CN102149648A - 光纤母材的制造方法 - Google Patents

光纤母材的制造方法 Download PDF

Info

Publication number
CN102149648A
CN102149648A CN2009801350673A CN200980135067A CN102149648A CN 102149648 A CN102149648 A CN 102149648A CN 2009801350673 A CN2009801350673 A CN 2009801350673A CN 200980135067 A CN200980135067 A CN 200980135067A CN 102149648 A CN102149648 A CN 102149648A
Authority
CN
China
Prior art keywords
mother metal
covering
initial mother
manufacture method
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801350673A
Other languages
English (en)
Other versions
CN102149648B (zh
Inventor
乙坂哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN102149648A publication Critical patent/CN102149648A/zh
Application granted granted Critical
Publication of CN102149648B publication Critical patent/CN102149648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01237Removal of preform material to modify the diameter by heat-polishing, e.g. fire-polishing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种能够得到具有沟槽型折射率分布、传输损耗小、与标准单模光纤的连接损耗小、并且耐弯特性良好的光纤的光纤母材的制造方法。本发明的光纤母材的制造方法,用于制造至少包括纤芯、第一包层、和含氟的第二包层的光纤母材,该方法的特征在于,包括:准备具有纤芯和第一包层的初始母材的初始母材准备步骤;将玻璃原料供应给高频感应热等离子炬、合成玻璃微粒并使其沉积在母材上,来制作多孔中间玻璃母材的等离子沉积步骤;以及在含氟气氛中加热该多孔中间玻璃母材而使其玻璃化,来形成具有纤芯、第一包层和含氟的第二包层的中间玻璃母材的中间玻璃母材形成步骤。

