基材全面に樹脂層を形成した。なお、この時の樹脂層の厚みは12μmであった。
(Example 5)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, the base material B-1 having a thickness of about 100 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. A transparent electrode was prepared in the same manner as in Example 1 except that the following post-treatment was used), and evaluation of the base material, measurement of resistance value, and surface were performed on the produced transparent electrode. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
<Post-processing>
After the corona treatment is applied to the entire surface of the base material, silk screen printing (mesh # 200) is performed on the base material using a transparent ink (RL-9262 made by Sanyu REC), and the whole surface of the base material is dried at 110 ° C. for 30 minutes. A resin layer was formed. At this time, the thickness of the resin layer was 12 μm.
(実施例6)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約180umの基材B-2(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 6)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, the base material B-2 having a thickness of about 180 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(実施例7)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約300umの基材B-3(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 7)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, the base material B-3 having a thickness of about 300 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(実施例8)
 実施例1において、厚み約100umの基材A-1を用いる代わりに、厚み約500umの基材B-4(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 8)
In Example 1, instead of using the base material A-1 having a thickness of about 100 μm, the base material B-4 having a thickness of about 500 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Example 1 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(実施例9)
 実施例4において、銀ナノワイヤーインク(分散液)の溶剤として、水(沸点100℃)及びエタノール(沸点78℃)の混合液を用いる代わりに、水(沸点100℃)を用いたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
Example 9
In Example 4, as a solvent for the silver nanowire ink (dispersion), water (boiling point 100 ° C.) was used instead of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.). In the same manner as in Example 4, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(実施例10)
 実施例4において、銀ナノワイヤーインク(分散液)の溶剤として、水(沸点100℃)及びエタノール(沸点78℃)の混合液を用いる代わりに、エタノール(沸点78℃)を用いたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 10)
In Example 4, instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.) as a solvent for the silver nanowire ink (dispersion), ethanol (boiling point 78 ° C.) was used. In the same manner as in Example 4, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(実施例11)
 実施例4において、銀ナノワイヤーインク(分散液)の溶剤として、水(沸点100℃)及びエタノール(沸点78℃)の混合液を用いる代わりに、p-キシレン(沸点138℃)を用いたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 11)
In Example 4, p-xylene (boiling point 138 ° C.) was used as a solvent for the silver nanowire ink (dispersion) instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.). Except for the above, a transparent electrode was produced in the same manner as in Example 4, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(比較例1)
 実施例4において、銀ナノワイヤーインク(分散液)の溶剤として、水(沸点100℃)及びエタノール(沸点78℃)の混合液を用いる代わりに、N,N-ジメチルホルムアミド(沸点153℃)を用いたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 1)
In Example 4, instead of using a mixed liquid of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.) as a solvent for the silver nanowire ink (dispersion), N, N-dimethylformamide (boiling point 153 ° C.) was used. A transparent electrode was produced in the same manner as in Example 4 except that it was used, and the produced transparent electrode was evaluated for a substrate, measured for a resistance value, and evaluated for an in-plane distribution σ. The evaluation results are shown in Table 1.
(比較例2)
 実施例4において、銀ナノワイヤーインク(分散液)の溶剤として、水(沸点100℃)及びエタノール(沸点78℃)の混合液を用いる代わりに、γ-ブチロラクトン(沸点204℃)を用いたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 2)
In Example 4, γ-butyrolactone (boiling point 204 ° C.) was used as a solvent for the silver nanowire ink (dispersion) instead of using a mixed solution of water (boiling point 100 ° C.) and ethanol (boiling point 78 ° C.). Except for the above, a transparent electrode was produced in the same manner as in Example 4, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(比較例3)
 実施例4において、平均液滴径(液滴の平均粒径)が10μmから3μmになるように霧化圧を変えたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 3)
In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 μm to 3 μm. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed. The evaluation results are shown in Table 1.
