WO2015067137A1 - 一种管外法制造光纤预制棒的装置和方法 - Google Patents

一种管外法制造光纤预制棒的装置和方法 Download PDF

Info

Publication number
WO2015067137A1
WO2015067137A1 PCT/CN2014/089752 CN2014089752W WO2015067137A1 WO 2015067137 A1 WO2015067137 A1 WO 2015067137A1 CN 2014089752 W CN2014089752 W CN 2014089752W WO 2015067137 A1 WO2015067137 A1 WO 2015067137A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma generator
preform
optical fiber
gas
fiber preform
Prior art date
Application number
PCT/CN2014/089752
Other languages
English (en)
French (fr)
Inventor
渠驰
张宏胜
罗杰
顾立新
曹蓓蓓
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Publication of WO2015067137A1 publication Critical patent/WO2015067137A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/34Liquid, e.g. mist or aerosol
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/64Angle

Definitions

  • the invention relates to an apparatus and a method for manufacturing an optical fiber preform by an external tube method, and is suitable for the technical field of optical fiber manufacturing.
  • the techniques for preparing optical fiber preforms mainly include an in-tube method represented by PCVD and MCVD, and an out-of-pipe method represented by VAD and OVD. Both types of technologies also have advantages and disadvantages in terms of doping.
  • VLD Gas phase axial deposition
  • OTD external vapor deposition
  • F fluorine
  • a certain amount of F is usually incorporated in the preparation of the preform.
  • the usual method is to mix a certain amount of the F-containing gas in the material gas passing through the burner, so that F is incorporated as an impurity into the deposition preform during the reaction of the material gas.
  • U.S. Patent No. 5,895,515 makes a preform cladding by using a mixed gas of SiCl 4 , CF 4 , H 2 and O 2 .
  • US Patent No. 20100077800A1 Since the incorporation of F increases the probability of cracking of the preform, US Patent No. 20100077800A1 has made some improvements in which two additional burners are used, by using SiCl 4 , containing F gas, H 2 and O. The combustion of the mixed gas of 2 , F is incorporated, and the density of the surface of the preform is increased, thereby improving the problem of cracking of the dust bar.
  • the technical problem to be solved by the present invention is to provide an apparatus and method for manufacturing an optical fiber preform by an out-of-pipe method in view of the above-mentioned deficiencies of the prior art, which can effectively improve the activity of the doping element and thereby improve the doping efficiency.
  • the technical solution of the device of the invention comprises: a frame, a rotating chuck and a torch assembly, the rotating chuck or the torch assembly is connected with the moving seat, and the torch assembly is connected with the gas and chemical raw material supply system, characterized in that the plasma is arranged
  • the generator, the inlet end of the plasma generator is in communication with the dopant source, and the outlet end of the plasma generator is coupled to the showerhead.
  • the doping source comprises a doping gas source and/or a doping liquid source, and an atomizer is disposed between the doping liquid source and the plasma generator, and the doping liquid is atomized by the atomizer After entering the plasma generator.
  • a flow controller is disposed on the doping gas source and the doping source pipe to adjust the flow rate of each gas and liquid.
  • the plasma generator is a high-frequency plasma generator or a microwave plasma generator
  • the nozzle is installed at the outlet end of the plasma generator, and is integrated with the nozzle, and is installed at the outlet end of the nozzle.
  • the plasma generator comprises a glass inner tube and a glass outer tube, and a gas circulation tube is disposed between the glass inner tube and the glass outer tube, and a rear end of the glass inner tube is an inlet end of the plasma generator.
  • Two inlets of the doping gas source and the doping liquid source are respectively set, and the front end of the glass inner tube is directly connected with the nozzle, and the gas circulation pipe is respectively provided with an air inlet port and an air outlet port, inlet and outlet ports and a cooling air source.
  • a high-frequency spiral tube is arranged on the outer circumference of the outer glass tube, and both ends of the high-frequency spiral tube are connected with the high-frequency generator, and are connected with the cooling water, and a glass spray cover is connected at the front end of the glass outer tube.
  • a high frequency plasma generator is constructed.
  • the rack is a vertical frame, and the rotating chuck is connected to the vertical frame through the upper and lower moving seats.
  • the torch assembly is installed on the lower side of the vertical frame, and the torch assembly includes prefabrication.
  • the rod core burner and the preform cladding torch are provided with a plasma generator directly connected to the nozzle on the other side of the vertical frame corresponding to the burner assembly, thereby forming a device for manufacturing the optical fiber preform by the VAD method.
  • the rack is a horizontal frame
  • the rotating chuck is disposed at one end of the horizontal frame
  • a reciprocating seat is disposed on one side of the horizontal frame
  • the torch assembly is disposed on the reciprocating base
  • the torch assembly is a preformed cladding blower, and 1 to 6 preformed cladding blowtorch are arranged.
  • the preformed cladding blowtorch is installed at a distance parallel to the axis of the rotating chuck, and is disposed between the preformed cladding blowtorch. Directly connected to the plasma generator of the nozzle, thereby forming an OVD method A device for optical fiber preforms.