Description

光纤母材的制造方法
技术领域
本发明涉及一种使用高频感应热等离子炬的光纤母材的制造方法,尤其涉及一种低OH耐弯单模光纤用玻璃母材的制造方法。此外,本申请与下述日本申请相关。对于认可文献通过参照而并入的指定国,以参照的方式将下述申请中所记载的内容并入本申请中,作为本申请的一部分。
日本特愿2008-231373  申请日 2008年9月9日。
背景技术
近年来,Fiber To The Home(光纤到户)(FTTH)等的宽带访问逐渐普及。当前的宅内布线中,以UTP电缆、无线等为主流,而追求更宽频带传输并将光纤直接布线在办公室或家庭内也在研究中。
由ITU-T G652等所规定的现有的单模光纤的允许曲率半径为最大30mm,在该值以上,即使施加较小的弯曲,也会导致损耗增大,传输信号变差。
在考虑了家庭中的布线的情况下,在沿着墙面竖起光纤时,考虑到处理的杂乱程度等,总是维持这样大的曲率半径进行布线并不现实,故寻求一种即使曲率半径更小也能抑制损耗增加的、耐弯单模光纤,并已实际开发、销售。
另外,在通信服务商的站内设备中,为了使设备紧凑,也使用允许曲率半径小的耐弯单模光纤。
耐弯单模光纤可以通过单纯地增加现有的单模光纤中纤芯的折射率来实现,而在这种情况下,模场直径变小。因此,会有与标准单模光纤的接续损耗变大的问题。
专利文献1及非专利文献1中,公开了一种解决的这样的问题的耐弯单模光纤,实现了高耐弯特性和接近标准单模光纤的模场直径。该光纤的折射率分布如图1所示,该光纤由纤芯100、第一包层101、第二包层102和第三包层103这四层构成,它们的折射率依次为n0、n1、n2、n3时,在纤芯中掺杂锗以使n0>n3。另外,在第二包层102中掺杂氟以使n2<n3。第三包层103由纯粹石英形成。而且,第一包层101中根据需要掺杂用于使折射率增加或减小的掺杂剂。
专利文献2中也公开了耐弯单模光纤,并具有和对比文件1类似的折射率分布。另外,专利文献3中公开了使用高频感应热等离子炬的、OH基含量低的纯二氧化硅纤芯光纤的制造方法。
现有技术文献
专利文献
专利文献1:日本专利第3853833号
专利文献2:日本特开2007-279739号公报
专利文献3:日本特开2007-45643号公报
非专利文献
非专利文献1:フジクラ技報第105号P6~10
上述类型的光纤的折射率分布一般被称为沟槽(trench)型,其特征在于第二包层部的氟掺杂层。为了制造这种类型的光纤母材,已知下述方法。
(1)MCVD法:
该方法是使原料气体流向玻璃管内侧,从玻璃管外侧进行火焰加热使原料气体反应,在玻璃管的内壁上沉积玻璃膜。
该方法作为合成具有复杂的折射率分布的光纤母材的方法是很普遍的,但是,来自火焰的OH基会从玻璃管的外壁侵入管内,并最终增加光纤在1385nm附近的传输损耗。
(2)PCVD法:
该方法是使原料气体流向玻璃管内侧,通过从玻璃管外侧照射微波而在玻璃管内部产生等离子来使原料气体反应,在玻璃管的内壁上沉积玻璃膜,与MCVD法相比可以合成具有细微的折射率分布的光纤母材。
该方法不使用火焰,因此不用担心OH基会从玻璃管的外壁侵入内部。但是,在内部沉积的玻璃膜的纯度由原料气体的纯度决定,因此,在原料中包含含氢杂质的情况下,光纤在1385nm附近的传输损耗会增加。尤其,作为玻璃原料的SiCl与水分的反应性高,容易形成OH基,因此,很难制造低OH光纤。
(3)OVD法或者气相轴向沉积法
其是在具有纤芯和第一包层的初始母材的外侧沉积在氢氧焰中火焰水解玻璃原料而生成的玻璃微粒后,在含氯气氛中脱水,进而在含氟气氛中透明玻璃化来合成第二包层,接着附加第三包层的方法。
该方法的特征是生产性好,但是,沉积第二包层的玻璃微粒时使用氢氧焰,因此OH基会从初始母材的外表面侵入初始母材内。另外,在沉积之前进行的火焰抛光工序中,OH基也会从初始母材的外表面侵入。在脱水工序中,除去了所沉积的多孔玻璃层中的OH基,但是,已经侵入初始母材部的OH基不会被除去,很难制造低OH光纤。
(4)套管(tube jacket)法
其是将各层的玻璃棒或者管层叠加热一体化的方法,由于各棒和管通过OVD法或VAD法(气相轴向沉积法)制造,因此可以降低OH基含量。但是,在它们的表面上生成OH基,由于加热一体化时不能充分除去,或者OH基容易从气氛或热源的氢氧焰侵入,因此,很难制造低OH光纤。
如上所述,任何一种方法都不能容易地解决OH基侵入光纤中的问题。
在上述专利文献1中,其实施例1、2和4中基于上述(3)的方法、其实施例3中基于上述(1)的方法来制造耐弯单模光纤,但是并没有提及1385nm附近的传输损耗。
另外,专利文献3中记载了使用高频感应热等离子炬的、OH基含量低的纯二氧化硅纤芯光纤,但是,并没有提及沟槽型耐弯单模光纤。
作为当前的传输线路的主流的光纤被称为低水峰光纤(Low Water Peak Fiber)(LWPF),是降低了OH基的单模光纤。这种类型在1385nm附近也不存在由OH基引起的高损耗区,因此,在整个1300~1600nm的范围内都是低损耗的,可供传输使用。
在主要的传输线路所使用的LWPF中尽管具有1385nm附近的传输能力,但是,如上所述,用于办公室、家庭或站内的沟槽型耐弯单模光纤中不具备有效的OH基降低手段,因此,一直在寻求一种经济地制造降低OH基的沟槽型耐弯单模光纤的方法。
发明内容
本发明的目的是提供一种光纤母材的制造方法,通过该方法能得到具有沟槽型折射率分布、传输损耗小、与标准单模光纤的接续损耗小、耐弯特性好的光纤。
本发明的光纤母材的制造方法,用于制造至少包括纤芯、第一包层、含氟的第二包层和第三包层这四层的光纤母材,该方法的特征在于,包括:准备具有纤芯和第一包层的初始母材的初始母材准备步骤;将玻璃原料和氧供应给高频感应热等离子炬来合成玻璃微粒并使其沉积在初始母材上,来制作多孔中间玻璃母材的等离子沉积步骤;在含氟气氛中加热多孔中间玻璃母材而使其玻璃化,来形成具有纤芯、第一包层和含氟的第二包层的中间玻璃母材的中间玻璃母材形成步骤;以及在中间玻璃母材的周围进一步附加第三包层的第三包层附加步骤。
