JP2010063201A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2010063201A
JP2010063201A JP2008223276A JP2008223276A JP2010063201A JP 2010063201 A JP2010063201 A JP 2010063201A JP 2008223276 A JP2008223276 A JP 2008223276A JP 2008223276 A JP2008223276 A JP 2008223276A JP 2010063201 A JP2010063201 A JP 2010063201A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic pole
pole permanent
back yoke
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223276A
Other languages
Japanese (ja)
Other versions
JP5294762B2 (en
Inventor
Misa Nakayama
美佐 中山
Kazumasa Ito
一将 伊藤
Shinichi Yamaguchi
信一 山口
Yoshihiro Tani
良浩 谷
Akihiro Daikoku
晃裕 大穀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008223276A priority Critical patent/JP5294762B2/en
Publication of JP2010063201A publication Critical patent/JP2010063201A/en
Application granted granted Critical
Publication of JP5294762B2 publication Critical patent/JP5294762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low-price linear motor which keeps high generated field by approximating field generated from a field magnetic pole to sine waves. <P>SOLUTION: Main magnetic pole permanent magnets 12 are arrayed so that their magnetization directions A orthogonal to the main face of a back yoke 11 are alternately directed opposite each other. Sub-magnetic pole permanent magnets 13 are arrayed so that their magnetization directions A aligned with a moving direction of a mover 5 are alternately directed opposite each other to constitute a Halbach array field magnetic pole 14. Magnet pressing members 15 made of a soft magnetic material are arranged on a side where a magnetic field of the sub magnetic pole permanent magnets 12 are generated, and spacers 16 made of a nonmagnetic material are inserted between the sub magnetic pole permanent magnets 13 and the back yoke 11. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、例えば、工作機械や半導体製造装置などの産業機械のテーブル送りに用いられるリニアモータに関するものである。   The present invention relates to a linear motor used for table feed of industrial machines such as machine tools and semiconductor manufacturing apparatuses.

従来から、工作機械や半導体製造装置などの産業機械の分野では、送り加工の高速化、高精度化を実現するために、リニアモータが用いられている。リニアモータは、ダイレクト駆動であり、従来の回転型サーボモータとボールネジとを組み合わせた駆動方式に比べ、高速度、高加速度特性を得ることができ、かつバックラッシュや摩擦による応答誤差が生じないため、高精度なシステムを構築できる。しかし、リニアモータの発熱や振動が機械に伝わりやすいという問題があり、低損失化、およびコギング推力を小さくすることが求められている。   Conventionally, in the field of industrial machines such as machine tools and semiconductor manufacturing apparatuses, linear motors have been used in order to realize high-speed and high-precision feed processing. Linear motors are direct drive, and can achieve high speed and high acceleration characteristics compared to the drive system combining a conventional rotary servo motor and ball screw, and no response error due to backlash or friction. A highly accurate system can be constructed. However, there is a problem that heat and vibration of the linear motor are easily transmitted to the machine, and there is a demand for reduction in loss and reduction in cogging thrust.

リニアモータを低損失化するには、発生磁界を高めることが必要である。また、リニアモータのコギング推力を小さくするには、発生磁界を正弦波に近づけることが必要である。そこで、永久磁石をハルバッハ配列させて固定子を構成し、発生磁界を高め、かつ発生磁界を正弦波に近づけた従来のリニアモータが提案されていた(例えば、特許文献1参照)。   In order to reduce the loss of the linear motor, it is necessary to increase the generated magnetic field. In order to reduce the cogging thrust of the linear motor, it is necessary to make the generated magnetic field close to a sine wave. Therefore, a conventional linear motor has been proposed in which permanent magnets are arranged in a Halbach array to form a stator, the generated magnetic field is increased, and the generated magnetic field is made close to a sine wave (see, for example, Patent Document 1).

特許文献1に記載の従来のリニアモータでは、発生磁界の方向に磁化された主磁極永久磁石と主磁極永久磁石の磁極の向きと異なるように磁化された副磁極永久磁石とから構成されるハルバッハ配列構造の界磁極を備えているので、磁束が主磁極永久磁石の磁界発生側先端部に集中して磁気飽和し、発生磁界の高さに限界があった。   In the conventional linear motor described in Patent Document 1, a Halbach comprising a main magnetic pole permanent magnet magnetized in the direction of the generated magnetic field and a sub magnetic pole permanent magnet magnetized differently from the direction of the magnetic pole of the main magnetic pole permanent magnet. Since the field poles of the arrangement structure are provided, the magnetic flux is concentrated at the tip of the main pole permanent magnet at the magnetic field generation side and magnetic saturation occurs, and the height of the generated magnetic field is limited.

このような状況を鑑み、主磁極永久磁石の磁界発生側の一部を軟磁性材料で置き換え、主磁極永久磁石の磁界発生側先端部での磁気飽和を緩和し、発生磁界をより高くできる従来のリニアモータが提案されていた(例えば、特許文献2参照)。   In view of such a situation, a part of the magnetic field generation side of the main magnetic pole permanent magnet can be replaced with a soft magnetic material, the magnetic saturation at the magnetic field generation side tip of the main magnetic pole permanent magnet can be reduced, and the generated magnetic field can be further increased (See, for example, Patent Document 2).

特開2003−70226号公報JP 2003-70226 A 特開2007−6545号公報JP 2007-6545 A

特許文献2に記載の従来のリニアモータでは、副磁極永久磁石が軟磁性材料を含めた主磁極永久磁石と同等の形状を有するように作製されている。しかしながら、副磁極永久磁石の発生する磁束は界磁極の発生磁界に対して影響が小さいことから、高価な副磁極永久磁石の磁石量が過度に多くなっており、低価格化が図られないという課題があった。   In the conventional linear motor described in Patent Document 2, the sub-pole permanent magnet is manufactured to have the same shape as the main pole permanent magnet including the soft magnetic material. However, since the magnetic flux generated by the secondary magnetic pole permanent magnet has little influence on the magnetic field generated by the field magnetic pole, the amount of the expensive secondary magnetic pole permanent magnet is excessively large, and the price cannot be reduced. There was a problem.

この発明は、上記課題を解決するためになされたものであって、界磁極から発生する磁界を正弦波に近づけて高い発生磁界を維持しつつ、低価格化を実現できるリニアモータを得ることを目的とする。   The present invention has been made to solve the above-described problem, and it is possible to obtain a linear motor capable of realizing a reduction in price while maintaining a high generated magnetic field by bringing a magnetic field generated from a field pole closer to a sine wave. Objective.

この発明によるリニアモータは、発生磁界の方向に磁化された主磁極永久磁石と前記主磁極永久磁石の磁極の向きと異なるように磁化された副磁極永久磁石とをバックヨークの主面上に交互に直線状に配列して構成された固定子と、コイルを有し、前記固定子に対して所定の隙間を有して移動可能に配設された可動子と、を備え、前記コイルに通電することにより前記固定子上を前記主磁極永久磁石と前記副磁極永久磁石との配列方向に前記可動子を移動させるものである。そして、前記主磁極永久磁石は、前記バックヨークの主面に直交する方向とする磁化方向が交互に逆向きとなるように配列され、前記副磁極永久磁石は、前記可動子の移動方向とする磁化方向が交互に逆向きとなるように配列され、軟磁性材料からなる磁気飽和緩和部材が前記主磁極永久磁石の磁界発生側に配設され、非磁性材料からなるスペーサ又は空気層が前記副磁極永久磁石と前記バックヨークとの間に介装されている。 In the linear motor according to the present invention, the main magnetic pole permanent magnet magnetized in the direction of the generated magnetic field and the sub magnetic pole permanent magnet magnetized differently from the direction of the magnetic pole of the main magnetic pole permanent magnet are alternately arranged on the main surface of the back yoke. And a stator having a coil, and a mover arranged to be movable with a predetermined gap with respect to the stator, and energizing the coil Thus, the mover is moved on the stator in the arrangement direction of the main magnetic pole permanent magnet and the sub magnetic pole permanent magnet. The main magnetic pole permanent magnets are arranged so that the magnetization directions orthogonal to the main surface of the back yoke are alternately reversed, and the sub magnetic pole permanent magnet is the moving direction of the mover. Magnetization saturation relaxation members made of soft magnetic material are arranged on the magnetic field generating side of the main magnetic pole permanent magnet, and spacers or air layers made of nonmagnetic material are arranged on the side of the secondary magnetic pole. It is interposed between the magnetic pole permanent magnet and the back yoke.

この発明によれば、非磁性材料のスペーサ又は空気層が副磁極永久磁石とバックヨークとの間に介装されているので、副磁極永久磁石の磁石量がスペーサ又は空気層の分だけ削減され、低価格化が図られる。また、副磁極永久磁石の発生する磁束は界磁極の発生磁界に対して影響が小さいので、副磁極永久磁石の磁石量の削減に起因する発生磁界の高さの低減が抑えられ、高い発生磁界が維持される。   According to the present invention, since the spacer or air layer of the nonmagnetic material is interposed between the sub-pole permanent magnet and the back yoke, the magnet amount of the sub-pole permanent magnet is reduced by the amount of the spacer or air layer. The price is reduced. In addition, since the magnetic flux generated by the secondary magnetic pole permanent magnet has little influence on the magnetic field generated by the field magnetic pole, the reduction in the height of the generated magnetic field due to the reduction in the magnet quantity of the secondary magnetic pole permanent magnet can be suppressed, and the high magnetic field generated Is maintained.

実施の形態1.
図1はこの発明の実施の形態1に係るリニアモータを模式的に示す横断面図、図2はこの発明の実施の形態1に係るリニアモータの主要部の構成を説明する縦断面図、図3はこの発明の実施の形態1に係るリニアモータにおけるスペーサ高さと発生磁界との関係を示す図である。なお、横断面図とは磁石の配列方向と直交する平面における断面図であり、縦断面図とはバックヨークの主面と直交し、かつ磁石の配列方向と平行な平面における断面図である。
Embodiment 1 FIG.
1 is a transverse sectional view schematically showing a linear motor according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view for explaining the configuration of the main part of the linear motor according to Embodiment 1 of the present invention. 3 is a diagram showing the relationship between the spacer height and the generated magnetic field in the linear motor according to Embodiment 1 of the present invention. The transverse sectional view is a sectional view in a plane orthogonal to the magnet arrangement direction, and the longitudinal sectional view is a sectional view in a plane perpendicular to the main surface of the back yoke and parallel to the magnet arrangement direction.

図1および図2において、リニアモータ1は、架台2上に配設されて周期磁場を発生する固定子10と、固定子10との間に所定隙間を確保して移動可能に架台2に支持され、固定子10から発生された周期磁場との間に吸引力と反発力とを発生させて移動する可動子5と、を備えている。なお、図2中、矢印Aは永久磁石の磁化方向を示している。   1 and 2, the linear motor 1 is supported on the gantry 2 so as to be movable with a predetermined gap between the stator 10 disposed on the gantry 2 and generating a periodic magnetic field. And a movable element 5 that moves by generating an attractive force and a repulsive force with the periodic magnetic field generated from the stator 10. In FIG. 2, an arrow A indicates the magnetization direction of the permanent magnet.