(実施例12)
 実施例4において、平均液滴径(液滴の平均粒径)が10μmから5μmになるように霧化圧を変えたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
Example 12
In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 μm to 5 μm. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed. The evaluation results are shown in Table 1.
(実施例13)
 実施例4において、平均液滴径(液滴の平均粒径)が10μmから50μmになるように霧化圧を変えたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example 13)
In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 μm to 50 μm. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed. The evaluation results are shown in Table 1.
(比較例4)
 実施例4において、平均液滴径(液滴の平均粒径)が10μmから60μmになるように霧化圧を変えたこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 4)
In Example 4, a transparent electrode was produced in the same manner as in Example 4 except that the atomization pressure was changed so that the average droplet diameter (average particle size of the droplets) was changed from 10 μm to 60 μm. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed. The evaluation results are shown in Table 1.
(実施例14)
 実施例1において、実施例1に記載の配合の銀ナノワイヤーインク(銀ナノワイヤーの含有量が0.50質量%:希釈濃度が99.50質量%)を用いる代わりに、下記配合の銀ナノワイヤーインク(銀ナノワイヤーの含有量が1.0質量%:希釈濃度が99.00質量%)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
<銀ナノワイヤーインクの配合>
(1)金属ナノワイヤー:銀ナノワイヤー(Seashell Technology社製、AgNW-25、平均短軸径25nm(メーカー値)、平均長軸長23μm(メーカー値)):配合量1.00質量部
(2)バインダー:ヒドロキシプロピルメチルセルロース(アルドリッチ社製、2%水溶液の20℃における粘度80cP~120cP(文献値)):配合量0.125質量部
(3)溶剤:(i)水:配合量88.875質量部、(ii)エタノール:配合量10.000質量部
(Example 14)
In Example 1, instead of using the silver nanowire ink having the composition described in Example 1 (the silver nanowire content is 0.50% by mass: the dilution concentration is 99.50% by mass), the silver nanowire having the following composition is used. A transparent electrode was prepared in the same manner as in Example 1 except that the wire ink (the content of silver nanowires was 1.0 mass%: the dilution concentration was 99.00 mass%) was used. The substrate was evaluated, the resistance value was measured, and the in-plane distribution σ was evaluated. The evaluation results are shown in Table 1.
<Composition of silver nanowire ink>
(1) Metal nanowire: Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 μm (manufacturer value)): 1.00 parts by mass (2 ) Binder: Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass (3) solvent: (i) water: blending amount 88.875 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
(実施例15)
 実施例1において、実施例1に記載の配合の銀ナノワイヤーインク(銀ナノワイヤーの含有量が0.50質量%:希釈濃度が99.50質量%)を用いる代わりに、下記配合の銀ナノワイヤーインク(銀ナノワイヤーの含有量が0.10質量%:希釈濃度が99.90質量%)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
<銀ナノワイヤーインクの配合>
(1)金属ナノワイヤー:銀ナノワイヤー(Seashell Technology社製、AgNW-25、平均短軸径25nm(メーカー値)、平均長軸長23μm(メーカー値)):配合量0.10質量部
(2)バインダー:ヒドロキシプロピルメチルセルロース(アルドリッチ社製、2%水溶液の20℃における粘度80cP~120cP(文献値)):配合量0.125質量部
(3)溶剤:(i)水:配合量89.775質量部、(ii)エタノール:配合量10.000質量部
(Example 15)
In Example 1, instead of using the silver nanowire ink having the composition described in Example 1 (the silver nanowire content is 0.50% by mass: the dilution concentration is 99.50% by mass), the silver nanowire having the following composition is used. A transparent electrode was produced in the same manner as in Example 1 except that wire ink (silver nanowire content: 0.10% by mass: dilution concentration: 99.90% by mass) was used. The substrate was evaluated, the resistance value was measured, and the in-plane distribution σ was evaluated. The evaluation results are shown in Table 1.