所述初始母材准备步骤包括:通过VAD法制造具有纤芯和第一包层的多孔玻璃母材的VAD步骤;在含氯气氛中加热多孔玻璃母材来进行脱水的脱水步骤;在氦气氛中加热被脱水的多孔玻璃母材使其透明玻璃化而成为玻璃母材的玻璃化步骤;加热拉制玻璃母材来调整外径的拉制步骤;以及除去已拉制的玻璃母材的表面层的表面层除去步骤。
所述表面层除去步骤优选使用机械磨削抛光、利用氢氟酸进行的湿法蚀刻、以及利用含氟的等离子火焰进行的干法蚀刻中的任意一个来进行。
所述高频感应热等离子炬的气体导入部优选多重管结构。还有,优选从设置为从炬主体的外部朝向炬火焰的原料喷嘴供应玻璃原料。
上述发明的概要列举的并不都是本发明的必要特征。另外,这些特征组的子组合也形成本发明。
附图说明
图1是表示光纤母材的折射率分布的模式图。
图2是表示多孔玻璃母材制造装置400的示意图。
图3是表示脱水玻璃化装置500的一个例子的示意图。
图4是表示等离子炬200的一个例子的截面示意图。
图5是表示脱水玻璃化装置300的一个例子的截面示意图。
图6是表示等离子炬600的其它例子的截面示意图。
附图标记的说明:
100-纤芯、101-第一包层、102-第二包层、103-第三包层、200、600-等离子炬、201-初始母材、202-多孔玻璃、203-感应热等离子体、204-第一管、205-第二管、206-第三管、207-第四管、208-高频线圈、209、210、211、212-流路、300、500-脱水玻璃化装置、301-多孔中间玻璃母材、302-轴、303-旋转升降装置、304-炉芯管、305-气体导入口、306-排气口、307-加热炉、400-多孔玻璃母材制造装置、401-靶、402-轴、403-旋转升降装置、405-纤芯用燃烧器、406-第一包层用燃烧器、407-初始母材用多孔玻璃母材、408-燃烧室、409-排气管、500-脱水玻璃化装置、501-初始母材用多孔玻璃母材、502-轴、503-旋转升降装置、504-炉芯管、505-气体导入口、506-排气口、507-加热炉、601-原料导入部、602、603-流路、604-原料喷嘴。
具体实施方式
下面,通过本发明的实施方式对本发明进行说明,但是下述并非用于限定权利要求书所述的发明。另外,实施方式中说明的特征组合的全部并不一定是本发明的技术方案所必须。
图2表示用VAD法的初始母材用多孔玻璃母材制造装置400的概要。多孔玻璃母材制造装置400具备轴402、纤芯用燃烧器405、第一包层用燃烧器406、燃烧室408和排气管409。
靶401被安装在轴402上,轴被连接在旋转升降装置403上。向纤芯用燃烧器405供应氧、氢、四氯化硅、四氯化锗和氩,在氢氧焰中合成包含锗的玻璃微粒。
包含锗的玻璃微粒沉积在靶401的前端。通过旋转升降装置403调整靶401的上升速度,以使得沉积面和纤芯用燃烧器405的位置关系保持一定。
向第一包层用燃烧器406中供应氧、氢、四氯化硅和氩,将在氢氧焰中合成的玻璃微粒沉积在先前沉积的纤芯的周围。也可以根据需要向第一包层用燃烧器406中供应四氯化锗或四氟化硅等掺杂剂。
这样,在燃烧室408内通过纤芯用燃烧器405和第一包层用燃烧器406合成初始母材用多孔玻璃母材407,而未沉积到初始母材用多孔玻璃母材407上的玻璃微粒、即剩余烟尘通过排气管409排出系统外。
这样,包括纤芯和第一包层的初始母材用多孔玻璃母材407优选通过VAD法制造。通过VAD法,可以合成纤芯的中心没有孔的初始母材,并且可以通过脱水玻璃化工序最大限度地清除OH基,因此,适于低OH光纤的制造。
图3表示脱水玻璃化装置500。脱水玻璃化装置500具备轴502、旋转升降装置503、炉芯管504、气体导入口505、排气口506和加热炉507。
通过多孔玻璃母材制造装置400沉积达到期望长度的初始母材用多孔玻璃母材,通过图3所示的脱水玻璃化装置500进行脱水玻璃化处理。初始母材用多孔玻璃母材501通过轴502连接到旋转升降装置503,并被设置在炉芯管504内。从气体导入口505向炉芯管504内供应由氦气稀释的氯等脱水气体,并从排气口506排出。
在该状态下将加热炉507加热到900~1200℃,通过旋转升降装置503使初始母材用多孔玻璃母材501一边旋转一边缓慢下降,进行脱水处理。如果初始母材用多孔玻璃母材501整体的脱水处理结束,则再次提升初始母材用多孔玻璃母材501,这次从气体导入口505供应氦气,并在该状态下将加热炉507加热到1300~1600℃,使初始母材用多孔玻璃母材501一边旋转一边缓慢下降来进行玻璃化处理,以得到初始母材用玻璃母材。
另外,该玻璃化工序中,根据需要也可以向氦气中混入四氟化硅、六氟化硫、或四氟化碳等含氟气体。玻璃化工序中供应的气体,尤其需要不包含碳氢化合物和水分等含氢成分的气体。因此,优选在导入脱水玻璃化装置之前对氦气等实施高纯度化处理。
通过竖式的脱水玻璃化装置得到的初始母材用玻璃母材会受到重力的影响而在长度方向上产生外径分布。因此,如果直接在其上沉积第二包层,则第二包层的厚度与纤芯和第一包层的厚度之比会产生偏差。因此,优选在附加第二包层前,进行加热拉制将外径调整为恒定。作为加热拉制的方法,可以在光纤预制棒的加工中使用一般的玻璃车床或电拉制炉。
加热拉制工序中,会有附着在初始母材用玻璃母材的表面上的杂质扩散侵入玻璃母材,或者来自玻璃车床的火焰的OH基扩散侵入玻璃母材的情况。因此,优选在拉制后增加除去表面层的工序。
表面层的除去,可以使用机械磨削抛光、利用氢氟酸进行的湿法蚀刻、以及利用含氟的等离子火焰进行的干法蚀刻等公知技术。需要的蚀刻量由通过加热拉制工序侵入的杂质的深度来决定,因此,不能笼统地决定,但是,多数通过除去0.03~2mm左右的厚度就足够了。
图4表示等离子炬200的一个例子。等离子炬200具备:初始母材201、多孔玻璃202、第一管204、第二管205、第三管206、第四管207、高频线圈208和流路209~212。
图4是第二包层的沉积工序中使用的等离子炬200的截面示意图,表示将具有同芯多重管结构的等离子炬200沿中心轴劈开的状态。等离子炬产生感应热等离子体203(以下简称为等离子体),通过等离子体内的原料气体的反应合成石英玻璃微粒,并沉积在旋转、往返运动的初始母材201上作为包层,从而得到多孔玻璃202。
