WO2015075788A1 - 鉛フリーはんだ合金および半導体装置 - Google Patents

鉛フリーはんだ合金および半導体装置 Download PDF

Info

Publication number
WO2015075788A1
WO2015075788A1 PCT/JP2013/081275 JP2013081275W WO2015075788A1 WO 2015075788 A1 WO2015075788 A1 WO 2015075788A1 JP 2013081275 W JP2013081275 W JP 2013081275W WO 2015075788 A1 WO2015075788 A1 WO 2015075788A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
solder alloy
free solder
semiconductor device
weight
Prior art date
Application number
PCT/JP2013/081275
Other languages
English (en)
French (fr)
Inventor
高彰 宮崎
靖 池田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015548914A priority Critical patent/JP6267229B2/ja
Priority to US15/037,342 priority patent/US20160300809A1/en
Priority to PCT/JP2013/081275 priority patent/WO2015075788A1/ja
Publication of WO2015075788A1 publication Critical patent/WO2015075788A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/2956Disposition
    • H01L2224/29563Only on parts of the surface of the core, i.e. partial coating
    • H01L2224/29564Only on the bonding interface of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/296Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a lead-free solder alloy and a semiconductor device, and particularly to a lead-free solder alloy used in a high temperature environment and a semiconductor device using the lead-free solder alloy.
  • Solder which is a connecting member used for electrical connection of parts of electrical and electronic equipment, generally contained lead.
  • lead In recent years, as environmental awareness has increased, it has been harmful to the human body. The lead regulations pointed out have begun.
  • lead (Pb) -containing solder has been used as a connecting member for semiconductor devices that require high heat resistance, particularly semiconductor devices used in the fields of automobiles, construction machinery, railways, and information equipment. There is a strong demand for lead-free connecting members for reduction.
  • the upper limit of the operating temperature of the Si (silicon) semiconductor element is 150 to 175 ° C., whereas the SiC semiconductor element is assumed to be used at 175 ° C. or higher.
  • the composition of the soldered part is a solder composition in which Sb is 10 to 40% by mass, Cu is 0.5 to 10% by mass, and the balance is Sn.
  • Sb is 10 to 40% by mass
  • Cu is 0.5 to 10% by mass
  • the balance is Sn.
  • one or more elements of Co, Fe, Mo, Cr, Ag, and Bi are added, and one or more elements of Ge and Ga are added as oxidation inhibiting elements. It is added.
  • the composition of a hybrid IC having an electronic component and a copper-fired circuit conductor is a lead-free solder alloy used when soldering the electronic component and the circuit conductor by reflow.
  • Sb1 to 10% by weight, Cu1 to 4% by weight, Bi1 to 6% by weight, In1 to 5% by weight, the balance Sn, and a lead-free solder alloy having a solidus temperature of 200 ° C. or higher is disclosed. .
  • An object of the present invention is to provide a technique capable of improving the connection reliability of solder connection of a lead-free solder alloy and a semiconductor device in a high temperature environment.
  • the lead-free solder alloy of the present invention comprises Cu 5 to 10 wt%, Bi 1 wt% or more and 4 wt% or less, Sb 1 wt% or more and less than 10 wt%, and In 1 wt% or more and 4 wt% or less or
  • the solder composition is composed of two or more and the remaining Sn.
  • the semiconductor device of the present invention includes a semiconductor chip, a chip support member connected to the semiconductor chip via a lead-free solder alloy, and an external terminal electrically connected to the semiconductor chip.
  • the lead-free solder alloy is Cu 5 to 10 wt%, Bi 1 wt% or more and 4 wt% or less, Sb 1 wt% or more and less than 10 wt%, and In 1 wt% or more and 4 wt% or less, or It consists of two or more and the remainder Sn.
  • connection reliability of lead-free solder alloys and solder connections of semiconductor devices in a high temperature environment can be improved.
  • FIG. 2 is a partial cross-sectional view illustrating an example of a structure before and after connection of a solder connection portion in the semiconductor device illustrated in FIG. 1.
  • FIG. 2 is an enlarged partial cross-sectional view illustrating a structure of an A part of the semiconductor device illustrated in FIG. 1.
  • It is a top view which shows an example of the structure of the horizontal direction of the solder alloy layer shown in FIG.
  • FIG. 1 is a partial side view showing an example of a railway vehicle on which a semiconductor device using a lead-free solder alloy according to an embodiment of the present invention is mounted. It is a top view which shows an example of the internal structure of the inverter installed in the vehicle shown in FIG.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • FIG. 1 is a partial cross-sectional view showing an example of the structure of a main part of a semiconductor device according to an embodiment of the present invention
  • FIG. 2 shows an example of a structure before and after connection of a solder connection part in the semiconductor device shown in FIG.
  • FIG. 5 is a plan view showing an example of the horizontal structure of the solder alloy layer shown in FIG. 1 after a temperature cycle test. It is.
  • a semiconductor chip 1 which is a semiconductor element is soldered via a solder alloy (lead-free solder alloy) 2 on a ceramic substrate (insulating substrate) 5 which is a chip support member. Yes.
  • solder alloy 2 is a solder not containing lead (Pb).
  • Ni plating layer 3 is formed on the surface of the upper surface 5 a of the ceramic substrate 5, and the solder alloy 2 is disposed on the Ni plating layer 3.
  • An Ni plating layer 3 is also formed at the connection portion between the solder alloy 2 and the semiconductor chip 1.
  • solder foil 2a is sandwiched between the ceramic substrate 5 and the semiconductor chip 1 which are chip support members on which the Ni plating layer 3 is formed.
  • the solder foil 2a is disposed on the Ni plating layer 3 of the ceramic substrate 5 on which the Ni plating layer 3 is formed on the surface of the upper surface 5a, and the Ni plating layer 3 is formed on the back surface 1b on the solder foil 2a.
  • the formed semiconductor chip 1 is arranged and the solder foil 2 a is sandwiched between the ceramic substrate 5 and the semiconductor chip 1.
  • the solder foil 2a contains a Cu—Sn compound 6. Then, the structure in which the solder foil 2a is sandwiched between the semiconductor chip 1 and the ceramic substrate 5 is heated to 280 ° C. or higher. By the heating, a Cu—Sn compound (for example, Cu 6 Sn 5 ) 6 precipitates or moves on the connection interface, and a Cu—Sn based compound layer 4 is formed on the Ni plating layer 3 (solder alloy 2 side).
  • a Cu—Sn compound for example, Cu 6 Sn 5
  • Bi, In, and Sb contained in the solder are dissolved in the Sn phase.
  • a Cu—Sn based compound layer 4 is formed on a Ni plating layer 3 applied to the ceramic substrate 5, and Bi, In contained in the solder between them.
  • the solder alloy 2 mainly composed of Sn in which Sb is dissolved is formed.
  • FIG. 3 shows the detailed structure of the part A of the solder joint shown in FIG. 1, and a compound mainly composed of the Cu—Sn compound layer 4 even when exposed to a high temperature environment of 175 ° C. or higher for a long time.
  • the layer becomes a barrier layer between the connection interface and the solder alloy 2.
  • the growth of the compound layer due to the reaction at the connection interface and the accompanying formation of voids can be suppressed.
  • the mechanical characteristics can be improved, and the reliability such as crack resistance at high temperatures can be improved.
  • FIG. 4 shows the void area ratio measured by ultrasonic flaw detection at the connection portion of the solder alloy 2 of the semiconductor device 20 including the semiconductor chip 1 and the ceramic substrate 5 connected in this manner.
  • This void ratio is calculated by dividing the total area of the void 7 by the area in the plane direction of the connection layer in the plane direction of the solder alloy 2 (hatched portion in FIG. 4) as the connection section.
  • FIG. 5 shows cracks generated in the solder joint due to thermal stress after a temperature cycle test of about 500 cycles, with 15 minutes at ⁇ 55 ° C. and 15 minutes at 200 ° C. as one cycle.
  • the crack progress rate was measured by ultrasonic flaw detection on the solder connection portion of the semiconductor device 20 shown in FIG.
  • the crack growth rate is calculated by dividing the total area of the crack growth portion 8 by the area of the connection layer in the plane direction in the plane direction of the solder alloy 2 (hatched portion in FIG. 5) that is the connection portion.
