WO2015072328A1 - Magnetic-field generation device and linear motor - Google Patents

Magnetic-field generation device and linear motor Download PDF

Info

Publication number
WO2015072328A1
WO2015072328A1 PCT/JP2014/078640 JP2014078640W WO2015072328A1 WO 2015072328 A1 WO2015072328 A1 WO 2015072328A1 JP 2014078640 W JP2014078640 W JP 2014078640W WO 2015072328 A1 WO2015072328 A1 WO 2015072328A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field generator
magnet
main
pole
Prior art date
Application number
PCT/JP2014/078640
Other languages
French (fr)
Japanese (ja)
Inventor
弘光 大橋
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2015547722A priority Critical patent/JPWO2015072328A1/en
Publication of WO2015072328A1 publication Critical patent/WO2015072328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to a magnetic field generator using a rare earth magnet, and a linear motor configured using the same.
  • a linear motor is a motor in which a coil is arranged in a magnetic field generated by a magnetic field generator, and the magnetic field generator and the coil are relatively moved by energization control of the coil.
  • the magnetic field generation device is configured by arranging a plurality of magnets in parallel so that the magnetization directions of adjacent magnets are opposite to each other in a pair of yokes arranged to face each other with a magnetic field generation space therebetween.
  • a magnet having a high residual magnetic flux density Br such as a rare earth iron boron-based magnet
  • the magnetic field generator described in Patent Document 1 employs a magnet array called a Halbach array.
  • the Halbach array is a magnet having a magnetization direction (main pole) perpendicular to the main surface facing the magnetic field generation space at a predetermined interval, and a magnet having a magnetization direction parallel to the main surface between the main poles ( It is an arrangement that interposes a complementary pole).
  • the auxiliary poles are arranged with their respective magnetization directions facing the main poles whose main magnetization direction is toward the main surface (the main pole whose main surface side is the N pole).
  • the magnetic field formed at the opposing portion of the main pole is strengthened by the action of the auxiliary pole, and a magnetic field having a high magnetic flux density can be formed.
  • the demagnetizing field at the boundary between adjacent main and auxiliary poles with different magnetization directions increases, causing irreversible demagnetization due to the effect of thermal demagnetization accompanying temperature rise in the usage environment, and the magnetic flux density over time There is a problem that it decreases.
  • Patent Document 1 discloses that a high coercive force having a high coercive force by diffusion of heavy rare earth (Dy: dysprosium, Tb: terbium, etc.) at least in the vicinity of the main surface of the boundary surface with the main electrode of the complementary electrode.
  • a magnetic layer is disclosed.
  • a third magnet having a magnetization direction inclined with respect to the main surface is interposed between the main pole (first magnet) and the auxiliary electrode (second magnet), and the vicinity of the main surface of the boundary surface of each magnet
  • the formation of the above-described high coercive force layer is also disclosed.
  • Patent Document 2 magnets having an orientation direction inclined with respect to the main surface are fixed on both sides of the magnet having an orientation direction orthogonal to the main surface so that the main surfaces are aligned.
  • a magnet unit that is magnetized in a magnetic field that matches the direction is disclosed.
  • This magnet unit can be used as a unit in which the first magnet and the third magnet constituting the main pole are integrated in advance in the magnetic field generator described in Patent Document 1.
  • the directions of magnetization of adjacent magnet units are away from each other, the occurrence of a short circuit in the magnetic path can be suppressed, the magnetic flux density in the magnetic field generation space can be increased, and the magnetic field generator can be made compact and lightweight. It is possible to correspond to
  • the heavy rare earth for forming the high coercive force layer is a rare and expensive material, and the formation of the high coercive force layer at each position described above causes an increase in product cost. Furthermore, in a magnetic field generator using a large magnet, the necessary thickness for diffusing heavy rare earths becomes large, and there is a limit to the increase in coercive force due to the formation of a high coercive force layer.
  • the magnet unit described in Patent Document 2 integrates the first magnet and the third magnet constituting the main pole before magnetization, it can reduce the labor of the fixing operation described above. Since the magnetization direction changes suddenly between the center magnet and the magnets on both sides, the demagnetizing field increases at the boundary of each magnet, which is irreversible within the magnet unit due to the effect of thermal demagnetization in the operating environment. There is a risk of demagnetization.
  • Patent Document 2 two types of magnets having different residual magnetic flux density Br and coercive force Hcj are used.
  • a magnet having a relatively small residual magnetic flux density and a large coercive force is disposed on the yoke side, and the residual magnetic flux density is large and the coercive force is large.
  • a magnetic field generator is configured to reduce demagnetizing fields by arranging small magnets on the magnetic field generating space side.
  • this magnetic field generator requires two types of magnets, and the configuration is complicated, and there is a limit to the improvement of the magnetic flux density in the magnetic field generation space by using a magnet with a small Br.
  • the present invention has been made in view of such circumstances, and a magnetic field generator having a simple configuration capable of suppressing the occurrence of thermal demagnetization and obtaining as high a magnetic flux density as possible in a magnetic field generation space.
  • An object of the present invention is to provide a linear motor that can obtain a high output by using this magnetic field generator.
  • the magnetic field generator according to the present invention alternately arranges a plurality of main poles and a plurality of complementary poles on one surface of a pair of yokes facing each other across a magnetic field generation space, with the main surfaces facing the magnetic field generation space being aligned.
  • the main pole is orthogonal to the main surface at the center position in the juxtaposition direction.
  • a concentrated orientation magnet having a magnetization direction that continuously reduces an inclination angle with respect to the main surface on both sides of the central position, the main poles adjacent to each other are arranged in reverse to each other, and the complementary pole is
  • the magnet has a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions directed to the main pole magnetized toward the main surface.
  • a concentrated orienting magnet whose magnetization direction is continuously changed and concentrated at the center of the main surface is used as a main pole, and this main pole and an auxiliary pole having a magnetization direction parallel to the main surface are used as a yoke.
  • a magnetic field generator is configured by arranging Halbach on one surface. The magnetization direction of the main pole changes continuously, and there is no sudden change portion of the magnetization direction inside the main pole. Therefore, the increase in the demagnetizing field inside the main pole can be suppressed and the occurrence of irreversible demagnetization due to the effect of thermal demagnetization can be suppressed. Therefore, it is possible to realize as high a magnetic flux density as possible.
  • the magnetic field generator according to the present invention is characterized in that the cross-sectional shape of the main pole and the auxiliary pole is a rectangular shape having a substantially constant width in the juxtaposition direction.
  • a magnetic field generator is configured by arranging a main pole and a complementary pole having a rectangular shape with a constant width in parallel.
  • the rectangular main electrode and auxiliary electrode can be easily formed and configured with high accuracy.
  • the width of the auxiliary poles arranged side by side is longer on the opposite side of the yoke than the side of the yoke, and the width of the main poles arranged side by side is The side of the yoke is longer than the opposite side of the yoke.
  • the width of the auxiliary pole on the side facing the magnetic field generation space where demagnetization is likely to occur is large, the length of the magnet in the magnetization direction is increased, and the occurrence of demagnetization can be suppressed.
  • the magnetic field generator according to the present invention is characterized in that the cross-sectional shape of the main pole is an isosceles trapezoid and the cross-sectional shape of the complementary electrode is a triangle.
  • the magnetic field generator according to the present invention is characterized in that one or both of the main pole and the auxiliary pole have a high coercive force layer formed on the boundary surface between them.
  • the high coercive force layer is provided at the boundary portion between the main pole and the auxiliary pole where the change in the magnetization direction is large, the influence of thermal demagnetization at the portion can be reduced and the occurrence of irreversible demagnetization can be suppressed.
  • the high coercive force layer may be provided only between the main pole and the auxiliary pole, and the increase in product cost is small.
  • a plurality of main poles and a plurality of complementary poles are respectively directed to the magnetic field generation space on one surface of a pair of non-magnetic holding bodies facing each other with a magnetic field generation space therebetween.
  • the main poles being at the center position in the side-by-side direction
  • the auxiliary pole is a magnet having a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions directed to the main pole magnetized toward the main surface.
  • a concentrated orienting magnet whose magnetization direction changes continuously and concentrates in the center of the main surface is used as a main pole, and this main pole and an auxiliary pole having a magnetization direction parallel to the main surface are not used.
  • a magnetic field generator is configured by arranging Halbach on one surface of a magnetic holder. The magnetization direction of the main pole changes continuously, and there is no sudden change portion of the magnetization direction inside the main pole. Therefore, the increase in the demagnetizing field inside the main pole can be suppressed and the occurrence of irreversible demagnetization due to the effect of thermal demagnetization can be suppressed. Therefore, it is possible to realize as high a magnetic flux density as possible.
  • a lightweight material such as aluminum or CFRP (carbon fiber reinforced plastic) can be used, and the weight of the magnetic field generator can be reduced.
  • a linear motor is configured by arranging a coil in the magnetic field generated by the magnetic field generator.
  • the magnetic field generator can form a magnetic field having a high magnetic flux density without being affected by thermal demagnetization, and can stably realize a high output operation in various environments.
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets have a rectangular cross section with a substantially constant width in the juxtaposition direction.
  • a magnetic field generator is configured by arranging parallel rectangular magnets having a certain width. Rectangular magnets are easy to mold and can be constructed with high precision
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets are separated from each other.
  • adjacent magnets are separated from each other, and the parallel arrangement interval of the magnets can be appropriately adjusted by increasing or decreasing the separation amount.
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets are adjacent to each other.
  • the magnetic field generator according to the present invention is characterized in that the magnet has a cross-sectional shape that is wide on the side of the yoke and narrow on the side of the main surface.
  • the interval between adjacent magnets can be increased, and the short circuit of the magnetic path between the magnets can be further reduced, and the magnetic field can be reduced. It is possible to realize as high a magnetic flux density as possible in the generation space.
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets are separated from each other on the yoke side.
  • adjacent magnets are separated from each other, and the parallel arrangement interval of the magnets can be appropriately adjusted by increasing or decreasing the separation amount.
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets are adjacent to each other on the yoke side.
  • adjacent magnets are adjacent to each other, and the magnetic flux density in the magnetic field generation space can be further increased.
  • the magnetic field generator according to the present invention is characterized in that the sectional shape of the magnet is an isosceles trapezoid.
  • the sectional shape of the magnet is an isosceles trapezoid, the magnetization direction can be concentrated well in the center, and a relatively uniform magnetic flux density waveform can be realized in the magnetic field generation space.
  • the magnetic field generator according to the present invention is characterized in that the plurality of magnets have high coercive force layers formed on side surfaces on both sides in the side-by-side direction.
  • the corner of the magnet is a part where the demagnetizing field is large and is easily demagnetized.
  • a high coercive force layer is provided on the side surface of each magnet to reduce the influence of thermal demagnetization of the part and reduce irreversibly. Generation of magnetism can be suppressed.
  • the high coercive force layer can be formed as a diffusion layer in which heavy rare earths (Dy: dysprosium, Tb: terbium, etc.) are diffused.
  • the high coercive force layer may be provided only on the side surface of the magnet, and the increase in product cost due to the use of expensive heavy rare earth is small.
  • a plurality of magnets are arranged on one surface of a pair of non-magnetic holding bodies facing each other with a magnetic field generating space therebetween, and the respective main surfaces facing the magnetic field generating space are aligned.
  • the magnet has a magnetization direction orthogonal to the main surface at a central position in a parallel arrangement direction, and continuously reduces an inclination angle with respect to the main surface on both sides of the central position. It is a concentrated orienting magnet having a direction, and is arranged in parallel with the directions of adjacent magnetizations reversed.
  • the magnetic field generating device is configured by arranging the concentrated orientation magnets whose magnetization directions are continuously changed and concentrated in the center of the main surface on one surface of the non-magnetic holder.
  • There is no sudden change in the direction of magnetization inside the magnet which can reduce the occurrence of demagnetizing fields, suppress the occurrence of irreversible demagnetization due to the effects of thermal demagnetization, and short circuit of magnetic paths between adjacent magnets Can be reduced. Therefore, in order to suppress irreversible demagnetization, a material having a high residual magnetic flux density can be used for the magnet instead of a material having a high coercive force, and a magnetic flux density as high as possible can be realized in the magnetic field generation space.
  • a lightweight material such as aluminum or CFRP (carbon fiber reinforced plastic) can be used, and the weight of the magnetic field generator can be reduced.
  • the linear motor according to the present invention further includes the magnetic field generator as described above and a coil disposed in a magnetic field generated by the magnetic field generator, and the coil and the magnetic field generator are arranged in parallel with the plurality of magnets. It is characterized by relative movement in the installation direction.
  • a linear motor is configured by arranging a coil in the magnetic field generated by the magnetic field generator.
  • the magnetic field generator can form a magnetic field having a high magnetic flux density without being affected by thermal demagnetization, and can stably realize a high output operation in various environments.
  • a concentrated orientation magnet whose magnetization direction is continuously changed is used as a main pole, and is arranged in parallel with an auxiliary pole on one surface of a yoke or a non-magnetic holding body. It is possible to generate a magnetic field with a high magnetic flux density by interacting with the auxiliary pole, suppress the increase of the demagnetizing field inside the main pole, and suppress the occurrence of irreversible demagnetization due to the effect of thermal demagnetization. Therefore, a material having a high residual magnetic flux density can be used for the main pole, and further, the magnetic flux density can be prevented from decreasing with time.
  • the concentrated orientation magnets whose magnetization directions continuously change are arranged side by side on the surface of the yoke or the nonmagnetic material holder, so that a magnetic field with a high magnetic flux density can be generated.
  • the generation of demagnetizing magnetic field inside the magnet is mitigated, and it is possible to suppress the occurrence of irreversible demagnetization due to the effect of thermal demagnetization. Can be prevented.
  • FIG. 3 is a cross-sectional view illustrating a configuration example of a linear motor using the magnetic field generation device according to the first embodiment.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of a magnetic field generation device according to a fifth embodiment. It is explanatory drawing of the effect
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to a sixth embodiment.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to a seventh embodiment.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of a magnetic field generator according to an eighth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of a magnetic field generator according to a ninth embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration example of a linear motor using a magnetic field generator according to a fifth embodiment.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of the magnetic field generation apparatus according to the first embodiment.
  • This magnetic field generator includes a plurality of yokes (yokes) 3, 3 arranged opposite to each other with a gap to be a magnetic field generation space, and a plurality of yokes 3, 3 arranged in parallel to each other.
  • the cross-sectional shapes of the main electrode 1 and the auxiliary electrode 2 are rectangular shapes having substantially constant widths in the parallel direction.
  • the main pole 1 and the auxiliary pole 2 are magnets having a high residual magnetic flux density Br such as rare earth iron boron-based magnets.
  • a magnet powder containing rare earth such as neodymium (Nd), iron (Fe), and boron (B) in a predetermined ratio is compression-molded in a magnetic field, and then sintered under an inert gas or vacuum.
  • a sintered body having the orientation of the magnetic field as an orientation direction is formed, and an external magnetic field is applied to the sintered body to magnetize the sintered body.
  • the arrows in FIG. 1 indicate the magnetization directions of the main pole 1 and the auxiliary pole 2.
  • the main pole 1 has a magnetization direction orthogonal to the main surface at the center position of the surface (main surface) facing the magnetic field generation space, and is inclined with respect to the main surface on both sides of the center position.
  • the inclination angle has a magnetization direction that continuously decreases toward the end.
  • the main pole 1 having such a magnetization direction is a sintered body obtained by performing compression molding of the above-described alloy powder in a magnetic field that radiates from the center of the main surface, and undergoing a subsequent sintering step. Manufactured by a procedure of magnetizing in an external magnetic field orthogonal to the plane. This type of magnet is called a concentrated orientation magnet because the orientation direction is concentrated in the center of the main surface.