等离子炬200具备:第一管204、第二管205、第三管206、第四管207和高频线圈208。分别向流路209中供应四氯化硅和氩,向流路210中供应氩,向流路211中供应氧和氩。向流路212中供应冷却水。
流入流路209~211中的气体受到高频线圈208的感应而等离子化,成为达到几千℃以上的高温的感应热等离子体203。由于不向等离子体内供应氢成分,因此,本质上初始母材201中不会侵入OH基。
图5表示脱水玻璃化装置300。脱水玻璃化装置300具备:轴302、旋转升降装置303、炉芯管304、气体导入口305、排气口306和加热炉307。使用图5所示的脱水玻璃化装置300,对包含如上所述得到的多孔玻璃202的多孔中间玻璃母材301进行脱水处理和玻璃化处理。
多孔中间玻璃母材301通过轴302连接到旋转升降装置303,并被设置在炉芯管304内。从气体导入口305向炉芯管304内供应由氦气稀释的氯等脱水气体,并从排气口306排出。在该状态下将加热炉307加热到900~1200℃,通过旋转升降装置303使多孔中间玻璃母材301一边旋转一边缓慢下降,进行脱水处理。
如果多孔中间玻璃母材301整体的脱水处理结束,则再次提升多孔中间玻璃母材301。接着,这次根据需要从气体导入口305流入由氦稀释的四氟化硅或六氟化硫、或者四氟化碳等含氟气体,并在该状态下将加热炉307加热到1300~1600℃,通过旋转升降装置303使多孔中间玻璃母材301一边旋转一边缓慢下降。这样,通过进行玻璃化处理得到中间玻璃母材。
玻璃化工序中供应的气体,尤其需要不包含碳氢化合物和水分等含氢成分的气体。因此,优选在导入脱水玻璃化装置之前对氦气和含氟气体实施高纯度化处理。高纯度化处理中可以使用市售的气体生成装置(例如,惰性气体精制装置UIP系列等,日本pionics公司制造(日本パイオニクス社製))。
中间玻璃母材中包含图1所示折射率分布中成为纤芯100、第一包层101和第二包层102的材料。在中间玻璃母材的外侧,通过OVD法、气相轴向沉积VAD法、套管法等公知的方法附加第三包层103。另外,根据需要,在附加第三包层之前,也可以增加表面除去工序和用于调整外径的拉制工序。
图6是表示具有其它结构的等离子炬600的截面示意图。如图6所示,感应热等离子炬600不具有多重管结构。等离子炬600具备:原料导入部601、流路602、603和原料喷嘴604。
在原料导入部601中央的流路602中流入了四氯化硅和氩,流路603中流入了氧和氩的情况下,由于原料导入部601的前端面的面积大,等离子炬内容易产生涡流。因此,生成的玻璃微粒附着在等离子炬内壁和原料导入部前端,很难得到稳定的等离子。因此,不使用流路602而是从设置在等离子炬外的原料喷嘴604流入作为原料的四氯化硅和作为载体的氩气,由此,通过不具有多重管结构的感应热等离子炬也可以实现稳定的沉积。
另外,在图4所示的具有多重管结构的感应热等离子炬200中,第一管204、第二管205的前端面的面积小。因此,炬内不容易产生涡流,生成的玻璃微粒一直向初始母材前进,不会返回到炬的上游侧。因此,可以实现稳定的玻璃沉积。
实施例1:
使用图2所示的玻璃母材制造装置400,通过VAD法合成了初始母材用多孔玻璃母材。接着,将初始母材用多孔玻璃母材放入图3所示的装置中,在含有3%氯的氦气氛中加热到1100℃进行脱水,接着,在氦气氛中加热到1520℃进行玻璃化处理,合成了初始母材用玻璃母材。
得到的初始母材用玻璃母材由包含锗的纤芯和不包含掺杂剂的第一包层部构成。该初始母材用玻璃母材的OH基含量极少,为0.15ppb以下。
在氮气氛中用电炉将其加热、拉制后,机械磨削、抛光表面0.5mm厚度左右、来制作外径21mm、长度1000mm的芯棒,作为初始母材。
该芯棒的两端连接着石英玻璃制的模拟棒,使用图4所示的等离子炬以转速30rpm、移动速度75mm/min进行往返运动的同时,在初始母材的周围沉积了玻璃微粒。向高频线圈208供应3.5MHz、9kW的高频电力,向流路209以4L/min供应四氯化硅和以4L/min供应氩,向流路210以20L/min供应氩,向流路211以30L/min供应氩和以40L/min供应氧。通过250分钟的沉积时间,得到了附着沉积量1430g、外径77mm的多孔中间玻璃母材。
在含有3%氯的氦气氛中将该多孔中间玻璃母材加热到1100℃进行脱水处理,继续在含有11%四氟化硅的氦气氛中加热到1480℃进行玻璃化处理,得到在包括纤芯和第一包层的初始母材上具有第二包层的中间玻璃母材。
在这样得到的中间玻璃母材的外侧,使用通常的OVD工艺沉积玻璃微粒来制作多孔玻璃母材,在含有3%氯的氦气氛中加热到1100℃进行脱水,接着在氦气氛中加热到1520℃进行玻璃化处理,由此得到具有第三包层的光纤母材。
该光纤母材具有图1所示的折射率分布。将其加热到约2100℃并拉丝得到的光纤在1385nm处的传输损耗为0.28dB/km,因OH吸收引起的损耗增加量足够小,为大约0.01dB/km。另外,1310nm处的模场直径为9.32μm,截止波长为1250nm,与标准单模光纤匹配性良好。还有,1550nm处的直径20mm的弯曲损失很小,为0.1dB/m。
这样,将上述光纤母材拉丝得到的光纤具有沟槽型折射率分布,并且减少了OH基,传输损耗极小,并具有适合与标准单模光纤匹配的模场直径和截止波长。还有,即使曲率半径很小,损耗增加也很小,耐弯特性优异。由此,有助于光通信的进一步发展。
以上,利用实施方式对本发明进行了说明,但本发明的技术范围并不限于上述实施方式所记载的范围。对本领域普通技术人员来说,显而易见,可对上述实施方式施加多种变更或改良。根据权利要求书的记载,显而易见,施加了这样的变更或改良后的实施方式也包含于本发明的技术范围内。
应当注意:只要权利要求书、说明书和附图中所示的装置、系统、程序以及方法中的动作、次序、步骤、以及阶段等各个处理的执行顺序,如果没有指明“之前”、“先于”等,而且并非将在前处理的输出用于在后处理,则能以任意顺序实现。对于权利要求书、说明书以及附图中的动作流程而言,尽管为方便起见而使用“首先”、“其次(或接下来)”等进行说明,但并不意味着必须以此顺序实施。

