WO2015068437A1 - 金属管、伝熱管、熱交換装置及び金属管の製造方法 - Google Patents

金属管、伝熱管、熱交換装置及び金属管の製造方法 Download PDF

Info

Publication number
WO2015068437A1
WO2015068437A1 PCT/JP2014/070308 JP2014070308W WO2015068437A1 WO 2015068437 A1 WO2015068437 A1 WO 2015068437A1 JP 2014070308 W JP2014070308 W JP 2014070308W WO 2015068437 A1 WO2015068437 A1 WO 2015068437A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
porous body
metal tube
aluminum
tube
Prior art date
Application number
PCT/JP2014/070308
Other languages
English (en)
French (fr)
Inventor
英彰 境田
細江 晃久
西村 淳一
奥野 一樹
弘太郎 木村
健吾 後藤
隼一 本村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP14861006.6A priority Critical patent/EP3067653A4/en
Priority to CN201480060646.7A priority patent/CN105705901A/zh
Priority to KR1020167010354A priority patent/KR20160081900A/ko
Priority to US15/033,693 priority patent/US20160252309A1/en
Publication of WO2015068437A1 publication Critical patent/WO2015068437A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids

Definitions

  • the present invention relates to a metal tube having a three-dimensional network structure, a heat transfer tube, a heat exchange device, and a method for manufacturing the metal tube.
  • Patent Document 1 a plurality of heat dissipating fins are provided vertically, and a plurality of refrigerant heat dissipating tubes are provided horizontally so as to penetrate the heat dissipating fins.
  • a heat exchanger is described in which heat is exchanged, water is supplied from the upper part of the heat dissipating fin, and the heat dissipating fin is further cooled by the heat of evaporation.
  • By supplying air to the heat exchanger by a fan or the like heat is exchanged with the heat dissipating fins to obtain cooled air.
  • the amount of water supplied from the upper part of the heat dissipating fin can be adjusted as appropriate. For example, it is said that when a falling water droplet contacts two fins at the same time, heat exchange is performed between the two fins and high cooling efficiency is obtained.
  • Patent Document 2 discloses that a volatile liquid is supplied into a flow path through which indoor air sucked from the room flows, and the vaporization flow path is cooled by heat of vaporization from outside.
  • An air-conditioning ventilation system including indirect evaporative cooling means for performing sensible heat exchange with a cooling flow path through which the sucked outside air flows is described.
  • the metal tube which concerns on 1 aspect of this invention is a metal tube which has a metal base material and the metal porous body provided in at least one part of the surface of the said metal base material, Comprising: A metal tube obtained by joining the porous metal body to at least a part of the surface of the metal base material and forming the metal base material joined to the porous metal body into a tubular shape. .
  • the metal tube which concerns on embodiment of this invention is a metal tube which has a metal base material and the metal porous body provided in at least one part of the surface of the said metal base material, Comprising: A flat metal A metal tube obtained through a step of bonding the metal porous body to at least a part of the surface of the base material and a step of forming the metal base material bonded with the metal porous body into a tubular shape. Since the metal tube according to the above (1) is provided with a metal porous body on at least a part of the surface of the metal substrate, the surface area is much larger than that of a conventional metal tube having only a metal substrate. Yes.
  • the contact area with the liquid in the metal porous body portion can be increased, and the utilization efficiency of the latent heat of the liquid can be increased.
  • the utilization efficiency of latent heat is high, when the said metal tube is used for a heat exchange apparatus, it can contribute to size reduction of an apparatus.
  • the metal tube which concerns on embodiment of this invention can be used not only for heat exchange apparatuses but for another use.
  • the metal tube which concerns on embodiment of this invention is a metal tube as described in said (1) by which the said metal porous body is provided in the at least inner surface of the said metal tube.
  • the metal porous body may be provided on the inner surface, outer surface, or both surfaces of the metal tube, but is preferably provided on at least the inner surface. Thereby, it can use suitably as a heat exchanger tube in the heat exchange apparatus which supplies a heat medium to the inner surface of a metal tube.
  • the metal tube which concerns on embodiment of this invention is a metal tube as described in said (1) or said (2) whose material of the said metal base material is aluminum or copper.
  • the metal tube which concerns on embodiment of this invention is a metal tube as described in any one of said (1) to said (3) whose material of the said metal porous body is aluminum or copper. Since aluminum and copper are metals having excellent thermal conductivity, it is preferable that the material of the metal base material is any of these metals so that the heat inside and outside the metal tube can be exchanged efficiently. Similarly, the material of the metal porous body is preferably aluminum or copper, so that the heat between the inside and the outside of the metal tube can be exchanged efficiently.
  • a metal tube according to an embodiment of the present invention is the metal tube according to any one of (1) to (4), wherein the metal base and the metal porous body are made of the same material. is there. In general, when different metal materials are joined, corrosion may proceed from the part, but this problem is preferably solved by using the same metal material for the metal base and the metal porous body.
  • a metal tube according to an embodiment of the present invention is the metal tube according to any one of (1) to (5), wherein the metal porous body has a three-dimensional network structure.
  • a metal tube according to an embodiment of the present invention is the metal tube according to any one of (1) to (6) above, wherein unevenness is formed on a skeleton surface of the metal porous body. .
  • a metal tube according to an embodiment of the present invention is the metal tube according to any one of (1) to (7), wherein a through-hole is formed in a skeleton of the metal porous body. . Since the metal porous body having a three-dimensional network structure has a very large non-surface area, the utilization efficiency of the latent heat of the liquid can be further increased.
  • the porosity is very high, it is preferable that the flow of the liquid is hardly hindered. Further, it is preferable that irregularities are formed on the surface of the skeleton of the porous metal body, since the surface area of the porous metal body is further increased, and the utilization efficiency of the latent heat of the liquid can be further improved. Similarly, it is preferable that the through holes are formed in the skeleton of the porous metal body, whereby the utilization efficiency of the latent heat of the liquid can be further improved.
  • a metal tube according to an embodiment of the present invention is the metal tube according to any one of (1) to (8), which is a rectangular tube having a rectangular cross section.
  • the shape of the metal tube is not particularly limited, and it may be a cylindrical tube having a circular or elliptical cross section, or a flat tube having a rectangular cross section.
  • the cross section is rectangular, for example, when a plurality of metal tubes are used side by side, it is possible to arrange them so that the overall utilization efficiency becomes high.
  • a heat transfer tube according to an embodiment of the present invention is a heat transfer tube including the metal tube according to any one of (1) to (9) above. It is preferable that the metal tube be a heat transfer tube for performing heat exchange between the inner surface side and the outer surface side, for example, in a heat exchange device.
  • a heat exchange apparatus causes a gas to flow through the surface of the metal porous body, and a liquid supply unit that supplies a liquid to the metal porous body of the heat transfer tube according to (10).
  • a heat exchange device having a gas supply unit and a fluid supply unit for allowing a fluid to flow through the surface of the metal base opposite to the side where the metal porous body is provided.
  • the heat exchanging device according to (11) is a heat exchanging device having a very high utilization efficiency of the latent heat of the liquid because the metal tube including the porous metal portion having a very large surface area is used as the heat transfer tube. . For this reason, it is possible to reduce the size of the apparatus as compared with a conventional heat exchange apparatus using a heat transfer tube.
  • the heat exchange device is the heat exchange device according to (11), wherein the metal porous body is provided on an inner surface of the heat transfer tube.
  • the metal porous body may be provided on the inner surface, outer surface, or both surfaces of the heat transfer tube, but is preferably provided on at least the inner surface.
  • the heat exchange apparatus which supplies a heat medium to the inner surface of a heat exchanger tube can be provided suitably.
  • a heat exchange device is the heat exchange device according to (11) or (A), wherein the fluid is a gas.
  • the heat exchange device according to the embodiment of the present invention can cool the fluid as long as the fluid can flow through the device.
  • the fluid is a gas, for example, by using it as a heat exchange device of an air conditioning facility, the outside air can be taken in and cooled from the outside, and the cooled air can be sent into the room.
  • a method of manufacturing a metal tube according to an embodiment of the present invention includes a step of joining a metal porous body to at least a part of a surface of a flat metal base material to form a metal joined body, and the metal joined body comprising: And a step of bending and forming into a tubular shape.
  • a method for manufacturing a metal tube according to an embodiment of the present invention is the method for manufacturing a metal tube according to (13), wherein the metal porous body is not provided in a portion where the metal joined body is bent. .
  • a method of manufacturing a metal tube according to an embodiment of the present invention includes a step of preparing a plurality of metal joined bodies in which a metal porous body is joined to at least a part of a surface of a flat metal base, And joining the end portions of the metal joined body to form a tubular shape.
  • the metal tube according to the embodiment of the present invention can be easily and efficiently manufactured.
  • it can suppress that frame
  • a metal tube according to an embodiment of the present invention is a metal tube having a metal base material and a metal porous body provided on at least a part of the surface of the metal base material.
  • the metal tube has high utilization efficiency of the latent heat of the liquid, and can contribute to downsizing of the heat exchange device.
  • the metal tube includes a step of bonding the metal porous body to at least a part of a surface of a flat metal substrate, and a step of forming the metal substrate bonded with the metal porous body into a tubular shape. It is obtained through the process.
  • molded in the shape of a tube for example can be considered.
  • the metal porous body cannot be formed into a tubular shape, and the metal tube cannot be manufactured.
  • the joining method of a metal base material and a metal porous body is not specifically limited, It can carry out by brazing, diffusion joining, etc. At this time, it is preferable that the metal base material and the metal porous body be firmly joined so that the thermal resistance between the inside and the outside of the metal tube is reduced.