<Composition of silver nanowire ink>
(1) Metal nanowire: Silver nanowire (manufactured by Seashell Technology, AgNW-25, average minor axis diameter 25 nm (manufacturer value), average major axis length 23 μm (manufacturer value)): compounding amount 0.10 parts by mass (2 ) Binder: Hydroxypropyl methylcellulose (manufactured by Aldrich, viscosity 80 cP to 120 cP of 2% aqueous solution at 20 ° C. (reference value)): blending amount 0.125 parts by mass (3) solvent: (i) water: blending amount 89.775 Parts by mass, (ii) ethanol: blending amount 10.000 parts by mass
(比較例5)
 実施例1において、銀ナノワイヤーを用いる代わりに、銀ナノ粒子(星光PMC社製、商品名「T-YP808」)を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 5)
In Example 1, instead of using silver nanowires, a transparent electrode was prepared in the same manner as in Example 1 except that silver nanoparticles (trade name “T-YP808” manufactured by Seiko PMC) were used. The produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(実施例A)
 実施例1において、銀ナノワイヤーを用いる代わりに、銅ナノワイヤー(NOVARIALS社製、社製、商品名「NovaWireCu01」、平均短軸径30nm(メーカー値))を用いたこと以外は、実施例1と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Example A)
In Example 1, instead of using silver nanowires, Example 1 was used except that copper nanowires (manufactured by NOVARILS, manufactured by the company, trade name “NovaWireCu01”, average minor axis diameter 30 nm (manufacturer value)) were used. In the same manner as described above, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance value measurement, and in-plane distribution σ evaluation. The evaluation results are shown in Table 1.
(比較例6)
 実施例4において、調製した銀ナノワイヤーインク(分散液)をスプレー塗布法により塗工する代わりに、調製した銀ナノワイヤーインク(分散液)を平盤スリットダイ(東レエンジニアリング社製)を用いた平盤スリットダイ塗布法により塗工したこと以外は、実施例4と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
 なお、平盤スリットダイ塗布法による塗工条件は、以下の通りであった。
(1)スリットギャップ:100um
(2)塗工ギャップ:100um
(3)塗工厚み:20um
(4)塗工速度:100mm/秒
(Comparative Example 6)
In Example 4, instead of coating the prepared silver nanowire ink (dispersed liquid) by spray coating, the prepared silver nanowire ink (dispersed liquid) was used with a flat plate slit die (manufactured by Toray Engineering Co., Ltd.). A transparent electrode was prepared in the same manner as in Example 4 except that coating was performed by a flat plate slit die coating method. Evaluation of the substrate, measurement of resistance value, and in-plane distribution σ Evaluation was performed. The evaluation results are shown in Table 1.
The coating conditions by the flat plate slit die coating method were as follows.
(1) Slit gap: 100um
(2) Coating gap: 100um
(3) Coating thickness: 20um
(4) Coating speed: 100 mm / second
(比較例7)
 比較例6において、厚み約500umの基材A-4を用いる代わりに、厚み約300umの基材B-3(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、比較例6と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 7)
In Comparative Example 6, instead of using the base material A-4 having a thickness of about 500 μm, a base material B-3 having a thickness of about 300 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Comparative Example 6 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance measurement, and surface The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(比較例8)
 比較例6において、厚み約500umの基材A-4を用いる代わりに、厚み約500umの基材B-4(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、比較例6と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 8)
In Comparative Example 6, instead of using the base material A-4 having a thickness of about 500 μm, the base material B-4 having a thickness of about 500 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company, Inc.) In the same manner as in Comparative Example 6 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to substrate evaluation, resistance measurement, and surface The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(比較例9)
 実施例3において、調製した銀ナノワイヤーインク(分散液)をスプレー塗布法により塗工する代わりに、調製した銀ナノワイヤーインク(分散液)をワイヤーバー(番手10)を用いたワイヤーバー塗布法により塗工したこと以外は、実施例3と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。なお、銀ナノワイヤーの目付量を約0.01g/m2とした。
(Comparative Example 9)
In Example 3, instead of applying the prepared silver nanowire ink (dispersion) by spray coating, the prepared silver nanowire ink (dispersion) was applied to a wire bar using a wire bar (count 10). A transparent electrode was produced in the same manner as in Example 3 except that the coating was applied in the same manner as in Example 3. Evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed on the produced transparent electrode. The evaluation results are shown in Table 1. The basis weight of the silver nanowires was about 0.01 g / m 2 .