Claims (10)

1.一种制造光纤母材的制造方法,其特征在于,包括:
准备具有纤芯和包围所述纤芯的第一包层的初始母材的初始母材准备步骤;
将玻璃原料和氧供应给高频感应热等离子炬,使在所述高频感应热等离子炬中合成的玻璃微粒沉积在所述初始母材的表面上,来制作多孔中间玻璃母材的多孔中间玻璃母材制作步骤;以及
在含氟气氛中加热所述多孔中间玻璃母材而使所述玻璃微粒玻璃化,制作具有含有氟并包围所述第一包层的第二包层的中间玻璃母材的中间玻璃母材制作步骤,
其中,所述光纤母材包括所述纤芯、所述第一包层和所述第二包层。
2. 根据权利要求1所述的制造方法,其特征在于:
还包括形成包围所述第二包层的第三包层的外径调整步骤。
3. 根据权利要求1或2所述的制造方法,其特征在于:
所述初始母材准备步骤包括通过气相轴向沉积法将所述第一包层的材料沉积在所述纤芯的表面上来制作多孔初始母材的多孔初始母材制作步骤。
4. 根据权利要求3所述的制造方法,其特征在于:
所述初始母材准备步骤包括在含氯气氛中加热所述多孔初始母材来进行脱水的脱水步骤。
5. 根据权利要求4所述的制造方法,其特征在于:
所述初始母材准备步骤包括在氦气氛中加热被脱水的所述多孔初始母材使其透明玻璃化、来制作所述初始母材的初始母材制作步骤。
6. 根据权利要求1~5中任意一项所述的制造方法,其特征在于:
所述初始母材准备步骤包括加热所述初始母材来调整所述初始母材的外径的拉制步骤。
7. 根据权利要求6所述的制造方法,其特征在于:
所述初始母材准备步骤包括除去与已拉制的所述初始母材的表面相邻接的层的表面层除去步骤。
8. 根据权利要求7所述的制造方法,其特征在于:
所述表面层除去步骤包括执行机械磨削抛光、利用氢氟酸进行的湿法蚀刻、以及利用含氟的等离子火焰进行的干法蚀刻中的任意一个。
9. 根据权利要求1~8中任意一项所述的制造方法,其特征在于:
所述多孔中间玻璃母材制作步骤中,所述高频感应热等离子炬具有多重管结构的气体导入部,所述玻璃原料和所述氧被单独导入所述高频感应热等离子炬中。
10. 根据权利要求1~8中任意一项所述的制造方法,其特征在于:
所述多孔中间玻璃母材制作步骤中,所述高频感应热等离子炬在炬火焰的外部具有原料喷嘴,从所述炬火焰的外部向所述炬火焰供应所述玻璃原料。
CN200980135067.3A 2008-09-09 2009-09-09 光纤母材的制造方法 Active CN102149648B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008231373A JP2010064915A (ja) 2008-09-09 2008-09-09 光ファイバ母材の製造方法
JP2008-231373 2008-09-09
PCT/JP2009/004466 WO2010029734A1 (ja) 2008-09-09 2009-09-09 光ファイバ母材の製造方法

