WO2015068984A1 - 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법 - Google Patents

기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법 Download PDF

Info

Publication number
WO2015068984A1
WO2015068984A1 PCT/KR2014/010318 KR2014010318W WO2015068984A1 WO 2015068984 A1 WO2015068984 A1 WO 2015068984A1 KR 2014010318 W KR2014010318 W KR 2014010318W WO 2015068984 A1 WO2015068984 A1 WO 2015068984A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellet
air
dryer
sludge
storage tank
Prior art date
Application number
PCT/KR2014/010318
Other languages
English (en)
French (fr)
Inventor
배희동
Original Assignee
배희동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배희동 filed Critical 배희동
Priority to CN201480060411.8A priority Critical patent/CN105745175A/zh
Publication of WO2015068984A1 publication Critical patent/WO2015068984A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/16Treatment of sludge; Devices therefor by de-watering, drying or thickening using drying or composting beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention uses low-temperature air dried on sewage sludge generated through sewage treatment, industrial sludge generated in an industrial site, and the like, while low temperature drying is performed while continuously circulating air discharged from the dryer through a condensation process.
  • the present invention relates to an airflow circulation type low temperature hot air sludge drying treatment facility and a treatment method that minimizes the occurrence of odor and waste water treatment by increasing economic efficiency by utilizing waste heat.
  • Sewage sludge generated through sewage treatment, as well as industrial sludge produced in the industry, is not only high in organic matter generating odor, but also composed of highly volatile substances. It is known to have many obstacles in drying and using it as renewable energy.
  • the final dry air is burned in an incinerator or a combustion furnace to remove fat or oil, or it is installed in biofilters and various odor prevention facilities to remove odors. Increasing input costs and difficulties in operating facility facilities.
  • the heat energy input basis drying process which considers the temperature rise and evaporative latent heat, calculates the heat efficiency and calculates the amount of heat input, is applied to sludge drying. Since heat is required, it is known to be a very limited technique for solving problems such as odor generation and vaporization of volatile organic matter.
  • the steam generated in the drying process is recovered to condensed water. Since the high temperature water vapor is accompanied by evaporation of organic matter, the condensed water condensed has a very high pollution load (high COD, BOD, and TN) are generated at this time, and a high pollution concentration wastewater treatment process is required to treat them.
  • high COD, BOD, and TN very high pollution load
  • the drying process by the high temperature requires a lot of land area not only for the installation of the drying facility but also for the construction of the wastewater treatment plant. Therefore, considering the additional costs such as facility investment and operating costs of the drying facility and additionally the wastewater treatment plant construction and operation costs, It can cause many problems.
  • the technique has a structure in which a heat source supplied to a dryer using a boiler is discharged to the outside through a filter.
  • the air discharged after drying is required to be installed in an incinerator, a combustion furnace, etc., or to install an additional facility that requires the removal of filter and various odor prevention facilities. There was a problem that occurred.
  • Patent Document 1 KR 10-0892649 (2009.04.20)
  • Airflow circulation type low temperature hot air sludge drying treatment equipment and treatment method of the present invention to solve the problems caused in the prior art as described above, when drying the sludge by using a low temperature hot air when drying the odor generated during high temperature drying
  • reduce the contaminant load of condensate do not introduce wastewater treatment process, and circulate low-temperature hot air required for drying, thereby fundamentally blocking external emissions
  • Cooling air can be cooled to ambient temperature to reduce operating costs for equipment operation, and calorie supply to heat up the air required for drying allows heat to be input by heat exchange of various types of waste heat such as steam or incineration waste heat.
  • the sludge dewatering cake which has been carried in or dehydrated is pulverized and dried with sludge pellets with a water content of 10% or less, and then the powder content is lowered to around 50%, and formed into pellets and then put into a dryer.
  • the relative humidity is 60% or less and the temperature of the air to be introduced is 0 to 120.
  • Condensed water minimizes volatilization so that it can be discharged at low pollutant loads that can be discharged directly. It is to acid.
  • Air flow circulation type low temperature hot air sludge drying treatment equipment of the present invention in order to solve the above problems, the sludge storage tank (1) in which sludge is introduced into one side and stored; Pellet powder storage tank (2) is stored in which the pulverized pellet dried to one side flows into the moisture control agent; Sludge is connected to the sludge storage tank (1) is supplied to the inside, and the pulverized pellet dried and connected to the pellet powder storage tank (2) is introduced as a moisture control agent to mix the sludge and the dried crushed pellet to the moisture of the introduced sludge A mixer 3 for adjusting; A screen sorting device (4) for separating and separating the foreign matter from the mixture mixed in the constant mixer (3); An extrusion pellet molding machine 5 which receives the mixture separated from the foreign matter in the screen sorting device 4 and extrudates the pellet into a pellet having a predetermined size; The pellet is molded by the extrusion pellet molding machine 5 to one side, and the pellet is dried at low temperature and low humidity by receiving low-temperature
  • a dryer 6 characterized in that 0 to 65%; A dry pellet storage tank (7) connected to the dryer (6) to store the pellet dried in the dryer (6); A bidirectional discharger 8 connected to the dry pellet storage tank 7 to discharge the dried pellets in both directions; One side is connected to the bidirectional discharger (8) to pulverize the dry pellet discharged to one side of the bidirectional discharger (8) to produce a pulverized pellet, the other side is connected to the pellet powder storage tank (2) pellet pellet storage tank ( A dry pellet grinder 9 for feeding into 2); A cyclone (10) connected to the dryer to remove dust from the air in the dryer; One side is piped to the cyclone 10 to remove moisture in the air passing through the cyclone 10, the other side is piped to the dryer 6 to supply the air from which moisture is removed to the dryer 6 A water condenser 11; A condensed water storage tank 12 connected to the water condenser 11 and storing water condensed in the water condenser 11; A heat supply device 13 connected to a pipe between the
  • the sludge storage tank 1 and the pellet powder storage tank 2 is characterized in that the quantitative measuring device 16 is connected to each other to adjust the proportion of the raw material supplied to the mixer (3).
  • the heat supply device 13 is characterized in that consisting of a heat exchanger pipe connected to the waste heat discharge device 22 for generating external waste heat.
  • the discharge side of the condensate storage tank 12 and the supply side of the water condenser 11 is connected to the pipe is characterized in that for supplying the water condensed in the water condenser 11 to the cooling water of the water condenser (11).
  • the sludge as a main raw material is stored in the sludge storage tank, and the pulverized pellet dried as a moisture control agent is stored in the pellet powder storage tank (2).
  • An initial treatment step A mixing step of mixing the sludge and the dried pulverized pellet into the mixer 3 so that the water content of the mixture is 45 to 60%;
  • a sorting step of supplying the mixture to the screen sorting apparatus 4 to selectively separate the foreign substances contained in the mixture;
  • An extrusion molding step of feeding the mixture from which foreign matter is separated through the screen sorting device (4) to the extrusion pellet molding machine (5) and extruding the mixture into pellets of a predetermined size;
  • the pellet produced in the extrusion pellet molding machine (5) is introduced into the dryer (6), and the air discharged from the heat supply device (13) or the water condenser (11) is supplied to the dryer (6).
  • a drying step of maintaining the supplied air in a range of 1 to 120 ° C.
  • the heat supply device 13 supplies the air heat-exchanged with the external waste heat or the external waste heat to the dryer 6 using the heat supply device 13, and the supplied air is composed of a temperature of 1 to 120 ° C.
  • It is configured to include; a dry air supply step of supplying the air discharged from the (11) with the heat of the outside heat to the dryer 6 at a temperature of 1 ⁇ 120 °C, relative humidity 0 ⁇ 65%.
  • the present invention it is possible to actively cope with the offshore dumping prohibition policy compared to the passive method that has been disposed of or dumped by ocean dumping, and especially in the case of a workplace where low temperature waste heat is generated according to the sludge generation amount, sludge drying Although many difficulties have been experienced in the treatment, the sludge treatment can be treated very economically and effectively when the present invention is applied, thereby minimizing the sludge treatment cost.
  • the moisture content of the dried product can be dried to 10% or less, so that the dry sludge can be sold outside according to the low calorific value (energy content), and due to the problem of lack of storage space, difficulty in handling due to corruption and odor generation, etc. Discomfort that could not be handled can be completely solved by drying with a dry air stream circulation method, and by drying at a low temperature (0 ⁇ 120 ° C.), waste heat of low temperature can be utilized, thereby greatly improving economic efficiency.
  • FIG. 1 is a block diagram showing the air flow circulation type low temperature hot air sludge drying treatment equipment of the present invention.
  • Figure 2 is a block diagram showing the air flow circulation type low temperature hot air sludge drying treatment method of the present invention.
  • FIG. 3 is a block diagram showing an embodiment of a heat supply device in the present invention.
  • Sludge is an organic and inorganic complex produced during sewage or wastewater treatment process. Even though it is produced by reducing the volume and weight through the dehydration process, the sludge has water content of about 78 to 83% by weight. In addition, it is difficult to treat, and it has a characteristic that it requires a lot of energy cost when it is dried.
  • the airflow circulation type low temperature hot air sludge drying treatment apparatus of the present invention is largely a sludge storage tank (1), pellet powder storage tank (2), mixer (3), screen sorting device (4), extrusion pellet molding machine (5), dryer (6) And a dry pellet storage tank (7), a bidirectional discharger (8), a dry pellet mill (9), a cyclone (10), a water condenser (11), a condensate water storage tank (12), and a heat supply device (13).
  • a transfer device 14 such as a conveying conveyor or a screw conveyor is provided in a path in which a liquid or solid object is transferred between each component, in particular, to transfer raw materials between the respective components.
  • the elevator 15 was installed.
  • the air for drying, waste heat, and the movement path of the air after drying are connected between the components by a pipe.
  • sludge is introduced into and stored from the outside, and a lower conveying device 14 such as a screw conveyor for external discharge of the sludge is connected.
  • the sludge stored in the sludge storage tank (1) is about 78 to 83% by weight even if the sludge is produced by reducing the volume and weight of the organic and inorganic complexes generated during the sewage or wastewater treatment process through the dehydration process. It has a moisture content.
  • Pellet powder storage tank 2 is a component of the present invention is the pulverized pellets dried from one side flows into the moisture control agent is stored, and the transfer device 14, such as a screw conveyor is connected to the lower to discharge the moisture control agent have.
  • the moisture control agent to be stored in the pellet powder storage tank (2) is a dry pulverized pellet formed by grinding in a dry pellet mill (9).
  • the use of the dried grinding pellets as a moisture control agent is made in a continuous circulation process, and during the initial operation of the operation, without supplying the dried grinding pellets or by separately supplying a pellet having a moisture content of 10% by weight or less to be operated. Can be.
  • the mixer 3 which is a component of the present invention, is connected by the sludge storage tank 1 and the conveying device 14, as shown in FIG. 1, and the sludge is supplied to the inside, and the pellet powder storage tank 2 is also provided.
  • the pulverized pellets connected and connected by the transfer device 14 are introduced as a moisture control agent to mix the sludge and the dried pulverized pellets so as to control the moisture of the introduced sludge.
  • the final moisture content of the mixture is preferably 45 to 60% by weight.
  • the sludge storage tank 1 and the pellet powder storage tank 2 is a raw material fed to the mixer 3 because the quantitative measuring device 16 is connected, respectively. It is desirable to adjust the ratio of.
  • a monopump may be used for quantitative supply of sludge.
  • the mixer 3 is connected to the transfer device 14, such as a screw conveyor, as shown in the lower portion is configured to supply the mixture to the screen selection device (4).
  • Screen sorting device (4) which is a component of the present invention, if foreign matter is included in the mixture to be introduced, it causes an obstacle during pellet molding in the extruded pellet molding machine (5) installed thereafter, thus removing foreign matter through the screen. Done.
  • the screen it is desirable to have a size not to pass particles of 5 mm or more in diameter.
  • the foreign substances that do not pass through the screen of the screen sorting device 4 are discharged to the outside, and the passed mixture is moved to the mixture storage tank 16 and stored as shown in the drawing.
  • the mixture storage tank 16 is connected to the transfer device 14, such as a screw conveyor is installed to be able to transfer the mixture to the extrusion pellet molding machine (5).
  • the first two-way ejector 17 is installed to separately process the mixture for pellet molding and to separate treatment without pellet molding. May be selectively classified.