固定子10は、磁性材料を用いて矩形平板状に作製されたバックヨーク11と、発生磁界の方向に磁化された主磁極永久磁石12と主磁極永久磁石12の磁極の向きと異なるように磁化された副磁極永久磁石13とをバックヨーク11の主面11a上にハルバッハ配列して構成された界磁極14と、を備えている。ここでは、主磁極永久磁石12には、例えば直方体に作製され、厚み方向に磁化されたNd−Fe−B系焼結磁石を用いている。また、副磁極永久磁石13には、例えば直方体に作製され、幅方向に磁化されたNd−Fe−B系焼結磁石を用いている。主磁極永久磁石12と副磁極永久磁石13とは、交互に、かつ隙間無く幅方向に並べられて、直線状にバックヨーク11の主面11a上に配列されている。そして、主磁極永久磁石12は、磁化方向Aをバックヨーク11の主面11aに直交させ、かつ交互に逆向きとなるように、複数配列されている。また、副磁極永久磁石13は、磁化方向Aを主磁極永久磁石12と副磁極永久磁石13との配列方向(磁石の配列方向)に一致させて、バックヨーク11の主面11aに平行に、かつ交互に逆向きとなるように、複数配列されている。   The stator 10 is magnetized so that the back yoke 11 made into a rectangular flat plate shape using a magnetic material, the main magnetic pole permanent magnet 12 magnetized in the direction of the generated magnetic field, and the magnetic pole direction of the main magnetic pole permanent magnet 12 are different. And a field pole 14 configured by arranging the auxiliary magnetic pole permanent magnet 13 and the main surface 11a of the back yoke 11 on a Halbach array. Here, as the main magnetic pole permanent magnet 12, for example, an Nd—Fe—B based sintered magnet manufactured in a rectangular parallelepiped and magnetized in the thickness direction is used. Further, as the auxiliary magnetic pole permanent magnet 13, for example, an Nd—Fe—B based sintered magnet that is manufactured in a rectangular parallelepiped and magnetized in the width direction is used. The main magnetic pole permanent magnets 12 and the sub magnetic pole permanent magnets 13 are alternately arranged in the width direction without gaps, and are linearly arranged on the main surface 11 a of the back yoke 11. A plurality of the main magnetic pole permanent magnets 12 are arranged so that the magnetization direction A is orthogonal to the main surface 11a of the back yoke 11 and are alternately reversed. Further, the sub magnetic pole permanent magnet 13 is aligned in parallel with the main surface 11a of the back yoke 11 with the magnetization direction A aligned with the arrangement direction of the main magnetic pole permanent magnet 12 and the sub magnetic pole permanent magnet 13 (magnet arrangement direction). A plurality are arranged so as to be alternately reversed.

磁気飽和緩和部材としての磁石押さえ部材15は、例えばFe−Co−V系の軟磁性材料を用いて、主磁極永久磁石12の磁場発生側の表面および両端面を覆うコ字状に作製されている。そして、磁石押さえ部材15が、必要に応じ接着剤を塗布されて主磁極永久磁石12のそれぞれの磁場発生側の表面に密着して、かつ該表面を覆うように配置され、その両端をバックヨーク11にネジ(図示せず)により締着固定されて取り付けられている。これにより、主磁極永久磁石12のそれぞれが、ネジの締着力によりバックヨーク11に強固に保持されている。また、非磁性材料からなるスペーサ16が、副磁極永久磁石13のそれぞれとバックヨーク11との間に介装されている。そして、副磁極永久磁石13は、接着剤などによりスペーサ16を介してバックヨーク11に保持されている。ここで、磁石押さえ部材15と副磁極永久磁石13とが面一となっている。   The magnet pressing member 15 as the magnetic saturation relaxation member is made in a U shape that covers the surface and both end surfaces of the main magnetic pole permanent magnet 12 using, for example, an Fe—Co—V soft magnetic material. Yes. Then, the magnet pressing member 15 is disposed so as to be adhered to the surface of the main magnetic pole permanent magnet 12 and to cover the surface of the main magnetic pole permanent magnet 12 if necessary, and both ends thereof are connected to the back yoke. 11 is fastened and fixed by screws (not shown). Thereby, each of the main magnetic pole permanent magnets 12 is firmly held by the back yoke 11 by the fastening force of the screws. A spacer 16 made of a nonmagnetic material is interposed between each of the sub magnetic pole permanent magnets 13 and the back yoke 11. The sub magnetic pole permanent magnet 13 is held on the back yoke 11 via a spacer 16 by an adhesive or the like. Here, the magnet pressing member 15 and the sub magnetic pole permanent magnet 13 are flush with each other.

ステージ3は、その両端を架台2上に固定子10を挟んで磁石の配列方向に延設された一対のガイドレール4に係合させて、架台2に取り付けられている。これにより、ステージ3は、ガイドレール4に案内されて、磁石の配列方向に移動可能となっている。
可動子5は、複数のティース6bが所定の間隔で矩形平板状のコアバック6aの一面から立設された電機子コア6と、ティース6bに巻回されたコイル7と、を備えている。可動子5は、ティース6bを外側に向けてステージ3の固定子10側の面に取り付けられている。これにより、可動子5は、ティース6bと固定子10との間の隙間を一定に確保しつつ、磁石の配列方向に移動可能となっている。
The stage 3 is attached to the gantry 2 with its both ends engaged with a pair of guide rails 4 extending in the magnet arrangement direction on the gantry 2 with the stator 10 interposed therebetween. As a result, the stage 3 is guided by the guide rails 4 and can move in the magnet arrangement direction.
The mover 5 includes an armature core 6 in which a plurality of teeth 6b are erected from one surface of a rectangular flat core back 6a at predetermined intervals, and a coil 7 wound around the teeth 6b. The mover 5 is attached to the surface of the stage 3 on the stator 10 side with the teeth 6b facing outward. Thereby, the needle | mover 5 is movable to the arrangement direction of a magnet, ensuring the clearance gap between the teeth 6b and the stator 10 uniformly.

つぎに、このように構成されたリニアモータ1の動作について説明する。
主磁極永久磁石12と副磁極永久磁石13とがバックヨーク11の主面11a上にハルバッハ配列して界磁極14を構成している。そして、主磁極永久磁石12が、磁化方向Aをバックヨーク11の主面11aに直交させ、かつ交互に逆向きとなるように配列され、副磁極永久磁石13が、磁化方向Aを磁石の配列方向に一致させて、バックヨーク11の主面11aに平行に、かつ交互に逆向きとなるように配列されている。そこで、主磁極永久磁石12の磁場と副磁極永久磁石13の磁場とが重畳して、界磁極14の上方に形成される磁束密度の分布(周期磁場)が略正弦波となる。
そこで、コイル7に通電することで発生する磁場と周期磁場との吸引力と反発力とにより、可動子5がガイドレール4に案内されて、磁石の配列方向に移動する。
Next, the operation of the linear motor 1 configured as described above will be described.
A main magnetic pole permanent magnet 12 and a sub magnetic pole permanent magnet 13 are arranged on the main surface 11 a of the back yoke 11 by a Halbach array to form a field magnetic pole 14. The main magnetic pole permanent magnets 12 are arranged so that the magnetization direction A is perpendicular to the main surface 11a of the back yoke 11 and alternately opposite to each other, and the sub magnetic pole permanent magnets 13 are arranged so that the magnetization direction A is the magnet arrangement. They are arranged so as to coincide with the direction, in parallel with the main surface 11a of the back yoke 11, and alternately in opposite directions. Therefore, the magnetic field of the main magnetic pole permanent magnet 12 and the magnetic field of the sub magnetic pole permanent magnet 13 are superposed, and the distribution of magnetic flux density (periodic magnetic field) formed above the field magnetic pole 14 becomes a substantially sine wave.
Therefore, the mover 5 is guided by the guide rail 4 and moves in the magnet arrangement direction by the attractive force and repulsive force between the magnetic field generated by energizing the coil 7 and the periodic magnetic field.

このリニアモータ1では、界磁極14の磁場発生側に形成される周期磁場が略正弦波となるので、コイル7に誘起される逆起電力も略正弦波となり、基本波(正弦波)に対する高調波成分を小さくでき、コギング推力を小さくする。さらに、発生磁場が高くなり、低損失化が図られる。
また、軟磁性材料からなる磁石押さえ部材15が主磁極永久磁石12の磁場発生側に配設されているので、主磁極永久磁石12の磁界発生側での磁気飽和が緩和され、発生磁界をより高くでき、一層の低損失化が図られる。
In this linear motor 1, since the periodic magnetic field formed on the magnetic field generation side of the field pole 14 becomes a substantially sine wave, the counter electromotive force induced in the coil 7 also becomes a substantially sine wave, which is higher than the fundamental wave (sine wave). Wave component can be reduced and cogging thrust is reduced. Furthermore, the generated magnetic field is increased and the loss can be reduced.
Further, since the magnet pressing member 15 made of a soft magnetic material is disposed on the magnetic field generation side of the main magnetic pole permanent magnet 12, magnetic saturation on the magnetic field generation side of the main magnetic pole permanent magnet 12 is alleviated, and the generated magnetic field is further reduced. The loss can be increased and the loss can be further reduced.

また、主磁極永久磁石12の磁気飽和用の軟磁性材料からなる部材を磁石押さえ部材15として用いているので、主磁極永久磁石12を取り付けるための部品が削減される。そして、ネジを用いて磁石押さえ部材15をバックヨーク11に締着固定しているので、主磁極永久磁石12をバックヨーク11に強固に固定することができる。
また、非磁性材料からなるスペーサ16が副磁極永久磁石13とバックヨーク11との間に介装されているので、スペーサ16が介装されている分、副磁極永久磁石13の量を少なくできる。つまり、高価な磁石材料の使用量が削減でき、低価格化が図られる。
In addition, since the member made of the soft magnetic material for magnetic saturation of the main magnetic pole permanent magnet 12 is used as the magnet pressing member 15, the number of parts for attaching the main magnetic pole permanent magnet 12 is reduced. Since the magnet pressing member 15 is fastened and fixed to the back yoke 11 using screws, the main magnetic pole permanent magnet 12 can be firmly fixed to the back yoke 11.
Further, since the spacer 16 made of a non-magnetic material is interposed between the sub magnetic pole permanent magnet 13 and the back yoke 11, the amount of the sub magnetic pole permanent magnet 13 can be reduced as much as the spacer 16 is interposed. . That is, the amount of expensive magnet material used can be reduced, and the price can be reduced.

つぎに、リニアモータ1において、スペーサ16の高さを変えて磁界解析した結果を図3に示す。なお、図3において、横軸は主磁極永久磁石12の高さに対するスペーサ16の高さの割合であり、縦軸はスペーサ高さ0%の時の発生磁界に対する各スペーサ高さにおける発生磁界の割合である。スペーサ高さ0%とは、スペーサ16が介装されておらず、副磁極永久磁石13が磁石押さえ部材15を含めた主磁極永久磁石12間の全領域に存在する場合であり、スペーサ高さ100%とは、主磁極永久磁石12の同じ高さのスペーサ16が副磁極永久磁石13とバックヨーク11との間に介装されている場合である。   Next, in the linear motor 1, the result of magnetic field analysis by changing the height of the spacer 16 is shown in FIG. In FIG. 3, the horizontal axis represents the ratio of the height of the spacer 16 to the height of the main pole permanent magnet 12, and the vertical axis represents the generated magnetic field at each spacer height with respect to the generated magnetic field when the spacer height is 0%. It is a ratio. The spacer height of 0% is a case where the spacer 16 is not interposed and the auxiliary magnetic pole permanent magnet 13 exists in the entire region between the main magnetic pole permanent magnets 12 including the magnet pressing member 15. 100% is the case where the spacer 16 having the same height as the main magnetic pole permanent magnet 12 is interposed between the sub magnetic pole permanent magnet 13 and the back yoke 11.

図3から、スペーサ高さが高くなるほど、発生磁界の低下の割合が大きくなることがわかる。そして、スペーサ高さ100%の場合の発生磁界が、スペーサ高さ0%の場合の発生磁界に対し12%低減する結果が得られた。つまり、発生磁界を高くすることに対する副磁極永久磁石13から発生する磁束の寄与が少ないことがわかる。また、スペーサ高さ30%の場合の発生磁界は、スペーサ高さ0%の場合の発生磁界に対し1%しか低減しなかった。このことから、磁石使用量の削減効果を優先し、スペーサ16の高さを主磁極永久磁石12の高さと等しくしてもよいが、スペーサ高さを0%より大きく、30%以下とし、発生磁界の高さを大きく確保しつつ、磁石使用量を削減して低価格化を図ることが好ましい。   From FIG. 3, it can be seen that as the spacer height increases, the rate of decrease in the generated magnetic field increases. As a result, the magnetic field generated when the spacer height was 100% was reduced by 12% with respect to the magnetic field generated when the spacer height was 0%. In other words, it can be seen that the contribution of the magnetic flux generated from the sub-pole permanent magnet 13 to increasing the generated magnetic field is small. Further, the magnetic field generated when the spacer height was 30% was reduced by only 1% with respect to the magnetic field generated when the spacer height was 0%. For this reason, priority is given to the effect of reducing the amount of magnets used, and the height of the spacer 16 may be made equal to the height of the main magnetic pole permanent magnet 12, but the spacer height is made larger than 0% and 30% or less. It is preferable to reduce the amount of magnets used to reduce the price while ensuring a large magnetic field height.

なお、上記実施の形態1では、磁石押さえ部材がバックヨークに締着固定されているものとしているが、磁石押さえ部材のバックヨークへの固定手段はこれに限定されるものではなく、例えば、磁石押さえ部材はバックヨークにリベット止めや溶接などにより固定されてもよい。   In the first embodiment, the magnet pressing member is fastened and fixed to the back yoke. However, the means for fixing the magnet pressing member to the back yoke is not limited to this. The pressing member may be fixed to the back yoke by riveting or welding.

実施の形態2.
図4はこの発明の実施の形態2に係るリニアモータに適用される固定子の構成を説明する斜視図、図5はこの発明の実施の形態2に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 2. FIG.
FIG. 4 is a perspective view for explaining the configuration of a stator applied to a linear motor according to Embodiment 2 of the present invention, and FIG. 5 shows the configuration of the stator applied to the linear motor according to Embodiment 2 of the present invention. It is a longitudinal cross-sectional view explaining these.

図4および図5において、磁気飽和緩和部材としての磁石押さえ部材17は、例えばFe−Co−V系の軟磁性材料を用いて矩形平板状に作製されている。そして、磁石押さえ部材17の両長辺上縁から短辺の長さ方向の外方に延出する鍔部17aが長辺の長さ方向の全域にわたって形成されている。さらに、磁石押さえ部材17の両端にネジ挿通穴18が厚み方向に穿設されている。また、端部スペーサ19は、非磁性材料を用いて、主磁極永久磁石12と同等の厚みを有する矩形平板状に作製され、ネジ挿通穴(図示せず)が厚み方向に穿設されている。   4 and 5, the magnet pressing member 17 as the magnetic saturation relaxation member is formed in a rectangular flat plate shape using, for example, a Fe—Co—V soft magnetic material. And the flange part 17a extended to the outward of the length direction of a short side from the upper edge of both long sides of the magnet pressing member 17 is formed over the whole region of the length direction of a long side. Further, screw insertion holes 18 are formed in the thickness direction at both ends of the magnet pressing member 17. The end spacer 19 is made of a non-magnetic material in a rectangular flat plate shape having a thickness equivalent to that of the main magnetic pole permanent magnet 12, and a screw insertion hole (not shown) is formed in the thickness direction. .

磁石押さえ部材17は、主磁極永久磁石12の磁場発生側の表面を覆うように重ねられ、端部スペーサ19が主磁極永久磁石12の長辺長さ方向の外方に延出する端部とバックヨーク11との間に介装され、ネジ20を磁石押さえ部材17のネジ挿通穴18および端部スペーサ19のネジ挿通穴を挿通してバックヨーク11に締着して取り付けられている。これにより、主磁極永久磁石12がバックヨーク11に強固に固定される。磁石押さえ部材17の各鍔部17aは、副磁極永久磁石13の上面の長辺縁部に当接し、副磁極永久磁石13およびスペーサ16がネジ20の締着力によりバックヨーク11に強固に固定される。
なお、他の構成は上記実施の形態1と同様に構成されている。
The magnet holding member 17 is overlapped so as to cover the surface of the main magnetic pole permanent magnet 12 on the magnetic field generation side, and the end spacer 19 extends to the outside in the long side length direction of the main magnetic pole permanent magnet 12. The screw 20 is interposed between the back yoke 11 and attached to the back yoke 11 by inserting the screw 20 through the screw insertion hole 18 of the magnet pressing member 17 and the screw insertion hole of the end spacer 19. Thereby, the main magnetic pole permanent magnet 12 is firmly fixed to the back yoke 11. Each flange portion 17 a of the magnet pressing member 17 abuts on the long side edge of the upper surface of the sub magnetic pole permanent magnet 13, and the sub magnetic pole permanent magnet 13 and the spacer 16 are firmly fixed to the back yoke 11 by the fastening force of the screw 20. The
Other configurations are the same as those in the first embodiment.

このように構成された固定子10Aにおいても、主磁極永久磁石12と副磁極永久磁石13とをバックヨーク11の主面11a上にハルバッハ配列して界磁極14を構成しているので、上記実施の形態1における固定子10と同様に、界磁極14の上方に形成される磁束密度の分布(周期磁場)が略正弦波となる。また、スペーサ16が副磁極永久磁石13とバックヨーク11との間に介装されている。したがって、この実施の形態2においても、上記実施の形態1と同様の効果が得られる。   Also in the stator 10A configured as described above, the main magnetic pole permanent magnet 12 and the auxiliary magnetic pole permanent magnet 13 are arranged on the main surface 11a of the back yoke 11 by the Halbach array, so that the field magnetic pole 14 is configured. Similar to the stator 10 in the first embodiment, the distribution (periodic magnetic field) of the magnetic flux density formed above the field pole 14 becomes a substantially sine wave. A spacer 16 is interposed between the sub magnetic pole permanent magnet 13 and the back yoke 11. Therefore, also in the second embodiment, the same effect as in the first embodiment can be obtained.

この実施の形態2によれば、主磁極永久磁石12、副磁極永久磁石13、およびスペーサ16を磁石押さえ部材17により一括してバックヨーク11に固定できるので、固定子10Aの組立性が向上される。   According to the second embodiment, the main magnetic pole permanent magnet 12, the sub magnetic pole permanent magnet 13, and the spacer 16 can be fixed together to the back yoke 11 by the magnet pressing member 17, so that the assembly of the stator 10A is improved. The

なお、上記実施の形態2では、磁石押さえ部材がネジを用いてバックヨークに締着固定されているものとしているが、磁石押さえ部材のバックヨークへの固定手段はこれに限定されるものではなく、例えば、磁石押さえ部材はバックヨークにリベット止めや溶接などにより固定されてもよい。   In the second embodiment, the magnet pressing member is fastened and fixed to the back yoke using a screw. However, the means for fixing the magnet pressing member to the back yoke is not limited to this. For example, the magnet pressing member may be fixed to the back yoke by riveting or welding.

実施の形態3.
図6はこの発明の実施の形態3に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 3 FIG.
6 is a longitudinal sectional view for explaining the structure of a stator applied to a linear motor according to Embodiment 3 of the present invention.

図6において、分割主磁極永久磁石12Aは、主磁極永久磁石12を短辺の長さ方向に2分割した形状に作製されている。また、分割磁石押さえ部材17Aは、磁石押さえ部材17を短辺の長さ方向に2分割した形状に作製されている。分割主磁極永久磁石12Aは、隣り合う副磁極永久磁石13間に磁化方向Aを揃えて2個ずつ配設され、磁石の配列方向に両端にそれぞれ1個ずつ配設されている。これにより、副磁極永久磁石13間に配設された分割主磁極永久磁石12Aが磁化方向Aを交互に逆向きとなるように配列される。   In FIG. 6, the divided main magnetic pole permanent magnet 12 </ b> A is manufactured in a shape obtained by dividing the main magnetic pole permanent magnet 12 into two in the length direction of the short side. The divided magnet pressing member 17A is formed in a shape obtained by dividing the magnet pressing member 17 into two in the length direction of the short side. The two divided main magnetic pole permanent magnets 12A are arranged two by two with the magnetization direction A aligned between the adjacent sub magnetic pole permanent magnets 13, and one is arranged at each end in the magnet arrangement direction. Thereby, the divided main magnetic pole permanent magnets 12A disposed between the sub magnetic pole permanent magnets 13 are arranged so that the magnetization directions A are alternately reversed.

磁石押さえ部材17が、隣り合う2個の分割主磁極永久磁石12Aの磁場発生側の表面を覆うように重ねられ、端部スペーサ(図示せず)が磁石押さえ部材17の端部とバックヨーク11との間に介装され、ネジ(図示せず)をバックヨーク11に締着して取り付けられている。さらに、分割磁石押さえ部材17Aが、磁石の配列方向の両端の分割主磁極永久磁石12Aの磁場発生側の表面を覆うように重ねられ、端部スペーサ(図示せず)が分割磁石押さえ部材17Aの端部とバックヨーク11との間に介装され、ネジ(図示せず)をバックヨーク11に締着して取り付けられている。なお、磁石押さえ部材17および分割磁石押さえ部材17Aには、分割主磁極永久磁石12Aの磁石の配列方向の移動を規制する移動規制突起17bが形成されている。   The magnet pressing member 17 is overlaid so as to cover the surface of the two adjacent divided main magnetic pole permanent magnets 12A on the magnetic field generation side, and an end spacer (not shown) is attached to the end of the magnet pressing member 17 and the back yoke 11. And a screw (not shown) is fastened to the back yoke 11 and attached. Further, the divided magnet pressing members 17A are overlapped so as to cover the magnetic field generation side surfaces of the divided main magnetic pole permanent magnets 12A at both ends in the magnet arrangement direction, and end spacers (not shown) of the divided magnet pressing members 17A. It is interposed between the end portion and the back yoke 11, and is attached by fastening a screw (not shown) to the back yoke 11. The magnet pressing member 17 and the divided magnet pressing member 17A are formed with movement restricting projections 17b that restrict the movement of the divided main magnetic pole permanent magnet 12A in the arrangement direction of the magnets.

これにより、分割主磁極永久磁石12Aがネジの締着力によりバックヨーク11に強固に固定される。磁石押さえ部材17および分割磁石押さえ部材17Aの各鍔部17aは、副磁極永久磁石13の上面の長辺縁部に当接し、副磁極永久磁石13およびスペーサ16がネジの締着力によりバックヨーク11に強固に固定される。
なお、他の構成は上記実施の形態2と同様に構成されている。
Thereby, the divided main magnetic pole permanent magnet 12A is firmly fixed to the back yoke 11 by the fastening force of the screw. The flange portions 17a of the magnet pressing member 17 and the split magnet pressing member 17A are in contact with the long side edge portion of the upper surface of the sub magnetic pole permanent magnet 13, and the sub magnetic pole permanent magnet 13 and the spacer 16 are tightened by the screw tightening force. It is firmly fixed to.
Other configurations are the same as those in the second embodiment.

このように構成された固定子10Bにおいても、分割主磁極永久磁石12Aと副磁極永久磁石13とをバックヨーク11の主面11a上にハルバッハ配列して界磁極14を構成しているので、上記実施の形態2における固定子10Aと同様に、界磁極14の上方に形成される磁束密度の分布(周期磁場)が略正弦波となる。また、スペーサ16が副磁極永久磁石13とバックヨーク11との間に介装されている。さらに、分割主磁極永久磁石12A、副磁極永久磁石13、およびスペーサ16を磁石押さえ部材17および分割磁石押さえ部材17Aにより一括してバックヨーク11に固定できる。したがって、この実施の形態3においても、上記実施の形態2と同様の効果が得られる。   Also in the stator 10B configured in this manner, the split main magnetic pole permanent magnet 12A and the sub magnetic pole permanent magnet 13 are arranged on the main surface 11a of the back yoke 11 by the Halbach array, so that the field magnetic pole 14 is configured. Similar to the stator 10A in the second embodiment, the distribution of magnetic flux density (periodic magnetic field) formed above the field pole 14 is a substantially sine wave. A spacer 16 is interposed between the sub magnetic pole permanent magnet 13 and the back yoke 11. Further, the divided main magnetic pole permanent magnet 12A, the sub magnetic pole permanent magnet 13, and the spacer 16 can be collectively fixed to the back yoke 11 by the magnet pressing member 17 and the divided magnet pressing member 17A. Therefore, also in the third embodiment, the same effect as in the second embodiment can be obtained.

この実施の形態3によれば、主磁極永久磁石12を短辺の長さ方向に2分割した形状に作製された分割主磁極永久磁石12Aを磁石の配列方向の両端に配置して4極に構成されているので、磁石の配列方向に並べる固定子10Bの個数を調整することで、所望のストローク長さの固定子を簡易に実現することができる。したがって、極数の異なる複数種の固定子を用意するだけで、ストローク長さの異なる固定子を作製することができる。また、ストローク長さが異なる毎に固定子を作製する必要がなく、低価格化が図られる。さらに、バックヨーク11の長さを短くでき、低価格化が図られる。   According to the third embodiment, the divided main magnetic pole permanent magnets 12A produced in a shape obtained by dividing the main magnetic pole permanent magnet 12 into two in the length direction of the short side are arranged at both ends in the magnet arrangement direction to form four poles. Since it is comprised, the stator of desired stroke length is easily realizable by adjusting the number of the stators 10B arranged in the arrangement direction of a magnet. Therefore, stators with different stroke lengths can be produced simply by preparing a plurality of types of stators with different numbers of poles. Further, it is not necessary to produce a stator every time the stroke length is different, and the cost can be reduced. Furthermore, the length of the back yoke 11 can be shortened, and the price can be reduced.

なお、上記実施の形態3では、固定子が4極に構成されているものとしているが、固定子の極数は4極に限定されるものではなく、分割主磁極永久磁石が磁石の配列方向の両端に配置されていればよい。   In the third embodiment, the stator is configured to have four poles. However, the number of poles of the stator is not limited to four, and the divided main magnetic pole permanent magnets are arranged in the magnet arrangement direction. What is necessary is just to be arrange | positioned at both ends.

実施の形態4.
図7はこの発明の実施の形態4に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 4 FIG.
FIG. 7 is a longitudinal sectional view for explaining the structure of a stator applied to a linear motor according to Embodiment 4 of the present invention.

図7において、分割副磁極永久磁石13Aは、副磁極永久磁石13を短辺の長さ方向に2分割した形状に作製されている。また、スペーサ21は、非磁性材料を用いて、底部21aと底部21a中央から立設された隔壁21bとからなる断面逆T字状に作製され、隔壁21bの上端両側から短辺の長さ方向の外方に延出する鍔部21cが長さ方向の全域にわたって形成されている。また、分割スペーサ21Aは、スペーサ21を短辺の長さ方向に2分割した形状に作製されている。そして、分割副磁極永久磁石13Aは、底面および側面をスペーサ21の底部21aおよび隔壁21bに密接させて、隣り合う主磁極永久磁石12間に磁化方向Aを揃えて2個ずつ配設され、さらに底面および側面を分割スペーサ21Aの底部21aおよび隔壁21bに密接させて、磁石の配列方向に両端にそれぞれ1個ずつ配設されている。これにより、主磁極永久磁石12間に配列される分割副磁極永久磁石13Aが磁化方向Aを交互に逆向きとなるように配列される。   In FIG. 7, the divided sub magnetic pole permanent magnet 13 </ b> A is manufactured in a shape obtained by dividing the sub magnetic pole permanent magnet 13 into two in the length direction of the short side. The spacer 21 is made of a nonmagnetic material in a reverse T-shaped cross section composed of a bottom 21a and a partition wall 21b erected from the center of the bottom 21a, and the length direction of the short side from both sides of the upper end of the partition wall 21b. A flange portion 21c extending outward is formed across the entire length direction. Further, the divided spacer 21A is formed in a shape in which the spacer 21 is divided into two in the length direction of the short side. The divided sub magnetic pole permanent magnets 13A are arranged in two pieces with the bottom surface and the side surfaces in close contact with the bottom 21a and the partition wall 21b of the spacer 21, with the magnetization direction A aligned between the adjacent main magnetic pole permanent magnets 12, respectively. One bottom surface and one side surface are in close contact with the bottom 21a and the partition wall 21b of the divided spacer 21A, and one is disposed at each end in the magnet arrangement direction. Thereby, the divided sub magnetic pole permanent magnets 13 </ b> A arranged between the main magnetic pole permanent magnets 12 are arranged so that the magnetization directions A are alternately reversed.

磁石押さえ部材17が、主磁極永久磁石12の磁場発生側の表面を覆うように重ねられ、端部スペーサ(図示せず)が磁石押さえ部材17の端部とバックヨーク11との間に介装され、ネジ(図示せず)をバックヨーク11に締着して取り付けられている。   The magnet pressing member 17 is overlaid so as to cover the surface of the main magnetic pole permanent magnet 12 on the magnetic field generation side, and an end spacer (not shown) is interposed between the end of the magnet pressing member 17 and the back yoke 11. The screw (not shown) is fastened to the back yoke 11 and attached.

これにより、主磁極永久磁石12がネジの締着力によりバックヨーク11に強固に固定される。さらに、磁石押さえ部材17、スペーサ21、および分割スペーサ21Aの各鍔部17a,21cが、分割副磁極永久磁石13Aの上面の長辺縁部に当接し、分割副磁極永久磁石13A、スペーサ21、および分割スペーサ21Aがネジの締着力によりバックヨーク11に強固に固定される。
なお、他の構成は上記実施の形態2と同様に構成されている。
Thereby, the main magnetic pole permanent magnet 12 is firmly fixed to the back yoke 11 by the fastening force of the screw. Further, the flanges 17a and 21c of the magnet pressing member 17, the spacer 21, and the divided spacer 21A are in contact with the long side edge portion of the upper surface of the divided sub magnetic pole permanent magnet 13A, and the divided sub magnetic pole permanent magnet 13A, the spacer 21, The split spacer 21A is firmly fixed to the back yoke 11 by the fastening force of the screws.
Other configurations are the same as those in the second embodiment.

このように構成された固定子10Cにおいても、主磁極永久磁石12と分割副磁極永久磁石13Aとをバックヨーク11の主面11a上にハルバッハ配列して界磁極14を構成しているので、上記実施の形態2における固定子10Aと同様に、界磁極14の上方に形成される磁束密度の分布(周期磁場)が略正弦波となる。また、非磁性材で作製されたスペーサ21および分割スペーサ21Aの底部21aが分割副磁極永久磁石13Aとバックヨーク11との間に介装されている。
また、固定子10Cでは、磁石押さえ部材17のバックヨーク11への締着力が鍔部17aを介して分割副磁極永久磁石13Aに作用するので、分割副磁極永久磁石13Aと底部21aとが鍔部17aとバックヨーク11との間に加圧挟持される。これにより、主磁極永久磁石12、分割副磁極永久磁石13A、スペーサ21、および分割スペーサ21Aを磁石押さえ部材17により一括してバックヨーク11に固定できる。
したがって、この実施の形態4においても、上記実施の形態2と同様の効果が得られる。
Also in the stator 10C configured in this manner, the main magnetic pole permanent magnet 12 and the divided sub magnetic pole permanent magnet 13A are arranged on the main surface 11a of the back yoke 11 by the Halbach array, so that the field magnetic pole 14 is configured. Similar to the stator 10A in the second embodiment, the distribution of magnetic flux density (periodic magnetic field) formed above the field pole 14 is a substantially sine wave. Further, the spacer 21 made of a nonmagnetic material and the bottom 21 a of the divided spacer 21 A are interposed between the divided sub-pole permanent magnet 13 A and the back yoke 11.
Further, in the stator 10C, the fastening force of the magnet pressing member 17 to the back yoke 11 acts on the divided sub magnetic pole permanent magnet 13A via the flange portion 17a, so that the divided sub magnetic pole permanent magnet 13A and the bottom portion 21a are connected to the flange portion. A pressure is sandwiched between 17a and the back yoke 11. Accordingly, the main magnetic pole permanent magnet 12, the divided sub magnetic pole permanent magnet 13 </ b> A, the spacer 21, and the divided spacer 21 </ b> A can be collectively fixed to the back yoke 11 by the magnet pressing member 17.
Therefore, also in the fourth embodiment, the same effect as in the second embodiment can be obtained.

この実施の形態4によれば、副磁極永久磁石13を短辺の長さ方向に2分割した形状に作製された分割副磁極永久磁石13Aを磁石の配列方向の両端に配置して4極に構成されているので、磁石の配列方向に並べる固定子10Cの個数を調整することで、所望のストローク長さの固定子を簡易に実現することができる。したがって、極数の異なる複数種の固定子を用意するだけで、ストローク長さの異なる固定子を作製することができる。また、ストローク長さが異なる毎に固定子を作製する必要がなく、低価格化が図られる。さらに、バックヨーク11の長さを短くでき、低価格化が図られる。   According to the fourth embodiment, the divided sub magnetic pole permanent magnets 13A produced in a shape obtained by dividing the sub magnetic pole permanent magnet 13 into two in the length direction of the short side are arranged at both ends in the magnet arrangement direction to form four poles. Since it is comprised, the stator of desired stroke length is easily realizable by adjusting the number of the stators 10C arranged in the arrangement direction of a magnet. Therefore, stators with different stroke lengths can be produced simply by preparing a plurality of types of stators with different numbers of poles. Further, it is not necessary to produce a stator every time the stroke length is different, and the cost can be reduced. Furthermore, the length of the back yoke 11 can be shortened, and the price can be reduced.