  • the auxiliary pole 2 magnetizes a sintered body produced with an orientation direction parallel to the main surface facing the magnetic field generation space by applying an external magnetic field in the same direction as the orientation direction, It is comprised as a magnet which has a magnetization direction parallel to.
  • FIG. 1 there are two types of complementary poles 2 in which the directions of magnetization are reversed.
  • the main pole 1 whose main surface side is an N pole between the main poles 1 and 1 arranged in parallel as described above.
  • the magnets are interposed with their respective magnetization directions facing each other.
  • the magnetic field generator is configured by arranging the pair of yokes 3 and 3 having the main pole 1 and the auxiliary pole 2 arranged in parallel as described above so that the main poles 1 and 1 having different magnetic poles face each other. According to this magnetic field generator, the magnetic field formed between the opposing portions of the main poles 1 and 1 is strengthened by the action of the auxiliary poles 2 and 2 on both sides, as shown by white arrows in FIG. A magnetic field having a high magnetic flux density can be generated in the magnetic field generation space.
  • the main pole 1 is configured as a concentrated orientation magnet whose magnetization direction is set as described above, and can concentrate the magnetic flux between the opposed portions of the main poles 1 and 1, further increasing the magnetic flux density in the magnetic field generation space. It becomes possible.
  • the magnetization direction of the main pole 1 continuously changes from the central part of the main surface toward both sides.
  • the main pole 1 has a configuration in which a large number of magnets having slightly different inclination angles with respect to the main surface are arranged with the main surfaces aligned, and there is no sudden change portion in the magnetization direction. Therefore, the possibility that the demagnetizing field inside the main pole 1 increases can be mitigated, the occurrence of thermal demagnetization in the use environment can be reduced, and the magnetic flux density in the magnetic field generation space can be prevented from decreasing over time. be able to.
  • FIG. 2 and 3 are explanatory diagrams of the operation and effect of the magnetic field generator according to Embodiment 1.
  • FIG. FIG. 2 is a conventional magnetic field generator employing the Halbach array described in Patent Document 1
  • FIG. 3 is a magnetic field generator employing the Halbach array using the concentrated orientation magnet of the first embodiment as the main pole.
  • one side of the magnetic field generating device constituted by the yoke 3, the main pole 1 and the auxiliary pole 2 which are opposed to each other is shown.
  • the arrow in the figure indicates the direction of magnetization, and the length of the arrow indicates the magnet length in the magnetization direction.
  • the region indicated by the solid triangle is a portion where demagnetization is likely to occur due to the arrangement of the magnets.
  • the part where the demagnetization is likely to occur is the joint part side of the main pole 1 and the vicinity of the auxiliary pole 2 (part A) with respect to the yoke 3, and the auxiliary pole 2 is connected to the yoke 3. It is a site
  • a concentrated orientation magnet is used as the main pole 1, and the magnet length in the magnetization direction including a portion that tends to be demagnetized becomes long, and a region A indicated by a broken triangle (FIG. 2). Demagnetization can also be suppressed in the case A). In other words, since the permeance coefficient becomes large, demagnetization can be suppressed.
  • the magnetization direction of the main pole 1 is inclined with respect to the main surface, and the magnetization direction of the auxiliary pole 2 is parallel to the main surface. Therefore, there is a possibility that the demagnetizing field may increase due to a sudden change in the magnetization direction at the boundary portion (B portion in FIG. 3) between the main pole 1 and the auxiliary pole 2.
  • the auxiliary pole 2 can be demagnetized by using a magnet having a high coercive force, but at the same time, since the residual magnetic flux density is lowered, the magnetic flux density in the magnetic field generation space may be lowered.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the second embodiment.
  • This magnetic field generator includes a main pole 1 and an auxiliary pole 2 similar to those in the first embodiment, and these are arranged side by side on opposing surfaces of a pair of yokes 3 and 3.
  • This magnetic field generator is further provided with a high coercive force layer 4 at the boundary between the main pole 1 and the auxiliary pole 2.
  • the high coercive force layer 4 can be formed as a diffusion layer in which heavy rare earth such as Dy and Tb is diffused.
  • the high coercive force layer 4 provided in this way increases the coercive force at the boundary between the main pole 1 and the auxiliary pole 2 and reduces the occurrence of thermal demagnetization.
  • the high coercive force layer 4 may be provided on either the main pole 1 or the auxiliary pole 2, but may be provided on both the main pole 1 and the auxiliary pole 2.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the magnetic field generation device according to the third embodiment, and similarly to FIGS. 2 and 3, the magnetic field generation device including the opposing yoke 3, main pole 1, and auxiliary pole 2. One side of is shown.
  • the main pole 1 and the auxiliary pole 2 of this magnetic field generator have an isosceles trapezoidal cross-sectional shape with the same inclination of the hypotenuse, the main pole 1 faces the lower base toward the yoke 3, and the auxiliary pole 2 is They are arranged in such a manner that they are alternately arranged with their upper bases facing the yoke 3 and their hypotenuses are in contact with each other.
  • the portion opposite to the joint with the yoke 3, which is a portion where the depolarization of the auxiliary pole 2 is likely to occur (the portion corresponding to the portion B in FIG. 2) has a relative width in a sectional view.
  • the length of the magnet in the magnetization direction is long and the permeance coefficient is high, so that it is difficult to demagnetize. Therefore, it is possible to suppress the occurrence of demagnetization in the region indicated by the broken triangles of the main pole 1 and the auxiliary pole 2.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the fourth embodiment. Similar to FIGS. 2, 3, and 5, the magnetic field generator configured by the opposing yoke 3, main pole 1, and auxiliary pole 2. One side of is shown.
  • the main pole 1 of the magnetic field generator of this embodiment has an isosceles trapezoidal cross-sectional shape as in the third embodiment, whereas the auxiliary pole 2 is different from the third embodiment in that the main pole 1 is inclined and It has a cross-sectional shape of an isosceles triangle having oblique sides having the same length.
  • the main pole 1 and the auxiliary pole 2 are arranged in such a manner that the lower base of the main pole 1 and the apex of the auxiliary pole 2 are alternately arranged toward the yoke 3 side, and the respective hypotenuses are aligned.
  • the side opposite to the joint portion with the yoke 3 which is a portion where the depolarization of the auxiliary pole 2 is likely to occur (a portion corresponding to the portion B in FIG. 2).
  • auxiliary pole 2 having a larger width on the side opposite to the yoke 3 than the width on the side in contact with the yoke 3
  • a portion on the side opposite to the yoke 3 is used. Therefore, the occurrence of demagnetization in the auxiliary pole 2 can be suppressed.
  • a material having a high magnetic flux density can be used instead of a material having a high coercive force as a material of the auxiliary pole 2, so that a magnetic field generator having a high magnetic flux density can be realized.
  • the supplementary pole 2 having the shape shown in the third and fourth embodiments is used, if there is a slight demagnetization, the supplementary pole 2 made of a material having a slightly reduced residual magnetic flux density and a slightly increased coercive force is used. By using it, it is possible to realize a magnetic field generating apparatus that suppresses demagnetization while suppressing a decrease in magnetic flux density in the magnetic field generating space.
  • a holder made of a non-magnetic material such as aluminum or CFRP (carbon fiber reinforced plastic) is used in place of the yoke 3, and the main electrode 1 is provided on one surface of the holder.
  • the auxiliary pole 2 may be held in parallel.
  • the nonmagnetic holding body is lighter than the yoke 3 and can reduce the weight of the magnetic field generator.
  • FIG. 7 is a cross-sectional view showing a configuration example of a linear motor using the magnetic field generator according to the first embodiment.
  • the illustrated linear motor is configured by arranging a coil module 6 including a coil 5 between opposed portions of a main pole 1 and an auxiliary pole 2 that are fixedly arranged.
  • the coil module 6 is supported by a guide rail 7 that extends in the direction in which the main pole 1 and the auxiliary pole 2 are juxtaposed, and constitutes a mover that can move along the direction in which the guide rail 7 extends.
  • a magnetic field having a high magnetic flux density is generated by the above-described action of the main pole 1 and the auxiliary pole 2, and this magnetic field is subjected to thermal demagnetization in the use environment. It is difficult to suppress a decrease in magnetic flux density over time, and therefore a linear motor capable of stable and high-power operation over a long period can be provided.
  • the high coercive force layer 4 can be provided between the main pole 1 and the auxiliary pole 2 of the magnetic field generator, and this can further reduce thermal demagnetization.
  • FIG. 7 shows a linear motor having the coil module 6 as a mover.
  • the motor can be similarly configured.
  • a similar linear motor can be configured using the magnetic field generators of the second to fourth embodiments.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the fifth embodiment.
  • This magnetic field generator includes a plurality of magnets 10, 10 arranged in parallel on opposing surfaces of a pair of yokes 20, 20 that are opposed to each other across a magnetic field generation space, and both yokes 20, 20. It has ... *
  • the magnet 10 is a magnet having a high residual magnetic flux density Br such as a rare earth iron boron-based magnet.
  • This type of magnet 10 is formed by compressing an alloy powder containing rare earth such as neodymium (Nd), iron (Fe), and boron (B) in a predetermined ratio in a magnetic field, and then firing the powder in an inert gas or under vacuum. This is produced by forming a sintered body having the direction of the magnetic field as the orientation direction and magnetizing the sintered body by applying an external magnetic field.
  • the magnet 10 has a magnetization direction orthogonal to the main surface at the center position of the surface (main surface) facing the magnetic field generation space, and is inclined with respect to the main surface on both sides of the center position.
  • the inclination angle has a magnetization direction that continuously decreases toward the end.
  • the magnet 10 having such a magnetization direction is obtained by performing compression molding of the above-described alloy powder in a magnetic field extending radially from the center of the main surface, and using the sintered body obtained through the subsequent sintering step as the main surface. It is manufactured by the procedure of magnetizing in an external magnetic field orthogonal to.
  • This type of magnet 10 is referred to as a concentrated orientation magnet because the orientation direction is concentrated at the center of the main surface.
  • the direction of the external magnetic field coincides with the orientation direction at the center of the main surface, while it tilts with respect to the orientation direction on both sides. However, when the tilt angle is not excessively large, the magnetization direction coincides with the orientation direction.
  • the direction of magnetization of the magnet 10 depends on the direction of the external magnetic field.
  • the magnet 10 is composed of two types of magnets in which the main surface facing the magnetic field generation space is an N pole and the main surface is an S pole by magnetization in a reverse magnetic field. ing. Such magnets 10 are juxtaposed in the longitudinal direction of the yoke 20 so that different magnetic poles are adjacent to each other at a predetermined interval.
  • the magnetic field generator is configured by arranging the pair of yokes 20, 20 having the magnets 10, 10,... Arranged in parallel as described above so that the magnets 10, 10 having different magnetic poles face each other. According to this magnetic field generator, a magnetic field having a high magnetic flux density can be generated in the magnetic field generating space between the opposing portions of the magnets 10 and 10, as indicated by white arrows in FIG.
  • the magnet 10 is configured as a concentrated orientation magnet with the magnetization direction set as described above, and the magnetic flux can be concentrated between the opposed portions of the magnets 10 and 10, and the magnetic flux density in the magnetic field generation space can be increased. It becomes.
  • the magnetization direction of the magnet 10 continuously changes from the central portion of the main surface toward both sides.
  • the magnet 10 has a configuration in which a large number of magnets with slightly different inclination angles in the magnetization direction with respect to the main surface are arranged with the main surface aligned, and the magnet 10 has a sudden change in the magnetization direction. There is no part.
  • the possibility that a large demagnetizing field is generated inside the magnet 10 can be mitigated, the influence of thermal demagnetization in the use environment can be reduced, and the magnetic flux density in the magnetic field generating space can be prevented from decreasing over time. be able to.
  • the magnets 10 and 10 which adjoin each other are spaced apart in the parallel arrangement direction, and the parallel arrangement space
  • FIG. 9 and FIG. 10 are explanatory diagrams of the operation and effect of the magnetic field generator according to the fifth embodiment.
  • FIG. 9 shows a conventional magnetic field generator using magnets 10, 10,... Having a magnetization direction orthogonal to the main surface facing the magnetic field generating space.
  • FIG. 10 shows the magnetic field generator of the fifth embodiment. 1 shows one side of a magnetic field generating device constituted by a yoke 20 and a magnet 10 facing each other.
  • 9 and 10 indicate the magnetization direction in the magnet 10, and the length of the arrow indicates the magnet length in the magnetization direction. 9 and 10, that is, the magnet length in the magnetization direction at both sides in the juxtaposed direction is substantially longer in FIG. 10 than in FIG. 9. Therefore, the magnetic field generator shown in FIG. 10 has a large permeance coefficient and is difficult to demagnetize.
  • FIGS. 9 and 10 indicate a state of short circuit of the magnetic path between the adjacent magnets 10 and 10.
  • the directions of magnetization at the ends of adjacent magnets 10 and 10 are separated from each other, and a short circuit of the magnetic path between these magnets 10 and 10 is shown in FIG. It will occur between longer paths than in the magnetic field generator. Therefore, in the magnetic field generator shown in FIG. 10, the short circuit of the magnetic path between the adjacent magnets 10 and 10 is reduced, the amount of magnetic flux generated from each magnet 10 to the magnetic field generating space is increased, and the magnetic field having a high magnetic flux density. Can be generated.
  • FIG. 12 is a sectional view showing a schematic configuration of the magnetic field generator according to the seventh embodiment.
  • this magnetic field generator is configured by arranging a plurality of magnets 10, 10,... On the opposing surfaces of a pair of yokes 20, 20, with a predetermined distance therebetween.
  • the high coercive force layer 30 is further formed on the side surfaces on both sides of the magnets 10 in the juxtaposed direction.
  • the high coercive force layer 30 can be formed as a diffusion layer obtained by diffusing heavy rare earths such as Dy and Tb over a suitable depth from the surface.
  • the high coercive force layer 30 provided in this way increases the coercive force of the side surface portion of each magnet 10 and reduces the influence of thermal demagnetization.
  • the high coercive force layer 30 may be formed around the corners on the opposite side to the yoke 20 of each magnet 10 that is particularly affected by the demagnetizing field, in addition to the side surfaces on both sides of the juxtaposed direction. Further, the high coercivity layer 30 is formed only on the side surface near the corner opposite to the yoke 20 instead of the entire side surface of each magnet 10, or the high coercivity layer 30 is formed on the side surface and main surface near the corner. May be.
  • the widths of the magnets 10 in the juxtaposition direction are narrow on the main surface side facing the magnetic field generating space and wide on the yoke 20 side.
  • the interval between the magnets 10 and 10 is Y on the yoke 20 side, whereas it is X (> Y) on the side facing the magnetic field generation space. Therefore, a short circuit of the magnetic path between the adjacent magnets 10 and 10 occurs between paths longer than the fifth embodiment shown in FIG. 10 as indicated by white arrows in the figure. Short circuit can be further reduced, and a magnetic field having a high magnetic flux density can be generated.
  • each magnet 10 is narrow on the main surface side and wide on the yoke 20 side
  • the sectional shape of each magnet 10 is not limited to the isosceles trapezoidal shape shown in FIG.
  • the trapezoid may be an unequal leg trapezoid, or may be a trapezoid whose hypotenuse is concave or convex.
  • the cross-sectional shape of each magnet 10 is an isosceles trapezoid as shown in FIG. 13, the magnetization direction in the magnet 10 can be well concentrated in the center, and a uniform magnetic flux density waveform can be realized in the magnetic field generation space. Can do.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the ninth embodiment. Similarly to FIGS. 9 to 11 and FIG. 13, the magnetic field constituted by the opposing yoke 20 and the plurality of magnets 10, 10,. One side of the generator is shown.
  • This magnetic field generator uses isosceles trapezoidal magnets 10, 10... Similar to those in the eighth embodiment, but these are arranged side by side so as to be adjacent to each other on the side of the yoke 20 which has become wide. ing.
  • the high coercive force layers 30 can be provided on the side surfaces on both sides of the magnets 10 in the parallel arrangement direction.
  • a holder made of a non-magnetic material such as aluminum or CFRP (carbon fiber reinforced plastic) is used in place of the yoke 20, and the magnet 10 is mounted on one surface of the holder. It may be held side by side.
  • the nonmagnetic holding body is lighter than the yoke 20 and can reduce the weight of the magnetic field generator.
  • FIG. 15 is a cross-sectional view showing a configuration example of a linear motor using the magnetic field generation apparatus according to the fifth embodiment.
  • the illustrated linear motor is configured by arranging a coil module 50 including a coil 40 between opposed portions of magnets 10, 10.
  • the coil module 50 is supported by a guide rail 60 extending in the direction in which the magnets 10, 10... Are arranged in parallel, and constitutes a mover that can move along the extending direction of the guide rail 60.
  • the linear motor configured as described above, by the energization control of the coil 40 provided in the coil module 50, a moving force along the parallel arrangement direction of the magnets 10, 10,.
  • the module 50 is linearly moved under the guidance of the guide rail 60.
  • a magnetic field having a high magnetic flux density is generated by the above-described action. Further, this magnet is not easily subjected to thermal demagnetization in the use environment, and the magnetic flux density is changed over time. Since the decrease is suppressed, it is possible to provide a linear motor capable of operating at a stable high output over a long period of time.
  • the linear motor shown in FIG. 15 can be similarly configured using the magnetic field generator according to Embodiments 6 to 9.
  • 15 shows a linear motor having the coil module 50 as a mover, the linear motor having the coil module 50 as a stator and the magnetic field generator (magnet 10 and yoke 20) as a mover is similarly configured. It goes without saying that it can be done.