  • Extruded pellet molding machine (5) is a component of the present invention is to be extrusion molded into pellets of a predetermined size by receiving the mixture separated from the foreign matter in the screen sorting device 4 directly or through the mixture reservoir (16).
  • Extruded pellet molding machine (5) consists of a hopper for storing the supplied mixture, and a molding machine connected to the hopper for extrusion molding the mixture.
  • Such extrusion pellet molding machine 5 may be composed of various known extrusion pellet molding machines.
  • the pellet produced through the extrusion process is in a state in which the water content is 45 to 60% by weight.
  • the second bidirectional ejector 18 is formed and the pellet is completed. May optionally be fed to the dryer 6 and the incomplete molding may be discharged or re-injected into the hopper.
  • Suitably shaped pellets are preferably made of 6-12 mm in diameter.
  • Dryer 6 which is a component of the present invention, receives the pellets formed in the extruded pellet molding machine 5 to one side as shown, and receives the air of low temperature and low humidity from the other side to dry the molded pellets at low temperature and low humidity. It consists of
  • the dryer 6 is preferably a mixed flow dryer of a low temperature hot air input method (Mixed flow dryer).
  • the bucket elevator 15 is installed between the extruded pellet molding machine 5 and the dryer 6 so that the molded pellets are introduced into the upper part of the dryer 6, and the dried pellet is dried. After being discharged to the lower portion is transferred to the subsequent drying pellet storage tank 7 through a transfer device 14 such as a transfer screw and stored.
  • the low-temperature low-humidity air flowing into the dryer 6 is preferably 1 ⁇ 120 °C, 0 ⁇ 65% relative humidity, the moisture content of the pellet dried through the dryer 6 as described above is 10% by weight or less It is preferable to be.
  • the air cooled by the drying pellet discharged from the dryer 6 is re-introduced to the dryer hot air inlet, it can be recycled heat or utilized for temperature and humidity control.
  • the amount of input air is adjusted to induce evaporative sweating of water while inducing even evaporation of moisture in the mixture, and the air is discharged by adjusting the arrangement of the vent pipe so that the air is discharged constantly. It is recommended to maximize the water evaporation effect by using the convective and mechanical principles of air generated in the process.
  • the air containing moisture in the dryer 6 of the mixer-downward discharge method is immediately discharged through the discharge pipe formed on one side of the dryer 6 to further increase the drying efficiency, so that it can be dried while descending sequentially, and drying It is desirable to allow the dried product to be easily discharged.
  • the drying pellet storage tank 7 which is a component of the present invention stores the dried pellets in the dryer 6 through the transfer device 14 as shown.
  • the bidirectional discharger 8 which is a component of the present invention, is connected to the dry pellet storage tank 7 so as to selectively discharge the dried pellets in both directions.
  • pellets selectively discharged are pulverized through a dry pellet mill 9 and then supplied to the pellet powder storage tank 2 as a moisture control agent, and the excess dry pellets are discharged and stored separately to be used as a renewable energy source. .
  • Dry pellet mill 9 is a component of the present invention, as shown in one side is connected to the bidirectional discharger (8) to crush the dry pellet discharged to one side of the bidirectional discharger (8) to produce a grinding pellet, the other side It is connected to the pellet powder storage tank (2) is made to supply the pulverized pellet to the pellet powder storage tank (2).
  • Cyclone 10 which is a component of the present invention, is connected to the dryer 6 as shown in order to remove dust in the air inside the dryer.
  • a manned blower 19 or a suction pump may be installed between the cyclone 10 and the dryer 6 to discharge the air smoothly.
  • Moisture condenser 11 is a component of the present invention is one side is connected to the pipe and the cyclone 10 to remove moisture in the air passing through the cyclone 10, the other side is connected to the dryer (6) The dehumidified air is supplied to the dryer 6.
  • Condensed water storage tank 12 of the present invention is connected to the water condenser 11 as shown, and is configured to discharge the water condensed in the water condenser 11 by using the storage and discharge pump (20).
  • the heat supply device 13 which is a component of the present invention, is connected to a pipe between the moisture condenser 11 and the dryer 6, as shown, and has a dryer 6 of 1 to 120 ° C and a relative humidity of 0 to 65. It is configured to supply% air.
  • the heat supply device 13 may be configured to supply a high temperature external waste heat by converting it to a low temperature so that the temperature and humidity, and to utilize the low temperature external waste heat as it is.
  • the air discharged through the water condenser 11 may be re-supplied to the dryer 6, but may be supplied to the dryer 6 by 1 to 120 ° C. and a relative humidity of 0 to 65% by utilizing external waste heat. have.
  • the heat exchanger is connected to a waste heat discharge device 22 that generates and discharges external waste heat.
  • the waste waste heat (steam or air) of the external waste heat discharge device 22 flows in to circulate inside and flows out, while the pipe moving from the water condenser 11 to the dryer 6 circulates inside and flows out.
  • the heat exchange is performed between the two pipes so that the temperature of the air moving to the dryer 6 is 1 to 120 ° C. and relative humidity is 0 to 65%.
  • the heat supply device 13 may include a first heat exchanger 13a and a second heat exchanger 13b connected to the waste heat discharge device 22. have.
  • the pipes of the waste heat discharging device 22 are divided into two, and the valve 21 is provided at each branched point, or the check valve is installed at the branched point, so that the first heat exchanger 13a and the second heat exchange are selectively provided. Waste heat can be supplied to the air 13b,
  • One side of the first heat exchanger 13a is connected to the dryer 6 while supplying air to the dryer 6 while supplying heat to the dryer 6, while the second heat exchanger 13b has a dryer ( 6) the other side is connected to the condenser 11 and the pipe, it is possible to install the valve 21 at the confluence of the pipe.
  • the outside air is heat-exchanged with the discharge waste heat of the waste heat generator 20 and is supplied to the dryer 6, and thereafter, the exhaust air of the moisture condenser 11 continuously discharges the waste heat discharge apparatus 22.
  • It is a configuration that is circulated by heat exchange with waste heat.
  • the heat supply device 13 is for supplying dry heat to dry the wet pellets and can be used as dry heat by using various kinds of waste heat (low temperature or high temperature), steam, LNG, etc., and prevent evaporation of organic matter. It is preferable to supply the dryer 6 with air adjusted to a temperature for maintaining the air temperature introduced to the dryer 6 at 120 ° C. or lower and a relative humidity of 65% or lower.
  • the heat supply device 13 may be configured with heating devices such as various boilers, but it is more preferable that the heat supply device is configured with the above-described heat exchanger.
  • a discharge side of the condensate storage tank 12 and a supply side of the water condenser 11 may be connected to each other so that the water condensed in the water condenser 11 may be supplied to the cooling water of the water condenser 11.
  • the condensed water discharged from the condensed water storage tank 12 on the refrigerant conduit for cooling the refrigerant used in the water condenser 11 may be cooled by using a heat exchanger to increase energy efficiency.
  • Sludge is stored in the sludge storage tank (1) as the main raw material, and the ground pellets dried as a moisture control agent are stored in the pellet powder storage tank (2).
  • Sludge and dried crushed pellets are added to the mixer 3 and mixed.
  • the quantitative measuring device 16 is used to measure the quantitative determination of the raw material moving from the sludge storage tank 1 and the pellet powder storage tank 2 to the mixer 3 and mix so that the water content of the mixture is 45 to 60%.
  • a monopump can also be used for sludge metering.
  • the mixed mixture is supplied to the screen sorting device 4 using the conveying device 14.
  • the mixture is supplied to the screen sorter 4 to selectively separate the foreign matter contained in the mixture.
  • the mixture that has not passed through the screen is conveyed through the conveying device 14 to the extrusion pellet forming machine 5 for extrusion.
  • the mixture passed through the screen selection device 4 may be temporarily stored in the mixture storage tank 16 and then transported.
  • the size of the mixture passed through the screen is 5 mm or less in diameter.
  • the mixture of the foreign matter separated by passing through the screen sorting device 4 is supplied to the extrusion pellet molding machine 5 to extrude the mixture into pellets of a predetermined size.
  • the size of the pellet is 6 ⁇ 12mm in diameter, the length is to be about 20 ⁇ 60mm.
  • Unformed or defective moldings that do not have suitable molding conditions are discharged through the second bidirectional ejector 18.
  • the discharged extruded pellets are transferred to the bucket elevator 15 for transfer to the dryer 6.
  • the pellet produced in the extrusion pellet molding machine (5) is introduced into the dryer (6), and the air discharged from the heat supply device (13) or the water condenser (11) is supplied to the dryer (6).
  • the air to be supplied is kept in the range of 1 to 120 ° C. and a relative humidity of 0 to 65%, and dried so that the moisture content of the pellet is 0 to 10%.
  • the drying time is dried for 2 to 24 hours depending on the characteristics of the drying air, the drying pellet is dried is discharged to the bottom of the dryer (6).
  • the pellets dried in the dryer 6 are stored in the dry pellet storage tank 7 using a transfer device 14 such as a transfer screw.
  • some dry pellets are supplied to the dry pellet mill (9), pulverized to produce pulverized pellets, and supplied to the pellet powder storage tank (2) to be utilized as a moisture control agent for extrusion molding, and excess dry pellets. Is used as a separate renewable energy source.
  • the pellets are dried in the dryer 6 and the discharged air is supplied to the cyclone 10 to remove dust from the air.
  • the moisture condenser 11 is used to remove moisture in the air passing through the cyclone 10.
  • the air containing moisture discharged while the extruded pellets are being dried is introduced into the moisture condenser 11 to remove the moisture, and the moisture is removed.
  • the wet air passes through the cyclone 10 to be dusted.
  • the condensed water is transferred to the condensate water storage tank 12 and discharged to the discharge pump 20 to the outside.
  • the heat supply device 13 supplies the air heat-exchanged with the external waste heat or the external waste heat to the dryer 6 using the heat supply device 13, and the supplied air is composed of a temperature of 1 to 120 ° C. and a relative humidity of 0 to 65%.
  • the air discharged from (11) is heat-exchanged with external waste heat, and is supplied to the dryer 6 at a temperature of 1 to 120 ° C. and a relative humidity of 0 to 65%.
  • the heat supply device 13 may dry the wet pellets as described above. It is used to supply drying heat. It uses various types of waste heat (low temperature or high temperature), steam, LNG, etc. as drying heat, but the air is lowered to a temperature to keep humidity below 65% without evaporating organic matter. ) Flows into the inside, and dry air is introduced using a manned blower.
  • external waste heat is initially supplied to the dryer 6 by a direct or heat exchange method, and after that, the external waste heat and air discharged from the moisture condenser 11 are exchanged again. It is continuously supplied to the dryer 6 by heating or cooling to an appropriate temperature and humidity.
  • the present invention configured as described above has an airflow circulation configuration in which the air required for drying except the condensed water discharged to the outside by the condensation of wet air discharged after drying has been re-introduced into the dryer by internal circulation.
  • the temperature is maintained at 120 ° C. or less and the relative humidity is maintained at 65% or less.
  • the drying time varies depending on the characteristics of the input air, but has a characteristic of drying for 2 to 24 hours.
  • the water content of the mixed mixture for extrusion molding should be 45 ⁇ 60% by weight, and the moisture content of the dry pellet should be 10% by weight or less. In this case, when used as a fuel for renewable energy, low calorific value can be maximized. In addition, there is an advantage of minimizing the amount of dry pellet powder added to serve as a moisture control agent for controlling the water content of the sludge and molding the extrusion.
  • Table 1 Item Existing (thermal drying) high temperature drying / dry air discharge
  • the present airflow circulation room Drying method Disc (steam input) Airflow Drying temperature (°C) 180-450 55-65 Odor Occurrence +++++ + Condensate Chromaticity +++ +
  • Table 1 compares the results of low temperature airflow drying by drying the sludge by using high temperature thermal drying (Calorie base drying) and the principles of nature and by promoting the movement of materials (Equilibrium Moisture Content). .
  • the drying temperature according to the present invention was able to dry at a temperature of about 60 ° C., which is very low compared to the thermal drying method, and showed that the waste heat at a low temperature could be utilized.
  • Low odor was generated, which indicates that evaporation of organic materials could be minimized by using low temperature, and high economical efficiency could be minimized because the cost for treating odor was minimized.
  • the present invention has the characteristics that can be left to the source of odor emission to the outside by circulating without using the air required for drying to the outside, it can be significantly reduced the installation of odor facility has been shown to greatly improve the economic efficiency.
  • Applicable industries include livestock manure sludge drying, slaughterwater sludge drying, sludge drying for food companies (dairy companies, etc.), food waste wastewater sludge drying and surplus sludge drying that can produce renewable energy using sludge. It is expected to be greatly utilized in industries and paper sludges that emit a lot of organic components such as treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 하수처리를 통하여 발생되는 하수슬러지, 산업 현장에서 발생되는 산업슬러지 등을 건조된 저온의 공기를 이용하는 한편, 건조기에서 배출되는 공기를 응축 과정을 거쳐 연속적으로 순환시키면서 저온 건조함으로써 낮은 온도의 폐열을 활용하여 경제성을 높임과 더불어 악취 발생 및 폐수 처리 문제 발생을 최소화한, 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법에 관한 것이다.