(比較例10)
 比較例9において、厚み約300umの基材A-3を用いる代わりに、厚み約500umの基材A-4を用いたこと以外は、比較例9と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 10)
In Comparative Example 9, a transparent electrode was produced in the same manner as in Comparative Example 9 except that instead of using the base material A-3 having a thickness of about 300 μm, the base material A-4 having a thickness of about 500 μm was used. With respect to the transparent electrode, evaluation of the substrate, measurement of the resistance value, and evaluation of the in-plane distribution σ were performed. The evaluation results are shown in Table 1.
(比較例11)
 比較例9において、厚み約300umの基材A-3を用いる代わりに、厚み約300umの基材B-3(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、比較例9と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 11)
In Comparative Example 9, instead of using the base material A-3 having a thickness of about 300 μm, a base material B-3 having a thickness of about 300 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company, Inc.) In the same manner as in Comparative Example 9 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
(比較例12)
 比較例9において、厚み約300umの基材A-3を用いる代わりに、厚み約500umの基材B-4(三菱ガス化学社製、商品名:「ユーピロンシートFE-2000」の基材に対して、前述の後処理を施したもの)を用いたこと以外は、比較例9と同様にして、透明電極を作製し、作製した透明電極について、基材の評価、抵抗値の測定、及び面内分布σの評価を行った。評価結果を表1に示す。
(Comparative Example 12)
In Comparative Example 9, instead of using the base material A-3 having a thickness of about 300 μm, a base material B-4 having a thickness of about 500 μm (trade name: “Iupilon Sheet FE-2000” manufactured by Mitsubishi Gas Chemical Company) was used. In the same manner as in Comparative Example 9 except that the above-described post-treatment) was used, a transparent electrode was produced, and the produced transparent electrode was subjected to evaluation of the substrate, measurement of resistance value, and surface. The internal distribution σ was evaluated. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、基材上に分散液をスプレーにより噴霧する噴霧工程において、分散液の平均液滴径が5μm~50μmであり、かつ、溶剤の沸点が138℃以下である実施例1~16は、低抵抗な金属ナノワイヤー層(導電膜)を容易に形成することができ、且つ、厚みが不均一な(平滑性が低い)基材に対しても均一な厚みの金属ナノワイヤー層を形成することができることが分かる。 From Table 1, in the spraying step of spraying the dispersion liquid onto the substrate, Examples 1 to 16 in which the average droplet diameter of the dispersion liquid is 5 μm to 50 μm and the boiling point of the solvent is 138 ° C. or less are as follows: A low-resistance metal nanowire layer (conductive film) can be easily formed, and a metal nanowire layer with a uniform thickness can be formed on a substrate with a non-uniform thickness (low smoothness) You can see that you can.
 本発明の電極は、ノートパソコン、スマートフォン、タッチパネル、LED、液晶パネル等の電子機器に用いられているインジウムスズ酸化物(ITO)等の金属酸化物を用いた導電膜が形成された電極の代替物として、多岐に渡って適用可能であるが、特に、タッチパネル、有機EL基板に好適に用いることができる。 The electrode of the present invention is an alternative to an electrode formed with a conductive film using a metal oxide such as indium tin oxide (ITO) used in electronic devices such as notebook computers, smartphones, touch panels, LEDs, and liquid crystal panels. Although it can apply to various things as a thing, it can be used suitably especially for a touch panel and an organic electroluminescent board | substrate.
