WO2015067027A1 - 背光源和显示装置 - Google Patents

背光源和显示装置 Download PDF

Info

Publication number
WO2015067027A1
WO2015067027A1 PCT/CN2014/078017 CN2014078017W WO2015067027A1 WO 2015067027 A1 WO2015067027 A1 WO 2015067027A1 CN 2014078017 W CN2014078017 W CN 2014078017W WO 2015067027 A1 WO2015067027 A1 WO 2015067027A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
backlight
beam expanding
prism
total reflection
Prior art date
Application number
PCT/CN2014/078017
Other languages
English (en)
French (fr)
Inventor
王尚
杜志宏
张丽蕾
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/416,021 priority Critical patent/US9651204B2/en
Publication of WO2015067027A1 publication Critical patent/WO2015067027A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • a backlight such as a CCFL (Cold Cathode Fluorescent Lamp) or an LED (Light Emitting Diode) is used as a backlight.
  • CCFL Cold Cathode Fluorescent Lamp
  • LED Light Emitting Diode
  • LEDs have become the mainstream of today's backlights for lighting and displays due to their small size, long life, and high reliability.
  • LEDs have general light characteristics and luminous efficiency, and have poor heat dissipation.
  • the wavelength of the light emitted by the LED has a certain spectral range and the color purity is not high.
  • CCFL can be quickly started at low temperatures, and can be easily processed into various shapes. Although it has high brightness, it has poor heat dissipation and low color purity.
  • the CCFL also has the biggest drawback, which is the defect in spectral characteristics.
  • the CCFL has a small color gamut and can only reach 72% of the NTSC (National Television Standards Committee) color gamut standard.
  • NTSC National Television Standards Committee
  • the white light emitted by the backlight finally passes through the RGB color filter film to achieve imaging, the wavelengths of the three primary colors of R, G, and B in the white light emitted by the backlight (ie, the purity of the three primary colors) will directly affect the color effect of the display. . From this perspective, the white light emitted by the CCFL is not an ideal source of spectral characteristics.
  • the technical problem to be solved by the present invention is how to improve the monochromaticity of the backlight and improve the transmittance of the light emitted by the backlight on the liquid crystal panel.
  • the present invention provides a backlight, comprising: a monochrome laser diode a tube, a reflecting plate, and a beam expanding prism, wherein the monochromatic laser diode and the beam expanding prism are disposed on the reflecting plate, and the monochromatic laser light emitted by the monochromatic laser diode is reflected by the beam expanding prism The beam spreads.
  • the monochromatic laser diode comprises: a red laser diode, a green laser diode, a blue laser diode, and the red laser diode, the green laser diode, and the blue laser diode are placed side by side on the reflector.
  • the red laser diode, the green laser diode, and the blue laser diode respectively input currents of different strengths.
  • the beam expanding prism is a total reflection beam expanding prism.
  • the total reflection beam expander prism includes a beam expanding surface, a refractive surface, and a total reflection surface
  • the total reflection beam expanding prism has an inclined surface at an angle close to the reflecting plate on a side close to the monochrome laser diode
  • the refracting surface, the slanting surface of the total reflection beam expanding prism having an angle with the reflecting plate on a side away from the monochromatic laser diode is the total reflection surface, and the top of the total reflection beam expanding prism It is a beam expanding surface with a curvature.
  • the monochromatic laser diode is soldered to the reflecting plate, and the beam expanding prism and the monochromatic laser diode and the heat sink are integrated in a package structure.
  • the backlight further includes a brightness enhancement film and a scattering film, the scattering film being disposed above the brightness enhancement film.
  • the brightness enhancement film comprises: a lower brightness enhancement film and an upper brightness enhancement film, the lower brightness enhancement film being disposed under the upper brightness enhancement film.
  • the present invention also provides a display device comprising the backlight as described above.
  • the backlight is a direct type backlight.
  • a backlight provided by an embodiment of the present invention includes: a monochrome laser diode, a reflection plate, and a beam expander prism.
  • the monochrome laser diode and the beam expander prism are disposed on the reflector, and the laser emitted by the monochrome laser diode is expanded.
  • the reflection of the beam prism causes the beam to spread.
  • the monochromatic laser emitted by the laser diode is diffused by the reflection of the beam expanding prism to obtain red, green and blue backlights. Since the laser has good monochromaticity and high color purity, better liquid crystal can be obtained. Screen transmittance.
  • the present invention also provides a display device capable of achieving a good color effect by using the above backlight as a direct type backlight.
  • 1 is a schematic structural view of a laser diode
  • 2 is a schematic diagram of illumination of a laser diode
  • FIG. 3 is a cross-sectional view showing a side structure of a backlight provided in an embodiment of the present invention.
  • FIG. 4 is a perspective structural view of a backlight provided in an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the structure and position of a total reflection beam expanding prism and a monochrome laser diode in an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an optical path formed by a laser through a total reflection beam expander in an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an optical path formed by a laser through a total reflection beam expander in an embodiment of the present invention
  • the laser diode has a monochromaticity close to that of a gas laser, has a smaller illumination angle and linear polarization than the LED, and has a small light exit port.
  • the schematic diagram of the structure of the laser diode is shown in Fig. 1.
  • the radiation that occurs in the laser is stimulated radiation, and the laser light emitted is exactly the same in terms of frequency, phase, and polarization state.
  • For the excited light system there is stimulated radiation and stimulated absorption. Only the stimulated radiation is dominant, and the external light can be amplified to emit laser light.
  • FIG. 3 The schematic diagram of the laser diode illumination is shown in Figure 2.
  • the excited radiation is generated after the current is applied to the laser, and the laser is emitted outward through the optical aperture to form a half power line and a main radiation lobes as shown in FIG.
  • a laser diode is used instead of the original light-emitting diode as a backlight. Therefore, a cross-sectional view of the side structure of the backlight in this embodiment is shown in FIG. 3, and includes: a monochrome laser diode 9, a reflector 1 and a beam expander prism 2.
  • the monochromatic laser diode and the beam expanding prism are disposed on the reflecting plate, and the monochromatic laser light emitted by the monochromatic laser diode is diffused by the reflection of the beam expanding prism to perform beam diffusion.
  • the backlight uses a monochromatic laser diode as a light source, and the laser light emitted by the monochromatic laser diode is diffused by the beam expander to realize beam diffusion to form red, green and blue backlights, which have good monochromaticity and high density. Color purity and LCD transmittance.
  • the monochromatic laser diode 9 in this embodiment comprises: a red laser diode 3, a green laser diode 4, a blue laser diode 5, and a red laser diode 3, a green laser diode 4, and a blue laser diode 5 are placed side by side.
  • a red laser diode 3, a green laser diode 4, and a blue laser diode 5 are placed side by side.
  • the arrangement of the red laser diode 3, the green laser diode 4, and the blue laser diode 5 is as shown in the schematic diagram of the three-dimensional structure of the backlight. Three different color laser diodes are placed side by side at a small distance, where the smaller distance is determined by the size and characteristic requirements of the actual design process.
  • the red laser diode 3, the green laser diode 4, and the blue laser diode 5 in this embodiment respectively input currents of different intensities to overcome the luminous efficiency of laser diodes due to different spectra (ie, different colors).
  • the brightness effect produced by the human eye is different.
  • the beam expanding prism in this embodiment is a total reflection beam expanding prism, and there are many methods for laser beam expanding.
  • the prism beam expanding method will be described as an example.
  • the direction of the outgoing light is different from the direction of the incident light, and the change of the incident angle and the apex angle of the prism can cause a change in the beam width, that is, total reflection of the beam to prevent the utilization of the light due to refraction.
  • the total reflection beam expanding prism 2 in this embodiment includes a beam expanding surface 2i, a refractive surface 22, and a total reflection surface 23.
  • the total reflection beam expanding prism 2 is adjacent to the laser diode side and the reflecting plate. 1
  • the inclined surface having the included angle is the refractive surface 22, and the inclined surface having an angle with the reflecting plate 1 on the side far from the laser diode is the total reflecting surface 23, and the top of the total reflection beam expanding prism 2 is the expanding surface 21 having the curvature.
  • the structure and position diagram of the total reflection beam expander prism 2 and the monochromatic laser diode 9 are as shown in FIG. 5.
  • the monochromatic laser ::::::
  • the pole tube 9 is located on the reflector 1 near the refractive surface 22, and the optical path is formed.
  • the schematic diagram is shown in Figure 6, and the optical path simulation is shown in Figure 7.
  • the monochromatic laser diode 9 can be connected to the reflector 1 and the beam expander prism 2 and the monochromatic laser diode 9 and the heat sink 13 are integrated in the package structure, as shown in FIG. .
  • the material of the reflector 1 is selected from a metal material having good thermal conductivity, and the package module encapsulating the beam expander prism 2 and the monochromatic laser diode 9 and the heat sink 13 can be directly used to realize a direct-type laser backlight.
  • the direct type refers to the arrangement of the light sources on the back side of the display panel.
  • the above-mentioned FIG. 3 and FIG. 4 further includes: a lower brightness enhancement film 6, an upper brightness enhancement film 7, and a scattering film 8, which are increased.
  • the bright film 6 is disposed below the upper brightness enhancing film 7, and the scattering film 8 is disposed above the upper brightness enhancing film 7.
  • the embodiment of the present invention replaces the light-emitting diode in the prior art as a backlight by using a laser diode, because the laser diode has good monochromaticity, has a smaller illumination angle and linear polarization than the LED, and emits light.
  • the small size of the port, the monochromatic laser emitted by the monochromatic laser diode is diffused by the reflection of the beam expanding prism to obtain a red, green and blue backlight, because the laser has good monochromaticity and high color purity. , can get better LCD transmittance.
  • an embodiment of the present invention further provides a display device including the above backlight.
  • the backlight in this embodiment is a direct type backlight.
  • the display device uses a laser as a light source, has a good monochromaticity, a high color purity, and a good transmittance of a liquid crystal panel, and can achieve a good color effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光源和显示装置,其中背光源包括:单色激光二极管(9)、反射板(1)和扩束棱镜(2),单色激光二极管(9)和扩束棱镜(2)设置在所述反射板(1)上,单色激光二极管(9)发射的激光经过扩束棱镜(2)的反射进行光束扩散。由于激光具有很好的单色性和较高的色纯度,所以能够得到较好的液晶屏透过率。将上述背光源作为直下式背光源,构成显示装置,能够实现良好的彩色效果。