Description

기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법
본 발명은 하수처리를 통하여 발생되는 하수슬러지, 산업 현장에서 발생되는 산업슬러지 등을 건조된 저온의 공기를 이용하는 한편, 건조기에서 배출되는 공기를 응축 과정을 거쳐 연속적으로 순환시키면서 저온 건조함으로써 낮은 온도의 폐열을 활용하여 경제성을 높임과 더불어 악취 발생 및 폐수 처리 문제 발생을 최소화한, 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법에 관한 것이다.
하수처리를 통하여 발생되는 하수슬러지는 물론 산업에서 발생되는 산업슬러지는 악취를 발생시키는 유기물의 함량이 높을 뿐만 아니라, 휘발성이 강한 물질로 구성되어 있어서 건조 처리시 건조온도를 높일 경우 악취발생이 심해 슬러지를 건조하여 신재생에너지로 활용하는데 있어서 많은 장애로 알려져 있다.
이를 해결하기 위하여 최종 발생되는 건조공기를 소각로 또는 연소로에서 연소시켜 유지성분을 제거하거나, 바이오필터 및 각종 악취방지시설로 투입하여 악취를 제거해야하는 등의 부대시설을 설치하고 있고, 이로 인하여 시설설치 투입비용이 증가되고 시설설비운영에 많은 어려움을 겪고 있는 실정이다.
특히, 현재까지 슬러지 건조는 열량을 투입하여 온도상승과 증발잠열을 고려하고 이에 열효율을 산정하여 투입하는 열량을 계산하여 건조하는 열적건조(Heat energy input basis drying process)가 대부분 적용되고 있어서, 고온의 열을 투입하여야 하므로 악취발생이나 유기물 증발(Vaporization of volatile organic matter)과 같은 문제를 해결하는 데에는 매우 제한적인 기술이라 알려져 있다.
더불어, 고온을 투입하여 건조할 경우, 건조공정에서 발생되는 수증기는 응축수(condensed water)로 회수되는데, 고온의 수증기는 유기물의 증발이 수반되기 때문에 응축된 응축수에는 매우 높은 오염부하도의 폐수(높은 농도의 COD, BOD, T-N)가 발생하게 되며, 이때 이를 처리하기 위한 고오염농도 폐수처리공정이 필수적으로 요구된다.
따라서 고온에 의한 건조공정은 건조시설 설치는 물론, 폐수처리장 건설을 위한 많은 부지면적이 필요하게 되므로 건조설비의 시설투자비 및 운영비와 추가로 폐수처리장 건설비 및 운영비 등 추가 소요비용을 고려해 볼 때 경제성에 많은 문제를 유발한다고 할 수 있다.
슬러지의 건조 처리 방법 및 장치와 관련된 기술로, 본 출원인은 다량의 수분을 함유한 슬러지를 1차 및 2차 건조한 다음 펠렛으로 성형하고, 건조된 펠렛의 열량을 이용하여 슬러지의 건조 열원으로 활용한 "슬러지 건조처리 방법 및 장치"(한국 등록특허공보 제10-0892649호, 특허문헌 1)를 출원하여 등록받은 바 있다.
그러나, 상기 기술은 보일러를 이용하여 건조기로 공급된 열원이 필터를 통해 외부로 배출되는 구조를 갖는다.
즉, 앞서 살펴본 바와 같이 건조 후 배출되는 공기는 소각로나 연소로 등에서 연소시키거나 필터 및 각종 악취방지시설을 투입하여 이를 제거해야 하는 부대시설의 설치가 필수인 바, 시설 설치 및 투입 비용의 증가를 발생시키는 문제점이 있었다.
특히 하수슬러지를 비롯한 산업슬러지는 탈수 후 신속하게 처리하지 못할 경우, 부패가 진행되어 건조시 많은 악취를 유발할 뿐만 아니라 부패과정 중에 수분이 생성되어 함수율을 증가시키고 이로 인하여, 건조를 위한 열투입량이 증가되므로 경제성이 악화되고 악취발생이 증가하는 등의 악순환이 연속되는 문제가 있다.
결국, 아직까지 슬러지의 처리에 있어 유기물로 인한 악취 발생, 폐수 처리, 배출공기의 악취 발생, 경제성을 모두 만족시킨 기술이 개발되지 못한 실정이며, 이에 대한 기술 개발이 시급한 실정이다.
*선행기술문헌*
(특허문헌 1) KR 10-0892649 (2009.04.20)
본 발명의 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법은 상기와 같은 종래 기술에서 발생하는 문제점을 해소하기 위한 것으로, 슬러지를 건조할 때 저온의 열풍을 사용하여 건조함으로써 고온건조시 발생되는 악취를 억제하고, 유기물의 증발을 막아 응축수의 오염부하도를 격감시켜 폐수처리공정을 투입하지 않으며, 건조시 필요로 하는 저온열풍을 순환시킬 수 있도록 함으로써 외부방출을 근원적으로 차단하고, 수분을 함유한 열풍공기를 대기온도로 냉각시킬 수 있도록 하여 설비가동을 위한 운영비용을 절감하고, 또한 건조에 필요한 공기를 승온시키기 위한 열량공급은 스팀이나 소각폐열과 같은 다양한 종류의 폐열을 열교환하여 투입할 수 있도록 함으로써 건조열 투입비용을 절감하고, 실시간으로 처리할 수 있는 건조처리 공정 및 장치를 개발하여 문제를 효과적으로 해결하는데 있다.
더불어, 건조된 분쇄펠렛을 수분조절제로써 슬러지와 신속히 혼합시키는 수분조절공정(conditioning process)을 통하여 슬러지내 함유되어 있는 수분함량을 신속하게 저하시킬 수 있도록 하여 수분 활성도(water activity)를 낮추어 줌으로서 미생물에 의한 효소분해적용을 억제하여 유기물의 분해를 중지시켜야만 효과적으로 처리할 수 있고, 유기물의 부패를 막고 이를 보전함으로써 건조 후 열량 함유량이 높은 신재생에너지로의 활용을 증가시킬 수 있게 하려는 것이다.
보다 구체적으로, 반입 또는 탈수가 완료된 슬러지 탈수케익은 함수율 10% 이하로 건조한 슬러지 펠렛을 분쇄하여 분말을 혼합한 후 함수율을 50% 내외를 낮추고, 펠렛화로 성형한 후 건조기에 투입하며, 건조열은 전기, LPG, LNG 외에 열교환이 가능한 폐열 또는 스팀 등 온도에 상관없이 상대습도를 60% 이하로 하고 투입하는 공기의 온도는 0 ~ 120 로 하며, 건조 후 배출되는 습공기는 대기공기, 지하수 또는 이용가능한 물을 순환시켜 수분을 응축하여 배출하며, 수분이 배출된 공기는 가온하여 상대습도를 60% 이하로 조정하여 건조기에 투입할 수 있도록 순환시키고, 실시간 처리를 달성함은 물론, 저온으로 건조하여 유기물 휘발을 최소화 시긴 응축수는 직접방류가 가능한 낮은 오염부하도로 배출토록하며 악취배출을 제로화 하여 목적에 맞는 건조물을 생산하는데 있다.
본 발명의 기류순환형 저온 열풍 슬러지 건조 처리설비는 상기와 같은 과제를 해결하기 위하여, 일측으로 슬러지가 유입되어 저장되는 슬러지저장조(1)와; 일측으로 건조된 분쇄펠렛이 수분조절제로써 유입되어 저장되는 펠렛분말저장조(2)와; 상기 슬러지저장조(1)와 연결되어 슬러지가 내부로 공급되고, 상기 펠렛분말저장조(2)와 연결되어 건조된 분쇄펠렛이 수분조절제로써 유입되어 슬러지와 건조된 분쇄펠렛을 혼합시켜 투입된 슬러지의 수분을 조절하는 혼합기(3)와; 상시 혼합기(3)에서 혼합된 혼합물로부터 이물질을 선별 분리하는 스크린선별장치(4)와; 상기 스크린선별장치(4)에서 이물질이 분리된 혼합물을 공급받아 일정 크기의 펠렛으로 압출 성형하는 압출펠렛성형기(5)와; 일측으로 상기 압출펠렛성형기(5)에서 성형된 펠렛을 공급받고, 타측으로부터 저온 저습의 공기를 공급받아 성형된 펠렛을 저온 저습으로 건조시키되, 유입되는 저온 저습의 공기는 1 ~ 120℃, 상대습도 0 ~ 65%인 것을 특징으로 하는 건조기(6)와; 상기 건조기(6)와 연결되어 건조기(6)에서 건조된 펠렛을 저장하는 건조펠렛저장조(7)와; 상기 건조펠렛저장조(7)와 연결되어 건조된 펠렛을 양방향으로 배출하는 양방향배출기(8)와; 일측이 상기 양방향배출기(8)와 연결되어 양방향배출기(8) 일측으로 배출되는 건조펠렛을 분쇄하여 분쇄펠렛을 제조하고, 타측은 상기 펠렛분말저장조(2)와 연결되어 분쇄펠렛을 펠렛분말저장조(2)로 공급하는 건조펠렛분쇄기(9)와; 상기 건조기와 연결되어 있어 건조기 내부의 공기 중의 분진을 제거하는 사이클론(10)과; 일측이 상기 사이클론(10)과 배관 연결되어 있어 사이클론(10)을 통과한 공기 중의 습기를 제거하고, 타측은 상기 건조기(6)와 배관 연결되어 있어 습기가 제거된 공기를 건조기(6)로 공급하는 수분응축기(11)와; 상기 수분응축기(11)와 배관 연결되어 있으며, 상기 수분응축기(11)에서 응축된 수분을 저장하는 응축수저장조(12)와; 상기 수분응축기(11)와 건조기(6) 사이의 배관에 연결되어 있으며, 건조기(6)로 1 ~ 120℃, 상대습도 0 ~ 65%의 공기를 공급하는 열공급장치(13);를 포함하여 구성된다.
이때, 상기 슬러지저장조(1) 및 펠렛분말저장조(2)는 각각 정량측정기(16)가 연결되어 있어 혼합기(3)로 공급되는 원료의 비율을 조절하도록 이루어진 것을 특징으로 한다.
또, 상기 열공급장치(13)는 외부의 폐열을 발생하는 폐열배출장치(22)와 배관 연결된 열교환기로 이루어져 있는 것을 특징으로 한다.