Abstract

A plurality of main poles and interpoles are arranged side by side in an alternating manner, with the principal surfaces thereof aligned, on one surface of a yoke that faces a magnetic-field generation space. Each main pole is a converging-orientation magnet in which the magnetization direction of the magnet in the middle of said magnet in the direction in which the magnets are arranged side by side is perpendicular to the principal surface of the magnet and the angle of inclination of the magnetization direction of the magnet with respect to the principal surface of the magnet decreases continuously on both sides of the aforementioned middle of the magnet. Each interpole is a magnet that is magnetized in a direction parallel to the principal surface of said magnet, and the interpoles are laid out such that the magnetization directions thereof face the main poles, which are magnetized towards the principal surfaces thereof. There are no sections inside the main poles in which the magnetization directions thereof change abruptly, minimizing increases in demagnetization and minimizing irreversible demagnetization due to the effects of thermal demagnetization. A material having a high residual flux density can thus be used for the main poles, and the interpoles act to reinforce the magnetic fields formed by said main poles, allowing the maximum possible magnetic flux density.

Description

磁界発生装置及びリニアモータMagnetic field generator and linear motor
 本発明は、希土類磁石を用いた磁界発生装置、及びこれを用いて構成されるリニアモータに関する。 The present invention relates to a magnetic field generator using a rare earth magnet, and a linear motor configured using the same.
 リニアモータは、磁界発生装置が発生する磁界中にコイルを配し、該コイルの通電制御により磁界発生装置とコイルとを相対移動させるモータである。磁界発生装置は、磁界発生空間を隔てて対向配置した一対のヨークの夫々に、複数の磁石を、相隣する磁石の磁化方向が逆向きとなるように並設して構成されている。近年においては、希土類鉄ホウ素系磁石等の高い残留磁束密度Brを有する磁石を用い、更に、磁石の配列及び構成を工夫することにより、高磁束密度の磁界発生が可能であり、小型、軽量化された磁界発生装置及びリニアモータを実現する試みがなされている(例えば、特許文献1、2参照)。 A linear motor is a motor in which a coil is arranged in a magnetic field generated by a magnetic field generator, and the magnetic field generator and the coil are relatively moved by energization control of the coil. The magnetic field generation device is configured by arranging a plurality of magnets in parallel so that the magnetization directions of adjacent magnets are opposite to each other in a pair of yokes arranged to face each other with a magnetic field generation space therebetween. In recent years, it is possible to generate a magnetic field with a high magnetic flux density by using a magnet having a high residual magnetic flux density Br, such as a rare earth iron boron-based magnet, and further devising the arrangement and configuration of the magnet. Attempts have been made to realize a magnetic field generator and a linear motor (see, for example, Patent Documents 1 and 2).
 特許文献1に記載の磁界発生装置は、ハルバッハ配列と称される磁石配列を採用している。ハルバッハ配列とは、磁界発生空間に対向する主面と直交する磁化方向を有する磁石(主極)を所定の間隔を隔てて並べ、各主極間に主面と平行な磁化方向を有する磁石(補極)を介在させる配列である。補極は、磁化方向が主面に向かう主極(主面の側がN極である主極)の側に夫々の磁化方向を向けて配置されている。 The magnetic field generator described in Patent Document 1 employs a magnet array called a Halbach array. The Halbach array is a magnet having a magnetization direction (main pole) perpendicular to the main surface facing the magnetic field generation space at a predetermined interval, and a magnet having a magnetization direction parallel to the main surface between the main poles ( It is an arrangement that interposes a complementary pole). The auxiliary poles are arranged with their respective magnetization directions facing the main poles whose main magnetization direction is toward the main surface (the main pole whose main surface side is the N pole).
 このようなハルバッハ配列を採用した磁界発生装置によれば、主極の対向部に形成される磁界が補極の作用により強化され、高磁束密度を有する磁界の形成が可能となるが、一方では、磁化方向が異なる主極と補極とが相隣する境界部分の減磁界が増加し、使用環境下での温度上昇に伴う熱減磁の影響により不可逆減磁を招来し、磁束密度が経時的に低下するという問題がある。 According to the magnetic field generator employing such a Halbach array, the magnetic field formed at the opposing portion of the main pole is strengthened by the action of the auxiliary pole, and a magnetic field having a high magnetic flux density can be formed. , The demagnetizing field at the boundary between adjacent main and auxiliary poles with different magnetization directions increases, causing irreversible demagnetization due to the effect of thermal demagnetization accompanying temperature rise in the usage environment, and the magnetic flux density over time There is a problem that it decreases.
 この問題に対応するために特許文献1には、補極の主極との境界面の少なくとも主面近傍に、重希土類(Dy:ジスプロシウム、Tb:テルビウム等)の拡散により保磁力を高めた高保磁力層を形成することが開示されている。更に、主極(第1磁石)と補極(第2磁石)との間に、主面に対して傾斜する磁化方向を有する第3磁石を介在させ、各磁石の境界面の主面近傍位置に、前述した高保磁力層を形成することも開示されている。 In order to cope with this problem, Patent Document 1 discloses that a high coercive force having a high coercive force by diffusion of heavy rare earth (Dy: dysprosium, Tb: terbium, etc.) at least in the vicinity of the main surface of the boundary surface with the main electrode of the complementary electrode. Forming a magnetic layer is disclosed. Further, a third magnet having a magnetization direction inclined with respect to the main surface is interposed between the main pole (first magnet) and the auxiliary electrode (second magnet), and the vicinity of the main surface of the boundary surface of each magnet In addition, the formation of the above-described high coercive force layer is also disclosed.
 また特許文献2には、主面と直交する配向方向を有する磁石の両側に、主面に対して傾斜する配向方向を有する磁石を主面を揃えて固定し、これらを、中央の磁石の配向方向と一致する磁界中で磁化してなる磁石ユニットが開示されている。 In Patent Document 2, magnets having an orientation direction inclined with respect to the main surface are fixed on both sides of the magnet having an orientation direction orthogonal to the main surface so that the main surfaces are aligned. A magnet unit that is magnetized in a magnetic field that matches the direction is disclosed.
 この磁石ユニットは、特許文献1に記載された磁界発生装置において、主極を構成する第1磁石と第3磁石とを予め一体化させたユニットとして使用することができる。この場合、相隣する磁石ユニットの磁化の向きが互いに離れる方向となることから、磁路の短絡の発生を抑制し、磁界発生空間の磁束密度を高めることができ、磁界発生装置の小型、軽量化にも対応可能である。 This magnet unit can be used as a unit in which the first magnet and the third magnet constituting the main pole are integrated in advance in the magnetic field generator described in Patent Document 1. In this case, since the directions of magnetization of adjacent magnet units are away from each other, the occurrence of a short circuit in the magnetic path can be suppressed, the magnetic flux density in the magnetic field generation space can be increased, and the magnetic field generator can be made compact and lightweight. It is possible to correspond to
特開2010-136516号公報JP 2010-136516 A 特開2010-50440号公報JP 2010-50440 A
 しかしながら特許文献1に開示された磁界発生装置においては、前述した主極、補極を構成する第1、第2磁石、更に第3磁石は、ヨークの一面に前述した位置関係が得られるように固定される必要があり、夫々の磁力に抗して実施される固定作業に多大の手間を要し、正確な位置関係を保って固定することが難しいという問題がある。 However, in the magnetic field generator disclosed in Patent Document 1, the above-described positional relationship is obtained on one surface of the yoke with respect to the first and second magnets and further the third magnet constituting the main pole and the auxiliary pole. There is a problem that it is necessary to be fixed, and it takes a lot of labor for the fixing work performed against each magnetic force, and it is difficult to fix it while maintaining an accurate positional relationship.
 また、高保磁力層を形成するための重希土類は、希少で高価な材料であり、前述した各位置への高保磁力層の形成により製品コストの上昇を招来する。更に、大型の磁石を使用する磁界発生装置においては、重希土類を拡散させる必要厚さも大となり、高保磁力層の形成による保磁力の増加に限界がある。 Moreover, the heavy rare earth for forming the high coercive force layer is a rare and expensive material, and the formation of the high coercive force layer at each position described above causes an increase in product cost. Furthermore, in a magnetic field generator using a large magnet, the necessary thickness for diffusing heavy rare earths becomes large, and there is a limit to the increase in coercive force due to the formation of a high coercive force layer.
 特許文献2に記載の磁石ユニットは、主極を構成する第1の磁石と第3の磁石とを、磁化前に一体化することから、前述した固定作業の手間を削減することができるが、中央の磁石と両側の磁石との間で磁化方向が急変することから、夫々の磁石の境界部分での減磁界が増加し、使用環境下での熱減磁の影響により、磁石ユニット内で不可逆減磁を発生する虞れがある。 Since the magnet unit described in Patent Document 2 integrates the first magnet and the third magnet constituting the main pole before magnetization, it can reduce the labor of the fixing operation described above. Since the magnetization direction changes suddenly between the center magnet and the magnets on both sides, the demagnetizing field increases at the boundary of each magnet, which is irreversible within the magnet unit due to the effect of thermal demagnetization in the operating environment. There is a risk of demagnetization.
 また特許文献2には、残留磁束密度Br及び保磁力Hcjが異なる2種の磁石を用い、相対的に残留磁束密度が小さく保磁力が大きい磁石をヨーク側に、残留磁束密度が大きく保磁力が小さい磁石を磁界発生空間側に夫々配置することで減磁界の軽減を図った磁界発生装置を構成することが開示されている。しかしながら、この磁界発生装置においては、2種類の磁石を必要とし、構成が複雑化する上、Brが小さい磁石の併用により、磁界発生空間の磁束密度の向上に限界がある。 In Patent Document 2, two types of magnets having different residual magnetic flux density Br and coercive force Hcj are used. A magnet having a relatively small residual magnetic flux density and a large coercive force is disposed on the yoke side, and the residual magnetic flux density is large and the coercive force is large. It is disclosed that a magnetic field generator is configured to reduce demagnetizing fields by arranging small magnets on the magnetic field generating space side. However, this magnetic field generator requires two types of magnets, and the configuration is complicated, and there is a limit to the improvement of the magnetic flux density in the magnetic field generation space by using a magnet with a small Br.
 本発明は斯かる事情に鑑みてなされたものであり、熱減磁の発生を軽微に抑え、且つ磁界発生空間内で可及的に高い磁束密度を得ることができる簡素な構成の磁界発生装置を提供し、この磁界発生装置の使用により高出力が得られるリニアモータを提供することを目的とする。 The present invention has been made in view of such circumstances, and a magnetic field generator having a simple configuration capable of suppressing the occurrence of thermal demagnetization and obtaining as high a magnetic flux density as possible in a magnetic field generation space. An object of the present invention is to provide a linear motor that can obtain a high output by using this magnetic field generator.
 本発明に係る磁界発生装置は、磁界発生空間を隔てて対向する一対のヨークの一面に、複数の主極と複数の補極とを前記磁界発生空間に向けた夫々の主面を揃えて交互に並設し、前記主極により形成される磁界を前記補極の作用により強化するように構成された磁界発生装置において、前記主極は、並設方向の中央位置では前記主面に直交し、該中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する主極と磁化の向きを逆として並設してあり、前記補極は、前記主面と平行な磁化方向を有する磁石であり、前記主面に向けて磁化された前記主極に夫々の磁化方向を向けて配置してあることを特徴とする。 The magnetic field generator according to the present invention alternately arranges a plurality of main poles and a plurality of complementary poles on one surface of a pair of yokes facing each other across a magnetic field generation space, with the main surfaces facing the magnetic field generation space being aligned. In the magnetic field generator configured to strengthen the magnetic field formed by the main pole by the action of the auxiliary pole, the main pole is orthogonal to the main surface at the center position in the juxtaposition direction. , A concentrated orientation magnet having a magnetization direction that continuously reduces an inclination angle with respect to the main surface on both sides of the central position, the main poles adjacent to each other are arranged in reverse to each other, and the complementary pole is The magnet has a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions directed to the main pole magnetized toward the main surface.
 本発明においては、磁化方向が連続的に変化し、主面の中央に集中する集中配向磁石を主極として用い、この主極と主面に対して平行な磁化方向を有する補極とをヨークの一面にハルバッハ配列して磁界発生装置を構成する。主極の磁化方向は、連続的に変化し、主極の内部には磁化方向の急変部が存在しない。従って、主極内部での減磁界の増加を抑え、熱減磁の影響による不可逆減磁の発生を抑制できるため、不可逆減磁を抑えるために主極に高保磁力の材質ではなく高残留磁束密度の材質を使用することができ、可及的に高い磁束密度を実現することが可能となる。 In the present invention, a concentrated orienting magnet whose magnetization direction is continuously changed and concentrated at the center of the main surface is used as a main pole, and this main pole and an auxiliary pole having a magnetization direction parallel to the main surface are used as a yoke. A magnetic field generator is configured by arranging Halbach on one surface. The magnetization direction of the main pole changes continuously, and there is no sudden change portion of the magnetization direction inside the main pole. Therefore, the increase in the demagnetizing field inside the main pole can be suppressed and the occurrence of irreversible demagnetization due to the effect of thermal demagnetization can be suppressed. Therefore, it is possible to realize as high a magnetic flux density as possible.
 また本発明に係る磁界発生装置は、前記主極及び補極の断面形状が、並設方向の幅が略一定の矩形形状であることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the cross-sectional shape of the main pole and the auxiliary pole is a rectangular shape having a substantially constant width in the juxtaposition direction.
 本発明においては、一定幅の矩形形状を有する主極及び補極を並設して磁界発生装置を構成する。矩形形状の主極及び補極は、成形が容易で高精度に構成することができる。 In the present invention, a magnetic field generator is configured by arranging a main pole and a complementary pole having a rectangular shape with a constant width in parallel. The rectangular main electrode and auxiliary electrode can be easily formed and configured with high accuracy.
 また本発明に係る磁界発生装置は、前記補極の並設方向の幅が、前記ヨークの側に対して前記ヨークの反対側が長くしてあり、前記主極の並設方向の幅が、前記ヨークの反対側に対して前記ヨークの側が長くしてあることを特徴とする。 In the magnetic field generator according to the present invention, the width of the auxiliary poles arranged side by side is longer on the opposite side of the yoke than the side of the yoke, and the width of the main poles arranged side by side is The side of the yoke is longer than the opposite side of the yoke.
 本発明においては、減磁が発生しやすい磁界発生空間に面する側での補極の幅が大きいため、磁化方向の磁石の長さが長くなり、減磁の発生を抑えることができる。 In the present invention, since the width of the auxiliary pole on the side facing the magnetic field generation space where demagnetization is likely to occur is large, the length of the magnet in the magnetization direction is increased, and the occurrence of demagnetization can be suppressed.
 また本発明に係る磁界発生装置は、前記主極及び補極の断面形状が等脚台形であることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the cross-sectional shapes of the main pole and the auxiliary pole are isosceles trapezoids.
 また本発明に係る磁界発生装置は、前記主極の断面形状が等脚台形であり、前記補極の断面形状が三角形であることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the cross-sectional shape of the main pole is an isosceles trapezoid and the cross-sectional shape of the complementary electrode is a triangle.
 これらの発明では、単純な形状で減磁が発生し難い補極を実現することができる。 In these inventions, it is possible to realize an auxiliary pole having a simple shape and hardly causing demagnetization.
 また本発明に係る磁界発生装置は、前記主極及び補極の一方又は両方は、夫々との境界面に形成された高保磁力層を有することを特徴とする。 Also, the magnetic field generator according to the present invention is characterized in that one or both of the main pole and the auxiliary pole have a high coercive force layer formed on the boundary surface between them.
 本発明においては、磁化方向の変化が大きい主極と補極との境界部分に高保磁力層を設けたから、当該部分の熱減磁の影響を軽減して不可逆減磁の発生を抑制できる。高保磁力層は、主極と補極との間に限って設ければよく、製品コストの上昇程度は小さい。 In the present invention, since the high coercive force layer is provided at the boundary portion between the main pole and the auxiliary pole where the change in the magnetization direction is large, the influence of thermal demagnetization at the portion can be reduced and the occurrence of irreversible demagnetization can be suppressed. The high coercive force layer may be provided only between the main pole and the auxiliary pole, and the increase in product cost is small.
 また本発明に係る磁界発生装置は、磁界発生空間を隔てて対向する一対の非磁性体製の保持体の一面に、複数の主極と複数の補極とを前記磁界発生空間に向けた夫々の主面を揃えて交互に並設し、前記主極により形成される磁界を前記補極の作用により強化するように構成された磁界発生装置において、前記主極は、並設方向の中央位置では前記主面に直交し、該中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する主極と磁化の向きを逆として並設してあり、前記補極は、前記主面と平行な磁化方向を有する磁石であり、前記主面に向けて磁化された前記主極に夫々の磁化方向を向けて配置してあることを特徴とする。 In the magnetic field generator according to the present invention, a plurality of main poles and a plurality of complementary poles are respectively directed to the magnetic field generation space on one surface of a pair of non-magnetic holding bodies facing each other with a magnetic field generation space therebetween. In the magnetic field generator configured to reinforce the magnetic field formed by the main poles by the action of the auxiliary poles, the main poles being at the center position in the side-by-side direction Is a concentrated orientation magnet having a magnetization direction that is perpendicular to the main surface and continuously reduces the tilt angle with respect to the main surface on both sides of the central position, and the adjacent main poles and magnetization directions are arranged in reverse. The auxiliary pole is a magnet having a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions directed to the main pole magnetized toward the main surface. To do.
 本発明においては、磁化方向が連続的に変化し、主面の中央に集中する集中配向磁石を主極として用い、この主極と主面に対して平行な磁化方向を有する補極とを非磁性体製の保持体の一面にハルバッハ配列して磁界発生装置を構成する。主極の磁化方向は、連続的に変化し、主極の内部には磁化方向の急変部が存在しない。従って、主極内部での減磁界の増加を抑え、熱減磁の影響による不可逆減磁の発生を抑制できるため、不可逆減磁を抑えるために主極に高保磁力の材質ではなく高残留磁束密度の材質を使用することができ、可及的に高い磁束密度を実現することが可能となる。非磁性体製の保持体としては、アルミニウム,CFRP(炭素繊維強化プラスチック)等の軽量材を用いることができ、磁界発生装置の軽量化を図ることができる。 In the present invention, a concentrated orienting magnet whose magnetization direction changes continuously and concentrates in the center of the main surface is used as a main pole, and this main pole and an auxiliary pole having a magnetization direction parallel to the main surface are not used. A magnetic field generator is configured by arranging Halbach on one surface of a magnetic holder. The magnetization direction of the main pole changes continuously, and there is no sudden change portion of the magnetization direction inside the main pole. Therefore, the increase in the demagnetizing field inside the main pole can be suppressed and the occurrence of irreversible demagnetization due to the effect of thermal demagnetization can be suppressed. Therefore, it is possible to realize as high a magnetic flux density as possible. As the non-magnetic holder, a lightweight material such as aluminum or CFRP (carbon fiber reinforced plastic) can be used, and the weight of the magnetic field generator can be reduced.
 更に本発明に係るリニアモータは、以上の如き磁界発生装置と、該磁界発生装置が発生する磁界中に配したコイルとを備え、該コイルと前記磁界発生装置とを、前記主極及び補極の並設方向に相対移動させることを特徴とする。 The linear motor according to the present invention further includes the magnetic field generator as described above and a coil disposed in the magnetic field generated by the magnetic field generator, and the coil and the magnetic field generator are connected to the main pole and the auxiliary pole. It is characterized by relative movement in the juxtaposed direction.
 本発明においては、上記した磁界発生装置の発生磁界中にコイルを配してリニアモータを構成する。磁界発生装置は、熱減磁の影響を受けずに高磁束密度の磁界を形成することができ、種々の環境下での高出力の動作を安定して実現することができる。 In the present invention, a linear motor is configured by arranging a coil in the magnetic field generated by the magnetic field generator. The magnetic field generator can form a magnetic field having a high magnetic flux density without being affected by thermal demagnetization, and can stably realize a high output operation in various environments.
 また本発明に係る磁界発生装置は、磁界発生空間を隔てて対向する一対のヨークの一面に複数の磁石を、前記磁界発生空間に向けた夫々の主面を揃えて並設してある磁界発生装置において、前記磁石は、並設方向の中央位置では前記主面に直交する磁化方向を有し、前記中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する磁化の向きを逆として並設してあることを特徴とする。 The magnetic field generating apparatus according to the present invention is a magnetic field generating device in which a plurality of magnets are arranged on one surface of a pair of yokes facing each other across a magnetic field generating space, and the respective main surfaces facing the magnetic field generating space are aligned. In the apparatus, the magnet has a magnetization direction orthogonal to the main surface at a central position in a parallel arrangement direction, and a concentrated orientation magnet having a magnetization direction that continuously reduces an inclination angle with respect to the main surface on both sides of the central position. It is characterized in that the adjacent magnetization directions are arranged in reverse.
 本発明においては、磁化方向が連続的に変化し、主面の中央に集中する集中配向磁石をヨークの一面に並設して磁界発生装置を構成する。磁石の内部には磁化方向の急変部が存在せず、減磁界の発生を緩和でき、熱減磁の影響による不可逆減磁の発生を抑制でき、また相隣する磁石間での磁路の短絡を低減できる。従って、不可逆減磁を抑えるために磁石に高保磁力の材質ではなく高残留磁束密度の材質を使用することができ、磁界発生空間に可及的に高い磁束密度を実現することが可能となる。 In the present invention, a magnetic field generating device is configured by arranging concentrated orientation magnets whose magnetization directions are continuously changed and concentrated in the center of the main surface on one surface of the yoke. There is no sudden change in the direction of magnetization inside the magnet, which can reduce the occurrence of demagnetizing fields, suppress the occurrence of irreversible demagnetization due to the effects of thermal demagnetization, and short circuit of magnetic paths between adjacent magnets Can be reduced. Therefore, in order to suppress irreversible demagnetization, a material having a high residual magnetic flux density can be used for the magnet instead of a material having a high coercive force, and a magnetic flux density as high as possible can be realized in the magnetic field generation space.
 また本発明に係る磁界発生装置は、前記複数の磁石が、並設方向の幅が略一定の矩形断面を有することを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets have a rectangular cross section with a substantially constant width in the juxtaposition direction.
 本発明においては、一定幅の矩形形状の磁石を並設して磁界発生装置を構成する。矩形形状の磁石は、成形が容易で高精度に構成することができる In the present invention, a magnetic field generator is configured by arranging parallel rectangular magnets having a certain width. Rectangular magnets are easy to mold and can be constructed with high precision
 また本発明に係る磁界発生装置は、前記複数の磁石が、相互に離間させてあることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets are separated from each other.
 本発明においては、相隣する磁石が離間しており、磁石の並設間隔を離間量の増減により適正に調整することができる。 In the present invention, adjacent magnets are separated from each other, and the parallel arrangement interval of the magnets can be appropriately adjusted by increasing or decreasing the separation amount.
 また本発明に係る磁界発生装置は、前記複数の磁石が、相互に隣接させてあることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets are adjacent to each other.
 本発明においては、相隣する磁石が隣接しており、磁界発生空間の磁束密度を高めることができる。 In the present invention, adjacent magnets are adjacent to each other, and the magnetic flux density in the magnetic field generation space can be increased.
 また本発明に係る磁界発生装置は、前記磁石が、並設方向の幅が前記ヨークの側で広く、前記主面の側で狭い断面形状を有していることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the magnet has a cross-sectional shape that is wide on the side of the yoke and narrow on the side of the main surface.
 本発明においては、並設方向の磁石の幅が狭い主面近傍で、相隣する磁石との間隔を広くすることができ、磁石間での磁路の短絡をより低減することができ、磁界発生空間に可及的に高い磁束密度を実現することが可能となる。 In the present invention, in the vicinity of the main surface where the width of the magnets in the juxtaposed direction is narrow, the interval between adjacent magnets can be increased, and the short circuit of the magnetic path between the magnets can be further reduced, and the magnetic field can be reduced. It is possible to realize as high a magnetic flux density as possible in the generation space.
 また本発明に係る磁界発生装置は、前記複数の磁石が、前記ヨークの側で相互に離間させてあることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets are separated from each other on the yoke side.
 本発明においては、相隣する磁石が離間しており、磁石の並設間隔を離間量の増減により適正に調整することができる。 In the present invention, adjacent magnets are separated from each other, and the parallel arrangement interval of the magnets can be appropriately adjusted by increasing or decreasing the separation amount.
 また本発明に係る磁界発生装置は、前記複数の磁石が、前記ヨークの側で相互に隣接させてあることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets are adjacent to each other on the yoke side.
 本発明においては、相隣する磁石が隣接しており、磁界発生空間の磁束密度を更に高めることができる。 In the present invention, adjacent magnets are adjacent to each other, and the magnetic flux density in the magnetic field generation space can be further increased.
 また本発明に係る磁界発生装置は、前記磁石の断面形状が等脚台形であることを特徴とする。 The magnetic field generator according to the present invention is characterized in that the sectional shape of the magnet is an isosceles trapezoid.
 本発明では、磁石の断面形状が等脚台形であり、磁化方向を中央に良好に集中させることができ、磁界発生空間に比較的均一な磁束密度波形を実現することができる。 In the present invention, the sectional shape of the magnet is an isosceles trapezoid, the magnetization direction can be concentrated well in the center, and a relatively uniform magnetic flux density waveform can be realized in the magnetic field generation space.
 また本発明に係る磁界発生装置は、前記複数の磁石が、並設方向両側の側面に形成された高保磁力層を有することを特徴とする。 The magnetic field generator according to the present invention is characterized in that the plurality of magnets have high coercive force layers formed on side surfaces on both sides in the side-by-side direction.
 磁石の角部、特にヨークと反対側の角部は、減磁界が大きく減磁しやすい部位である。本発明においては、製作する磁界発生装置に要求される熱減磁の規格が厳しい場合に各磁石の側面に高保磁力層を設けることで、当該部分の熱減磁の影響を軽減して不可逆減磁の発生を抑制できる。高保磁力層は、重希土類(Dy:ジスプロシウム、Tb:テルビウム等)を拡散させた拡散層として形成することができる。高保磁力層は、磁石の側面に限って設ければよく、高価な重希土類の使用による製品コストの上昇程度は小さい。 The corner of the magnet, especially the corner on the opposite side of the yoke, is a part where the demagnetizing field is large and is easily demagnetized. In the present invention, when the standard of thermal demagnetization required for the magnetic field generator to be manufactured is strict, a high coercive force layer is provided on the side surface of each magnet to reduce the influence of thermal demagnetization of the part and reduce irreversibly. Generation of magnetism can be suppressed. The high coercive force layer can be formed as a diffusion layer in which heavy rare earths (Dy: dysprosium, Tb: terbium, etc.) are diffused. The high coercive force layer may be provided only on the side surface of the magnet, and the increase in product cost due to the use of expensive heavy rare earth is small.
 また本発明に係る磁界発生装置は、磁界発生空間を隔てて対向する一対の非磁性体製の保持体の一面に複数の磁石を、前記磁界発生空間に向けた夫々の主面を揃えて並設してある磁界発生装置において、前記磁石は、並設方向の中央位置では前記主面に直交する磁化方向を有し、前記中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する磁化の向きを逆として並設してあることを特徴とする。 In the magnetic field generator according to the present invention, a plurality of magnets are arranged on one surface of a pair of non-magnetic holding bodies facing each other with a magnetic field generating space therebetween, and the respective main surfaces facing the magnetic field generating space are aligned. In the magnetic field generator provided, the magnet has a magnetization direction orthogonal to the main surface at a central position in a parallel arrangement direction, and continuously reduces an inclination angle with respect to the main surface on both sides of the central position. It is a concentrated orienting magnet having a direction, and is arranged in parallel with the directions of adjacent magnetizations reversed.
 本発明においては、磁化方向が連続的に変化し、主面の中央に集中する集中配向磁石を非磁性体製の保持体の一面に並設して磁界発生装置を構成する。磁石の内部には磁化方向の急変部が存在せず、減磁界の発生を緩和でき、熱減磁の影響による不可逆減磁の発生を抑制でき、また相隣する磁石間での磁路の短絡を低減できる。従って、不可逆減磁を抑えるために磁石に高保磁力の材質ではなく高残留磁束密度の材質を使用することができ、磁界発生空間に可及的に高い磁束密度を実現することが可能となる。非磁性体製の保持体としては、アルミニウム,CFRP(炭素繊維強化プラスチック)等の軽量材を用いることができ、磁界発生装置の軽量化を図ることができる。 In the present invention, the magnetic field generating device is configured by arranging the concentrated orientation magnets whose magnetization directions are continuously changed and concentrated in the center of the main surface on one surface of the non-magnetic holder. There is no sudden change in the direction of magnetization inside the magnet, which can reduce the occurrence of demagnetizing fields, suppress the occurrence of irreversible demagnetization due to the effects of thermal demagnetization, and short circuit of magnetic paths between adjacent magnets Can be reduced. Therefore, in order to suppress irreversible demagnetization, a material having a high residual magnetic flux density can be used for the magnet instead of a material having a high coercive force, and a magnetic flux density as high as possible can be realized in the magnetic field generation space. As the non-magnetic holder, a lightweight material such as aluminum or CFRP (carbon fiber reinforced plastic) can be used, and the weight of the magnetic field generator can be reduced.
 更に本発明に係るリニアモータは、以上の如き磁界発生装置と、該磁界発生装置が発生する磁界中に配したコイルとを備え、該コイルと前記磁界発生装置とを、前記複数の磁石の並設方向に相対移動させることを特徴とする。 The linear motor according to the present invention further includes the magnetic field generator as described above and a coil disposed in a magnetic field generated by the magnetic field generator, and the coil and the magnetic field generator are arranged in parallel with the plurality of magnets. It is characterized by relative movement in the installation direction.
 本発明においては、上記した磁界発生装置の発生磁界中にコイルを配してリニアモータを構成する。磁界発生装置は、熱減磁の影響を受けずに高磁束密度の磁界を形成することができ、種々の環境下での高出力の動作を安定して実現することができる。 In the present invention, a linear motor is configured by arranging a coil in the magnetic field generated by the magnetic field generator. The magnetic field generator can form a magnetic field having a high magnetic flux density without being affected by thermal demagnetization, and can stably realize a high output operation in various environments.
 本発明に係る磁界発生装置においては、磁化方向が連続的に変化する集中配向磁石を主極として用い、ヨーク又は非磁性体製の保持体の一面に補極と共に並設したから、主極と補極との相互作用により高磁束密度の磁界発生が可能であり、また主極の内部での減磁界の増加を抑え、熱減磁の影響による不可逆減磁の発生を抑制することが可能であるため主極に高残留磁束密度の材質を使用でき、更に磁束密度の経時的な低下を防止することができる。 In the magnetic field generator according to the present invention, a concentrated orientation magnet whose magnetization direction is continuously changed is used as a main pole, and is arranged in parallel with an auxiliary pole on one surface of a yoke or a non-magnetic holding body. It is possible to generate a magnetic field with a high magnetic flux density by interacting with the auxiliary pole, suppress the increase of the demagnetizing field inside the main pole, and suppress the occurrence of irreversible demagnetization due to the effect of thermal demagnetization. Therefore, a material having a high residual magnetic flux density can be used for the main pole, and further, the magnetic flux density can be prevented from decreasing with time.
 本発明に係る磁界発生装置においては、磁化方向が連続的に変化する集中配向磁石をヨーク又は非磁性体製の保持体の一面に並設したから、高磁束密度の磁界発生が可能であり、また磁石内部での減磁界の発生が緩和され、熱減磁の影響による不可逆減磁の発生を抑制することが可能であるため、高残留磁束密度の材質を使用でき、更に磁束密度の経時的な低下を防止することができる。 In the magnetic field generator according to the present invention, the concentrated orientation magnets whose magnetization directions continuously change are arranged side by side on the surface of the yoke or the nonmagnetic material holder, so that a magnetic field with a high magnetic flux density can be generated. In addition, the generation of demagnetizing magnetic field inside the magnet is mitigated, and it is possible to suppress the occurrence of irreversible demagnetization due to the effect of thermal demagnetization. Can be prevented.
実施の形態1に係る磁界発生装置の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to Embodiment 1. FIG. 実施の形態1に係る磁界発生装置の作用、効果の説明図である。It is explanatory drawing of the effect | action of a magnetic field generator which concerns on Embodiment 1, and an effect. 実施の形態1に係る磁界発生装置の作用、効果の説明図である。It is explanatory drawing of the effect | action of a magnetic field generator which concerns on Embodiment 1, and an effect. 実施の形態2に係る磁界発生装置の概略構成を示す断面図である。6 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to Embodiment 2. FIG. 実施の形態3に係る磁界発生装置の概略構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a schematic configuration of a magnetic field generation device according to a third embodiment. 実施の形態4に係る磁界発生装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the magnetic field generator which concerns on Embodiment 4. FIG. 実施の形態1に係る磁界発生装置を用いたリニアモータの一構成例を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration example of a linear motor using the magnetic field generation device according to the first embodiment. 実施の形態5に係る磁界発生装置の概略構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a schematic configuration of a magnetic field generation device according to a fifth embodiment. 実施の形態5に係る磁界発生装置の作用、効果の説明図である。It is explanatory drawing of the effect | action of a magnetic field generator which concerns on Embodiment 5, and an effect. 実施の形態5に係る磁界発生装置の作用、効果の説明図である。It is explanatory drawing of the effect | action of a magnetic field generator which concerns on Embodiment 5, and an effect. 実施の形態6に係る磁界発生装置の概略構成を示す断面図である。FIG. 9 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to a sixth embodiment. 実施の形態7に係る磁界発生装置の概略構成を示す断面図である。FIG. 10 is a cross-sectional view showing a schematic configuration of a magnetic field generator according to a seventh embodiment. 実施の形態8に係る磁界発生装置の概略構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a schematic configuration of a magnetic field generator according to an eighth embodiment. 実施の形態9に係る磁界発生装置の概略構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a schematic configuration of a magnetic field generator according to a ninth embodiment. 実施の形態5に係る磁界発生装置を用いたリニアモータの一構成例を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration example of a linear motor using a magnetic field generator according to a fifth embodiment.
 以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は、実施の形態1に係る磁界発生装置の概略構成を示す断面図である。この磁界発生装置は、磁界発生空間となすべき空隙を隔てて対向配置された一対のヨーク(継鉄)3,3と、両ヨーク3,3の夫々との対向面に並設された複数の主極1,1…及び補極2,2…とを備えている。主極1及び補極2の断面形状は、並設方向の幅が夫々略一定の矩形形状である。 Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a cross-sectional view illustrating a schematic configuration of the magnetic field generation apparatus according to the first embodiment. This magnetic field generator includes a plurality of yokes (yokes) 3, 3 arranged opposite to each other with a gap to be a magnetic field generation space, and a plurality of yokes 3, 3 arranged in parallel to each other. Main poles 1, 1... And supplementary poles 2, 2. The cross-sectional shapes of the main electrode 1 and the auxiliary electrode 2 are rectangular shapes having substantially constant widths in the parallel direction.
 主極1及び補極2は、希土類鉄ホウ素系磁石等の高い残留磁束密度Brを有する磁石である。この種の磁石は、ネオジム(Nd)等の希土類、鉄(Fe)及びホウ素(B)を所定の比率で含む合金粉末を磁場中で圧縮成形した後、不活性気体又は真空下で焼結することにより、前記磁場の方向を配向方向とする焼結体を構成し、この焼結体に外部磁場を加えて磁化することにより製造される。 The main pole 1 and the auxiliary pole 2 are magnets having a high residual magnetic flux density Br such as rare earth iron boron-based magnets. In this type of magnet, an alloy powder containing rare earth such as neodymium (Nd), iron (Fe), and boron (B) in a predetermined ratio is compression-molded in a magnetic field, and then sintered under an inert gas or vacuum. Thus, a sintered body having the orientation of the magnetic field as an orientation direction is formed, and an external magnetic field is applied to the sintered body to magnetize the sintered body.
 図1中の矢符は、主極1及び補極2の磁化方向を示している。図示の如く主極1は、磁界発生空間との対向面(主面)の中央位置では、該主面に対して直交する磁化方向を有する一方、中央位置の両側では、主面に対して傾斜し、この傾斜角度が端部に向けて連続的に減少する磁化方向を有している。 The arrows in FIG. 1 indicate the magnetization directions of the main pole 1 and the auxiliary pole 2. As shown in the figure, the main pole 1 has a magnetization direction orthogonal to the main surface at the center position of the surface (main surface) facing the magnetic field generation space, and is inclined with respect to the main surface on both sides of the center position. The inclination angle has a magnetization direction that continuously decreases toward the end.
 このような磁化方向を有する主極1は、前述した合金粉末の圧縮成形を、主面の中央から放射状に拡がる磁場中で実施し、その後の焼結工程を経て得られた焼結体を主面と直交する外部磁場中で磁化する手順で製造される。この種の磁石は、配向方向が主面の中央に集中することから、集中配向磁石と称される。 The main pole 1 having such a magnetization direction is a sintered body obtained by performing compression molding of the above-described alloy powder in a magnetic field that radiates from the center of the main surface, and undergoing a subsequent sintering step. Manufactured by a procedure of magnetizing in an external magnetic field orthogonal to the plane. This type of magnet is called a concentrated orientation magnet because the orientation direction is concentrated in the center of the main surface.