  • the target rod is clamped and fixed on the rotating chuck, and the rotating chuck is close to the burner assembly.
  • the torch assembly sprays the chemical material in the combustion state to the rotating target rod according to a preset injection flow rate, deposits a core and/or a cladding layer of the powder preform, and simultaneously turns on the dopant source and the plasma generator.
  • the nozzle sprays the ionized gas flame containing the dopant into the target rod, and the control unit controls and adjusts the injection flow rate through the mass flow meter MFC and the valve according to the situation.
  • the torch assembly and the plasma generator nozzle continuously burn and spray, while the torch assembly and the plasma generator nozzle move or reciprocate relative to the target rod, the core and the cladding of the powder preform continuously extend, or the cladding diameter increases continuously until Achieve the desired size specifications of the powder preform.
  • the gas being one or more of F-containing gas, O 2 , Ar, N 2 , He;
  • the solution is a rare earth ion mist solution; the plasma gas and/or the mist solution are partially or completely ionized by a plasma generator.
  • the method is a VAD method (vapor phase axial deposition method), and the torch assembly comprises a preform core blower and a preform cladding blower, and the torch assembly and the plasma generator nozzle are located at an elevation angle below the target rod.
  • the jet, the rotating chuck drives the target rod to continuously move up slowly, and the core and the cladding of the powder preform continuously extend until the predetermined length of the powder preform is reached.
  • the method is an OVD method (external vapor deposition method)
  • the torch assembly is a preform cladding torch
  • the torch assembly and the plasma generator nozzle are arranged in a direction parallel to the axis of the rotating chuck, and the target The rod axis is sprayed at a right angle
  • the moving seat drives the torch assembly and the plasma generator nozzle to reciprocate
  • the target rod is a formed core rod
  • the cladding diameter of the powder preform is continuously increased in the reciprocating movement until reaching The predetermined diameter of the powder preform.
  • the beneficial effects of the invention are as follows: 1. Using a plasma generator to ionize part or all of the gas containing F gas or other doping element, thereby effectively improving the chemical activity of the atom of the corresponding doping element, thereby improving the external doping. Miscellaneous efficiency; 2, using the high temperature generated by the plasma to heat the dust structure of the corresponding part of the preform, increasing its density, effectively improving the problem of cracking of the preform powder caused by excessive F content; 3. Adding atomization The device can increase the degree of ionization of the solution, and can complete the incorporation of impurities such as rare earth elements, alkali metal elements and alkaline earth metal elements. The radial uniformity is good; 4.
  • the invention has the advantages of simple structure and convenient use.
  • Figure 1 is a schematic view showing the structure of an embodiment of the apparatus of the present invention.
  • Figure 2 is a front cross-sectional structural view of a plasma generator in one embodiment of the present invention.
  • FIG 3 is a schematic view showing a refractive index profile of a preformed mandrel prepared by the apparatus of the present invention and a refractive index profile of a preformed mandrel prepared by a conventional VAD method.
  • Curve I is the refractive index profile of the F-preformed mandrel prepared by the conventional VAD method;
  • curve II is the refractive index profile of the F-preformed mandrel prepared by the apparatus of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of the apparatus of the present invention.
  • Figure 5 is a schematic view showing the structure of a third embodiment of the apparatus of the present invention.
  • the apparatus of the first embodiment of the present invention is shown in Figs. 1 and 2, and is a VAD method, that is, a vapor phase axial deposition method.
  • the utility model comprises a vertical frame 01, a rotating chuck 03 and a blower lamp assembly, wherein the rotating chuck is connected to the upper and lower rails of the vertical frame by the upper and lower moving seats 02, and the blowtorch assembly is arranged on the lower side of the vertical frame
  • the torch assembly comprises a preform core blower 08 and a preform wrap blower 07.
  • the torch assembly is in communication with the gas and chemical feed supply system, and a plasma directly connected to the spray head is disposed on the other side of the blower assembly below the vertical frame.
  • the body generator 09 the plasma generator is mounted on the annular base 10 via an adjustable bracket, the adjustable bracket is used to adjust the lifting angle of the plasma generator, and the inlet end of the plasma generator is connected to the doping source 05.
  • the plasma generator is a high-frequency plasma generator, including a glass inner tube 16 and a glass outer tube 15, and a gas circulation tube 14 is disposed between the glass inner tube and the glass outer tube, and the glass inner tube is disposed behind
  • the end of the plasma generator is provided with two inlets of a doping gas source and a doping liquid source, and the front end of the glass inner tube is directly connected with the nozzle, and the gas circulation tube is respectively provided with an air inlet and The air outlet, the inlet and outlet ports are connected to the cooling gas source for controlling the plasma temperature of the gas containing the doping element;
  • the high frequency spiral tube 13 is disposed on the outer periphery of the glass outer tube, and the high frequency spiral tube has two ends and a high The frequency generator is connected to the RF and communicates with
  • the fuel gas of the torch assembly uses H 2 and O 2
  • the chemical material uses steam of SiCl 4 and GeCl 4
  • the plasma generator uses a mixed gas of O 2 and CF 4 .
  • the rotating chuck drives the target rod to rotate and move up according to the set value to compensate for the downward generation portion formed by the deposition of the reaction material of the burner, thereby maintaining the core blower 08 and the cladding blowtorch.
  • the angle and height of the spray 07 and the powder preform are relatively fixed; in the manufacture of the powder preform, the reaction of the preform core spray lamp to form a powder preform core layer is:
  • GeO 2 is formed after the hydrolysis reaction to form a core high refractive index core powder body.
  • reaction of the preform cladding spray lamp to form a powder preform cladding is:
  • the flow rate of the core layer SiCl 4 is 3 g/min.; the flow rate of the cladding SiCl 4 is 65 g/min.
  • the plasma generator is located on the opposite side of the preformed cladding burner, ie at a position 180 degrees out of phase, at the same height as the cladding burner.
  • the RF frequency of the high frequency generator is set to 13.56 Mhz and the power is 2 to 10 kW.
  • the plasma generator is started, and a certain amount of mixed gas of O 2 and CF 4 is introduced at the same time, and the specific flow rate is given by the computer according to the deposition speed of the cladding.
  • a strong polarization means a mixed gas molecules in the plasma and results in the F - ions.
  • the F - ion can react with the powder body just deposited, thereby forming an effective incorporation of F. Moreover, under the action of high temperature plasma, the density of the corresponding portion of the powder preform cladding is improved, and the problem of cracking of the powder preform is effectively avoided.
  • the refractive index of the mandrel matching cladding prepared by the method has a significant decrease, as shown in FIG.
  • the curve I is a refractive index profile of the F-preformed mandrel prepared by the conventional VAD method
  • the curve II is a refractive index profile of the F-preformed mandrel prepared by the apparatus of the present invention.
  • the device of the second embodiment of the present invention is as shown in FIG. 4, which is different from the previous embodiment in that an atomizer 11 is disposed between the doping liquid source and the plasma generator, and the doping liquid passes through the atomizer. After atomization, it enters the plasma generator.
  • the fuel gas uses H 2 and O 2
  • the chemical material uses steam of SiCl 4 and GeCl 4
  • the dope is an ErCl 3 solution.
  • the SiCl 4 and GeCl 4 vapors are still deposited by a conventional oxyhydrogen torch, and the ErCl 3 solution is sprayed under the action of the atomizer and enters the plasma generator through the conduit and O 2 .
  • the plasma generator is activated, and a mixture of a certain amount of O 2 and a misty ErCl 3 solution is introduced, and the molecules in the mixture are strongly polarized by the plasma generator and cause Er to be generated. 3+ ions. Due to the incomplete oxidation of the powder just deposited, Er 3+ can interact with the powder body just deposited, thereby forming an effective incorporation of the powder preform core bait.
  • the apparatus of the third embodiment of the present invention is shown in FIG. 5 and is an OVD method, that is, an external vapor deposition apparatus.
  • the frame is a horizontal frame
  • the rotating chuck is installed at one end of the horizontal frame, the other end is provided with a coaxial rotating passive chuck, and a reciprocating seat 21 is arranged on one side of the horizontal frame, and the reciprocating A blower light assembly is arranged on the moving seat.
  • the blowtorch assembly is a preformed cladding blower 19, and three preformed cladding blowers are arranged.
  • the preformed cladding blowtorch is arranged in a direction parallel to the axis of the rotating chuck, in each preform package.
  • a plasma generator 20 directly connecting the nozzles is disposed between the layer burners, and two plasma generators are arranged.
  • the target rod 18 clamped on the rotating chuck is a preformed preform core rod, and the powder body is prefabricated by deposition. Stick 17.
  • H 2 and O 2 are used for the fuel gas
  • SiCl 4 vapor is used as the chemical material for the burner
  • the doping gas is C 2 F 6 .
  • the flow rate of SiCl 4 through a single burner was 120 g/min.
  • Two plasma generators are used simultaneously, and the plasma generator reciprocates along the axis of the target rod together with the preformed cladding burner, while the target rod also rotates around the deposition axis.
  • the flow rate of the plasma generator and the flow rate of the SiCl 4 of the preformed cladding burner are controlled by the control unit.
  • the plasma generator is activated with an RF frequency of 13.56 MHz and a power of 5 to 12 kW per plasma generator.
  • the F element is plasma-incorporated into the outer layer of the powder preform.
  • the method and apparatus of the present invention are equally applicable to other dopings such as Al, B, P, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Plasma Technology (AREA)

Abstract

一种管外法制造光纤预制棒的装置及方法。该装置包括有机架、旋转夹盘和喷灯组件,旋转夹盘或喷灯组件与移动座相连,喷灯组件与燃气和化学原料供应系统相连通,其特征在于设置有等离子体发生器,等离子体发生器的入口端与掺杂源相连通,等离子体发生器的出口端与喷头相连。该装置及方法利用等离子体发生器使含F气体或其他含掺杂元素的气体等离子化,提高了外部法掺杂的效率,改善了如掺F含量过高导致的预制棒粉体开裂的问题。该装置中增设雾化器,可提高溶液的离子化程度。

Description

一种管外法制造光纤预制棒的装置和方法 技术领域
本发明涉及一种管外法制造光纤预制棒的装置及方法,适用于光纤制造技术领域。
背景技术
在制备光纤预制棒时,通常需要在纯石英玻璃中掺入一定量的其他元素,从而使对应的光纤具有某些特定的性能。例如,掺入Ge可提高玻璃的折射率,而掺入F可降低玻璃的折射率;对于多数有源光纤来说,需要掺入某些稀土元素等。目前,用于制备光纤预制棒的技术主要有以PCVD和MCVD为代表的管内法和以VAD和OVD为代表的管外法。两类技术在掺杂方面也都有优势和不足。
气相轴向沉积法(VAD)以及外部气相沉积法(OVD)已经应用于光纤预制棒制造。由于F(氟)的掺杂可以影响预制棒折射率的分布,并在一定程度上可以降低对应光纤的损耗,因此目前在制备预制棒时通常掺入一定量的F。目前通常的方法是在通过喷灯的原料气体中混入一定量的含F气体,使F在原料气体反应时作为杂质掺入沉积预制棒中。例如,美国专利US 5895515通过使用SiCl4,CF4,H2和O2的混合气体制作预制棒包层。由于F的掺入会提高预制棒出现裂纹的几率,因此美国专利US 20100077800A1做出了一些改进,在该专利中,额外加入了两只喷灯,通过使用SiCl4,含F气体,H2及O2的混合气体的燃烧,将F掺入,并提高预制棒表面的密度,从而改善粉尘棒破裂的问题。
但是以上两种方法的共同之处在于使用SiCl4和含F气体作为原料,H2及O2作为燃料,通过同一喷灯出射,并通过H2及O2的燃烧反应提供H2O和热源,从而将F元素掺入到生成的SiO2粉尘中并沉积到粉体预制棒上。这种方法仍然存在着一些不足之处:第一,使用SiCl4,CF4,H2和O2的混合气体制作包层面临的一个问题就是F无法有效的掺入到预制棒内,在所有消耗的F中,只有一小部分真正掺入到预制棒内;其二,若采用加大含F气体流量的方法加大F的掺入量时,又面临由于预制棒密度未变化,而由掺入更多的F导致裂纹的产生;第三,即使采用额外添加传统喷灯的方法在特定的工艺条件下可以起到缓解裂纹的产生,但仍然未解决掺F效率不高的问题。
发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足提出一种管外法制造光纤预制棒的装置及方法,它能有效提高掺杂元素的活性,从而提高掺杂的效率。
本发明装置的技术方案为:包括有机架、旋转夹盘和喷灯组件,旋转夹盘或喷灯组件与移动座相连,喷灯组件与燃气和化学原料供应系统相连通,其特征在于设置有等离子体发生器,等离子体发生器的入口端与掺杂源相连通,等离子体发生器的出口端与喷头相连。
按上述方案,所述的掺杂源包括掺杂气源和/或掺杂液源,在掺杂液源与等离子发生器之间安设有雾化器,掺杂液经由雾化器雾化后进入等离子体发生器。
按上述方案,在掺杂气源和掺杂液源管路上设置流量控制器,用以调节每种气体和液体的流量。
按上述方案,所述的等离子体发生器为高频等离子体发生器或微波等离子体发生器,所述的喷头安设在等离子发生器出口端,与其相联成一体,在喷头出口端安设有开口为斜口或圆弧斜口的喷射罩。
按上述方案,所述的等离子体发生器包括玻璃内管和玻璃外管,在玻璃内管和玻璃外管之间设置有气体循环管,玻璃内管的后端为等离子体发生器入口端,分别设置掺杂气源和掺杂液源两个入口,玻璃内管的前端直接与喷头相连为一体,气体循环管的两端分别设置进气口和出气口,进、出气口与冷却气源相连通,在玻璃外管的外周安设高频螺旋线管,高频螺旋管两端与高频发生器相连,同时与冷却水相连通,在玻璃外管的前端连接玻璃喷射罩,由此构成高频等离子体发生器。
按上述方案,所述的机架为立式机架,旋转夹盘通过上下移动座与立式机架相连,所述的喷灯组件安设在立式机架的下方一侧,喷灯组件包括预制棒芯部喷灯和预制棒包层喷灯,在立式机架下方对应喷灯组件的另一侧安设直接连接喷头的等离子体发生器,由此构成VAD法制造光纤预制棒的装置。
按上述方案,所述的机架为卧式机架,旋转夹盘安设在卧式机架的一端,在卧式机架的一侧安设往复移动座,往复移动座上安设喷灯组件,喷灯组件为预制棒包层喷灯,预制棒包层喷灯设置1~6个,预制棒包层喷灯沿与旋转夹盘轴线平行的方向间隔安设,在各预制棒包层喷灯之间安设直接连接喷头的等离子体发生器,由此构成OVD法制造 光纤预制棒的装置。
本发明方法的技术方案为:
将靶棒夹持固定在旋转夹盘上,旋转夹盘靠近喷灯组件处,
开启旋转夹盘,使靶棒缓慢旋转,同时开启喷灯组件、燃气和化学原料供应系统,
喷灯组件按照预设的喷射流量将燃烧状态的化学原料喷射至旋转的靶棒,沉积形成粉末预制棒的芯部和/或包层,与此同时,开启掺杂源和等离子体发生器,通过喷头向靶棒喷射经离子化处理的含有掺杂物质的气焰,控制单元根据情况通过质量流量计MFC和阀门对各喷射流量进行控制和调整,
喷灯组件和等离子体发生器喷头不断燃烧喷射,同时喷灯组件和等离子体发生器喷头相对靶棒移动或往复移动,粉末预制棒的芯部和包层不断延伸,或者包层直径不断增大,直至达到粉末预制棒预定的尺寸规格。
按上述方案,进入等离子体发生器的有气体和/或雾状溶液,所述的气体为含F气体、O2、Ar、N2、He中的一种或几种;所述的雾状溶液为稀土离子雾状溶液;利用等离子体发生器使进入的气体和/或雾状溶液部分或全部等离子化。
按上述方案,所述的方法为VAD法(气相轴向沉积法),喷灯组件包括预制棒芯部喷灯和预制棒包层喷灯,喷灯组件和等离子体发生器喷头位于靶棒的下方成仰角进行喷射,旋转夹盘带动靶棒连续缓慢上移,粉末预制棒的芯部和包层不断延伸,直至达到粉末预制棒预定的长度。
按上述方案,所述的方法为OVD法(外部气相沉积法),喷灯组件为预制棒包层喷灯,喷灯组件和等离子体发生器喷头沿与旋转夹盘轴线平行的方向间隔安设,与靶棒轴线成直角进行喷射,移动座带动喷灯组件和等离子体发生器喷头往复移动,所述的靶棒为已成型的芯棒,粉末预制棒的包层直径在往复移动中不断增大,直至达到粉末预制棒预定的直径。
本发明的有益效果在于:1、利用等离子体发生器使部分或全部含F气体或其他含掺杂元素的气体等离子化,有效提高了相应掺杂元素原子的化学活性,从而提高了外部法掺杂的效率;2、利用等离子体产生的高温加热预制棒对应部位的粉尘结构,使其密度增加,有效改善了如掺F含量过高导致的预制棒粉体开裂的问题;3、增设雾化器,可提高溶液的离子化程度,可完成稀土元素、碱金属元素和碱土金属元素等杂质的掺入, 且径向均匀性好;4、本发明结构简单,使用方便。
附图说明
图1是本发明装置一个实施例的结构示意图。
图2是本发明一个实施例中等离子体发生器的正剖视结构图。
图3为利用本发明装置制备的预制棒芯棒折射率剖面与传统VAD法制备的预制棒芯棒折射率剖面对比示意图。其中曲线I为传统VAD法制备的掺F预制棒芯棒折射率剖面曲线;曲线II为利用本发明装置制备的掺F预制棒芯棒折射率剖面曲线。
图4为本发明装置另一个实施例的结构示意图。
图5为本发明装置第三个实施例的结构示意图。
具体实施方式
以下结合附图进一步说明本发明具体实施方案。
本发明实施例一的装置如图1、2所示,为VAD法即气相轴向沉积法装置。包括有立式机架01、旋转夹盘03和喷灯组件,旋转夹盘通过上下移动座02与立式机架的上下导轨相连,所述的喷灯组件安设在立式机架的下方一侧,喷灯组件包括预制棒芯部喷灯08和预制棒包层喷灯07,喷灯组件与燃气和化学原料供应系统相连通,在立式机架下方对应喷灯组件的另一侧安设直接连接喷头的等离子体发生器09,等离子体发生器通过可调支架安设在环形的底座10上,可调支架用以调整等离子体发生器的仰起角度,等离子体发生器的入口端与掺杂源05相连通;所述的等离子体发生器为高频等离子体发生器,包括玻璃内管16和玻璃外管15,在玻璃内管和玻璃外管之间设置有气体循环管14,玻璃内管的后端为等离子体发生器入口端,分别设置掺杂气源和掺杂液源两个入口,玻璃内管的前端直接与喷头相连为一体,气体循环管的两端分别设置进气口和出气口,进、出气口与冷却气源相连通,用以控制含掺杂元素气体的等离子体温度;在玻璃外管的外周安设高频螺旋线管13,高频螺旋管两端与高频发生器RF相连,同时与冷却水相连通,在玻璃外管的前端连接玻璃喷射罩12,玻璃喷射罩前端开口为斜口或圆弧斜口,防止与芯层或包层喷灯火焰发生干扰。
在本实施方案中,喷灯组件的燃料气体使用H2和O2,化学原料使用SiCl4和GeCl4 的蒸汽,等离子体发生器使用O2与CF4的混合气体。在粉末预制棒06生成过程中,旋转夹盘按照设定值带动靶棒旋转并上移,以弥补由于喷灯反应材料的沉积而形成的向下生成部分,从而保持芯部喷灯08和包层喷灯喷07与粉末预制棒的角度、高度相对固定;粉末预制棒制造中预制棒芯部喷灯喷射沉积形成粉末预制棒芯层的反应为:
2H2+O2=2H2O
SiCl4+H2O=SiO2+HCl
GeCl4+H2O=GeO2+HCl
通过掺入GeCl4,水解反应后生成GeO2,形成芯部高折射率芯层粉末体。
预制棒包层喷灯喷射沉积形成粉末预制棒包层的反应为:
2H2+O2=2H2O
SiCl4+H2O=SiO2+HCl
其中,芯层SiCl4流量为3g/min.;包层SiCl4流量为65g/min.。
等离子体发生器位于预制棒包层喷灯的对侧,即相位差180度的位置,高度与包层喷灯相同。高频发生器RF频率设定为13.56Mhz,功率2~10KW。包层沉积开始后,等离子体发生器启动,同时通入一定量的O2与CF4的混合气体,具体流量由计算机根据包层的沉积速度给出。混合气体分子在等离子发生装置的作用下产生强烈极化并导致产生F-离子。由于刚刚沉积的粉末体存在不完全氧化的情况,F-离子可以与刚刚沉积的粉末体作用,从而形成F的有效掺入。并且在等离子高温的作用下,粉末预制棒包层对应部位的密度提高,有效避免了粉末体预制棒开裂的问题。
与传统VAD方法制备的预制棒芯棒相比,使用本方法制备的芯棒匹配包层的折射率具有较明显的降低,如图3所示。其中,曲线I为传统VAD法制备的掺F预制棒芯棒折射率剖面曲线;曲线II为利用本发明装置制备的掺F预制棒芯棒折射率剖面曲线。
本发明实施例二的装置如图4所示,其与上一个实施例的不同之处在于在掺杂液源与等离子发生器之间安设有雾化器11,掺杂液经由雾化器雾化后进入等离子体发生器。在本实施方案中,燃料气体使用H2和O2,化学原料使用SiCl4和GeCl4的蒸汽,掺杂液为ErCl3溶液。SiCl4及GeCl4蒸汽仍然通过传统氢氧焰喷灯完成沉积过程,ErCl3溶液在雾化器的作用下,生成雾状,并通过导管和O2一同进入到等离子体发生器。
芯层沉积开始时,等离子体发生器启动,同时通入一定量的O2与雾状的ErCl3溶液 的混合物,混合物中的分子在等离子体发生器的作用下产生强烈极化并导致产生Er3+离子。由于刚刚沉积的粉末存在不完全氧化的情况,Er3+可以与刚刚沉积的粉末体作用,从而形成粉末预制棒芯层饵的有效掺入。
本发明实施例三的装置如图5所示,为OVD法即外部气相沉积法装置。机架为卧式机架,旋转夹盘安设在卧式机架的一端,另一端安设同轴线的被动旋转夹盘,在卧式机架的一侧安设往复移动座21,往复移动座上安设喷灯组件,喷灯组件为预制棒包层喷灯19,预制棒包层喷灯设置3个,预制棒包层喷灯沿与旋转夹盘轴线平行的方向间隔安设,在各预制棒包层喷灯之间安设直接连接喷头的等离子体发生器20,等离子体发生器为2个,在旋转夹盘上夹持的靶棒18为已成型的预制棒芯棒,通过沉积形成粉末体预制棒17。本实施方案中,燃料气体使用H2和O2,喷灯的化学原料使用SiCl4蒸气,掺杂气为C2F6。其中,通过单个喷灯的SiCl4流量为120g/min.。2个等离子体发生器同时使用,等离子体发生器与预制棒包层喷灯一同沿靶棒轴向往复移动,同时靶棒也在围绕沉积轴旋转。通过控制单元对等离子体发生器的气流流量和预制棒包层喷灯的SiCl4的流量进行控制。当开始外包层沉积时,等离子体发生器启动,RF频率为13.56MHz,每个等离子体发生器的功率为5~12KW。F元素经等离子化后掺入到粉末体预制棒外包层中。
本发明涉及的方法及设备同样适用于其他掺杂,如Al,B,P等。

Claims (11)

  1. 一种管外法制造光纤预制棒的装置,包括有机架、旋转夹盘和喷灯组件,旋转夹盘或喷灯组件与移动座相连,喷灯组件与燃气和化学原料供应系统相连通,其特征在于设置有等离子体发生器,等离子体发生器的入口端与掺杂源相连通,等离子体发生器的出口端与喷头相连。
  2. 按权利要求1所述的管外法制造光纤预制棒的装置,其特征在于所述的掺杂源包括掺杂气源和/或掺杂液源,在掺杂液源与等离子发生器之间安设有雾化器,掺杂液经由雾化器雾化后进入等离子体发生器。
  3. 按权利要求2所述的管外法制造光纤预制棒的装置,其特征在于在掺杂气源和掺杂液源管路上设置流量控制器,用以调节每种气体和液体的流量。
  4. 按权利要求1所述的管外法制造光纤预制棒的装置,其特征在于所述的等离子体发生器为高频等离子体发生器或微波等离子体发生器,所述的喷头安设在等离子发生器出口端,与其相联成一体,在喷头出口端安设有开口为斜口或圆弧斜口的喷射罩。
  5. 按权利要求4所述的管外法制造光纤预制棒的装置,其特征在于所述的等离子体发生器包括玻璃内管和玻璃外管,在玻璃内管和玻璃外管之间设置有气体循环管,玻璃内管的后端为等离子体发生器入口端,分别设置掺杂气源和掺杂液源两个入口,玻璃内管的前端直接与喷头相连为一体,气体循环管的两端分别设置进气口和出气口,进、出气口与冷却气源相连通,在玻璃外管的外周安设高频螺旋线管,高频螺旋管两端与高频发生器相连,同时与冷却水相连通,在玻璃外管的前端连接玻璃喷射罩,由此构成高频等离子体发生器。
  6. 按权利要求1或2所述的管外法制造光纤预制棒的装置,其特征在于所述的机架为立式机架,旋转夹盘通过上下移动座与立式机架相连,所述的喷灯组件安设在立式 机架的下方一侧,喷灯组件包括预制棒芯部喷灯和预制棒包层喷灯,在立式机架下方对应喷灯组件的另一侧安设直接连接喷头的等离子体发生器,由此构成VAD法制造光纤预制棒的装置。
  7. 按权利要求1或2所述的管外法制造光纤预制棒的装置,其特征在于所述的机架为卧式机架,旋转夹盘安设在卧式机架的一端,在卧式机架的一侧安设往复移动座,往复移动座上安设喷灯组件,喷灯组件为预制棒包层喷灯,预制棒包层喷灯设置1~6个,预制棒包层喷灯沿与旋转夹盘轴线平行的方向间隔安设,在各预制棒包层喷灯之间安设直接连接喷头的等离子体发生器,由此构成OVD法制造光纤预制棒的装置。
  8. 一种管外法制造光纤预制棒的方法,其特征在于
    采用权利要求1至7中的任一装置,
    将靶棒夹持固定在旋转夹盘上,旋转夹盘靠近喷灯组件处,
    开启旋转夹盘,使靶棒缓慢旋转,同时开启喷灯组件、燃气和化学原料供应系统,
    喷灯组件按照预设的喷射流量将燃烧状态的化学原料喷射至旋转的靶棒,沉积形成粉末预制棒的芯部和/或包层,与此同时,开启掺杂源和等离子体发生器,通过喷头向靶棒喷射经离子化处理的含有掺杂物质的气焰,控制单元根据情况通过质量流量计MFC和阀门对各喷射流量进行控制和调整,
    喷灯组件和等离子体发生器喷头不断燃烧喷射,同时喷灯组件和等离子体发生器喷头相对靶棒移动或往复移动,粉末预制棒的芯部和包层不断延伸,或者包层直径不断增大,直至达到粉末预制棒预定的尺寸规格。
  9. 按权利要求8所述的管外法制造光纤预制棒的方法,其特征在于进入等离子体发生器的有气体和/或雾状溶液,所述的气体为含F气体、O2、Ar、N2、He中的一种或几种;所述的雾状溶液为稀土离子雾状溶液;利用等离子体发生器使进入的气体和/或雾状溶液部分或全部等离子化。
  10. 按权利要求8或9所述的管外法制造光纤预制棒的方法,其特征在于所述的方 法为VAD法,喷灯组件包括预制棒芯部喷灯和预制棒包层喷灯,喷灯组件和等离子体发生器喷头位于靶棒的下方成仰角进行喷射,旋转夹盘带动靶棒连续缓慢上移,粉末预制棒的芯部和包层不断延伸,直至达到粉末预制棒预定的长度。
  11. 按权利要求8或9所述的管外法制造光纤预制棒的方法,其特征在于所述的方法为OVD法,喷灯组件为预制棒包层喷灯,喷灯组件和等离子体发生器喷头沿与旋转夹盘轴线平行的方向间隔安设,与靶棒轴线成直角进行喷射,移动座带动喷灯组件和等离子体发生器喷头往复移动,所述的靶棒为已成型的芯棒,粉末预制棒的包层直径在往复移动中不断增大,直至达到粉末预制棒预定的直径。
PCT/CN2014/089752 2013-11-06 2014-10-29 一种管外法制造光纤预制棒的装置和方法 WO2015067137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310543323.0A CN103848565B (zh) 2013-11-06 2013-11-06 一种管外法制造光纤预制棒的装置和方法
CN201310543323.0 2013-11-06

Publications (1)

Publication Number Publication Date
WO2015067137A1 true WO2015067137A1 (zh) 2015-05-14

Family

ID=50856741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089752 WO2015067137A1 (zh) 2013-11-06 2014-10-29 一种管外法制造光纤预制棒的装置和方法

Country Status (2)

Country Link
CN (1) CN103848565B (zh)
WO (1) WO2015067137A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103848565B (zh) * 2013-11-06 2016-08-31 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法
CN105859122B (zh) * 2016-03-31 2018-06-26 杭州富通通信技术股份有限公司 光纤拉丝工艺
CN105837025B (zh) * 2016-04-21 2018-12-11 烽火通信科技股份有限公司 高效制备掺杂光纤预制棒的方法及掺杂光纤预制棒
CN106396362B (zh) * 2016-08-29 2019-04-16 长飞光纤光缆股份有限公司 一种光纤预制棒的制备方法
CN111233315A (zh) * 2018-11-28 2020-06-05 中天科技精密材料有限公司 预制棒延伸装置及其延伸方法
CN109694185B (zh) * 2019-01-07 2021-10-19 武汉烽火锐拓科技有限公司 一种适用于vad法沉积的喷灯
CN110395900A (zh) * 2019-08-02 2019-11-01 长飞光纤光缆股份有限公司 一种管外法制备低衰耗光纤预制棒的沉积装置及方法
CN112094049B (zh) * 2020-08-18 2022-09-13 江苏永鼎光纤科技有限公司 制备稀土离子掺杂光纤预制棒的方法、装置及产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321553A (ja) * 1993-05-10 1994-11-22 Fujikura Ltd フッ素ドープ石英ガラスの製造方法
CN102149648A (zh) * 2008-09-09 2011-08-10 信越化学工业株式会社 光纤母材的制造方法
CN103848565A (zh) * 2013-11-06 2014-06-11 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321553A (ja) * 1993-05-10 1994-11-22 Fujikura Ltd フッ素ドープ石英ガラスの製造方法
CN102149648A (zh) * 2008-09-09 2011-08-10 信越化学工业株式会社 光纤母材的制造方法
CN103848565A (zh) * 2013-11-06 2014-06-11 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法

Also Published As

Publication number Publication date
CN103848565B (zh) 2016-08-31
CN103848565A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2015067137A1 (zh) 一种管外法制造光纤预制棒的装置和方法
US9695080B2 (en) Glass particle deposit producing method and glass preform producing method
US5979185A (en) Method and apparatus for forming silica by combustion of liquid reactants using a heater
KR20010022401A (ko) 산소를 이용하여 액체 반응물을 연소시켜 실리카를형성하기 위한 방법
US7861557B2 (en) Plasma torch for making synthetic silica
JPH04228444A (ja) ガラスおよび光ファイバ製造方法
JP2000063126A (ja) シリカ含有ス―トを形成する方法およびバ―ナ―
CN103663958B (zh) 一种制备低水峰光纤预制棒的方法
CN115159833A (zh) 一种大尺寸高沉积速率的光纤预制棒制造装置及方法
JPH1149522A (ja) 石英ガラスブランクの製造方法およびそれに適した装置
JP6245648B2 (ja) 光ファイバ母材の製造方法
US4642129A (en) Method for manufacturing preforms of glass for optical fibers
CN116040933A (zh) 管外微波等离子体化学气相沉积制备光纤预制棒的装置及方法
JP2011102232A (ja) 石英ガラス母材の製造方法
EP2221281B1 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
EP0072069B1 (en) Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres
JP6258267B2 (ja) 光ファイバープリフォーム内のテーパーを低減するための等温プラズマcvdシステム
CN213266281U (zh) 一种用于大尺寸光纤预制棒的芯棒制备装置
CN109694185B (zh) 一种适用于vad法沉积的喷灯
JP4748758B2 (ja) 多孔質ガラス母材の製造装置
WO2003045860A1 (en) Burner for a vapour deposition process
KR100521957B1 (ko) 광섬유 제조를 위한 외부 기상 증착 장치 및 이를 이용한광섬유 모재 제조방법
CN113912279B (zh) 轴向沉积掺杂装置、粉末棒的制备方法
KR20060094002A (ko) 기상 외부 증착 방법에 의한 광섬유 모재 제작 장치
CN218146382U (zh) 一种大尺寸高沉积速率的光纤预制棒制造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859473

Country of ref document: EP

Kind code of ref document: A1