또한, 상기 응축수저장조(12)의 배출측과 수분응축기(11)의 공급측이 배관 연결되어 상기 수분응축기(11)에서 응축된 수분을 상기 수분응축기(11)의 냉각수로 공급하는 것을 특징으로 한다.
더불어, 본 발명의 기류순환형 저온 열풍 슬러지 건조 처리방법은 상기 슬러지 건조 처리장치를 이용하여, 주원료로써 슬러지를 슬러지저장조에 저장하고, 수분조절제로써 건조된 분쇄펠렛을 펠렛분말저장조(2)에 저장하는 초기처리단계와; 상기 혼합기(3)에 슬러지와 건조된 분쇄펠렛을 투입하여 혼합물의 함수율이 45 ~ 60%가 되도록 혼합하는 혼합단계와; 상기 스크린선별장치(4)에 혼합물을 공급하여 혼합물 중에 포함되어 있는 이물질을 선별 분리하는 선별단계와; 상기 스크린선별장치(4)를 통과하여 이물질이 분리된 혼합물을 상기 압출펠렛성형기(5)에 공급하여 혼합물을 일정 크기의 펠렛으로 압출 성형하는 압출성형단계와; 상기 압출펠렛성형기(5)에서 제조된 펠렛을 상기 건조기(6)에 투입하고, 상기 건조기(6)에 상기 열공급장치(13) 또는 상기 수분응축기(11)에서 배출된 공기를 공급하되, 내부로 공급되는 공기를 1 ~ 120℃, 상대습도 0 ~ 65%의 범위로 유지하여 펠렛의 함수율이 0 ~ 10%가 되도록 하는 건조단계와; 상기 건조기(6)에서 건조된 펠렛을 건조펠렛저장조(7)에 저장하는 저장단계와; 상기 양방향배출기(8)를 통해 일부 건조 펠렛은 건조펠렛분쇄기(9)로 공급 분쇄하여 분쇄펠렛을 제조하여 상기 펠렛분말저장조(2)로 공급하는 건조펠렛분쇄단계와; 상기 건조기(6) 내부에서 펠렛을 건조시키고 배출되는 공기를 상기 사이클론(10)으로 공급하여 공기 중의 분진을 제거하는 분진제거단계와; 상기 수분응축기(11)를 이용하여 사이클론(10)을 통과한 공기 중의 습기를 제거하는 수분제거단계와; 열공급장치(13)를 이용하여 건조기(6)로 외부의 폐열 또는 외부의 폐열과 열교환된 공기를 공급하되, 공급되는 공기는 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 이루어져 있으며, 수분응축기(11)에서 배출된 공기를 외부의 폐열과 열교환시켜 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 건조기(6)로 공급하는 건조공기공급단계;를 포함하여 구성된다.
본 발명에 의해, 해양투기하여 처분하거나 매립하여 왔던 소극적인 방법에 비하여, 해양투기 전면금지 정책에 적극적으로 대처할 수 있고, 특히, 슬러지 발생량에 따라, 낮은 온도의 폐열이 발생되는 사업장의 경우, 슬러지 건조처리에 많은 어려움을 겪었으나, 본 발명을 적용할 경우 슬러지처리를 매우 경제적이고 효과적으로 처리할 수 있음으로써, 슬러지 처리비용을 최소화 할 수 있다.
특히 건조물의 함수율을 10% 이하로 건조할 수 있음으로써 저위발열량(에너지 함량)에 따라 건조슬러지를 외부로 판매할 수 있으며, 저장공간의 부족에 따른 문제와 부패에 의한 취급 어려움과 악취발생 등으로 처리할 수 없었던 불편함을 건조공기 기류순환방식으로 건조함으로 인하여 완전히 해결시킬 수 있으며, 저온(0~120℃)으로 건조함으로써 낮은 온도의 폐열을 활용할 수 있어서 경제성이 크게 개선된다.
특히, 슬러지를 낮은 온도로 건조함으로써, 유기물의 휘발을 막고 응축수의 오염부하도가 매우 낮아 폐수처리의 문제를 손쉽게 해결할 수 있게 된다.
도 1은 본 발명의 기류순환형 저온 열풍 슬러지 건조 처리설비를 나타낸 구성도.
도 2는 본 발명의 기류순환형 저온 열풍 슬러지 건조 처리방법을 나타낸 구성도.
도 3은 본 발명에서 열공급장치의 일 실시예를 나타낸 구성도.
*도면의 주요부호에 대한 상세한 설명*
1 : 슬러지저장조
2 : 펠렛분말저장조
3 : 혼합기
4 : 스크린선별장치
5 : 압출펠렛성형기
6 : 건조기
7 : 건조펠렛저장조
8 : 양방향배출기
9 : 건조펠렛분쇄기
10 : 사이클론
11 : 수분응축기
12 : 응축수저장조
13 : 열공급장치
13a : 제1열교환기
13b : 제2열교환기
14 : 이송장치
15 : 버킷엘리베이터
16 : 정량측정기
17 : 제1양방향배출기
18 : 제2양방향배출기
19 : 유인송풍기
20 : 배출펌프
21 : 밸브
22 : 폐열배출장치
슬러지는 하수 또는 폐수처리 공정 중에 발생되는 유기물 및 무기물 복합체로 탈수공정을 거쳐서 부피와 무게를 축소시켜 생산한다고 할지라도 약 78~83 중량% 정도의 함수율이 보유하고 있으며, 부패가 빠르며 악취발생이 심하고, 처리가 어려울 뿐만 아니라, 건조처리 할 경우 많은 에너지 비용이 소요되는 특징을 지니고 있다.
또한 현재 개발되어 있는 일반적인 건조공정은 작게는 180℃에서는 높게는 850℃의 높은 온도의 열을 사용하므로 유기물의 휘발을 촉진하여 악취가 매우 심하게 발생하고, 이를 해결하기 위한 부대설비 설치 투자비용과 유지관리 비용이 크게 증가하는 경향이 있다.
본 발명에서는 이러한 물리화학적 특징에 의하여 슬러지를 처리하는데 있어서 많은 어려움을 고려하여 높은 경제성과 악취발생을 근원적으로 예방할 수 있도록 하여 슬러지를 처리할 수 있도록 하였으며, 대기의 자연조건과 낮은 온도로 배출되는 폐열을 활용하거나, 상대습도를 65% 이하로 낮출 수 있는 다양한 열원을 사용하여 건조할 수 있도록 함으로써 경제성을 극대화 할 수 있도록 하였다.
우선, 본 발명의 기류순환형 저온 열풍 슬러지 건조 처리설비에 대해 설명하기로 한다.
본 발명의 기류순환형 저온 열풍 슬러지 건조 처리설비는 크게 슬러지저장조(1), 펠렛분말저장조(2), 혼합기(3), 스크린선별장치(4), 압출펠렛성형기(5), 건조기(6), 건조펠렛저장조(7), 양방향배출기(8), 건조펠렛분쇄기(9), 사이클론(10), 수분응축기(11), 응축수저장조(12), 열공급장치(13)를 포함하여 구성되어 있다.
아울러, 각 구성요소 사이 특히, 액상이나 고상의 물체가 이송되는 경로에는 이송컨베이어, 스크류 컨베이어 등과 같은 이송장치(14)가 구비되어 각 구성 사이에 원료를 이송하도록 하였으며, 높이 변화가 있는 부분에는 버킷엘리베이터(15)를 설치하였다.
또한, 건조를 위한 공기, 폐열, 건조 후 공기의 이동 경로에는 각 구성요소 사이가 배관에 의해 연결되어 있다.
본 발명의 구성요소인 슬러지저장조(1)에는 슬러지가 외부에서 내부로 유입되어 저장되며, 하부에는 슬러지의 외부 배출을 위한 스크류컨베이어와 같은 이송장치(14)가 연결 설치되어 있다.
앞서, 설명한 바와 같이 슬러지저장조(1)에 저장되는 슬러지는 하수 또는 폐수처리 공정 중에 발생되는 유기물 및 무기물 복합체로 탈수공정을 거쳐서 부피와 무게를 축소시켜 생산한다고 할지라도 약 78~83 중량% 정도의 함수율을 갖게 된다.
본 발명의 구성요소인 펠렛분말저장조(2)는 일측으로부터 건조된 분쇄펠렛이 수분조절제로써 유입되어 저장되며, 하부에 스크류컨베이어와 같은 이송장치(14)가 연결되어 수분조절제를 배출할 수 있도록 되어 있다.
펠렛분말저장조(2)에 저장되는 수분조절제는 건조펠렛분쇄기(9)에서 분쇄되어 형성된 건조된 분쇄펠렛이 사용된다.
이때, 건조된 분쇄펠렛이 수분조절제로 사용되는 것은 연속 순환 공정에서 이루어지게 되며, 초기 설비 작동시에는 건조된 분쇄펠렛의 공급 없이, 혹은 별도로 함수율 10 중량% 이하의 펠렛을 공급하여 투입하여 작동될 수 있다.
본 발명의 구성요소인 혼합기(3)는 도 1에 도시되어 있는 바와 같이 상기 슬러지저장조(1)와 이송장치(14)에 의해 연결되어 슬러지가 내부로 공급되고, 상기 펠렛분말저장조(2)와도 이송장치(14)에 의해 연결되어 건조된 분쇄펠렛이 수분조절제로써 유입되어 슬러지와 건조된 분쇄펠렛을 혼합시켜 투입된 슬러지의 수분을 조절하도록 이루어져 있다.
이때, 혼합물의 최종 함수율은 45 ~ 60 중량%가 되도록 하는 것이 바람직하다.
이처럼 혼합물의 최종 함수율을 특정하기 위한 방법으로, 도면에 도시되어 있는 바와 같이 슬러지저장조(1) 및 펠렛분말저장조(2)는 각각 정량측정기(16)가 연결되어 있어 혼합기(3)로 공급되는 원료의 비율을 조절하도록 함이 바람직하다.
이때, 슬러지의 정량 공급을 위해 모노펌프를 사용할 수도 있다.
이러한 혼합기(3)는 도시된 것처럼 하부에 스크류컨베이어와 같은 이송장치(14)가 연결 설치되어 있어 스크린선별장치(4)로 혼합물을 공급하도록 이루어져 있다.
본 발명의 구성요소인 스크린선별장치(4)는 투입되는 혼합물 중에 이물질이 포함되어 있는 경우 그 이후에 설치되어 있는 압출펠렛성형기(5)에서 펠렛 성형시 장애를 초래하게 되므로 스크린을 통해 이물질을 제거하게 된다.
스크린의 바람직한 실시예로는 직경 5mm 이상의 입자가 통과되지 않는 크기가 되도록 함이 바람직하다.