  • the materials of the connected members such as the semiconductor chip 1 and the substrate are various, such as Cu-based alloys such as Cu, Ni, Au, Ag, Pt, Pd, Ti, TiN, Fe-Ni and Fe-Co. Metals and alloys are applicable.
  • the member to be connected is preferably Ni metallized.
  • the formation of the barrier layer of the Cu—Sn-based compound layer 4 on the Ni plating layer 3 makes it possible to keep the connection interface stable, which is better in a high temperature environment. This is because the reliability can be maintained.
  • the metallization of the surface of the member to be connected is Ni
  • oxidation of Ni itself becomes a problem, and wettability may be hindered. Therefore, Au, Ag, Pt, or Pd that is difficult to oxidize may be laminated on Ni. That is, it is preferable that the surface of the member to be connected is subjected to metallization such as Ni, Ni / Au, Ni / Ag.
  • the semiconductor chip 1 can be connected to any semiconductor chip 1 such as Si, SiC, GaAs, CdTe, or GaN.
  • the above metallization is applied, so that Cu, Al, 42 alloy, CIC (Copper Invar Copper), DBC (Direct Bond Copper), DBA (Direct Bond Aluminum), etc.
  • a highly reliable connection can be realized for any member such as a substrate (insulating substrate).
  • the member after Ni metallization is connected by the solder alloy 2 of the present embodiment and the structure after connection is described in detail, the member to be connected / Ni / Cu—Sn compound / solder alloy / Cu—Sn compound / Ni / member to be connected.
  • connection between the semiconductor chip 1 and the substrate has been described.
  • Such a configuration includes the semiconductor chip 1 and the lead, the semiconductor chip 1 and the heat dissipation substrate (member), the semiconductor chip 1 and the frame, and the semiconductor chip 1 and the insulation.
  • the present invention can also be applied to the connection between the conductive substrate or the semiconductor chip 1 and a general electrode.
  • the configuration described above is not limited to the connection between the semiconductor chip 1 and the substrate, and generally the first connected member and the second connected member are connected by the connected member of the present embodiment. It can also be applied to cases.
  • the present invention can be applied to connection between a metal plate and a metal plate, a metal plate and a ceramic substrate, or the like.
  • FIG. 6 is a data diagram showing an example of the ratio of the Cu—Sn compound to the added amount of Cu in the lead-free solder alloy according to the embodiment of the present invention and the Ni plating disappearance thickness
  • FIG. 7 uses the solder alloy of the comparative example.
  • FIG. 8 is a partial cross-sectional view showing the structure of the connection interface when connected using the lead-free solder alloy according to the embodiment of the present invention.
  • FIG. 9 is a sectional view showing an example of the structure of a semiconductor module using the lead-free solder alloy according to the embodiment of the present invention
  • FIG. 10 is an AC generator using the lead-free solder alloy according to the embodiment of the present invention. It is sectional drawing which shows an example of the structure of the semiconductor module for a vehicle.
  • FIG. 11 is an evaluation result diagram showing the results of the evaluation of each example and comparative example of the present invention
  • FIG. 12 is an electrical thermal fatigue test performed on the solder alloys of some examples and comparative examples shown in FIG. It is an evaluation result figure which shows the result performed.
  • Examples 1 to 22 and Comparative Examples 1 to 9 shown in FIG. 11 will be described.
  • the semiconductor device 20 is manufactured under the conditions shown in Examples 1 to 22 and Comparative Examples 1 to 9, and the void ratio, interface stability, and temperature cycle reliability are evaluated, and further comprehensive evaluation is performed. These results are shown.
  • the semiconductor device 20 has a 15 mm square Ni-plated Cu plate to be connected 5, a solder foil 2 a connecting member under the conditions of Examples 1 to 22, and a 10 mm square and 0.3 mm thick member.
  • a chip structure is formed by stacking the semiconductor chips 1 with Ni plating. Then, the chip structure was connected in a heat treatment furnace in a N 2 + 4% H 2 atmosphere at a temperature of 320 ° C. for 5 minutes to manufacture the semiconductor device 20.
  • the crack progress rate is measured, which is a general reliability standard.
  • the case where the crack progress rate is 20% or less and the semiconductor chip 1 operates normally is set as “ ⁇ ”, and the other cases are set as “X”.
  • FIG. 6 shows the relationship between the added amount of Cu, the ratio of the Cu—Sn compound, and the Ni plating disappearance thickness. As shown in FIG. 6, as the amount of Cu added increases, the amount of decrease in Ni plating decreases (the amount of remaining Ni plating increases). When the Ni plating disappears, the reaction between the member to be connected and the solder alloy proceeds to form a void, and the reliability decreases.
  • the remaining amount of Ni plating increases rapidly when the added amount of Cu is 5 wt% or more.
  • the Cu—Ni—Sn compound (Cu—Sn compound layer 4) and the Cu—Sn compound 6 are formed in this order on the Ni plating layer 3 at the interface of the connection portion.
  • the addition amount of Cu becomes 5 wt% or more
  • the ratio of the Cu—Sn compound 6 formed at the connection interface increases rapidly.
  • the Cu—Sn compound 6 has a high reliability because it strongly suppresses the diffusion of Ni plating under a high temperature environment as compared with the Cu—Ni—Sn compound (Cu—Sn compound layer 4). Can do.
  • connection reliability can be obtained by adding 5 wt.% Or more and 10 wt.% Or less of Cu.
  • Example 7 to 12 shown in FIG. 11 the temperature cycle reliability becomes ⁇ by adding more than 1 wt% of In.
  • Comparative Example 2 when more In is added than 4 wt%, the stability of the connection interface deteriorates and the reliability cannot be maintained (interface stability x).
  • the amount of In increases, the solidus temperature decreases, and a Cu—Sn—In compound is formed at the connection interface, thereby reducing long-term reliability combined with a decrease in barrier effect.
  • the lead-free solder alloy of the present embodiment has a Cu content of 5 to 10 wt%, the remaining Sn, Bi 1 wt% or more and 4 wt% or less, Sb 1 wt% or more and less than 10 wt%, and In 1 wt% or more 4
  • the solder composition is composed of any one or more of weight percent or less.
  • Bi is added in an amount of not less than 1% by weight and not more than 4% by weight of Bi, Sb and In in a solder alloy composed of 5 to 10% by weight of Cu and the remaining Sn (Examples 1 to 6).
  • In is added by 1 to 4% by weight (Examples 7 to 12), or Sb is added by 1 to 10% by weight (Examples 13 to 18).
  • Bi is added in an amount of 1 wt% to 4 wt% and In is added in an amount of 1 wt% to 4 wt% in a solder alloy composed of Cu 5 to 10 wt% and the remaining Sn.
  • Bi is added in an amount of 1% by weight to 4% by weight and Sb in an amount of 1% by weight to less than 10% by weight in a solder alloy composed of Cu 5 to 10% by weight and the balance Sn (Example 20).
  • In is added 1 wt% or more and 4 wt% or less and Sb is added 1 wt% or more and less than 10 wt% in a solder alloy composed of Cu 5 to 10 wt% and the balance Sn (Example 21). .
  • the semiconductor chip 1 can be prevented from cracking even when thermal stress is applied to the semiconductor device 20. Furthermore, the progress of cracks in the semiconductor chip 1 can be slowed to increase the reliability of the semiconductor chip 1.
  • the stability of the interface of the connecting portion of the lead-free solder alloy can be maintained, and as a result, the connection reliability of the solder connection can be improved. it can.
  • Example 23 is a semiconductor module (semiconductor device) 10 as shown in FIG. 9, for example, a power module mounted on a railway vehicle, an automobile, or the like. Therefore, heat dissipation measures for the power module are required.
  • the configuration of the semiconductor module 10 will be described.
  • the semiconductor chip 1 is a ceramic substrate (chip support member, insulating substrate) using the solder alloy (any of the lead-free solder alloys of Examples 1 to 22) 2b of the present embodiment. , Connected member) 5.
  • the heat radiation metal plate (heat radiation member) 12 and the ceramic substrate 5 that play the role of releasing heat during operation of the semiconductor chip 1 are solder alloys 2c (Examples 1 to 4) that are the lead-free solder alloys of the present embodiment. Any one of 22 lead-free solder alloys).
  • the specific structure of the semiconductor module 10 will be described.