なお、上記実施の形態4では、固定子が4極に構成されているものとしているが、固定子の極数は4極に限定されるものではなく、分割副磁極永久磁石が磁石の配列方向の両端に配置されていればよい。
また、上記実施の形態4では、スペーサおよび分割スペーサが磁石押さえ部材をバックヨークに固定する締着力によりバックヨークに固定されるものとしているが、スペーサおよび分割スペーサと分割副磁極永久磁石とを、さらにスペーサおよび分割スペーサとバックヨークとを接着剤を用いて固定してもよいし、分割副磁極永久磁石からスペーサおよび分割スペーサを長さ方向に延出させ、その延出部をバックヨークに締着するようにしてもよい。
In the fourth embodiment, the stator is assumed to have four poles. However, the number of poles of the stator is not limited to four, and the divided sub-pole permanent magnet is arranged in the magnet arrangement direction. What is necessary is just to be arrange | positioned at both ends.
In the fourth embodiment, the spacer and the divided spacer are fixed to the back yoke by the fastening force for fixing the magnet pressing member to the back yoke. However, the spacer and the divided spacer and the divided sub-pole permanent magnet are Further, the spacer, the divided spacer, and the back yoke may be fixed using an adhesive, or the spacer and the divided spacer are extended in the length direction from the divided sub-pole permanent magnet, and the extended portion is fastened to the back yoke. You may make it wear.

実施の形態5.
図8はこの発明の実施の形態5に係るリニアモータに適用される固定子の構成を説明する斜視図、図9はこの発明の実施の形態5に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 5 FIG.
FIG. 8 is a perspective view for explaining the configuration of a stator applied to a linear motor according to Embodiment 5 of the present invention, and FIG. 9 shows the configuration of the stator applied to the linear motor according to Embodiment 5 of the present invention. It is a longitudinal cross-sectional view explaining these.

図8および図9において、磁性板31は、軟磁性材料である珪素鋼板を打ち抜いて矩形平板状に作製され、矩形のベース部32と、それぞれベース部32の一方の長辺からベース部32の短辺の長さ方向に突設されて、ベース部32の長辺の長さ方向に所定の間隔で配列された突起部33と、ベース部32と隣り合う突起部33とに間に画成され、副磁極永久磁石13を収納するためのスロット部34と、を有する。なお、鍔部33aが突起部33の先端部の両端からベース部32の長さ方向に延設されている。また、主磁極永久磁石12を収納するための収納穴35が突起部33のベース部32側に穿設されている。さらに、スロット部34のスロット深さが突起部33のベース部32からの延出高さより浅くなっており、スペーサ16を収納するための収納穴36がスロット部34の底部とベース部32との間に穿設されている。さらにまた、貫通穴37が突起部33の中央に穿設されている。ここで、収納穴35が主磁極永久磁石収納穴に相当し、スロット部34が副磁極永久磁石収納穴に相当し、収納穴36が空孔に相当する。   8 and 9, the magnetic plate 31 is produced by punching out a silicon steel plate, which is a soft magnetic material, into a rectangular flat plate shape. Each of the base portion 32 and the base portion 32 is formed from one long side of the base portion 32. A protrusion 33 is provided in the length direction of the short side and is arranged at a predetermined interval in the length direction of the long side of the base portion 32, and is defined between the protrusion portion 33 adjacent to the base portion 32. And a slot portion 34 for accommodating the auxiliary magnetic pole permanent magnet 13. Note that the flange portion 33 a extends in the length direction of the base portion 32 from both ends of the tip portion of the projection portion 33. In addition, a storage hole 35 for storing the main magnetic pole permanent magnet 12 is formed on the base portion 32 side of the protrusion 33. Further, the slot depth of the slot portion 34 is shallower than the height of the protrusion 33 extending from the base portion 32, and a storage hole 36 for storing the spacer 16 is formed between the bottom portion of the slot portion 34 and the base portion 32. It is drilled in between. Furthermore, a through hole 37 is formed in the center of the protrusion 33. Here, the storage hole 35 corresponds to a main magnetic pole permanent magnet storage hole, the slot 34 corresponds to a sub magnetic pole permanent magnet storage hole, and the storage hole 36 corresponds to a hole.

そして、固定子コア30は、ベース部32、突起部33、スロット部34、収納穴35,36、および貫通穴37が互いに重なるように所定枚数の磁性板31を積層し、通しボルト38を積層方向に連なった貫通穴37内に挿通し、通しボルト38の延出端に螺着されたナット39を締着して作製される。ここで、ベース部32が積層方向に連なってバックヨークを構成し、突起部33が積層方向に連なって磁石押さえ部材を構成する。   The stator core 30 is formed by laminating a predetermined number of magnetic plates 31 and laminating through bolts 38 so that the base portion 32, the protruding portion 33, the slot portion 34, the accommodation holes 35 and 36, and the through hole 37 overlap each other. The nut 39 is inserted into the through hole 37 that is continuous in the direction, and is fastened with a nut 39 that is screwed to the extending end of the through bolt 38. Here, the base part 32 is connected to the stacking direction to form a back yoke, and the protrusion 33 is connected to the stacking direction to form a magnet pressing member.

そして、主磁極永久磁石12が必要に応じて接着剤を塗布されて積層方向に連なった収納穴35内に挿入、保持されている。また、副磁極永久磁石13が必要に応じて接着剤を塗布されて積層方向に連なったスロット部34内に挿入、保持されている。さらに、スペーサ16が必要に応じて接着剤を塗布されて積層方向に連なった収納穴36内に挿入、保持されている。   The main magnetic pole permanent magnet 12 is inserted and held in a storage hole 35 which is coated with an adhesive as necessary and is continuous in the stacking direction. Further, the auxiliary magnetic pole permanent magnet 13 is inserted and held in a slot portion 34 which is coated with an adhesive as necessary and is continuous in the stacking direction. Further, the spacer 16 is inserted and held in a storage hole 36 which is coated with an adhesive as necessary and is continuous in the stacking direction.

このように構成された固定子10Dは、バックヨークおよび磁石押さえ部材が一体に構成されている点を除いて、上記実施の形態2における固定子10Aと同様に構成されている。
この実施の形態5においても、主磁極永久磁石12と副磁極永久磁石13とをベース部32が積層方向に連なって構成されたバックヨーク上にハルバッハ配列して界磁極14を構成しているので、上記実施の形態1における固定子10と同様に、界磁極14の上方に形成される磁束密度の分布(周期磁場)が略正弦波となる。主磁極永久磁石12の磁場発生側に軟磁性材料からなる突起部33の積層体が位置しているので、主磁極永久磁石12の磁場発生側での磁気飽和が緩和される。スペーサ16が副磁極永久磁石13の下部に配設されているので、副磁極永久磁石13の容積が少なくなり、磁石の使用量が削減される。
The stator 10D configured as described above is configured in the same manner as the stator 10A in the second embodiment except that the back yoke and the magnet pressing member are configured integrally.
Also in the fifth embodiment, the main magnetic pole permanent magnet 12 and the auxiliary magnetic pole permanent magnet 13 are arranged on the back yoke in which the base portion 32 is connected in the stacking direction, so that the field pole 14 is configured. Similarly to the stator 10 in the first embodiment, the distribution (periodic magnetic field) of the magnetic flux density formed above the field pole 14 is a substantially sine wave. Since the laminated body of the protrusions 33 made of a soft magnetic material is positioned on the magnetic field generation side of the main magnetic pole permanent magnet 12, magnetic saturation on the magnetic field generation side of the main magnetic pole permanent magnet 12 is alleviated. Since the spacer 16 is disposed below the sub magnetic pole permanent magnet 13, the volume of the sub magnetic pole permanent magnet 13 is reduced, and the amount of magnet used is reduced.

この実施の形態5によれば、複数の磁石押さえ部材およびバックヨークが磁性板31を積層一体化した作製された固定子コア30、即ち一部品で構成されるので、固定子10Dの組立が容易となる。   According to the fifth embodiment, since the plurality of magnet pressing members and the back yoke are composed of the stator core 30 formed by laminating and integrating the magnetic plates 31, that is, one component, the assembly of the stator 10D is easy. It becomes.

なお、上記実施の形態5では、固定子コアが軟磁性材料の板部材を打ち抜いて作製された磁性板を積層一体化して作製されているものとしているが、固定子コアは軟磁性材料の塊状体を機械加工して作製してもよい。
また、上記実施の形態5では、固定子コアが磁性板の積層体を通しボルトとナットとを用いて締着一体化して作製されているものとしているが、固定子コアは磁性板の積層体を圧着一体化して作製してもよい。
In the fifth embodiment, the stator core is made by stacking and integrating magnetic plates made by punching a plate member made of soft magnetic material. However, the stator core is made of a lump of soft magnetic material. The body may be made by machining.
In the fifth embodiment, the stator core is manufactured by passing through a laminated body of magnetic plates and fastening and using bolts and nuts. However, the stator core is a laminated body of magnetic plates. May be prepared by pressure bonding.

実施の形態6.
図10はこの発明の実施の形態6に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 6 FIG.
10 is a longitudinal sectional view for explaining the structure of a stator applied to a linear motor according to Embodiment 6 of the present invention.

図10において、磁性板31Aは、3つの突起部33がベース部32の長辺の長さ方向に配列され、突起部33をベース部32の長辺の長さ方向に2分割した形状の分割突起部33Aが3つの突起部33の配列方向の両側に配列され、分割主磁極永久磁石12Aを収納するための収納穴35aが突起部33および分割突起部33Aのベース部32側に穿設されている。固定子コア30Aは、所定枚数の磁性板31Aを積層し、通しボルト38を連なった貫通穴37内に挿通し、通しボルト38の延出端に螺着されたナット39を締着して作製される。そして、分割主磁極永久磁石12Aが必要に応じて接着剤を塗布されて各収納穴35aに挿入、保持される。
なお、他の構成は上記実施の形態5と同様に構成されている。
In FIG. 10, the magnetic plate 31 </ b> A is divided into a shape in which three protrusions 33 are arranged in the length direction of the long side of the base portion 32, and the protrusion 33 is divided into two in the length direction of the long side of the base portion 32. The projections 33A are arranged on both sides in the arrangement direction of the three projections 33, and the accommodation holes 35a for accommodating the divided main magnetic pole permanent magnet 12A are formed on the projection 33 and the base 32 side of the division projection 33A. ing. The stator core 30A is manufactured by laminating a predetermined number of magnetic plates 31A, inserting the through bolts 38 into the continuous through holes 37, and fastening the nuts 39 screwed to the extending ends of the through bolts 38. Is done. Then, the divided main magnetic pole permanent magnet 12A is coated with an adhesive as necessary, and is inserted into and held in each storage hole 35a.
Other configurations are the same as those in the fifth embodiment.