Publications (2)

Publication Number Publication Date
CN102149648A true CN102149648A (zh) 2011-08-10
CN102149648B CN102149648B (zh) 2015-06-03

Family

ID=42004998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980135067.3A Active CN102149648B (zh) 2008-09-09 2009-09-09 光纤母材的制造方法

Country Status (5)

Country Link
US (1) US8820121B2 (zh)
EP (1) EP2351715B1 (zh)
JP (1) JP2010064915A (zh)
CN (1) CN102149648B (zh)
WO (1) WO2010029734A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224318A (zh) * 2013-04-14 2013-07-31 久智光电子材料科技有限公司 一种低羟基大直径大长度实心石英砣的制备方法
CN103382084A (zh) * 2012-05-02 2013-11-06 信越化学工业株式会社 光纤预制棒的制造方法
CN103848565A (zh) * 2013-11-06 2014-06-11 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法
CN109320063A (zh) * 2018-12-03 2019-02-12 江苏斯德雷特通光光纤有限公司 一种光纤预制棒的制作方法
CN110677972A (zh) * 2019-10-17 2020-01-10 中国人民解放军国防科技大学 用于SiC光学镜面加工的等离子体发生器及其应用方法
CN114436521A (zh) * 2022-04-08 2022-05-06 武汉友美科自动化有限公司 管外等离子体化学气相沉积制备光纤预制棒的装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2847900T3 (es) * 2013-12-20 2021-08-04 Draka Comteq Bv Fibra monomodo con un núcleo trapezoidal, que muestra pérdidas reducidas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW425481B (en) * 1999-01-18 2001-03-11 Sumitomo Electric Industries Optical fiber and its production method
CN1458099A (zh) * 2003-05-23 2003-11-26 杭州富通昭和光通信股份有限公司 低水峰光纤预制件的制造方法
US6813907B2 (en) * 2001-11-30 2004-11-09 Corning Incorporated Fluorine doping a soot preform
CN1768282A (zh) * 2003-04-11 2006-05-03 株式会社藤仓 光纤
JP2007045643A (ja) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd 光ファイバ用ガラス母材の製造方法
CN101097273A (zh) * 2006-06-29 2008-01-02 三星电子株式会社 宏弯曲不敏感光学纤维
CN101239778A (zh) * 2002-04-16 2008-08-13 住友电气工业株式会社 光纤预制棒制造方法,光纤制造方法及光纤