  • the semiconductor chip 1, the ceramic substrate (insulating substrate, connected member) 5 which is a chip support member connected to the semiconductor chip 1 via the solder alloy 2b, and the semiconductor chip 1 and a lead (external terminal) 13 electrically connected.
  • a conductor portion 5d such as a wiring pattern is formed on the upper surface 5a of the substrate body portion 5e of the ceramic substrate 5, and a solder alloy (any of the lead-free solder alloys of Examples 1 to 22) is formed on the conductor portion 5d.
  • the semiconductor chip 1 is mounted via 2b.
  • a wiring part (wiring pattern) 5c is formed on the upper surface 5a of the substrate body 5e of the ceramic substrate 5, and the leads 13 are electrically connected to the wiring part 5c.
  • the electrode pad 1c and the lead 13 formed on the main surface 1a of the semiconductor chip 1 and the electrode pad 1c and the wiring part 5c are electrically connected by a wire 11 such as a gold wire or a copper wire, respectively. ing.
  • a wiring portion 5c is formed on the lower surface 5b of the substrate body 5e of the ceramic substrate 5.
  • the wiring portion 5c is used for heat dissipation via the solder alloy 2c (any one of the lead-free solder alloys of Examples 1 to 22).
  • a metal plate (heat radiating member) 12 is connected.
  • the semiconductor module 10 is manufactured by connecting the semiconductor chip 1 and the ceramic substrate 5 with the solder alloy 2b, and then connecting the ceramic substrate 5 and the heat radiating metal plate 12 with another solder alloy 2c.
  • solder alloy 2b that connects the semiconductor chip 1 and the ceramic substrate 5 is remelted by heating when connecting the ceramic substrate 5 and the heat radiating metal plate 12, the molten solder flows, Misalignment or the like occurs, leading to a failure.
  • solder alloy 2 of Examples 1 to 22, which is the solder alloy 2 (2b, 2c) of the present embodiment is used, the Cu—Sn-based compound layer 4 having undulations as shown in FIG. Therefore, no solder flow occurs and the semiconductor chip 1 is not displaced.
  • any one of the solder alloys 2 of Examples 1 to 22 is applied to the solder alloy 2b of the semiconductor module 10 shown in FIG. 9, and the connection temperature is 320 ° C., the holding time is 5 min, and N is the same as in Examples 1 to 22.
  • the semiconductor chip 1 and the Ni / Cu / Si 3 N 4 / Cu / Ni ceramic substrate 5 on which the Ni plating layer 3 was formed were connected to obtain a connection body 9.
  • solder alloy 2c of any of Examples 1 to 22 is sandwiched between the heat dissipation metal plate 12 which is an AlSiC / Ni substrate and the connection body 9, the connection temperature is 320 ° C., the holding time is 5 min, no load, N 2 + 4%.
  • the semiconductor module 10 was formed by connecting in an H 2 atmosphere.
  • the ceramic substrate 5 and the heat radiating metal plate 12 can be connected without remelting the solder alloy 2b of the connection body 9.
  • the lead 13 is connected, and the electrode pad 1c on the main surface 1a of the semiconductor chip 1 is bonded to the wiring portion 5c and the lead 13 on the ceramic substrate 5 with the wire 11.
  • the semiconductor module 10 can be formed.
  • the interface between the lead-free solder alloy (solder alloy 2) and the semiconductor chip 1, the interface between the lead-free solder alloy and the ceramic substrate 5, and the lead-free solder alloy Ni plating layers 3 are respectively formed at the interfaces of the connecting portions with the heat radiating metal plate 12.
  • solder alloy 2 of the present embodiment any of the lead-free solder alloys (solder alloys 2) of Examples 1 to 22) to each connection portion of the semiconductor module 10 as described above, lead-free In each connection portion of the solder alloy, the Cu—Sn compound 6 (see FIG. 8) can be formed thick at each interface, and as a result, the interface stability at each connection portion can be improved.
  • connection reliability in each connection part of the lead-free solder alloy (solder alloy 2) can be improved.
  • FIG. 13 is a partial side view showing an example of a railway vehicle on which the semiconductor module 10 using the lead-free solder alloy of the present embodiment is mounted
  • FIG. 14 shows an example of the internal structure of the inverter installed in the vehicle of FIG. FIG.
  • the semiconductor module 10 of the present embodiment is mounted on an inverter 23 installed in a railway vehicle 21 provided with a pantograph 22 which is a current collector as shown in FIG. .
  • a plurality of semiconductor modules 10 are mounted on a printed circuit board 25, and a cooling device 24 that cools these semiconductor modules 10 is mounted.
  • the cooling device 24 is attached so that the plurality of semiconductor modules 10 can be cooled to cool the inside of the inverter 23.
  • the inverter 23 equipped with the plurality of semiconductor modules 10 using the lead-free solder alloy (solder alloy 2) of the present embodiment is provided in the railway vehicle 21, so that the temperature inside the inverter 23 is high. Even when it becomes an environment, the reliability of the inverter 23 and the vehicle 21 provided with the inverter 23 can be improved.
  • Example 24 of the present embodiment shown in FIG. 10 will be described.
  • the semiconductor device shown in FIG. 10 is, for example, a semiconductor module (power module) 18 for an in-vehicle AC generator.
  • the structure of the semiconductor module 18 will be described.
  • the semiconductor chip (diode) 1 and the Ni-based plating are connected to the connection portion connected to the back surface 1b of the semiconductor chip 1 via the solder alloy (lead-free solder alloy) 2d of the present embodiment.
  • the semiconductor module 18 has a thermal expansion coefficient difference buffer in which Ni-based plating is applied to a connection portion connected to the main surface 1a of the semiconductor chip 1 via the solder alloy (lead-free solder alloy) 2e of the present embodiment.
  • the cylindrical cap 15 is filled with a sealing resin 16 for sealing a part of the semiconductor chip 1, the buffer material 17, the solder alloys 2 d, 2 e, 2 f and the Cu lead 14.
  • the buffer material 17 is preferably 30 to 500 ⁇ m.
  • the thickness of the buffer material 17 is less than 30 ⁇ m, the stress cannot be sufficiently buffered, and cracks may occur in the semiconductor chip 1 and the intermetallic compound. Further, when the thickness of the buffer material 17 exceeds 500 ⁇ m, Al, Mg, Ag, and Zn have a larger coefficient of thermal expansion than the Cu lead 14, and therefore the connection reliability is reduced due to the influence of the difference in coefficient of thermal expansion. There is.
  • the buffer material 17 it is preferable to use any one of Cu / Invar alloy / Cu composite material, Cu / Cu composite material Cu—Mo alloy, Ti, Mo, and W.
  • the buffer material 17 it is possible to buffer the stress generated at the connection portion during the temperature cycle and the cooling after the connection resulting from the difference in thermal expansion coefficient between the semiconductor chip 1 and the Cu lead 14. .
  • the stress applied to the semiconductor chip 1 can be reduced, and the formation of cracks in the semiconductor chip 1 can be reduced. Furthermore, in the semiconductor module 18, the connection reliability of the solder connection can be improved.
  • FIG. 12 shows the semiconductor device 20 shown in FIGS. 1 and 2 manufactured for Example 3, Example 9, Example 15, Comparative Example 3 and Comparative Example 7 shown in FIG. This is an evaluation of sex.
  • the energization thermal fatigue reliability test repeats the trial of flowing current through the semiconductor chip 1 to generate heat, cutting off the current when the temperature of the lower part of the metal cap reaches 150 ° C., and cooling to 50 ° C. It is a test.
  • the thermal resistance of the semiconductor chip 1 is measured after a 5000 cycle test, which is a general standard for obtaining a certain level of reliability of the semiconductor device, and the thermal resistance is increased by less than 20%.
  • the case where the chip 1 was operated was evaluated as “ ⁇ ”, and the other cases were evaluated as “X”.
  • solder alloy 2 of the present embodiment any of the lead-free solder alloys of Examples 1 to 22
  • the semiconductor device is a semiconductor device or a semiconductor module provided with one semiconductor chip 1 .
  • the semiconductor device includes a plurality of semiconductor chips and each semiconductor device.
  • a multi-chip module or the like in which the chip 1 is connected to a chip support member such as an insulating substrate by a solder alloy (lead-free solder alloy) 2 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 半導体チップ1と、半導体チップ1とはんだ合金(鉛フリーはんだ合金)2を介して接続された被接続部材5と、半導体チップ1と電気的に接続された外部端子と、を有する半導体装置20である。そして、半導体装置20における上記はんだ合金2は、Cu5~10重量%と、Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つまたは2つ以上と、残部Snと、からなる。