 外部磁場の方向は、主面の中央では配向方向と一致する一方、両側では配向方向に対して傾斜するが、傾斜角度が過度に大きくない場合、磁化方向は配向方向と一致するから、主極1は、図1中に示すように連続的に磁化方向が変化する磁石として構成される。主極1の磁化の向きは、磁化する際の外部磁場の向きに依存する。主極1は、逆向きの磁場中での磁化により、前記磁界発生空間に対向する主面の側をN極とした磁石と、主面の側をS極とした磁石との2種類で構成されている。このような主極1は、ヨーク3の長手方向に所定の間隔を隔て、異なる磁極が相隣するように、ヨーク3の長手方向に所定の間隔を隔てて並設してある。 The direction of the external magnetic field coincides with the orientation direction at the center of the main surface, while it tilts with respect to the orientation direction on both sides, but when the tilt angle is not excessively large, the magnetization direction matches the orientation direction. 1 is configured as a magnet whose magnetization direction continuously changes as shown in FIG. The direction of magnetization of the main pole 1 depends on the direction of the external magnetic field during magnetization. The main pole 1 is composed of two types of magnets, a magnet having an N pole on the side of the main surface facing the magnetic field generation space and a magnet having an S pole on the side of the main surface by magnetization in a reverse magnetic field. Has been. Such main poles 1 are arranged in parallel at a predetermined interval in the longitudinal direction of the yoke 3 so that different magnetic poles are adjacent to each other at a predetermined interval in the longitudinal direction of the yoke 3.
 一方補極2は、前記磁界発生空間に対向する主面に対して平行な配向方向を有して製造された焼結体を、配向方向と同方向の外部磁場を加えて磁化し、主面に対して平行な磁化方向を有する磁石として構成されている。このような補極2は、磁化の向きを逆とした2種類を、図1に示す如く、前述の如く並設された主極1,1間に、主面側がN極である主極1の側に夫々の磁化方向を向けて介在させてある。 On the other hand, the auxiliary pole 2 magnetizes a sintered body produced with an orientation direction parallel to the main surface facing the magnetic field generation space by applying an external magnetic field in the same direction as the orientation direction, It is comprised as a magnet which has a magnetization direction parallel to. As shown in FIG. 1, there are two types of complementary poles 2 in which the directions of magnetization are reversed. As shown in FIG. 1, the main pole 1 whose main surface side is an N pole between the main poles 1 and 1 arranged in parallel as described above. The magnets are interposed with their respective magnetization directions facing each other.
 磁界発生装置は、以上のように主極1、補極2を並設した一対のヨーク3,3を,異なる磁極を有する主極1,1が対向するように配置して構成されている。この磁界発生装置によれば、主極1,1の対向部間に形成される磁界が両側の補極2,2の作用により強化されて、図1中に白抜矢符にて示すように、磁界発生空間に高い磁束密度を有する磁界を発生することができる。 The magnetic field generator is configured by arranging the pair of yokes 3 and 3 having the main pole 1 and the auxiliary pole 2 arranged in parallel as described above so that the main poles 1 and 1 having different magnetic poles face each other. According to this magnetic field generator, the magnetic field formed between the opposing portions of the main poles 1 and 1 is strengthened by the action of the auxiliary poles 2 and 2 on both sides, as shown by white arrows in FIG. A magnetic field having a high magnetic flux density can be generated in the magnetic field generation space.
 主極1は、前述の如く磁化方向が設定された集中配向磁石として構成されており、主極1,1の対向部間に磁束を集中させることができ、磁界発生空間の磁束密度を更に高めることが可能となる。主極1の磁化方向は、主面の中央部から両側に向けて連続的に変化している。換言すれば、主極1は、主面に対する傾斜角度が僅かづつ異なる多数の磁石を、主面を揃えて並べた構成を有しており、磁化方向の急変部分が存在しない。従って、主極1の内部の減磁界が増加する虞れを緩和することができ、使用環境下での熱減磁の発生を軽減し、磁界発生空間における磁束密度の経時的な低下を防止することができる。 The main pole 1 is configured as a concentrated orientation magnet whose magnetization direction is set as described above, and can concentrate the magnetic flux between the opposed portions of the main poles 1 and 1, further increasing the magnetic flux density in the magnetic field generation space. It becomes possible. The magnetization direction of the main pole 1 continuously changes from the central part of the main surface toward both sides. In other words, the main pole 1 has a configuration in which a large number of magnets having slightly different inclination angles with respect to the main surface are arranged with the main surfaces aligned, and there is no sudden change portion in the magnetization direction. Therefore, the possibility that the demagnetizing field inside the main pole 1 increases can be mitigated, the occurrence of thermal demagnetization in the use environment can be reduced, and the magnetic flux density in the magnetic field generation space can be prevented from decreasing over time. be able to.
 図2,図3は、実施の形態1に係る磁界発生装置の作用、効果の説明図である。図2は特許文献1に記載されているハルバッハ配列を採用した従来の磁界発生装置であり、図3は実施の形態1の集中配向磁石を主極に用いたハルバッハ配列を採用した磁界発生装置であって、それぞれ対向するヨーク3、主極1及び補極2で構成される磁界発生装置の片側を示している。図中の矢符は、磁化の方向を示し、矢符の長さは、磁化方向での磁石長さを示している。 2 and 3 are explanatory diagrams of the operation and effect of the magnetic field generator according to Embodiment 1. FIG. FIG. 2 is a conventional magnetic field generator employing the Halbach array described in Patent Document 1, and FIG. 3 is a magnetic field generator employing the Halbach array using the concentrated orientation magnet of the first embodiment as the main pole. In addition, one side of the magnetic field generating device constituted by the yoke 3, the main pole 1 and the auxiliary pole 2 which are opposed to each other is shown. The arrow in the figure indicates the direction of magnetization, and the length of the arrow indicates the magnet length in the magnetization direction.
 両図中に実線の三角で示した領域は磁石の配列により減磁が起きやすい部位である。図2において減磁の起きやすい部位は,主極1については、ヨーク3との接合部側であって補極2の近傍部位(A部)であり、補極2については、ヨーク3との接合部とは反対側の部位(B部)である。 In both figures, the region indicated by the solid triangle is a portion where demagnetization is likely to occur due to the arrangement of the magnets. In FIG. 2, the part where the demagnetization is likely to occur is the joint part side of the main pole 1 and the vicinity of the auxiliary pole 2 (part A) with respect to the yoke 3, and the auxiliary pole 2 is connected to the yoke 3. It is a site | part (B part) on the opposite side to a junction part.
 これに対し図3においては、主極1として集中配向磁石が用いられており、減磁しやすい部位を含めた磁化方向の磁石長さが長くなり、破線の三角で示した領域A(図2のA部に対応する)においても減磁を抑えることができる。言い換えるとパーミアンス係数が大となるため減磁を抑えることができる。 In contrast, in FIG. 3, a concentrated orientation magnet is used as the main pole 1, and the magnet length in the magnetization direction including a portion that tends to be demagnetized becomes long, and a region A indicated by a broken triangle (FIG. 2). Demagnetization can also be suppressed in the case A). In other words, since the permeance coefficient becomes large, demagnetization can be suppressed.
 なお、図3に示す磁界発生装置においても、上記の通り、主極1の磁化方向は、主面に対して傾斜しており、補極2の磁化方向は、主面に対して平行であるから、主極1と補極2との境界部分(図3中のB部)には、磁化方向の急変部分が存在し減磁界が増加する虞れがある。この場合補極2については高い保磁力を有する磁石を使用することで減磁を抑えることができるが、同時に残留磁束密度が低下するため磁界発生空間での磁束密度が低下する虞がある。 Also in the magnetic field generator shown in FIG. 3, as described above, the magnetization direction of the main pole 1 is inclined with respect to the main surface, and the magnetization direction of the auxiliary pole 2 is parallel to the main surface. Therefore, there is a possibility that the demagnetizing field may increase due to a sudden change in the magnetization direction at the boundary portion (B portion in FIG. 3) between the main pole 1 and the auxiliary pole 2. In this case, the auxiliary pole 2 can be demagnetized by using a magnet having a high coercive force, but at the same time, since the residual magnetic flux density is lowered, the magnetic flux density in the magnetic field generation space may be lowered.
 補極2に高い残留磁束密度の材質を用い、高い磁束密度を維持しながら同時に減磁を抑える構成について説明する。図4は、実施の形態2に係る磁界発生装置の概略構成を示す断面図である。この磁界発生装置は、実施の形態1と同様の主極1及び補極2を備え、これらを一対のヨーク3,3の対向面に並設して構成されている。 A description will be given of a configuration in which a material having a high residual magnetic flux density is used for the auxiliary pole 2 to simultaneously suppress demagnetization while maintaining a high magnetic flux density. FIG. 4 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the second embodiment. This magnetic field generator includes a main pole 1 and an auxiliary pole 2 similar to those in the first embodiment, and these are arranged side by side on opposing surfaces of a pair of yokes 3 and 3.
 この磁界発生装置は、更に、主極1及び補極2の境界部分に、高保磁力層4が設けてある。高保磁力層4は、特許文献1に開示されているように、Dy,Tb等の重希土類を拡散させた拡散層として形成することができる。このように設けられる高保磁力層4は、主極1と補極2との境界部分の保磁力を高めて、熱減磁の発生を軽減する作用をなす。高保磁力層4は、主極1及び補極2のいずれか一方に設ければよいが、主極1及び補極2の両方に設けてもよい。 This magnetic field generator is further provided with a high coercive force layer 4 at the boundary between the main pole 1 and the auxiliary pole 2. As disclosed in Patent Document 1, the high coercive force layer 4 can be formed as a diffusion layer in which heavy rare earth such as Dy and Tb is diffused. The high coercive force layer 4 provided in this way increases the coercive force at the boundary between the main pole 1 and the auxiliary pole 2 and reduces the occurrence of thermal demagnetization. The high coercive force layer 4 may be provided on either the main pole 1 or the auxiliary pole 2, but may be provided on both the main pole 1 and the auxiliary pole 2.
 図5は、実施の形態3に係る磁界発生装置の概略構成を示す断面図であり、図2及び図3と同様、対向するヨーク3,主極1及び補極2で構成される磁界発生装置の片側を示している。 FIG. 5 is a cross-sectional view showing a schematic configuration of the magnetic field generation device according to the third embodiment, and similarly to FIGS. 2 and 3, the magnetic field generation device including the opposing yoke 3, main pole 1, and auxiliary pole 2. One side of is shown.
 この磁界発生装置の主極1、補極2は、斜辺の傾斜が等しい等脚台形の断面形状を有しており、主極1は、ヨーク3の側に下底を向け、補極2は、ヨーク3の側に上底を向けて交互に並べ、それぞれの斜辺を当接させた態様で配置してある。 The main pole 1 and the auxiliary pole 2 of this magnetic field generator have an isosceles trapezoidal cross-sectional shape with the same inclination of the hypotenuse, the main pole 1 faces the lower base toward the yoke 3, and the auxiliary pole 2 is They are arranged in such a manner that they are alternately arranged with their upper bases facing the yoke 3 and their hypotenuses are in contact with each other.
 この磁界発生装置においては、補極2の減磁の起きやすい部位(図2のB部に対応する部位)であるヨーク3との接合部と反対側の部位は、断面視での幅が相対的に大きくなっている、言い換えると磁化方向の磁石長さが長くなっており、パーミアンス係数が高くなるため減磁し難い。従って、主極1及び補極2の破線の三角で示す領域での減磁の発生を抑えることができる。 In this magnetic field generator, the portion opposite to the joint with the yoke 3, which is a portion where the depolarization of the auxiliary pole 2 is likely to occur (the portion corresponding to the portion B in FIG. 2) has a relative width in a sectional view. In other words, the length of the magnet in the magnetization direction is long and the permeance coefficient is high, so that it is difficult to demagnetize. Therefore, it is possible to suppress the occurrence of demagnetization in the region indicated by the broken triangles of the main pole 1 and the auxiliary pole 2.
 図6は実施の形態4に係る磁界発生装置の概略構成を示す断面図であり、図2,3,5と同様、対向するヨーク3,主極1及び補極2で構成される磁界発生装置の片側を示している。 FIG. 6 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the fourth embodiment. Similar to FIGS. 2, 3, and 5, the magnetic field generator configured by the opposing yoke 3, main pole 1, and auxiliary pole 2. One side of is shown.
 この実施の形態の磁界発生装置の主極1は、実施の形態3と同様、等脚台形の断面形状を有する一方、補極2は、実施の形態3とは異なり、主極1と傾斜及び長さが等しい斜辺を有する2等辺三角形の断面形状を有している。主極1と補極2とは、主極1の下底、補極2の頂点をヨーク3の側に向けて交互に並べ、それぞれの斜辺を合わせた態様で配置してある。 The main pole 1 of the magnetic field generator of this embodiment has an isosceles trapezoidal cross-sectional shape as in the third embodiment, whereas the auxiliary pole 2 is different from the third embodiment in that the main pole 1 is inclined and It has a cross-sectional shape of an isosceles triangle having oblique sides having the same length. The main pole 1 and the auxiliary pole 2 are arranged in such a manner that the lower base of the main pole 1 and the apex of the auxiliary pole 2 are alternately arranged toward the yoke 3 side, and the respective hypotenuses are aligned.
 実施の形態4の磁界発生装置においても、実施の形態3と同様、補極2の減磁の起きやすい部位(図2のB部に対応する部位)であるヨーク3との接合部の反対側は、断面視での幅が相対的に大きくなっている、言い換えると磁化方向の磁石長さが長くなっており、パーミアンス係数が大きく減磁し難い。従って、主極1及び補極2の破線の三角で示す領域での減磁の発生を抑えることができる。 Also in the magnetic field generator of the fourth embodiment, as in the third embodiment, the side opposite to the joint portion with the yoke 3 which is a portion where the depolarization of the auxiliary pole 2 is likely to occur (a portion corresponding to the portion B in FIG. 2). Has a relatively large width in a sectional view, in other words, the magnet length in the magnetization direction is long, and the permeance coefficient is large and it is difficult to demagnetize. Therefore, it is possible to suppress the occurrence of demagnetization in the region indicated by the broken triangles of the main pole 1 and the auxiliary pole 2.
 実施の形態3及び実施の形態4に示すように、ヨーク3に接する側の幅に対して、ヨーク3とは反対側の幅が大きい補極2を用いることで、ヨーク3と反対側の部位のパーミアンス係数を高くして補極2における減磁の発生を抑えることができる。 As shown in the third and fourth embodiments, by using the auxiliary pole 2 having a larger width on the side opposite to the yoke 3 than the width on the side in contact with the yoke 3, a portion on the side opposite to the yoke 3 is used. Therefore, the occurrence of demagnetization in the auxiliary pole 2 can be suppressed.
 実施の形態3及び実施の形態4においては補極2の材質として高い保磁力を有する材質ではなく高い残留磁束密度の材質を使用することができるため、高い磁束密度を有する磁界発生装置を実現できる。なお、実施の形態3,4に示す形状の補極2を使用した場合でも若干の減磁がある場合には、残留磁束密度を若干低下させ保磁力を若干増加させた材質の補極2を使用することで、磁界発生空間の磁束密度の低下を抑えた上で減磁を抑えた磁界発生装置を実現できる。 In the third embodiment and the fourth embodiment, a material having a high magnetic flux density can be used instead of a material having a high coercive force as a material of the auxiliary pole 2, so that a magnetic field generator having a high magnetic flux density can be realized. . Even when the supplementary pole 2 having the shape shown in the third and fourth embodiments is used, if there is a slight demagnetization, the supplementary pole 2 made of a material having a slightly reduced residual magnetic flux density and a slightly increased coercive force is used. By using it, it is possible to realize a magnetic field generating apparatus that suppresses demagnetization while suppressing a decrease in magnetic flux density in the magnetic field generating space.
 また実施の形態2に示したように主極1と補極2の境界部分にDy、Tb等の重希土類を拡散させた高保磁力層4を形成する必要性も低下し、工程の簡略化をはかることができる。ただし磁石特性における保磁力と残留磁束密度のバランスにおいて重希土類の拡散により高保磁力層4を形成した方がよい場合には、実施の形態2と同様に高保磁力層4を形成してもよい。 In addition, as shown in the second embodiment, the necessity of forming the high coercive force layer 4 in which heavy rare earth such as Dy and Tb is diffused at the boundary portion between the main pole 1 and the auxiliary pole 2 is reduced, and the process can be simplified. Can measure. However, when it is better to form the high coercive force layer 4 by diffusion of heavy rare earths in the balance between the coercive force and the residual magnetic flux density in the magnet characteristics, the high coercive force layer 4 may be formed as in the second embodiment.
 なお、以上の実施の形態1~4の夫々において、アルミニウム,CFRP(炭素繊維強化プラスチック)等の非磁性体製の保持体をヨーク3に代えて使用し、該保持体の一面に主極1及び補極2を並設保持させてもよい。非磁性体製の保持体は、ヨーク3に比較して軽量であり、磁界発生装置の軽量化を図ることができる。 In each of the above first to fourth embodiments, a holder made of a non-magnetic material such as aluminum or CFRP (carbon fiber reinforced plastic) is used in place of the yoke 3, and the main electrode 1 is provided on one surface of the holder. The auxiliary pole 2 may be held in parallel. The nonmagnetic holding body is lighter than the yoke 3 and can reduce the weight of the magnetic field generator.
 図7は、実施の形態1に係る磁界発生装置を用いたリニアモータの一構成例を示す断面図である。図示のリニアモータは、固定配置された主極1及び補極2の対向部間に、コイル5を備えるコイルモジュール6を配して構成されている。コイルモジュール6は、主極1及び補極2の並設方向に延びるガイドレール7に支持され、該ガイドレール7の延設方向に沿って移動可能な可動子を構成している。 FIG. 7 is a cross-sectional view showing a configuration example of a linear motor using the magnetic field generator according to the first embodiment. The illustrated linear motor is configured by arranging a coil module 6 including a coil 5 between opposed portions of a main pole 1 and an auxiliary pole 2 that are fixedly arranged. The coil module 6 is supported by a guide rail 7 that extends in the direction in which the main pole 1 and the auxiliary pole 2 are juxtaposed, and constitutes a mover that can move along the direction in which the guide rail 7 extends.
 このように構成されたリニアモータにおいては、コイルモジュール6に設けたコイル5の通電制御により、コイルモジュール6に主極1及び補極2の並設方向に沿った移動力が加わり、可動子としてのコイルモジュール6は、ガイドレール7による案内下で直線移動する。 In the linear motor configured as described above, by the energization control of the coil 5 provided in the coil module 6, a moving force along the parallel arrangement direction of the main pole 1 and the auxiliary pole 2 is applied to the coil module 6. The coil module 6 moves linearly under the guidance of the guide rail 7.
 コイルモジュール6が配される磁界発生空間には、主極1及び補極2の前述した作用により高磁束密度の磁界が生じており、またこの磁界は、使用環境下での熱減磁を受け難く、磁束密度の経時的な低下が抑制されるから、長期に亘って安定した高出力での動作が可能なリニアモータを提供することができる。 In the magnetic field generating space in which the coil module 6 is disposed, a magnetic field having a high magnetic flux density is generated by the above-described action of the main pole 1 and the auxiliary pole 2, and this magnetic field is subjected to thermal demagnetization in the use environment. It is difficult to suppress a decrease in magnetic flux density over time, and therefore a linear motor capable of stable and high-power operation over a long period can be provided.
 なお、図7に示すリニアモータにおいても、磁界発生装置の主極1と補極2との間に高保磁力層4を設けることができ、これにより、熱減磁を更に低減することが可能となる。なお図7には、コイルモジュール6を可動子とするリニアモータを示したが、コイルモジュール6を固定子とし、磁界発生装置(主極1、補極2及びヨーク3)を可動子とするリニアモータを同様に構成し得ることは言うまでもない。また、実施の形態2~4の磁界発生装置を用いても同様のリニアモータを構成することができる。 In the linear motor shown in FIG. 7 as well, the high coercive force layer 4 can be provided between the main pole 1 and the auxiliary pole 2 of the magnetic field generator, and this can further reduce thermal demagnetization. Become. FIG. 7 shows a linear motor having the coil module 6 as a mover. However, a linear motor having the coil module 6 as a stator and a magnetic field generator (main pole 1, auxiliary pole 2 and yoke 3) as a mover. It goes without saying that the motor can be similarly configured. A similar linear motor can be configured using the magnetic field generators of the second to fourth embodiments.
 図8は、実施の形態5に係る磁界発生装置の概略構成を示す断面図である。この磁界発生装置は、磁界発生空間を隔てて対向配置された一対のヨーク(継鉄)20,20と、両ヨーク20,20の夫々との対向面に並設された複数の磁石10,10…を備えている。  FIG. 8 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the fifth embodiment. This magnetic field generator includes a plurality of magnets 10, 10 arranged in parallel on opposing surfaces of a pair of yokes 20, 20 that are opposed to each other across a magnetic field generation space, and both yokes 20, 20. It has ... *