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440558A (en) * 1982-06-14 1984-04-03 International Telephone And Telegraph Corporation Fabrication of optical preforms by axial chemical vapor deposition
JPS59174535A (ja) 1983-03-22 1984-10-03 Shin Etsu Chem Co Ltd 光伝送用石英母材の製造方法
US5221309A (en) * 1984-05-15 1993-06-22 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US4822136A (en) * 1984-06-15 1989-04-18 Polaroid Corporation Single mode optical fiber
US4820322A (en) * 1986-04-28 1989-04-11 American Telephone And Telegraph Company At&T Bell Laboratories Method of and apparatus for overcladding a glass rod
US4689212A (en) * 1986-05-14 1987-08-25 Polaroid Corporation Method for forming doped optical preforms
JP3027075B2 (ja) * 1993-10-13 2000-03-27 信越化学工業株式会社 希土類元素ドープ石英ガラスファイバ母材の製造方法
FR2713621B1 (fr) * 1993-12-14 1996-01-05 Alcatel Fibres Optiques Procédé de recharge par plasma d'une préforme pour fibre optique et fibre optique issue de la préforme rechargée selon ce procédé.
JP3738510B2 (ja) * 1997-01-16 2006-01-25 住友電気工業株式会社 光ファイバ及びその製造方法
US6131414A (en) * 1997-05-13 2000-10-17 Shin-Etsu Chemical Co., Ltd. Method for making a preform for optical fibers by drawing a mother ingot
JP2960714B2 (ja) * 1997-05-13 1999-10-12 信越化学工業株式会社 光ファイバ用プリフォームとその延伸方法およびその延伸装置
US6131415A (en) * 1997-06-20 2000-10-17 Lucent Technologies Inc. Method of making a fiber having low loss at 1385 nm by cladding a VAD preform with a D/d<7.5
US6536240B1 (en) * 1998-04-10 2003-03-25 Mikhail Ivanovich Gouskov Method of making an optical fiber preform via multiple plasma depositing and sintering steps
US20070044513A1 (en) * 1999-08-18 2007-03-01 Kear Bernard H Shrouded-plasma process and apparatus for the production of metastable nanostructured materials
US20020005051A1 (en) * 2000-04-28 2002-01-17 Brown John T. Substantially dry, silica-containing soot, fused silica and optical fiber soot preforms, apparatus, methods and burners for manufacturing same
US20020073740A1 (en) * 2000-12-20 2002-06-20 Dawes Steven B. Fluorine doping a soot preform
US6813908B2 (en) * 2000-12-22 2004-11-09 Corning Incorporated Treating an optical fiber preform with carbon monoxide
JP2003226539A (ja) * 2002-02-06 2003-08-12 Sumitomo Electric Ind Ltd 光ファイバ母材の製造方法
JP2004002106A (ja) 2002-05-31 2004-01-08 Shin Etsu Chem Co Ltd 低損失光ファイバ母材とその製造方法
DE10231037C1 (de) * 2002-07-09 2003-10-16 Heraeus Tenevo Ag Verfahren und Vorrichtung zur Herstellung einer Vorform aus synthetischem Quarzglas mittels plasmaunterstütztem Abscheideverfahren
JP2004203670A (ja) * 2002-12-25 2004-07-22 Shin Etsu Chem Co Ltd 光ファイバ用プリフォームの加工方法、これに用いる装置
EP1657575A4 (en) * 2003-04-11 2008-03-19 Fujikura Ltd OPTICAL FIBER
DE102005015706B4 (de) * 2005-04-05 2008-07-03 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung einer Vorform für optische Fasern
JP2007048514A (ja) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd 高周波誘導熱プラズマトーチおよび固体物質の合成方法
FR2899693B1 (fr) * 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
FR2902962B1 (fr) * 2006-06-27 2008-08-22 Draka Comteq France Sa Torche plasma pour recharge de fibre optique.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW425481B (en) * 1999-01-18 2001-03-11 Sumitomo Electric Industries Optical fiber and its production method
US6813907B2 (en) * 2001-11-30 2004-11-09 Corning Incorporated Fluorine doping a soot preform
CN101239778A (zh) * 2002-04-16 2008-08-13 住友电气工业株式会社 光纤预制棒制造方法,光纤制造方法及光纤
CN1768282A (zh) * 2003-04-11 2006-05-03 株式会社藤仓 光纤
CN101055330A (zh) * 2003-04-11 2007-10-17 株式会社藤仓 光纤
CN1458099A (zh) * 2003-05-23 2003-11-26 杭州富通昭和光通信股份有限公司 低水峰光纤预制件的制造方法
JP2007045643A (ja) * 2005-08-08 2007-02-22 Shin Etsu Chem Co Ltd 光ファイバ用ガラス母材の製造方法
CN101097273A (zh) * 2006-06-29 2008-01-02 三星电子株式会社 宏弯曲不敏感光学纤维