Description

鉛フリーはんだ合金および半導体装置
 本発明は、鉛フリーはんだ合金および半導体装置に関し、特に高温環境下で使用する鉛フリーはんだ合金およびそれを用いた半導体装置に関する。
 電機・電子機器の部品の電気的接続に使用されている接続部材であるはんだには、一般的に鉛が含まれていたが、近年、環境への意識が高まる中、人体への有害性が指摘される鉛の規制が始まっている。
 欧州では自動車中の鉛使用を制限するELV指令(End-of Life Vehicles directive、廃自動車に関する指令)や、電機・電子機器中の鉛使用を禁止するRoHS(Restriction of the use of certain Hazardous Substances in electrical and electronic equipment)指令が施行された。
 これまで、高耐熱性が要求される半導体装置、特に自動車や建機、鉄道、情報機器分野等に用いられる半導体装置の接続部材としては鉛(Pb)入りはんだが使用されてきたが、環境負荷低減のため鉛フリーの接続部材とすることが強く要求されている。
 また、近年、高温動作が可能で、かつ機器の小型軽量化が可能なSiCやGaN等のワイドギャップ半導体の開発が推し進められている。なお、Si(シリコン)の半導体素子は動作温度の上限が150~175℃であるのに対し、SiC半導体素子は175℃以上での使用が想定されている。
 そして、使用環境温度が高温になると、接続界面の反応が速くなるため界面の安定性が求められる。また、素子に電流の通電と遮断とが繰り返されるため、熱応力が繰り返し加わり、したがって、耐通電熱疲労性や環境温度の変化による耐クラック性、多段階のはんだ接続への適合性も要求される。
 上記要求に対応するために、鉛フリーで、かつ高い耐熱性を持ち高信頼の接続技術が必要となっている。
 このような高温はんだ合金として、例えば特許文献1に記載の技術では、はんだ付け部の組成が、Sbが10~40質量%、Cuが0.5~10質量%、残部Snからなるはんだ組成物に機械的強度を向上させるために、Co、Fe、Mo、Cr、Ag、Biの元素のいずれか1種または2種以上を添加し、酸化抑制元素としてGe、Gaのいずれか1種以上を添加している。
 また、特許文献2に記載の技術では、電子部品と銅焼成の回路導体とを有するハイブリッドICの、上記電子部品と上記回路導体とをリフローではんだ付けする時に用いる鉛フリーはんだ合金として、組成が、Sb1~10重量%、Cu1~4重量%、Bi1~6重量%、In1~5重量%、残部Snであり、かつ固相線温度が200℃以上である鉛フリーはんだ合金が開示されている。
特開2009-255176号公報 特開平11-77368号公報
 上記特許文献1に記載の技術では、Sbを10~40質量%含むことにより、はんだ合金が硬くなってしまい熱応力が加わった場合に素子が割れてしまう課題や、クラックの進展が速くなり信頼性が低下するという課題がある。
 また、上記特許文献2に記載の技術では、Cu1~4重量%を含有させてCuと鉛フリーはんだ合金とを接続した場合、CuとCu―Sn化合物が直接接することにより175℃以上の環境下で界面安定性を保つことができない。
 また、Niめっきを形成した部材に接続した場合においても、接続界面には界面拡散を防止する効果が小さいCu-Sn-Ni化合物が多く形成され、175℃以上の環境下で界面安定性を保つことができず、信頼性が低下するという課題がある。
 本発明の目的は、高温環境下における鉛フリーはんだ合金および半導体装置のはんだ接続の接続信頼性を向上させることができる技術を提供することにある。
 本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明の鉛フリーはんだ合金は、Cu5~10重量%と、Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つもしくは2つ以上と、残部Snと、からなるはんだ組成である。
 本発明の半導体装置は、半導体チップと、前記半導体チップと鉛フリーはんだ合金を介して接続されたチップ支持部材と、前記半導体チップと電気的に接続された外部端子と、を有する。そして、上記鉛フリーはんだ合金は、Cu5~10重量%と、Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つもしくは2つ以上と、残部Snと、からなる。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
 高温環境下における鉛フリーはんだ合金および半導体装置のはんだ接続の接続信頼性を向上させることができる。
本発明の実施の形態の半導体装置の主要部の構造の一例を示す部分断面図である。 図1に示す半導体装置におけるはんだ接続部の接続前と接続後の構造の一例を示す部分断面図である。 図1に示す半導体装置のA部の構造を示す拡大部分断面図である。 図1に示すはんだ合金層の水平方向の構造の一例を示す平面図である。 図1に示すはんだ合金層の温度サイクル試験後の水平方向の構造の一例を示す平面図である。 本発明の実施の形態の鉛フリーはんだ合金におけるCuの添加量に対するCu-Sn化合物の割合と、Niめっき消失厚さの一例を示すデータ図である。 比較例のはんだ合金を用いて接続した時の接続界面の構造を示す部分断面図である。 本発明の実施の形態の鉛フリーはんだ合金を用いて接続した時の接続界面の構造を示す部分断面図である。 本発明の実施の形態の鉛フリーはんだ合金を用いた半導体装置(半導体モジュール)の構造の一例を示す断面図である。 本発明の実施の形態の鉛フリーはんだ合金を用いた半導体装置(交流発電機用半導体モジュール)の構造の一例を示す断面図である。 本発明の各実施例と比較例の評価の結果を示す評価結果図である。 図11に示す一部の実施例と比較例のはんだ合金に対して通電熱疲労試験を行った結果を示す評価結果図である。 本発明の実施の形態の鉛フリーはんだ合金を用いた半導体装置が搭載された鉄道の車両の一例を示す部分側面図である。 図13に示す車両に設置されたインバータの内部構造の一例を示す平面図である。
 以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 <実施の形態>
 図1は本発明の実施の形態の半導体装置の主要部の構造の一例を示す部分断面図、図2は図1に示す半導体装置におけるはんだ接続部の接続前と接続後の構造の一例を示す部分断面図、図3は図1に示す半導体装置のA部の構造を示す拡大部分断面図である。さらに、図4は図1に示すはんだ合金層の水平方向の構造の一例を示す平面図、図5は図1に示すはんだ合金層の温度サイクル試験後の水平方向の構造の一例を示す平面図である。
 まず、図1に示す、本実施の形態の鉛フリーはんだ合金を用いた半導体装置の主要部の構成について説明する。
 図1に示す半導体装置20は、半導体素子である半導体チップ1が、チップ支持部材であるセラミック基板(絶縁性基板)5上に、はんだ合金(鉛フリーはんだ合金)2を介してはんだ接続されている。
 なお、はんだ合金2は、鉛(Pb)を含有していないはんだである。
 さらに、セラミック基板5の上面5aの表面には、Niめっき層3が形成されており、このNiめっき層3上にはんだ合金2が配置されている。また、はんだ合金2と半導体チップ1との接続部にもNiめっき層3が形成されている。
 次に、図2を用いて、半導体装置20の主要部の組み立てについて説明する。まず、はんだ箔2aを、Niめっき層3を形成したチップ支持部材であるセラミック基板5と半導体チップ1とによって挟み込む。
 すなわち、上面5aの表面にNiめっき層3が形成されたセラミック基板5のNiめっき層3上に、はんだ箔2aを配置し、さらに、はんだ箔2a上に、裏面1bにNiめっき層3が形成された半導体チップ1を配置してセラミック基板5と半導体チップ1とによってはんだ箔2aを挟んだ状態とする。
 なお、はんだ箔2aには、Cu-Sn化合物6が含まれている。そして、半導体チップ1とセラミック基板5とによってはんだ箔2aを挟んだ構造体を280℃以上に加熱する。上記加熱により、Cu-Sn化合物(例えばCu6 Sn5 )6が接続界面上に析出あるいは移動し、Niめっき層3上(はんだ合金2側)にCu-Sn系化合物層4が形成される。
 また、はんだ中に含んでいるBi、In、SbはSn相に固溶する。接続後の構造として、図2の加熱後に示すように、セラミック基板5に施されたNiめっき層3上にCu-Sn系化合物層4が形成され、その間にはんだ中に含んでいるBi、In、Sbが固溶したSnを主体とするはんだ合金2が形成される。
 図3は、図1に示すはんだ接続部のA部の詳細構造を示すものであり、175℃以上の高温環境下に長時間さらされても、Cu-Sn系化合物層4を主体とした化合物層が接続界面とはんだ合金2とのバリア層となる。その結果、接続界面での反応による化合物層の成長およびそれに伴うボイドの形成を抑制することができる。また、Sn相にBi、In、Sbを固溶させることにより、機械的特性を向上させることができ、かつ高温での耐亀裂進展性等の信頼性を向上させることができる。
  このようにして接続した半導体チップ1とセラミック基板5を含む半導体装置20のはんだ合金2の接続部において、超音波探傷によりボイド面積率を測定したものを図4に示す。このボイド率は、接続部であるはんだ合金2(図4のハッチング部)の平面方向において、ボイド7の全面積を接続層の平面方向の面積で割って算出したものである。
 ここで、温度サイクル試験によってはんだ層で発生するクラックについて説明する。図5は、-55℃に15分、200℃に15分を1サイクルとして、500サイクル程度の温度サイクル試験を行った後に、熱応力によってはんだ接続部に生じたクラックを示すものである。
 このようにして試験した図2に示す半導体装置20のはんだ接続部を超音波探傷によりクラック進展率を測定した。クラック進展率は、接続部であるはんだ合金2(図5のハッチング部)の平面方向において、クラック進展部8の全面積を接続層の平面方向の面積で割って算出したものである。
 なお、ボイド率が10%を超えると、温度サイクル試験により、ボイド周辺から優先的にクラックが進展し、早期に信頼性が低下する等の課題が発生する。したがって、ボイド率を小さくすることにより長期的に信頼性を確保することができる。
 また、半導体チップ1に通電することにより熱が発生するが、クラック進展率が20%を超えると半導体チップ1で発生した熱の引けが悪くなり、半導体チップ近傍の温度が上昇して信頼性が急速に低下する。
 ここで、半導体チップ1や基板等の被接続部材の素材については、Cu、Ni、Au、Ag、Pt、Pd、Ti、TiN、Fe-NiやFe-Co等のFe系合金等、様々な金属、合金が適用可能である。ただし、被接続部材はNiメタライズが施されていることが好ましい。
 これは、図2に示すように、Niめっき層3上にCu-Sn系化合物層4のバリア層が形成されることにより、接続界面を安定に保つことができ、高温環境下でより良好な信頼性を維持できるためである。
 なお、被接続部材の表面のメタライズがNiの場合は、Ni自身の酸化が問題となり、濡れ性が阻害される場合がある。そのため、Niの上に、酸化しにくいAuやAg、Pt、Pdを積層させてもよい。つまり、被接続部材の表面にはNi、Ni/Au、Ni/Ag等のメタライズが施されていることが好ましい。
 このようなメタライズが施されていることにより、半導体チップ1は、Si、SiC、GaAs、CdTe、GaN等どのような半導体チップ1であっても接続することができる。基板についても、上記のメタライズを付けることで、Cu、Al、42アロイや、CIC(Copper Invar Copper)、または、DBC(Direct Bond Copper)、DBA(Direct Bond Aluminum)等の金属を貼り合わせたセラミック基板(絶縁性基板)等、どのような部材に対しても信頼性の高い接続を実現することができる。
 なお、Niメタライズが付いた被接続部材を、本実施の形態のはんだ合金2により接続した場合の接続後の構造を詳細に書けば、被接続部材/Ni/Cu-Sn系化合物/はんだ合金/Cu-Sn系化合物/Ni/被接続部材となる。
 上記の例は、半導体チップ1と基板の接続について説明したが、このような構成は、半導体チップ1とリード、半導体チップ1と放熱基板(部材)、半導体チップ1とフレーム、半導体チップ1と絶縁性基板、または半導体チップ1と一般的な電極との接続についても適用することができる。
 また、上記で説明した構成は、半導体チップ1と基板の接続に限らず、一般的に、第1の被接続部材と第2の被接続部材とを本実施の形態の被接続部材によって接続する場合にも適用することができる。例えば、金属板と金属板、金属板とセラミック基板等の接続に適用することができる。
 次に、具体的に評価を行った実施例および比較例について説明する。
 図6は本発明の実施の形態の鉛フリーはんだ合金におけるCuの添加量に対するCu-Sn化合物の割合と、Niめっき消失厚さの一例を示すデータ図、図7は比較例のはんだ合金を用いて接続した時の接続界面の構造を示す部分断面図、図8は本発明の実施の形態の鉛フリーはんだ合金を用いて接続した時の接続界面の構造を示す部分断面図である。
 また、図9は本発明の実施の形態の鉛フリーはんだ合金を用いた半導体モジュールの構造の一例を示す断面図、図10は本発明の実施の形態の鉛フリーはんだ合金を用いた交流発電機用半導体モジュールの構造の一例を示す断面図である。さらに、図11は本発明の各実施例と比較例の評価の結果を示す評価結果図、図12は図11に示す一部の実施例と比較例のはんだ合金に対して通電熱疲労試験を行った結果を示す評価結果図である。
 以下、図11に示す実施例1~22と比較例1~9に対してその評価結果を説明する。まず、図11は、実施例1~22と比較例1~9とに示す条件で半導体装置20をそれぞれ製造し、ボイド率、界面安定性、温度サイクル信頼性を評価し、さらに総合評価を行い、それらの結果を示したものである。
 なお、半導体装置20は、まず、15mm角のNiめっき付きCu板の被接続部材5、実施例1~22の条件のはんだ箔2aの接続部材、および10mm角で、かつ厚さ0.3mmのNiめっき付きの半導体チップ1を積み重ねてチップ構造体を形成する。そして、このチップ構造体を熱処理炉により、N2 +4%H2 雰囲気で、320℃、5分の温度条件で接続して半導体装置20を製造した。
 なお、評価では、半導体装置20が一定の信頼性を得られる一般的な基準である、接続層のボイド率が10%以下となり、正常に半導体チップ1が動作した場合を○とし、それ以外を×とする。
 また、-55℃で15分、200℃で15分を1サイクルとした場合に、500サイクル程度の温度サイクル試験を行った後、クラック進展率を測定し、一般的な信頼性の基準であるクラック進展率が20%以下となり、正常に半導体チップ1が動作した場合を○とし、それ以外を×とする。
 界面安定性については、200℃で1000時間保持した後、Niめっきが残存しているものを○、一部でも消失が確認されたものを×とする。これは、Niめっきが消失すると被接続部材とはんだ合金との間で拡散が進み、金属間化合物が形成され体積差によってボイドが発生し、長期信頼性が保てないからである。
 そして、総合評価は、全ての条件において評価が○となったものを○とし、それ以外は×とすることで評価を行った。
 次に、Cuの添加量(Cu:5重量(wt)%以上10重量(wt)%以下)について説明する。
 図6は、Cuの添加量とCu-Sn化合物の割合とNiめっき消失厚さとの関係を示したものである。図6からCuの添加量が増加すると、Niめっきの減少量が低下する(Niめっきの残る量が増える)。Niめっきが消失すると被接続部材とはんだ合金の反応が進みボイドを形成して信頼性が低下する。
 したがって、Niめっき消失量が少ないほど高い界面安定性を持ち信頼性向上の指標となる。また、Cuの添加量が増加すると、はんだ合金中の化合物の割合も増加し、はんだ溶融時の粘性が上昇してボイド率が上昇する。
 なお、Niめっきの残存量はCuの添加量が5wt%以上になると急激に増加する。これは、図7の比較例に示すように接続部界面のNiめっき層3上に、Cu-Ni-Sn化合物(Cu-Sn系化合物層4)、Cu-Sn化合物6の順で形成されるが、図8に示すようにCuの添加量が5wt%以上になった場合、接続界面に形成されるCu-Sn化合物6の割合が急激に増加する。そして、Cu-Sn化合物6は、Cu-Ni-Sn化合物(Cu-Sn系化合物層4)に比較して高温環境下でのNiめっきの拡散を強力に抑制するため、高い信頼性を得ることができる。
 一方、比較例5、8および9に示すように、Cuの添加量が10wt%より多くなるとボイド率が10%を超えて評価が×となる。
 以上のことから、Cuを5重量(wt)%以上10重量(wt)%以下添加することにより、良好な接続信頼性を得ることができる。
 次に、Bi(ビスマス)の添加量(Bi:1重量%以上4重量%以下)について説明する。
 図11に示す実施例1~6においてBiを1wt%より多く添加することにより、温度サイクル信頼性は○となる。一方、比較例1に示すようBiを5wt%より多く添加すると接続界面の安定性が劣化し、信頼性が保てない(界面安定性×)。これは、Biの添加量を増加させるとBi相が析出し、さらにBiはNiと反応性が高く、界面の安定性が劣化するためである。
 次に、In(インジウム)の添加量(In:1重量%以上4重量%以下)について説明する。
 図11に示す実施例7~12においてInを1wt%より多く添加することにより温度サイクル信頼性は○となる。一方、比較例2に示すようInを4wt%より多く添加すると接続界面の安定性が劣化し、信頼性が保てない(界面安定性×)。Inの添加量が増えると固相線温度が低下し、かつ接続界面にCu―Sn―In化合物が形成されることにより、バリア効果の低下と合わさって長期信頼性が低下する。
 次に、Sb(アンチモン)の添加量(Sb:1重量%以上10重量%未満)について説明する。
 図11に示す実施例13~18においてSbを1wt%より多く添加することにより、温度サイクル信頼性は○となる。一方、比較例3、4に示すようにSbを10%以上添加するとボイド率の評価が×となり、また温度サイクル信頼性も×となる。これは、Sbの添加量が増加するとはんだ中のSn-Sb化合物の析出量が増加し、そしてはんだの粘度が上昇し、さらにボイド率が上昇し、かつはんだが硬くなり、温度サイクル信頼性が低下するためである。
 なお、図11の実施例19~22に示すように、Bi、In、Sbを2種類以上添加した場合においても良好な温度サイクル信頼性、ボイド率、界面安定性が得られた。
 以上のように、本実施の形態の鉛フリーはんだ合金は、Cu5~10重量%と、残部Snと、Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つもしくは2つ以上と、からなるはんだ組成のものである。
 具体的には、Cu5~10重量%と、残部Snとからなるはんだ合金中に、Bi、SbおよびInのうち、Biを1重量%以上4重量%以下添加する(実施例1~6)、または、Inを1重量%以上4重量%以下添加する(実施例7~12)、または、Sbを1重量%以上10重量%未満添加する(実施例13~18)ものである。
 さらに、Cu5~10重量%と、残部Snとからなるはんだ合金中に、Bi、SbおよびInのうち、Biを1重量%以上4重量%以下およびInを1重量%以上4重量%以下添加する(実施例19)ものである。または、Cu5~10重量%と、残部Snとからなるはんだ合金中に、Biを1重量%以上4重量%以下およびSbを1重量%以上10重量%未満添加する(実施例20)ものである。または、Cu5~10重量%と、残部Snとからなるはんだ合金中に、Inを1重量%以上4重量%以下およびSbを1重量%以上10重量%未満添加する(実施例21)ものである。
 さらに、Cu5~10重量%と、残部Snとからなるはんだ合金中に、Biを1重量%以上4重量%以下、Sbを1重量%以上10重量%未満、Inを1重量%以上4重量%以下、それぞれ添加する(実施例22)ものである。
 以上、何れの組み合わせであっても、図11の実施例1~22に示すように、ボイド率、界面安定性、温度サイクル信頼性および総合評価において○を得ることができる(良好な結果を得ることができる)。すなわち、実施例1~22に示す鉛フリーはんだ合金を用いたはんだ接続において、高温環境下であってもはんだ接続の接続信頼性を向上させることができる。
 また、図11の実施例1~22の鉛フリーはんだ合金を用いることにより、半導体装置20に熱応力が加わった際にも、半導体チップ1が割れることを防止できる。さらに半導体チップ1へのクラックの進展を遅くして半導体チップ1の信頼性を高めることができる。
 さらに、上記実施例1~22の鉛フリーはんだ合金を用いることにより、上記鉛フリーはんだ合金の接続部の界面の安定性を保つことができ、その結果、はんだ接続の接続信頼性を高めることができる。
 次に、図9に示す実施例23について説明する。
 実施例23は、図9に示すような半導体モジュール(半導体装置)10であり、例えば、鉄道の車両や自動車等に搭載されるパワーモジュールである。したがって、パワーモジュールの放熱対策が必要となる。
 半導体モジュール10の構成について説明すると、半導体チップ1が、本実施の形態のはんだ合金(実施例1~22の鉛フリーはんだ合金の何れか)2bを用いてセラミック基板(チップ支持部材、絶縁性基板、被接続部材)5に接続されたものである。