1   画像表示部材
2   光透過性硬化樹脂層
3   遮光層
4   光透過性カバー部材
11  基材
12  陽極
13  有機発光層
14  陰極
15  封止材
16  乾燥剤膜
17  接着剤
30  金属ナノワイヤー層
40  塗布層
50  基材
100 タッチパネル
200 有機EL基板
DESCRIPTION OF SYMBOLS 1 Image display member 2 Light transmissive cured resin layer 3 Light shielding layer 4 Light transmissive cover member 11 Base material 12 Anode 13 Organic light emitting layer 14 Cathode 15 Sealing material 16 Desiccant film 17 Adhesive 30 Metal nanowire layer 40 Application layer 50 Base material 100 Touch panel 200 Organic EL substrate

Claims (11)

  1.  金属ナノワイヤーが溶剤に分散した分散液をスプレーにより基材に向かって噴霧する噴霧工程と、
     前記基材上に形成された分散液からなる分散膜を乾燥して、前記基材上に金属ナノワイヤー層を形成する金属ナノワイヤー層形成工程とを含む電極の製造方法であって、
     前記噴霧工程において噴霧された分散液の平均液滴径が5μm~50μmであり、かつ、前記溶剤の沸点が138℃以下であることを特徴とする、電極の製造方法。
    A spraying step of spraying a dispersion liquid in which metal nanowires are dispersed in a solvent toward a substrate by spraying;
    A metal nanowire layer forming step of drying a dispersion film made of a dispersion formed on the substrate and forming a metal nanowire layer on the substrate,
    The method for producing an electrode, wherein an average droplet diameter of the dispersion sprayed in the spraying step is 5 μm to 50 μm, and a boiling point of the solvent is 138 ° C. or less.
  2.  前記液滴が前記スプレーから吐出されてから前記基材上に到達するまでの時間が0.01秒間~3秒間である、請求項1に記載の電極の製造方法。 The method for producing an electrode according to claim 1, wherein the time from when the droplets are ejected from the spray to when the droplets reach the substrate is 0.01 seconds to 3 seconds.
  3.  前記分散液中における金属ナノワイヤー含有量が1質量%未満である、請求項1又は2に記載の電極の製造方法。 The method for producing an electrode according to claim 1 or 2, wherein the metal nanowire content in the dispersion is less than 1% by mass.
  4.  前記金属ナノワイヤー層の抵抗値の標準偏差が20以下である、請求項1又は2に記載の電極の製造方法。 The electrode manufacturing method according to claim 1 or 2, wherein a standard deviation of a resistance value of the metal nanowire layer is 20 or less.
  5.  前記噴霧工程の前において、前記基材は、厚みの最大値と最小値との差が38μm以上である、請求項1又は2に記載の電極の製造方法。 The method for producing an electrode according to claim 1 or 2, wherein, before the spraying step, the difference between the maximum value and the minimum value of the base material is 38 µm or more.
  6.  前記スプレーが2流体スプレーである、請求項1又は2に記載の電極の製造方法。 The method for producing an electrode according to claim 1 or 2, wherein the spray is a two-fluid spray.
  7.  前記金属ナノワイヤーが銀ナノワイヤである、請求項1又は2に記載の電極の製造方法。 The method for producing an electrode according to claim 1 or 2, wherein the metal nanowire is a silver nanowire.
  8.  前記基材上に形成された金属ナノワイヤー層をパターニングするパターニング工程をさらに含む、請求項1又は2に記載の電極の製造方法。 The method for producing an electrode according to claim 1 or 2, further comprising a patterning step of patterning the metal nanowire layer formed on the substrate.
  9.  請求項1又は2に記載の電極の製造方法により製造されたことを特徴とする、電極。 An electrode manufactured by the method for manufacturing an electrode according to claim 1 or 2.