 磁石10は、希土類鉄ホウ素系磁石等の高い残留磁束密度Brを有する磁石である。この種の磁石10は、ネオジム(Nd)等の希土類、鉄(Fe)及びホウ素(B)を所定の比率で含む合金粉末を磁場中で圧縮成形した後、不活性気体中又は真空下で焼結して前記磁場の方向を配向方向とする焼結体を構成し、この焼結体に外部磁場を加えて磁化することにより製造される。 The magnet 10 is a magnet having a high residual magnetic flux density Br such as a rare earth iron boron-based magnet. This type of magnet 10 is formed by compressing an alloy powder containing rare earth such as neodymium (Nd), iron (Fe), and boron (B) in a predetermined ratio in a magnetic field, and then firing the powder in an inert gas or under vacuum. This is produced by forming a sintered body having the direction of the magnetic field as the orientation direction and magnetizing the sintered body by applying an external magnetic field.
 図8中の矢符は、磁石10の磁化方向を示している。磁石10は、図示の如く、磁界発生空間との対向面(主面)の中央位置では、該主面に対して直交する磁化方向を有する一方、中央位置の両側では、主面に対して傾斜し、この傾斜角度が端部に向けて連続的に減少する磁化方向を有している。 8 indicates the magnetization direction of the magnet 10. As shown in the figure, the magnet 10 has a magnetization direction orthogonal to the main surface at the center position of the surface (main surface) facing the magnetic field generation space, and is inclined with respect to the main surface on both sides of the center position. The inclination angle has a magnetization direction that continuously decreases toward the end.
 このような磁化方向を有する磁石10は、前述した合金粉末の圧縮成形を、主面の中央から放射状に拡がる磁場中で実施し、その後の焼結工程を経て得られた焼結体を主面と直交する外部磁場中で磁化する手順で製造される。この種の磁石10は、配向方向が主面の中央に集中することから、集中配向磁石と称される。 The magnet 10 having such a magnetization direction is obtained by performing compression molding of the above-described alloy powder in a magnetic field extending radially from the center of the main surface, and using the sintered body obtained through the subsequent sintering step as the main surface. It is manufactured by the procedure of magnetizing in an external magnetic field orthogonal to. This type of magnet 10 is referred to as a concentrated orientation magnet because the orientation direction is concentrated at the center of the main surface.
 外部磁場の方向は、主面の中央では配向方向と一致する一方、両側では配向方向に対して傾斜するが、傾斜角度が過度に大きくない場合、磁化方向は配向方向と一致するから、磁石10は、図8中に矢印で示すように連続的に磁化方向が変化する磁石として構成される。磁石10の磁化の向きは、外部磁場の向きに依存する。磁石10は、逆向きの磁場中での磁化により、前記磁界発生空間に対向する主面の側をN極としたものと、主面の側をS極としたものとの2種類で構成されている。このような磁石10は、相互間に所定の間隔を隔て、異なる磁極が相隣するようにヨーク20の長手方向に並設してある。 The direction of the external magnetic field coincides with the orientation direction at the center of the main surface, while it tilts with respect to the orientation direction on both sides. However, when the tilt angle is not excessively large, the magnetization direction coincides with the orientation direction. Is configured as a magnet whose magnetization direction continuously changes as indicated by arrows in FIG. The direction of magnetization of the magnet 10 depends on the direction of the external magnetic field. The magnet 10 is composed of two types of magnets in which the main surface facing the magnetic field generation space is an N pole and the main surface is an S pole by magnetization in a reverse magnetic field. ing. Such magnets 10 are juxtaposed in the longitudinal direction of the yoke 20 so that different magnetic poles are adjacent to each other at a predetermined interval.
 磁界発生装置は、以上のように磁石10,10…を並設した一対のヨーク20,20を,異なる磁極を有する磁石10,10が対向するように配置して構成されている。この磁界発生装置によれば、磁石10,10の対向部間の磁界発生空間に、図8中に白抜矢符により示す如く、高い磁束密度を有する磁界を発生することができる。 The magnetic field generator is configured by arranging the pair of yokes 20, 20 having the magnets 10, 10,... Arranged in parallel as described above so that the magnets 10, 10 having different magnetic poles face each other. According to this magnetic field generator, a magnetic field having a high magnetic flux density can be generated in the magnetic field generating space between the opposing portions of the magnets 10 and 10, as indicated by white arrows in FIG.
 磁石10は、前述の如く磁化方向が設定された集中配向磁石として構成されており、磁石10,10の対向部間に磁束を集中させることができ、磁界発生空間の磁束密度を高めることが可能となる。磁石10の磁化方向は、主面の中央部から両側に向けて連続的に変化している。換言すれば、磁石10は、主面に対する磁化方向の傾斜角度が僅かづつ異なる多数の磁石を、主面を揃えて並べた構成を有しており、磁石10の内部には、磁化方向の急変部分が存在しない。従って、磁石10の内部に大きい減磁界が発生する虞れを緩和することができ、使用環境下での熱減磁の影響を軽減し、磁界発生空間における磁束密度の経時的な低下を防止することができる。また相隣する磁石10,10が並設方向に離間しており、磁石10,10…の並設間隔を離間量の増減により適正に調整することができる。 The magnet 10 is configured as a concentrated orientation magnet with the magnetization direction set as described above, and the magnetic flux can be concentrated between the opposed portions of the magnets 10 and 10, and the magnetic flux density in the magnetic field generation space can be increased. It becomes. The magnetization direction of the magnet 10 continuously changes from the central portion of the main surface toward both sides. In other words, the magnet 10 has a configuration in which a large number of magnets with slightly different inclination angles in the magnetization direction with respect to the main surface are arranged with the main surface aligned, and the magnet 10 has a sudden change in the magnetization direction. There is no part. Therefore, the possibility that a large demagnetizing field is generated inside the magnet 10 can be mitigated, the influence of thermal demagnetization in the use environment can be reduced, and the magnetic flux density in the magnetic field generating space can be prevented from decreasing over time. be able to. Moreover, the magnets 10 and 10 which adjoin each other are spaced apart in the parallel arrangement direction, and the parallel arrangement space | interval of the magnets 10, 10 ... can be adjusted appropriately by increase / decrease in the separation amount.
 図9,図10は、実施の形態5に係る磁界発生装置の作用、効果の説明図である。図9は磁界発生空間に対向する主面に対して直交する磁化方向を有する磁石10,10…を用いた従来の磁界発生装置であり、図10は実施の形態5の磁界発生装置であって、それぞれ対向するヨーク20及び磁石10で構成される磁界発生装置の片側を示している。 FIG. 9 and FIG. 10 are explanatory diagrams of the operation and effect of the magnetic field generator according to the fifth embodiment. FIG. 9 shows a conventional magnetic field generator using magnets 10, 10,... Having a magnetization direction orthogonal to the main surface facing the magnetic field generating space. FIG. 10 shows the magnetic field generator of the fifth embodiment. 1 shows one side of a magnetic field generating device constituted by a yoke 20 and a magnet 10 facing each other.
 図9、10中の矢符は、磁石10内の磁化方向を示し、矢符の長さは磁化方向での磁石長さを示している。図9、10中にCで示す部位、即ち、並設方向の両側部位での磁化方向の磁石長さは、図10において、図9におけるよりも実質的に長くなっている。従って、図10に示す磁界発生装置においては、パーミアンス係数が大きく、減磁しにくい。 9 and 10 indicate the magnetization direction in the magnet 10, and the length of the arrow indicates the magnet length in the magnetization direction. 9 and 10, that is, the magnet length in the magnetization direction at both sides in the juxtaposed direction is substantially longer in FIG. 10 than in FIG. 9. Therefore, the magnetic field generator shown in FIG. 10 has a large permeance coefficient and is difficult to demagnetize.
 また図9、図10中の白抜矢符は、相隣する磁石10,10間の磁路の短絡の様子を示している。図10に示す磁界発生装置では,相隣する磁石10,10の端部における磁化の方向が互いに離反する方向であり、これらの磁石10,10間での磁路の短絡は、図9に示す磁界発生装置におけるよりも長い経路間で生じることとなる。従って、図10に示す磁界発生装置においては、相隣する磁石10,10間での磁路の短絡を低減し、各磁石10から磁界発生空間にでる磁束量を大きくし、高磁束密度の磁界を発生することが可能となる。 Also, white arrows in FIGS. 9 and 10 indicate a state of short circuit of the magnetic path between the adjacent magnets 10 and 10. In the magnetic field generator shown in FIG. 10, the directions of magnetization at the ends of adjacent magnets 10 and 10 are separated from each other, and a short circuit of the magnetic path between these magnets 10 and 10 is shown in FIG. It will occur between longer paths than in the magnetic field generator. Therefore, in the magnetic field generator shown in FIG. 10, the short circuit of the magnetic path between the adjacent magnets 10 and 10 is reduced, the amount of magnetic flux generated from each magnet 10 to the magnetic field generating space is increased, and the magnetic field having a high magnetic flux density. Can be generated.
 図11は、実施の形態6に係る磁界発生装置の概略構成を示す断面図である。この磁界発生装置は、実施の形態5と同様、集中配向磁石として構成された複数の磁石10,10…を、一対のヨーク20,20の対向面に並設して構成されているが、各磁石10は、夫々の両側の磁石10,10と隣接させて配置されている。この磁界発生装置においては、ヨーク20の一面に並ぶ磁石10,10…が相互に隣接させてあることから、磁界発生空間における磁束量がより増大し、高磁束密度の磁界を発生することが可能となる。 FIG. 11 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the sixth embodiment. This magnetic field generator is configured by arranging a plurality of magnets 10, 10... Configured as concentrated orientation magnets in parallel on the opposing surfaces of the pair of yokes 20, 20 as in the fifth embodiment. The magnet 10 is disposed adjacent to the magnets 10 on both sides. In this magnetic field generator, since the magnets 10, 10,... Arranged on one surface of the yoke 20 are adjacent to each other, the amount of magnetic flux in the magnetic field generating space is further increased, and a magnetic field having a high magnetic flux density can be generated. It becomes.
 一方、隣接配置された磁石10,10間での磁路の短絡は、実施の形態5と比較した場合には生じ易いが、図9に示す従来の磁界発生装置に比較した場合には生じ難く、磁路短絡の低減効果も期待し得る。 On the other hand, a short circuit of the magnetic path between adjacent magnets 10 and 10 is likely to occur when compared with the fifth embodiment, but is difficult to occur when compared with the conventional magnetic field generator shown in FIG. Moreover, the effect of reducing the magnetic circuit short circuit can be expected.
 図12は、実施の形態7に係る磁界発生装置の概略構成を示す断面図である。この磁界発生装置は、実施の形態5と同様、一対のヨーク20,20の対向面に複数の磁石10,10…を、相互間に所定の間隔を隔てて並設して構成されている。この磁界発生装置においては、更に、各磁石10の並設方向両側の側面に高保磁力層30が形成されている。 FIG. 12 is a sectional view showing a schematic configuration of the magnetic field generator according to the seventh embodiment. As in the fifth embodiment, this magnetic field generator is configured by arranging a plurality of magnets 10, 10,... On the opposing surfaces of a pair of yokes 20, 20, with a predetermined distance therebetween. In this magnetic field generator, the high coercive force layer 30 is further formed on the side surfaces on both sides of the magnets 10 in the juxtaposed direction.
 高保磁力層30は、Dy,Tb等の重希土類を、表面から適宜の深さに亘って拡散させた拡散層として形成することができる。このように設けられる高保磁力層30は、各磁石10の側面部分の保磁力を高めて、熱減磁の影響を軽減する作用をなす。 The high coercive force layer 30 can be formed as a diffusion layer obtained by diffusing heavy rare earths such as Dy and Tb over a suitable depth from the surface. The high coercive force layer 30 provided in this way increases the coercive force of the side surface portion of each magnet 10 and reduces the influence of thermal demagnetization.
 なお高保磁力層30は、並設方向両側の側面に加えて、特に減磁界の影響が大きい各磁石10のヨーク20と反対側の角部周辺に形成してもよい。更には、各磁石10の側面全面ではなく、ヨーク20と反対側の角部に近い側面のみ高保磁力層30を形成するか、又は前記角部に近い側面及び主面に高保磁力層30を形成してもよい。 The high coercive force layer 30 may be formed around the corners on the opposite side to the yoke 20 of each magnet 10 that is particularly affected by the demagnetizing field, in addition to the side surfaces on both sides of the juxtaposed direction. Further, the high coercivity layer 30 is formed only on the side surface near the corner opposite to the yoke 20 instead of the entire side surface of each magnet 10, or the high coercivity layer 30 is formed on the side surface and main surface near the corner. May be.
 図13は、実施の形態8に係る磁界発生装置の概略構成を示す断面図であり、図9~11と同様、対向するヨーク20及び複数の磁石10,10…で構成される磁界発生装置の片側を示している。この磁界発生装置の磁石10は、斜辺の傾斜が等しい等脚台形の断面形状を有しており、各磁石10は、ヨーク20の側に下底を向け、磁界発生空間の側に上底を向けて配置してある。また磁石10,10…は、実施の形態5と同様、幅広となるヨーク20の側で相互間に所定の間隔を隔てて並べてある。 FIG. 13 is a cross-sectional view showing a schematic configuration of the magnetic field generation apparatus according to the eighth embodiment. Like FIG. 9 to 11, the magnetic field generation apparatus including the opposing yoke 20 and the plurality of magnets 10, 10,. One side is shown. The magnet 10 of this magnetic field generator has an isosceles trapezoidal cross-sectional shape with equal inclination of the hypotenuse, and each magnet 10 has a lower base facing the yoke 20 and an upper base facing the magnetic field generating space. It is arranged toward. Further, the magnets 10, 10... Are arranged at a predetermined interval between them on the side of the yoke 20 that is wide, as in the fifth embodiment.
 この磁界発生装置においては、各磁石10の並設方向の幅が、磁界発生空間に対向する主面の側で狭く、ヨーク20の側で広い。これにより、磁石10,10間の間隔は、ヨーク20の側でYであるのに対し、磁界発生空間への対向側ではX(>Y)となる。従って、相隣する磁石10,10間の磁路の短絡は、図中に白抜矢符にて示す如く、図10に示す実施の形態5よりも長い経路間で生じることとなり、磁路の短絡を一層低減でき、高磁束密度の磁界を発生することが可能となる。 In this magnetic field generator, the widths of the magnets 10 in the juxtaposition direction are narrow on the main surface side facing the magnetic field generating space and wide on the yoke 20 side. Thereby, the interval between the magnets 10 and 10 is Y on the yoke 20 side, whereas it is X (> Y) on the side facing the magnetic field generation space. Therefore, a short circuit of the magnetic path between the adjacent magnets 10 and 10 occurs between paths longer than the fifth embodiment shown in FIG. 10 as indicated by white arrows in the figure. Short circuit can be further reduced, and a magnetic field having a high magnetic flux density can be generated.
 以上の効果は、各磁石10が主面の側で狭幅でヨーク20の側で広幅であることで実現されるから、各磁石10の断面形状は、図13に示す等脚台形に限らず、不等脚台形であってもよく、更には、斜辺が凹又は凸となった台形状であってもよい。なお、各磁石10の断面形状を図13に示す等脚台形とした場合、磁石10内の磁化方向を中央に良好に集中させることができ、磁界発生空間に均一な磁束密度波形を実現することができる。 Since the above effects are realized by the fact that each magnet 10 is narrow on the main surface side and wide on the yoke 20 side, the sectional shape of each magnet 10 is not limited to the isosceles trapezoidal shape shown in FIG. The trapezoid may be an unequal leg trapezoid, or may be a trapezoid whose hypotenuse is concave or convex. When the cross-sectional shape of each magnet 10 is an isosceles trapezoid as shown in FIG. 13, the magnetization direction in the magnet 10 can be well concentrated in the center, and a uniform magnetic flux density waveform can be realized in the magnetic field generation space. Can do.
 図14は、実施の形態9に係る磁界発生装置の概略構成を示す断面図であり、図9~11、図13と同様、対向するヨーク20及び複数の磁石10,10…で構成される磁界発生装置の片側を示している。この磁界発生装置は、実施の形態8と同様の等脚台形の磁石10,10…が使用されているが、これらは、幅広となったヨーク20の側で相互に隣接するように並設されている。 FIG. 14 is a cross-sectional view showing a schematic configuration of the magnetic field generator according to the ninth embodiment. Similarly to FIGS. 9 to 11 and FIG. 13, the magnetic field constituted by the opposing yoke 20 and the plurality of magnets 10, 10,. One side of the generator is shown. This magnetic field generator uses isosceles trapezoidal magnets 10, 10... Similar to those in the eighth embodiment, but these are arranged side by side so as to be adjacent to each other on the side of the yoke 20 which has become wide. ing.
 この磁界発生装置においては、実施の形態8と同様の作用効果が得られ、更に、ヨーク20の一面に並ぶ磁石10,10…が隣接しており、磁界発生空間の磁束密度を更に高めることが可能となる。 In this magnetic field generator, the same effect as in the eighth embodiment can be obtained, and the magnets 10, 10,... Arranged on one surface of the yoke 20 are adjacent to each other, and the magnetic flux density in the magnetic field generating space can be further increased. It becomes possible.
 なお、実施の形態8、9においても、実施の形態7と同様に、各磁石10の並設方向両側の側面に高保磁力層30を設けることができる。 In the eighth and ninth embodiments, similarly to the seventh embodiment, the high coercive force layers 30 can be provided on the side surfaces on both sides of the magnets 10 in the parallel arrangement direction.
 なお、以上の実施の形態5~9の夫々において、アルミニウム,CFRP(炭素繊維強化プラスチック)等の非磁性体製の保持体をヨーク20に代えて使用し、該保持体の一面に磁石10を並設保持させてもよい。非磁性体製の保持体は、ヨーク20に比較して軽量であり、磁界発生装置の軽量化を図ることができる。 In each of the above fifth to ninth embodiments, a holder made of a non-magnetic material such as aluminum or CFRP (carbon fiber reinforced plastic) is used in place of the yoke 20, and the magnet 10 is mounted on one surface of the holder. It may be held side by side. The nonmagnetic holding body is lighter than the yoke 20 and can reduce the weight of the magnetic field generator.
 図15は、実施の形態5に係る磁界発生装置を用いたリニアモータの一構成例を示す断面図である。図示のリニアモータは、磁石10,10…の対向部間に、コイル40を備えるコイルモジュール50を配して構成されている。コイルモジュール50は、磁石10,10…の並設方向に延びるガイドレール60に支持され、該ガイドレール60の延設方向に沿って移動可能な可動子を構成している。 FIG. 15 is a cross-sectional view showing a configuration example of a linear motor using the magnetic field generation apparatus according to the fifth embodiment. The illustrated linear motor is configured by arranging a coil module 50 including a coil 40 between opposed portions of magnets 10, 10. The coil module 50 is supported by a guide rail 60 extending in the direction in which the magnets 10, 10... Are arranged in parallel, and constitutes a mover that can move along the extending direction of the guide rail 60.
 このように構成されたリニアモータにおいては、コイルモジュール50に設けたコイル40の通電制御により、コイルモジュール50に磁石10,10…の並設方向に沿った移動力が加わり、可動子としてのコイルモジュール50は、ガイドレール60による案内下で直線移動せしめられる。 In the linear motor configured as described above, by the energization control of the coil 40 provided in the coil module 50, a moving force along the parallel arrangement direction of the magnets 10, 10,. The module 50 is linearly moved under the guidance of the guide rail 60.
 コイルモジュール50が配される磁界発生空間には、前述した作用により高磁束密度の磁界が生じており、またこの磁石は、使用環境下での熱減磁を受け難く、磁束密度の経時的な低下が抑制されるから、長期に亘って安定した高出力での動作が可能なリニアモータを提供することができる。 In the magnetic field generating space in which the coil module 50 is arranged, a magnetic field having a high magnetic flux density is generated by the above-described action. Further, this magnet is not easily subjected to thermal demagnetization in the use environment, and the magnetic flux density is changed over time. Since the decrease is suppressed, it is possible to provide a linear motor capable of operating at a stable high output over a long period of time.
 なお、図15に示すリニアモータは、実施の形態6~9に係る磁界発生装置を用いて同様に構成することができる。また図15には、コイルモジュール50を可動子とするリニアモータを示したが、コイルモジュール50を固定子とし、磁界発生装置(磁石10及びヨーク20)を可動子とするリニアモータを同様に構成し得ることは言うまでもない。 The linear motor shown in FIG. 15 can be similarly configured using the magnetic field generator according to Embodiments 6 to 9. 15 shows a linear motor having the coil module 50 as a mover, the linear motor having the coil module 50 as a stator and the magnetic field generator (magnet 10 and yoke 20) as a mover is similarly configured. It goes without saying that it can be done.
 なお、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等な意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 主極
 2 補極
 3 ヨーク
 4 高保磁力層
 5 コイル
 10 磁石
 20 ヨーク
 30 高保磁力層
 40 コイル
DESCRIPTION OF SYMBOLS 1 Main pole 2 Supplementary pole 3 Yoke 4 High coercive force layer 5 Coil 10 Magnet 20 Yoke 30 High coercive force layer 40 Coil

Claims (19)

  1.  磁界発生空間を隔てて対向する一対のヨークの一面に、複数の主極と複数の補極とを前記磁界発生空間に向けた夫々の主面を揃えて交互に並設し、前記主極により形成される磁界を前記補極の作用により強化するように構成された磁界発生装置において、
     前記主極は、並設方向の中央位置では前記主面に直交し、該中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する主極と磁化の向きを逆として並設してあり、
     前記補極は、前記主面と平行な磁化方向を有する磁石であり、前記主面に向けて磁化された前記主極に夫々の磁化方向を向けて配置してあることを特徴とする磁界発生装置。
    A plurality of main poles and a plurality of complementary poles are alternately arranged in parallel on one surface of a pair of yokes facing each other across a magnetic field generation space, with the main surfaces facing the magnetic field generation space being arranged in parallel. In the magnetic field generator configured to enhance the formed magnetic field by the action of the complementary electrode,
    The main pole is a concentrated orientation magnet having a magnetization direction that is perpendicular to the main surface at the center position in the parallel direction and has a magnetization direction that continuously reduces the tilt angle with respect to the main surface on both sides of the center position. The pole and the direction of magnetization are arranged in reverse,
    The auxiliary pole is a magnet having a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions oriented toward the main pole magnetized toward the main surface. apparatus.
  2.  前記主極及び補極の断面形状は、並設方向の幅が略一定の矩形形状であることを特徴とする請求項1に記載の磁界発生装置。 The magnetic field generator according to claim 1, wherein the cross-sectional shape of the main pole and the auxiliary pole is a rectangular shape having a substantially constant width in the juxtaposed direction.
  3.  前記補極の並設方向の幅は、前記ヨークの側に対して前記ヨークの反対側が長くしてあり、前記主極の並設方向の幅は、前記ヨークの反対側に対して前記ヨークの側が長くしてあることを特徴とする請求項1に記載の磁界発生装置。 The width of the auxiliary poles arranged side by side is longer on the opposite side of the yoke than the side of the yoke, and the width of the main poles arranged side by side on the opposite side of the yoke is 2. The magnetic field generator according to claim 1, wherein the side is elongated.
  4.  前記主極及び補極の断面形状は等脚台形であることを特徴とする請求項3に記載の磁界発生装置。 The magnetic field generator according to claim 3, wherein the cross-sectional shape of the main pole and the auxiliary pole is an isosceles trapezoid.
  5.  前記主極の断面形状は等脚台形であり、前記補極の断面形状は三角形であることを特徴とする請求項3に記載の磁界発生装置。 The magnetic field generator according to claim 3, wherein the cross-sectional shape of the main pole is an isosceles trapezoid, and the cross-sectional shape of the complementary pole is a triangle.
  6.  前記主極及び補極の一方又は両方は、夫々との境界面に形成された高保磁力層を有することを特徴とする請求項1乃至請求項5のいずれか一つに記載の磁界発生装置。 The magnetic field generator according to any one of claims 1 to 5, wherein one or both of the main pole and the complementary pole have a high coercive force layer formed on a boundary surface between the main pole and the complementary pole.
  7.  磁界発生空間を隔てて対向する一対の非磁性体製の保持体の一面に、複数の主極と複数の補極とを前記磁界発生空間に向けた夫々の主面を揃えて交互に並設し、前記主極により形成される磁界を前記補極の作用により強化するように構成された磁界発生装置において、
     前記主極は、並設方向の中央位置では前記主面に直交し、該中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する主極と磁化の向きを逆として並設してあり、
     前記補極は、前記主面と平行な磁化方向を有する磁石であり、前記主面に向けて磁化された前記主極に夫々の磁化方向を向けて配置してあることを特徴とする磁界発生装置。
    A plurality of main poles and a plurality of complementary poles are alternately arranged in parallel on one surface of a pair of non-magnetic holding bodies facing each other across a magnetic field generation space with the main surfaces facing the magnetic field generation space being aligned. In the magnetic field generator configured to strengthen the magnetic field formed by the main pole by the action of the complementary pole,
    The main pole is a concentrated orientation magnet having a magnetization direction that is perpendicular to the main surface at the center position in the parallel direction and has a magnetization direction that continuously reduces the tilt angle with respect to the main surface on both sides of the center position. The pole and the direction of magnetization are arranged in reverse,
    The auxiliary pole is a magnet having a magnetization direction parallel to the main surface, and is arranged with the respective magnetization directions oriented toward the main pole magnetized toward the main surface. apparatus.
  8.  請求項1乃至請求項7のいずれか一つに記載の磁界発生装置と、該磁界発生装置が発生する磁界中に配したコイルとを備え、該コイルと前記磁界発生装置とを、前記主極及び補極の並設方向に相対移動させることを特徴とするリニアモータ。 A magnetic field generator according to any one of claims 1 to 7, and a coil disposed in a magnetic field generated by the magnetic field generator, wherein the coil and the magnetic field generator are connected to the main pole. And a linear motor that is relatively moved in the direction in which the auxiliary electrodes are arranged side by side.
  9.  磁界発生空間を隔てて対向する一対のヨークの一面に複数の磁石を、前記磁界発生空間に向けた夫々の主面を揃えて並設してある磁界発生装置において、
     前記磁石は、並設方向の中央位置では前記主面に直交する磁化方向を有し、前記中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する磁化の向きを逆として並設してあることを特徴とする磁界発生装置。
    In a magnetic field generator in which a plurality of magnets are arranged on one surface of a pair of yokes facing each other across a magnetic field generation space, and the respective main surfaces facing the magnetic field generation space are aligned.
    The magnet is a concentrated orientation magnet having a magnetization direction orthogonal to the main surface at a central position in a parallel arrangement direction, and a magnetization direction that continuously reduces an inclination angle with respect to the main surface on both sides of the central position, A magnetic field generator characterized by being arranged side by side in opposite directions of magnetization.
  10.  前記複数の磁石は、並設方向の幅が略一定の矩形断面を有することを特徴とする請求項9に記載の磁界発生装置。 The magnetic field generator according to claim 9, wherein the plurality of magnets have a rectangular cross section with a substantially constant width in the juxtaposed direction.
  11.  前記複数の磁石は、相互に離間させてあることを特徴とする請求項10に記載の磁界発生装置。 The magnetic field generator according to claim 10, wherein the plurality of magnets are separated from each other.
  12.  前記複数の磁石は、相互に隣接させてあることを特徴とする請求項10に記載の磁界発生装置。 The magnetic field generator according to claim 10, wherein the plurality of magnets are adjacent to each other.
  13.  前記磁石は、並設方向の幅が前記ヨークの側で広く、前記主面の側で狭い断面形状を有していることを特徴とする請求項9に記載の磁界発生装置。 10. The magnetic field generator according to claim 9, wherein the magnet has a cross-sectional shape that is wide on the side of the yoke and narrow on the side of the main surface.
  14.  前記複数の磁石は、前記ヨークの側で相互に離間させてあることを特徴とする請求項13に記載の磁界発生装置。 The magnetic field generator according to claim 13, wherein the plurality of magnets are separated from each other on the yoke side.
  15.  前記複数の磁石は、前記ヨークの側で相互に隣接させてあることを特徴とする請求項13に記載の磁界発生装置。 14. The magnetic field generator according to claim 13, wherein the plurality of magnets are adjacent to each other on the yoke side.
  16.  前記磁石の断面形状は等脚台形であることを特徴とする請求項13乃至請求項15のいずれか一つに記載の磁界発生装置。 The magnetic field generator according to any one of claims 13 to 15, wherein a cross-sectional shape of the magnet is an isosceles trapezoid.
  17.  前記複数の磁石は、並設方向両側の側面に形成された高保磁力層を有することを特徴とする請求項9乃至請求項16のいずれか一つに記載の磁界発生装置。 The magnetic field generator according to any one of claims 9 to 16, wherein the plurality of magnets have high coercivity layers formed on side surfaces on both sides in the side-by-side direction.
  18.  磁界発生空間を隔てて対向する一対の非磁性体製の保持体の一面に複数の磁石を、前記磁界発生空間に向けた夫々の主面を揃えて並設してある磁界発生装置において、
     前記磁石は、並設方向の中央位置では前記主面に直交する磁化方向を有し、前記中央位置の両側では前記主面に対する傾斜角度を連続的に減じる磁化方向を有する集中配向磁石であり、相隣する磁化の向きを逆として並設してあることを特徴とする磁界発生装置。
    In a magnetic field generator in which a plurality of magnets are arranged on one surface of a pair of non-magnetic holding bodies facing each other across a magnetic field generation space, and the main surfaces facing the magnetic field generation space are aligned,
    The magnet is a concentrated orientation magnet having a magnetization direction orthogonal to the main surface at a central position in a parallel arrangement direction, and a magnetization direction that continuously reduces an inclination angle with respect to the main surface on both sides of the central position, A magnetic field generator characterized by being arranged side by side in opposite directions of magnetization.
  19.  請求項9乃至請求項18のいずれか一つに記載の磁界発生装置と、該磁界発生装置が発生する磁界中に配したコイルとを備え、該コイルと前記磁界発生装置とを、前記複数の磁石の並設方向に相対移動させることを特徴とするリニアモータ。 A magnetic field generator according to any one of claims 9 to 18 and a coil disposed in a magnetic field generated by the magnetic field generator, wherein the coil and the magnetic field generator are connected to the plurality of magnetic fields. A linear motor characterized by relative movement in the direction in which magnets are arranged side by side.
PCT/JP2014/078640 2013-11-12 2014-10-28 Magnetic-field generation device and linear motor WO2015072328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547722A JPWO2015072328A1 (en) 2013-11-12 2014-10-28 Magnetic field generator and linear motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-234277 2013-11-12
JP2013234277 2013-11-12
JP2013273082 2013-12-27
JP2013-273082 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015072328A1 true WO2015072328A1 (en) 2015-05-21