Description

背光源和显示装置
Figure imgf000003_0001
在传统的液晶显示装置中, 背光源 要采用 CCFL ( Cold Cathode Fluorescent Lamp, 冷阴极萤光灯'管)、 LED (Light Emitting Diode, 发光—二极 管) 作为背光源。
LED由于其体积小、 寿命长、 可靠性高等优点已经成为当今照明和显示 器背光源的主流,但是 LED的光线特性和发光效率都一般,并且散热差。 LED 发出的光的波长具有一定的光谱范围, 色纯度不高。 CCFL 能在低温时快速 启动, 易加工成各种形状, 虽然具有高亮度, 但是散热差、 色纯度低。 CCFL 还存在最大的缺陷, 就是来自光谱特性上的缺陷, CCFL色域小, 只能达到 NTSC (National Television Standards Committee, (美国) 国家电视标准委员 会)色域标准的 72%。 由于背光源发出的白色光线最后要经过 RGB彩色滤光 膜后才能实现成像, 因此背光源发出的白光中 R、 G、 B三原色光的波长(即 三原色的纯度) 将直接影响到显示器的色彩效果。 丛这个角度来说, CCFL 发出的白光就不是一种光谱特性非常理想的光源。
综上所述, 对于传统的显示器, 无论是 LED作为背光源, 还是 CCFL作 为背光源, 都会存在的问题就是背光源发出的光单色性不高, 导致色纯度不 高。
(一) 要解决的技术问题
本发明要解决的技术问题是如何能提高背光源的单色性, 提高背光源发 的光在液晶屏上的透过率。
(二) 技术方案
为解决上述技术问题, 本发明提供了一种背光源, 包括: 单色激光二极 管、 反射板和扩束棱镜, 其中所述单色激光二极管和所述扩束棱镜设置在所 述反射板上, 所述单色激光二极管发射的单色激光经过所述扩束棱镜的反射 进行光束扩散。
进一步地, 所述单色激光二极管包括: 红色激光二极管、 绿色激光二极 管、 蓝色激光二极管, 旦所述红色激光二极管、 绿色激光二极管、 蓝色激光 二极管并排放置在所述反射板上。
进一步地, 所述红色激光二极管、 所述绿色激光二极管、 所述蓝色激光 二极管分别通入不同强度的电流。
进一步地, 所述扩束棱镜为全反射扩束棱镜。
进一步地, 所述全反射扩束棱镜包括扩束面、 折射面和全反射面, 所述 全反射扩束棱镜在靠近所述单色激光二极管一侧与所述反射板具有夹角的倾 斜面为所述折射面, 所述全反射扩束棱镜在远离所述单色激光二极管一侧与 所述反射板具有夹角的倾斜面为所述全反射面, 所述全反射扩束棱镜的顶部 为具有弧度的扩束面。
进一步地, 所述单色激光二极管銲接在所述反射板上, 并将所述扩束棱 镜和所述单色激光二极管与散热片集成在封装结构中。
进一步地, 所述背光源还包括增亮膜和散射膜, 所述散射膜设置在增亮 膜的上方。
进一步地, 所述增亮膜包括: 下增亮膜和上增亮膜, 所述下增亮膜设置 在所述上增亮膜的下方。
为解决上述问题, 本发明还提供了一种显示装置, 所述显示装置包括以 上所述的背光源。
进一歩地, 所述背光源为直下式背光源。
(三) 有益效果
本发明实施例提供的一种背光源, 包括: 单色激光二极管、 反射板和扩 束棱镜, 单色激光二极管和扩束棱镜设置在所述反射板上, 单色激光二极管 发射的激光经过扩束棱镜的反射进行光束扩散。 通过用激光二极管代替现有 技术中的发光二极管作为背光源, 于激光二极管具有很好的单色性、 具有 相对于发光二极管小的多的发光角度和线偏振性、 出光口较小的特点, 单色 激光二极管发射的单色激光通过扩束棱镜的反射进行光束扩散, 得到红、 绿、 蓝三色背光源, 由于激光具有很好的单色性和较高的色纯度, 能够得到较好 的液晶屏透过率。 本发明还提供了一种显示装置, 以上述背光源作为直下式 背光源, 能够实现良好的彩色效果。
图 1是激光二极管的结构示意图;
图 2是激光二极管的发光原理图;
图 3是本发明实施例中提供的一种背光源的侧面结构剖视图;
图 4是本发明实施例中提供的一种背光源的立体结构图;
图 5是本发明实施例中全反射扩束棱镜与单色激光二极管的结构和位置 示意图;
图 6是本发明实施例中激光经过全反射扩束镜形成的光路示意图; 图 7是本发明实施例中激光经过全反射扩束镜形成的光路模拟图; 图 8为本发明实施例中扩束棱镜、 单色激光二极管和散热片封装结构示 意图。
下面结合 图和实施例, 对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