  10.  請求項9に記載の電極を備えることを特徴とする、タッチパネル。 A touch panel comprising the electrode according to claim 9.
  11.  請求項9に記載の電極を備えることを特徴とする、有機EL基板 An organic EL substrate comprising the electrode according to claim 9.
PCT/JP2015/004273 2014-09-11 2015-08-25 Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode WO2016038821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185517A JP2016058319A (en) 2014-09-11 2014-09-11 Electrode and method for producing the same, and touch panel and organic el substrate including electrode
JP2014-185517 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038821A1 true WO2016038821A1 (en) 2016-03-17

Family

ID=55458596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004273 WO2016038821A1 (en) 2014-09-11 2015-08-25 Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode

Country Status (2)

Country Link
JP (1) JP2016058319A (en)
WO (1) WO2016038821A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018166033A (en) * 2017-03-28 2018-10-25 Dowaホールディングス株式会社 Silver nanowire ink and method for producing transparent conductive film
CN115185393A (en) * 2021-04-07 2022-10-14 天材创新材料科技(厦门)有限公司 Display device with embedded touch sensor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513534A (en) * 2008-02-26 2011-04-28 カンブリオス テクノロジーズ コーポレイション Methods and compositions for inkjet deposition of conductive features
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513534A (en) * 2008-02-26 2011-04-28 カンブリオス テクノロジーズ コーポレイション Methods and compositions for inkjet deposition of conductive features
JP2012216535A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Transparent conductive film containing metal nanowire and coating liquid thereof

Also Published As

Publication number Publication date
JP2016058319A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
TWI620802B (en) Property enhancing fillers for transparent coatings and transparent conductive films
TWI519616B (en) Carbon nanotube based transparent conductive films and methods for preparing and patterning the same
TWI499647B (en) Transparent conductive ink and production method of transparent conductive pattern
US9980394B2 (en) Bonding electronic components to patterned nanowire transparent conductors
KR20120082355A (en) Coating forming composition used for forming transparent conductive film
KR101519906B1 (en) Flexible Transparent Electrode and Manufacturing Method Thereof
CN105047252A (en) Stretchable conductive film based on silver nanoparticles
CN102668730B (en) Transparent flexible printed wiring board and process for producing same
JP2016509332A (en) Method for producing a transparent conductor on a substrate
WO2015177967A1 (en) Method for manufacturing transparent electrically-conductive film and transparent electrically-conductive film
WO2015115630A1 (en) Transparent electroconductive film and method for manufacturing same, information input apparatus, and electronic device
JP2009140788A (en) Conductive material, inkjet ink and transparent conductive film using the same
JP2016068047A (en) Die coating apparatus and manufacturing method for transparent conductive base material
WO2015075876A1 (en) Transparent conductor and method for producing transparent conductor
US10362685B2 (en) Protective coating for printed conductive pattern on patterned nanowire transparent conductors
KR20140147975A (en) Conductive ink composition, transparent conductive film comprising thereof and method for preparing transparent conductive film
KR101756368B1 (en) Patterning method of flexible conductive composite film
WO2016038821A1 (en) Electrode, method for producing same, and touch panel and organic el substrate, each of which is provided with said electrode
JP6476808B2 (en) Manufacturing method of transparent conductive substrate, coating liquid for forming transparent conductive layer, and transparent conductive substrate
WO2015177963A1 (en) Coating method
WO2016129270A1 (en) Electrode, method for producing same, and touch panel and organic el lighting element each provided with said electrode
JP6712910B2 (en) Transparent conductive film
KR100801670B1 (en) Fine electrode pattren manufacturing methode by the ink jet printing
JP2017045262A (en) Electrode manufacturing method, electrode, touch panel and organic electroluminescence lighting device
JP2017163085A (en) Method for manufacturing bonded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839820

Country of ref document: EP

Kind code of ref document: A1