  • the metal porous body may be provided on the inner surface, the outer surface, or both surfaces of the metal tube, but is preferably provided on at least the inner surface. Thereby, it can use suitably as a heat exchanger tube in the heat exchange apparatus which supplies a heat medium to the inner surface of a metal tube.
  • the material of the metal substrate is not particularly limited.
  • aluminum (Al), copper (Cu), nickel (Ni), iron (Fe), or an alloy thereof is used as the metal substrate.
  • aluminum or copper it is preferable to use aluminum or copper as the metal substrate among the above. Focusing only on the viewpoint of thermal conductivity, it is preferable to use copper as the metal substrate.
  • the material of the metal porous body is not particularly limited. Like the material of the metal substrate, aluminum (Al), copper (Cu), nickel (Ni), iron (Fe), etc., or alloys thereof, etc. Can be used. Moreover, when using the said metal pipe for a heat exchange apparatus, since it is preferable to use a metal with high heat conductivity as a metal porous body, it is preferable to use aluminum or copper as said metal porous body. Similar to the metal base material, it is preferable to use copper as the metal porous body when focusing only on the viewpoint of thermal conductivity. In consideration of processability for manufacturing a metal tube, weight, availability of materials (whether resources are scarce), etc., it is preferable to use aluminum as the metal porous body.
  • the metal base material and the metal porous body are made of the same material. Thereby, the problem of corrosion that may occur when different metal materials are joined can be avoided.
  • the metal tube is composed of a metal tube substantially made of aluminum and a metal porous body, or a metal substrate substantially made of copper and a metal porous body. A metal tube is preferred.
  • substantially consisting of aluminum or substantially consisting of copper means that components other than aluminum and copper may be included inevitably.
  • the metal porous body only needs to have a structure having a large number of communication holes and a large surface area.
  • a porous metal body having a three-dimensional network structure is preferable.
  • the metal porous body having a three-dimensional network structure may be manufactured by any method such as a plating method, a sintering method, and a casting method. From the viewpoint of controlling the pore diameter and thickness of the metal porous body, it is preferably produced by a plating method.
  • a resin molded body having a three-dimensional network structure may be used as a base material.
  • the resin molded body only needs to have continuous pores (continuous ventilation holes), and a foamed resin molded body or a resin molded body having a shape like a nonwoven fabric entangled with a fibrous resin can be used. If a non-woven resin molded body is used as a base material, a porous metal body having a non-woven three-dimensional network structure can be obtained.
  • irregularities are formed on the skeleton surface of the porous metal body.
  • the surface area of the porous metal body can be further increased, and the utilization efficiency of the latent heat of the liquid can be improved.
  • the surface of the plating film formed on the skeleton surface can be roughened to form irregularities. .
  • FIG. 7 is a photograph of the skeleton surface of an example of a metal porous body observed with an electron microscope.
  • a skeleton of the metal porous body is obtained by containing resin microspheres in the plating solution. It is also possible to produce a porous metal body in which micropores having a diameter smaller than that of the porous metal body are formed on the surface, and irregularities are formed on the skeleton surface. The unevenness formed on the surface of the skeleton is preferable because the surface area of the metal porous body can be increased in any of the above cases.
  • the metal porous body preferably has a through-hole formed in the skeleton.
  • the porous metal body having a three-dimensional network structure obtained by plating has a hollow inside of the skeleton, so that if the through-holes are formed on the surface of the skeleton, the space inside the skeleton can also be used. Therefore, it is preferable.
  • the porous metal body may be manufactured as follows. First, when conducting a conductive treatment on the surface of a resin molded body as a base material by electroless plating, defects are caused by shortening the plating time or reducing the catalyst concentration. Thereby, plating is not formed in the said defective part in a subsequent plating process, but a through-hole can be formed.
  • the shape of the metal tube is not particularly limited, and may be a cylindrical tube having a circular or elliptical cross section, or a rectangular tube having a rectangular cross section.
  • a rectangular tube for example, when a plurality of metal tubes are used side by side in a heat exchanger, it is possible to arrange them so that the overall utilization efficiency is high.
  • the thickness of the metal substrate is not particularly limited, and may be appropriately changed according to the size of the metal tube to be manufactured.
  • the metal porous body preferably has a pore diameter of about 1 ⁇ m or more and 3500 ⁇ m or less. Thereby, when a liquid is supplied to the metal porous body part of a metal tube, a liquid can be hold
  • the aluminum porous body can be produced by a plating method using a molten salt bath. Specifically, a resin molded body having a three-dimensional network structure having communication holes such as urethane foam (hereinafter also simply referred to as “resin molded body”) is used as a core material, and the resin molded body is subjected to a conductive treatment. After that, electrolytic plating of aluminum is performed in a molten salt bath. Thereafter, the resin structure on which the aluminum film is formed is heat-treated to burn off the resin, whereby an aluminum porous body in which only the metal layer remains can be obtained.
  • a resin molded body having a three-dimensional network structure having communication holes such as urethane foam
  • a resin molded body having a three-dimensional network structure and communication holes is prepared.
  • Any resin can be selected as the material of the resin molded body.
  • the material include foamed resin moldings such as polyurethane, melamine, polypropylene, and polyethylene.
  • Foamed urethane and foamed melamine can be preferably used as a foamed resin molded article because they have high porosity, have pore connectivity and are excellent in thermal decomposability.
  • Urethane foam is preferable in terms of uniformity of pores, availability, and the like, and in addition, a product having a small pore diameter can be obtained.
  • Resin moldings often have residues such as foaming agents and unreacted monomers in the foam production process, and it is preferable to perform a cleaning treatment for the subsequent steps.
  • the resin molded body forms a three-dimensional network as a skeleton, thereby forming continuous pores as a whole.
  • the urethane skeleton has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the foamed resin molded article preferably has a porosity of 80% to 98% and a pore diameter of 1 ⁇ m to 3500 ⁇ m.
  • the hole diameter in the case of a foamed resin molding shall mean a cell diameter.
  • the surface of the resin molded body is subjected to a conductive treatment in advance.
  • a conductive treatment there is no restriction
  • any method such as electroless plating of a conductive metal such as nickel, vapor deposition or sputtering of aluminum, or application of a conductive paint containing conductive particles such as carbon can be selected.
  • the conductive treatment a method for conducting the conductive treatment by sputtering of aluminum and a method for conducting the conductive treatment on the surface of the resin molded body using carbon as conductive particles will be described below.
  • the sputtering treatment using aluminum is not limited as long as aluminum is the target, and may be performed according to a conventional method. For example, after attaching a resin molded body to a substrate holder, while applying an inert gas, a DC voltage is applied between the holder and a target (aluminum) to cause the ionized inert gas to collide with aluminum. The aluminum particles sputtered off are deposited on the surface of the resin molding to form a sputtered aluminum film.
  • the sputtering treatment is preferably performed at a temperature at which the resin molded body does not dissolve. Specifically, the sputtering treatment may be performed at about 100 to 200 ° C., preferably about 120 to 180 ° C.
  • a carbon paint as a conductive paint is prepared.
  • the suspension as the conductive paint preferably contains carbon particles, a binder, a dispersant and a dispersion medium.
  • the suspension In order to uniformly apply the conductive particles, the suspension needs to maintain a uniform suspension state. For this reason, the suspension is preferably maintained at 20 ° C. to 40 ° C. When the temperature of the suspension is 20 ° C. or higher, a uniform suspended state can be maintained, and a good carbon particle layer can be formed on the surface of the skeleton forming the network structure of the porous resin body.
  • the particle size of the carbon particles is preferably 0.01 to 5 ⁇ m, more preferably 0.01 to 2 ⁇ m. When the particle size is large, it becomes a factor that clogs the cells of the resin molded body or inhibits smooth plating, and when it is too small, it is difficult to ensure sufficient conductivity.
  • the application of the carbon particles to the resin molded body can be performed by immersing the target resin molded body in the suspension and performing squeezing and drying.
  • Electrolytic plating is performed in a molten salt to form an aluminum film on the surface of the resin molded body.
  • a thick aluminum film can be uniformly formed on the surface of a complicated skeleton structure, particularly a resin molded body having a three-dimensional network structure.
  • a direct current is applied in a molten salt using a resin molded body having a conductive surface as a cathode and aluminum as an anode.
  • an organic molten salt which is a eutectic salt of an organic halide and an aluminum halide, or an inorganic molten salt which is a eutectic salt of an alkali metal halide and an aluminum halide can be used.
  • electrolytic plating can be performed without decomposing the resin molded body as a base material.
  • the organic halide imidazolium salt, pyridinium salt and the like can be used, and specifically, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable. Since the molten salt deteriorates when moisture or oxygen is mixed in the molten salt, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
  • an inert gas such as nitrogen or argon
  • a molten salt bath containing nitrogen is preferable, and among them, an imidazolium salt bath is preferably used.
  • an imidazolium salt bath is preferably used.
  • the resin dissolves or decomposes in the molten salt faster than the growth of the plating film, and the plating film cannot be formed on the surface of the resin molded body.
  • the imidazolium salt bath can be used without affecting the resin even at a relatively low temperature.
  • a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • an aluminum chloride-1-ethyl-3-methylimidazolium chloride (AlCl 3 -EMIC) -based molten salt is used. It is most preferably used because it is highly stable and hardly decomposes. These molten salts can be plated on foamed urethane resin or foamed melamine resin, and the temperature of the molten salt bath is 10 ° C to 100 ° C, preferably 25 ° C to 45 ° C. The lower the temperature, the narrower the current density range that can be plated, and the more difficult it is to plate on the entire surface of the resin molded body. By the above steps, an aluminum-resin structure having a resin molded body as a skeleton core is obtained.