随着激光技术的发展,尤其是半导体激光技术的发展,激光二极管(Laser Diode, 英文筒称 LD ) 在显示器和照明等应用领域相对于 LED有一定的技术 优势。 例如: 激光二极管具有接近于气体激光器的单色性, 具有比 LED小的 发光角度和线偏振性, 还具有出光口小等特点。 其中激光二极管的结构示意 图如图 1所示, 在激光器中发生的辐射就是受激辐射, 它发出的激光在频率、 相位、 偏振状态等方面完全一样。 对于受激发光系统而言, 即有受激辐射, 也有受激吸收, 只有受激辐射占优势, 才能把外来光放大而发出激光。 激光 二极管发光的原理示意图如图 2所示。 激光器中通入电流之后发生受激辐射, 经过光学孔径向外发出激光, 形成如图 2所示的半功率线和主辐射瓣。 本发明实施例中用激光二极管代替原来的发光二极管作为背光源, 因此 本实施例中背光源的侧面结构剖视图如图 3所示, 包括: 单色激光二极管 9、 反射板 1和扩束棱镜 2, 其中所述单色激光二极管和所述扩束棱镜设置在所述 反射板上, 所述单色激光二极管发射的单色激光经过所述扩束棱镜的反射进 行光束扩散。
上述背光源用单色激光二极管作为光源, 单色激光二极管发射的激光经 过扩束棱镜的发射实现光束扩散形成红、 绿、 蓝三原色背光源, 具有很好的 单色性, 也具有较高的色纯度和液晶屏透过率。
优选地, 本实施例中的单色激光二极管 9包括: 红色激光二极管 3、 绿色 激光二极管 4、 蓝色激光二极管 5, 且红色激光二极管 3、 绿色激光二极管 4、 蓝色激光二极管 5并排放置在反射板 1上。对于红色激光二极管 3、绿色激光二 极管 4、蓝色激光二极管 5的排布方式如图 4背光源立体结构示意图所示。三种 不同颜色的激光二极管以较小的距离并排在一起, 其中较小的距离是根据实 际设计过程中的尺寸和特性要求决定的。
需要说明的是, 本实施例中的红色激光二极管 3、 绿色激光二极管 4、 蓝 色激光二极管 5分别通入不同强度的电流,以克服由于不同光谱(即不同颜色) 的激光二极管的发光效率对人眼所产生的亮度效果不同。
优选地, 本实施例中的扩束棱镜为全反射扩束棱镜, 对于激光扩束的方 法有很多, 本实施例中仅以棱镜扩束法为例进行说明。
由于棱镜.材料的折射, 使出射光方向与入射光方向不同, 其入射角与棱 镜顶角的变化可以引起光束宽度的改变, 即对光束进行全反射, 避免光由于 折射造成利用率降低。
优选地, 本实施例中的全反射扩束棱镜 2包括扩束面 2i、折射面 22和全反 射面 23, 如图 5所示, 全反射扩束棱镜 2在靠近激光二极管一侧与反射板 1具有 夹角的倾斜面为折射面 22,在远离激光二极管一侧与反射板 1具有夹角的倾斜 面为全反射面 23, 全反射扩束棱镜 2的顶部为具有弧度的扩束面 21。其中全反 射扩束棱镜 2与单色激光二极管 9的结构和位置示意图如图 5所示,单色激光::::: 极管 9位于反射板 1上靠近折射面 22的位置, 形成的光路示意图如图 6所示, 光 路模拟图如图 7所示。 进一步地, 本实施例中还可以将单色激光二极管 9悍接在反射板 1上, 并 将扩束棱镜 2和单色激光二极管 9与散热片 13集成在封装结构中, 如图 8所示。 其中的反射板 1的材料选择导热性较好的金属材料,还可以直接利 ffi将扩束棱 镜 2和单色激光二极管 9与散热片 13封装好的封装模块, 实现直下式激光背光 源。 其中, 直下式是指光源排列在显示面板的背面。
另外, 对于上述图 3和图 4中除了包括单色激光二极管 9、 反射板 1和扩束 棱镜 2之外, 还包括: 下增亮膜 6、 上增亮膜 7和散射膜 8, 下增亮膜 6设置在上 增亮膜 7的下方, 散射膜 8设置在上增亮膜 7的上方。
需要说明的是, 对于下增亮膜 6和上增亮膜 7在实际应用中还可以根据需 求用一层增亮膜进行代替。
综上所述, 本发明实施例通过^激光二极管代替现有技术中的发光二极 管作为背光源, 由于激光二极管具有很好的单色性、 具有比发光二极管小的 发光角度和线偏振性、 出光口小的特点, 单色激光二极管发射的单色激光通 过扩束棱镜的反射进行光束扩散, 得到红、 绿、 蓝三色背光源, 由于激光具 有很好的单色性和较高的色纯度, 能够得到较好的液晶屏透过率。
基于上述背光源, 本发明实施例还提供了一种显示装置, 包括上述背光 源。 优选地, 本实施例中的背光源为直下式背光源。 该显示装置用激光作为 光源, 具有很好的单色性、 较高的色纯度以及较好的液晶屏透过率, 能够实 现良好的彩色效果。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 相关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变形, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

1 . 一种背光源, 其特征在于, 包括: 单色激光二极管、 反射板和扩束棱 镜, 其中所述单色激光二极管和所述扩束棱镜设置在所述反射板上, 所述单 色激光二极管发射的单色激光经过所述扩束棱镜的反射进行光束扩散。
2. 如权利要求 1所述的背光源,其特征在于,所述单色激光二极管包括: 红色激光二极管、 绿色激光二极管、 蓝色激光二极管, 且所述红色激光二极 管、 绿色激光二极管、 蓝色激光二极管并排放置在所述反射板上。
3. 如权利要求 2所述的背光源, 其特征在于, 所述红色激光二极管、 所 述绿色激光二极管、 所述蓝色激光二极管分别通入不同强度的电流。
4. 如权利要求 1所述的背光源, 其特征在于, 所述扩束棱镜为全反射扩 束棱镜。
5. 如权利要求 4所述的背光源, 其特征在于, 所述全反射扩束棱镜包括 扩束面、 折射面和全反射面, 所述全反射扩束棱镜在靠近所述单色激光二极 管一侧与所述反射板具有夹角的倾斜面为所述折射面, 所述全反射扩束棱镜 在远离所述单色激光二极管一侧与所述反射板具有夹角的倾斜面为所述全反 射面, 所述全反射扩束棱镜的顶部为具有弧度的扩束面。
6. 如权利要求 1所述的背光源, 其特征在于, 所述单色激光二极管悍接 在所述反射板上, 并将所述扩束棱镜和所述单色激光二极管与散热片集成在 封装结构中。
7. 如权利要求 1所述的背光源, 其特征在于, 所述背光源还包括增亮膜 和散射膜, 所述散射膜设置在增亮膜的上方。
8. 如权利要求 7所述的背光源, 其特征在于, 所述增亮膜包括下增亮膜 和上增亮膜, 所述下增亮膜设置在所述上增亮膜的下方。
9. 一种显示装置, 其特征在于, 所述显示装置包括权利要求 1 8中任一 项所述的背光源。
10. 如权利要求 9所述的显示装置, 其特征在于, 所述背光源为直下式 背光源。
PCT/CN2014/078017 2013-11-08 2014-05-21 背光源和显示装置 WO2015067027A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/416,021 US9651204B2 (en) 2013-11-08 2014-05-21 Backlight and display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310553742.2 2013-11-08
CN201310553742.2A CN103591509B (zh) 2013-11-08 2013-11-08 一种背光源和显示装置

Publications (1)

Publication Number Publication Date
WO2015067027A1 true WO2015067027A1 (zh) 2015-05-14

Family

ID=50081750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078017 WO2015067027A1 (zh) 2013-11-08 2014-05-21 背光源和显示装置

Country Status (3)

Country Link
US (1) US9651204B2 (zh)
CN (1) CN103591509B (zh)
WO (1) WO2015067027A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591509B (zh) 2013-11-08 2015-09-09 京东方科技集团股份有限公司 一种背光源和显示装置
CN109782490A (zh) * 2019-03-28 2019-05-21 深圳创维-Rgb电子有限公司 直下式背光源、模组及激光电视
CN111812887A (zh) * 2019-04-11 2020-10-23 合肥工业大学 一种激光背光模组及其应用的液晶显示器
JP7281638B2 (ja) * 2019-05-16 2023-05-26 船井電機・ホールディングス株式会社 光スキャナユニットおよび光学機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116268A (ja) * 2003-10-06 2005-04-28 Sanyo Electric Co Ltd 面光源装置
KR20060135109A (ko) * 2005-06-24 2006-12-29 삼성전기주식회사 굴절 및 반사 광학 소자를 구비한 백라이트
CN1928667A (zh) * 2005-09-09 2007-03-14 三星电子株式会社 背光单元和具有该背光单元的显示设备
US20070274099A1 (en) * 2006-05-25 2007-11-29 Clio Technologies, Inc. Light expanding system for producing a planar light beam from point light sources
TW200807102A (en) * 2006-07-31 2008-02-01 Coretronic Corp Backlight module
CN201606739U (zh) * 2009-11-11 2010-10-13 康佳集团股份有限公司 Led背光模组
CN202708858U (zh) * 2012-07-25 2013-01-30 京东方科技集团股份有限公司 一种直下式背光源及显示装置
CN103591509A (zh) * 2013-11-08 2014-02-19 京东方科技集团股份有限公司 一种背光源和显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833727A1 (de) * 1988-10-04 1990-04-05 Sick Optik Elektronik Erwin Optische abtastvorrichtung
US20100182236A1 (en) * 2001-02-22 2010-07-22 Timothy Pryor Compact rtd instrument panels and computer interfaces
CN1591121A (zh) * 2003-08-28 2005-03-09 鸿富锦精密工业(深圳)有限公司 背光模组
TWI249257B (en) * 2004-09-24 2006-02-11 Epistar Corp Illumination apparatus
JP2006286906A (ja) * 2005-03-31 2006-10-19 Sony Corp 発光ダイオード装置とこれを用いたバックライト装置及び液晶表示装置
KR20080020312A (ko) * 2006-08-31 2008-03-05 삼성전자주식회사 자발광 액정 표시 장치
US20090086508A1 (en) * 2007-09-27 2009-04-02 Philips Lumileds Lighting Company, Llc Thin Backlight Using Low Profile Side Emitting LEDs
EP2061122B1 (en) * 2007-11-16 2014-07-02 Fraunhofer USA, Inc. A high power laser diode array comprising at least one high power diode laser, laser light source comprising the same and method for production thereof
US7963447B2 (en) * 2007-11-30 2011-06-21 Symbol Technologies, Inc. Enhanced monitoring of laser output power in electro-optical readers
KR101180134B1 (ko) * 2008-05-30 2012-09-05 도시바 마테리알 가부시키가이샤 백색 led 및 그를 사용한 백라이트 및 액정 표시 장치
US8317352B2 (en) * 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
JP4519944B1 (ja) * 2009-05-22 2010-08-04 シャープ株式会社 光源装置及び表示装置
TWI561770B (en) * 2010-04-30 2016-12-11 Samsung Electronics Co Ltd Light emitting device package, light source module, backlight unit, display apparatus, television set, and illumination apparatus
CN201706302U (zh) * 2010-06-18 2011-01-12 京东方科技集团股份有限公司 背光模组和液晶显示器
US9103950B2 (en) * 2011-02-15 2015-08-11 Mitsubishi Electric Corporation Surface light source device and liquid crystal display device
US8477266B2 (en) * 2011-02-18 2013-07-02 Extend Optronics Corp. Display backlight module and method for the same
CN102767739A (zh) * 2011-05-04 2012-11-07 佛山市南海平板显示技术中心 一种直下式激光背光模组及其显示器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116268A (ja) * 2003-10-06 2005-04-28 Sanyo Electric Co Ltd 面光源装置
KR20060135109A (ko) * 2005-06-24 2006-12-29 삼성전기주식회사 굴절 및 반사 광학 소자를 구비한 백라이트
CN1928667A (zh) * 2005-09-09 2007-03-14 三星电子株式会社 背光单元和具有该背光单元的显示设备
US20070274099A1 (en) * 2006-05-25 2007-11-29 Clio Technologies, Inc. Light expanding system for producing a planar light beam from point light sources
TW200807102A (en) * 2006-07-31 2008-02-01 Coretronic Corp Backlight module
CN201606739U (zh) * 2009-11-11 2010-10-13 康佳集团股份有限公司 Led背光模组
CN202708858U (zh) * 2012-07-25 2013-01-30 京东方科技集团股份有限公司 一种直下式背光源及显示装置
CN103591509A (zh) * 2013-11-08 2014-02-19 京东方科技集团股份有限公司 一种背光源和显示装置

Also Published As

Publication number Publication date
US20150338031A1 (en) 2015-11-26
US9651204B2 (en) 2017-05-16
CN103591509B (zh) 2015-09-09
CN103591509A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
US8564739B2 (en) LED backlight system for LCD displays
JP5554382B2 (ja) 高出力のコーナーledを使用するバックライト
JP5391847B2 (ja) バックライト装置および画像表示装置
KR20060006727A (ko) 발광 다이오드 및 발광 다이오드를 구비하는 백라이트 모듈
TW200410171A (en) Compact lighting system and display device
JP2006229228A (ja) マルチチップ発光ダイオードユニット、それを採用したバックライトユニット及び液晶表示装置
JP2006252958A (ja) 照明装置、及びこれを備えた液晶表示装置
CN110456557A (zh) 背光源和显示装置
WO2015067027A1 (zh) 背光源和显示装置
CN107946434B (zh) 白光发光二极管及背光模组
JP6358895B2 (ja) 面光源装置および液晶表示装置
KR20160124124A (ko) 원격 다운 컨버터를 포함하는 광학 장치
WO2019100734A1 (zh) 一种红色荧光粉、白光发光二极管及背光模组
JP2007335280A (ja) バックライトユニット及びそれを用いた液晶表示装置
TWI580004B (zh) 平面顯示裝置及應用於其上之背光產生方法
TW200823557A (en) Backlight module with fluorescent layer and display method thereof
CN203431597U (zh) 激光背光源装置
CN105679916A (zh) 一种色温可调发光装置
TW200938910A (en) Backlight module containing a fine-tuning chromaticity function
TWM512721U (zh) 背光模組
KR100742125B1 (ko) 백 라이트 유닛
CN117784474B (zh) 一种lcd背光系统及lcd显示器
JP2014093174A (ja) 照明装置及び光学素子
TW201020646A (en) Backlight module and liquid crystal display
KR102220504B1 (ko) 발광 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14416021

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14860276

Country of ref document: EP

Kind code of ref document: A1