このように構成された固定子10Eは、バックヨークおよび磁石押さえ部材が一体に構成されている点を除いて、上記実施の形態3における固定子10Bと同様に構成されている。
したがって、この実施の形態6によれば、上記実施の形態5の効果に加え、固定子10Eが、主磁極永久磁石12を短辺の長さ方向に2分割した形状に作製された分割主磁極永久磁石12Aを磁石の配列方向の両端に配置して4極に構成されているので、磁石の配列方向に並べる固定子10Eの個数を調整することで、所望のストローク長さの固定子を簡易に実現することができる。したがって、極数の異なる複数種の固定子を用意するだけで、ストローク長さの異なる固定子を作製することができる。また、ストローク長さが異なる毎に固定子を作製する必要がなく、低価格化が図られる。さらに、固定子コア30Aの長さを短くでき、低価格化が図られる。
The stator 10E configured as described above is configured in the same manner as the stator 10B in the third embodiment except that the back yoke and the magnet pressing member are configured integrally.
Therefore, according to the sixth embodiment, in addition to the effects of the fifth embodiment, the stator 10E is a divided main magnetic pole manufactured in a shape in which the main magnetic pole permanent magnet 12 is divided into two in the length direction of the short side. Since the permanent magnet 12A is arranged at both ends in the magnet arrangement direction and is configured with four poles, the stator having a desired stroke length can be simplified by adjusting the number of stators 10E arranged in the magnet arrangement direction. Can be realized. Therefore, stators with different stroke lengths can be produced simply by preparing a plurality of types of stators with different numbers of poles. Further, it is not necessary to produce a stator every time the stroke length is different, and the cost can be reduced. Furthermore, the length of the stator core 30A can be shortened, and the price can be reduced.

実施の形態7.
図11はこの発明の実施の形態7に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 7 FIG.
FIG. 11 is a longitudinal sectional view for explaining the structure of a stator applied to a linear motor according to Embodiment 7 of the present invention.

図11において、磁性板31Bは、4つの突起部33がベース部32の長辺の長さ方向に配列され、隔壁部40が隣り合う突起部33間の中央位置から延設され、隔壁部40をベース部32の長辺の長さ方向に2分割した形状の分割隔壁部40Aが4つの突起部33の配列方向の両側に配設されている。ここで、分割副磁極永久磁石13Aを収納するための分割スロット部34aが、突起部33と隔壁部40との間、および突起部33と分割隔壁部40Aとの間に形成される。さらに、スペーサ16をベース部32の長辺の長さ方向に2分割した形状の分割スペーサ16Aを収納するための収納穴36aが分割スロット部34aのベース部32側に穿設されている。固定子コア30Bは、所定枚数の磁性板31Bを積層し、通しボルト38を連なった貫通穴37内に挿通し、通しボルト38の延出端に螺着されたナット39を締着して作製される。そして、分割副磁極永久磁石13Aが必要に応じて接着剤を塗布されて各分割スロット部34aに挿入、保持され、分割スペーサ16Aが必要に応じ接着剤を塗布されて各収納穴36aに挿入、保持される。
なお、他の構成は上記実施の形態5と同様に構成されている。
In FIG. 11, in the magnetic plate 31 </ b> B, four protrusions 33 are arranged in the length direction of the long side of the base part 32, and the partition 40 extends from the center position between the adjacent protrusions 33. A partition wall 40A having a shape obtained by dividing the base portion 32 in the length direction of the long side of the base portion 32 is disposed on both sides of the four protrusions 33 in the arrangement direction. Here, a divided slot portion 34a for accommodating the divided sub magnetic pole permanent magnet 13A is formed between the protruding portion 33 and the partition wall portion 40 and between the protruding portion 33 and the divided partition wall portion 40A. Further, a housing hole 36a for housing the divided spacer 16A having a shape obtained by dividing the spacer 16 into two in the length direction of the long side of the base portion 32 is formed on the base portion 32 side of the divided slot portion 34a. The stator core 30B is produced by laminating a predetermined number of magnetic plates 31B, inserting the through bolts 38 into the continuous through holes 37, and fastening the nuts 39 screwed to the extending ends of the through bolts 38. Is done. Then, the divided sub magnetic pole permanent magnet 13A is coated with an adhesive if necessary and inserted and held in each divided slot 34a, and the divided spacer 16A is coated with an adhesive if necessary and inserted into each storage hole 36a. Retained.
Other configurations are the same as those in the fifth embodiment.

このように構成された固定子10Fは、バックヨークおよび磁石押さえ部材が一体に構成されている点を除いて、上記実施の形態4における固定子10Cと同様に構成されている。
したがって、この実施の形態7によれば、上記実施の形態5の効果に加え、固定子10Fが、副磁極永久磁石13を短辺の長さ方向に2分割した形状に作製された分割副磁極永久磁石13Aを磁石の配列方向の両端に配置して4極に構成されているので、磁石の配列方向に並べる固定子10Fの個数を調整することで、所望のストローク長さの固定子を簡易に実現することができる。したがって、極数の異なる複数種の固定子を用意するだけで、ストローク長さの異なる固定子を作製することができる。また、ストローク長さが異なる毎に固定子を作製する必要がなく、低価格化が図られる。さらに、固定子コア30Bの長さを短くでき、低価格化が図られる。
The stator 10F configured as described above is configured in the same manner as the stator 10C in the fourth embodiment except that the back yoke and the magnet pressing member are configured integrally.
Therefore, according to the seventh embodiment, in addition to the effect of the fifth embodiment, the stator 10F is a divided sub magnetic pole manufactured in a shape in which the sub magnetic pole permanent magnet 13 is divided into two in the length direction of the short side. Since the permanent magnet 13A is arranged at both ends in the magnet arrangement direction and is configured with four poles, a stator having a desired stroke length can be simplified by adjusting the number of stators 10F arranged in the magnet arrangement direction. Can be realized. Therefore, stators with different stroke lengths can be produced simply by preparing a plurality of types of stators with different numbers of poles. Further, it is not necessary to produce a stator every time the stroke length is different, and the cost can be reduced. Further, the length of the stator core 30B can be shortened, and the price can be reduced.

なお、上記実施の形態5乃至7では、スペーサを副磁極永久磁石とバックヨークとの間に介装するものとしているが、スペーサを省略し、副磁極永久磁石とバックヨークとの間に空気層を介在させてもよい、この場合、磁石の使用量を削減できると共に、固定子の軽量化が図られる。
また、上記実施の形態1乃至7では、スペーサの材料については特に記載していないが、スペーサは非磁性材料であればよく、例えば非磁性のステンレスやアルミニウム、ガラスエポキシ樹脂、エンジニアリングプラスチックなどが使用可能である。
In the fifth to seventh embodiments, the spacer is interposed between the sub magnetic pole permanent magnet and the back yoke. However, the spacer is omitted and an air layer is provided between the sub magnetic pole permanent magnet and the back yoke. In this case, the amount of magnet used can be reduced, and the weight of the stator can be reduced.
In the first to seventh embodiments, the material of the spacer is not particularly described. However, the spacer may be a nonmagnetic material, such as nonmagnetic stainless steel, aluminum, glass epoxy resin, or engineering plastic. Is possible.

実施の形態8.
図12はこの発明の実施の形態8に係るリニアモータに適用される固定子の構成を説明する縦断面図である。
Embodiment 8 FIG.
FIG. 12 is a longitudinal sectional view for explaining the structure of a stator applied to a linear motor according to Embodiment 8 of the present invention.

図12において、バックヨーク11Aは、磁性材料を用いて矩形平板状に作製され、溝方向をバックヨーク11Aの短辺の長さ方向とする断面半円形の溝41がバックヨーク11Aの表面にその長辺の長さ方向に所定のピッチで配列するように凹設されている。半円筒体に作製された永久磁石42が必要に応じて接着剤を塗布されて各溝41内に挿入、保持されている。さらに、磁気飽和緩和部材としての軟磁性材料からなる半円柱状の磁石押さえ部材43が永久磁石42の内周側に挿入され、永久磁石42からの延出端をバックヨーク11Aに締着して取り付けられている。ここで、永久磁石42には、例えば半円筒体に作製されたNd−Fe−B系焼結磁石が用いられ、半径方向に磁化されている。この半円筒体の永久磁石42は、リング磁石を2分割してから着磁を行うことにより、容易に作製することができる。そして、磁化方向Aを径方向内方とする永久磁石42と磁化方向Aを径方向外方とする永久磁石42とをバックヨーク11Aの長辺の長さ方向に交互に並べることで界磁極14Aを構成している。   In FIG. 12, the back yoke 11A is manufactured in a rectangular flat plate shape using a magnetic material, and a semicircular groove 41 having a groove direction in the length direction of the short side of the back yoke 11A is formed on the surface of the back yoke 11A. It is recessed so that it may arrange with a predetermined pitch in the length direction of a long side. A permanent magnet 42 formed in a semi-cylindrical body is inserted and held in each groove 41 with an adhesive applied as necessary. Further, a semi-cylindrical magnet pressing member 43 made of a soft magnetic material as a magnetic saturation relaxation member is inserted on the inner peripheral side of the permanent magnet 42, and the extending end from the permanent magnet 42 is fastened to the back yoke 11A. It is attached. Here, for example, an Nd—Fe—B based sintered magnet produced in a semi-cylindrical body is used as the permanent magnet 42 and is magnetized in the radial direction. The semi-cylindrical permanent magnet 42 can be easily manufactured by magnetizing after dividing the ring magnet into two. Then, the permanent magnets 42 having the magnetization direction A radially inward and the permanent magnets 42 having the magnetization direction A radially outward are alternately arranged in the length direction of the long side of the back yoke 11A to thereby form the field pole 14A. Is configured.

このように構成された固定子10Gにおいても、永久磁石42をハルバッハ配列に近い磁束の流れを発生させることで界磁極14Aを構成しているので、界磁極14Aの磁場発生側に形成される周期磁場が略正弦波となる。また、半円筒体の永久磁石42の内径側に軟磁性材料からなる磁石押さえ部材43が配設されているので、永久磁石42の磁場発生側での磁気飽和が緩和され、発生磁場を高くできる。   Also in the stator 10G configured as described above, the field pole 14A is configured by causing the permanent magnet 42 to generate a flow of magnetic flux close to the Halbach array, and therefore the period formed on the magnetic field generation side of the field pole 14A. The magnetic field becomes a substantially sine wave. Further, since the magnet pressing member 43 made of a soft magnetic material is disposed on the inner diameter side of the semi-cylindrical permanent magnet 42, the magnetic saturation on the magnetic field generation side of the permanent magnet 42 is alleviated and the generated magnetic field can be increased. .

この実施の形態8によれば、永久磁石42の形状を半円筒体とし、磁化方向Aを径方向内方とする永久磁石42と磁化方向Aを径方向外方とする永久磁石42とを交互に並べているので、固定子端部を考慮して端部に位置する永久磁石を2分割する必要がなく、固定子の作製が容易となる。つまり、配列された永久磁石42間の中点を固定子端部とするように固定子を作製すればよく、要求されるバックヨーク11Aの長さに合わせた固定子を簡易に作製することができる。   According to the eighth embodiment, the permanent magnet 42 has a semi-cylindrical shape, and the permanent magnet 42 having the magnetization direction A radially inward and the permanent magnet 42 having the magnetization direction A radially outward are alternated. Therefore, it is not necessary to divide the permanent magnet located at the end portion into two considering the end portion of the stator, and the stator can be easily manufactured. That is, the stator may be manufactured so that the midpoint between the arranged permanent magnets 42 is the end of the stator, and the stator can be easily manufactured according to the required length of the back yoke 11A. it can.