 さらに、半導体チップ1の動作時の熱を逃がす役割を果たす放熱用金属板(放熱部材)12とセラミック基板5とが、本実施の形態の鉛フリーはんだ合金であるはんだ合金2c(実施例1~22の鉛フリーはんだ合金の何れか)を用いて接続されている。
 半導体モジュール10の具体的構造について説明すると、半導体チップ1と、半導体チップ1とはんだ合金2bを介して接続されたチップ支持部材であるセラミック基板(絶縁性基板、被接続部材)5と、半導体チップ1と電気的に接続されたリード(外部端子)13とを有している。
 すなわち、セラミック基板5の基板本体部5eの上面5aには、配線パターン等の導体部5dが形成され、この導体部5d上にはんだ合金(実施例1~22の鉛フリーはんだ合金の何れか)2bを介して半導体チップ1が搭載されている。
 また、セラミック基板5の基板本体部5eの上面5aには、配線部(配線パターン)5cが形成され、リード13はこの配線部5cに電気的に接続されている。そして、半導体チップ1の主面1aに形成された電極パッド1cとリード13とが、および、電極パッド1cと配線部5cとが、それぞれ金線または銅線等のワイヤ11によって電気的に接続されている。
 また、セラミック基板5の基板本体部5eの下面5bには配線部5cが形成され、この配線部5cにはんだ合金2c(実施例1~22の鉛フリーはんだ合金の何れか)を介して放熱用金属板(放熱部材)12が接続されている。
 次に、半導体モジュール(パワーモジュール)10の組立工法について説明する。半導体モジュール10は、半導体チップ1とセラミック基板5とをはんだ合金2bで接続し、その後、セラミック基板5と放熱用金属板12とを別のはんだ合金2cによって接続することで製造される。
 ここで、セラミック基板5と放熱用金属板12とを接続する際の加熱で、半導体チップ1とセラミック基板5とを接続するはんだ合金2bが再溶融すると、溶融したはんだが流れ、半導体チップ1の位置ずれ等が発生し、不良に至る。一般的に、はんだ合金2bの再溶融を防ぐためには、はんだ合金2cは、はんだ合金2bよりも融点の低い材料を採用する必要がある。
 しかしながら、本実施の形態のはんだ合金2(2b,2c)である実施例1~22のはんだ合金2を用いた場合、接続界面に図3に示すような起伏のあるCu-Sn系化合物層4が形成されるため、はんだ流れが生じることなく、半導体チップ1の位置ずれは生じない。
 そこで、実施例1~22のはんだ合金2の何れかを、図9に示す半導体モジュール10のはんだ合金2bに適用し、実施例1~22と同様に、接続温度320℃、保持時間5min、N2 +4%H2 雰囲気で、半導体チップ1と、Niめっき層3を形成したNi/Cu/Si3 N4 /Cu/Niのセラミック基板5とを接続し、これによって接続体9を得た。
 さらに、AlSiC/Ni基板である放熱用金属板12と接続体9とによって実施例1~22の何れかのはんだ合金2cを挟み込み、接続温度320℃、保持時間5min、無荷重、N2 +4%H2 雰囲気で接続し、半導体モジュール10を形成した。
 したがって、接続体9のはんだ合金2bが再溶融することなくセラミック基板5と放熱用金属板12とを接続することができる。
 このように形成した接続体9について、リード13を接続し、また、半導体チップ1の主面1aの電極パッド1cと、セラミック基板5上の配線部5cやリード13とをワイヤ11でボンディングすることにより、半導体モジュール10を形成することができる。
 なお、半導体モジュール10では、鉛フリーはんだ合金(はんだ合金2)と半導体チップ1との接続部の界面、上記鉛フリーはんだ合金とセラミック基板5との接続部の界面、および上記鉛フリーはんだ合金と放熱用金属板12との接続部の界面に、それぞれNiめっき層3が形成されている。
 そして、上述のように半導体モジュール10の各接続部に本実施の形態のはんだ合金2(実施例1~22の鉛フリーはんだ合金(はんだ合金2)の何れか)を適用することにより、鉛フリーはんだ合金の各接続部において、それぞれの界面にCu-Sn化合物6(図8参照)を厚く形成することができ、その結果、各接続部における界面安定性を向上させることができる。
 これにより、鉛フリーはんだ合金(はんだ合金2)の各接続部における接続信頼性を高めることができる。
 次に、図13に示す、半導体モジュール10が搭載された鉄道の車両について説明する。図13は本実施の形態の鉛フリーはんだ合金を用いた半導体モジュール10が搭載された鉄道の車両の一例を示す部分側面図、図14は図13の車両に設置されたインバータの内部構造の一例を示す平面図である。
 すなわち、本実施の形態の半導体モジュール10は、一例として、図13に示すような集電装置であるパンタグラフ22が設けられた鉄道の車両21に設置されたインバータ23に搭載されているものである。
 図14に示すように、インバータ23の内部では、プリント基板25上に複数の半導体モジュール10が搭載され、さらにこれらの半導体モジュール10を冷却する冷却装置24が搭載されている。
 半導体モジュール10は、パワーモジュールであるため、半導体チップ1からの発熱量が多い。したがって、複数の半導体モジュール10を冷却してインバータ23の内部を冷却可能なように冷却装置24が取り付けられている。
 このように鉄道の車両21に、本実施の形態の鉛フリーはんだ合金(はんだ合金2)が用いられた複数の半導体モジュール10を搭載したインバータ23が設けられていることにより、インバータ23内が高温環境となった場合であっても、インバータ23およびそれが設けられた車両21の信頼性を高めることができる。
 次に、図10に示す本実施の形態の実施例24について説明する。
 図10に示す半導体装置は、例えば、車載用の交流発電機用の半導体モジュール(パワーモジュール)18である。
 半導体モジュール18の構成について説明すると、半導体チップ(ダイオード)1と、半導体チップ1の裏面1bと本実施の形態のはんだ合金(鉛フリーはんだ合金)2dを介して接続される接続部にNi系めっきが施された筒状のキャップ(リード電極体)15と、を備えている。
 さらに、半導体モジュール18は、半導体チップ1の主面1aと本実施の形態のはんだ合金(鉛フリーはんだ合金)2eを介して接続される接続部にNi系めっきを施した熱膨張率差緩衝用の緩衝材17と、緩衝材17の他方の面と本実施の形態のはんだ合金(鉛フリーはんだ合金)2fを介して接続される接続部にNi系めっきを施したCuリード(外部端子)14と、を備えている。
 また、筒状のキャップ15内には、半導体チップ1や緩衝材17やはんだ合金2d、2e、2fおよびCuリード14の一部を封止する封止用の樹脂16が充填されている。
 なお、半導体チップ1とCuリード14との間に、緩衝材17を配置(挿入)することにより、接続後の冷却時および温度サイクル時に、接続部に被接続部材の熱膨張率差により発生する応力を緩衝することができる。緩衝材17の厚さは、30~500μmにすることが好ましい。
 これは、緩衝材17の厚さが、30μm未満の場合、応力を充分に緩衝できずに、半導体チップ1および金属間化合物にクラックが発生する場合がある。また、緩衝材17の厚さが、500μm超の場合、Al、Mg、Ag、ZnはCuリード14より熱膨張率が大きいため、熱膨張率差の影響により、接続信頼性の低下につながる場合がある。
 また、緩衝材17としては、Cu/インバー合金/Cu複合材、Cu/Cu複合材Cu-Mo合金、Ti、Mo、Wの何れかを用いることが好ましい。この緩衝材17が設けられたことにより、半導体チップ1とCuリード14との間の熱膨張率差から生じる温度サイクル時および接続後の冷却時の接続部に発生する応力を緩衝することができる。
 その結果、半導体チップ1にかかる応力を低減することができ、半導体チップ1にクラックが形成されることを低減できる。さらに、半導体モジュール18において、はんだ接続の接続信頼性を高めることができる。
 ここで、図12は、図11に示す実施例3、実施例9、実施例15、比較例3および比較例7について、図1および図2に示す半導体装置20を製造し、通電熱疲労信頼性を評価したものである。
 上記通電熱疲労信頼性試験とは、半導体チップ1に電流を流して発熱させ、金属キャップの下部の温度が150℃に到達した時点で、電流を遮断し、50℃まで冷却するという試行を繰り返す試験である。
 半導体装置が一定の信頼性を得られる一般的な基準である通電熱疲労試験5000サイクル試験後に半導体チップ1の熱抵抗を測定し、その熱抵抗が20%未満の上昇率で、かつ正常に半導体チップ1が動作した場合ものを○、それ以外を×として評価した。
 なお、はんだ合金2の接続部にクラックやボイドが発生すると、半導体チップ1の発熱を外部に放出するための面積が減少し、熱抵抗が上昇する。熱抵抗が20%以上に上昇するとチップ温度が急激に上昇し、はんだの溶融や界面反応が急激に進行し、接続信頼性が低下する。
 図12に示すように、本実施の形態の図11に示す実施例3、9、15の条件の通電熱疲労信頼性試験の結果は○となった。
 これにより、本実施の形態のはんだ合金2(実施例1~22の何れの鉛フリーはんだ合金)を用いることにより、通電熱疲労信頼性試験もクリアすることができる。
 以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。
 上記実施の形態では、半導体装置が、1つの半導体チップ1を備えている半導体装置や半導体モジュールの場合を取り上げて説明したが、上記半導体装置は、複数の半導体チップを有し、かつそれぞれの半導体チップ1がはんだ合金(鉛フリーはんだ合金)2によって絶縁性基板等のチップ支持部材に接続されたマルチチップモジュール等であってもよい。
   1 半導体チップ
  1a 主面
  1b 裏面
  1c 電極パッド
   2 はんだ合金(鉛フリーはんだ合金)
  2a はんだ箔
  2b,2c,2d,2e,2f はんだ合金(鉛フリーはんだ合金)
   3 Niめっき層
   4 Cu-Sn系化合物層
   5 セラミック基板(チップ支持部材、絶縁性基板、被接続部材)
  5a 上面
  5b 下面
  5c 配線部
  5d 導体部
  5e 基板本体部
   6 Cu-Sn化合物
   7 ボイド
   8 クラック進展部
   9 接続体
  10 半導体モジュール(半導体装置、パワーモジュール)
  11 ワイヤ
  12 放熱用金属板(放熱部材)
  13 リード(外部端子)
  14 Cuリード(外部端子)
  15 キャップ(リード)
  16 樹脂
  17 緩衝材
  18 半導体モジュール(半導体装置、パワーモジュール)
  20 半導体装置
  21 車両
  22 パンタグラフ
  23 インバータ
  24 冷却装置
  25 プリント基板