Family

ID=53057267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078640 WO2015072328A1 (en) 2013-11-12 2014-10-28 Magnetic-field generation device and linear motor

Country Status (2)

Country Link
JP (1) JPWO2015072328A1 (en)
WO (1) WO2015072328A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719980A1 (en) * 2019-04-01 2020-10-07 LIM-Tech Limited Electromotive machine
JP6804705B1 (en) * 2020-03-10 2020-12-23 三菱電機株式会社 Movables and linear servo motors
EP3734815A4 (en) * 2017-12-28 2021-09-08 KYB Corporation Cylindrical linear motor
US11476731B2 (en) 2019-04-01 2022-10-18 LIM-Tech Limited Electromotive machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369492A (en) * 2001-06-06 2002-12-20 Hitachi Metals Ltd Permanent magnet, magnetic circuit for generating magentic field and linear actuator using the same
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
JP2009247041A (en) * 2008-03-28 2009-10-22 Tdk Corp Rotating machine
JP2010050440A (en) * 2008-07-23 2010-03-04 Hitachi Metals Ltd R-fe-b-based sintered magnet unit, magnetic circuit for linear motor using the same, and method of manufacturing them
JP2010063201A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor
JP2010104136A (en) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp Linear motor
JP2010136516A (en) * 2008-12-04 2010-06-17 Hitachi Metals Ltd Magnetic field generator
JP2010258181A (en) * 2009-04-24 2010-11-11 Mitsubishi Electric Corp Anisotropic magnet and method of manufacturing the same
JP2013247721A (en) * 2012-05-24 2013-12-09 Panasonic Corp Anisotropic magnet rotor, manufacturing method thereof and motor using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369492A (en) * 2001-06-06 2002-12-20 Hitachi Metals Ltd Permanent magnet, magnetic circuit for generating magentic field and linear actuator using the same
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
JP2009247041A (en) * 2008-03-28 2009-10-22 Tdk Corp Rotating machine
JP2010050440A (en) * 2008-07-23 2010-03-04 Hitachi Metals Ltd R-fe-b-based sintered magnet unit, magnetic circuit for linear motor using the same, and method of manufacturing them
JP2010063201A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor
JP2010104136A (en) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp Linear motor
JP2010136516A (en) * 2008-12-04 2010-06-17 Hitachi Metals Ltd Magnetic field generator
JP2010258181A (en) * 2009-04-24 2010-11-11 Mitsubishi Electric Corp Anisotropic magnet and method of manufacturing the same
JP2013247721A (en) * 2012-05-24 2013-12-09 Panasonic Corp Anisotropic magnet rotor, manufacturing method thereof and motor using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734815A4 (en) * 2017-12-28 2021-09-08 KYB Corporation Cylindrical linear motor
US11245321B2 (en) 2017-12-28 2022-02-08 Kyb Corporation Cylindrical linear motor
EP3719980A1 (en) * 2019-04-01 2020-10-07 LIM-Tech Limited Electromotive machine
US11476731B2 (en) 2019-04-01 2022-10-18 LIM-Tech Limited Electromotive machine
JP6804705B1 (en) * 2020-03-10 2020-12-23 三菱電機株式会社 Movables and linear servo motors
WO2021181516A1 (en) * 2020-03-10 2021-09-16 三菱電機株式会社 Mover and linear servomotor

Also Published As

Publication number Publication date
JPWO2015072328A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US6236125B1 (en) Linear actuator
JP4811785B2 (en) Periodic magnetic field generator and linear motor using the same
JPH0831635A (en) Mri magnetic field generating device
WO2015072328A1 (en) Magnetic-field generation device and linear motor
JP2010130818A (en) Method for manufacturing field element
WO1993018707A1 (en) Magnetic field generator for mri
JP2016029880A (en) Magnet unit and method of manufacturing magnet unit
JP3150248B2 (en) Magnetic field generator for MRI
JP6016833B2 (en) Electric machine
CN105280324B (en) The manufacturing method of magnet unit and magnet unit
JP2002369492A (en) Permanent magnet, magnetic circuit for generating magentic field and linear actuator using the same
JP2561591B2 (en) Magnetic field generator for MRI
JP2003333823A (en) Voice coil type linear motor
US20180145548A1 (en) Magnetic field generating member and motor including same
JP3792181B2 (en) Magnetic field generator
JP5088536B2 (en) Assembly method of moving coil type linear motor
CN203352411U (en) Linear slider
JP6455061B2 (en) Linear motor stator
KR101367222B1 (en) Permanent magnet syschronous motor
JP4387877B2 (en) Magnetizing apparatus, voice call motor, and method of manufacturing voice coil motor
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
JP2014011889A (en) Linear motor
JP6036221B2 (en) Linear motor
JP3059596B2 (en) Magnetic field generator for MRI
JP4214736B2 (en) Magnetic field generator for MRI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862082

Country of ref document: EP

Kind code of ref document: A1