스크린선별장치(4)의 스크린을 통과하지 못한 이물질들은 외부로 배출하고, 통과한 혼합물은 도면에 나타난 바와 같이 혼합물저장조(16)로 이동하여 저장되게 된다.
아울러, 혼합물저장조(16)에는 스크류컨베이어와 같은 이송장치(14)가 연결 설치되어 압출펠렛성형기(5)로 혼합물을 이송할 수 있도록 되어 있다.
이때, 스크린선별장치(4)와 혼합물저장조(16) 사이에 도시된 바와 같이 제1양방향배출기(17)를 설치하여 펠렛 성형을 위한 혼합물과, 펠렛 성형을 하지 않은 채 별도 저장하여 다른 처리를 하고자 하는 혼합물을 선택적으로 분류하도록 할 수 있다.
본 발명의 구성요소인 압출펠렛성형기(5)는 상기 스크린선별장치(4)에서 이물질이 분리된 혼합물을 직접, 또는 혼합물저장조(16)를 통해 공급받아 일정 크기의 펠렛으로 압출 성형하도록 되어 있다.
압출펠렛성형기(5)는 공급받은 혼합물을 저장하는 호퍼와, 상기 호퍼와 연결되어 혼합물을 압출 성형하는 성형기로 이루어져 있다.
이러한 압출펠렛성형기(5)는 공지의 다양한 압출 펠렛 성형기로 구성될 수 있다.
압출 성형 과정을 거쳐 제조된 펠렛은 함수율이 45 ~ 60 중량%인 상태가 된다.
이때, 펠렛 성형이 이루어지지 않거나 적합한 성형 조건을 갖추지 못한 불량 성형물을 다시 처리하거나 배출하기 위해 압출펠렛성형기(5)의 배출측에 도시된 것처럼 제2양방향배출기(18)를 설치하여 성형이 완료된 펠렛은 선택적으로 건조기(6)로 공급하고, 불완전 성형물은 배출 또는 호퍼로 재투입하도록 할 수 있다.
적합하게 성형된 펠렛은 직경이 6 ~12mm의 크기로 이루어짐이 바람직하다.
본 발명의 구성요소인 건조기(6)는 도시된 바와 같이 일측으로 상기 압출펠렛성형기(5)에서 성형된 펠렛을 공급받고, 타측으로부터 저온 저습의 공기를 공급받아 성형된 펠렛을 저온 저습으로 건조시키도록 이루어져 있다.
이때, 건조기(6)는 저온 열풍 투입 방식의 혼합 자중 하향 배출 건조기(Mixed flow dryer)가 바람직하다.
이에 따라 압출펠렛성형기(5)와 건조기(6) 사이에는 버킷엘리베이터(15)가 설치되어 성형된 펠렛을 건조기(6) 상부로 유입되도록 함이 바람직하며, 건조 처리가 끝난 펠렛은 건조기(6) 하부로 배출된 후 이송스크류와 같은 이송장치(14)를 통해 후속 건조펠렛저장조(7)로 이송되어 저장된다.
한편, 건조기(6) 내부로 유입되는 저온 저습의 공기는 1 ~ 120℃, 상대습도 0 ~ 65%인 것이 바람직하며, 상기와 같은 건조기(6)를 통해 건조된 펠렛의 함수율은 10 중량% 이하가 되도록 함이 바람직하다.
이때, 건조기(6) 하부에서 배출되는 건조펠렛을 냉각시킨 공기는 건조기 열풍투입구에 재투입하여, 열을 재활용하거나 온도 및 습도 조절 용도로 활용할 수 있다.
또한,건조기(6) 내에는 혼합물 내의 고른 수분증발을 유도하면서 수분의 증발 발한성을 유도하기 위하여 투입공기량을 조절하고, 환풍관의 배열을 조정함으로써 배출되는 공기를 일정하게 배출될 수 있도록 하여 건조 과정에서 발생하는 공기의 대류 및 역학적 원리를 이용하여 수분 증발 효과를 극대화시키는 것이 좋다.
또, 혼합자중하향배출 방식의 건조기(6) 내에서 습기를 포함한 공기는 건조기(6) 일측에 형성된 배출관을 통해 즉각 배출되어 건조 효율을 가일층 증대시키고, 순차적으로 하강하면서 건조될 수 있도록 하고, 건조된 건조물이 용이하게 배출되도록 함이 바람직하다.
본 발명의 구성요소인 건조펠렛저장조(7)는 도시된 바와 같이 이송장치(14)를 통해 건조기(6)에서 건조된 펠렛을 저장하게 된다.
본 발명의 구성요소인 양방향배출기(8)는 상기 건조펠렛저장조(7)와 연결되어 건조된 펠렛을 양방향으로 선택적으로 배출하도록 이루어져 있다.
선택적으로 배출되는 일부 펠렛은 건조펠렛분쇄기(9)를 거쳐 분쇄된 다음 수분조절제로써 상기 펠렛분말저장조(2)로 공급되고, 잉여 건조펠렛은 배출된 다음 별도로 저장되어 신재생에너지원 등으로 사용된다.
본 발명의 구성요소인 건조펠렛분쇄기(9)는 도시된 바와 같이 일측이 상기 양방향배출기(8)와 연결되어 양방향배출기(8) 일측으로 배출되는 건조펠렛을 분쇄하여 분쇄펠렛을 제조하고, 타측은 상기 펠렛분말저장조(2)와 연결되어 분쇄펠렛을 펠렛분말저장조(2)로 공급하도록 이루어져 있다.
본 발명의 구성요소인 사이클론(10)은 도시된 바와 같이 상기 건조기(6)와 배관 연결되어 있어 건조기 내부의 공기 중의 분진을 제거하도록 이루어져 있다.
즉, 건조기(6)로 투입되어 건조기(6) 내부의 펠렛을 건조시킨 후 수분 및 분진 등을 함유한 채 배출된 공기 중의 분진을 제거하는 것이다.
이때, 원할한 공기의 배출을 위해 사이클론(10)과 건조기(6) 사이에 유인송풍기(19)나 흡입펌프 등이 설치될 수 있다.
본 발명의 구성요소인 수분응축기(11)는 일측이 상기 사이클론(10)과 배관 연결되어 있어 사이클론(10)을 통과한 공기 중의 습기를 제거하고, 타측은 상기 건조기(6)와 배관 연결되어 있어 습기가 제거된 공기를 건조기(6)로 공급하도록 되어 있다.
본 발명의 응축수저장조(12)는 도시된 바와 같이 상기 수분응축기(11)와 배관 연결되어 있으며, 상기 수분응축기(11)에서 응축된 수분을 저장 및 배출펌프(20)를 이용해 배출하도록 이루어져 있다.
본 발명의 구성요소인 열공급장치(13)는 도시된 바와 같이 상기 수분응축기(11)와 건조기(6) 사이의 배관에 연결되어 있으며, 건조기(6)로 1 ~ 120℃, 상대습도 0 ~ 65%의 공기를 공급하도록 이루어져 있다.
이때, 열공급장치(13)는 고온의 외부 폐열을 공급할 때는 상기 온도와 습도가 되도록 저온으로 변환시켜 공급하고, 저온의 외부 폐열은 그대로 활용하여 공급하도록 구성할 수 있다.
특히, 수분응축기(11)를 통해 배출된 공기를 건조기(6)로 재공급하되, 외부 폐열을 활용하여 건조기(6)로 1 ~ 120℃, 상대습도 0 ~ 65%의 공기를 공급하도록 할 수 있다.
바람직한 열공급장치(13)의 실시예로는 외부의 폐열을 발생, 배출하는 폐열배출장치(22)와 배관 연결된 열교환기로 이루어져 있는 것이 바람직하다.
즉, 외부의 폐열배출장치(22)의 배출 폐열(스팀 또는 공기)이 유입되어 내부를 순환하여 유출되도록 하는 한편, 수분응축기(11)에서 건조기(6)로 이동하는 배관이 내부를 순환하여 유출되도록 하여 두 배관 사이에서 열교환이 이루어져 건조기(6)로 이동하는 공기의 온도를 1 ~ 120℃, 상대습도 0 ~ 65%가 되도록 할 수 있다.
또한, 초기 건조 단계에서는 수분응축기(11)에서 공기가 유입되기 어려운 관계로, 일측에 외기가 유입되는 관로를 형성하여 외기와 외부의 폐열배출장치(22)의 배출 폐열과 열교환이 이루어지도록 한 다음, 외기가 건조기(6)로 유입되도록 하고, 그 이후의 공정에서는 밸브를 이용하여 외기의 유입을 차단한 채, 수분응축기(11)의 배출 공기와 외부의 폐열 발생 장치의 배출 폐열과 열교환이 이루어지도록 구성될 수 있다.
이러한 바람직한 구성의 일 예로 도 3에 도시되어 있는 바와 같이 열공급장치(13)는 폐열배출장치(22)와 배관 연결되어 있는 제1열교환기(13a) 및 제2열교환기(13b)로 구성될 수 있다.
즉, 폐열배출장치(22)의 관로는 두 개로 분기되고, 분기된 지점에 각각 밸브(21)가 구비되거나, 분기지점에 체크밸브가 설치되어 선택적으로 제1열교환기(13a) 및 제2열교환기(13b)로 폐열을 공급할 수 있도록 되어 있는 한편,
제1열교환기(13a)의 일측으로는 외기가 유입된 채 상기 건조기(6)와 배관 연결되어 건조기(6)로 열을 공급하도록 되어 있는 한편, 제2열교환기(13b)는 일측은 건조기(6)에 타측은 수분응축기(11)와 배관 연결되도록 하고, 관의 합류 지점에 역시 밸브(21)를 설치할 수 있다.
이러한 구성은 초기 단계에서는 외기가 폐열발생장치(20)의 배출 폐열과 열교환되어 건조기(6)로 공급되고, 그 이후에는 연속적으로 수분응축기(11)의 배출 공기가 폐열배출장치(22)의 배출 폐열과 열교환되어 순환되는 구성이다.
이러한 열공급장치(13)는 젖은 펠렛을 건조하기 위하여 건조열을 공급하기 위한 것으로 다양한 종류의 폐열(저온 또는 고온), 스팀, LNG 등을 사용하여 건조열로 사용할 수 있으며, 유기물의 증발을 방지할 수 있도록 건조기(6) 측으로 투입되는 공기 온도가 120℃ 이하, 상대습도 65% 이하로 유지하기 위한 온도로 조정된 공기를 건조기(6)로 공급하는 것이 바람직하다.
초기에 열을 공급하기 위하여 열공급장치(13)는 각종 보일러와 같은 가온장치로 구성될 수도 있으나, 이보다는 상술한 열교환장치로 구성됨이 보다 바람직하다 할 것이다.
아울러, 상기와 같은 구성에 있어서,