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382084A (zh) * 2012-05-02 2013-11-06 信越化学工业株式会社 光纤预制棒的制造方法
CN103224318A (zh) * 2013-04-14 2013-07-31 久智光电子材料科技有限公司 一种低羟基大直径大长度实心石英砣的制备方法
CN103224318B (zh) * 2013-04-14 2016-03-30 久智光电子材料科技有限公司 一种低羟基大直径大长度实心石英砣的制备方法
CN103848565A (zh) * 2013-11-06 2014-06-11 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法
WO2015067137A1 (zh) * 2013-11-06 2015-05-14 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法
CN103848565B (zh) * 2013-11-06 2016-08-31 长飞光纤光缆股份有限公司 一种管外法制造光纤预制棒的装置和方法
CN109320063A (zh) * 2018-12-03 2019-02-12 江苏斯德雷特通光光纤有限公司 一种光纤预制棒的制作方法
CN110677972A (zh) * 2019-10-17 2020-01-10 中国人民解放军国防科技大学 用于SiC光学镜面加工的等离子体发生器及其应用方法
CN114436521A (zh) * 2022-04-08 2022-05-06 武汉友美科自动化有限公司 管外等离子体化学气相沉积制备光纤预制棒的装置和方法

Also Published As

Publication number Publication date
EP2351715A1 (en) 2011-08-03
WO2010029734A1 (ja) 2010-03-18
CN102149648B (zh) 2015-06-03
EP2351715A4 (en) 2012-10-03
US20110162413A1 (en) 2011-07-07
EP2351715B1 (en) 2016-06-29
JP2010064915A (ja) 2010-03-25
US8820121B2 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
AU723038B2 (en) Optical fiber having low loss at 1385nm and method for making same
KR900003449B1 (ko) 분산 시프트싱글모우드 광파이버 및 그 제조방법
US8635889B2 (en) Refraction-sensitive optical fiber, quartz glass tube as a semi-finished product for the manufacture-thereof and method for the manufacture of the fiber
US8295668B2 (en) Low loss optical fiber designs and methods for their manufacture
Schultz Fabrication of optical waveguides by the outside vapor deposition process
CN1849270B (zh) 光纤预制件的制造方法、光纤的制造方法以及光纤
CN102149648B (zh) 光纤母材的制造方法
WO2013021759A1 (ja) 光ファイバ母材および光ファイバの製造方法
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
CN109553295B (zh) 一种大尺寸低损耗的光纤预制棒及其制造方法
CN102320732A (zh) 一种制备光纤预制棒的方法
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
CN103760634A (zh) 一种单模光纤
CN112062460B (zh) 低损耗g.652.d光纤及其制作方法
US20150299024A1 (en) Tubular semifinished product for producing an optical fiber
CN101097273A (zh) 宏弯曲不敏感光学纤维
JP5046500B2 (ja) 光ファイバ用ガラス母材の製造方法
CN113461322B (zh) 光纤及光纤预制棒的制造方法
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JPH0820574B2 (ja) 分散シフトフアイバ及びその製造方法
US6865327B2 (en) Method of making optical fiber with reduced E-band and L-band loss peaks
CN100999381A (zh) 制造光纤预制棒的装置及使用其制造低水峰光纤的方法
JPH0327491B2 (zh)
Hewak Fabrication of optical fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant