WO2015075398A2 - Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil - Google Patents

Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil Download PDF

Info

Publication number
WO2015075398A2
WO2015075398A2 PCT/FR2014/052993 FR2014052993W WO2015075398A2 WO 2015075398 A2 WO2015075398 A2 WO 2015075398A2 FR 2014052993 W FR2014052993 W FR 2014052993W WO 2015075398 A2 WO2015075398 A2 WO 2015075398A2
Authority
WO
WIPO (PCT)
Prior art keywords
column
gas
heat pump
heat
fluid
Prior art date
Application number
PCT/FR2014/052993
Other languages
English (en)
Other versions
WO2015075398A3 (fr
Inventor
Raquel BLANCO
Benoît DAVIDIAN
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Publication of WO2015075398A2 publication Critical patent/WO2015075398A2/fr
Publication of WO2015075398A3 publication Critical patent/WO2015075398A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an apparatus for separating a gaseous mixture at a subambient temperature, or even a cryogenic temperature, and a process for maintaining the temperature in the cold state of the apparatus. such a device.
  • the separation may be separation by distillation and / or dephlegmation and / or absorption.
  • the equipment used for this separation will be called "column".
  • a column may for example be a distillation or absorption column. Reduced to its simplest expression, it can be a phase separator. However, the column generally contains means for exchanging heat and material, such as structured packings. Otherwise a column can also be a device where a dephlegmation takes place.
  • the gaseous mixture may for example be air, a mixture containing at least 35% of carbon dioxide, or even at least 65% of carbon dioxide, or a mixture containing, as main components, hydrogen and / or carbon monoxide. carbon and / or methane and / or nitrogen.
  • the column is not supplied with a fluid to be separated, as during normal operation. It is necessary to compensate the thermal inputs by a production of frigories to avoid heating the cold part of the device.
  • the device may stop for example because the gas compressor to be separated is not working or because the customer does not need the product of the device temporarily. If the temperature of the device rises above its operating temperature, the device will start slowly because the device needs to be cooled again.
  • An object of the present invention is to reduce this starting time to less than 6 hours, preferably less than an hour, very preferably less than 10 minutes, regardless of the duration of the stop. Starting is the operation of switching from the device to its nominal operation.
  • the present invention proposes to keep the apparatus stopped cold by using the magnetocaloric effect to provide cold.
  • Magnetic refrigeration is based on the use of magnetic materials having a magnetocaloric effect. Reversible, this effect results in a variation of their temperature when they are subjected to the application of an external magnetic field.
  • the optimal ranges of use of these materials are in the vicinity of their Curie temperature (Te).
  • Te Curie temperature
  • the magnetocaloric effect is said to be direct when the temperature of the material increases when it is put in a magnetic field, indirect when it cools when it is put in a magnetic field.
  • the rest of the description will be made for the direct case, but the transposition to the indirect case is obvious to those skilled in the art. There are several thermodynamic cycles based on this principle.
  • a typical magnetic refrigeration cycle consists of i) magnetizing the material to increase its temperature ii) cooling the constant magnetic field material to reject heat iii) demagnetizing the material to cool it and iv) heating the material to constant magnetic field (usually zero) to capture heat.
  • a magnetic refrigeration device uses elements of magnetocaloric material, which generate heat when magnetized and absorb heat when demagnetized. It can implement a regenerator magnetocaloric material to amplify the temperature difference between the "hot source” and the “cold source”: it is called active regenerative magnetic refrigeration.
  • US-A-6502404 describes the use of the magnetocaloric effect (instead of the conventional use of an expansion turbine) to provide cold (necessary to ensure the cooling of the process) to a cryogenic separation process of air gas, the separation energy being conventionally provided by the pressurized air which makes it possible to operate the vaporizer-condenser of the double column (the low pressure column can be reduced to a simple vaporizer in the case of a nitrogen generator).
  • the separation (distillation) is partly under pressure, typically between 5 and 6 bara in the medium pressure column.
  • the present invention addresses the problem of maintaining the apparatus at subambient or even cryogenic temperature, during a shutdown by supplying frigories with heat pumps,
  • a heat pump is a thermodynamic device for transferring a quantity of heat from a medium considered as “transmitter” said “cold source” from which the heat is extracted to a medium considered as “receiver” said "hot source Where the heat is supplied, the cold source being at a colder temperature than the hot source.
  • the conventional cycle used in the state of the art for this type of application is a thermodynamic cycle of compression - cooling (condensation) - relaxation - heating (vaporization) of a refrigerant.
  • Figure 12 of the document "ENGINEERING TECHNIQUES - Magnetic Refrigeration 2005” shows a gain of a factor 2 on the coefficient of performance of a refrigeration system using a magnetic cycle compared to the conventional cycle.
  • a method for separating a gaseous mixture in a separating apparatus operating at subambient or even cryogenic temperature the separation being effected in a system of columns comprising at least one column and the apparatus comprising a heat pump using the magnetocaloric effect in which,
  • a flow of gaseous mixture is sent to the column system to be separated into at least one fluid enriched in a component of the mixture and at least one fluid depleted in a component of the mixture and the heat pump exchanging heat between a cold source at a first subambient or even cryogenic temperature and a hot source at a temperature above the first temperature, for example at room temperature
  • the flow sent to the column system is no longer sent or is reduced to a low flow, at least one of the two fluids no longer comes out of the device as a product or is released with a low flow and the heat pump is kept running to keep the device cold, at least partially compensating for the thermal inputs.
  • the separation is carried out in a system of columns comprising at least one column and when stopping at least one gas is withdrawn from a column of the system, cooled or even condensed by means of the heat pump and returned to the system columns, or even the column.
  • the gas (s) is / are a top gas or a bottom gas or a gas from an intermediate level of a column of the system.
  • the gas is sent to the heat pump using a dedicated pipe.
  • the gas is sent to the heat pump when the apparatus is stopped by borrowing at least one pipe used to supply the column system, or even the column whose gas is withdrawn, or to withdraw a product when the device is in operation.
  • the circulation is natural.
  • the gaseous mixture is air or a gas of air.
  • the main components of the gaseous mixture are at least two of the following components: hydrogen, nitrogen, carbon monoxide, carbon dioxide, methane. .
  • the heat pump is kept running with a reduced gaseous charge relative to the nominal during at least part of the shutdown of the apparatus.
  • the heat pump is kept running intermittently while the appliance is switched off.
  • the heat pump is kept running with a gas mixture charge equal to the rated load.
  • the flow sent to the column system is reduced to a low flow constituting not more than 5% of the flow rate during the operation of the device
  • the cold source when the device is running, the cold source is a first fluid and when the device is shut down, the cold source is a second fluid
  • the first fluid is at least a part of the gaseous mixture and the second fluid is a gas coming from the column system
  • the first fluid is air and the second fluid is a gas withdrawn at an intermediate level of a column supplied with air during the operation of the apparatus
  • the cold source when the device is shut down, the cold source is not the first fluid, for example the gas mixture, and when the device is running, the cold source is not the second fluid, for example the gas from the column system
  • the first fluid may have substantially the same composition as the second fluid
  • an apparatus for separating a gaseous mixture capable of operating at subambient or even cryogenic temperature comprising a heat exchanger, a column system comprising at least one column and a heat pump.
  • using the magnetocaloric effect for exchanging heat between a cold source at a first subambient or even cryogenic temperature and a hot source at a temperature above the first temperature, for example at room temperature characterized in that it comprises means to stop or reduce the sending of the gaseous mixture to the column, means for withdrawing at least one gas from a column of the system, means for sending the gas to cool by means of the heat pump and means for sending the cooled gas from the heat pump to the column system.
  • the apparatus may comprise an exchange line for cooling a gas to be separated in the column system, the means for withdrawing at least one gas from a column of the system being connected to the heat exchanger to enable the gas to pass into the heat exchanger and the means for sending the gas cool by means of the heat pump being connected to the heat exchanger so that the gas having passed at least once in the heat exchanger cool down by means of the heat pump.
  • the means for sending the gas to cool by means of the heat pump, possibly connected to the heat exchanger, may be constituted by at least one pipe used to feed a column of the system or to withdraw a product when the apparatus is Operating.
  • the heat pump is connected to the inlet of the gaseous mixture and to the column system so that the cold source during the operation of the apparatus is at least a part of the gaseous mixture intended for separation and the cold source during shutdown is a gas from the column system.
  • An ambient temperature is the temperature of the ambient air in which the process is located, or a temperature of a cooling water circuit related to the air temperature.
  • a subambient temperature is at least 10 ° C below room temperature.
  • a cryogenic temperature is below -50 ° C.
  • a flow of gaseous air 1 is compressed in a compressor 3 and cooled in a cooler 5 to form compressed and cooled air 7.
  • This cooled air 7 is purified in a unit of purge 9 to remove water and carbon dioxide and other impurities.
  • the purified air is then cooled in a plate heat exchanger 11 with fins.
  • the air cooled in the exchanger January 1 is sent in two lines 13, 15.
  • the portion sent by the pipe 13 is sent to the middle of a simple distillation column where it separates to form nitrogen-enriched gas at the top. of column 19 and an oxygen enriched liquid in the bottom of column 19.
  • the part sent by the air duct 15 (indirect heat sink of the second heat pump) is condensed at least partially in a heat exchanger 17 by heat exchange with a fluid flow 23 which cools by means of a second heat pump using the magnetocaloric effect 21.
  • a cooling fluid 51 hot source of the second heat pump
  • typically ambient air or cooling water is sent to the second heat pump using the magnetocaloric effect 21.
  • the column comprises a bottom reboiler 33 and a top condenser 35.
  • the reboiler (the liquid reboiled in the reboiler is the indirect heat source of the first heat pump) is heated by means of a fluid circuit 37 in connection with a first heat pump using the magnetocaloric effect 31.
  • This first heat pump using the magnetocaloric effect 31 also serves to cool a fluid 39 which cools the overhead condenser 35 (the condensed gas in the condenser is the indirect cold source of the first heat pump).
  • the fluids 37 and 39 may be the same or different.
  • An oxygen-enriched liquid 29 is withdrawn from the bottom of the column 19 and a nitrogen-enriched gas withdrawn via a line 41 is heated in the exchanger 11 and serves, at least in part, subsequently to regenerate the purification unit. 9.
  • An oxygen-enriched gas is withdrawn through a column line 19 of the column 19, is heated in the exchanger 11 and is compressed by a compressor 27.
  • the flow of gas arriving via line 15 serves as an indirect heat sink for the second heat pump.
  • the flow rate in line 15, in case of stopping the apparatus, may be significantly lower than the nominal flow rate. Now in some cases, the flow rate of the pipe 15 may be more substantial, to ensure maintenance in cold with continuous operation. It is condensed at least partially in the heat exchanger 17 by heat exchange with a fluid flow 23 which cools by means of the second heat pump using the magnetocaloric effect 21.
  • a cooling fluid 51 hot source of the second heat pump
  • typically ambient air or water of cooling is sent to the second heat pump using the magnetocaloric effect 21.
  • the flow of condensed gas in exchanger 17 is returned to the column and thus serves to transfer frigories to the column to maintain liquid levels in the column.
  • the first heat pump does not work when the unit is shut down.
  • the flow of gas arriving via line 15 serves as an indirect heat sink for the second heat pump. It is condensed at least partially in the heat exchanger 17 by heat exchange with a fluid flow 23 which cools by means of the second heat pump using the magnetocaloric effect 21.
  • a cooling fluid 51 hot source of the second heat pump, typically ambient air or cooling water is sent to the second heat pump using the magnetocaloric effect 21.
  • the flow of gas condensed in the exchanger 17 is returned to an intermediate level of the column and flows to the tank thereof. It thus serves to transfer frigories to the column to maintain liquid levels in the column.
  • a gas flow is withdrawn from the column by the pipe 41 serving in normal operation to draw the product rich in nitrogen.
  • the flow passes through the duct 41 via a fan 60 to the air supply duct and then into the duct 15.
  • the fan 60 makes it possible to facilitate the flow of flow through the equipment.
  • the circulation of the flow through the duct exchanger 1 1 makes it possible to maintain it at a temperature close to nominal operation.
  • the flow of gas arriving via line 15 serves as an indirect heat sink for the second heat pump. It is condensed at least partially in the heat exchanger 17 by heat exchange with a fluid flow 23 which cools by means of the second heat pump using the magnetocaloric effect 21.
  • a cooling fluid 51 hot source of the second heat pump, typically ambient air or cooling water is sent to the second heat pump using the magnetocaloric effect 21.
  • the cooled or even condensed gas flow in the exchanger is returned to the column and thus serves to transfer frigories to the column to maintain liquid levels in the column.
  • the first heat pump does not work when the unit is shut down.
  • the heat pump 21 of all the figures can be used to cool the device during a warm start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Un procédé de séparation d'un mélange gazeux (1,7) dans un appareil de séparation fonctionnant à température subambiante utilise une pompe à chaleur (21) utilisant l'effet magnétocalorique pour échanger de la chaleur entre une source froide à une première température subambiante et une source chaude à une température supérieure à la première température et lors d'un arrêt de la séparation effectuée dans l'appareil, la pompe à chaleur est maintenue en marche pour maintenir l'appareil en froid, en compensant au moins partiellement les entrées thermiques.

Description

Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil La présente invention est relative à un appareil de séparation d'un mélange gazeux à température subambiante, voire cryogénique et procédé de maintien en froid d'un tel appareil.
La séparation peut être une séparation par distillation et/ou par déflegmation et/ou par absorption. L'équipement utilisé pour cette séparation sera appelé « colonne ». Ainsi une colonne peut par exemple être une colonne de distillation ou d'absorption. Réduite à sa plus simple expression, elle peut être un séparateur de phases. Cependant la colonne contient généralement des moyens d'échange de chaleur et de matière, tels que des garnissages structurés. Sinon une colonne peut également être un appareil où s'effectue une déflegmation.
Le mélange gazeux peut par exemple être de l'air, un mélange contenant au moins 35% de dioxyde de carbone, voire au moins 65% de dioxyde de carbone ou un mélange contenant comme composants principaux de l'hydrogène et/ou du monoxyde de carbone et/ou du méthane et/ou de l'azote.
Lors d'un arrêt temporaire d'un appareil de séparation à température subambiante, voire cryogénique, la colonne n'est pas alimentée par un fluide à séparer, comme pendant le fonctionnement normal. Il est nécessaire de compenser les entrées thermiques par une production de frigories pour éviter le réchauffement de la partie froide de l'appareil.
Pour ce faire, il est connu de « Oxygen Plants for Coal Gasification: Expérience at the Cool Water GCC Power Plant » EPRI final report, 1987 de rajouter du liquide cryogénique en cuve d'une colonne lors d'un arrêt pour assurer le maintien en froid et réduire le temps requis pour redémarrer l'appareil.
L'appareil peut s'arrêter par exemple parce que le compresseur du gaz à séparer ne fonctionne pas ou parce que le client n'a temporairement pas besoin du produit de l'appareil. Si la température de l'appareil augmente au-dessus de sa température de fonctionnement, le démarrage de l'appareil sera lent car il faudra refroidir l'appareil de nouveau.
Un but de la présente invention est de réduire ce temps de démarrage à moins de 6 heures, préférentiellement à moins d'une heure, très préférentiellement à moins de 10 minutes, quelle que soit la durée de l'arrêt. Le démarrage est l'opération de passer de l'arrêt de l'appareil à son fonctionnement nominal.
La présente invention propose de maintenir l'appareil arrêté en froid par usage de l'effet magnétocalorique pour fournir du froid.
La réfrigération magnétique repose sur l'utilisation de matériaux magnétiques présentant un effet magnétocalorique. Réversible, cet effet se traduit par une variation de leur température lorsqu'ils sont soumis à l'application d'un champ magnétique externe. Les plages optimales d'utilisation de ces matériaux se situent au voisinage de leur température de Curie (Te). En effet, plus les variations d'aimantation, et par conséquent les changements d'entropie magnétique, sont élevés, plus les changements de leur température sont élevés. L'effet magnétocalorique est dit direct lorsque la température du matériau augmente quand il est mis dans un champ magnétique, indirect lorsqu'il se refroidit quand il est mis dans un champ magnétique. La suite de la description sera faite pour le cas direct, mais la transposition au cas indirect est évidente pour l'homme de l'art. Il existe plusieurs cycles thermodynamiques basés sur ce principe. Un cycle classique de réfrigération magnétique consiste i) à magnétiser le matériau pour en augmenter la température ii) à refroidir le matériau à champ magnétique constant pour rejeter de la chaleur iii) à démagnétiser le matériau pour le refroidir et iv) à chauffer le matériau à champ magnétique constant (en général, nul) pour capter la chaleur.
Un dispositif de réfrigération magnétique met en œuvre des éléments en matériau magnétocalorique, qui génèrent de la chaleur lorsqu'ils sont magnétisés et absorbent de la chaleur lorsqu'ils sont démagnétisés. Il peut mettre en œuvre un régénérateur à matériau magnétocalorique pour amplifier la différence de température entre la « source chaude » et la «source froide» : on parle alors de réfrigération magnétique à régénération active.
Il est connu d'utiliser l'effet magnétocalorique pour fournir du froid à un procédé de séparation à température subambiante dans EP-A-2551005.
US-A- 6502404 décrit l'usage de l'effet magnétocalorique (à la place de l'utilisation classique d'une turbine de détente) pour fournir du froid (nécessaire pour assurer le bilan frigorifique du procédé) à un procédé cryogénique de séparation de gaz de l'air, l'énergie de séparation étant classiquement apportée par l'air sous pression qui permet de faire fonctionner le vaporiseur-condenseur de la double colonne (la colonne basse pression pouvant être réduite à un simple vaporiseur dans le cas d'un générateur d'azote). La séparation (distillation) se fait en partie sous pression, typiquement entre 5 et 6 bara dans la colonne moyenne pression.
La présente invention adresse le problème de maintenir l'appareil à température subambiante, voire cryogénique, lors d'un arrêt en apportant des frigories par des pompes à chaleur,
Une pompe à chaleur est un dispositif thermodynamique permettant de transférer une quantité de chaleur d'un milieu considéré comme « émetteur » dit « source froide » d'où l'on extrait la chaleur vers un milieu considéré comme « récepteur » dit « source chaude » où on fournit la chaleur, la source froide étant à une température plus froide que la source chaude.
Le cycle classique utilisé dans l'état de l'art pour ce type d'application est un cycle thermodynamique de compression - refroidissement (condensation) - détente - réchauffement (vaporisation) d'un fluide frigorifique.
La figure 12 du document « TECHNIQUES DE L'INGENIEUR - Réfrigération magnétique de 2005 » montre un gain d'un facteur 2 sur le coefficient de performance d'un système frigorifique utilisant un cycle magnétique par rapport au cycle classique.
Selon un objet de l'invention, il est prévu un procédé de séparation d'un mélange gazeux dans un appareil de séparation fonctionnant à température subambiante, voire cryogénique, la séparation s'effectuant dans un système de colonnes comprenant au moins une colonne et l'appareil comprenant une pompe à chaleur utilisant l'effet magnétocalorique dans lequel,
i) lors de la marche de l'appareil, un débit de mélange gazeux est envoyé au système de colonnes pour y être séparé en au moins un fluide enrichi en un composant du mélange et au moins un fluide appauvri en un composant du mélange et la pompe à chaleur échange de la chaleur entre une source froide à une première température subambiante, voire cryogénique et une source chaude à une température supérieure à la première température, par exemple à la température ambiante
ii) lors d'un arrêt de l'appareil, le débit envoyé au système de colonnes n'y est plus envoyé ou est réduit à un faible débit , au moins un des deux fluides n'est plus sorti de l'appareil comme produit ou est sorti avec un faible débit et la pompe à chaleur est maintenue en marche pour maintenir l'appareil en froid, en compensant au moins partiellement les entrées thermiques.
Selon d'autres objets facultatifs :
- la séparation s'effectue dans un système de colonnes comprenant au moins une colonne et lors d'un arrêt au moins un gaz est soutiré d'une colonne du système, refroidi, voire condensé au moyen de la pompe à chaleur puis renvoyé au système de colonnes, voire à la colonne.
le ou les gaz est/sont un gaz de tête ou un gaz de cuve ou un gaz provenant d'un niveau intermédiaire d'une colonne du système. le gaz est envoyé vers la pompe à chaleur en utilisant une conduite dédiée.
le gaz est envoyé vers la pompe à chaleur lorsque l'appareil est en arrêt en empruntant au moins une conduite utilisée pour alimenter le système de colonnes, voire la colonne dont le gaz est soutiré, ou pour soutirer un produit lorsque l'appareil est en fonctionnement.
lors de l'arrêt de l'appareil, on assure une circulation faible du mélange gazeux destiné à la séparation et/ou d'au moins un fluide provenant de la séparation pour maintenir les gradients thermiques proche du fonctionnement normal du procédé.
la circulation est naturelle.
la circulation est forcée.
le mélange gazeux est l'air ou un gaz de l'air.
- le mélange gazeux a pour composants principaux au moins deux des composants suivants : hydrogène, azote, monoxyde de carbone, dioxyde de carbone, méthane. .
la pompe à chaleur est maintenue en marche avec une charge de mélange gazeux réduit par rapport à la nominale pendant au moins une partie de l'arrêt de l'appareil.
la pompe à chaleur est maintenue en marche de manière intermittente pendant l'arrêt de l'appareil.
la pompe à chaleur est maintenue en marche avec une charge de mélange gazeux égale à la charge nominale. lors de l'arrêt de l'appareil, le débit envoyé au système de colonnes est réduit à un faible débit constituant au plus 5% du débit pendant la marche de l'appareil
lors de l'arrêt de l'appareil, au moins un des deux fluides est sorti comme produit de l'appareil avec un faible débit constituant au plus 5% du débit pendant la marche de l'appareil
lors de la marche de l'appareil la source froide est un premier fluide et lors de l'arrêt de l'appareil, la source froide est un deuxième fluide
le premier fluide est au moins une partie du mélange gazeux et le deuxième fluide est un gaz provenant du système de colonnes
le premier fluide est de l'air et le deuxième fluide est un gaz soutiré à un niveau intermédiaire d'une colonne alimentée par l'air pendant la marche de l'appareil
lors de l'arrêt de l'appareil, la source froide n'est pas le premier fluide, par exemple le mélange gazeux et lors de la marche de l'appareil, la source froide n'est pas le deuxième fluide, par exemple le gaz provenant du système de colonnes
le premier fluide peut avoir sensiblement la même composition que le deuxième fluide
Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange gazeux capable de fonctionner à température subambiante, voire cryogénique comprenant un échangeur de chaleur, un système de colonnes comprenant au moins une colonne et une pompe à chaleur utilisant l'effet magnétocalorique pour échanger de la chaleur entre une source froide à une première température subambiante, voire cryogénique et une source chaude à une température supérieure à la première température, par exemple à la température ambiante caractérisé en ce qu'il comprend des moyens pour arrêter ou réduire l'envoi du mélange gazeux vers la colonne, des moyens pour soutirer au moins un gaz d'une colonne du système, des moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur et des moyens pour envoyer le gaz refroidi de la pompe à chaleur au système de colonnes.
L'appareil peut comprendre une ligne d'échange pour refroidir un gaz à séparer dans le système de colonnes, les moyens pour soutirer au moins un gaz d'une colonne du système étant relié à l'échangeur de chaleur pour permettre au gaz de passer dans l'échangeur de chaleur et les moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur étant reliés à l'échangeur de chaleur de sorte que le gaz ayant passé au moins une fois dans l'échangeur de chaleur se refroidisse au moyen de la pompe à chaleur.
Les moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur, éventuellement reliés à l'échangeur de chaleur, peuvent être constitués par au moins une conduite utilisée pour alimenter une colonne du système ou pour soutirer un produit lorsque l'appareil est en fonctionnement.
Eventuellement la pompe à chaleur est reliée à l'arrivée du mélange gazeux et au système de colonnes de sorte que la source froide lors de la marche de l'appareil est au moins une partie du mélange gazeux destiné à la séparation et la source froide lors de l'arrêt de l'appareil est un gaz provenant du système de colonnes.
Une température ambiante est la température de l'air ambiant dans lequel se situe le procédé, ou encore une température d'un circuit d'eau de refroidissement en lien avec la température d'air.
Une température subambiante est au moins 10°C inférieure à la température ambiante.
Une température cryogénique est inférieure à -50°C.
L'invention sera décrite de manière plus détaillée en se référant aux figures qui illustrent des procédés selon l'invention et des appareils pouvant être maintenus en froid selon l'invention.
Dans la Figure 1 , en fonctionnement normal, un débit d'air gazeux 1 est comprimé dans un compresseur 3 et refroidi dans un refroidisseur 5 pour former de l'air comprimé et refroidi 7. Cet air refroidi 7 est épuré dans une unité d'épuration 9 pour enlever de l'eau et du dioxyde de carbone et d'autres impuretés. L'air épuré est ensuite refroidi dans un échangeur de chaleur 1 1 à plaques et à ailettes. L'air refroidi dans l'échangeur 1 1 est envoyé en deux conduites 13, 15. La partie envoyée par la conduite 13 est envoyée au milieu d'une simple colonne de distillation où elle se sépare pour former du gaz enrichi en azote en haut de la colonne 19 et un liquide enrichi en oxygène en cuve de la colonne 19.
La partie envoyée par la conduite 15 de l'air (source froide indirecte de la deuxième pompe à chaleur) est condensé au moins partiellement dans un échangeur de chaleur 17 par échange de chaleur avec un débit de fluide 23 qui se refroidit au moyen d'une deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . Un fluide 51 de refroidissement (source chaude de la deuxième pompe à chaleur), typiquement de l'air ambiant ou de l'eau de refroidissement est envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . La colonne comprend un rebouilleur de cuve 33 et un condenseur de tête 35. Le rebouilleur (le liquide rebouilli dans le rebouilleur est la source chaude indirecte de la première pompe à chaleur) est chauffé au moyen d'un circuit de fluide 37 en lien avec une première pompe à chaleur utilisant l'effet magnétocalorique 31 . Cette première pompe à chaleur utilisant l'effet magnétocalorique 31 sert également à refroidir un fluide 39 qui refroidit le condenseur de tête 35 (le gaz condensé dans le condenseur est la source froide indirecte de la première pompe à chaleur). Les fluides 37 et 39 peuvent être identiques ou différents. Un liquide 29 enrichi en oxygène est soutiré en cuve de la colonne 19 et un gaz enrichi en azote soutiré par une conduite 41 se réchauffe dans l'échangeur 1 1 et sert, au moins en partie, ensuite à régénérer l'unité d'épuration 9. Un gaz enrichi en oxygène est soutiré par une conduite 25 en cuve de la colonne 19, se réchauffe dans l'échangeur 1 1 et est comprimé par un compresseur 27.
Quand l'appareil est arrêté, l'air 1 n'arrive plus par la conduite 7,13 vers la colonne. Selon l'invention, un débit gazeux est soutiré de la colonne par la conduite 13 servant en fonctionnement normal à l'alimentation en air. Ce débit peut, dans certains cas, avoir substantiellement la composition de l'air. Le débit passe par la conduite 13 vers la conduite 15.
Le débit de gaz arrivant par la conduite 15 sert de source froide indirecte de la deuxième pompe à chaleur. Le débit dans la conduite 15, en cas d'arrêt de l'appareil, peut être nettement plus faible que le débit nominal. Or dans certains cas, le débit de la conduite 15 peut être plus substantiel, pour assurer un maintien en froid avec fonctionnement continu. Il est condensé au moins partiellement dans l'échangeur de chaleur 17 par échange de chaleur avec un débit de fluide 23 qui se refroidit au moyen de la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . Un fluide 51 de refroidissement (source chaude de la deuxième pompe à chaleur), typiquement de l'air ambiant ou de l'eau de refroidissement est envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 .
Le débit de gaz condensé dans l'échangeur 17 est renvoyé à la colonne et sert ainsi pour transférer des frigories à la colonne pour maintenir les niveaux de liquides dans la colonne.
On pourrait également envisager d'utiliser une conduite dédiée pour amener le gaz de la colonne vers l'échangeur de chaleur en temps d'arrêt plutôt que d'utiliser la conduite existante.
Pour perfectionner le procédé, on pourrait utiliser plusieurs gaz pris à des niveaux différents de la colonne, chacun étant condensé dans une pompe à chaleur et étant renvoyé condensé à la colonne pour assurer le maintien en froid.
La première pompe à chaleur ne fonctionne pas lorsque l'appareil est arrêté.
Dans la Figure 2, le fonctionnement normal est tel que décrit pour la Figure 1 . En cas d'arrêt de l'appareil, l'air 1 n'arrive plus par la conduite 7, 13 vers la colonne. Selon l'invention, un débit gazeux est soutiré de la colonne par la conduite 25 servant en fonctionnement normal au soutirage du produit riche en oxygène. Le débit passe par la conduite 25 dans l'échangeur de chaleur 1 1 , est comprimé par le ventilateur 60 vers la conduite d'amenée d'air qui traverse de nouveau l'échangeur et ensuite dans la conduite 15. Le ventilateur 60 permet de faciliter la circulation des débits à travers les équipements. La circulation du débit à travers l'échangeur 1 1 permet de maintenir de la maintenir à une température proche du fonctionnement nominal.
Le débit de gaz arrivant par la conduite 15 sert de source froide indirecte de la deuxième pompe à chaleur. Il est condensé au moins partiellement dans l'échangeur de chaleur 17 par échange de chaleur avec un débit de fluide 23 qui se refroidit au moyen de la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . Un fluide 51 de refroidissement (source chaude de la deuxième pompe à chaleur), typiquement de l'air ambiant ou de l'eau de refroidissement est envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 .
Le débit de gaz condensé dans l'échangeur 17 est renvoyé à un niveau intermédiaire de la colonne et coule jusqu'à la cuve de celle-ci. Il sert ainsi pour transférer des frigories à la colonne pour maintenir les niveaux de liquides dans la colonne.
Alternativement ou en outre, en cas d'arrêt, un débit gazeux est soutiré de la colonne par la conduite 41 servant en fonctionnement normal au soutirage du produit riche en azote. Le débit passe par la conduite 41 en passant par un ventilateur 60 vers la conduite d'amenée d'air et ensuite dans la conduite 15 Le ventilateur 60 permet de faciliter la circulation des débits à travers les équipements La circulation du débit à travers l'échangeur 1 1 permet de maintenir de la maintenir à une température proche du fonctionnement nominal.
Le débit de gaz arrivant par la conduite 15 sert de source froide indirecte de la deuxième pompe à chaleur. Il est condensé au moins partiellement dans l'échangeur de chaleur 17 par échange de chaleur avec un débit de fluide 23 qui se refroidit au moyen de la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 . Un fluide 51 de refroidissement (source chaude de la deuxième pompe à chaleur), typiquement de l'air ambiant ou de l'eau de refroidissement est envoyé à la deuxième pompe à chaleur utilisant l'effet magnétocalorique 21 .
Le débit de gaz refroidi, voire condensé, dans l'échangeur est renvoyé à la colonne et sert ainsi pour transférer des frigories à la colonne pour maintenir les niveaux de liquides dans la colonne.
On pourrait également envisager d'utiliser une conduite dédiée pour amener le gaz de la colonne vers l'échangeur de chaleur en temps d'arrêt plutôt que d'utiliser la conduite existante.
Pour perfectionner le procédé, on pourrait utiliser plusieurs gaz pris à des niveaux différents de la colonne, chacun étant condensé dans une pompe à chaleur et étant renvoyé condensé à la colonne pour assurer la mise en froide.
La première pompe à chaleur ne fonctionne pas lorsque l'appareil est arrêté.
Le fait que le gaz 25 passe dans l'échangeur permet d'assurer le maintien en froid de l'échangeur de chaleur 1 1 en plus de la colonne 19.
Dans la Figure 3, le fonctionnement normal est tel que décrit pour la Figure 1 . En cas d'arrêt de l'appareil, le fonctionnement diffère de celui de la figure 2 en ce que le débit gazeux est soutiré de la colonne par la conduite 25 et alternativement ou en outre, le débit gazeux soutiré de la colonne par la conduite 41 est rejeté à l'atmosphère au lieu d'être renvoyé vers la conduite d'amenée d'air et ensuite dans la conduite 15. Le reste du fonctionnement en cas d'arrêt se passe comme dans la figure 1 .
La puissance frigorifique nominale de la pompe à chaleur décrite dans le cadre de ces trois figures est bien plus importante que la puissance frigorifique nécessaire au maintien en froid. Deux options sont possibles pour la mise en œuvre de l'invention :
soit on fonctionne en continue avec un débit réduit dans la pompe à chaleur, pour adapter la puissance frigorifique de la pompe à chaleur, pour maintenir l'appareil en froid lors d'un arrêt
soit on fonctionne de façon intermittente à la puissance nominale de la pompe à chaleur
Cette fonction intermittente sera décrite de manière plus détaillée. Quand l'appareil de séparation et la pompe à chaleur sont tous deux à l'arrêt, les entrées thermiques vaporisent lentement une partie du liquide en cuve de la colonne, ce qui fait monter la pression dans la colonne et dans tout l'appareil. Une fois un seuil de pression maximal atteint, la pompe à chaleur démarre à charge nominale. Ceci a pour effet de condenser très rapidement du gaz, pour reconstituer le niveau de liquide dans la colonne et faire baisser la pression. Une fois un seuil de pression minimal atteint, la pompe à chaleur est arrêtée afin de ne pas condenser tout le gaz restant dans l'appareil.
La pompe à chaleur 21 de toutes les figures peut être utilisée pour la mise en froid de l'appareil, lors d'un démarrage à chaud.
Les figures ne montrent qu'un système de colonnes avec une seule colonne mais le système de colonnes peut évidemment comprendre plus de colonnes.

Claims

Revendications
1 . Procédé de séparation d'un mélange gazeux (1 ,7) dans un appareil de séparation fonctionnant à température subambiante, voire cryogénique, la séparation s'effectuant dans un système de colonnes comprenant au moins une colonne (19) et l'appareil comprenant un échangeur de chaleur (1 1 ) et une pompe à chaleur (21 ), la pompe à chaleur utilisant l'effet magnétocalorique dans lequel, i) lors de la marche de l'appareil un débit du mélange gazeux est envoyé au système de colonnes pour être séparé en au moins un fluide (25,29) enrichi en un composant du mélange et au moins un fluide (25,29) appauvri en un composant du mélange, au moins un fluide (25) sortant de l'appareil comme produit et la pompe à chaleur utilise l'effet magnétocalorique pour échanger de la chaleur entre une source froide à une première température subambiante, voire cryogénique et une source chaude à une température supérieure à la première température, par exemple à la température ambiante et
ii) lors d'un arrêt de l'appareil, le débit envoyé au système de colonnes n'y est plus envoyé ou est réduit à un faible débit , au moins un des deux fluides n'est plus sorti de l'appareil comme produit ou est sorti avec un faible débit et la pompe à chaleur est maintenue en marche pour maintenir l'appareil en froid, en compensant au moins partiellement les entrées thermiques.
2. Procédé selon la revendication 1 dans lequel lors d'un arrêt de l'appareil, au moins un gaz est soutiré d'une colonne du système, refroidi, voire condensé au moyen de la pompe à chaleur (21 ) puis renvoyé au système de colonnes, voire à la colonne.
3. Procédé selon la revendication 2 dans lequel le ou les gaz est/sont un gaz de tête (41 ) ou un gaz de cuve (25) ou un gaz provenant d'un niveau intermédiaire (13) d'une colonne du système.
4. Procédé selon la revendication 2 ou 3 dans lequel le gaz (13, 25, 41 ) est envoyé vers la pompe à chaleur (21 ) en utilisant une conduite dédiée.5 Procédé selon la revendication 2 ou 3 dans lequel le gaz est envoyé vers la pompe à chaleur (21 ) lorsque l'appareil est en arrêt en empruntant au moins une conduite utilisée pour alimenter le système de colonnes, voire la colonne dont le gaz est soutiré, ou pour soutirer un produit lorsque l'appareil est en fonctionnement.
5. Procédé selon l'une des revendications précédentes dans lequel le mélange gazeux (1 , 7) est l'air ou un gaz de l'air.
6. Procédé selon l'une des revendications 1 à 5 dans lequel le mélange gazeux (1 , 7) a pour composants principaux au moins deux des composants suivants : hydrogène, azote, monoxyde de carbone, dioxyde de carbone, méthane.
7. Procédé selon l'une des revendications précédentes dans lequel lors de l'arrêt de l'appareil, au moins un des deux fluides n'est plus sorti de l'appareil comme produit ou est sorti avec un faible débit.
8. Procédé selon une des revendications précédentes dans lequel lors de l'arrêt de l'appareil, tout fluide soutiré du système de colonnes est renvoyé au système de colonnes.
9. Procédé selon l'une des revendications précédentes dans lequel lors de la marche de l'appareil la source froide de la pompe à chaleur est un premier fluide et lors de l'arrêt de l'appareil, la source froide de la pompe à chaleur est un deuxième fluide.
10. Procédé selon la revendication 9 dans lequel le premier fluide est au moins une partie du mélange gazeux, éventuellement l'air, et le deuxième fluide est un gaz provenant du système de colonnes, éventuellement un gaz soutiré à un niveau intermédiaire d'une colonne alimentée par l'air pendant la marche de l'appareil.
1 1 . Appareil de séparation d'un mélange gazeux capable de fonctionner à température subambiante, voire cryogénique comprenant un échangeur de chaleur (1 1 ) pour refroidir le mélange gazeux à séparer, un système de colonnes comprenant au moins une colonne (19) , une conduite pour envoyer le mélange gazeux à l'échangeur de chaleur, une colonne pour envoyer le mélange gazeux refroidi de l'échangeur de chaleur dans le système de colonnes pour se séparer, une conduite pour sortir un fluide (29) enrichi en un composant du mélange gazeux du système de colonne, une conduite pour sortir un fluide (41 ) appauvri en le composant du mélange gazeux de la colonne et une pompe à chaleur utilisant l'effet magnétocalorique pour échanger de la chaleur entre une source froide à une première température subambiante, voire cryogénique et une source chaude à une température supérieure à la première température, par exemple à la température ambiante caractérisé en ce qu'il comprend des moyens pour arrêter ou réduire l'envoi du mélange gazeux vers la colonne, des moyens (13,15) pour soutirer au moins un gaz d'une colonne (19) du système, des moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur et des moyens pour envoyer le gaz refroidi de la pompe à chaleur au système de colonnes, voire dans la colonne.
12. Appareil selon la revendication 1 1 comprenant une ligne d'échange, les moyens pour soutirer au moins un gaz d'une colonne du système étant reliés à l'échangeur de chaleur (1 1 ) pour permettre au gaz de passer dans l'échangeur de chaleur et les moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur étant reliés à l'échangeur de chaleur de sorte que le gaz ayant passé au moins une fois dans l'échangeur de chaleur se refroidisse au moyen de la pompe à chaleur.
13. Appareil selon la revendication 1 1 ou 12 dans lequel les moyens pour envoyer le gaz se refroidir au moyen de la pompe à chaleur, éventuellement reliés à l'échangeur de chaleur (1 1 ) , sont constitués par au moins une conduite utilisée pour alimenter une colonne du système ou pour soutirer un produit lorsque l'appareil est en marche.
14. Appareil selon l'une des revendications 1 1 à 13 dans lequel la pompe à chaleur est reliée à l'arrivée du mélange gazeux et au système de colonnes de sorte que la source froide lors de la marche de l'appareil est au moins une partie du mélange gazeux destiné à la séparation et la source froide lors de l'arrêt de l'appareil est un gaz provenant du système de colonnes.
15. Appareil selon l'une des revendications 1 1 à 14 dans lequel le système de colonnes ne comprend qu'une seule colonne ou comprend au moins une colonne.
PCT/FR2014/052993 2013-11-25 2014-11-21 Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil WO2015075398A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361567 2013-11-25
FR1361567A FR3013818A1 (fr) 2013-11-25 2013-11-25 Appareil de separation d’air par distillation cryogenique et procede de maintien en froid d’un tel appareil