Claims (15)

  1.  Cu5~10重量%と、
     Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つもしくは2つ以上と、
     残部Snと、
     からなるはんだ組成である、鉛フリーはんだ合金。
  2.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Biを1重量%以上4重量%以下添加する、鉛フリーはんだ合金。
  3.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Inを1重量%以上4重量%以下添加する、鉛フリーはんだ合金。
  4.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Sbを1重量%以上10重量%未満添加する、鉛フリーはんだ合金。
  5.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Biを1重量%以上4重量%以下および前記Inを1重量%以上4重量%以下添加する、鉛フリーはんだ合金。
  6.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Biを1重量%以上4重量%以下および前記Sbを1重量%以上10重量%未満添加する、鉛フリーはんだ合金。
  7.  請求項1に記載の鉛フリーはんだ合金において、
     前記Bi、前記Sbおよび前記Inのうち、前記Inを1重量%以上4重量%以下および前記Sbを1重量%以上10重量%未満添加する、鉛フリーはんだ合金。
  8.  半導体チップと、
     前記半導体チップと鉛フリーはんだ合金を介して接続されたチップ支持部材と、
     前記半導体チップと電気的に接続された外部端子と、
     を有し、
     前記鉛フリーはんだ合金は、
     Cu5~10重量%と、
     Bi1重量%以上4重量%以下、Sb1重量%以上10重量%未満およびIn1重量%以上4重量%以下のうちの何れか1つもしくは2つ以上と、
     残部Snと、
     からなる、半導体装置。
  9.  請求項8に記載の半導体装置において、
     前記鉛フリーはんだ合金では、前記Bi、前記Sbおよび前記Inのうち、前記Biを1重量%以上4重量%以下添加する、半導体装置。
  10.  請求項8に記載の半導体装置において、
     前記鉛フリーはんだ合金では、前記Bi、前記Sbおよび前記Inのうち、前記Inを1重量%以上4重量%以下添加する、半導体装置。
  11.  請求項8に記載の半導体装置において、
     前記鉛フリーはんだ合金では、前記Bi、前記Sbおよび前記Inのうち、前記Sbを1重量%以上10重量%未満添加する、半導体装置。
  12.  請求項8に記載の半導体装置において、
     前記チップ支持部材は絶縁性基板であり、
     前記絶縁性基板と前記鉛フリーはんだ合金を介して接続された放熱部材を有する、半導体装置。
  13.  請求項12に記載の半導体装置において、
     前記鉛フリーはんだ合金と前記半導体チップとの接続部の界面、前記鉛フリーはんだ合金と前記絶縁性基板との接続部の界面、および前記鉛フリーはんだ合金と前記放熱部材との接続部の界面に、それぞれNiめっき層が形成されている、半導体装置。
  14.  請求項8に記載の半導体装置において、
     前記チップ支持部材と前記鉛フリーはんだ合金との接続部の界面、および前記半導体チップと前記鉛フリーはんだ合金との接続部の界面に、それぞれCu-Sn化合物が形成されている、半導体装置。
  15.  請求項8に記載の半導体装置において、
     鉄道の車両に設けられたインバータに搭載されている、半導体装置。
PCT/JP2013/081275 2013-11-20 2013-11-20 鉛フリーはんだ合金および半導体装置 WO2015075788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015548914A JP6267229B2 (ja) 2013-11-20 2013-11-20 鉛フリーはんだ箔および半導体装置
US15/037,342 US20160300809A1 (en) 2013-11-20 2013-11-20 Lead-Free Solder Alloy and Semiconductor Device
PCT/JP2013/081275 WO2015075788A1 (ja) 2013-11-20 2013-11-20 鉛フリーはんだ合金および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081275 WO2015075788A1 (ja) 2013-11-20 2013-11-20 鉛フリーはんだ合金および半導体装置

Publications (1)

Publication Number Publication Date
WO2015075788A1 true WO2015075788A1 (ja) 2015-05-28

Family

ID=53179096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081275 WO2015075788A1 (ja) 2013-11-20 2013-11-20 鉛フリーはんだ合金および半導体装置

Country Status (3)

Country Link
US (1) US20160300809A1 (ja)
JP (1) JP6267229B2 (ja)
WO (1) WO2015075788A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103290A (ja) * 2015-11-30 2017-06-08 株式会社日立製作所 半導体装置およびその製造方法、パワーモジュール並びに車両
JP2017175044A (ja) * 2016-03-25 2017-09-28 富士通株式会社 配線基板、配線基板の製造方法及び電子装置
WO2023139976A1 (ja) * 2022-01-20 2023-07-27 株式会社日立パワーデバイス はんだおよび半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418126B2 (ja) * 2015-10-09 2018-11-07 三菱電機株式会社 半導体装置
EP3936332A4 (en) * 2019-03-08 2022-11-16 Kyocera Corporation ARRANGEMENT AND LIGHT SOURCE DEVICE
CN114342209A (zh) 2019-09-13 2022-04-12 米沃奇电动工具公司 具有宽带隙半导体的功率转换器
TWI778648B (zh) * 2021-06-04 2022-09-21 岱暉股份有限公司 焊料合金
CN115028467B (zh) * 2022-06-20 2023-07-18 昆明冶金研究院有限公司北京分公司 低空洞率陶瓷覆铜板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150179A (ja) * 1999-11-26 2001-06-05 Nippon Handa Kk クリームはんだおよびそれを用いた接着方法
JP2005118800A (ja) * 2003-10-15 2005-05-12 Senju Metal Ind Co Ltd ランプ用高温鉛フリーはんだ
JP2006035310A (ja) * 2004-06-24 2006-02-09 Sumitomo Metal Mining Co Ltd 無鉛はんだ合金
WO2010047139A1 (ja) * 2008-10-24 2010-04-29 三菱電機株式会社 はんだ合金および半導体装置
JP2011233879A (ja) * 2011-04-07 2011-11-17 Hitachi Ltd 電子装置の製造方法
JP2011251310A (ja) * 2010-06-02 2011-12-15 Nippon Genma:Kk 鉛フリーはんだ合金
JP2013033891A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 半導体装置及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044624A (ja) * 2009-08-24 2011-03-03 Hitachi Ltd 半導体装置および車載用交流発電機
US8610270B2 (en) * 2010-02-09 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US20150258636A1 (en) * 2012-10-04 2015-09-17 Celestica International Inc. Solder alloy for low-temperature processing
JP5590259B1 (ja) * 2014-01-28 2014-09-17 千住金属工業株式会社 Cu核ボール、はんだペーストおよびはんだ継手

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150179A (ja) * 1999-11-26 2001-06-05 Nippon Handa Kk クリームはんだおよびそれを用いた接着方法
JP2005118800A (ja) * 2003-10-15 2005-05-12 Senju Metal Ind Co Ltd ランプ用高温鉛フリーはんだ
JP2006035310A (ja) * 2004-06-24 2006-02-09 Sumitomo Metal Mining Co Ltd 無鉛はんだ合金
WO2010047139A1 (ja) * 2008-10-24 2010-04-29 三菱電機株式会社 はんだ合金および半導体装置
JP2011251310A (ja) * 2010-06-02 2011-12-15 Nippon Genma:Kk 鉛フリーはんだ合金
JP2011233879A (ja) * 2011-04-07 2011-11-17 Hitachi Ltd 電子装置の製造方法
JP2013033891A (ja) * 2011-08-03 2013-02-14 Hitachi Ltd 半導体装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103290A (ja) * 2015-11-30 2017-06-08 株式会社日立製作所 半導体装置およびその製造方法、パワーモジュール並びに車両
JP2017175044A (ja) * 2016-03-25 2017-09-28 富士通株式会社 配線基板、配線基板の製造方法及び電子装置
WO2023139976A1 (ja) * 2022-01-20 2023-07-27 株式会社日立パワーデバイス はんだおよび半導体装置

Also Published As

Publication number Publication date
JPWO2015075788A1 (ja) 2017-03-16
JP6267229B2 (ja) 2018-01-24
US20160300809A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP6267229B2 (ja) 鉛フリーはんだ箔および半導体装置
JP7115591B2 (ja) 半導体装置用はんだ材
JP6111764B2 (ja) パワーモジュール用基板の製造方法
CN108290250B (zh) 软钎焊接合部
JP6429208B2 (ja) 半導体装置および移動体
JP4479577B2 (ja) 半導体装置
CN112753101B (zh) 半导体装置
JP6877600B1 (ja) 半導体装置
WO2018168858A1 (ja) はんだ材
JP2005340268A (ja) トランジスタパッケージ
WO2017037837A1 (ja) 半導体装置およびパワーエレクトロニクス装置
JP2016025194A (ja) 半導体モジュールの製造方法、半導体パワーモジュール、半導体モジュールを有する自動車および半導体モジュールを有する鉄道車両
WO2016147252A1 (ja) 半導体装置およびその製造方法
JP2017135374A (ja) 接合体、パワーモジュール用基板、パワーモジュール、接合体の製造方法及びパワーモジュール用基板の製造方法
CN112951786A (zh) 焊料材料、层结构及其形成方法、芯片封装及其形成方法、芯片布置及其形成方法
WO2018168185A1 (ja) 半導体装置
WO2024029258A1 (ja) 半導体モジュールおよび半導体モジュールの製造方法
US20230402420A1 (en) Semiconductor device and method for manufacturing the same
JP2023005989A (ja) 接合部材
JP2018046166A (ja) 半導体装置及び半導体装置の製造方法
JP2017060984A (ja) 接合材及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015548914

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897843

Country of ref document: EP

Kind code of ref document: A1