  • washing treatment of resin structure-- Even when the plating solution is sufficiently removed in the treatment of the plating solution adhering to the resin structure, it is possible to produce an aluminum porous body in which minute irregularities are formed on the skeleton surface as follows. It can. That is, as described above, a water washing treatment is performed to remove the plating solution adhering to the resin molded body having an aluminum film on the surface, but at this time, without sufficiently removing the water adhering to the resin structure, A heat treatment for removing the resin may be performed. Also in this case, in the step of heating the resin structure, aluminum and water react with each other on the surface of the aluminum film at around 80 ° C. to form boehmite, and then heated further so that the boehmite has fine pores.
  • the amount of water adhering to the resin structure is 10 mL / m 2 to 1000 mL / m 2 in the state of the resin. It is preferable to perform a combustion removal process.
  • a more preferable moisture adhesion amount is 100 mL / m 2 to 1000 mL / m 2 , and further preferably 500 mL / m 2 to 1000 mL / m 2 .
  • the dew point of the atmosphere in the resin combustion removal step is 0 ° C. to 60 ° C.
  • the dew point temperature is more preferably 20 ° C. to 60 ° C., further preferably 40 ° C. to 60 ° C.
  • the heat transfer tube according to the embodiment of the present invention includes the metal tube according to the embodiment of the present invention.
  • the heat transfer tube is used so that the opening is in the vertical direction.
  • the liquid L is supplied to the metal porous body 12 from the upper part of a heat exchanger tube.
  • FIG. 1 shows that the liquid L is supplied to one side surface of the heat transfer tube, in practice, the liquid L may be supplied to the entire four surfaces.
  • the liquid L supplied to the porous metal body 12 flows along the skeleton surface of the porous metal body 12 by gravity and flows to the lower part of the heat transfer tube. In this process, the liquid L evaporates, and at that time, the heat of the skeleton surface of the metal porous body 12 is taken away as heat of vaporization. As a result, the metal porous body 12 is cooled, and the metal base 11 that is joined and thermally connected to the metal porous body 12 is also cooled.
  • FIG. 2 shows a partially enlarged view of a longitudinal section of the metal tube of FIG. If the liquid L continues to evaporate, the vapor pressure in the metal tube increases and the liquid L becomes difficult to evaporate, so the gas G is supplied to the metal porous bodies 12 and 22. This makes it easier for the liquid L to evaporate. Moreover, the gas G can accelerate
  • the metal porous bodies 12 and 22 and the liquid L preferably have good wettability. For this reason, it is preferable that the surface of the metal porous bodies 12 and 22 is processed as needed.
  • water is supplied to an aluminum porous body having a three-dimensional network structure, aluminum and water have a relatively high affinity, but the gas in the aluminum porous body may hinder the penetration of water into the porous portion. is there.
  • a material having high affinity with water and high thermal conductivity may be supported on the surface of the aluminum porous body.
  • the surface (outer surface) of the metal base 21 opposite to the side where the metal porous body 22 is provided is processed to have a rough surface.
  • a fluid is supplied to the outer surface of the metal base material 21 and the heat of the metal base material 21 is transferred to the fluid.
  • heat transfer efficiency can be increased.
  • a member having a larger surface area such as a metal porous body, may be bonded to the outer surface of the metal substrate 21.
  • a porous metal body having a three-dimensional network structure is preferable because it not only has a large surface area but also has a very high porosity and does not hinder the flow of fluid.
  • the liquid L is not particularly limited, and a highly volatile liquid such as water or an organic solvent can be used.
  • the gas G is not particularly limited, and for example, a gas that can be easily supplied such as the atmosphere may be used.
  • a heat exchange device includes: a liquid supply unit that supplies a liquid to a metal porous body of a heat transfer tube; a gas supply unit that causes a gas to flow through the surface of the metal porous body; And a fluid supply section for allowing fluid to flow on the surface opposite to the side on which the metal porous body is provided.
  • FIG. 3 shows a cross-sectional view of an example of the heat exchange device according to the embodiment of the present invention.
  • a plurality of the metal tubes shown in FIG. 1 are used as heat transfer tubes.
  • the fluid F is supplied to the surface (outer surface) of the metal base 31 opposite to the side where the metal porous body 32 is provided. Thereby, heat exchange is performed between the outer surface of the cooled metal substrate 31 and the fluid F, and the fluid F is cooled and discharged from the heat exchange device.
  • FIG. 4 shows a longitudinal sectional view of an example of the heat exchange device according to the embodiment of the present invention.
  • the liquid L is supplied from the upper part of the heat exchange device to the porous metal body 42 of each metal tube, and the gas G is supplied from the lower part of the heat exchange device.
  • the liquid L evaporates from the surface of the metal porous body 42, the metal porous body 42 is cooled, and the metal base material 41 thermally connected to the metal porous body 42 is also cooled.
  • a fluid is supplied to the outer surface of the metal base 41 from the upper surface side of the drawing. Thereby, heat exchange is performed between the metal substrate 41 and the fluid, and the cooled fluid is discharged.
  • the metal porous body may be provided on the inner surface, the outer surface, or both surfaces of the heat transfer tube, but is preferably provided on at least the inner surface.
  • the heat exchange apparatus which supplies a heat medium to the inner surface of a heat exchanger tube can be provided suitably.
  • the fluid is not particularly limited as long as it is a fluid that can flow through the surface of the metal substrate, and may be a gas or a liquid. For example, by supplying outdoor air outside the room, the cooled air can be supplied indoors.
  • a method of manufacturing a metal tube according to an embodiment of the present invention includes a step of joining a metal porous body to at least a part of the surface of a flat metal base material to form a metal joined body, and bending the metal joined body to form a tubular shape. And a step of forming the metal tube.
  • FIG. 5 shows a schematic diagram of an example in which a metal porous body is bonded to at least a part of the surface of the flat metal substrate 51 to form a metal bonded body. In the example shown in FIG. 5, a portion where the metal porous body 52 is not joined is provided at the left end of the metal base 51.
  • the joining method of the metal base material 51 and the metal porous body 52 is not particularly limited, and may be performed by brazing or diffusion joining.
  • the shape of the metal tube is not particularly limited, and it may be a cylindrical tube having a circular or elliptical cross section, or a flat tube having a rectangular cross section.
  • FIG. 6 shows a schematic diagram of another example in which a metal porous body 62 is joined to at least a part of the surface of a flat metal base 61 to form a metal joined body.
  • a metal porous body 62 is not provided in the bent portion of the metal joined body, it is possible to suppress the metal porous body 62 from being bent and the skeleton from being crushed.
  • a flat metal tube having a rectangular cross section can be suitably joined.
  • a method of manufacturing a metal tube according to an embodiment of the present invention includes a step of preparing a plurality of metal joined bodies in which a metal porous body is joined to at least a part of a surface of a flat metal base, and the plurality of metal joined bodies And a step of joining the end portions of each to form a tubular shape.
  • the said metal porous body is not provided in the edge part to which the said metal joined body is joined.
  • two metal joined bodies shown in FIG. 5 may be prepared, arranged so that the metal porous bodies face each other, and the end portions may be joined to each other. At this time, since the metal porous body is not provided at the end portion to which the metal joined body is joined, the metal porous body is not crushed when joining the end portions, which is preferable.
  • Example 1 Manufacture of porous metal
  • a urethane foam having a porosity of 97%, 10 cells / inch, a pore diameter of about 2540 ⁇ m, and a thickness of 2 mm was prepared as a resin molded body, and this was cut into 200 mm ⁇ 200 mm squares.
  • a conductive layer was formed on the surface of the polyurethane foam by sputtering to form aluminum with a basis weight of 10 g / m 2 .
  • urethane foam having a conductive layer formed on the surface is set as a workpiece on a jig having a power feeding function, and then placed in a glove box having an argon atmosphere and low moisture (dew point of ⁇ 30 ° C. or lower), and the temperature is 45 ° C. It was immersed in a molten salt aluminum plating bath (33 mol% EMIC-67 mol% AlCl 3 added with 0.5 g / L of 1,10-phenanthroline). The jig on which the workpiece was set was connected to the cathode side of the rectifier, and a counter electrode aluminum plate (purity 99.99 mass%) was connected to the anode side.
  • a structure in which an aluminum film having a mass of 0.2 g / cm 3 was formed on the surface of the urethane foam was obtained by plating by applying a direct current having a current density of 6 A / dm 2 for 60 minutes. Stirring was performed with a stirrer using a Teflon (registered trademark) rotor.
  • the current density is a value calculated from the apparent area of the urethane foam.
  • An aluminum plate having a size of 1000 mm ⁇ 1000 mm and a thickness of 1 mm was prepared.
  • 100 aluminum porous bodies prepared as described above were prepared, processed to 100 mm ⁇ 100 mm, and placed on the aluminum plate.
  • a portion where the aluminum porous body is not provided is prepared at one end portion (a range of 1000 mm ⁇ 40 mm) of the aluminum plate, and the aluminum porous body is provided at the other portions. It arrange
  • the joining was performed by brazing using a brazing material containing aluminum alloy powder.
  • the aluminum joined body was deformed into a cylindrical shape, and a metal tube was manufactured by brazing an aluminum plate portion at an end facing the portion not provided with the porous aluminum body.
  • Example 2 An aluminum joined body was obtained by brazing the aluminum porous body of 100 mm ⁇ 100 mm square produced in Example 1 to an aluminum plate of 1000 mm ⁇ 1000 mm square and 1 mm thick. At this time, as in the example shown in FIG. 6, the aluminum plate is not provided with one end (the range of 1000 mm ⁇ 40 mm) of the aluminum plate, and the aluminum is provided with three 1000 mm ⁇ 20 mm gaps. A porous aluminum body was placed on the plate and brazed. The aluminum joined body obtained as described above was bent into a rectangular shape so that the aluminum porous body was on the inner surface side, and brazed to the end of the aluminum plate facing the end where the aluminum porous body was not provided. . As a result, a metal tube having a rectangular cross section of 30 mm ⁇ 450 mm and a length of 1000 mm was obtained.
  • Example 3 Two aluminum joined bodies similar to those in Example 1 were prepared. These were arranged so that the porous aluminum bodies faced each other, and the metal pipes were manufactured by brazing the portions where the porous aluminum bodies were not provided to the opposite aluminum plate portions.
  • the metal pipes of Examples 1 to 3 have a porous aluminum body having an extremely large surface area on the inner surface, they are excellent in heat exchange efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