Publications (2)

Publication Number Publication Date
WO2015075398A2 true WO2015075398A2 (fr) 2015-05-28
WO2015075398A3 WO2015075398A3 (fr) 2015-09-17

Family

ID=50473403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052993 WO2015075398A2 (fr) 2013-11-25 2014-11-21 Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil

Country Status (2)

Country Link
FR (1) FR3013818A1 (fr)
WO (1) WO2015075398A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502404B1 (en) 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
EP2551005A1 (fr) 2011-07-28 2013-01-30 General Electric Company Système et procédé pour éliminer le dioxyde de carbone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141359A (ja) * 1999-11-17 2001-05-25 Toshiba Corp 空気分離装置
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
US20080016907A1 (en) * 2006-07-18 2008-01-24 John Arthur Barclay Active gas regenerative liquefier system and method
DE102009009477A1 (de) * 2009-02-19 2010-08-26 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6502404B1 (en) 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
EP2551005A1 (fr) 2011-07-28 2013-01-30 General Electric Company Système et procédé pour éliminer le dioxyde de carbone

Also Published As

Publication number Publication date
WO2015075398A3 (fr) 2015-09-17
FR3013818A1 (fr) 2015-05-29

Similar Documents

Publication Publication Date Title
CN101231130A (zh) 二氧化碳的纯化
WO2015036697A2 (fr) Procédé et appareil de séparation à température subambiante
TW201520498A (zh) 透過以可變能耗低溫分離空氣來提取氧之方法與裝置
FR2975478A1 (fr) Procede et appareil de liquefaction d'un debit gazeux riche en dioxyde de carbone
WO2015036673A2 (fr) Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2015075398A2 (fr) Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil
WO2015092330A2 (fr) Procédé et appareil de séparation à température subambiante
WO2015036700A2 (fr) Procédé et appareil de séparation à température cryogénique
WO2014049259A1 (fr) Procédé et appareil de séparation d'un mélange contenant du dioxyde de carbone par distillation cryogénique
FR2967485A1 (fr) Installation de purification d'un flux gazeux comprenant au moins 50% de co2, avec fonctions de compression integrees.
WO2016132082A1 (fr) Procédé et appareil de séparation a température subambiante
FR3120429A1 (fr) Procédé de liquéfaction d’un courant riche en CO2
FR2971044A1 (fr) Procede et appareil de separation d'un gaz contenant du dioxyde de carbone pour produire un debit liquide riche en dioxyde de carbone
WO2016132087A2 (fr) Procede et appareil de separation a temperature subambiante
FR3032889A1 (fr) Procede et appareil de separation a temperature subambiante
FR3028187A3 (fr) Procede et appareil de separation a temperature subambiante
FR3015014A1 (fr) Appareil et procede de separation a temperature subambiante et procede de rechauffage d’au moins une partie d’un tel appareil
WO2016132086A1 (fr) Procede et appareil de separation a temperature subambiante
EP3044522A2 (fr) Procédé et appareil de séparation à température subambiante
WO2016139432A2 (fr) Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2016139425A1 (fr) Procédé et appareil de séparation à température subambiante
WO2016142606A1 (fr) Procédé de séparation d'un mélange gazeux à température subambiante
FR3033397A1 (fr) Procede de compression et de refroidissement d’un melange gazeux
FR3033395A1 (fr) Procede et appareil de compression d’un gaz
FR3033260A1 (fr) Procede et appareil de separation a temperature subambiante

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14821729

Country of ref document: EP

Kind code of ref document: A2