상기 응축수저장조(12)의 배출측과 수분응축기(11)의 공급측이 배관 연결되어 상기 수분응축기(11)에서 응축된 수분을 상기 수분응축기(11)의 냉각수로 공급하도록 할 수 있다.
보다 구체적으로, 수분응축기(11)에 사용되는 냉매의 냉각을 위해 냉매의 관로상에 응축수저장조(12)에서 배출된 응축된 수분을 열교환기를 이용하여 냉각시켜 에너지 효율을 보다 높일 수 있는 것이다.
이하, 상기와 같이 구성된 기류순환형 저온 열풍 슬러지 건조 처리설비를 이용한 슬러지 건조 처리방법에 대해 상세히 설명하기로 한다.
1. 초기처리단계
주원료로써 슬러지를 슬러지저장조(1)에 저장하고, 수분조절제로써 건조된 분쇄펠렛을 펠렛분말저장조(2)에 저장한다.
2. 혼합단계
상기 혼합기(3)에 슬러지와 건조된 분쇄펠렛을 투입하여 혼합한다.
이때, 정량측정기(16)를 이용하여 슬러지저장조(1) 및 펠렛분말저장조(2)에서 혼합기(3)로 이동하는 원료의 정량을 측정하여 혼합물의 함수율이 45 ~ 60%가 되도록 혼합한다.
물론, 슬러지 정량공급을 위해 모노펌프를 사용할 수도 있다.
혼합이 완료된 혼합물은 이송장치(14)를 이용하여 스크린선별장치(4)로 공급한다.
3. 선별단계
상기 스크린선별장치(4)에 혼합물을 공급하여 혼합물 중에 포함되어 있는 이물질을 선별 분리한다.
스크린을 통과하지 못한 혼합물은 압출 성형을 위해 압출펠렛성형기(5)로 이송장치(14)를 통해 이송시킨다.
이때, 스크린선별장치(4)를 통과한 혼합물을 혼합물저장조(16)에 임시 저장한 후 이송시킬 수도 있다.
스크린을 통과한 혼합물의 크기는 직경 5 mm 이하가 되도록 함이 바람직하다.
4. 압출성형단계
상기 스크린선별장치(4)를 통과하여 이물질이 분리된 혼합물을 상기 압출펠렛성형기(5)에 공급하여 혼합물을 일정 크기의 펠렛으로 압출 성형한다.
이때, 펠렛의 크기는 직경이 6 ~ 12mm, 길이는 20 ~ 60mm 정도가 되도록 한다.
미성형되거나 적합한 성형 조건을 갖추지 못한 불량 성형물은 제2양방향배출기(18)를 통해 배출한다.
배출된 압출 성형 펠렛은 건조기(6)로 이동시키기 위해 버킷엘리베이터(15)로 이송한다.
5. 건조단계
상기 압출펠렛성형기(5)에서 제조된 펠렛을 상기 건조기(6)에 투입하고, 상기 건조기(6)에 상기 열공급장치(13) 또는 상기 수분응축기(11)에서 배출된 공기를 공급하되, 내부로 공급되는 공기를 1 ~ 120℃, 상대습도 0 ~ 65%의 범위로 유지하여 펠렛의 함수율이 0 ~ 10%가 되도록 건조한다.
건조 공기의 특성에 따라 건조 시간은 2 ~ 24시간 동안 건조하며, 건조가 완료된 건조펠렛은 건조기(6) 하부로 배출한다.
6. 저장단계
상기 건조기(6)에서 건조된 펠렛을 이송스크류와 같은 이송장치(14)를 이용하여 건조펠렛저장조(7)에 저장한다.
7. 건조펠렛분쇄단계
상기 양방향배출기(8)를 통해 일부 건조 펠렛은 건조펠렛분쇄기(9)로 공급 분쇄하여 분쇄펠렛을 제조하여 상기 펠렛분말저장조(2)로 공급하여 압출 성형을 위한 수분 조절제로 활용하고, 잉여 건조 펠렛은 배출하여 별도의 재생에너지원 등으로 활용한다.
8. 분진제거단계
상기 건조기(6) 내부에서 펠렛을 건조시키고 배출되는 공기를 상기 사이클론(10)으로 공급하여 공기 중의 분진을 제거한다.
9. 수분제거단계
상기 수분응축기(11)를 이용하여 사이클론(10)을 통과한 공기 중의 습기를 제거한다.
즉, 상기 압출성형된 펠렛의 건조가 진행되면서 배출되는 습기를 포함한 공기는 습기를 제거하기 위하여 수분응축기(11 )에 투입하여 습기를 제거하게 되며, 이때 습공기는 우선 사이클론(10)을 통과시켜 분진을 제거하고, 수분응축기(11 )를 통과시켜 수분을 제거하며, 응축된 수분은 응축수저장조(12 )로 이송하여 배출펌프(20)로 외부로 배출한다.
10. 건조공기공급단계
열공급장치(13)를 이용하여 건조기(6)로 외부의 폐열 또는 외부의 폐열과 열교환된 공기를 공급하되, 공급되는 공기는 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 이루어져 있으며, 수분응축기(11)에서 배출된 공기를 외부의 폐열과 열교환시켜 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 건조기(6)로 공급한다.
상기 압출펠렛성형기(5)로부터 배출된 펠렛을 건조기(6)에 투입한 후 건조하기 위하여 건조용 저온열풍 공기를 투입하여야 하는데, 이때 열공급장치(13)는 상술한 바와 같이 젖은 펠렛을 건조하기 위하여 건조열을 공급하기 위한 것으로 다양한 종류의 폐열(저온 또는 고온), 스팀, LNG 등을 사용하여 건조열로 사용하되 유기물이 증발하지 않고 습도를 65% 이하로 유지하기 위한 온도로 낮춘 공기를 건조기() 내부로 유입하고, 이때 유인송풍기를 사용하여 건조공기를 투입한다.
다만, 폐열 및 스팀의 경우 열교환기를 사용하여 공기만 투입하는 것이 바람직하고, LNG, LPG 및 전열기의 경우 외기공기를 직접 투입하여 건조열로 사용하되 건조온도는 유기물이 증발이 매우 낮은 120 이하로 하며, 상대습도는 65% 이하로 하고 상기조건을 유지하기 위한 온도는 자동으로 조절할 수 있도록 하는 것이 바람직하다.
즉, 건조공기공급단계는 외부의 폐열을 직접, 또는 열교환 방법에 의해 외기를 초기에 건조기(6)로 공급하고, 그 이후에는 외부의 폐열과 수분응축기(11)에서 배출되는 공기를 열교환시켜 다시 가온 또는 적정한 온도와 습도로 냉각시켜 건조기(6)로 지속적으로 공급하는 것이다.
상기와 같이 구성된 본 발명은 건조후 배출되는 습공기의 응축에 의하여 외부로 배출되는 응축수를 제외하고 건조에 필요한 공기는 내부 순환에 의하여 건조기로 재투입되는 기류순환형 구성을 지니고 있으며, 투입되는 공기의 온도는 120℃ 이하, 상대습도는 65% 이하로 균일하게 유지시키며, 건조시간은 투입공기의 특성에 따라 차이가 있으나, 2~24시간 건조시키는 특징을 지니고 있다.
또한 압출성형을 하기 위하여 혼합된 혼합물의 함수율은 45~60 중량%로 하고, 건조펠렛의 함수율은 10 중량% 이하로 하여야 하며, 이 경우 신재생에너지용 연료로 사용할 경우, 저위발열량을 최대화할 수 있으며, 슬러지의 수분함량을 조절하기 위한 수분 조절제로서의 역할과 압출성형을 성형하기 위하여 투입하는 건조펠렛 분말의 량을 최소화 할 수 있는 장점이 있다.
상기와 같은 구성으로 이루어진 본 발명을 통한 고온 건조방식과의 비교한 결과는 아래 표 1에 나타난 바와 같다.
표 1
항 목 기존(열적건조 방식)고온건조/건조공기 배출 본 발명기류 순환방
건조방식 디스크(스팀 투입) 기류식 방식
건조온도(℃) 180~450 55~65
악취발생 +++++ +
응축수 색도 +++ +
(악취발생 및 응축수 색도는 +가 증가할수록 높음, 악취발생은 무작위 추출 성인 10명에게 설문조사한 결과)
표 1은 슬러지를 건조하는데 있어서 고온 열적건조(Calorie base drying)와 자연의 원리를 활용하고 물질의 이동을 촉진(습도 균형 : Equilibrium Moisture Content)시켜 건조하는 저온 기류식 건조에 의하여 나타난 결과를 비교하였다.
특히, 본 발명에 의한 건조온도는 열적건조방식에 비하여 매우 낮은 60℃ 내외에서 건조할 수 있었으며, 낮은 온도의 폐열을 활용할 수 있다는 결과를 나타냈으며, 저온에서 건조할 수 있음으로서 열적건조에 비하여 매우 낮은 악취발생을 나타냈으며, 이는 낮은 온도를 사용함으로써 유기물질의 증발을 최소화 할 수 있었다는 것을 나타내며, 악취를 처리하기 위한 비용을 최소화 할 수 있어서 높은 경제성을 나타낸다고 할 수 있다.
더욱이 표 2에 따르면, 습공기를 응축하여 측정한 응축수의 오염부하도는 열적건조에 의하여 채취한 응축수에 비하여 자체 방류가 가능할 수 있는 현저한 감소효과를 나타냈는데, 이는 유기물물의 증발이 최소화 되어 악취발생이 급감한 결과와 일치된다고 할 수 있다,
또한 본 발명은 건조에 필요한 공기를 외부로 방출하지 않고 순환시켜 사용함으로써 외부로 악취배출을 원천적으로 방치할 수 있는 특징을 지니고 있어서 악취시설 설치를 크게 축소할 수 있어서 경제성이 크게 개선되는 것으로 나타났다.
표 2
항 목 기존(열적건조 방식)고온건조/건조공기 배출 본 발명기류 순환방
COD(mg/l) 18,500~44,750 15~35
SS(mg/l) 240~450 8~41
적용 가능한 산업분야는, 슬러지를 사용하여 신재생에너지를 생산할 수 있는 축산분뇨 슬러지 건조처리, 도축폐수슬러지 건조처리, 식품회사(유가공회사 등) 슬러지 건조처리, 음식물쓰레기 폐수슬러지 건조처리 및 잉여슬러지 건조처리 등 유기성 성분이 많이 배출되는 산업체와 제지슬러지에 크게 활용될 수 있을 것으로 예측된다.