また、上記実施の形態1乃至7では、非磁性材料からなるスペーサを副磁極永久磁石とバックヨークとの間に介装し、副磁極永久磁石の磁石量を削減して、低価格化を図っている。この実施の形態8では、半円筒体に作製された永久磁石42の磁化方向Aを変えるだけでよく、主磁極永久磁石と副磁極永久磁石とを作製する必要がなく、部品点数を削減することができ、組み立て工数が削減され、低価格化が図られる。   In the first to seventh embodiments, a spacer made of a non-magnetic material is interposed between the sub magnetic pole permanent magnet and the back yoke to reduce the magnet amount of the sub magnetic pole permanent magnet, thereby reducing the cost. ing. In the eighth embodiment, it is only necessary to change the magnetization direction A of the permanent magnet 42 formed in the semi-cylindrical body, and it is not necessary to prepare the main magnetic pole permanent magnet and the sub magnetic pole permanent magnet, and the number of parts is reduced. As a result, the number of assembly steps can be reduced and the price can be reduced.

この実施の形態8においても、上記実施の形態5乃至7で説明したように、半円筒体の永久磁石を収納するための収納穴が形成された磁性板を積層一体化して固定子コアを作製し、固定子コアの収納穴に永久磁石を埋め込んで固定子を作製してもよい。
また、この実施の形態8では、半円筒体に作製された永久磁石を用いるものとしているが、永久磁石の形状は半円筒体に限定されるものではなく、円弧アーチ形状の筒体であればよい。ここで、円弧アーチ形状の筒体とは、円筒体の一部を半径方向と直交する平面で切り取った中心角が180°以下の筒体である。中心角が180°の円弧アーチ形状の筒体が半円筒体に相当する。そして、中心角を180°未満とする円弧アーチ形状の筒体で永久磁石を作製すれば、バックヨークの厚みを薄くすることができる。
Also in the eighth embodiment, as described in the fifth to seventh embodiments, a stator core is manufactured by stacking and integrating magnetic plates formed with storage holes for storing semi-cylindrical permanent magnets. The stator may be manufactured by embedding a permanent magnet in the accommodation hole of the stator core.
In the eighth embodiment, the permanent magnet manufactured in the semi-cylindrical body is used. However, the shape of the permanent magnet is not limited to the semi-cylindrical body, and any cylindrical arc-shaped cylinder may be used. Good. Here, the circular arc-shaped cylinder is a cylinder having a central angle of 180 ° or less obtained by cutting a part of the cylinder along a plane perpendicular to the radial direction. A circular arc-shaped cylinder having a central angle of 180 ° corresponds to a semi-cylindrical body. And if a permanent magnet is produced with the circular arc-shaped cylinder which makes a center angle less than 180 degrees, the thickness of a back yoke can be made thin.

なお、上記各実施の形態では、主磁極永久磁石、副磁極永久磁石、および永久磁石にNd−Fe−B系焼結磁石を用いるものとしているが、使用する磁石の材料は問わず、例えばフェライト磁石、希土類磁石、鋳造磁石、ボンド磁石などが使用可能である。
また、上記各実施の形態では、磁石押さえ部材にFe−Co−V系の材料や珪素鋼板を用いるものとしているが、磁石押さえ部材は軟磁性材料であればよく、例えば純鉄、軟鋼などが使用可能である。
In each of the above-described embodiments, the main magnetic pole permanent magnet, the sub magnetic pole permanent magnet, and the permanent magnet are Nd—Fe—B based sintered magnets. Magnets, rare earth magnets, cast magnets, bonded magnets and the like can be used.
In each of the above embodiments, an Fe-Co-V material or a silicon steel plate is used for the magnet pressing member. However, the magnet pressing member may be a soft magnetic material, such as pure iron or mild steel. It can be used.

この発明の実施の形態1に係るリニアモータを模式的に示す横断面図である。1 is a cross-sectional view schematically showing a linear motor according to Embodiment 1 of the present invention. この発明の実施の形態1に係るリニアモータの主要部の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the principal part of the linear motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るリニアモータにおけるスペーサ高さと発生磁界との関係を示す図である。It is a figure which shows the relationship between the spacer height and generated magnetic field in the linear motor which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るリニアモータに適用される固定子の構成を説明する斜視図である。It is a perspective view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るリニアモータに適用される固定子の構成を説明する斜視図である。It is a perspective view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 7 of this invention. この発明の実施の形態8に係るリニアモータに適用される固定子の構成を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the structure of the stator applied to the linear motor which concerns on Embodiment 8 of this invention.

符号の説明Explanation of symbols

5 可動子、7 コイル、10,10A,10B,10C,10D,10E,10F,10G 固定子、11,11A バックヨーク、11a 主面、12 主磁極永久磁石、12A 分割主磁極永久磁石、13 副磁極永久磁石、13A 分割副磁極永久磁石、14,14A 界磁極、15 磁石押さえ部材(磁気飽和緩和部材)、16 スペーサ、16A 分割スペーサ、17 磁石押さえ部材(磁気飽和緩和部材)、17A 分割磁石押さえ部材(磁気飽和緩和部材)、17a 鍔部、20 ネジ、21 スペーサ、21A 分割スペーサ、30,30A,30B 固定子コア、31,31A,31B 磁性板、32 ベース部、33 突起部、33A 分割突起部、34 スロット部(副磁極永久磁石収納穴)、34a 分割スロット部(副磁極永久磁石収納穴)、35,35a 収納穴(主磁極永久磁石収納穴)、36,36a 収納穴(空孔)、42 永久磁石、43 磁石押さえ部材(磁気飽和緩和部材)、A 磁化方向。   5 Movers, 7 coils, 10, 10A, 10B, 10C, 10D, 10E, 10F, 10G Stator, 11, 11A Back yoke, 11a main surface, 12 main magnetic pole permanent magnet, 12A split main magnetic pole permanent magnet, 13 sub Magnetic pole permanent magnet, 13A divided sub magnetic pole permanent magnet, 14, 14A field magnetic pole, 15 magnet pressing member (magnetic saturation relaxation member), 16 spacer, 16A divided spacer, 17 magnet pressing member (magnetic saturation relaxation member), 17A divided magnet pressing member Member (magnetic saturation relaxation member), 17a collar, 20 screw, 21 spacer, 21A split spacer, 30, 30A, 30B stator core, 31, 31A, 31B magnetic plate, 32 base, 33 protrusion, 33A split protrusion Part, 34 slot part (sub-pole permanent magnet storage hole), 34a split slot part (sub-pole permanent magnet) Stone storage hole), 35, 35a storage hole (main magnetic pole permanent magnet storage hole), 36, 36a storage hole (hole), 42 permanent magnet, 43 magnet pressing member (magnetic saturation relaxation member), A magnetization direction.

Claims (8)

発生磁界の方向に磁化された主磁極永久磁石と前記主磁極永久磁石の磁極の向きと異なるように磁化された副磁極永久磁石とをバックヨークの主面上に交互に直線状に配列して構成された固定子と、コイルを有し、前記固定子に対して所定の隙間を有して移動可能に配設された可動子と、を備え、前記コイルに通電することにより前記固定子上を前記主磁極永久磁石と前記副磁極永久磁石との配列方向に前記可動子を移動させるリニアモータであって、
前記主磁極永久磁石は、前記バックヨークの主面に直交する方向とする磁化方向が交互に逆向きとなるように配列され、
前記副磁極永久磁石は、前記可動子の移動方向とする磁化方向が交互に逆向きとなるように配列され、
軟磁性材料からなる磁気飽和緩和部材が前記主磁極永久磁石の磁界発生側に配設され、
非磁性材料からなるスペーサ又は空気層が前記副磁極永久磁石と前記バックヨークとの間に介装されていることを特徴とするリニアモータ。
A main magnetic pole permanent magnet magnetized in the direction of the generated magnetic field and a sub magnetic pole permanent magnet magnetized differently from the direction of the magnetic pole of the main magnetic pole permanent magnet are alternately arranged linearly on the main surface of the back yoke. A stator having a coil, and a mover that has a coil and is movably disposed with a predetermined gap with respect to the stator. A linear motor that moves the mover in the arrangement direction of the main magnetic pole permanent magnet and the auxiliary magnetic pole permanent magnet,
The main magnetic pole permanent magnets are arranged so that the magnetization directions which are perpendicular to the main surface of the back yoke are alternately reversed,
The sub-pole permanent magnets are arranged so that the magnetization directions as the moving directions of the movers are alternately reversed,
A magnetic saturation relaxation member made of a soft magnetic material is disposed on the magnetic field generating side of the main magnetic pole permanent magnet,
A linear motor, wherein a spacer or an air layer made of a nonmagnetic material is interposed between the auxiliary magnetic pole permanent magnet and the back yoke.
前記磁気飽和緩和部材が上記バックヨークに固着され、前記主磁極永久磁石が該磁気飽和緩和部材と該バックヨークとの間に保持されていることを特徴とする請求項1記載のリニアモータ。   2. The linear motor according to claim 1, wherein the magnetic saturation relaxation member is fixed to the back yoke, and the main magnetic pole permanent magnet is held between the magnetic saturation relaxation member and the back yoke. 前記磁気飽和緩和部材の前記主磁極永久磁石と反対側の端部の前記可動子の移動方向の縁部が前記副磁極永久磁石の前記バックヨークと反対側の表面に当接し、該副磁極永久磁石が該磁気飽和緩和部材と該バックヨークとの間に保持されていることを特徴とする請求項2記載のリニアモータ。   An edge portion of the end of the magnetic saturation relaxation member opposite to the main magnetic pole permanent magnet in the moving direction of the mover contacts the surface of the sub magnetic pole permanent magnet opposite to the back yoke, and the sub magnetic pole permanent magnet The linear motor according to claim 2, wherein a magnet is held between the magnetic saturation relaxation member and the back yoke. 前記固定子は、前記バックヨーク、および前記磁気飽和緩和部材が一体に構成され、前記主磁極永久磁石が挿入、保持される主磁極永久磁石収納穴、前記副磁極永久磁石が挿入、保持される副磁極永久磁石収納穴、および前記スペーサが挿入、保持される、又は空気層が形成される空孔が形成された固定子コアを備えていることを特徴とする請求項1記載のリニアモータ。   In the stator, the back yoke and the magnetic saturation relaxation member are integrally configured, and a main magnetic pole permanent magnet housing hole into which the main magnetic pole permanent magnet is inserted and held, and the auxiliary magnetic pole permanent magnet are inserted and held. The linear motor according to claim 1, further comprising a stator core having a sub-magnetic pole permanent magnet housing hole and a hole in which the spacer is inserted, held, or formed with an air layer. 永久磁石をバックヨーク上に直線状に配列して構成された固定子と、コイルを有し、前記固定子に対して所定の隙間を有して移動可能に配設された可動子と、を備え、前記コイルに通電することにより前記固定子上を前記永久磁石の配列方向に前記可動子を移動させるリニアモータであって、
前記永久磁石は、磁化方向を径方向とする円弧アーチ形状の筒体に作製され、該円弧アーチ形状の筒体の内径側を前記可動子側に向けて、かつ磁化方向が径方向内方と径方向外方とに交互に向くように直線状に配列され、
軟磁性材料からなる磁気飽和緩和部材が前記永久磁石の内径側に配設されていることを特徴とするリニアモータ。
A stator configured by linearly arranging permanent magnets on a back yoke, and a mover that has a coil and is movably disposed with a predetermined gap with respect to the stator. A linear motor that moves the mover in the arrangement direction of the permanent magnet on the stator by energizing the coil,
The permanent magnet is manufactured in a circular arc-shaped cylinder whose magnetization direction is a radial direction, the inner diameter side of the circular arc-shaped cylinder is directed to the mover side, and the magnetization direction is a radially inward direction. It is arranged in a straight line so as to alternately turn radially outward,
A linear motor, wherein a magnetic saturation relaxation member made of a soft magnetic material is disposed on the inner diameter side of the permanent magnet.
前記磁気飽和緩和部材が上記バックヨークに固着され、前記永久磁石が該磁気飽和緩和部材と該バックヨークとの間に保持されていることを特徴とする請求項5記載のリニアモータ。   6. The linear motor according to claim 5, wherein the magnetic saturation relaxation member is fixed to the back yoke, and the permanent magnet is held between the magnetic saturation relaxation member and the back yoke. 前記固定子は、前記バックヨーク、および前記磁気飽和緩和部材が一体に構成され、前記永久磁石が挿入、保持される永久磁石収納穴が形成された固定子コアを備えていることを特徴とする請求項5記載のリニアモータ。   The stator includes a stator core in which the back yoke and the magnetic saturation relaxation member are integrally formed, and a permanent magnet housing hole into which the permanent magnet is inserted and held is formed. The linear motor according to claim 5. 前記固定子コアは軟磁性材料からなる板部材を積層して構成されていることを特徴とする請求項4又は請求項7記載のリニアモータ。   The linear motor according to claim 4 or 7, wherein the stator core is configured by laminating plate members made of a soft magnetic material.
JP2008223276A 2008-09-01 2008-09-01 Linear motor Active JP5294762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223276A JP5294762B2 (en) 2008-09-01 2008-09-01 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223276A JP5294762B2 (en) 2008-09-01 2008-09-01 Linear motor

Publications (2)

Publication Number Publication Date
JP2010063201A true JP2010063201A (en) 2010-03-18
JP5294762B2 JP5294762B2 (en) 2013-09-18

Family

ID=42189395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223276A Active JP5294762B2 (en) 2008-09-01 2008-09-01 Linear motor

Country Status (1)

Country Link
JP (1) JP5294762B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130871A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Linear motor
CN101814819A (en) * 2010-05-11 2010-08-25 南通大学 Independent sinusoidal driving permanent magnet synchronous fault-tolerant linear motor
JP2011217499A (en) * 2010-03-31 2011-10-27 Ishii Kosaku Kenkyusho:Kk Linear motor
EP2424088A2 (en) 2010-08-24 2012-02-29 Kabushiki Kaisha Yaskawa Denki Linear motor
CN102497082A (en) * 2011-11-30 2012-06-13 哈尔滨工业大学 Magnetic field modulation type flat plate type transverse flux linear motor
JP2013106458A (en) * 2011-11-15 2013-05-30 Yaskawa Electric Corp Linear motor
JP2014220930A (en) * 2013-05-09 2014-11-20 三菱電機株式会社 Magnet type rotary electrical machinery
WO2015072328A1 (en) * 2013-11-12 2015-05-21 日立金属株式会社 Magnetic-field generation device and linear motor
CN104767346A (en) * 2015-04-27 2015-07-08 重庆大学 Electromagnetic type vibration energy collector based on Halbach array
JP2015171285A (en) * 2014-03-10 2015-09-28 三菱電機株式会社 Electric machine
CN105305770A (en) * 2015-11-04 2016-02-03 河南理工大学 High-efficiency high-thrust double-sided linear motor
US20160241120A1 (en) * 2015-02-17 2016-08-18 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
JP2016163366A (en) * 2015-02-26 2016-09-05 日立金属株式会社 Assembly method of magnetic field generating device and magnetic field generating device
CN106655696A (en) * 2016-11-30 2017-05-10 歌尔股份有限公司 Linear vibration motor
US9893571B2 (en) 2011-07-08 2018-02-13 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
EP3324526A1 (en) * 2016-11-21 2018-05-23 Panasonic Intellectual Property Management Co., Ltd. Magnetic field generating member and motor including same
CN109698600A (en) * 2018-12-10 2019-04-30 中国科学院电工研究所 A kind of linear motor with auxiliary weak magnetic structure
JP2020102987A (en) * 2018-12-25 2020-07-02 株式会社神戸製鋼所 Electric motor
WO2020224281A1 (en) * 2019-05-07 2020-11-12 歌尔股份有限公司 Device for producing sound by means of vibration, and electronic product
CN113300567A (en) * 2021-06-15 2021-08-24 东南大学 Motor based on improve Halbach magnetization
US20210313867A1 (en) * 2018-10-19 2021-10-07 Kyb Corporation Tubular linear motor
WO2024074810A1 (en) * 2022-10-04 2024-04-11 Safran Electrical & Power Rotor for an electrical machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556624A (en) * 1991-08-26 1993-03-05 Shinko Electric Co Ltd Stator for linear motor
JP2004350427A (en) * 2003-05-22 2004-12-09 Denso Corp Rotating electric machine and its rotor
JP2007006545A (en) * 2005-06-21 2007-01-11 Yaskawa Electric Corp Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor
JP2007019127A (en) * 2005-07-06 2007-01-25 Yaskawa Electric Corp Periodic magnetic field generator and linear motor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556624A (en) * 1991-08-26 1993-03-05 Shinko Electric Co Ltd Stator for linear motor
JP2004350427A (en) * 2003-05-22 2004-12-09 Denso Corp Rotating electric machine and its rotor
JP2007006545A (en) * 2005-06-21 2007-01-11 Yaskawa Electric Corp Periodical magnetic filed generator and linear motor employing it, rotatory motor, oscillating motor
JP2007019127A (en) * 2005-07-06 2007-01-25 Yaskawa Electric Corp Periodic magnetic field generator and linear motor using the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130871A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Linear motor
JP2011217499A (en) * 2010-03-31 2011-10-27 Ishii Kosaku Kenkyusho:Kk Linear motor
CN101814819A (en) * 2010-05-11 2010-08-25 南通大学 Independent sinusoidal driving permanent magnet synchronous fault-tolerant linear motor
US8502423B2 (en) 2010-08-24 2013-08-06 Kabushiki Kaisha Yaskawa Denki Linear motor
EP2424088A2 (en) 2010-08-24 2012-02-29 Kabushiki Kaisha Yaskawa Denki Linear motor
CN102377319A (en) * 2010-08-24 2012-03-14 株式会社安川电机 Linear motor
US9893571B2 (en) 2011-07-08 2018-02-13 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
JP2013106458A (en) * 2011-11-15 2013-05-30 Yaskawa Electric Corp Linear motor
CN102497082A (en) * 2011-11-30 2012-06-13 哈尔滨工业大学 Magnetic field modulation type flat plate type transverse flux linear motor
JP2014220930A (en) * 2013-05-09 2014-11-20 三菱電機株式会社 Magnet type rotary electrical machinery
US9735637B2 (en) 2013-05-09 2017-08-15 Mitsubishi Electric Corporation Magnet-type rotating electric machine
WO2015072328A1 (en) * 2013-11-12 2015-05-21 日立金属株式会社 Magnetic-field generation device and linear motor
JP2015171285A (en) * 2014-03-10 2015-09-28 三菱電機株式会社 Electric machine
JP2016152668A (en) * 2015-02-17 2016-08-22 住友重機械工業株式会社 Linear motor, magnet unit, stage device
US20160241120A1 (en) * 2015-02-17 2016-08-18 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
US10381911B2 (en) 2015-02-17 2019-08-13 Sumitomo Heavy Industries, Ltd. Linear motor, magnet unit, and stage device
JP2016163366A (en) * 2015-02-26 2016-09-05 日立金属株式会社 Assembly method of magnetic field generating device and magnetic field generating device
CN104767346A (en) * 2015-04-27 2015-07-08 重庆大学 Electromagnetic type vibration energy collector based on Halbach array
CN105305770A (en) * 2015-11-04 2016-02-03 河南理工大学 High-efficiency high-thrust double-sided linear motor
JP2018085791A (en) * 2016-11-21 2018-05-31 パナソニックIpマネジメント株式会社 Magnetic field generation member and motor including the same
EP3324526A1 (en) * 2016-11-21 2018-05-23 Panasonic Intellectual Property Management Co., Ltd. Magnetic field generating member and motor including same
CN106655696A (en) * 2016-11-30 2017-05-10 歌尔股份有限公司 Linear vibration motor
US20210313867A1 (en) * 2018-10-19 2021-10-07 Kyb Corporation Tubular linear motor
CN109698600A (en) * 2018-12-10 2019-04-30 中国科学院电工研究所 A kind of linear motor with auxiliary weak magnetic structure
JP2020102987A (en) * 2018-12-25 2020-07-02 株式会社神戸製鋼所 Electric motor
JP7063800B2 (en) 2018-12-25 2022-05-09 株式会社神戸製鋼所 Electric motor
WO2020224281A1 (en) * 2019-05-07 2020-11-12 歌尔股份有限公司 Device for producing sound by means of vibration, and electronic product
CN113300567A (en) * 2021-06-15 2021-08-24 东南大学 Motor based on improve Halbach magnetization
WO2024074810A1 (en) * 2022-10-04 2024-04-11 Safran Electrical & Power Rotor for an electrical machine

Also Published As

Publication number Publication date
JP5294762B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5294762B2 (en) Linear motor
JP5253114B2 (en) Linear motor
JP5370313B2 (en) Linear motor
JP5188357B2 (en) Linear motor
JP5655071B2 (en) Linear motor
JP5750358B2 (en) Electric machine
WO2010058500A1 (en) Movable element, armature, and linear motor
JP2014050211A (en) Permanent magnet rotary electric machine
JP2010141978A (en) Thrust generation mechanism
JP5527426B2 (en) Linear motor
JP7079444B2 (en) Cylindrical linear motor
JP2011155757A (en) Linear motor
JP5678025B2 (en) Thrust generating mechanism
JP5386925B2 (en) Cylindrical linear motor
JP5589507B2 (en) Mover and stator of linear drive unit
JP6345355B1 (en) Linear motor
JP5447308B2 (en) Linear motor
JP5345047B2 (en) Linear motor
JP2013138592A (en) Linear motor including magnet member and manufacturing method of magnet member
JP6947340B1 (en) Field magnet and motor with field magnet
JP5874246B2 (en) Linear drive mover
JP2023069885A (en) Cylindrical type liner motor
JP2016046999A (en) Linear motor
JP2006174700A (en) Linear motor
JP5953688B2 (en) Linear drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5294762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250