金属基材と、前記金属基材の表面の少なくとも一部に設けられた金属多孔体と、を有する金属管であって、平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、前記金属多孔体が接合された金属基材を管状に成形する工程と、を経て得られた金属管。

Description

金属管、伝熱管、熱交換装置及び金属管の製造方法
 本発明は、三次元網目状構造を有する金属管、伝熱管、熱交換装置及び金属管の製造方法に関する。
 空調設備用の熱交換器において、冷却効率を高めつつ消費電力を抑制するために、液体の気化熱を利用する冷却方式を補助的に採用することが提案されている。
 例えば、特開2003-083639号公報(特許文献1)には、複数の放熱用フィンを縦向きに設け、その放熱用フィンを貫くように複数の冷媒放熱管を横向きに設けて両者の間で熱交換を行い、更に、放熱用フィンの上部からは水を供給し、その蒸発熱によって更に放熱用フィンを冷却する熱交換機が記載されている。この熱交換器にファン等によって空気を供給することで、放熱用フィンとの間で熱交換が行われて冷却された空気が得られる。また、放熱用フィンの上部から供給される水の量は適宜調節することができる。例えば、流れ落ちる水滴が2枚のフィンに同時に接触するようにすると、その両方のフィンとの間で熱交換を行われて高い冷却効率が得られるとされている。
 また、特定の冷媒を使用せずに、液体の気化熱のみで冷却あるいは暖房を行う空調設備も知られている。
 例えば、特開2013-200059号公報(特許文献2)には、室内から吸入した屋内気が流れる流路中に揮発性液体を供給してその気化熱によって気化用流路を冷却し、屋外から吸入した外気が流れる冷却用流路との間で顕熱交換させる間接気化冷却手段を備えた空調換気システムが記載されている。
特開2003-083639号公報 特開2013-200059号公報
 前記特許文献1に記載のような冷却方式においては、排出される冷却空気中に水分が多く含まれており、このような多湿の空気はあまり涼しく感じられないという問題点があった。また、特許文献2に記載のような間接気化冷却手段を用いた空調換気システムにおいては、水等の液体の潜熱の利用効率が低いという問題があった。
 そこで、前記問題点に鑑みて、熱交換効率に優れた金属管、更には、液体の潜熱の利用効率が高く、熱交換装置の小型化に寄与する熱交換用の金属管を提供することを課題とする。
 本発明の一態様に係る金属管は上記課題を解決すべく以下の構成を採用する。
(1)即ち、本発明の一態様に係る金属管は、金属基材と、前記金属基材の表面の少なくとも一部に設けられた金属多孔体と、を有する金属管であって、平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、前記金属多孔体が接合された金属基材を管状に成形する工程と、を経て得られた金属管、である。
 上記構成により、熱交換効率に優れた金属管、更には、液体の潜熱の利用効率が高く、熱交換装置の小型化に寄与する熱交換用の金属管を提供することができる。
本発明の金属管の構造の一例を表す概略図である。 本発明の金属管の構造の別の一例の断面を拡大した概略図である。 本発明の熱交換装置の一例の横断面を表す概略図である。 本発明の熱交換装置の一例の縦断面を表す概略図である。 金属基材に金属多孔体を接合した金属接合体の一例を表す概略図である。 金属基材に金属多孔体を接合した金属接合体の別の一例を表す概略図である。 金属多孔体の一例の骨格表面を電子顕微鏡で観察した写真である。
 最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の実施形態に係る金属管は、金属基材と、前記金属基材の表面の少なくとも一部に設けられた金属多孔体と、を有する金属管であって、平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、前記金属多孔体が接合された金属基材を管状に成形する工程と、を経て得られた金属管、である。
 上記(1)に記載の金属管は、金属基材の表面の少なくとも一部に金属多孔体が設けられているため、従来の金属基材のみの金属管に比べて表面積が非常に大きくなっている。
このため、金属多孔体部分において液体との接触面積を大きくすることができ、液体の潜熱の利用効率を高くすることができる。また、潜熱の利用効率が高いため、上記金属管を熱交換装置に用いた場合に、装置の小型化に寄与することができる。
 なお、本発明の実施形態に係る金属管は熱交換装置用のみならず、他の用途にも用いることが可能である。
(2)本発明の実施形態に係る金属管は、前記金属管の少なくとも内面に前記金属多孔体が設けられている上記(1)に記載の金属管、である。
 金属多孔体は金属管の内面、外面、あるいは両面に設けられていてもよいが、少なくとも内面に設けられていることが好ましい。これにより、金属管の内面に熱媒体を供給するような熱交換装置における伝熱管として好適に用いることができる。
(3)本発明の実施形態に係る金属管は、前記金属基材の材質がアルミニウム又は銅である上記(1)又は上記(2)に記載の金属管、である。
(4)本発明の実施形態に係る金属管は、前記金属多孔体の材質がアルミニウム又は銅である上記(1)から上記(3)のいずれか一項に記載の金属管、である。
 アルミニウムや銅は熱伝導率に優れる金属であるため前記金属基材の材質がこれらの金属であることにより、金属管の内側の熱と外側の熱との交換を効率よく行えるようになり好ましい。また同様に、前記金属多孔体の材質がアルミニウム又は銅であることにより、金属管の内側の熱と外側の熱との交換を効率よく行えるようになり好ましい。
(5)本発明の実施形態に係る金属管は、前記金属基材と前記金属多孔体とが同じ材質である上記(1)から上記(4)のいずれか一項に記載の金属管、である。
 一般に、異なる金属材料を接合するとその部分から腐食が進行する場合があるが、前記金属基材と前記金属多孔体とを同じ材質の金属材料にすることで、この問題が解決され好ましい。
(6)本発明の実施形態に係る金属管は、前記金属多孔体が三次元網目状構造を有する上記(1)から上記(5)のいずれか一項に記載の金属管、である。
(7)本発明の実施形態に係る金属管は、前記金属多孔体の骨格表面に凹凸が形成されている上記(1)から上記(6)のいずれか一項に記載の金属管、である。
(8)本発明の実施形態に係る金属管は、前記金属多孔体の骨格に貫通孔が形成されている上記(1)から上記(7)のいずれか一項に記載の金属管、である。
 三次元網目状構造を有する金属多孔体は非表面積が非常に大きいため、液体の潜熱の利用効率を更に高めることができる。更に、気孔率も非常に高いため、液体の流通を妨げることが殆どなく好ましい。
 また、金属多孔体の骨格表面に凹凸が形成されていると、金属多孔体の表面積が更に大きくなり、液体の潜熱の利用効率をより向上させることができ好ましい。同様に、金属多孔体の骨格に貫通孔が形成されていることで、液体の潜熱の利用効率を更に向上させることができ好ましい。
(9)本発明の実施形態に係る金属管は、断面が矩形の矩形管である上記(1)から上記(8)のいずれか一項に記載の金属管、である。
 金属管の形状は特に限定されず、横断面が円形や楕円形の円筒管にしてもよいし、横断面が矩形の扁平管にしてもよい。特に、断面が矩形であると、例えば、複数の金属管を並べて使用する場合に、全体としての利用効率が高くなるように配置することが可能となり好ましい。
(10)本発明の実施形態に係る伝熱管は、上記(1)から上記(9)のいずれか一項に記載の金属管からなる伝熱管、である。
 前記金属管を、内面側と外面側との熱交換を行うための伝熱管とすることで、例えば、熱交換装置に用いることができ好ましい。
(11)本発明の実施形態に係る熱交換装置は、上記(10)に記載の伝熱管の金属多孔体に液体を供給する液体供給部と、前記金属多孔体の表面に気体を通流させる気体供給部と、前記金属基材の金属多孔体を設けた側とは反対側の表面に流体を通流させる流体供給部と、を有する熱交換装置、である。
 上記(11)に記載の熱交換装置は、表面積が非常に大きい金属多孔体部分を備える前記金属管を伝熱管として用いているため、液体の潜熱の利用効率が非常に高い熱交換装置である。このため従来の伝熱管を用いた熱交換装置に比べて装置を小型化することが可能である。
(A)本発明の実施形態に係る熱交換装置は、前記金属多孔体が前記伝熱管の内面に設けられている上記(11)に記載の熱交換装置、である。
 前記金属多孔体は伝熱管の内面、外面、あるいは両面に設けられていてもよいが、少なくとも内面に設けられていることが好ましい。これにより、伝熱管の内面に熱媒体を供給するような熱交換装置を好適に提供することができる。
(12)本発明の実施形態に係る熱交換装置は、前記流体が気体である前記(11)又は前記(A)に記載の熱交換装置、である。
 本発明の実施形態に係る熱交換装置は、装置内を流通可能な流体であれば当該流体を冷却することが可能である。前記流体が気体であると、例えば、空調設備の熱交換装置として用いることにより、室外から外気を取り込んで冷却し、冷却された空気を室内へ送ることできる。
(13)本発明の実施形態に係る金属管の製造方法は、平板状の金属基材の表面の少なくとも一部に金属多孔体を接合して金属接合体とする工程と、前記金属接合体を折り曲げて管状に成形する工程と、を有する金属管の製造方法、である。
(14)本発明の実施形態に係る金属管の製造方法は、前記金属接合体の折り曲げられる部分に前記金属多孔体が設けられていない上記(13)に記載の金属管の製造方法、である。
(15)本発明の実施形態に係る金属管の製造方法は、平板状の金属基材の表面の少なくとも一部に金属多孔体を接合した金属接合体を複数枚準備する工程と、前記複数の金属接合体の端部同士を接合して管状に成形する工程と、を有する金属管の製造方法、である。
(16)本発明の実施形態に係る金属管の製造方法は、前記金属接合体の接合される端部に前記金属多孔体が設けられていない上記(15)に記載の金属管の製造方法、である。
 上記(13)又は上記(15)に記載の金属管の製造方法によれば、前記本発明の実施形態に係る金属管を簡便に効率よく製造することが可能となる。また、上記(14)又は上記(16)に記載の金属管の製造方法によれば、金属管の製造過程において金属多孔体が折り曲げられる等により骨格が潰れることを抑制することができる。
[本発明の実施形態の詳細]
 本発明の実施形態に係る金属管等の具体例を以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲の記載によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<金属管>
 本発明の実施形態に係る金属管は、金属基材と、前記金属基材の表面の少なくとも一部に設けられた金属多孔体と、を有する金属管であって、平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、前記金属多孔体が接合された金属基材を管状に成形する工程と、を経て得られた金属管、である。
 前述のように、前記金属管は液体の潜熱の利用効率が高く、熱交換装置の小型化に寄与することが可能である。
 また、前記金属管は、平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、前記金属多孔体が接合された金属基材を管状に成形する工程と、を経て得られるものである。前記金属管を製造するためには、例えば、管状に成形された金属基材の内面あるいは外面に管状に加工した金属多孔体を接合するという方法が考えられる。しかしながらこの場合には、アルミニウムのように強度が低い金属材料を用いると金属多孔体を管状に成形することができず、前記金属管を製造することができない。
 このため前記のように、金属基材の表面に金属多孔体を接合した後に金属基材を管状に成形するという方法を採用することで、例えばアルミニウムのように強度が低い金属材料を用いた場合であっても前記金属管を得ることができる。
 金属基材と金属多孔体との接合方法は特に限定されず、ろう付けや拡散接合などにより行うことができる。このとき、金属管の内側と外側との間の熱抵抗が小さくなるように、金属基材と金属多孔体との接合はしっかりと行われていた方がよい。
 前記金属管において、前記金属多孔体は金属管の内面、外面、あるいは両面に設けられていてもよいが、少なくとも内面に設けられていることが好ましい。これにより、金属管の内面に熱媒体を供給するような熱交換装置における伝熱管として好適に用いることができる。
 前記金属基材の材質は特に限定されるものではなく、例えば、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)、鉄(Fe)等あるいはこれらの合金などを前記金属基材として用いることができる。前記金属管を熱交換装置に用いる場合には熱伝導率が高い金属を金属基材として用いることが好ましい。この観点から上記のなかでもアルミニウム、又は銅を金属基材として用いることが好ましい。熱伝導率の観点のみに着目すると、金属基材として銅を用いることが好ましい。また、金属管を製造するための加工性、重さ、材料の入手のしやすさ(資源が稀少であるかどうか)等を考慮すると、金属基材としてアルミニウムを用いることが好ましい。