Claims (5)

  1. 기류순환형 저온 열풍 슬러지 건조 처리설비에 있어서,
    일측으로 슬러지가 유입되어 저장되는 슬러지저장조(1)와;
    일측으로 건조된 분쇄펠렛이 수분조절제로써 유입되어 저장되는 펠렛분말저장조(2)와;
    상기 슬러지저장조(1)와 연결되어 슬러지가 내부로 공급되고, 상기 펠렛분말저장조(2)와 연결되어 건조된 분쇄펠렛이 수분조절제로써 유입되어 슬러지와 건조된 분쇄펠렛을 혼합시켜 투입된 슬러지의 수분을 조절하는 혼합기(3)와;
    상시 혼합기(3)에서 혼합된 혼합물로부터 이물질을 선별 분리하는 스크린선별장치(4)와;
    상기 스크린선별장치(4)에서 이물질이 분리된 혼합물을 공급받아 일정 크기의 펠렛으로 압출 성형하는 압출펠렛성형기(5)와;
    일측으로 상기 압출펠렛성형기(5)에서 성형된 펠렛을 공급받고, 타측으로부터 저온 저습의 공기를 공급받아 성형된 펠렛을 저온 저습으로 건조시키되, 유입되는 저온 저습의 공기는 1 ~ 120℃, 상대습도 0 ~ 65%인 것을 특징으로 하는 건조기(6)와;
    상기 건조기(6)와 연결되어 건조기(6)에서 건조된 펠렛을 저장하는 건조펠렛저장조(7)와;
    상기 건조펠렛저장조(7)와 연결되어 건조된 펠렛을 양방향으로 배출하는 양방향배출기(8)와;
    일측이 상기 양방향배출기(8)와 연결되어 양방향배출기(8) 일측으로 배출되는 건조펠렛을 분쇄하여 분쇄펠렛을 제조하고, 타측은 상기 펠렛분말저장조(2)와 연결되어 분쇄펠렛을 펠렛분말저장조(2)로 공급하는 건조펠렛분쇄기(9)와;
    상기 건조기와 연결되어 있어 건조기 내부의 공기 중의 분진을 제거하는 사이클론(10)과;
    일측이 상기 사이클론(10)과 배관 연결되어 있어 사이클론(10)을 통과한 공기 중의 습기를 제거하고, 타측은 상기 건조기(6)와 배관 연결되어 있어 습기가 제거된 공기를 건조기(6)로 공급하는 수분응축기(11)와;
    상기 수분응축기(11)와 배관 연결되어 있으며, 상기 수분응축기(11)에서 응축된 수분을 저장하는 응축수저장조(12)와;
    상기 수분응축기(11)와 건조기(6) 사이의 배관에 연결되어 있으며, 건조기(6)로 1 ~ 120℃, 상대습도 0 ~ 65%의 공기를 공급하는 열공급장치(13);를 포함하여 구성된,
    기류순환형 저온 열풍 슬러지 건조 처리설비.
  2. 제 1항에 있어서,
    상기 슬러지저장조(1) 및 펠렛분말저장조(2)는 각각 정량측정기(16)가 연결되어 있어 혼합기(3)로 공급되는 원료의 비율을 조절하도록 이루어진 것을 특징으로 하는,
    기류순환형 저온 열풍 슬러지 건조 처리설비.
  3. 제 2항에 있어서,
    상기 열공급장치(13)는 외부의 폐열을 발생하는 폐열배출장치(22)와 배관 연결된 열교환기로 이루어져 있는 것을 특징으로 하는,
    기류순환형 저온 열풍 슬러지 건조 처리설비.
  4. 제 3항에 있어서,
    상기 응축수저장조(12)의 배출측과 수분응축기(11)의 공급측이 배관 연결되어 상기 수분응축기(11)에서 응축된 수분을 상기 수분응축기(11)의 냉각수로 공급하는 것을 특징으로 하는,
    기류순환형 저온 열풍 슬러지 건조 처리설비.
  5. 기류순환형 저온 열풍 슬러지 건조 처리방법에 있어서,
    제 1항 내지 제 4항 중 어느 한 항의 기류순환형 저온 열풍 슬러지 건조 처리장치를 이용하여,
    주원료로써 슬러지를 슬러지저장조에 저장하고, 수분조절제로써 건조된 분쇄펠렛을 펠렛분말저장조(2)에 저장하는 초기처리단계와;
    상기 혼합기(3)에 슬러지와 건조된 분쇄펠렛을 투입하여 혼합물의 함수율이 45 ~ 60%가 되도록 혼합하는 혼합단계와;
    상기 스크린선별장치(4)에 혼합물을 공급하여 혼합물 중에 포함되어 있는 이물질을 선별 분리하는 선별단계와;
    상기 스크린선별장치(4)를 통과하여 이물질이 분리된 혼합물을 상기 압출펠렛성형기(5)에 공급하여 혼합물을 일정 크기의 펠렛으로 압출 성형하는 압출성형단계와;
    상기 압출펠렛성형기(5)에서 제조된 펠렛을 상기 건조기(6)에 투입하고, 상기 건조기(6)에 상기 열공급장치(13) 또는 상기 수분응축기(11)에서 배출된 공기를 공급하되, 내부로 공급되는 공기를 1 ~ 120℃, 상대습도 0 ~ 65%의 범위로 유지하여 펠렛의 함수율이 0 ~ 10%가 되도록 하는 건조단계와;
    상기 건조기(6)에서 건조된 펠렛을 건조펠렛저장조(7)에 저장하는 저장단계와;
    상기 양방향배출기(8)를 통해 일부 건조 펠렛은 건조펠렛분쇄기(9)로 공급 분쇄하여 분쇄펠렛을 제조하여 상기 펠렛분말저장조(2)로 공급하는 건조펠렛분쇄단계와;
    상기 건조기(6) 내부에서 펠렛을 건조시키고 배출되는 공기를 상기 사이클론(10)으로 공급하여 공기 중의 분진을 제거하는 분진제거단계와;
    상기 수분응축기(11)를 이용하여 사이클론(10)을 통과한 공기 중의 습기를 제거하는 수분제거단계와;
    열공급장치(13)를 이용하여 건조기(6)로 외부의 폐열 또는 외부의 폐열과 열교환된 공기를 공급하되, 공급되는 공기는 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 이루어져 있으며, 수분응축기(11)에서 배출된 공기를 외부의 폐열과 열교환시켜 온도 1 ~ 120℃, 상대습도 0 ~ 65%로 건조기(6)로 공급하는 건조공기공급단계;를 포함하여 구성된,
    기류순환형 저온 열풍 슬러지 건조 처리방법.
PCT/KR2014/010318 2013-11-08 2014-10-31 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법 WO2015068984A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480060411.8A CN105745175A (zh) 2013-11-08 2014-10-31 气流循环型低温热风污泥干燥处理设备及处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0135479 2013-11-08
KR1020130135479A KR101338369B1 (ko) 2013-11-08 2013-11-08 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법

Publications (1)

Publication Number Publication Date
WO2015068984A1 true WO2015068984A1 (ko) 2015-05-14

Family

ID=49987599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010318 WO2015068984A1 (ko) 2013-11-08 2014-10-31 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법

Country Status (3)

Country Link
KR (1) KR101338369B1 (ko)
CN (1) CN105745175A (ko)
WO (1) WO2015068984A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697525B1 (ko) * 2016-01-27 2017-01-18 주식회사 기수정밀 유기성 슬러지의 건조처리장치 및 방법.
CN108726834B (zh) * 2017-04-14 2021-04-02 中国科学院生态环境研究中心 强制通风水平流生物干化反应装置及方法
KR101817647B1 (ko) * 2017-07-18 2018-02-21 주식회사 아쿠엑스 코리아 축산 분뇨의 무방류 처리 설비
CN107382016B (zh) * 2017-09-01 2023-08-18 浙江海河环境科技有限公司 低温闭环污泥干化系统
KR102203087B1 (ko) 2020-05-22 2021-01-14 주식회사 한하산업 마이크로웨이브를 구비한 밀폐형 슬러지 건조 장치
KR102212103B1 (ko) 2020-05-22 2021-02-04 주식회사 한하산업 냉동사이클을 활용하여 슬러지를 건조시킬 수 있는 밀폐형 저온 건조 시스템의 운전제어방법
KR20220020599A (ko) 2020-08-12 2022-02-21 주식회사 한하산업 블럭단위 하수 슬러지 장입장치
KR20220020604A (ko) 2020-08-12 2022-02-21 주식회사 한하산업 하이브리드 기류발생 슬러지 건조장치
KR20220020603A (ko) 2020-08-12 2022-02-21 주식회사 한하산업 하수 슬러지 건조장치용 수평회전 교반장치
KR102176603B1 (ko) 2020-08-25 2020-11-09 (주)한하산업 수평회전 비표면적 확대 장치를 구비한 하수 슬러지 건조장치
KR102176604B1 (ko) 2020-08-26 2020-11-09 (주)한하산업 하이브리드 기류 발생 슬러지 건조장치
KR102183069B1 (ko) 2020-08-26 2020-11-25 (주)한하산업 블럭 단위 하수 슬러지 장입장치를 구비한 하수 슬러지 건조장치
KR102298117B1 (ko) * 2021-06-10 2021-09-07 도원플랜트산업주식회사 슬러지와 폐유를 이용한 고형연료 제조 시스템
KR102457535B1 (ko) * 2021-11-09 2022-10-21 (주)리엔텍엔지니어링 슬러지 건조시스템
KR102504044B1 (ko) 2022-09-20 2023-02-28 주식회사 한하산업 다공성 에어노즐을 이용하여 슬러지 내부에 에어를 공급하는 이송장치를 갖는 슬러지 건조장치
KR102502424B1 (ko) 2022-09-20 2023-02-23 주식회사 한하산업 슬러지 투입구 및 토출구 자동개폐를 통해 기류제어가 가능한 에너지 절감형 슬러지 건조장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210556A (ja) * 1996-02-01 1997-08-12 Azu Kiyaria Kk 蒸気接触乾燥機における凝縮装置
KR100892649B1 (ko) * 2008-06-26 2009-04-08 배희동 슬러지 건조처리 방법 및 장치
KR100996951B1 (ko) * 2010-01-22 2010-11-26 (주)리엔텍엔지니어링 슬러지 건조장치
KR101006466B1 (ko) * 2010-05-14 2011-01-06 (주)리엔텍엔지니어링 폐루프식 슬러지 기류 건조장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812707B1 (ko) * 2007-09-03 2008-03-12 주식회사 포스코건설 슬러지 건조장치 및 건조방법
KR101232624B1 (ko) * 2010-08-02 2013-02-21 주식회사 건농코리아 진공감압식 슬러지 건조 장치
TWI458926B (zh) * 2011-10-26 2014-11-01 Au Optronics Corp 密閉空氣循環污泥乾燥機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210556A (ja) * 1996-02-01 1997-08-12 Azu Kiyaria Kk 蒸気接触乾燥機における凝縮装置
KR100892649B1 (ko) * 2008-06-26 2009-04-08 배희동 슬러지 건조처리 방법 및 장치
KR100996951B1 (ko) * 2010-01-22 2010-11-26 (주)리엔텍엔지니어링 슬러지 건조장치
KR101006466B1 (ko) * 2010-05-14 2011-01-06 (주)리엔텍엔지니어링 폐루프식 슬러지 기류 건조장치

Also Published As

Publication number Publication date
KR101338369B1 (ko) 2013-12-06
CN105745175A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2015068984A1 (ko) 기류순환형 저온 열풍 슬러지 건조 처리설비 및 처리방법
WO2019088399A1 (ko) 순환증기 재가열 슬러지 건조시스템
WO2014112703A1 (ko) 팜유 생산 가공 공정에서 최종적으로 배출되는 배출수와 팜부산물을 이용한 처리 설비 및 처리 방법
WO2012051957A1 (zh) 包含污泥的废弃物的处理设备
DE2141171C3 (de) Verfahren zur Müllbeseitigung
KR100892649B1 (ko) 슬러지 건조처리 방법 및 장치
WO2012051958A1 (zh) 废弃物处理设备
WO2023075265A1 (ko) 소화액 처리수와 유기물 건조물질의 혼합액을 이용하여 바이오가스를 생산하는 시스템
JP4628773B2 (ja) 有機系汚泥の処理方法及び処理装置
KR101151314B1 (ko) 음식 폐기물과 축분을 이용한 연료 제조방법
KR101817647B1 (ko) 축산 분뇨의 무방류 처리 설비
KR100812707B1 (ko) 슬러지 건조장치 및 건조방법
KR100268592B1 (ko) 하수 슬러지 처리방법
JP2008073691A (ja) 既設アスファルトプラント兼用油汚染土壌処理装置
DE102008004400A1 (de) Verfahren und Anordnung zur Dosierung von Kohlenstaub in eine Feuerungseinrichtung
KR100923032B1 (ko) 유기성 폐기물의 처리시스템
JPS63151650A (ja) セメントクリンカの焼成方法
KR100352790B1 (ko) 슬러지 소각용융 처리장치
WO2023068454A1 (ko) 바이오매스 가스화 시스템
SE460728B (sv) Foerfarande och anlaeggning vid behandling av mesa
KR20180046477A (ko) 잉여 스팀을 이용한 슬러지 건조장치
JPS6152883B2 (ko)
JPH11316013A (ja) 汚泥の焼却方法
KR20000008972A (ko) 도시쓰레기 소각로에서의 하수 슬러지 소각 장치 및 소각 방법
JPS6155008B2 (ko)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860323

Country of ref document: EP

Kind code of ref document: A1