 前記金属多孔体の材質も特に限定されるものではなく、前記金属基材の材質と同様に、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)、鉄(Fe)等あるいはこれらの合金などを用いることができる。また、前記金属管を熱交換装置に用いる場合には熱伝導率が高い金属を金属多孔体として用いることが好ましいため、アルミニウム、又は銅を前記金属多孔体として用いることが好ましい。前記金属基材と同様に、熱伝導率の観点のみに着目すると銅を金属多孔体として用いることが好ましい。また、金属管を製造するための加工性、重さ、材料の入手のしやすさ(資源が稀少であるかどうか)等を考慮すると、金属多孔体としてアルミニウムを用いることが好ましい。
 前記金属基材と前記金属多孔体とは同じ材質であることが好ましい。これにより、異なる金属材料を接合した場合に生じ得る腐食の問題を回避することができる。このため前記金属管としては、実質的にアルミニウムからなる金属基材と金属多孔体とによって構成されている金属管や、実質的に銅からなる金属基材と金属多孔体とによって構成されている金属管が好ましい。なお、実質的にアルミニウムからなる、あるいは実質的に銅からなるとは、アルミニウムや銅以外の成分を不可避的に含んでいてもよいことを意味する。
 前記金属多孔体は、多数の連通孔を有し、表面積が大きな構造を有するものであればよい。特に、三次元網目状構造を有する金属多孔体であることが好ましい。
 三次元網目状構造を有する金属多孔体は、めっき法、焼結法、鋳造法など、いずれの方法により製造したものであってもよい。金属多孔体の孔径や厚さをコントロールする観点からは、めっき法により製造することが好ましい。めっき法によって三次元網目状構造を有する金属多孔体を製造する場合には、三次元網目状構造を有する樹脂成形体を基材として用いればよい。前記樹脂成形体は、連続した気孔(連通気孔)を有するものであればよく、発泡樹脂成形体や、繊維状の樹脂を絡めた不織布のような形状を有する樹脂成形体を用いることができる。不織布状の樹脂成形体を基材として用いれば、不織布状の三次元網目状構造を有する金属多孔体を得ることができる。
 前記金属多孔体の骨格表面には凹凸が形成されていることが好ましい。これにより金属多孔体の表面積を更に大きくなり、液体の潜熱の利用効率を向上させることができる。
 金属多孔体をめっき法によって製造する場合には、めっき液に添加する平滑化剤の濃度を調整することで、骨格表面に形成されるめっき膜の表面を粗くして凹凸を形成することができる。また、後述するように製造条件を適宜選択することで、図7に示すように骨格表面の金属組織に微小な凹凸を形成することが可能である。図7は金属多孔体の一例の骨格表面を電子顕微鏡で観察した写真である。
 また、金属多孔体をめっき法によって製造する場合には、特開2012-041608号公報に記載のように、めっき液中に樹脂製の微小球体を含有させておくことで、金属多孔体の骨格表面に金属多孔体の孔径よりも小さな径の微小孔を形成し、骨格表面に凹凸が形成された金属多孔体を製造することも可能である。
 前記骨格表面に形成されている凹凸は、上記のどちらの場合であっても金属多孔体の表面積を大きくすることができるため好ましい。
 前記金属多孔体は骨格に貫通孔が形成されていることが好ましい。特に、めっき法によって得られる三次元網目状構造を有する金属多孔体は骨格の内部が中空であるため、骨格の表面に貫通孔が形成されていると、骨格の内部の空間も利用できるようになるため好ましい。金属多孔体の骨格に貫通孔を形成するためには、例えば、次のようにして金属多孔体を製造すればよい。まず、基材としての樹脂成形体の表面を無電解めっきによって導電化処理する際に、めっき時間を短くする、もしくは触媒濃度を下げることで欠陥を生じさせる。これにより、その後のめっき工程において前記欠陥部分にめっきが形成されず、貫通孔を形成することができる。
 前記金属管の形状は特に限定されず、横断面が円形や楕円形の円筒管にしてもよく、横断面が矩形の矩形管にしてもよい。特に、矩形管の場合には、例えば、熱交換装置内で複数の金属管を並べて使用する場合に、全体としての利用効率が高くなるように配置することが可能となり好ましい。
 前記金属基材の厚さは特に限定されるものではなく、製造する金属管の大きさ等に応じて適宜変更すればよい。
 前記金属多孔体は、孔径が1μm以上、3500μm以下程度であることが好ましい。
これにより、金属管の金属多孔体部に液体が供給された場合に、多孔質部で液体を良好に保持することができる。
 また、前記金属多孔体の厚さは1mm以上、3mm以下程度であることが好ましい。これにより、例えば金属多孔体部への液体の供給を、液体を滴下する等の簡易な手段により行うことができる。
(金属多孔体の製造方法)
 前記金属多孔体の製造方法の一例として、三次元網目状構造を有するアルミニウム多孔体の製造方法を以下に説明する。
 アルミニウム多孔体は溶融塩浴を用いためっき法により製造することができる。具体的には、発泡ウレタン等の連通孔を備えた三次元網目状構造を有する樹脂成形体(以下、単に「樹脂成形体」とも記す)を芯材として用い、当該樹脂成形体を導電化処理した後に、溶融塩浴中でアルミニウムの電解めっきを行う。その後、アルミニウム膜が形成された樹脂構造体を加熱処理して樹脂を焼失させることにより、金属層のみが残ったアルミニウム多孔体を得ることができる。
-三次元網目状構造を有する樹脂成形体の準備-
 まず、三次元網目状構造を有し連通孔を有する樹脂成形体を準備する。樹脂成形体の素材は任意の樹脂を選択できる。ポリウレタン、メラミン、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。
 発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため発泡樹脂成形体として好ましく使用できる。発泡ウレタンは気孔の均一性や入手の容易さ等の点、更に、孔径の小さなものが得られる点で好ましい。
 樹脂成形体には発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格はその延在方向に垂直な断面において略三角形状をなしている。
 発泡樹脂成形体の気孔率は80%~98%、孔径は1μm~3500μmとするのが好ましい。なお、発泡樹脂成形体の場合の孔径とはセル径をいうものとする。
 気孔率は、次式で定義される。
 気孔率=(1-(多孔質材の重量[g]/(多孔質材の体積[cm3]×素材密度)))×100[%]
 また、孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数をセル数として計数して、平均孔径=25.4mm/セル数として平均的な値を求める。
-樹脂成形体表面の導電化-
 樹脂成形体の表面にアルミニウムを電解めっきするために、樹脂成形体の表面をあらかじめ導電化処理する。導電化処理としては、樹脂成形体の表面に導電性を有する層を設けることができる処理である限り特に制限はない。例えば、ニッケル等の導電性金属の無電解めっき、アルミニウム等の蒸着もしくはスパッタリング、又はカーボン等の導電性粒子を含有した導電性塗料の塗布等、任意の方法を選択することができる。
 導電化処理の例として、アルミニウムのスパッタリング処理によって導電化処理する方法、及び導電性粒子としてカーボンを用いて樹脂成形体の表面を導電化処理する方法について以下述べる。
--アルミニウムのスパッタリング--
 アルミニウムを用いたスパッタリング処理としては、アルミニウムをターゲットとする限り限定的でなく、常法に従って行えばよい。例えば、基板ホルダーに樹脂成形体を取り付けた後、不活性ガスを導入しながら、ホルダーとターゲット(アルミニウム)との間に直流電圧を印加することにより、イオン化した不活性ガスをアルミニウムに衝突させて、はじき飛ばされたアルミニウム粒子を樹脂成形体表面に堆積することによってアルミニウムのスパッタ膜を形成する。なお、スパッタリング処理は樹脂成形体が溶解しない温度下で行うことが好ましく、具体的には、100~200℃程度、好ましくは120~180℃程度で行えばよい。
--カーボン塗布--
 まず、導電性塗料としてのカーボン塗料を準備する。導電性塗料としての懸濁液は、好ましくは、カーボン粒子、粘結剤、分散剤および分散媒を含む。導電性粒子の塗布を均一に行うには、懸濁液が均一な懸濁状態を維持している必要がある。このため、懸濁液は、20℃~40℃に維持されていることが好ましい。懸濁液の温度が20℃以上であることにより均一な懸濁状態を保つことができ、樹脂多孔体の網目状構造をなす骨格の表面に良好なカーボン粒子の層を形成することができる。また、懸濁液の温度が40℃以下であることにより分散剤の蒸発量が多くなることを抑制し、懸濁液が濃縮されることを防止することができる。
 また、カーボン粒子の粒径は、0.01~5μmであることが好ましく、より好ましくは0.01~2μmである。粒径が大きいと樹脂成形体のセルを詰まらせたり、平滑なめっきを阻害したりする要因となり、また、小さすぎると十分な導電性を確保することが難しくなる。
 樹脂成形体へのカーボン粒子の塗布は、上記懸濁液に対象となる樹脂成形体を浸漬し、絞りと乾燥を行うことで行うことができる。
-樹脂成形体表面へのアルミニウム膜の形成-
 樹脂成形体の表面にアルミニウム膜を形成する方法としては、溶融塩浴を用いためっき法を採用する。
--溶融塩めっき--
 溶融塩中で電解めっきを行い、前記樹脂成形体の表面にアルミニウム膜を形成する。
 溶融塩浴中でアルミニウムのめっきを行うことにより特に三次元網目状構造を有する樹脂成形体のように複雑な骨格構造の表面に均一に厚いアルミニウム膜を形成することができる。表面が導電化された樹脂成形体を陰極とし、アルミニウムを陽極として溶融塩中で直流電流を印加する。
 前記溶融塩としては、有機系ハロゲン化物とアルミニウムハロゲン化物の共晶塩である有機溶融塩、アルカリ金属のハロゲン化物とアルミニウムハロゲン化物の共晶塩である無機溶融塩を使用することができる。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂成形体を分解することなく電解めっきすることができる。有機系ハロゲン化物としてはイミダゾリウム塩、ピリジニウム塩等が使用でき、具体的には1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。
 溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。
 溶融塩浴としては窒素を含有した溶融塩浴が好ましく、中でもイミダゾリウム塩浴が好ましく用いられる。溶融塩として高温で溶融する塩を使用した場合は、めっき膜の成長よりも樹脂が溶融塩中に溶解や分解する方が早くなり、樹脂成形体表面にめっき膜を形成することができない。イミダゾリウム塩浴は、比較的低温であっても樹脂に影響を与えず使用可能である。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に塩化アルミニウム-1-エチル-3-メチルイミダゾリウムクロライド(AlCl3-EMIC)系溶融塩が、安定性が高く分解し難いことから最も好ましく用いられる。これらの溶融塩は発泡ウレタン樹脂や発泡メラミン樹脂などへのめっきが可能であり、溶融塩浴の温度は10℃から100℃、好ましくは25℃から45℃である。低温になる程めっき可能な電流密度範囲が狭くなり、樹脂成形体表面全体へのめっきが難しくなる。
 以上の工程により骨格の芯として樹脂成形体を有するアルミニウム-樹脂構造体が得られる。
-樹脂の除去-
 上記のようにして得られた樹脂構造体を、窒素雰囲気下あるいは大気下等で500℃以上に加熱する熱処理を行うことで樹脂を焼失させ、アルミニウム多孔体が得られる。
 なお、骨格の表面が粗く凹凸を有しているアルミニウム多孔体を製造するには、従来行われていたこの工程に改良を加えることが有効であることが見出された。具体的には、以下の方法が挙げられる
--樹脂構造体に付着しためっき液の処理--
 上記のようにして表面にアルミニウム膜を有する樹脂成形体を作製した直後においては、樹脂成形体の表面にアルミニウムめっき液が付着しているため、水洗処理を行い、その後に加熱処理が行われる。
 この際に、めっき液を充分に液切りせずに続いて水洗処理を行うことで、骨格表面に微小な凹凸が形成されたアルミニウム多孔体を得ることができる。これは、前述の溶融塩を含むめっき液が水と反応することで熱が発生し、アルミニウム膜の表面において、アルミニウムと水が反応しベーマイトが形成されるためと考えられる。一般に、ベーマイトは450℃以上で脱水反応を起こして微細孔を有するγ-アルミナに変態するが、アルミニウム多孔体の製造工程においても、樹脂構造体から樹脂を燃焼除去する際に500℃以上の高温に曝されるため、前記のようにして生じたベーマイトがγ-アルミナに変態することで、骨格表面に微細な凹凸が形成される。
 このような方法により骨格表面に微細な凹凸が形成されたアルミニウム多孔体を得るためには、樹脂構造体に付着しためっき液量が、20mL/m2~2000mL/m2となった状態で水洗処理を行うことが好ましい。より好ましいめっき液の付着量は、200mL/m2~2000mL/m2であり、更に好ましくは1000mL/m2~2000mL/m2である。
--樹脂構造体の水洗処理--
 前記の樹脂構造体に付着しためっき液の処理において、充分にめっき液を除去した場合であっても、次のようにして骨格表面に微小な凹凸が形成されたアルミニウム多孔体を製造することができる。即ち、前述のように、表面にアルミニウム膜を有する樹脂成形体に付着しためっき液を除去するために水洗処理を行うが、この際に、樹脂構造体に付着した水を充分に除去しないで、樹脂を除去するための熱処理を行えばよい。この場合にも、樹脂構造体が加熱される工程において、80℃付近でアルミニウム膜表面においてアルミニウムと水とが反応してベーマイトが生じ、その後更に加熱されることで、ベーマイトが微細孔を有するγ-アルミナに変態すると考えられる。
 このような方法により骨格表面に微細な凹凸が形成されたアルミニウム多孔体を得るためには、樹脂構造体に付着した水分量が、10mL/m2~1000mL/m2となった状態で樹脂の燃焼除去処理を行うことが好ましい。より好ましい水分付着量は、100mL/m2~1000mL/m2であり、更に好ましくは500mL/m2~1000mL/m2である。
--樹脂構造体からの樹脂の燃焼除去--
 前記2つの方法以外にも、骨格表面に微小な凹凸が形成されたアルミニウム多孔体を製造することが可能である。即ち、前記めっき液の液切りが充分に行われ、また、その後の水洗処理により付着した水も充分に除去された場合であっても、続く樹脂の燃焼除去工程を、水分を多く含んだ露点の高い雰囲気下で行えばよい。このためには、例えば、加湿した空気を供給しながら、500℃以上に加熱する熱処理を行えばよい。この場合にも、熱処理が行われる雰囲気下に供給された水分とアルミニウムとが80℃程度で反応してベーマイトが生じ、その後更に加熱されることで、ベーマイトが微細孔を有するγ-アルミナに変態すると考えられる。
 このような方法により骨格表面に微細な凹凸が形成されたアルミニウム多孔体を得るためには、樹脂の燃焼除去工程における雰囲気の露点温度を、0℃~60℃とすることが好ましい。より好ましい露点温度は、20℃~60℃であり、更に好ましくは40℃~60℃である。
<伝熱管>
 本発明の実施形態に係る伝熱管は、前記本発明の実施形態に係る金属管からなるものである。以下に、図1を用いて、管状の金属基材11の内面側に金属多孔体12が設けられており、横断面が矩形である金属管を伝熱管として使用する方法の一例を説明する。
 図1に示す例では、開口部が上下方向となるようにして伝熱管を使用する。そして、伝熱管の上部から金属多孔体12に液体Lを供給する。図1では液体Lを伝熱管の一側面に供給するように示しているが、実際には四面全体に供給するようにすればよい。
 金属多孔体12に供給された液体Lは重力により金属多孔体12の骨格表面を伝って伝熱管の下部へと流れていく。この過程において液体Lが蒸発し、その際に気化熱として金属多孔体12の骨格表面の熱を奪っていく。これにより金属多孔体12が冷却され、金属多孔体12と接合して熱的に接続している金属基材11も冷却される。図2に、図1の金属管の縦断面の部分拡大図を示す。
 液体Lが蒸発し続けると、金属管内の蒸気圧が高くなって液体Lが蒸発しにくくなるため、金属多孔体12、22には気体Gを供給する。これにより液体Lがより蒸発しやすくなる。また、気体Gは湿分を低下させておくことにより液体Lの蒸発を促進することができ、冷却能力を高めることができる。
 上記のように、金属多孔体12、22に液体Lを供給する観点から、金属多孔体12、22と液体Lとは濡れ性がよいことが好ましい。このため、金属多孔体12、22の表面は必要に応じて加工処理されていることが好ましい。三次元網目状構造を有するアルミニウム多孔体に水を供給して用いる場合、アルミニウムと水とは比較的親和性が高いが、アルミニウム多孔体中の気体が水の多孔部への侵入を妨げる場合がある。この場合には、例えば、伝熱管を使用し始める前にアルミニウム多孔体部分に水蒸気を供給してアルミニウム多孔体の表面を充分に濡らしておくことが好ましい。また、水との親和性が高く、かつ熱伝導率が高い物質をアルミニウム多孔体表面に担持させてもよい。
 また、図2に示すように、金属基材21の金属多孔体22を設けた側とは反対側の表面(外側の表面)は、加工処理等を施して粗い表面にしておくことが好ましい。このように金属基材21の外側の表面を粗くして表面積を大きくしておくことで、例えば金属基材21の外側の表面に流体を供給して金属基材21の熱を当該流体へと伝える際に、伝熱効率を高くすることができる。また、加工処理のみならず、金属多孔体のようにより大きな表面積を有する部材を前記金属基材21の外側の表面に接合してもよい。特に三次元網目状構造を有する金属多孔体は、表面積が大きいだけでなく、気孔率が極めて高いため、流体の通流を妨げることがないため好ましい。
 前記液体Lは特に限定されるものではなく、水や有機溶剤など揮発性の高いものを利用することができる。また、気体Gも特に限定されるものではなく、例えば大気などの供給し易いものを用いればよい。
 上記で説明した伝熱管により、例えば金属多孔体に水を供給し、更に金属管内に35℃で湿度が45%程度の空気を送風すると、27℃で湿度が90%程度の、冷却されているが湿った空気が排出される。また、金属管の外側の表面は27℃程度に冷却される。このため、この金属管の外側の表面に35℃で湿度が45%程度の空気を供給すれば、27℃で湿度が65%程度の、冷却されていて比較的乾燥した空気が得られる。
<熱交換装置>
 本発明の実施形態に係る熱交換装置は、伝熱管の金属多孔体に液体を供給する液体供給部と、前記金属多孔体の表面に気体を通流させる気体供給部と、前記金属基材の金属多孔体を設けた側とは反対側の表面に流体を通流させる流体供給部と、を有する。
 図3に本発明の実施形態に係る熱交換装置の一例の横断面図を表す。図3では、図1に表した金属管を伝熱管として用い、複数並べて使用している。図1の金属管と同様に、図3の各金属管の金属多孔体32には、紙面上面側から液体が供給され、紙面下面側からは気体が供給されている。そして、液体が金属多孔体32の表面から蒸発することにより金属多孔体32が冷却され、金属多孔体32と熱的に接続している金属基材31も冷却される。
 図3に示す熱交換装置では、金属基材31の金属多孔体32を設けた側とは反対側の表面(外側の表面)に流体Fを供給している。これにより、冷却された金属基材31の外側の表面と流体Fとの間で熱の交換が行われ、流体Fが冷却されて熱交換装置から排出される。
 図4に本発明の実施形態に係る熱交換装置の一例の縦断面図を表す。各金属管の金属多孔体42には、熱交換装置の上部から液体Lが供給され、熱交換装置の下部から気体Gが供給され。そして、液体Lが金属多孔体42の表面から蒸発することで金属多孔体42が冷却され、金属多孔体42と熱的に接続している金属基材41も冷却される。また、金属基材41の外側の表面には、紙面上面側から流体が供給されている。これにより、金属基材41と流体との間で熱の交換が行われ、冷却された流体が排出される。
 本発明の実施形態に係る熱交換装置においては、金属多孔体は伝熱管の内面、外面、あるいは両面に設けられていてもよいが、少なくとも内面に設けられていることが好ましい。これにより、伝熱管の内面に熱媒体を供給するような熱交換装置を好適に提供することができる。
 前記流体は、金属基材の表面を通流可能な流体であれば特に制限はなく、気体であっても液体であってもよい。例えば、室外の外気を供給することで、冷却された大気を室内に供給することができる。
<金属管の製造方法>
(実施形態1)
 本発明の実施形態に係る金属管の製造方法は、平板状の金属基材の表面の少なくとも一部に金属多孔体を接合して金属接合体とする工程と、前記金属接合体を折り曲げて管状に成形する工程と、を有する金属管の製造方法、である。
 図5に平板状の金属基材51の表面の少なくとも一部に金属多孔体を接合して金属接合体とした一例の概略図を示す。図5に示す例では、金属基材51の左端に金属多孔体52を接合していない部分を設けている。前記金属接合体を折り曲げて管状に成形する際には、前記金属多孔体52が設けられていない部分を金属基材51の反対側の表面と接合すればよい。金属基材51と金属多孔体52との接合方法はとくに限定されず、ろう付けや拡散接合などにより行えばよい。金属管の形状は特に限定されず、横断面が円形や楕円形の円筒管にしてもよいし、横断面が矩形の扁平管にしてもよい。
 図6に平板状の金属基材61の表面の少なくとも一部に金属多孔体62を接合して金属接合体とした別の一例の概略図を表す。図6に示すように、金属接合体の折り曲げられる部分に前記金属多孔体62が設けられていないことにより、金属多孔体62が折り曲げられて骨格が潰れることを抑制することができる。図6に示す金属接合体の場合には、横断面が矩形の扁平状の金属管を好適に接合することができる。
(実施形態2)
 本発明の実施形態に係る金属管の製造方法は、平板状の金属基材の表面の少なくとも一部に金属多孔体を接合した金属接合体を複数枚準備する工程と、前記複数の金属接合体の端部同士を接合して管状に成形する工程と、を有する金属管の製造方法、である。また、この実施形態においては、前記金属接合体の接合される端部に前記金属多孔体が設けられていないことが好ましい。
 この実施形態では、例えば、図5に示す金属接合体を2枚用意し、これらを金属多孔体が向かい合うように配置して端部同士を互いに接合すればよい。このとき、前記金属接合体の接合される端部に金属多孔体が設けられていないことにより、端部を接合する際に金属多孔体が潰れることがないため好ましい。
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明の金属管等はこれらに限定されるものではない。本発明の範囲は特許請求の範囲の範囲によって示され、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
[実施例1]
(金属多孔体の製造)
-導電層の形成-
 樹脂成形体として、気孔率97%、セル数10個/インチ、気孔径約2540μm、厚さ2mmのウレタン発泡体を準備し、これを200mm×200mm角に切断した。このポリウレタンフォームの表面にスパッタリングによってアルミニウムを目付量10g/mで成膜して導電層を形成した。
-溶融塩めっき-
 表面に導電層を形成した前記ウレタン発泡体をワークとして、給電機能を有する治具にセットした後、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内に入れ、温度45℃の溶融塩アルミめっき浴(33mol%EMIC-67mol%AlClに1,10-フェナントロリン0.5g/Lを添加したもの)に浸漬した。ワークをセットした治具を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99質量%)を陽極側に接続した。
 電流密度6A/dm2の直流電流を60分間印加してめっきすることにより、ウレタン発泡体表面に0.2g/cm3の質量のアルミニウム膜が形成された構造体を得た。攪拌はテフロン(登録商標)製の回転子を用いてスターラーにて行った。なお、電流密度はウレタン発泡体の見かけの面積で計算した値である。
-樹脂の除去-
 上記で得られた構造体をめっき浴から取り出し、めっき液の付着量が1500mL/m2となった状態で水洗処理を行った。水洗処理後、構造体をよく乾燥させて水分付着量が6mL/m2となった状態で、露点温度-15℃の大気下にて、600℃で30分、熱処理を行った。これにより樹脂が焼失し、アルミニウム多孔体(純度99.99質量%)が得られた。
 得られたアルミニウム多孔体の骨格の表面を電子顕微鏡によって観察したところ、図7に示すように微小な凹凸が形成されていることが確認された。
(金属管の製造)
 1000mm×1000mm角で厚さが1mmのアルミニウム板を用意した。上記で作製したアルミニウム多孔体を100枚用意して100mm×100mmに加工し、前記アルミニウム板上に配置した。このとき、図5に示す例のように、アルミニウム板の一方の端部(1000mm×40mmの範囲)にアルミニウム多孔体が設けられていない部分を用意し、それ以外の部分にはアルミニウム多孔体を隙間なく配置して接合し、アルミニウム接合体を得た。接合はアルミニウム合金粉末を含むろう材を用いてろう付けすることによって行った。
 前記アルミニウム接合体を円筒状に変形させ、前記アルミニウム多孔体が設けられていない部分を対峙する端部のアルミニウム板部分にろう付けさせることにより金属管を製造した。
[実施例2]
 1000mm×1000mm角で厚さが1mmのアルミニウム板に実施例1で作製した100mm×100mm角のアルミニウム多孔体をろう付けしてアルミニウム接合体を得た。このとき、図6に示す例のように、アルミニウム板の一方の端部(1000mm×40mmの範囲)には、アルミニウム多孔体を設けず、また、1000mm×20mmの隙間を3箇所設けるようにアルミニウム板上にアルミニウム多孔体を配置してろう付けした。
 上記の様にして得たアルミニウム接合体を、アルミニウム多孔体が内面側となるように矩形状に折り曲げ、アルミニウム多孔体が設けられていない端部を対峙する端部のアルミニウム板部分にろう付けした。これにより、断面が30mm×450mmの矩形で長さが1000mmの金属管が得られた。
[実施例3]
 実施例1と同様のアルミニウム接合体を2枚用意した。これらをアルミニウム多孔体が向かい合うようにして配置し、互いのアルミニウム多孔体が設けられていない部分を対峙する端部のアルミニウム板部分にろう付けして金属管を製造した。
 実施例1~実施例3の金属管は表面積が極めて大きいアルミニウム多孔体を内面に有しているため、熱交換効率に優れた金属管である。
 11、21、31、41、51、61  金属基材
 12、22、32、42、52、62  金属多孔体
 F    流体
 G    気体
 L    液体

Claims (16)

  1.  金属基材と、
     前記金属基材の表面の少なくとも一部に設けられた金属多孔体と、
    を有する金属管であって、
     平板状の金属基材の表面の少なくとも一部に前記金属多孔体を接合する工程と、
     前記金属多孔体が接合された金属基材を管状に成形する工程と、
    を経て得られた金属管。
  2.  前記金属管の少なくとも内面に前記金属多孔体が設けられている請求項1に記載の金属管。
  3.  前記金属基材の材質がアルミニウム又は銅である請求項1又は請求項2に記載の金属管。
  4.  前記金属多孔体の材質がアルミニウム又は銅である請求項1から請求項3のいずれか一項に記載の金属管。
  5.  前記金属基材と前記金属多孔体とが同じ材質である請求項1から請求項4のいずれか一項に記載の金属管。
  6.  前記金属多孔体が三次元網目状構造を有する請求項1から請求項5のいずれか一項に記載の金属管。
  7.  前記金属多孔体の骨格表面に凹凸が形成されている請求項1から請求項6のいずれか一項に記載の金属管。
  8.  前記金属多孔体の骨格に貫通孔が形成されている請求項1から請求項7のいずれか一項に記載の金属管。
  9.  矩形管である請求項1から請求項8のいずれか一項に記載の金属管。
  10.  請求項1から請求項9のいずれか一項に記載の金属管からなる伝熱管。
  11.  請求項10に記載の伝熱管の金属多孔体に液体を供給する液体供給部と、
     前記金属多孔体の表面に気体を通流させる気体供給部と、
     前記金属基材の金属多孔体を設けた側とは反対側の表面に流体を通流させる流体供給部と、
    を有する熱交換装置。
  12.  前記流体が気体である請求項11に記載の熱交換装置。
  13.  平板状の金属基材の表面の少なくとも一部に金属多孔体を接合して金属接合体とする工程と、
     前記金属接合体を折り曲げて管状に成形する工程と、
    を有する金属管の製造方法。
  14.  前記金属接合体の折り曲げられる部分に前記金属多孔体が設けられていない請求項13に記載の金属管の製造方法。
  15.  平板状の金属基材の表面の少なくとも一部に金属多孔体を接合した金属接合体を複数枚準備する工程と、
     前記複数の金属接合体の端部同士を接合して管状に成形する工程と、
    を有する金属管の製造方法。
  16.  前記金属接合体の接合される端部に前記金属多孔体が設けられていない請求項15に記載の金属管の製造方法。
PCT/JP2014/070308 2013-11-06 2014-08-01 金属管、伝熱管、熱交換装置及び金属管の製造方法 WO2015068437A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14861006.6A EP3067653A4 (en) 2013-11-06 2014-08-01 METAL TUBE, HEAT TRANSFER TUBE, HEAT EXCHANGE DEVICE, AND METHOD FOR MANUFACTURING METAL TUBE
CN201480060646.7A CN105705901A (zh) 2013-11-06 2014-08-01 金属管、传热管、热交换装置以及金属管的制造方法
KR1020167010354A KR20160081900A (ko) 2013-11-06 2014-08-01 금속관, 전열관, 열 교환 장치 및 금속관의 제조 방법
US15/033,693 US20160252309A1 (en) 2013-11-06 2014-08-01 Metal tube, heat transfer tube, heat exchange device, and method for manufacturing metal tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-230094 2013-11-06
JP2013230094A JP2015090242A (ja) 2013-11-06 2013-11-06 金属管、伝熱管、熱交換装置及び金属管の製造方法

Publications (1)

Publication Number Publication Date
WO2015068437A1 true WO2015068437A1 (ja) 2015-05-14

Family

ID=53041223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070308 WO2015068437A1 (ja) 2013-11-06 2014-08-01 金属管、伝熱管、熱交換装置及び金属管の製造方法

Country Status (6)

Country Link
US (1) US20160252309A1 (ja)
EP (1) EP3067653A4 (ja)
JP (1) JP2015090242A (ja)
KR (1) KR20160081900A (ja)
CN (1) CN105705901A (ja)
WO (1) WO2015068437A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316016B1 (ko) 2017-09-22 2021-10-22 주식회사 엘지화학 필름 및 히트 파이프의 제조 방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104285A (ja) * 1982-12-07 1984-06-16 Mitsubishi Heavy Ind Ltd 伝熱管の製造法
JPS6183895A (ja) * 1984-09-28 1986-04-28 Hitachi Ltd 伝熱面およびその製造方法
JPH04110597A (ja) * 1990-08-29 1992-04-13 Kobe Steel Ltd 熱交換器用伝熱管
JPH07190664A (ja) * 1993-12-27 1995-07-28 Hitachi Chem Co Ltd 伝熱部材およびその製造法
JPH08145592A (ja) * 1994-11-16 1996-06-07 Hitachi Chem Co Ltd 伝熱部材およびその製造法
US5567504A (en) * 1994-05-31 1996-10-22 Schuller International, Inc. Glass fiber duct board with coated grooves and the method of making the same
JPH108586A (ja) * 1996-06-25 1998-01-13 O M Solar Kyokai:Kk 立下がりダクト
JPH11217680A (ja) * 1998-01-30 1999-08-10 Mitsubishi Materials Corp 銅多孔質層を有する銅管の製造方法
JP2003083639A (ja) 2001-09-03 2003-03-19 Washin Go 冷凍或いは空調設備用の熱交換器
JP2004045022A (ja) * 2002-07-08 2004-02-12 Korea Advanced Inst Of Sci Technol 湿った表面熱交換器の表面処理方法
JP2009085407A (ja) * 2007-10-02 2009-04-23 Railway Technical Res Inst 多孔質金属材の取付構造及び取付方法
JP2009520173A (ja) * 2005-12-19 2009-05-21 ベール ゲーエムベーハー ウント コー カーゲー 収着伝熱体壁および収着伝熱体
JP2012041608A (ja) 2010-08-20 2012-03-01 Toyama Sumitomo Denko Kk 金属多孔体及びその製造方法
JP2013200059A (ja) 2012-03-23 2013-10-03 Osaka Gas Co Ltd 空調換気システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793474A (zh) * 2010-02-03 2010-08-04 上海化工研究院 一种外竖直纵槽内烧结型金属多孔层双面强化换热管
CN101782344B (zh) * 2010-02-03 2012-09-05 上海化工研究院 一种双面强化换热管
CN102829667A (zh) * 2012-09-11 2012-12-19 天津大学 一种泡沫金属换热管

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104285A (ja) * 1982-12-07 1984-06-16 Mitsubishi Heavy Ind Ltd 伝熱管の製造法
JPS6183895A (ja) * 1984-09-28 1986-04-28 Hitachi Ltd 伝熱面およびその製造方法
JPH04110597A (ja) * 1990-08-29 1992-04-13 Kobe Steel Ltd 熱交換器用伝熱管
JPH07190664A (ja) * 1993-12-27 1995-07-28 Hitachi Chem Co Ltd 伝熱部材およびその製造法
US5567504A (en) * 1994-05-31 1996-10-22 Schuller International, Inc. Glass fiber duct board with coated grooves and the method of making the same
JPH08145592A (ja) * 1994-11-16 1996-06-07 Hitachi Chem Co Ltd 伝熱部材およびその製造法
JPH108586A (ja) * 1996-06-25 1998-01-13 O M Solar Kyokai:Kk 立下がりダクト
JPH11217680A (ja) * 1998-01-30 1999-08-10 Mitsubishi Materials Corp 銅多孔質層を有する銅管の製造方法
JP2003083639A (ja) 2001-09-03 2003-03-19 Washin Go 冷凍或いは空調設備用の熱交換器
JP2004045022A (ja) * 2002-07-08 2004-02-12 Korea Advanced Inst Of Sci Technol 湿った表面熱交換器の表面処理方法
JP2009520173A (ja) * 2005-12-19 2009-05-21 ベール ゲーエムベーハー ウント コー カーゲー 収着伝熱体壁および収着伝熱体
JP2009085407A (ja) * 2007-10-02 2009-04-23 Railway Technical Res Inst 多孔質金属材の取付構造及び取付方法
JP2012041608A (ja) 2010-08-20 2012-03-01 Toyama Sumitomo Denko Kk 金属多孔体及びその製造方法
JP2013200059A (ja) 2012-03-23 2013-10-03 Osaka Gas Co Ltd 空調換気システム

Also Published As

Publication number Publication date
CN105705901A (zh) 2016-06-22
EP3067653A1 (en) 2016-09-14
KR20160081900A (ko) 2016-07-08
EP3067653A4 (en) 2016-11-16
JP2015090242A (ja) 2015-05-11
US20160252309A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US9103607B2 (en) Porous layer
JP5487487B2 (ja) 金属多孔体及びその製造方法
WO2012096220A1 (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
JP2012007233A (ja) アルミニウム構造体の製造方法およびアルミニウム構造体
US11452239B2 (en) Method for enhancing boiling performance of chip surface
JP7191390B2 (ja) 金属フォームの製造方法
JP2015011803A (ja) 金属多孔体、金属多孔体の製造方法、及び燃料電池
WO2012165213A1 (ja) 金属多孔体及びそれを用いた電極材料、電池
JP2012186160A (ja) 電池
WO2014132528A1 (ja) アルミニウム多孔体、伝熱材料及び熱交換装置
CN109983606A (zh) 燃料电池及制造金属多孔体的方法
WO2015068437A1 (ja) 金属管、伝熱管、熱交換装置及び金属管の製造方法
WO2015111533A1 (ja) アルミニウムめっき液、アルミニウム膜、樹脂構造体、アルミニウム多孔体、及びアルミニウム多孔体の製造方法
JP2016013521A (ja) 多孔質アルミニウム吸着体、デシカント空調装置
JP2016023322A (ja) アルミニウム多孔体の製造方法
CN103108998B (zh) 铝结构体的制造方法和铝结构体
CN111378998B (zh) 一种泡沫金属加工工艺
WO2015129108A1 (ja) アルミニウム多孔体及びアルミニウム多孔体の製造方法
WO2018211740A1 (ja) アルミニウムめっき膜及びアルミニウムめっき膜の製造方法
CN116367504A (zh) 一种超亲水的反蛋白石结构吸液芯及其制备方法
JP2014043639A (ja) アルミニウム材料及びアルミニウム材料の表面処理方法
WO2015198626A1 (ja) アルミニウムめっき液、アルミニウムめっき膜の製造方法、及びアルミニウム多孔体
CN115173609A (zh) 一种电机散热外壳及其制备方法
JP2016142420A (ja) 熱交換器用多孔質部材
JP2014051690A (ja) アルミニウム膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861006

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014861006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861006

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167010354

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15033693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE