WO2015064664A1 - Electrically conductive substrate and method for manufacturing electrically conductive substrate - Google Patents

Electrically conductive substrate and method for manufacturing electrically conductive substrate Download PDF

Info

Publication number
WO2015064664A1
WO2015064664A1 PCT/JP2014/078817 JP2014078817W WO2015064664A1 WO 2015064664 A1 WO2015064664 A1 WO 2015064664A1 JP 2014078817 W JP2014078817 W JP 2014078817W WO 2015064664 A1 WO2015064664 A1 WO 2015064664A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive substrate
copper
blackened
nickel
Prior art date
Application number
PCT/JP2014/078817
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 宏幸
山岸 浩一
永田 純一
高塚 裕二
貞之 横林
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2015545281A priority Critical patent/JP6330818B2/en
Priority to CN201480059111.8A priority patent/CN105706182B/en
Priority to KR1020167012918A priority patent/KR102170097B1/en
Publication of WO2015064664A1 publication Critical patent/WO2015064664A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a conductive substrate and a method for manufacturing a conductive substrate.
  • Patent Document 1 a transparent conductive film for a touch panel in which an ITO (indium-tin oxide) film is formed as a transparent conductive film on a polymer film has been conventionally used.
  • ITO indium-tin oxide
  • a display with a touch panel has been increased in screen size, and in response to this, a conductive substrate such as a transparent conductive film for a touch panel is required to have a large area.
  • ITO has a high electric resistance value, there is a problem that it cannot cope with an increase in the area of the conductive substrate.
  • Patent Documents 2 and 3 the use of a metal foil such as copper instead of the ITO film has been studied.
  • copper when copper is used for the wiring layer, since copper has a metallic luster, there is a problem that the visibility of the display decreases due to reflection.
  • a conductive substrate in which a blackening layer having a color capable of suppressing light reflection on the surface of the wiring layer is studied together with a wiring layer made of a metal foil such as copper.
  • a conductive substrate having a wiring pattern it is necessary to form a desired pattern by etching the wiring layer and the blackened layer after forming the wiring layer and the blackened layer.
  • the reactivity to the liquid is different between the wiring layer and the blackened layer. That is, if the wiring layer and the blackened layer are simultaneously etched, one of the layers cannot be etched into the target shape.
  • the wiring layer etching and the blackening layer etching are performed in separate steps, there is a problem that the number of steps increases.
  • an object of the present invention is to provide a conductive substrate provided with a copper layer and a blackened layer that can be simultaneously etched.
  • a conductive substrate including a copper layer and a blackened layer that can be etched simultaneously.
  • substrate which concerns on embodiment of this invention Sectional drawing of the electroconductive board
  • Sectional drawing in the AA 'line of FIG. The wavelength dependence of the reflectance of the electroconductive board
  • the conductive substrate of this embodiment includes a transparent base material, A copper layer formed on at least one side of the transparent substrate; It can be set as the structure provided with the blackening layer (henceforth a "blackening layer" only) formed in the at least one surface side of a transparent base material containing oxygen, nitrogen, nickel, and tungsten.
  • the conductive substrate in this embodiment is a substrate having a copper layer or a blackened layer on the surface of a transparent substrate before patterning a copper layer or the like, and a wiring shape by patterning the copper layer or blackened layer. And a wiring board.
  • the transparent substrate is not particularly limited, and an insulating film that transmits visible light, a glass substrate, or the like can be preferably used.
  • a polyamide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a cycloolefin film, a polyimide film, or a resin film can be preferably used.
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PEN polyethylene naphthalate
  • polyimide polycarbonate, or the like
  • the thickness of the transparent base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate.
  • As thickness of the transparent base material of a transparent base material it can be 10 micrometers or more and 200 micrometers or less, for example.
  • the thickness of the transparent substrate is preferably 20 ⁇ m or more and 120 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the transparent substrate is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the copper layer is not particularly limited, but it is preferable not to dispose an adhesive between the copper layer and the transparent substrate or between the blackened layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on the upper surface of another member.
  • the copper layer preferably has a copper thin film layer.
  • the copper layer may have a copper thin film layer and a copper plating layer.
  • a copper thin film layer can be formed on a transparent substrate or a blackened layer by a dry plating method to form the copper thin film layer.
  • a copper layer can be formed directly on a transparent base material or a blackening layer, without passing an adhesive agent.
  • the copper thin film layer is used as a power feeding layer, and a copper plating layer is formed by a wet plating method to form a copper layer having a copper thin film layer and a copper plating layer. You can also. Since the copper layer has the copper thin film layer and the copper plating layer, the copper layer can be directly formed on the transparent substrate or the blackening layer without using an adhesive.
  • the thickness of the copper layer is not particularly limited, and when the copper layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like.
  • the thickness of the copper layer is preferably 50 nm or more, more preferably 150 nm or more so that sufficient current can be supplied.
  • the upper limit value of the thickness of the copper layer is not particularly limited, but if the copper layer becomes thick, side etching occurs because etching takes time when performing etching to form a wiring, and the resist peels off during the etching. Etc. are likely to occur.
  • the thickness of the copper layer is preferably 3 ⁇ m or less, more preferably 700 nm or less, and even more preferably 200 nm or less.
  • the copper layer is made thick according to the size of the screen to be applied and the wiring length. be able to.
  • the total of the thickness of the copper thin film layer and the thickness of the copper plating layer is preferably in the above range.
  • the copper layer Since the copper layer has a metallic luster, the copper reflects light as described above only by forming the wiring obtained by etching the copper layer on the transparent substrate. For example, when used as a conductive substrate for a touch panel, There was a problem that visibility was lowered. Therefore, a method of providing a blackened layer has been studied, but the blackened layer may not have sufficient reactivity with the etching solution, and the copper layer and the blackened layer are simultaneously etched into a desired shape. It was difficult. Therefore, the inventors of the present invention have studied, and the layer containing oxygen, nitrogen, nickel, and tungsten can be used for the blackening layer because it has a color that can suppress the reflection of light. The present inventors have found that an etching process can be performed simultaneously with the copper layer in order to exhibit sufficient reactivity.
  • the method for forming the blackened layer is not particularly limited, and the film can be formed by any method. However, since the blackening layer can be formed relatively easily, it is preferable to form the film by sputtering.
  • the blackening layer can be formed by sputtering, for example, using a nickel-tungsten alloy target and supplying oxygen and nitrogen into the chamber.
  • a nickel target and a tungsten target can be used to form a film by a sputtering method while supplying oxygen and nitrogen into the chamber.
  • the supply ratio of oxygen and nitrogen supplied into the chamber is not particularly limited, but oxygen is supplied into the chamber at a rate of 5% to 20% by volume and nitrogen is supplied at a rate of 30% to 55% by volume. However, it is preferable to form a film by a sputtering method.
  • the ratio of oxygen supply to the chamber is set to 5% by volume or more, the color of the blackened layer can be changed to a color that can sufficiently suppress the reflection of light, and functions as a blackened layer. Is preferable because it can sufficiently exhibit the above.
  • the supply ratio of oxygen into the chamber is more preferably 10% by volume or more. Further, by making the supply amount of oxygen 20% by volume or less, the reactivity of the blackened layer with respect to the etching solution can be particularly increased. When etching with the copper layer, the copper layer and the blackened layer are added. A desired pattern can be easily formed, which is preferable.
  • the supply ratio of oxygen into the chamber is more preferably 15% by volume or less.
  • the supply ratio of nitrogen during sputtering is preferably 30% by volume or more and 55% by volume or less, and more preferably 35% by volume or more and 40% by volume or less. Note that it is preferable to set the nitrogen supply ratio to 55% by volume or less because the sputtering rate of the blackened layer can be secured. Supplying nitrogen into the chamber so that the supply ratio of nitrogen is 40% by volume or less is more preferable because the sputtering rate of the blackened layer is further improved.
  • the gas supplied into the chamber is preferably an inert gas for the remainder other than oxygen and nitrogen.
  • the remainder other than oxygen and nitrogen for example, argon or helium can be supplied.
  • a nickel-tungsten alloy target can be used as a target used when performing sputtering.
  • the composition of the target is not particularly limited, but the nickel-tungsten alloy target preferably contains tungsten in a proportion of 5 wt% to 30 wt%, and contains tungsten in a proportion of 18 wt% to 30 wt%. More preferably. In these cases, the balance can be made of nickel.
  • the tungsten content in the nickel-tungsten alloy target it is preferable to set the tungsten content in the nickel-tungsten alloy target to 5 wt% or more because the magnetism of the target can be kept low. In particular, when the tungsten content is 18% by weight or more, it is more preferable because the magnetism of the target can be further reduced.
  • the tungsten content in the target of the nickel-tungsten alloy increases, the workability of the target may decrease. That is, it may be difficult to target.
  • the tungsten content is 30% by weight or less because the workability of the nickel-tungsten alloy is sufficiently high and can be easily targeted.
  • the formed blackened layer only needs to contain oxygen, nitrogen, nickel, and tungsten, and oxygen, nitrogen, nickel, and tungsten may be contained in any form.
  • nickel and tungsten form an alloy
  • a nickel-tungsten alloy containing oxygen and / or nitrogen may be contained in the blackening layer.
  • Nickel or tungsten is an oxide or nitride such as nickel oxide (NiO), nickel nitride (Ni 3 N), tungsten oxide (WO 3 , WO 2 , W 2 O 3 ), tungsten nitride (N 2 W), or the like. And the compound may be contained in the blackened layer.
  • the blackening layer may be a layer composed of only one kind of substance containing oxygen, nitrogen, nickel, and tungsten simultaneously, such as a nickel-tungsten alloy containing oxygen and nitrogen. Further, for example, it contains one or more substances selected from the above-mentioned nickel-tungsten alloy containing oxygen and / or nitrogen, nickel oxide, nickel nitride, tungsten oxide, tungsten nitride. It may be a layer.
  • the thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, and more preferably 20 nm or more. As described above, the blackening layer has a function of suppressing the reflection of light. However, when the thickness of the blackening layer is thin, the reflection of light may not be sufficiently suppressed. On the other hand, it is preferable to make the thickness of the blackened layer in the above range because reflection of light can be further suppressed.
  • the upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited.
  • the thickness of the blackened layer is preferably 70 nm or less, and more preferably 40 nm or less.
  • a contact portion with an electric member such as a wiring can be formed on the blackened layer, and the copper layer is exposed even when the blackened layer is located on the outermost surface. This is preferable because it is unnecessary.
  • the specific resistance of the blackened layer is preferably 2.00 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. More preferably, it is 00 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the specific resistance of the blackened layer has a correlation with the oxygen concentration in the atmosphere when the blackened layer is formed. The lower the oxygen concentration in the atmosphere when forming the blackened layer, the lower the specific resistance of the blackened layer, which is preferable.
  • the oxygen concentration when forming the blackened layer is preferably 15% by volume or less, more preferably 13% by volume or less, and more preferably 10% by volume. The following is more preferable.
  • the conductive substrate of this embodiment includes a transparent substrate, a copper layer, and a blackening layer containing oxygen, nitrogen, nickel, and tungsten.
  • positioning a copper layer and a blackening layer on a transparent base material is not specifically limited. Further, a plurality of copper layers and blackening layers can be formed. In order to suppress light reflection, it is preferable that a blackening layer is disposed on the surface of the copper layer where light reflection is particularly desired to be suppressed. More preferably, the copper layer has a structure sandwiched between blackening layers.
  • the blackened layer having a low specific resistance is preferably disposed on the outermost surface of the conductive substrate. This is because the blackened layer having a small specific resistance can be connected to an electric member such as a wiring, and is preferably disposed on the outermost surface of the conductive substrate so as to be easily connected.
  • FIGS. 1 and 2 show examples of cross-sectional views of the conductive substrate of this embodiment on a plane parallel to the lamination direction of the transparent base material, the copper layer, and the blackening layer.
  • the copper layer 12 and the blackening layer 13 can be laminated one layer at a time on the one surface 11a side of the transparent base material 11. .
  • substrate 10B shown in FIG.1 (b) copper layer 12A, 12B on the one surface 11a side of the transparent base material 11, and the other surface (other surface) 11b side, respectively.
  • the blackening layers 13A and 13B can be stacked one by one in that order.
  • stacks the copper layer 12 (12A, 12B) and the blackening layer 13 (13A, 13B) is not limited to the example of Fig.1 (a), (b), From the transparent base material 11 side.
  • the blackening layer 13 (13A, 13B) and the copper layer 12 (12A, 12B) can be laminated in this order.
  • the blackening layer 13 is arrange
  • the adhesiveness of the transparent base material 11 and the copper layer 12 can be improved with the blackening layer 13, it is preferable.
  • the first blackening layer 131 can improve the adhesion between the transparent base material 11 and the copper layer 12 for the same reason.
  • a configuration in which a plurality of blackening layers are provided on one surface side of the transparent substrate 11 can be employed.
  • the first blackened layer 131, the copper layer 12, and the second blackened layer 132 are formed on the one surface 11a side of the transparent substrate 11. Can be stacked in that order.
  • a configuration in which a copper layer, a first blackened layer, and a second blackened layer are laminated on both surfaces of the transparent substrate 11 can be adopted.
  • the first surface 11a side of the transparent base material 11 and the other surface (the other surface) 11b side are respectively first.
  • Blackening layers 131A and 131B, copper layers 12A and 12B, and second blackening layers 132A and 132B can be stacked in that order.
  • the transparent base material 11 serves as a symmetrical surface and the top and bottom of the transparent base material 11 are aligned.
  • stacked layer might become symmetrical was shown, it is not limited to the form which concerns.
  • the configuration on the one surface 11a side of the transparent substrate 11 is formed by laminating the copper layer 12 and the blackening layer 13 in that order, similarly to the configuration of FIG.
  • the layers laminated on the top and bottom of the transparent substrate 11 may be asymmetrical.
  • the conductive substrate of the present embodiment has been described.
  • the copper layer and the blackened layer are provided on the transparent base material. Reflection can be suppressed.
  • the degree of light reflection of the conductive substrate of the present embodiment is not particularly limited, but for example, the conductive substrate of the present embodiment preferably has a reflectance of light having a wavelength of 550 nm of 40% or less. 30% or less is more preferable, and 20% or less is particularly preferable. This is preferable when the reflectance of light having a wavelength of 550 nm is 40% or less, for example, even when used as a conductive substrate for a touch panel, since the display visibility hardly deteriorates.
  • the reflectance can be measured by irradiating the blackened layer with light. That is, measurement can be performed from the blackened layer side of the copper layer and the blackened layer included in the conductive substrate.
  • the blackened layer 13 can be irradiated with light. It can be measured from the surface side indicated by middle A.
  • the reflectance can be measured from the surface 11b side of the transparent substrate 11, which is the side on which the layer 13 is located on the outermost surface.
  • the conductive substrate can form wiring by etching the copper layer and the blackened layer, but the reflectance is arranged on the outermost surface when the transparent substrate is removed from the conductive substrate.
  • the reflectance of the blackened layer on the surface on the light incident side is shown. For this reason, if it is before an etching process or after performing an etching process, it is preferable that the measured value in the part in which the copper layer and the blackening layer remain satisfy
  • the conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel, for example, as described above.
  • the conductive substrate can be configured to have mesh wiring.
  • the conductive substrate provided with the mesh-like wiring can be obtained by etching the copper layer and the blackening layer of the conductive substrate of the present embodiment described so far.
  • a mesh-like wiring can be formed by two-layer wiring.
  • FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the copper layer and the blackened layer.
  • the conductive substrate 30 shown in FIG. 3 has a transparent base material 11, a plurality of wirings 31A parallel to the X-axis direction in the drawing, and wirings 31B parallel to the Y-axis direction.
  • FIG. 3 shows an example in which the mesh-like wiring (wiring pattern) is formed by combining the linear wirings 31A and 31B.
  • the present invention is not limited to such a configuration, and the wiring pattern is configured.
  • the wiring can have any shape.
  • the shapes of the wirings 31A and 31B constituting the mesh-like wiring pattern so as not to cause moiré (interference fringes) between the images on the display are changed to various shapes such as jagged lines (zigzag straight lines). You can also.
  • the wirings 31A and 31B are formed by etching a copper layer, and a blackening layer (not shown) is formed on the upper and / or lower surfaces of the wirings 31A and 31B.
  • the blackened layer is etched in the same shape as the wirings 31A and 31B.
  • the arrangement of the transparent substrate 11 and the wirings 31A and 31B is not particularly limited.
  • An example of the arrangement of the transparent substrate 11 and the wiring is shown in FIGS. 4A and 4B correspond to cross-sectional views taken along the line AA ′ of FIG.
  • wirings 31A and 31B may be arranged on the upper and lower surfaces of the transparent substrate 11, respectively.
  • blackening layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surfaces of the wirings 31A and 31B.
  • a pair of transparent base materials 11A and 11B are used, and wirings 31A and 31B are arranged on the upper and lower surfaces with one transparent base material 11A interposed therebetween, and one wiring 31B may be disposed between the transparent substrate 11A and the transparent substrate 11B.
  • blackened layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surfaces of the wirings 31A and 31B.
  • the arrangement of the blackened layer and the copper layer is not limited. For this reason, in any of FIGS. 4A and 4B, the arrangement of the blackening layers 32A and 32B and the wirings 31A and 31B can be reversed upside down. For example, a plurality of blackening layers can be provided.
  • the blackened layer is preferably disposed on the surface of the copper layer surface where light reflection is particularly desired to be suppressed. Therefore, in the conductive substrate shown in FIG. 4B, for example, when it is necessary to suppress the reflection of light from the lower surface side in the figure, the position of the blackened layer 32B, the position of the wiring 31B, Is preferably reversed. Further, in addition to the blackening layer 32B, a blackening layer may be further provided between the wiring 31B and the transparent substrate 11B.
  • the conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A includes, for example, copper layers 12A and 12B on both surfaces of the transparent substrate 11 as shown in FIG. 1B and FIG. , And blackened layers 13A and 13B (131A, 132A, 131B, and 132B).
  • the case where it is formed using the conductive substrate of FIG. 1B will be described as an example.
  • the copper layer 12A and the blackened layer 13A on the one surface 11a side of the transparent base material 11 are shown in FIG.
  • Etching is performed so that a plurality of linear patterns parallel to the X-axis direction are arranged at predetermined intervals.
  • the X-axis direction in FIG. 1 (b) means a direction parallel to the width direction of each layer in FIG. 1 (b).
  • a plurality of linear patterns parallel to the Y-axis direction in FIG. 1B are arranged at predetermined intervals on the copper layer 12B and the blackened layer 13B on the other surface 11b side of the transparent substrate 11. Etching is performed so that In addition, the Y-axis direction in FIG.1 (b) means the direction perpendicular
  • the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed by the above operation. Note that the etching of both surfaces of the transparent substrate 11 can be performed simultaneously. That is, the etching of the copper layers 12A and 12B and the blackening layers 13A and 13B may be performed simultaneously.
  • the conductive substrate having a mesh-like wiring shown in FIG. The case where the conductive substrate of FIG. 1A is used will be described as an example.
  • the copper layer 12 and the blackened layer 13 are parallel to the X-axis direction, respectively.
  • Etching is performed so that a plurality of linear patterns are arranged at predetermined intervals.
  • the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to.
  • the surface to be bonded when the two conductive substrates are bonded is not particularly limited.
  • the surface 11b in FIG. 1A on which the layer 12 and the like are not stacked may be bonded.
  • the blackening layer is disposed on the surface of the copper layer surface where light reflection is particularly desired to be suppressed. Therefore, in the conductive substrate shown in FIG. 4B, when it is necessary to suppress the reflection of light from the lower surface side in the figure, the position of the blackened layer 32B and the position of the wiring 31B are reversed. It is preferable to arrange in. Further, in addition to the blackening layer 32B, a blackening layer may be further provided between the wiring 31B and the transparent substrate 11B.
  • the surfaces 11b in FIG. 1A where the copper layer 12 or the like of the transparent substrate 11 is not laminated may be bonded so that the cross section has the structure shown in FIG.
  • the width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4 are not particularly limited, and are selected according to, for example, the amount of current flowing through the wiring. can do.
  • a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
  • Method for producing conductive substrate Next, a configuration example of the method for manufacturing a conductive substrate according to this embodiment will be described.
  • the manufacturing method of the conductive substrate of this embodiment is as follows: A transparent substrate preparation step of preparing a transparent substrate; A copper layer forming step of forming a copper layer on at least one surface side of the transparent substrate; It is preferable to have a blackening layer forming step of forming a blackening layer containing oxygen, nitrogen, nickel, and tungsten on at least one surface side of the transparent substrate.
  • the manufacturing method of the conductive substrate according to the present embodiment will be described.
  • the configuration other than the following will be the same as that of the above-described conductive substrate, and the description thereof will be omitted.
  • the order of stacking when the copper layer and the blackened layer are disposed on the transparent base material is not particularly limited. Further, a plurality of copper layers and blackening layers can be formed. For this reason, the order of the copper layer forming step and the blackened layer forming step and the number of times of execution are not particularly limited, and are performed at an arbitrary number of times according to the structure of the conductive substrate to be formed. be able to.
  • the step of preparing the transparent base material is a step of preparing a transparent base material made of, for example, an insulating film that transmits visible light, a glass substrate, or the like, and the specific operation is not particularly limited. For example, in order to use for each process in a latter process, it can cut
  • the copper layer preferably has a copper thin film layer. Moreover, it can also have a copper thin film layer and a copper plating layer. For this reason, a copper layer formation process can have a process of forming a copper thin film layer, for example with a dry plating method. Moreover, the copper layer forming step may include a step of forming a copper thin film layer by a dry plating method and a step of forming a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. .
  • the dry plating method used for forming the copper thin film layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be used.
  • a vacuum deposition method for example, a sputtering method, an ion plating method, or the like.
  • the dry plating method used for forming the copper thin film layer it is more preferable to use the sputtering method because the film thickness can be easily controlled.
  • a copper target is mounted on a sputtering cathode, and a base material, specifically, a transparent base material on which a transparent base material or a blackened layer is formed is set in a vacuum chamber. After evacuating the inside of the vacuum chamber, Ar gas is introduced to maintain the inside of the apparatus at about 0.13 Pa to 1.3 Pa. In this state, the substrate is transported from the unwinding roll at a speed of, for example, about 1 to 20 m / min, and power is supplied from the DC power source for sputtering connected to the cathode, and sputtering discharge is performed.
  • the copper thin film layer can be continuously formed.
  • the conditions in the step of forming the copper plating layer by the wet plating method are not particularly limited, and various conditions according to ordinary methods may be adopted.
  • a copper plating layer can be formed by supplying a base material on which a copper thin film layer is formed in a plating tank containing a copper plating solution and controlling the current density and the conveyance speed of the base material.
  • the blackening layer forming step is not particularly limited, but as described above, the blackening layer can be formed by sputtering.
  • a nickel-tungsten alloy target can be used as the target. Further, as described above, a nickel target and a tungsten target can also be used.
  • the nickel-tungsten alloy target preferably contains tungsten in a proportion of 5 wt% to 30 wt%. More preferably, the nickel-tungsten alloy target contains tungsten in a proportion of 18 wt% to 30 wt%. In this case, the remainder can be made of nickel.
  • sputtering while supplying oxygen in the chamber at a rate of 5% by volume to 20% by volume and nitrogen at a rate of 30% by volume to 55% by volume.
  • the supply ratio of oxygen into the chamber is more preferably 10% by volume to 15% by volume. Further, the supply ratio of nitrogen into the chamber is more preferably 35% by volume to 40% by volume.
  • the gas supplied into the chamber is preferably an inert gas for the remainder other than oxygen and nitrogen.
  • the remainder other than oxygen and nitrogen for example, argon or helium can be supplied.
  • the thickness of a copper layer is 50 nm or more like the above-mentioned electroconductive board
  • the upper limit value of the thickness of the copper layer is not particularly limited, but is preferably 3 ⁇ m or less, more preferably 700 nm or less, and further preferably 200 nm or less.
  • the thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, 20 nm or more. It is more preferable.
  • the upper limit value of the thickness of the blackening layer is not particularly limited, but is preferably 70 nm or less, and more preferably 40 nm or less.
  • the formed blackened layer only needs to contain oxygen, nitrogen, nickel, and tungsten, and oxygen, nitrogen, nickel, and tungsten may be contained in any form.
  • nickel and tungsten form an alloy
  • a nickel-tungsten alloy containing oxygen and / or nitrogen may be contained in the blackening layer.
  • Nickel or tungsten is an oxide or nitride such as nickel oxide (NiO), nickel nitride (Ni 3 N), tungsten oxide (WO 3 , WO 2 , W 2 O 3 ), tungsten nitride (N 2 W), or the like. And the compound may be contained in the blackened layer.
  • the blackening layer may be a layer composed of only one kind of substance containing oxygen, nitrogen, nickel, and tungsten simultaneously, such as a nickel-tungsten alloy containing oxygen and nitrogen. Further, for example, it contains one or more substances selected from the above-mentioned nickel-tungsten alloy containing oxygen and / or nitrogen, nickel oxide, nickel nitride, tungsten oxide, tungsten nitride. It may be a layer.
  • the formed blackened layer has a sufficiently small specific resistance, it is possible to form a contact portion with an electric member such as wiring on the blackened layer, and the copper layer is exposed even when the blackened layer is located on the outermost surface. This is preferable because there is no need to do this.
  • the specific resistance of the blackened layer is preferably 2.00 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. It is preferably 00 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the specific resistance of the blackened layer has a correlation with the oxygen concentration in the atmosphere when the blackened layer is formed. The lower the oxygen concentration in the atmosphere when forming the blackened layer, the lower the specific resistance of the blackened layer, which is preferable.
  • the oxygen concentration when forming the blackened layer is preferably 15% by volume or less, more preferably 13% by volume or less, and more preferably 10% by volume. More preferably, it is as follows.
  • the reflectance of light having a wavelength of 550 nm is preferably 40% or less, more preferably 30% or less, and 20%. It is particularly preferred that This is preferable when the reflectance of light having a wavelength of 550 nm is 40% or less, for example, even when used as a conductive substrate for a touch panel, since the display visibility hardly deteriorates.
  • the conductive substrate obtained by the method for manufacturing a conductive substrate described herein can be a conductive substrate provided with mesh-like wiring.
  • an etching step of forming a wiring by etching the copper layer and the blackening layer can be further included.
  • a resist having an opening corresponding to a portion to be removed by etching is formed on the outermost surface of the conductive substrate.
  • a resist can be formed on the exposed surface A of the blackening layer 13 disposed on the conductive substrate.
  • a method for forming a resist having an opening corresponding to a portion to be removed by etching is not particularly limited.
  • the resist can be formed by a photolithography method.
  • the copper layer 12 and the blackened layer 13 can be etched by supplying an etching solution from the upper surface of the resist.
  • a resist having openings of predetermined shapes on the outermost surfaces A and B of the conductive substrate.
  • the copper layer and the blackened layer formed on both surfaces of the transparent substrate 11 may be etched simultaneously.
  • the copper layer and the blackened layer formed on both sides of the transparent substrate 11 can be subjected to an etching process on one side. That is, for example, after the copper layer 12A and the blackened layer 13A are etched, the copper layer 12B and the blackened layer 13B can be etched.
  • the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer is preferably used. be able to.
  • the etching solution for example, a mixed aqueous solution of ferric chloride and hydrochloric acid can be used more preferably.
  • the contents of ferric chloride and hydrochloric acid in the etching solution are not particularly limited.
  • ferric chloride is preferably contained in a proportion of 5 wt% to 50 wt%, and preferably 10 wt%. More preferably, it is contained in a proportion of 30% by weight or less.
  • the etching solution preferably contains hydrochloric acid in a proportion of 1 wt% or more and 50 wt% or less, and more preferably contains 1 wt% or more and 20 wt% or less. The remainder can be water.
  • the etching solution can be used at room temperature, it is preferably heated to increase the reactivity. For example, it is preferably heated to 40 ° C. or more and 50 ° C. or less.
  • two conductive substrates having a copper layer and a blackened layer are bonded to one side of the transparent base material 11 shown in FIGS. 1A and 2A and meshed.
  • a step of bonding the conductive substrate can be further provided.
  • a method for bonding the two conductive substrates is not particularly limited, and the bonding can be performed using, for example, an adhesive.
  • the conductive substrate and the method for manufacturing the conductive substrate of the present embodiment have been described above. According to such a conductive substrate, since the copper layer and the blackened layer show substantially the same reactivity with the etching solution, a desired wiring can be easily formed. Moreover, the blackening layer can suppress reflection of light, and for example, when a conductive substrate for a touch panel is used, a reduction in visibility can be suppressed.
  • the measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
  • the incident angle is 5 ° and the light receiving angle is 5 °, and the wavelength is 400 nm or more and 700 nm or less.
  • the reflectance when irradiating light in the range was measured.
  • etching solution an aqueous solution containing 10% by weight of ferric chloride, 10% by weight of hydrochloric acid and the balance being water was used, and the temperature of the etching solution was room temperature (25 ° C.).
  • the conductive substrate was taken out of the etching solution, and when the copper layer and the blackened layer were completely dissolved and only the transparent substrate was formed, it was evaluated as “good”.
  • Example preparation conditions The manufacturing conditions of the conductive substrate in each experimental example are shown below. Experimental examples 1-1, 1-2, and 1-4 to 1-7 are examples, and experimental example 1-3 is a comparative example. [Experimental Example 1-1] A conductive substrate having the structure shown in FIG.
  • a transparent substrate 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was prepared.
  • a copper layer 12 was formed on the entire surface of one side of the transparent substrate 11.
  • the copper layer 12 formed a copper thin film layer by a sputtering method, and then formed a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer.
  • a copper thin film layer having a thickness of 100 nm was first formed on one surface of the transparent substrate 11 by a direct current sputtering method using a Cu target (manufactured by Sumitomo Metal Mining Co., Ltd.). Thereafter, a copper plating layer was laminated by 0.5 ⁇ m by electroplating to form a copper layer 12.
  • a blackened layer 13 was formed on the entire surface of the copper layer 12 by a direct current sputtering method.
  • the blackening layer 13 was formed using a sputtering apparatus (model: CFS-4ES-2 manufactured by Shibaura Mechatronics Co., Ltd.).
  • a nickel-tungsten alloy target containing 19% by weight of tungsten and the balance being nickel was used as the target. Nitrogen, oxygen, and argon were supplied into the chamber while supplying a total of 15 SCCM. Each gas was supplied to the chamber so that 45% by volume of nitrogen, 5% by volume of oxygen, and the balance were argon, and sputtering was performed. The ultimate vacuum in the chamber before sputtering was 1 ⁇ 10 ⁇ 3 Pa.
  • the copper layer 12 of the transparent base material 11 on which the copper layer 12 was formed was placed so as to face the target, and the distance between the copper layer 12 and the target was 85 mm, thereby forming the copper layer 12.
  • Sputtering was performed while rotating the transparent substrate 11 at 15 rpm.
  • a current of 0.6 A and a voltage of 330 V power value of about 200 W were applied to the target by a DC power source.
  • the blackened layer 13 having a thickness of 30 nm was formed by the sputtering method.
  • the conductive substrate obtained by the above steps was subjected to reflectance measurement and dissolution test.
  • the reflectance measurement results are shown in FIG. 5 and Table 1, and the dissolution test results are shown in Table 1.
  • Example 1-2 The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied in the chamber so that nitrogen was 40% by volume, oxygen was 10% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • Example 1-3 The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that oxygen was 25% by volume and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • Example 1-4 The blackening layer 13 was formed in the same manner as in Experimental Example 1-1, except that each gas was supplied so that nitrogen was 40% by volume, oxygen was 3% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • the blackening layer 13 was formed in the same manner as in Experimental Example 1-1, except that each gas was supplied so that nitrogen was 40% by volume, oxygen was 25% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • Example 1-6 The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that 30% by volume of nitrogen, 10% by volume of oxygen, and the balance became argon in the chamber. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • Example 1-7 The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that the volume of nitrogen was 55% by volume, oxygen was 10% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
  • the experimental examples 1-1, 1-2, and 1-4 to 1-7 which are examples, are evaluated as “good” or “small” in the dissolution test.
  • the layer and the blackened layer could be dissolved simultaneously.
  • Experimental Example 1-5 has the same oxygen supply amount as Experimental Example 1-3, which is a comparative example, but it was confirmed that ⁇ was obtained in the dissolution test evaluation. This is presumably because the reactivity of the blackened layer to the etching solution was increased by simultaneously supplying nitrogen when forming the blackened layer.
  • the specific resistance was measured using a four-point probe method.
  • four needle-shaped electrodes are arranged on the same line on the surface of the sample to be measured, a constant current is passed between the two outer probes, and the potential difference between the two inner probes is measured.
  • This is a method of measuring resistance. Measurement was performed using a four-point probe measuring instrument (Mitsubishi Chemical Co., Ltd. model: Loresta IP).
  • a specific resistance measurement sample in which only a blackened layer was formed on a transparent substrate under the same conditions was subjected to X-ray diffraction (XRD) measurement, and the obtained X-ray diffraction pattern was used.
  • XRD X-ray diffraction
  • the blackening layer is formed on a substrate made of polyethylene terephthalate resin (PET), which is a transparent substrate.
  • PET polyethylene terephthalate resin
  • the blackened layer of the sample used for the measurement has a thin film thickness of 500 nm, when X-ray diffraction measurement is performed, the diffraction pattern not only from the blackened layer but also from the transparent substrate becomes large and is included in the blackened layer It may be difficult to identify the phase of the material.
  • the pattern can be separated using the property of the X-ray diffraction pattern.
  • PET used as a transparent substrate has different orientation in the stretching direction, light and shade can be formed in the same Debye ring. Specifically, when a two-dimensional X-ray diffraction pattern of PET, which is a transparent substrate, was measured, it was confirmed that the diffraction intensity of PET increased in the vertical direction of the film.
  • the X-ray diffraction measurement was carried out by tilting to
  • the measurement was performed using an X-ray diffractometer (Brucker model: D8 DISCOVER ⁇ -HR). Phase identification was performed from the obtained X-ray diffraction pattern, and the main phase contained in the blackened layer was specified.
  • (4) EDS analysis The EDS analysis was performed under the same conditions except that the conductive substrate production conditions shown in each experimental example, the thickness of the blackened layer was 500 nm, and the copper layer was not formed.
  • SEM-EDS apparatus SEM: manufactured by JEOL Ltd. Model: JSM-7001F, EDS: manufactured by Thermo Fisher Scientific Co., Ltd. Model: Detection
  • Example preparation conditions The manufacturing conditions of the conductive substrate in each experimental example are shown below.
  • Experimental examples 2-3 to 2-7 are examples, and experimental examples 2-1 and 2-2 are comparative examples.
  • [Experimental Example 2-1] A conductive substrate having the structure shown in FIG.
  • a transparent substrate 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was prepared.
  • a copper layer 12 was formed on the entire surface of one side of the transparent substrate 11.
  • the copper layer 12 formed a copper thin film layer by a sputtering method, and then formed a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer.
  • a copper thin film layer having a thickness of 100 nm was first formed on one surface of the transparent substrate 11 by a direct current sputtering method using a Cu target (manufactured by Sumitomo Metal Mining Co., Ltd.). Thereafter, a copper plating layer was laminated by 0.5 ⁇ m by electroplating to form a copper layer 12.
  • a blackened layer 13 was formed on the entire surface of the copper layer 12 by a direct current sputtering method.
  • the blackening layer 13 was formed using a sputtering apparatus (model: CFS-4ES-2 manufactured by Shibaura Mechatronics Co., Ltd.).
  • a nickel-tungsten alloy target containing 19% by weight of tungsten and the balance being nickel was used as the target.
  • Sputtering was performed while supplying argon into the chamber so as to have 15 SCCM.
  • the ultimate vacuum in the chamber before sputtering was 1 ⁇ 10 ⁇ 3 Pa.
  • the copper layer 12 of the transparent base material 11 on which the copper layer 12 was formed was placed so as to face the target, and the distance between the copper layer 12 and the target was 85 mm, thereby forming the copper layer 12.
  • Sputtering was performed while rotating the transparent substrate 11 at 15 rpm.
  • a current of 0.6 A and a voltage of 330 V power value of about 200 W were applied to the target by a DC power source.
  • the blackened layer 13 having a thickness of 30 nm was formed by the sputtering method.
  • the layer formed is described as the blackened layer 13, but the layer formed as described later is a layer having Ni as a main phase and has a metallic luster.
  • the blackening layer 13 does not function.
  • a transparent base material 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was used. Then, the blackened layer 13 was formed on the entire surface of one surface of the transparent substrate 11 so as to have a film thickness of 500 nm, and the sample was prepared in the same manner as described above except that the copper layer 12 was not formed. It produced and used for evaluation.
  • PET polyethylene terephthalate resin
  • Table 2 shows the measurement results of the specific resistance and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Example 2-2 When the blackening layer 13 is formed, nitrogen and argon are supplied into the chamber to a total of 15 SCCM, and each gas is supplied to the chamber so that 50% by volume of nitrogen and the remainder are argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that sputtering was performed. Moreover, the produced sample was evaluated.
  • the layer formed here is described as the blackened layer 13 for convenience of explanation, but the layer formed as the blackened layer 13 here does not contain oxygen and therefore reflects light. It was not a color that could be suppressed, and did not function as a blackened layer.
  • Table 2 shows the results of the dissolution test evaluation results, the specific resistance measurement results, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Example 2-3 When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM. The chamber is 45% by volume nitrogen, 5% by volume oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
  • Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Example 2-4 When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM.
  • the chamber is 30% by volume of nitrogen, 5% by volume of oxygen, and the balance is argon.
  • a conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
  • Table 2 shows the results of the dissolution test evaluation results, the specific resistance measurement results, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • Example 2-7 When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount is 15 SCCM.
  • the chamber is 10% by volume of nitrogen, 40% by volume of oxygen, and the balance is argon.
  • a conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
  • Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
  • the blackened layer of the measurement sample such as the specific resistance
  • the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
  • the blackened layer 13 did not function as a blackened layer because it did not contain oxygen.
  • the blackened layer does not contain nitrogen
  • metal Ni is the main phase of the blackened layer, has a metallic luster, and suppresses reflection of light. Did not have anything.
  • the layer formed as the blackened layer did not contain oxygen, it did not have a color capable of suppressing light reflection and did not function as a blackened layer.
  • the term blackened layer is used for convenience of explanation, but it did not function as a blackened layer as described above.
  • the film forming conditions for the blackened layer are selected such that the oxygen concentration when forming the blackened layer is increased.
  • the main phase of the blackened layer identified by X-ray diffraction measurement for these experimental examples is that the metal Ni is black in Experimental Example 2-1, in which nitrogen and oxygen were not supplied when the blackened layer was formed. It is the main phase of the chemical layer.
  • Ni 3 N was observed as the main phase of the blackening layer, and the supply amount of oxygen during the blackening layer formation was further increased.
  • Experimental Examples 2-5 to 2-7 it was confirmed that the main phase of the blackened layer was changed to NiO.
  • the specific resistance of the blackened layer is 2.00 ⁇ 10 ⁇ 2 in the examples in which the oxygen concentration during film formation of the blackened layer is 15% by volume or less. It was confirmed that the resistance was as low as ⁇ ⁇ cm or less.

Abstract

[Solution] This invention provides an electrically conductive substrate provided with the following: a transparent base material, a copper layer or layers formed on at least one surface of said transparent base material, and a blackening layer or layers that is/are formed on at least one surface of the transparent base material and contain(s) oxygen, nitrogen, nickel, and tungsten.

Description

導電性基板、導電性基板の製造方法Conductive substrate, method for manufacturing conductive substrate
 本発明は、導電性基板、導電性基板の製造方法に関する。 The present invention relates to a conductive substrate and a method for manufacturing a conductive substrate.
 特許文献1に開示されているように、高分子フィルム上に透明導電膜としてITO(酸化インジウム-スズ)膜を形成したタッチパネル用の透明導電性フィルムが従来から用いられている。 As disclosed in Patent Document 1, a transparent conductive film for a touch panel in which an ITO (indium-tin oxide) film is formed as a transparent conductive film on a polymer film has been conventionally used.
 ところで、近年タッチパネルを備えたディスプレイの大画面化が進んでおり、これに対応してタッチパネル用の透明導電性フィルム等の導電性基板についても大面積化が求められている。しかし、ITOは電気抵抗値が高いため、導電性基板の大面積化に対応できないという問題があった。 By the way, in recent years, a display with a touch panel has been increased in screen size, and in response to this, a conductive substrate such as a transparent conductive film for a touch panel is required to have a large area. However, since ITO has a high electric resistance value, there is a problem that it cannot cope with an increase in the area of the conductive substrate.
 このため、例えば特許文献2、3に開示されているようにITO膜にかえて銅等の金属箔を用いることが検討されている。しかし、例えば配線層に銅を用いた場合、銅は金属光沢を有しているため、反射によりディスプレイの視認性が低下するという問題がある。 For this reason, for example, as disclosed in Patent Documents 2 and 3, the use of a metal foil such as copper instead of the ITO film has been studied. However, for example, when copper is used for the wiring layer, since copper has a metallic luster, there is a problem that the visibility of the display decreases due to reflection.
 そこで、銅等の金属箔により構成される配線層と共に、配線層表面での光の反射を抑制できる色を有する黒化層を形成した導電性基板が検討されている。しかしながら、配線パターンを有する導電性基板とするためには、配線層と黒化層とを形成した後に、配線層と黒化層とをエッチングして所望のパターンを形成する必要があるが、エッチング液に対する反応性が配線層と黒化層とで異なるという問題があった。すなわち、配線層と黒化層とを同時にエッチングしようとすると、いずれかの層が目的の形状にエッチングできないという問題であった。また、配線層のエッチングと黒化層のエッチングとを別の工程で実施する場合、工程数が増加するという問題があった。 Therefore, a conductive substrate in which a blackening layer having a color capable of suppressing light reflection on the surface of the wiring layer is studied together with a wiring layer made of a metal foil such as copper. However, in order to obtain a conductive substrate having a wiring pattern, it is necessary to form a desired pattern by etching the wiring layer and the blackened layer after forming the wiring layer and the blackened layer. There is a problem that the reactivity to the liquid is different between the wiring layer and the blackened layer. That is, if the wiring layer and the blackened layer are simultaneously etched, one of the layers cannot be etched into the target shape. In addition, when the wiring layer etching and the blackening layer etching are performed in separate steps, there is a problem that the number of steps increases.
日本国特開2003-151358号公報Japanese Unexamined Patent Publication No. 2003-151358 日本国特開2011-018194号公報Japanese Unexamined Patent Publication No. 2011-018194 日本国特開2013-069261号公報Japanese Unexamined Patent Publication No. 2013-0669261
 上記従来技術の問題に鑑み、本発明は同時にエッチング処理を行うことができる銅層と、黒化層と、を備えた導電性基板を提供することを目的とする。 In view of the above-described problems of the prior art, an object of the present invention is to provide a conductive substrate provided with a copper layer and a blackened layer that can be simultaneously etched.
 上記課題を解決するため本発明は、
 透明基材と、
 前記透明基材の少なくとも一方の面側に形成された銅層と、
 前記透明基材の少なくとも一方の面側に形成され、酸素、窒素、ニッケル、及びタングステンを含有する黒化層と、を備えた導電性基板を提供する。
In order to solve the above problems, the present invention
A transparent substrate;
A copper layer formed on at least one surface of the transparent substrate;
A conductive substrate provided with a blackening layer formed on at least one surface side of the transparent base material and containing oxygen, nitrogen, nickel, and tungsten is provided.
 本発明によれば、同時にエッチング処理を行うことができる銅層と、黒化層と、を備えた導電性基板を提供することができる。 According to the present invention, it is possible to provide a conductive substrate including a copper layer and a blackened layer that can be etched simultaneously.
本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係る導電性基板の断面図。Sectional drawing of the electroconductive board | substrate which concerns on embodiment of this invention. 本発明の実施形態に係るメッシュ状の配線を備えた導電性基板の上面図。The top view of the electroconductive board | substrate provided with the mesh-shaped wiring which concerns on embodiment of this invention. 図3のA-A´線における断面図。Sectional drawing in the AA 'line of FIG. 実験例1に係る導電性基板の反射率の波長依存性。The wavelength dependence of the reflectance of the electroconductive board | substrate which concerns on Experimental example 1. FIG.
 以下、本発明の導電性基板、および、導電性基板の製造方法の一実施形態について説明する。
(導電性基板)
 本実施形態の導電性基板は、透明基材と、
 透明基材の少なくとも一方の面側に形成された銅層と、
 透明基材の少なくとも一方の面側に形成され、酸素、窒素、ニッケル、及びタングステンを含有する黒化層(以下、単に「黒化層」とも記載する)を備えた構成とすることができる。
Hereinafter, an embodiment of a conductive substrate and a method for manufacturing the conductive substrate of the present invention will be described.
(Conductive substrate)
The conductive substrate of this embodiment includes a transparent base material,
A copper layer formed on at least one side of the transparent substrate;
It can be set as the structure provided with the blackening layer (henceforth a "blackening layer" only) formed in the at least one surface side of a transparent base material containing oxygen, nitrogen, nickel, and tungsten.
 なお、本実施形態における導電性基板とは、銅層等をパターニングする前の透明基材の表面に銅層や黒化層を有する基板と、銅層や黒化層をパターニングして配線の形状にした基板、すなわち、配線基板とを含む。 The conductive substrate in this embodiment is a substrate having a copper layer or a blackened layer on the surface of a transparent substrate before patterning a copper layer or the like, and a wiring shape by patterning the copper layer or blackened layer. And a wiring board.
 ここでまず、本実施形態の導電性基板に含まれる各部材について以下に説明する。 Here, first, each member included in the conductive substrate of the present embodiment will be described below.
 透明基材としては特に限定されるものではなく、可視光を透過する絶縁体フィルムや、ガラス基板等を好ましく用いることができる。 The transparent substrate is not particularly limited, and an insulating film that transmits visible light, a glass substrate, or the like can be preferably used.
 可視光を透過する絶縁体フィルムとしては例えば、ポリアミド系フィルム、ポリエチレンテレフタレート系フィルム、ポリエチレンナフタレート系フィルム、シクロオレフィン系フィルム、ポリイミド系フィルム等の樹脂フィルム等を好ましく用いることができる。
 特に可視光を透過する樹脂基板の材料としてPET(ポリエチレンテレフタレート)、COP(シクロオレフィンポリマー)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネート等を好ましく用いることができる。
As the insulator film that transmits visible light, for example, a polyamide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a cycloolefin film, a polyimide film, or a resin film can be preferably used.
In particular, PET (polyethylene terephthalate), COP (cycloolefin polymer), PEN (polyethylene naphthalate), polyimide, polycarbonate, or the like can be preferably used as a material for a resin substrate that transmits visible light.
 透明基材の厚さについては特に限定されず、導電性基板とした場合に要求される強度や静電容量、光の透過率等に応じて任意に選択することができる。透明基材の透明基材の厚さとしては、例えば10μm以上200μm以下とすることができる。特にタッチパネルの用途に用いる場合、透明基材の厚さは20μm以上120μm以下とすることが好ましく、20μm以上100μm以下とすることがより好ましい。タッチパネルの用途に用いる場合で、例えば特にディスプレイ全体の厚さを薄くすることが求められる用途においては、透明基材の厚さは20μm以上50μm以下であることが好ましい。 The thickness of the transparent base material is not particularly limited, and can be arbitrarily selected according to the strength, capacitance, light transmittance, and the like required for a conductive substrate. As thickness of the transparent base material of a transparent base material, it can be 10 micrometers or more and 200 micrometers or less, for example. In particular, when used for touch panel applications, the thickness of the transparent substrate is preferably 20 μm or more and 120 μm or less, and more preferably 20 μm or more and 100 μm or less. In the case of use for touch panel applications, for example, particularly in applications where it is required to reduce the thickness of the entire display, the thickness of the transparent substrate is preferably 20 μm or more and 50 μm or less.
 次に銅層について説明する。 Next, the copper layer will be described.
 銅層についても特に限定されないが、光の透過率を低減させないため、銅層と透明基材との間、または、黒化層との間に接着剤を配置しないことが好ましい。すなわち銅層は、他の部材の上面に直接形成されていることが好ましい。 The copper layer is not particularly limited, but it is preferable not to dispose an adhesive between the copper layer and the transparent substrate or between the blackened layer in order not to reduce the light transmittance. That is, the copper layer is preferably formed directly on the upper surface of another member.
 他の部材の上面に銅層を直接形成するため、銅層は銅薄膜層を有することが好ましい。また、銅層は銅薄膜層と銅めっき層とを有していてもよい。 In order to directly form a copper layer on the upper surface of another member, the copper layer preferably has a copper thin film layer. Moreover, the copper layer may have a copper thin film layer and a copper plating layer.
 例えば透明基材または黒化層上に、乾式めっき法により銅薄膜層を形成し該銅薄膜層を銅層とすることができる。これにより、透明基材または黒化層上に接着剤を介さずに直接銅層を形成できる。 For example, a copper thin film layer can be formed on a transparent substrate or a blackened layer by a dry plating method to form the copper thin film layer. Thereby, a copper layer can be formed directly on a transparent base material or a blackening layer, without passing an adhesive agent.
 また、銅層の膜厚が厚い場合には、該銅薄膜層を給電層として、湿式めっき法により銅めっき層を形成することにより、銅薄膜層と銅めっき層とを有する銅層とすることもできる。銅層が銅薄膜層と銅めっき層とを有することにより、この場合も透明基材または黒化層上に接着剤を介さずに直接銅層を形成できる。 When the copper layer is thick, the copper thin film layer is used as a power feeding layer, and a copper plating layer is formed by a wet plating method to form a copper layer having a copper thin film layer and a copper plating layer. You can also. Since the copper layer has the copper thin film layer and the copper plating layer, the copper layer can be directly formed on the transparent substrate or the blackening layer without using an adhesive.
 銅層の厚さは特に限定されるものではなく、銅層を配線として用いた場合に、該配線に供給する電流の大きさや配線幅等に応じて任意に選択することができる。特に十分に電流を供給できるように銅層は厚さが50nm以上であることが好ましく、150nm以上とすることがより好ましい。銅層の厚さの上限値は特に限定されないが、銅層が厚くなると、配線を形成するためにエッチングを行う際にエッチングに時間を要するためサイドエッチが生じ、エッチングの途中でレジストが剥離する等の問題を生じ易くなる。このため、銅層の厚さは3μm以下であることが好ましく、700nm以下であることがより好ましく、200nm以下であることがさらに好ましい。なお、例えば大画面のタッチバネル等配線の長さが長くなる用途においては、配線の抵抗値を十分に低くすることが好ましいため、適用する画面のサイズ、配線長さに応じて銅層を厚くすることができる。 The thickness of the copper layer is not particularly limited, and when the copper layer is used as a wiring, it can be arbitrarily selected according to the magnitude of the current supplied to the wiring, the wiring width, and the like. In particular, the thickness of the copper layer is preferably 50 nm or more, more preferably 150 nm or more so that sufficient current can be supplied. The upper limit value of the thickness of the copper layer is not particularly limited, but if the copper layer becomes thick, side etching occurs because etching takes time when performing etching to form a wiring, and the resist peels off during the etching. Etc. are likely to occur. For this reason, the thickness of the copper layer is preferably 3 μm or less, more preferably 700 nm or less, and even more preferably 200 nm or less. For example, in applications where the length of the wiring is long, such as a large screen touch panel, it is preferable to sufficiently reduce the resistance value of the wiring, so that the copper layer is made thick according to the size of the screen to be applied and the wiring length. be able to.
 銅層が上述のように銅薄膜層と、銅めっき層を有する場合には、銅薄膜層の厚さと、銅めっき層の厚さとの合計が上記範囲であることが好ましい。 When the copper layer has a copper thin film layer and a copper plating layer as described above, the total of the thickness of the copper thin film layer and the thickness of the copper plating layer is preferably in the above range.
 次に、酸素、窒素、ニッケル、及びタングステンを含有する黒化層について説明する。 Next, the blackening layer containing oxygen, nitrogen, nickel, and tungsten will be described.
 銅層は金属光沢を有するため、透明基材上に銅層をエッチングした配線を形成したのみでは上述のように銅が光を反射し、例えばタッチパネル用の導電性基板として用いた場合、ディスプレイの視認性が低下するという問題があった。そこで、黒化層を設ける方法が検討されてきたが、黒化層がエッチング液に対する反応性を十分に有していない場合があり、銅層と黒化層とを同時に所望の形状にエッチングすることは困難であった。そこで本発明の発明者らが検討を行ったところ、酸素、窒素、ニッケル、及びタングステンを含有する層は光の反射を抑制できる色を有するため黒化層に使用でき、さらに、エッチング液に対して十分な反応性を示すため、銅層と同時にエッチング処理を行えることを見出したものである。 Since the copper layer has a metallic luster, the copper reflects light as described above only by forming the wiring obtained by etching the copper layer on the transparent substrate. For example, when used as a conductive substrate for a touch panel, There was a problem that visibility was lowered. Therefore, a method of providing a blackened layer has been studied, but the blackened layer may not have sufficient reactivity with the etching solution, and the copper layer and the blackened layer are simultaneously etched into a desired shape. It was difficult. Therefore, the inventors of the present invention have studied, and the layer containing oxygen, nitrogen, nickel, and tungsten can be used for the blackening layer because it has a color that can suppress the reflection of light. The present inventors have found that an etching process can be performed simultaneously with the copper layer in order to exhibit sufficient reactivity.
 黒化層の成膜方法は特に限定されるものではなく、任意の方法により成膜することができる。ただし、比較的容易に黒化層を成膜できることから、スパッタリング法により成膜することが好ましい。 The method for forming the blackened layer is not particularly limited, and the film can be formed by any method. However, since the blackening layer can be formed relatively easily, it is preferable to form the film by sputtering.
 黒化層は例えば、ニッケル-タングステン合金のターゲットを用い、チャンバー内に酸素と窒素を供給しながらスパッタリング法により成膜することができる。なお、ニッケルのターゲットと、タングステンのターゲットと、を用い、チャンバー内に酸素と窒素とを供給しながらスパッタリング法により成膜することもできる。チャンバー内に供給する酸素と窒素の供給比率は特に限定されるものではないが、チャンバー内に酸素を5体積%以上20体積%以下、窒素を30体積%以上55体積%以下の割合で供給しながら、スパッタリング法により成膜することが好ましい。 The blackening layer can be formed by sputtering, for example, using a nickel-tungsten alloy target and supplying oxygen and nitrogen into the chamber. Note that a nickel target and a tungsten target can be used to form a film by a sputtering method while supplying oxygen and nitrogen into the chamber. The supply ratio of oxygen and nitrogen supplied into the chamber is not particularly limited, but oxygen is supplied into the chamber at a rate of 5% to 20% by volume and nitrogen is supplied at a rate of 30% to 55% by volume. However, it is preferable to form a film by a sputtering method.
 上述のようにチャンバー内への酸素の供給の割合を5体積%以上とすることにより、黒化層の色を光の反射を十分に抑制できる色にすることができ、黒化層としての機能を十分に発揮できるため好ましい。チャンバー内への酸素の供給割合は10体積%以上とすることがより好ましい。また、酸素の供給量を20体積%以下とすることにより、黒化層のエッチング液に対する反応性を特に高めることができ、銅層と共にエッチングを行う際、銅層と、黒化層と、を容易に所望のパターンとすることができ好ましい。チャンバー内への酸素の供給割合は15体積%以下とすることがより好ましい。 As described above, by setting the ratio of oxygen supply to the chamber to 5% by volume or more, the color of the blackened layer can be changed to a color that can sufficiently suppress the reflection of light, and functions as a blackened layer. Is preferable because it can sufficiently exhibit the above. The supply ratio of oxygen into the chamber is more preferably 10% by volume or more. Further, by making the supply amount of oxygen 20% by volume or less, the reactivity of the blackened layer with respect to the etching solution can be particularly increased. When etching with the copper layer, the copper layer and the blackened layer are added. A desired pattern can be easily formed, which is preferable. The supply ratio of oxygen into the chamber is more preferably 15% by volume or less.
 窒素については、黒化層を成膜する際にその雰囲気中に添加することによりエッチングし易くなるが、添加量が多くなりすぎると光の反射を十分に抑制できなくなり、黒化層としての性能が低下する恐れがある。このため、スパッタリングの際の窒素の供給割合は30体積%以上55体積%以下とすることが好ましく、35体積%以上40体積%以下とすることがより好ましい。なお、窒素の供給割合を55体積%以下とすることにより、黒化層のスパッタ速度を確保できるため好ましい。チャンバー内へ窒素の供給割合が40体積%以下になるように供給した場合、さらに、黒化層のスパッタ速度が向上するため、より好ましい。 Nitrogen can be easily etched by adding it to the atmosphere when forming the blackened layer, but if the amount added is too large, the reflection of light cannot be sufficiently suppressed, and the performance as a blackened layer May decrease. For this reason, the supply ratio of nitrogen during sputtering is preferably 30% by volume or more and 55% by volume or less, and more preferably 35% by volume or more and 40% by volume or less. Note that it is preferable to set the nitrogen supply ratio to 55% by volume or less because the sputtering rate of the blackened layer can be secured. Supplying nitrogen into the chamber so that the supply ratio of nitrogen is 40% by volume or less is more preferable because the sputtering rate of the blackened layer is further improved.
 なお、スパッタリングを行う際、チャンバー内に供給するガスは、酸素と窒素以外の残部については不活性ガスとすることが好ましい。酸素と窒素以外の残部については例えばアルゴンまたはヘリウムを供給することができる。 In addition, when performing sputtering, the gas supplied into the chamber is preferably an inert gas for the remainder other than oxygen and nitrogen. For the remainder other than oxygen and nitrogen, for example, argon or helium can be supplied.
 また、スパッタリングを行う際用いるターゲットとして、上述のように例えばニッケル-タングステン合金のターゲットを用いることができる。ターゲットの組成は特に限定されないが、ニッケル-タングステン合金のターゲットは、タングステンを5重量%以上30重量%以下の割合で含有することが好ましく、タングステンを18重量%以上30重量%以下の割合で含有することがより好ましい。これらの場合、残部はニッケルにより構成することができる。 Also, as described above, for example, a nickel-tungsten alloy target can be used as a target used when performing sputtering. The composition of the target is not particularly limited, but the nickel-tungsten alloy target preferably contains tungsten in a proportion of 5 wt% to 30 wt%, and contains tungsten in a proportion of 18 wt% to 30 wt%. More preferably. In these cases, the balance can be made of nickel.
 ニッケル-タングステン合金のターゲット中のタングステン含有量を5重量%以上とすることにより、ターゲットの磁性を低く抑えることができるため好ましい。特にタングステン含有量を18重量%以上とした場合ターゲットの磁性をより低くできるためより好ましい。 It is preferable to set the tungsten content in the nickel-tungsten alloy target to 5 wt% or more because the magnetism of the target can be kept low. In particular, when the tungsten content is 18% by weight or more, it is more preferable because the magnetism of the target can be further reduced.
 また、ニッケル-タングステン合金のターゲット中のタングステン含有量は増加すると、該ターゲットの加工性が低下する場合がある。すなわち、ターゲットとすることが困難になる場合がある。しかし、タングステン含有量が30重量%以下の場合、ニッケル-タングステン合金の加工性は十分に高く、容易にターゲットとすることができるため好ましい。 In addition, when the tungsten content in the target of the nickel-tungsten alloy increases, the workability of the target may decrease. That is, it may be difficult to target. However, it is preferable that the tungsten content is 30% by weight or less because the workability of the nickel-tungsten alloy is sufficiently high and can be easily targeted.
 成膜した黒化層中には酸素、窒素、ニッケル、及びタングステンが含有されていればよく、酸素、窒素、ニッケル、及びタングステンはどのような形態で含まれていてもよい。例えばニッケルとタングステンとが合金を形成し、酸素および/または窒素を含有するニッケル-タングステン合金が黒化層に含有されていてもよい。また、ニッケルまたはタングステンが例えば酸化ニッケル(NiO)や窒化ニッケル(NiN)、酸化タングステン(WO、WO、W)や窒化タングステン(NW)等の酸化物または窒化物を生成し、該化合物が黒化層に含まれていてもよい。 The formed blackened layer only needs to contain oxygen, nitrogen, nickel, and tungsten, and oxygen, nitrogen, nickel, and tungsten may be contained in any form. For example, nickel and tungsten form an alloy, and a nickel-tungsten alloy containing oxygen and / or nitrogen may be contained in the blackening layer. Nickel or tungsten is an oxide or nitride such as nickel oxide (NiO), nickel nitride (Ni 3 N), tungsten oxide (WO 3 , WO 2 , W 2 O 3 ), tungsten nitride (N 2 W), or the like. And the compound may be contained in the blackened layer.
 なお、黒化層は例えば酸素および窒素を含有するニッケル-タングステン合金のように、酸素、窒素、ニッケル、及びタングステンを同時に含有する1種類の物質のみで構成される層であってもよい。また、例えば上述した酸素および/または窒素を含有するニッケル-タングステン合金や、ニッケルの酸化物、ニッケルの窒化物、タングステンの酸化物、タングステンの窒化物から選択される1種類以上の物質を含有する層であってもよい。 The blackening layer may be a layer composed of only one kind of substance containing oxygen, nitrogen, nickel, and tungsten simultaneously, such as a nickel-tungsten alloy containing oxygen and nitrogen. Further, for example, it contains one or more substances selected from the above-mentioned nickel-tungsten alloy containing oxygen and / or nitrogen, nickel oxide, nickel nitride, tungsten oxide, tungsten nitride. It may be a layer.
 黒化層の厚さは特に限定されるものではないが、例えば15nm以上であることが好ましく、20nm以上とすることがより好ましい。黒化層は上述のように、光の反射を抑制する機能を有するが、黒化層の厚さが薄い場合には、光の反射を十分に抑制することができない場合がある。これに対して、黒化層の厚さを上記範囲とすることにより、光の反射をより抑制できるため好ましい。 The thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, and more preferably 20 nm or more. As described above, the blackening layer has a function of suppressing the reflection of light. However, when the thickness of the blackening layer is thin, the reflection of light may not be sufficiently suppressed. On the other hand, it is preferable to make the thickness of the blackened layer in the above range because reflection of light can be further suppressed.
 黒化層の厚さの上限値は特に限定されるものではないが、必要以上に厚くしても成膜に要する時間や、配線を形成する際のエッチングに要する時間が長くなり、コストの上昇を招くことになる。このため、黒化層の厚さは70nm以下とすることが好ましく、40nm以下とすることがより好ましい。 The upper limit of the thickness of the blackening layer is not particularly limited, but even if it is thicker than necessary, the time required for film formation and the time required for etching when forming the wiring are increased, resulting in an increase in cost. Will be invited. For this reason, the thickness of the blackened layer is preferably 70 nm or less, and more preferably 40 nm or less.
 また、黒化層は比抵抗が十分に小さい場合、黒化層に配線等の電気部材とのコンタクト部を形成することができ、黒化層が最表面に位置する場合でも銅層を露出する必要がなくなるため好ましい。 Further, when the specific resistance of the blackened layer is sufficiently small, a contact portion with an electric member such as a wiring can be formed on the blackened layer, and the copper layer is exposed even when the blackened layer is located on the outermost surface. This is preferable because it is unnecessary.
 そして、黒化層に配線等の電気部材とのコンタクト部を形成するためには、黒化層の比抵抗としては、2.00×10-2Ω・cm以下であることが好ましく、5.00×10-3Ω・cm以下であることがより好ましい。本発明の発明者らの検討によると、黒化層の比抵抗は黒化層を成膜する際の雰囲気中の酸素濃度と相関を有している。そして、黒化層を成膜する際の雰囲気中の酸素濃度が低いほど黒化層の比抵抗は低くなり好ましい。特に黒化層の比抵抗を十分に低くする場合、黒化層を成膜する際の酸素濃度は15体積%以下であることが好ましく、13体積%以下であることがより好ましく、10体積%以下であることがより好ましい。 In order to form a contact portion with an electric member such as a wiring in the blackened layer, the specific resistance of the blackened layer is preferably 2.00 × 10 −2 Ω · cm or less. More preferably, it is 00 × 10 −3 Ω · cm or less. According to the study of the inventors of the present invention, the specific resistance of the blackened layer has a correlation with the oxygen concentration in the atmosphere when the blackened layer is formed. The lower the oxygen concentration in the atmosphere when forming the blackened layer, the lower the specific resistance of the blackened layer, which is preferable. In particular, when the specific resistance of the blackened layer is sufficiently low, the oxygen concentration when forming the blackened layer is preferably 15% by volume or less, more preferably 13% by volume or less, and more preferably 10% by volume. The following is more preferable.
 次に、本実施形態の導電性基板の構成例について説明する。 Next, a configuration example of the conductive substrate of this embodiment will be described.
 上述のように、本実施形態の導電性基板は透明基材と、銅層と、酸素、窒素、ニッケル、及びタングステンを含有する黒化層と、を備えている。この際、銅層と、黒化層と、を透明基材上に配置する際の積層の順番は特に限定されるものではない。また、銅層と、黒化層と、はそれぞれ複数層形成することもできる。なお、光の反射の抑制のため、銅層の表面のうち光の反射を特に抑制したい面に黒化層が配置されていることが好ましい。また、銅層は黒化層に挟まれた構造を有していることがより好ましい。 As described above, the conductive substrate of this embodiment includes a transparent substrate, a copper layer, and a blackening layer containing oxygen, nitrogen, nickel, and tungsten. Under the present circumstances, the order of lamination | stacking at the time of arrange | positioning a copper layer and a blackening layer on a transparent base material is not specifically limited. Further, a plurality of copper layers and blackening layers can be formed. In order to suppress light reflection, it is preferable that a blackening layer is disposed on the surface of the copper layer where light reflection is particularly desired to be suppressed. More preferably, the copper layer has a structure sandwiched between blackening layers.
 さらに、上述のように比抵抗の小さい黒化層を含む場合、該比抵抗の小さい黒化層は導電性基板の最表面に配置されていることが好ましい。これは、比抵抗の小さい黒化層は配線等の電気部材と接続できるため、接続しやすいように導電性基板の最表面に配置されていることが好ましいためである。 Furthermore, when a blackened layer having a low specific resistance is included as described above, the blackened layer having a low specific resistance is preferably disposed on the outermost surface of the conductive substrate. This is because the blackened layer having a small specific resistance can be connected to an electric member such as a wiring, and is preferably disposed on the outermost surface of the conductive substrate so as to be easily connected.
 具体的な構成例について、図1、図2を用いて以下に説明する。図1、図2は、本実施形態の導電性基板の、透明基材、銅層、黒化層の積層方向と平行な面における断面図の例を示している。 A specific configuration example will be described below with reference to FIGS. 1 and 2 show examples of cross-sectional views of the conductive substrate of this embodiment on a plane parallel to the lamination direction of the transparent base material, the copper layer, and the blackening layer.
 例えば、図1(a)に示した導電性基板10Aのように、透明基材11の一方の面11a側に銅層12と、黒化層13と、を一層ずつその順に積層することができる。また、図1(b)に示した導電性基板10Bのように、透明基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ銅層12A、12Bと、黒化層13A、13Bと、を一層ずつその順に積層することができる。なお、銅層12(12A、12B)、及び、黒化層13(13A、13B)を積層する順は、図1(a)、(b)の例に限定されず、透明基材11側から黒化層13(13A、13B)、銅層12(12A、12B)の順に積層することもできる。このように透明基材11と、銅層12との間に黒化層13を配置した場合、黒化層13により透明基材11と銅層12との密着性を高めることができるため好ましい。なお、例えば後述する図2(a)に示した構造を有する場合についても、同様の理由から第1の黒化層131は透明基材11と銅層12との密着性を高めることができる。 For example, as in the conductive substrate 10A shown in FIG. 1A, the copper layer 12 and the blackening layer 13 can be laminated one layer at a time on the one surface 11a side of the transparent base material 11. . Moreover, like the electroconductive board | substrate 10B shown in FIG.1 (b), copper layer 12A, 12B on the one surface 11a side of the transparent base material 11, and the other surface (other surface) 11b side, respectively. And the blackening layers 13A and 13B can be stacked one by one in that order. In addition, the order which laminates | stacks the copper layer 12 (12A, 12B) and the blackening layer 13 (13A, 13B) is not limited to the example of Fig.1 (a), (b), From the transparent base material 11 side. The blackening layer 13 (13A, 13B) and the copper layer 12 (12A, 12B) can be laminated in this order. Thus, when the blackening layer 13 is arrange | positioned between the transparent base material 11 and the copper layer 12, since the adhesiveness of the transparent base material 11 and the copper layer 12 can be improved with the blackening layer 13, it is preferable. For example, also in the case of having the structure shown in FIG. 2A described later, the first blackening layer 131 can improve the adhesion between the transparent base material 11 and the copper layer 12 for the same reason.
 また、例えば黒化層を透明基材11の1つの面側に複数層設けた構成とすることもできる。例えば図2(a)に示した導電性基板20Aのように、透明基材11の一方の面11a側に、第1の黒化層131と、銅層12と、第2の黒化層132と、をその順に積層することができる。 Further, for example, a configuration in which a plurality of blackening layers are provided on one surface side of the transparent substrate 11 can be employed. For example, like the conductive substrate 20A shown in FIG. 2A, the first blackened layer 131, the copper layer 12, and the second blackened layer 132 are formed on the one surface 11a side of the transparent substrate 11. Can be stacked in that order.
 この場合も透明基材11の両面に銅層、第1の黒化層、第2の黒化層を積層した構成とすることができる。具体的には図2(b)に示した導電性基板20Bのように、透明基材11の一方の面11a側と、もう一方の面(他方の面)11b側と、にそれぞれ第1の黒化層131A、131Bと、銅層12A、12Bと、第2の黒化層132A、132Bと、をその順に積層できる。 In this case as well, a configuration in which a copper layer, a first blackened layer, and a second blackened layer are laminated on both surfaces of the transparent substrate 11 can be adopted. Specifically, as in the conductive substrate 20B shown in FIG. 2B, the first surface 11a side of the transparent base material 11 and the other surface (the other surface) 11b side are respectively first. Blackening layers 131A and 131B, copper layers 12A and 12B, and second blackening layers 132A and 132B can be stacked in that order.
 なお、図1(b)、図2(b)において、透明基材の両面に銅層と、黒化層と、を積層した場合において、透明基材11を対称面として透明基材11の上下に積層した層が対称になるように配置した例を示したが、係る形態に限定されるものではない。例えば、図2(b)において、透明基材11の一方の面11a側の構成を図1(a)の構成と同様に、銅層12と、黒化層13と、をその順に積層した形態とし、透明基材11の上下に積層した層を非対称な構成としてもよい。 In FIGS. 1B and 2B, when a copper layer and a blackening layer are laminated on both surfaces of the transparent base material, the transparent base material 11 serves as a symmetrical surface and the top and bottom of the transparent base material 11 are aligned. Although the example which arrange | positioned so that the laminated | stacked layer might become symmetrical was shown, it is not limited to the form which concerns. For example, in FIG. 2B, the configuration on the one surface 11a side of the transparent substrate 11 is formed by laminating the copper layer 12 and the blackening layer 13 in that order, similarly to the configuration of FIG. The layers laminated on the top and bottom of the transparent substrate 11 may be asymmetrical.
 ここまで、本実施形態の導電性基板について説明してきたが、本実施形態の導電性基板においては、透明基材上に銅層と、黒化層と、を設けているため、銅層による光の反射を抑制することができる。 Up to this point, the conductive substrate of the present embodiment has been described. However, in the conductive substrate of the present embodiment, the copper layer and the blackened layer are provided on the transparent base material. Reflection can be suppressed.
 本実施形態の導電性基板の光の反射の程度については特に限定されるものではないが、例えば本実施形態の導電性基板は、波長550nmの光の反射率は40%以下であることが好ましく、30%以下であることがより好ましく、20%以下であることが特に好ましい。これは波長550nmの光の反射率が40%以下の場合、例えばタッチパネル用の導電性基板として用いた場合でもディスプレイの視認性の低下をほとんど引き起こさないため好ましい。 The degree of light reflection of the conductive substrate of the present embodiment is not particularly limited, but for example, the conductive substrate of the present embodiment preferably has a reflectance of light having a wavelength of 550 nm of 40% or less. 30% or less is more preferable, and 20% or less is particularly preferable. This is preferable when the reflectance of light having a wavelength of 550 nm is 40% or less, for example, even when used as a conductive substrate for a touch panel, since the display visibility hardly deteriorates.
 反射率の測定は、黒化層に光を照射するようにして測定を行うことができる。すなわち、導電性基板に含まれる銅層及び黒化層のうち、黒化層側から測定を行うことができる。 The reflectance can be measured by irradiating the blackened layer with light. That is, measurement can be performed from the blackened layer side of the copper layer and the blackened layer included in the conductive substrate.
 具体的には例えば図1(a)のように透明基材11の一方の面11aに銅層12、黒化層13の順に積層した場合、黒化層13に光を照射できるように、図中Aで示した表面側から測定できる。 Specifically, for example, when the copper layer 12 and the blackened layer 13 are laminated in this order on one surface 11a of the transparent substrate 11 as shown in FIG. 1A, the blackened layer 13 can be irradiated with light. It can be measured from the surface side indicated by middle A.
 また、図1(a)の場合と銅層12と黒化層13との配置を換え、透明基材11の一方の面11aに黒化層13、銅層12の順に積層した場合、黒化層13が最表面に位置する側である、透明基材11の面11b側から反射率を測定できる。 In addition, when the arrangement of the copper layer 12 and the blackened layer 13 is changed from that in the case of FIG. 1A and the blackened layer 13 and the copper layer 12 are laminated in this order on one surface 11a of the transparent base material 11, The reflectance can be measured from the surface 11b side of the transparent substrate 11, which is the side on which the layer 13 is located on the outermost surface.
 なお、後述のように導電性基板は銅層及び黒化層をエッチングすることにより配線を形成できるが、上記反射率は導電性基板のうち透明基材を除いた場合に最表面に配置されている黒化層の、光が入射する側の表面における反射率を示している。このため、エッチング処理前、または、エッチング処理を行った後であれば、銅層及び黒化層が残存している部分での測定値が上記範囲を満たしていることが好ましい。 As will be described later, the conductive substrate can form wiring by etching the copper layer and the blackened layer, but the reflectance is arranged on the outermost surface when the transparent substrate is removed from the conductive substrate. The reflectance of the blackened layer on the surface on the light incident side is shown. For this reason, if it is before an etching process or after performing an etching process, it is preferable that the measured value in the part in which the copper layer and the blackening layer remain satisfy | fills the said range.
 本実施形態の導電性基板は上述のように例えばタッチパネル用の導電性基板として好ましく用いることができる。この場合、導電性基板はメッシュ状の配線を備えた構成とすることができる。 The conductive substrate of this embodiment can be preferably used as a conductive substrate for a touch panel, for example, as described above. In this case, the conductive substrate can be configured to have mesh wiring.
 メッシュ状の配線を備えた導電性基板は、ここまで説明した本実施形態の導電性基板の銅層及び黒化層をエッチングすることにより得ることができる。 The conductive substrate provided with the mesh-like wiring can be obtained by etching the copper layer and the blackening layer of the conductive substrate of the present embodiment described so far.
 例えば、二層の配線によりメッシュ状の配線とすることができる。具体的な構成例を図3に示す。図3はメッシュ状の配線を備えた導電性基板30を銅層、黒化層の積層方向の上面側から見た図を示している。図3に示した導電性基板30は、透明基材11と、図中X軸方向に平行な複数の配線31AとY軸方向に平行な配線31Bとを有している。なお、図3においては、直線形状の配線31A、31Bを組み合わせてメッシュ状の配線(配線パターン)を形成した例を示しているが、係る形態に限定されるものではなく、配線パターンを構成する配線は任意の形状とすることができる。例えばディスプレイの画像との間でモアレ(干渉縞)が発生しないようメッシュ状の配線パターンを構成する配線31A、31Bの形状をそれぞれ、ぎざぎざに屈曲した線(ジグザグ直線)等の各種形状にすることもできる。 For example, a mesh-like wiring can be formed by two-layer wiring. A specific configuration example is shown in FIG. FIG. 3 shows a view of the conductive substrate 30 provided with mesh-like wiring as viewed from the upper surface side in the stacking direction of the copper layer and the blackened layer. The conductive substrate 30 shown in FIG. 3 has a transparent base material 11, a plurality of wirings 31A parallel to the X-axis direction in the drawing, and wirings 31B parallel to the Y-axis direction. FIG. 3 shows an example in which the mesh-like wiring (wiring pattern) is formed by combining the linear wirings 31A and 31B. However, the present invention is not limited to such a configuration, and the wiring pattern is configured. The wiring can have any shape. For example, the shapes of the wirings 31A and 31B constituting the mesh-like wiring pattern so as not to cause moiré (interference fringes) between the images on the display are changed to various shapes such as jagged lines (zigzag straight lines). You can also.
 配線31A、31Bは銅層をエッチングして形成されており、該配線31A、31Bの上面および/または下面には図示しない黒化層が形成されている。また、黒化層は配線31A、31Bと同じ形状にエッチングされている。 The wirings 31A and 31B are formed by etching a copper layer, and a blackening layer (not shown) is formed on the upper and / or lower surfaces of the wirings 31A and 31B. The blackened layer is etched in the same shape as the wirings 31A and 31B.
 透明基材11と配線31A、31Bとの配置は特に限定されない。透明基材11と配線との配置の構成例を図4(a)、(b)に示す。図4(a)、(b)は図3のA-A´線での断面図に当たる。 The arrangement of the transparent substrate 11 and the wirings 31A and 31B is not particularly limited. An example of the arrangement of the transparent substrate 11 and the wiring is shown in FIGS. 4A and 4B correspond to cross-sectional views taken along the line AA ′ of FIG.
 まず、図4(a)に示したように、透明基材11の上下面にそれぞれ配線31A、31Bが配置されていてもよい。なお、この場合、配線31A、31Bの上面には、配線と同じ形状にエッチングされた黒化層32A、32Bが配置されている。 First, as shown in FIG. 4A, wirings 31A and 31B may be arranged on the upper and lower surfaces of the transparent substrate 11, respectively. In this case, blackening layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surfaces of the wirings 31A and 31B.
 また、図4(b)に示したように、1組の透明基材11A、11Bを用い、一方の透明基材11Aを挟んで上下面に配線31A、31Bを配置し、かつ、一方の配線31Bは透明基材11Aと透明基材11Bとの間に配置されてもよい。この場合も、配線31A、31Bの上面には配線と同じ形状にエッチングされた黒化層32A、32Bが配置されている。なお、既述のように、黒化層と、銅層との配置は限定されるものではない。このため、図4(a)、(b)いずれの場合でも黒化層32A、32Bと配線31A、31Bの配置は上下を逆にすることもできる。また、例えば黒化層を複数層設けることもできる。 Further, as shown in FIG. 4B, a pair of transparent base materials 11A and 11B are used, and wirings 31A and 31B are arranged on the upper and lower surfaces with one transparent base material 11A interposed therebetween, and one wiring 31B may be disposed between the transparent substrate 11A and the transparent substrate 11B. Also in this case, blackened layers 32A and 32B etched in the same shape as the wiring are disposed on the upper surfaces of the wirings 31A and 31B. As described above, the arrangement of the blackened layer and the copper layer is not limited. For this reason, in any of FIGS. 4A and 4B, the arrangement of the blackening layers 32A and 32B and the wirings 31A and 31B can be reversed upside down. For example, a plurality of blackening layers can be provided.
 ただし、黒化層は銅層表面のうち光の反射を特に抑制したい面に配置されていることが好ましい。このため、図4(b)に示した導電性基板において、例えば、図中下面側からの光の反射を抑制する必要がある場合には、黒化層32Bの位置と、配線31Bの位置とを逆にすることが好ましい。また、黒化層32Bに加えて、配線31Bと透明基材11Bとの間に黒化層をさらに設けてもよい。 However, the blackened layer is preferably disposed on the surface of the copper layer surface where light reflection is particularly desired to be suppressed. Therefore, in the conductive substrate shown in FIG. 4B, for example, when it is necessary to suppress the reflection of light from the lower surface side in the figure, the position of the blackened layer 32B, the position of the wiring 31B, Is preferably reversed. Further, in addition to the blackening layer 32B, a blackening layer may be further provided between the wiring 31B and the transparent substrate 11B.
 図3及び図4(a)に示したメッシュ状の配線を有する導電性基板は例えば、図1(b)、図2(b)のように透明基材11の両面に銅層12A、12Bと、黒化層13A、13B(131A、132A、131B、132B)と、を備えた導電性基板から形成することができる。 The conductive substrate having the mesh-like wiring shown in FIG. 3 and FIG. 4A includes, for example, copper layers 12A and 12B on both surfaces of the transparent substrate 11 as shown in FIG. 1B and FIG. , And blackened layers 13A and 13B (131A, 132A, 131B, and 132B).
 図1(b)の導電性基板を用いて形成した場合を例に説明すると、まず、透明基材11の一方の面11a側の銅層12A及び黒化層13Aを、図1(b)中X軸方向に平行な複数の線状のパターンが所定の間隔をあけて配置されるようにエッチングを行う。図1(b)中のX軸方向とは、図1(b)中の各層の幅方向と平行な方向を意味している。 The case where it is formed using the conductive substrate of FIG. 1B will be described as an example. First, the copper layer 12A and the blackened layer 13A on the one surface 11a side of the transparent base material 11 are shown in FIG. Etching is performed so that a plurality of linear patterns parallel to the X-axis direction are arranged at predetermined intervals. The X-axis direction in FIG. 1 (b) means a direction parallel to the width direction of each layer in FIG. 1 (b).
 そして、透明基材11のもう一方の面11b側の銅層12B及び黒化層13Bを図1(b)中Y軸方向と平行な複数の線状のパターンが所定の間隔をあけて配置されるようにエッチングを行う。なお、図1(b)中のY軸方向は、紙面と垂直な方向を意味している。 A plurality of linear patterns parallel to the Y-axis direction in FIG. 1B are arranged at predetermined intervals on the copper layer 12B and the blackened layer 13B on the other surface 11b side of the transparent substrate 11. Etching is performed so that In addition, the Y-axis direction in FIG.1 (b) means the direction perpendicular | vertical to a paper surface.
 以上の操作により図3、図4(a)に示したメッシュ状の配線を有する導電性基板を形成することができる。なお、透明基材11の両面のエッチングは同時に行うこともできる。すなわち、銅層12A、12B、黒化層13A、13Bのエッチングは同時に行ってもよい。 The conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4A can be formed by the above operation. Note that the etching of both surfaces of the transparent substrate 11 can be performed simultaneously. That is, the etching of the copper layers 12A and 12B and the blackening layers 13A and 13B may be performed simultaneously.
 図3に示したメッシュ状の配線を有する導電性基板は、図1(a)または図2(a)に示した導電性基板を2枚用いることにより形成することもできる。図1(a)の導電性基板を用いた場合を例に説明すると、図1(a)に示した導電性基板2枚についてそれぞれ、銅層12及び黒化層13を、X軸方向と平行な複数の線状のパターンが所定の間隔をあけて配置されるようにエッチングを行う。そして、上記エッチング処理により各導電性基板に形成した線状のパターンが互いに交差するように向きをあわせて2枚の導電性基板を貼り合せることによりメッシュ状の配線を備えた導電性基板とすることができる。2枚の導電性基板を貼り合せる際に貼り合せる面は特に限定されるものではなく、図4(b)のように銅層12等が積層された図1(a)における面Aと、銅層12等が積層されていない図1(a)における面11bとを貼り合せてもよい。 3 can be formed by using two conductive substrates shown in FIG. 1A or FIG. 2A. The conductive substrate having a mesh-like wiring shown in FIG. The case where the conductive substrate of FIG. 1A is used will be described as an example. For the two conductive substrates shown in FIG. 1A, the copper layer 12 and the blackened layer 13 are parallel to the X-axis direction, respectively. Etching is performed so that a plurality of linear patterns are arranged at predetermined intervals. Then, the conductive substrate having mesh-like wiring is obtained by bonding the two conductive substrates so that the linear patterns formed on the respective conductive substrates intersect with each other by the etching process. be able to. The surface to be bonded when the two conductive substrates are bonded is not particularly limited. The surface A in FIG. 1A in which the copper layer 12 or the like is laminated as shown in FIG. The surface 11b in FIG. 1A on which the layer 12 and the like are not stacked may be bonded.
 なお、黒化層は銅層表面のうち光の反射を特に抑制したい面に配置されていることが好ましい。このため、図4(b)に示した導電性基板において、図中下面側からの光の反射を抑制する必要がある場合には、黒化層32Bの位置と、配線31Bの位置とを逆に配置することが好ましい。また、黒化層32Bに加えて、配線31Bと透明基材11Bとの間に黒化層をさらに設けてもよい。 In addition, it is preferable that the blackening layer is disposed on the surface of the copper layer surface where light reflection is particularly desired to be suppressed. Therefore, in the conductive substrate shown in FIG. 4B, when it is necessary to suppress the reflection of light from the lower surface side in the figure, the position of the blackened layer 32B and the position of the wiring 31B are reversed. It is preferable to arrange in. Further, in addition to the blackening layer 32B, a blackening layer may be further provided between the wiring 31B and the transparent substrate 11B.
 また、例えば透明基材11の銅層12等が積層されていない図1(a)における面11b同士を貼り合せて断面が図4(a)に示した構造となるようにしてもよい。 Further, for example, the surfaces 11b in FIG. 1A where the copper layer 12 or the like of the transparent substrate 11 is not laminated may be bonded so that the cross section has the structure shown in FIG.
 なお、図3、図4に示したメッシュ状の配線を有する導電性基板における配線の幅や、配線間の距離は特に限定されるものではなく、例えば、配線に流す電流量等に応じて選択することができる。 Note that the width of the wiring and the distance between the wirings in the conductive substrate having the mesh-like wiring shown in FIGS. 3 and 4 are not particularly limited, and are selected according to, for example, the amount of current flowing through the wiring. can do.
 このように2層の配線から構成されるメッシュ状の配線を有する導電性基板は、例えば投影型静電容量方式のタッチパネル用の導電性基板として好ましく用いることができる。
(導電性基板の製造方法)
 次に本実施形態の導電性基板の製造方法の構成例について説明する。
Thus, a conductive substrate having a mesh-like wiring composed of two layers of wiring can be preferably used as a conductive substrate for a projected capacitive touch panel, for example.
(Method for producing conductive substrate)
Next, a configuration example of the method for manufacturing a conductive substrate according to this embodiment will be described.
 本実施形態の導電性基板の製造方法は、
 透明基材を準備する透明基材準備工程と、
 透明基材の少なくとも一方の面側に銅層を形成する銅層形成工程と、
 透明基材の少なくとも一方の面側に酸素、窒素、ニッケル、及びタングステンを含有する黒化層を形成する黒化層形成工程と、を有することが好ましい。
The manufacturing method of the conductive substrate of this embodiment is as follows:
A transparent substrate preparation step of preparing a transparent substrate;
A copper layer forming step of forming a copper layer on at least one surface side of the transparent substrate;
It is preferable to have a blackening layer forming step of forming a blackening layer containing oxygen, nitrogen, nickel, and tungsten on at least one surface side of the transparent substrate.
 以下に本実施形態の導電性基板の製造方法について説明するが、以下に説明する点以外については上述の導電性基板の場合と同様の構成とすることができるため説明を省略する。 Hereinafter, the manufacturing method of the conductive substrate according to the present embodiment will be described. However, the configuration other than the following will be the same as that of the above-described conductive substrate, and the description thereof will be omitted.
 上述のように、本実施形態の導電性基板においては、銅層と、黒化層と、を透明基材上に配置する際の積層の順番は特に限定されるものではない。また、銅層と、黒化層と、はそれぞれ複数層形成することもできる。このため、上記銅層形成工程と、黒化層形成工程の順番や、実施する回数については特に限定されるものではなく、形成する導電性基板の構造に合わせて任意の回数、タイミングで実施することができる。 As described above, in the conductive substrate of the present embodiment, the order of stacking when the copper layer and the blackened layer are disposed on the transparent base material is not particularly limited. Further, a plurality of copper layers and blackening layers can be formed. For this reason, the order of the copper layer forming step and the blackened layer forming step and the number of times of execution are not particularly limited, and are performed at an arbitrary number of times according to the structure of the conductive substrate to be formed. be able to.
 透明基材を準備する工程は、例えば可視光を透過する絶縁体フィルムや、ガラス基板等により構成された透明基材を準備する工程であり、具体的な操作は特に限定されるものではない。例えば後段の工程での各工程に供するため必要に応じて任意のサイズに切断等を行うことができる。 The step of preparing the transparent base material is a step of preparing a transparent base material made of, for example, an insulating film that transmits visible light, a glass substrate, or the like, and the specific operation is not particularly limited. For example, in order to use for each process in a latter process, it can cut | disconnect etc. to arbitrary sizes as needed.
 次に銅層形成工程について説明する。 Next, the copper layer forming process will be described.
 銅層は既述のように、銅薄膜層を有することが好ましい。また、銅薄膜層と銅めっき層とを有することもできる。このため、銅層形成工程は、例えば乾式めっき法により銅薄膜層を形成する工程を有することができる。また、銅層形成工程は、乾式めっき法により銅薄膜層を形成する工程と、該銅薄膜層を給電層として、湿式めっき法により銅めっき層を形成する工程と、を有していてもよい。 As described above, the copper layer preferably has a copper thin film layer. Moreover, it can also have a copper thin film layer and a copper plating layer. For this reason, a copper layer formation process can have a process of forming a copper thin film layer, for example with a dry plating method. Moreover, the copper layer forming step may include a step of forming a copper thin film layer by a dry plating method and a step of forming a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. .
 銅薄膜層の形成に用いる乾式めっき法としては、特に限定されるものではなく、例えば、真空蒸着法、スパッタリング法、又はイオンプレーティング法等を用いることができる。特に、銅薄膜層の形成に用いる乾式めっき法としては、膜厚の制御が容易であることから、スパッタリング法を用いることがより好ましい。 The dry plating method used for forming the copper thin film layer is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be used. In particular, as the dry plating method used for forming the copper thin film layer, it is more preferable to use the sputtering method because the film thickness can be easily controlled.
 巻取式スパッタリング装置を用いた場合を例に銅薄膜層を形成する工程を説明する。まず、銅ターゲットをスパッタリング用カソードに装着し、真空チャンバー内に基材、具体的には透明基材や黒化層を形成した透明基材等をセットする。真空チャンバー内を真空排気後、Arガスを導入して装置内を0.13Pa~1.3Pa程度に保持する。この状態で、巻出ロールから基材を例えば毎分1~20m程度の速さで搬送しながら、カソードに接続したスパッタリング用直流電源より電力を供給し、スパッタリング放電を行い、基材上に所望の銅薄膜層を連続成膜することができる。 The process of forming a copper thin film layer will be described taking the case of using a winding type sputtering apparatus as an example. First, a copper target is mounted on a sputtering cathode, and a base material, specifically, a transparent base material on which a transparent base material or a blackened layer is formed is set in a vacuum chamber. After evacuating the inside of the vacuum chamber, Ar gas is introduced to maintain the inside of the apparatus at about 0.13 Pa to 1.3 Pa. In this state, the substrate is transported from the unwinding roll at a speed of, for example, about 1 to 20 m / min, and power is supplied from the DC power source for sputtering connected to the cathode, and sputtering discharge is performed. The copper thin film layer can be continuously formed.
 湿式めっき法により銅めっき層を形成する工程における条件、すなわち、電気めっき処理の条件は、特に限定されるものではなく、常法による諸条件を採用すればよい。例えば、銅めっき液を入れためっき槽に銅薄膜層を形成した基材を供給し、電流密度や、基材の搬送速度を制御することによって、銅めっき層を形成できる。 The conditions in the step of forming the copper plating layer by the wet plating method, that is, the conditions of the electroplating treatment are not particularly limited, and various conditions according to ordinary methods may be adopted. For example, a copper plating layer can be formed by supplying a base material on which a copper thin film layer is formed in a plating tank containing a copper plating solution and controlling the current density and the conveyance speed of the base material.
 次に、黒化層形成工程について説明する。 Next, the blackening layer forming process will be described.
 黒化層形成工程も特に限定されるものではないが、既述のように、スパッタリング法により、黒化層を成膜する工程とすることができる。 The blackening layer forming step is not particularly limited, but as described above, the blackening layer can be formed by sputtering.
 この際、ターゲットとしてニッケル-タングステン合金のターゲットを用いることができる。また、既述のようにニッケルターゲットと、タングステンターゲットとを用いることもできる。ターゲットとして、ニッケル-タングステン合金のターゲットを用いる場合、ニッケル-タングステン合金のターゲットは、タングステンを5重量%以上30重量%以下の割合で含んでいることが好ましい。ニッケル-タングステン合金のターゲットは、タングステンを18重量%以上30重量%以下の割合で含有することがより好ましい。この場合、残部はニッケルにより構成することができる。 In this case, a nickel-tungsten alloy target can be used as the target. Further, as described above, a nickel target and a tungsten target can also be used. When a nickel-tungsten alloy target is used as the target, the nickel-tungsten alloy target preferably contains tungsten in a proportion of 5 wt% to 30 wt%. More preferably, the nickel-tungsten alloy target contains tungsten in a proportion of 18 wt% to 30 wt%. In this case, the remainder can be made of nickel.
 また、チャンバー内に酸素を5体積%以上20体積%以下、窒素を30体積%以上55体積%以下の割合で供給しながらスパッタリングを実施することが好ましい。 Further, it is preferable to perform sputtering while supplying oxygen in the chamber at a rate of 5% by volume to 20% by volume and nitrogen at a rate of 30% by volume to 55% by volume.
 特に、チャンバー内への酸素の供給割合は10体積%以上15体積%以下とすることがより好ましい。また、チャンバー内への窒素の供給割合は35体積%以上40体積%以下とすることがより好ましい。 In particular, the supply ratio of oxygen into the chamber is more preferably 10% by volume to 15% by volume. Further, the supply ratio of nitrogen into the chamber is more preferably 35% by volume to 40% by volume.
 なお、スパッタリングを行う際、チャンバー内に供給するガスは、酸素と窒素以外の残部については不活性ガスとすることが好ましい。酸素と窒素以外の残部については例えばアルゴンまたはヘリウムを供給することができる。 In addition, when performing sputtering, the gas supplied into the chamber is preferably an inert gas for the remainder other than oxygen and nitrogen. For the remainder other than oxygen and nitrogen, for example, argon or helium can be supplied.
 そして、ここで説明した導電性基板の製造方法により得られる導電性基板は、既述の導電性基板と同様に、銅層は厚さが50nm以上であることが好ましく、150nm以上とすることがより好ましい。また、銅層の厚さの上限値は特に限定されないが、3μm以下であることが好ましく、700nm以下であることがより好ましく、200nm以下であることがさらに好ましい。なお、例えば大画面のタッチバネル等配線の長さが長くなる用途においては、配線の抵抗値を十分に低くすることが好ましいため、適用する画面のサイズ、配線長さに応じて銅層を厚くすることができる。 And as for the electroconductive board | substrate obtained by the manufacturing method of the electroconductive board | substrate demonstrated here, it is preferable that the thickness of a copper layer is 50 nm or more like the above-mentioned electroconductive board | substrate, and shall be 150 nm or more. More preferred. The upper limit value of the thickness of the copper layer is not particularly limited, but is preferably 3 μm or less, more preferably 700 nm or less, and further preferably 200 nm or less. For example, in applications where the length of the wiring is long, such as a large screen touch panel, it is preferable to sufficiently reduce the resistance value of the wiring, so that the copper layer is made thick according to the size of the screen to be applied and the wiring length. be able to.
 また、ここで説明した導電性基板の製造方法により得られる導電性基板においても、黒化層の厚さは特に限定されるものではないが、例えば15nm以上であることが好ましく、20nm以上とすることがより好ましい。黒化層の厚さの上限値は特に限定されるものではないが、70nm以下とすることが好ましく、40nm以下とすることがより好ましい。 Also in the conductive substrate obtained by the conductive substrate manufacturing method described here, the thickness of the blackening layer is not particularly limited, but is preferably 15 nm or more, for example, 20 nm or more. It is more preferable. The upper limit value of the thickness of the blackening layer is not particularly limited, but is preferably 70 nm or less, and more preferably 40 nm or less.
 成膜した黒化層中には酸素、窒素、ニッケル、及びタングステンが含有されていればよく、酸素、窒素、ニッケル、及びタングステンはどのような形態で含まれていてもよい。例えばニッケルとタングステンとが合金を形成し、酸素および/または窒素を含有するニッケル-タングステン合金が黒化層に含有されていてもよい。また、ニッケルまたはタングステンが例えば酸化ニッケル(NiO)や窒化ニッケル(NiN)、酸化タングステン(WO、WO、W)や窒化タングステン(NW)等の酸化物または窒化物を生成し、該化合物が黒化層に含まれていてもよい。 The formed blackened layer only needs to contain oxygen, nitrogen, nickel, and tungsten, and oxygen, nitrogen, nickel, and tungsten may be contained in any form. For example, nickel and tungsten form an alloy, and a nickel-tungsten alloy containing oxygen and / or nitrogen may be contained in the blackening layer. Nickel or tungsten is an oxide or nitride such as nickel oxide (NiO), nickel nitride (Ni 3 N), tungsten oxide (WO 3 , WO 2 , W 2 O 3 ), tungsten nitride (N 2 W), or the like. And the compound may be contained in the blackened layer.
 なお、黒化層は例えば酸素および窒素を含有するニッケル-タングステン合金のように、酸素、窒素、ニッケル、及びタングステンを同時に含有する1種類の物質のみで構成される層であってもよい。また、例えば上述した酸素および/または窒素を含有するニッケル-タングステン合金や、ニッケルの酸化物、ニッケルの窒化物、タングステンの酸化物、タングステンの窒化物から選択される1種類以上の物質を含有する層であってもよい。 The blackening layer may be a layer composed of only one kind of substance containing oxygen, nitrogen, nickel, and tungsten simultaneously, such as a nickel-tungsten alloy containing oxygen and nitrogen. Further, for example, it contains one or more substances selected from the above-mentioned nickel-tungsten alloy containing oxygen and / or nitrogen, nickel oxide, nickel nitride, tungsten oxide, tungsten nitride. It may be a layer.
 成膜した黒化層は比抵抗が十分に小さい場合、黒化層に配線等の電気部材とのコンタクト部を形成することができ、黒化層が最表面に位置する場合でも銅層を露出する必要がなくなるため好ましい。 If the formed blackened layer has a sufficiently small specific resistance, it is possible to form a contact portion with an electric member such as wiring on the blackened layer, and the copper layer is exposed even when the blackened layer is located on the outermost surface. This is preferable because there is no need to do this.
 そして、黒化層に配線等の電気部材とのコンタクト部を形成するためには、黒化層の比抵抗としては、2.00×10-2Ω・cm以下であることが好ましく、5.00×10-3Ω・cm以下であることが好ましい。本発明の発明者らの検討によると、黒化層の比抵抗は黒化層を成膜する際の雰囲気中の酸素濃度と相関を有している。そして、黒化層を成膜する際の雰囲気中の酸素濃度が低いほど黒化層の比抵抗は低くなり好ましい。特に黒化層の比抵抗を十分に低くする場合、黒化層を成膜する際の酸素濃度は15体積%以下であることが好ましく、13体積%以下であることがより好ましく、10体積%以下であることがさらに好ましい。 In order to form a contact portion with an electric member such as a wiring in the blackened layer, the specific resistance of the blackened layer is preferably 2.00 × 10 −2 Ω · cm or less. It is preferably 00 × 10 −3 Ω · cm or less. According to the study of the inventors of the present invention, the specific resistance of the blackened layer has a correlation with the oxygen concentration in the atmosphere when the blackened layer is formed. The lower the oxygen concentration in the atmosphere when forming the blackened layer, the lower the specific resistance of the blackened layer, which is preferable. In particular, when the specific resistance of the blackened layer is sufficiently low, the oxygen concentration when forming the blackened layer is preferably 15% by volume or less, more preferably 13% by volume or less, and more preferably 10% by volume. More preferably, it is as follows.
 さらに、ここで説明した導電性基板の製造方法により得られる導電性基板においても、波長550nmの光の反射率は40%以下であることが好ましく、30%以下であることがより好ましく、20%以下であることが特に好ましい。これは波長550nmの光の反射率が40%以下の場合、例えばタッチパネル用の導電性基板として用いた場合でもディスプレイの視認性の低下をほとんど引き起こさないため好ましい。 Furthermore, also in the conductive substrate obtained by the conductive substrate manufacturing method described herein, the reflectance of light having a wavelength of 550 nm is preferably 40% or less, more preferably 30% or less, and 20%. It is particularly preferred that This is preferable when the reflectance of light having a wavelength of 550 nm is 40% or less, for example, even when used as a conductive substrate for a touch panel, since the display visibility hardly deteriorates.
 ここで説明した導電性基板の製造方法により得られる導電性基板は、メッシュ状の配線を備えた導電性基板とすることができる。この場合、上述の工程に加えて、銅層と、黒化層と、をエッチングすることにより、配線を形成するエッチング工程をさらに有することができる。 The conductive substrate obtained by the method for manufacturing a conductive substrate described herein can be a conductive substrate provided with mesh-like wiring. In this case, in addition to the above-described steps, an etching step of forming a wiring by etching the copper layer and the blackening layer can be further included.
 係るエッチング工程は例えば、まず、エッチングにより除去する部分に対応した開口部を有するレジストを、導電性基板の最表面に形成する。図1(a)に示した導電性基板の場合、導電性基板に配置した黒化層13の露出した面A上にレジストを形成することができる。なお、エッチングにより除去する部分に対応した開口部を有するレジストの形成方法は特に限定されないが、例えばフォトリソグラフィー法により形成することができる。 In this etching step, for example, first, a resist having an opening corresponding to a portion to be removed by etching is formed on the outermost surface of the conductive substrate. In the case of the conductive substrate shown in FIG. 1A, a resist can be formed on the exposed surface A of the blackening layer 13 disposed on the conductive substrate. Note that a method for forming a resist having an opening corresponding to a portion to be removed by etching is not particularly limited. For example, the resist can be formed by a photolithography method.
 次いで、レジスト上面からエッチング液を供給することにより、銅層12、黒化層13のエッチングを実施することができる。 Next, the copper layer 12 and the blackened layer 13 can be etched by supplying an etching solution from the upper surface of the resist.
 なお、図1(b)のように透明基材11の両面に銅層、黒化層を配置した場合には、導電性基板の最表面A及びBにそれぞれ所定の形状の開口部を有するレジストを形成し、透明基材11の両面に形成した銅層、黒化層を同時にエッチングしてもよい。 In addition, when a copper layer and a blackening layer are disposed on both surfaces of the transparent substrate 11 as shown in FIG. 1B, a resist having openings of predetermined shapes on the outermost surfaces A and B of the conductive substrate. The copper layer and the blackened layer formed on both surfaces of the transparent substrate 11 may be etched simultaneously.
 また、透明基材11の両側に形成された銅層及び黒化層について、一方の側ずつエッチング処理を行うこともできる。すなわち、例えば、銅層12A及び黒化層13Aのエッチングを行った後に、銅層12B及び黒化層13Bのエッチングを行うこともできる。 In addition, the copper layer and the blackened layer formed on both sides of the transparent substrate 11 can be subjected to an etching process on one side. That is, for example, after the copper layer 12A and the blackened layer 13A are etched, the copper layer 12B and the blackened layer 13B can be etched.
 黒化層は銅層と同様のエッチング液への反応性を示すことから、エッチング工程において用いるエッチング液は特に限定されるものではなく、一般的に銅層のエッチングに用いられるエッチング液を好ましく用いることができる。エッチング液としては例えば、塩化第二鉄と、塩酸と、の混合水溶液をより好ましく用いることができる。エッチング液中の塩化第二鉄と、塩酸との含有量は特に限定されるものではないが例えば、塩化第二鉄を5重量%以上50重量%以下の割合で含むことが好ましく、10重量%以上30重量%以下の割合で含むことがより好ましい。また、エッチング液は例えば、塩酸を1重量%以上50重量%以下の割合で含むことが好ましく、1重量%以上20重量%以下の割合で含むことがより好ましい。なお、残部については水とすることができる。 Since the blackening layer exhibits the same reactivity to the etching solution as the copper layer, the etching solution used in the etching step is not particularly limited, and an etching solution generally used for etching the copper layer is preferably used. be able to. As the etching solution, for example, a mixed aqueous solution of ferric chloride and hydrochloric acid can be used more preferably. The contents of ferric chloride and hydrochloric acid in the etching solution are not particularly limited. For example, ferric chloride is preferably contained in a proportion of 5 wt% to 50 wt%, and preferably 10 wt%. More preferably, it is contained in a proportion of 30% by weight or less. Further, for example, the etching solution preferably contains hydrochloric acid in a proportion of 1 wt% or more and 50 wt% or less, and more preferably contains 1 wt% or more and 20 wt% or less. The remainder can be water.
 エッチング液は室温で用いることもできるが、反応性を高めるため加温していることが好ましく、例えば40℃以上50℃以下に加熱して用いることが好ましい。 Although the etching solution can be used at room temperature, it is preferably heated to increase the reactivity. For example, it is preferably heated to 40 ° C. or more and 50 ° C. or less.
 上述したエッチング工程により得られるメッシュ状の配線の具体的な形態については、既述のとおりであるため、ここでは説明を省略する。 Since the specific form of the mesh-like wiring obtained by the above-described etching process is as described above, the description thereof is omitted here.
 また、既述のように、図1(a)、図2(a)に示した透明基材11の一方の面側に銅層、黒化層を有する導電性基板を2枚貼り合せてメッシュ状の配線を備えた導電性基板とする場合には、導電性基板を貼り合せる工程をさらに設けることができる。この際、2枚の導電性基板を貼り合せる方法は特に限定されるものではなく、例えば接着剤等を用いて接着することができる。 In addition, as described above, two conductive substrates having a copper layer and a blackened layer are bonded to one side of the transparent base material 11 shown in FIGS. 1A and 2A and meshed. In the case where the conductive substrate is provided with a conductive wiring, a step of bonding the conductive substrate can be further provided. At this time, a method for bonding the two conductive substrates is not particularly limited, and the bonding can be performed using, for example, an adhesive.
 以上に本実施形態の導電性基板及び導電性基板の製造方法について説明した。係る導電性基板によれば、銅層と黒化層とがエッチング液に対してほぼ同じ反応性を示すことから、容易に所望の配線を形成することができる。また、黒化層は光の反射を抑制することができ、例えばタッチパネル用の導電性基板とした場合に、視認性の低下を抑制することができる。 The conductive substrate and the method for manufacturing the conductive substrate of the present embodiment have been described above. According to such a conductive substrate, since the copper layer and the blackened layer show substantially the same reactivity with the etching solution, a desired wiring can be easily formed. Moreover, the blackening layer can suppress reflection of light, and for example, when a conductive substrate for a touch panel is used, a reduction in visibility can be suppressed.
 以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって、なんら限定されるものではない。
[実験例1]
 後述する試料の作製条件に基づいて作製した導電性基板について、以下の評価方法により評価を行った。
(評価方法)
(1)反射率
 以下の各実験例において作製した導電性基板について、銅層及び黒化層の溶解試験を行う前に、反射率の測定を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.
[Experiment 1]
The conductive substrate prepared based on the sample preparation conditions described later was evaluated by the following evaluation method.
(Evaluation methods)
(1) Reflectance The reflectance was measured before conducting the dissolution test of the copper layer and the blackened layer on the conductive substrate prepared in each of the following experimental examples.
 測定は、紫外可視分光光度計(株式会社 島津製作所製 型式:UV-2550)に反射率測定ユニットを設置して行った。 The measurement was performed by installing a reflectance measurement unit in an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV-2550).
 各実験例で作製した導電性基板の銅層及び黒化層を形成した側の図1(a)における最表面Aに対して、入射角5°、受光角5°として、波長400nm以上700nm以下の範囲の光を照射した際の反射率を測定した。
(2)溶解試験
 以下の各実験例において作製した導電性基板をエッチング液に浸漬して銅層及び黒化層の溶解試験を行った。
With respect to the outermost surface A in FIG. 1A on the side where the copper layer and blackening layer of the conductive substrate prepared in each experimental example are formed, the incident angle is 5 ° and the light receiving angle is 5 °, and the wavelength is 400 nm or more and 700 nm or less. The reflectance when irradiating light in the range was measured.
(2) Dissolution test The conductive substrate produced in each of the following experimental examples was immersed in an etching solution, and a dissolution test of the copper layer and the blackened layer was performed.
 エッチング液としては、塩化第二鉄10重量%と、塩酸10重量%と、残部が水からなる水溶液を用い、エッチング液の温度は室温(25℃)とした。 As the etching solution, an aqueous solution containing 10% by weight of ferric chloride, 10% by weight of hydrochloric acid and the balance being water was used, and the temperature of the etching solution was room temperature (25 ° C.).
 上記エッチング液に1分間浸漬後、導電性基板をエッチング液から取り出し、銅層及び黒化層が完全に溶解し、透明基材のみとなっていた場合には○と評価した。 After immersing in the etching solution for 1 minute, the conductive substrate was taken out of the etching solution, and when the copper layer and the blackened layer were completely dissolved and only the transparent substrate was formed, it was evaluated as “good”.
 エッチング液から取り出した際に、まだ、銅層または黒化層が残存していた場合には、同じエッチング液にさらに1分間浸漬し、エッチング液から取り出した際に銅層及び黒化層が完全に溶解し、透明基材のみとなっていた場合には△と評価した。2回目のエッチング液への浸漬後においても銅層または黒化層が残存していた場合には×と評価した。
(試料の作製条件)
 以下に各実験例における導電性基板の製造条件を示す。実験例1-1、1-2、1-4~1-7が実施例であり、実験例1-3が比較例となる。
[実験例1-1]
 図1(a)に示した構造を有する導電性基板を作製した。
If the copper layer or blackened layer still remains when removed from the etchant, immerse in the same etchant for an additional 1 minute, and when removed from the etchant, the copper layer and blackened layer will be completely It was evaluated as Δ when it was dissolved only in the transparent substrate. When the copper layer or the blackened layer remained even after the second immersion in the etching solution, it was evaluated as x.
(Sample preparation conditions)
The manufacturing conditions of the conductive substrate in each experimental example are shown below. Experimental examples 1-1, 1-2, and 1-4 to 1-7 are examples, and experimental example 1-3 is a comparative example.
[Experimental Example 1-1]
A conductive substrate having the structure shown in FIG.
 まず、縦5cm、横5cm、厚さ0.02mmのポリエチレンテレフタレート樹脂(PET)製の透明基材11を準備した。 First, a transparent substrate 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was prepared.
 次に透明基材11の一方の面の全面に銅層12を形成した。銅層12は、スパッタリング法により銅薄膜層を形成し、次いで、該銅薄膜層を給電層として湿式めっき法により銅めっき層を形成した。具体的にはまず、Cuターゲット(住友金属鉱山株式会社製)を用いた直流スパッタリング法により、透明基材11の一方の面上に100nmの厚さの銅薄膜層を成膜した。その後、電気めっきにより銅めっき層を0.5μm積層し、銅層12とした。 Next, a copper layer 12 was formed on the entire surface of one side of the transparent substrate 11. The copper layer 12 formed a copper thin film layer by a sputtering method, and then formed a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. Specifically, a copper thin film layer having a thickness of 100 nm was first formed on one surface of the transparent substrate 11 by a direct current sputtering method using a Cu target (manufactured by Sumitomo Metal Mining Co., Ltd.). Thereafter, a copper plating layer was laminated by 0.5 μm by electroplating to form a copper layer 12.
 次に、銅層12上の全面に直流スパッタリング法により黒化層13を成膜した。 Next, a blackened layer 13 was formed on the entire surface of the copper layer 12 by a direct current sputtering method.
 黒化層13の成膜はスパッタリング装置(芝浦メカトロニクス株式会社製 型式:CFS-4ES-2)を用いて行った。 The blackening layer 13 was formed using a sputtering apparatus (model: CFS-4ES-2 manufactured by Shibaura Mechatronics Co., Ltd.).
 スパッタリングの具体的な条件について以下に説明する。 Specific conditions for sputtering will be described below.
 ターゲットとしてタングステンを19重量%含み、残部がニッケルからなるニッケル-タングステン合金ターゲットを用いた。チャンバー内には窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行った。なお、チャンバーには窒素45体積%、酸素5体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った。また、スパッタリング前のチャンバー内の到達真空度は1×10-3Paとした。 A nickel-tungsten alloy target containing 19% by weight of tungsten and the balance being nickel was used as the target. Nitrogen, oxygen, and argon were supplied into the chamber while supplying a total of 15 SCCM. Each gas was supplied to the chamber so that 45% by volume of nitrogen, 5% by volume of oxygen, and the balance were argon, and sputtering was performed. The ultimate vacuum in the chamber before sputtering was 1 × 10 −3 Pa.
 チャンバー内に、上記銅層12を形成した透明基材11の銅層12がターゲットと対向し、銅層12とターゲットとの間の距離が85mmになるように設置し、銅層12を形成した透明基材11を15rpmで回転させながらスパッタリングを行った。スパッタリングにより黒化層の成膜を行う際、DC電源によって、ターゲットに電流0.6A、電圧330V(電力値約200W)を印加した。 In the chamber, the copper layer 12 of the transparent base material 11 on which the copper layer 12 was formed was placed so as to face the target, and the distance between the copper layer 12 and the target was 85 mm, thereby forming the copper layer 12. Sputtering was performed while rotating the transparent substrate 11 at 15 rpm. When the blackening layer was formed by sputtering, a current of 0.6 A and a voltage of 330 V (power value of about 200 W) were applied to the target by a DC power source.
 上記スパッタリング法により、厚さ30nmの黒化層13を成膜した。 The blackened layer 13 having a thickness of 30 nm was formed by the sputtering method.
 以上の工程により得られた導電性基板について反射率測定と、溶解試験を実施した。反射率の測定結果を図5及び表1に、溶解試験の結果を表1にそれぞれ示す。
[実験例1-2]
 黒化層13を成膜する際、チャンバー内に窒素40体積%、酸素10体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The conductive substrate obtained by the above steps was subjected to reflectance measurement and dissolution test. The reflectance measurement results are shown in FIG. 5 and Table 1, and the dissolution test results are shown in Table 1.
[Experimental Example 1-2]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied in the chamber so that nitrogen was 40% by volume, oxygen was 10% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。
[実験例1-3]
 黒化層13を成膜する際、チャンバー内に酸素25体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The results are shown in FIG.
[Experimental Example 1-3]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that oxygen was 25% by volume and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。
[実験例1-4]
 黒化層13を成膜する際、チャンバー内に窒素40体積%、酸素3体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The results are shown in FIG.
[Experimental Example 1-4]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1, except that each gas was supplied so that nitrogen was 40% by volume, oxygen was 3% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。
[実験例1-5]
 黒化層13を成膜する際、チャンバー内に窒素40体積%、酸素25体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The results are shown in FIG.
[Experiment 1-5]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1, except that each gas was supplied so that nitrogen was 40% by volume, oxygen was 25% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。
[実験例1-6]
 黒化層13を成膜する際、チャンバー内に窒素30体積%、酸素10体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The results are shown in FIG.
[Experimental Example 1-6]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that 30% by volume of nitrogen, 10% by volume of oxygen, and the balance became argon in the chamber. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。
[実験例1-7]
 黒化層13を成膜する際、チャンバー内に窒素55体積%、酸素10体積%、残部がアルゴンになるように各ガスを供給した点以外は実験例1-1と同様にして実施した。なお、チャンバー内にはガスを合計で15SCCMになるように供給しながら行っている。
The results are shown in FIG.
[Experiment 1-7]
The blackening layer 13 was formed in the same manner as in Experimental Example 1-1 except that each gas was supplied so that the volume of nitrogen was 55% by volume, oxygen was 10% by volume, and the balance was argon. Note that the gas is supplied into the chamber so that the total gas becomes 15 SCCM.
 結果を図5及び表1に示す。 The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000001

 図5、表1に示した結果によると、実施例である実験例1-1、1-2、1-4~1-7については、溶解試験において評価が○または△となっており、銅層及び黒化層を同時に溶解することができた。
Figure JPOXMLDOC01-appb-T000001

According to the results shown in FIG. 5 and Table 1, the experimental examples 1-1, 1-2, and 1-4 to 1-7, which are examples, are evaluated as “good” or “small” in the dissolution test. The layer and the blackened layer could be dissolved simultaneously.
 これに対して、比較例である実験例1-3については、550nmの光に対する反射率は実験例1-1、1-2、1-4、1-6、1-7よりも低いものの、溶解試験において黒化層が溶解せずに残存した。これは、黒化層を成膜する際、チャンバー内に窒素を供給しなかったため、黒化層内に窒素が含まれず、エッチング液に対する反応性が低かったためと考えられる。 In contrast, for Experimental Example 1-3, which is a comparative example, the reflectance for light at 550 nm is lower than that of Experimental Examples 1-1, 1-2, 1-4, 1-6, 1-7. In the dissolution test, the blackened layer remained without being dissolved. This is probably because nitrogen was not supplied into the chamber when the blackened layer was formed, so that the blackened layer did not contain nitrogen and the reactivity with the etching solution was low.
 また、実験例1-5は、酸素の供給量が比較例である実験例1-3と同じであるが、溶解試験評価において△となることが確認できた。これは、黒化層を成膜する際に、窒素も同時に供給したことにより黒化層のエッチング液に対する反応性が高くなったためと考えられる。 In addition, Experimental Example 1-5 has the same oxygen supply amount as Experimental Example 1-3, which is a comparative example, but it was confirmed that Δ was obtained in the dissolution test evaluation. This is presumably because the reactivity of the blackened layer to the etching solution was increased by simultaneously supplying nitrogen when forming the blackened layer.
 波長550nmの光に対する反射率はいずれの実験例でも低くなっていることが確認できたが、実験例1-3を除く実験例1-1、1-2、1-4~1-7の中では、実験例1-1、1-2、1-5~1-7の導電性基板において反射率が40%以下と特に低くなっていることが確認できた。これは黒化層を成膜する際に酸素を十分に供給したため、黒化層が光の反射を抑制できる色となったためと考えられる。
[実験例2]
 後述する試料の作製条件に基づいて作製した導電性基板について、以下の評価方法により評価を行った。
(評価方法)
(1)反射率、溶解試験
 反射率、溶解試験については実験例1で説明した方法により測定を行ったため説明を省略する。
(2)比抵抗
 以下の各実験例に示した導電性基板の作製条件と、黒化層の膜厚を500nmとした点と、銅層を形成しなかった点以外は同じ条件で透明基材上に黒化層のみを形成した試料(以下同様の試料を「比抵抗等測定用試料」とも記載する)を作製して、黒化層の比抵抗の評価を行った。なお、後述する黒化層組成評価、EDS分析についても同様に比抵抗等測定用試料を用いて評価を行っている。
Although it was confirmed that the reflectance with respect to light having a wavelength of 550 nm was low in any of the experimental examples, the experimental examples 1-1, 1-2, and 1-4 to 1-7 except the experimental example 1-3. Thus, it was confirmed that the reflectance was particularly low at 40% or less in the conductive substrates of Experimental Examples 1-1, 1-2, and 1-5 to 1-7. This is presumably because oxygen was sufficiently supplied when the blackened layer was formed, so that the blackened layer became a color capable of suppressing light reflection.
[Experiment 2]
The conductive substrate prepared based on the sample preparation conditions described later was evaluated by the following evaluation method.
(Evaluation methods)
(1) Reflectance and dissolution test Since the reflectance and dissolution test were measured by the method described in Experimental Example 1, description thereof is omitted.
(2) Specific resistance Transparent substrate under the same conditions except for the conditions for producing the conductive substrate shown in the following experimental examples, the point that the thickness of the blackened layer was 500 nm, and the point that the copper layer was not formed A sample in which only the blackened layer was formed (hereinafter, a similar sample is also referred to as “sample for measuring specific resistance”) was produced, and the specific resistance of the blackened layer was evaluated. In addition, also about the blackening layer composition evaluation and EDS analysis which are mentioned later, it evaluates similarly using the sample for measurement, such as a specific resistance.
 比抵抗は、四探針法を用いて測定を行った。四探針法は測定する試料の表面に四本の針状電極を同一直線上に配置し、外側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定して抵抗を測定する方法である。測定に際しては四探針測定器(三菱化学株式会社製 型式:Loresta IP)を用いて測定を行った。 The specific resistance was measured using a four-point probe method. In the four-probe method, four needle-shaped electrodes are arranged on the same line on the surface of the sample to be measured, a constant current is passed between the two outer probes, and the potential difference between the two inner probes is measured. This is a method of measuring resistance. Measurement was performed using a four-point probe measuring instrument (Mitsubishi Chemical Co., Ltd. model: Loresta IP).
 そして、以下の式(1)に従い、四探針法を用いて測定した抵抗値(V/I)に補正係数RCF(Resistivity Correction Factor)および膜厚(t)をかけて比抵抗ρを算出した。
ρ=V/I×RCF×t・・・式(1)
(3)黒化層の組成評価
 黒化層の組成評価では各実験例に示した導電性基板の作製条件と、黒化層の膜厚を500nmとした点と、銅層を形成しなかった点以外は同じ条件で透明基材上に黒化層のみを形成した比抵抗等測定用試料をX線回折(XRD)測定に供し、得られたX線回折パターンにより行った。
Then, according to the following equation (1), the specific resistance ρ was calculated by multiplying the resistance value (V / I) measured using the four-probe method with a correction coefficient RCF (Resistency Correction Factor) and film thickness (t). .
ρ = V / I × RCF × t Formula (1)
(3) Composition evaluation of the blackened layer In the composition evaluation of the blackened layer, the production conditions of the conductive substrate shown in each experimental example, the point that the thickness of the blackened layer was 500 nm, and the copper layer were not formed. Except for the points, a specific resistance measurement sample in which only a blackened layer was formed on a transparent substrate under the same conditions was subjected to X-ray diffraction (XRD) measurement, and the obtained X-ray diffraction pattern was used.
 上述のように黒化層は透明基材であるポリエチレンテレフタレート樹脂(PET)製の基板上に形成されている。そして、測定に供した試料の黒化層は膜厚が500nmと薄いためX線回折測定を行った場合、黒化層だけではなく透明基材からの回折パターンが大きくなり、黒化層に含まれる材料の相同定が困難になる恐れがある。 As described above, the blackening layer is formed on a substrate made of polyethylene terephthalate resin (PET), which is a transparent substrate. And since the blackened layer of the sample used for the measurement has a thin film thickness of 500 nm, when X-ray diffraction measurement is performed, the diffraction pattern not only from the blackened layer but also from the transparent substrate becomes large and is included in the blackened layer It may be difficult to identify the phase of the material.
 ここで通常X線回折測定を行う際、X線の入射角に対して同心円状に複数のリング(デバイリング)が観察される。そしてランダムな配向の多結晶では強度の異なる複数のリングが観察され、同一のリング内では強度が略一定となる。これに対してランダムな配向の多結晶でない場合、すなわち配向をもつ場合、同心円状の複数のリングが観察されるが、同一のリング内で強度が一定でなく、濃淡ができる。また、単結晶ではスポットになり、これは電子線回折パターンに一致する。 Here, when performing normal X-ray diffraction measurement, a plurality of rings (Debye rings) are observed concentrically with respect to the incident angle of X-rays. In a randomly oriented polycrystal, a plurality of rings having different strengths are observed, and the strength is substantially constant in the same ring. On the other hand, when it is not a polycrystal with random orientation, that is, when it has orientation, a plurality of concentric rings are observed, but the intensity is not constant within the same ring, and shading can be achieved. Moreover, it becomes a spot in the single crystal, which matches the electron beam diffraction pattern.
 そして、透明基材が単結晶、又は配向をもつ場合このX線回折パターンの性質を用いてパターンを分離することができる。 When the transparent substrate has a single crystal or orientation, the pattern can be separated using the property of the X-ray diffraction pattern.
 透明基材として用いたPETは延伸方向で配向が異なるので同一のデバイリング内に濃淡ができる。具体的には、透明基材であるPETの二次元のX線回折パターンを測定したところ、膜の垂直方向にはPETの回折強度が大きくなることが確認できた。 Since PET used as a transparent substrate has different orientation in the stretching direction, light and shade can be formed in the same Debye ring. Specifically, when a two-dimensional X-ray diffraction pattern of PET, which is a transparent substrate, was measured, it was confirmed that the diffraction intensity of PET increased in the vertical direction of the film.
 そこで透明基材からの回折パターンを黒化層の回折パターンから分離するため、試料のX線回折パターンを測定する際、測定する試料を水平面からψ=40deg.となるように傾けてX線回折測定を実施した。 Therefore, in order to separate the diffraction pattern from the transparent substrate from the diffraction pattern of the blackened layer, when measuring the X-ray diffraction pattern of the sample, the sample to be measured is ψ = 40 deg. The X-ray diffraction measurement was carried out by tilting to
 測定はX線回折装置(Brucker製 型式:D8 DISCOVER μ-HR)を用いて実施した。得られたX線回折パターンから相同定を行い、黒化層に含まれる主相を特定した。
(4)EDS分析
 EDS分析は各実験例に示した導電性基板の作製条件と、黒化層の膜厚を500nmとした点と、銅層を形成しなかった点以外は同じ条件で透明基材上に黒化層のみを形成した比抵抗等測定用試料を用い、SEM-EDS装置(SEM:日本電子株式会社製 型式:JSM-7001F、EDS:サーモフィッシャーサイエンティフィック株式会社製 型式:検出器 UltraDry 解析システム NORAN System 7)により行った。
(試料の作製条件)
 以下に各実験例における導電性基板の製造条件を示す。実験例2-3~2-7が実施例であり、実験例2-1、2-2が比較例となる。
[実験例2-1]
 図1(a)に示した構造を有する導電性基板を作製した。
The measurement was performed using an X-ray diffractometer (Brucker model: D8 DISCOVER μ-HR). Phase identification was performed from the obtained X-ray diffraction pattern, and the main phase contained in the blackened layer was specified.
(4) EDS analysis The EDS analysis was performed under the same conditions except that the conductive substrate production conditions shown in each experimental example, the thickness of the blackened layer was 500 nm, and the copper layer was not formed. SEM-EDS apparatus (SEM: manufactured by JEOL Ltd. Model: JSM-7001F, EDS: manufactured by Thermo Fisher Scientific Co., Ltd. Model: Detection) This was carried out using a device UltraDry analysis system NORAN System 7).
(Sample preparation conditions)
The manufacturing conditions of the conductive substrate in each experimental example are shown below. Experimental examples 2-3 to 2-7 are examples, and experimental examples 2-1 and 2-2 are comparative examples.
[Experimental Example 2-1]
A conductive substrate having the structure shown in FIG.
 まず、縦5cm、横5cm、厚さ0.02mmのポリエチレンテレフタレート樹脂(PET)製の透明基材11を準備した。 First, a transparent substrate 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was prepared.
 次に透明基材11の一方の面の全面に銅層12を形成した。銅層12は、スパッタリング法により銅薄膜層を形成し、次いで、該銅薄膜層を給電層として湿式めっき法により銅めっき層を形成した。具体的にはまず、Cuターゲット(住友金属鉱山株式会社製)を用いた直流スパッタリング法により、透明基材11の一方の面上に100nmの厚さの銅薄膜層を成膜した。その後、電気めっきにより銅めっき層を0.5μm積層し、銅層12とした。 Next, a copper layer 12 was formed on the entire surface of one side of the transparent substrate 11. The copper layer 12 formed a copper thin film layer by a sputtering method, and then formed a copper plating layer by a wet plating method using the copper thin film layer as a power feeding layer. Specifically, a copper thin film layer having a thickness of 100 nm was first formed on one surface of the transparent substrate 11 by a direct current sputtering method using a Cu target (manufactured by Sumitomo Metal Mining Co., Ltd.). Thereafter, a copper plating layer was laminated by 0.5 μm by electroplating to form a copper layer 12.
 次に、銅層12上の全面に直流スパッタリング法により黒化層13を成膜した。 Next, a blackened layer 13 was formed on the entire surface of the copper layer 12 by a direct current sputtering method.
 黒化層13の成膜はスパッタリング装置(芝浦メカトロニクス株式会社製 型式:CFS-4ES-2)を用いて行った。 The blackening layer 13 was formed using a sputtering apparatus (model: CFS-4ES-2 manufactured by Shibaura Mechatronics Co., Ltd.).
 スパッタリングの具体的な条件について以下に説明する。 Specific conditions for sputtering will be described below.
 ターゲットとしてタングステンを19重量%含み、残部がニッケルからなるニッケル-タングステン合金ターゲットを用いた。チャンバー内にはアルゴンを15SCCMになるように供給しながらスパッタリングを行った。なお、スパッタリング前のチャンバー内の到達真空度は1×10-3Paとした。 A nickel-tungsten alloy target containing 19% by weight of tungsten and the balance being nickel was used as the target. Sputtering was performed while supplying argon into the chamber so as to have 15 SCCM. The ultimate vacuum in the chamber before sputtering was 1 × 10 −3 Pa.
 チャンバー内に、上記銅層12を形成した透明基材11の銅層12がターゲットと対向し、銅層12とターゲットとの間の距離が85mmになるように設置し、銅層12を形成した透明基材11を15rpmで回転させながらスパッタリングを行った。スパッタリングにより黒化層の成膜を行う際、DC電源によって、ターゲットに電流0.6A、電圧330V(電力値約200W)を印加した。 In the chamber, the copper layer 12 of the transparent base material 11 on which the copper layer 12 was formed was placed so as to face the target, and the distance between the copper layer 12 and the target was 85 mm, thereby forming the copper layer 12. Sputtering was performed while rotating the transparent substrate 11 at 15 rpm. When the blackening layer was formed by sputtering, a current of 0.6 A and a voltage of 330 V (power value of about 200 W) were applied to the target by a DC power source.
 上記スパッタリング法により、厚さ30nmの黒化層13を成膜した。なお、説明の便宜上、成膜した層を黒化層13として説明しているが、後述するように成膜されたのはNiを主相とする層であり、金属光沢を有しているため、黒化層13としては機能しない層となっている。 The blackened layer 13 having a thickness of 30 nm was formed by the sputtering method. For convenience of explanation, the layer formed is described as the blackened layer 13, but the layer formed as described later is a layer having Ni as a main phase and has a metallic luster. The blackening layer 13 does not function.
 以上の工程により得られた導電性基板について反射率測定と、溶解試験を実施した。反射率と、溶解試験の評価結果を表2に示す。 The reflectance measurement and the dissolution test were performed on the conductive substrate obtained by the above steps. Table 2 shows the reflectance and the evaluation results of the dissolution test.
 また、比抵抗の測定と、黒化層の組成評価とを行うための比抵抗等測定用試料を作製した。 In addition, a specific resistance measurement sample for measuring the specific resistance and evaluating the composition of the blackened layer was prepared.
 比抵抗等測定用試料は、上述した透明基材11と同じ縦5cm、横5cm、厚さ0.02mmのポリエチレンテレフタレート樹脂(PET)製の透明基材11を用いた。そして、透明基材11の一方の面の全面に黒化層13を膜厚が500nmとなるように成膜し、銅層12を形成しなかった点以外は上述の手順と同様にして試料を作製し、評価に供した。 As a sample for measuring specific resistance and the like, a transparent base material 11 made of polyethylene terephthalate resin (PET) having a length of 5 cm, a width of 5 cm, and a thickness of 0.02 mm was used. Then, the blackened layer 13 was formed on the entire surface of one surface of the transparent substrate 11 so as to have a film thickness of 500 nm, and the sample was prepared in the same manner as described above except that the copper layer 12 was not formed. It produced and used for evaluation.
 比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。
[実験例2-2]
 黒化層13を成膜する際、チャンバー内に窒素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素50体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。なお、本実験例においても説明の便宜上、ここで成膜した層を黒化層13として説明しているが、ここで黒化層13として成膜した層は酸素を含有しないため光の反射を抑制できる色とはなっておらず、黒化層としての機能は果たさなかった。
Table 2 shows the measurement results of the specific resistance and the main phase of the blackened layer identified by the X-ray diffraction measurement.
[Experimental example 2-2]
When the blackening layer 13 is formed, nitrogen and argon are supplied into the chamber to a total of 15 SCCM, and each gas is supplied to the chamber so that 50% by volume of nitrogen and the remainder are argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that sputtering was performed. Moreover, the produced sample was evaluated. In the present experimental example, the layer formed here is described as the blackened layer 13 for convenience of explanation, but the layer formed as the blackened layer 13 here does not contain oxygen and therefore reflects light. It was not a color that could be suppressed, and did not function as a blackened layer.
 溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。
[実験例2-3]
 黒化層13を成膜する際、チャンバー内に窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素45体積%、酸素5体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。
Table 2 shows the results of the dissolution test evaluation results, the specific resistance measurement results, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
[Experimental Example 2-3]
When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM. The chamber is 45% by volume nitrogen, 5% by volume oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
 反射率と、溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。 Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
 また、比抵抗等測定用試料の黒化層についてEDS分析を行ったところ、黒化層が酸素、窒素、ニッケル、及びタングステンを含有することを確認できた。
[実験例2-4]
 黒化層13を成膜する際、チャンバー内に窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素30体積%、酸素5体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。
Further, when EDS analysis was performed on the blackened layer of the measurement sample such as the specific resistance, it was confirmed that the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
[Experimental Example 2-4]
When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM. The chamber is 30% by volume of nitrogen, 5% by volume of oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
 溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。 Table 2 shows the results of the dissolution test evaluation results, the specific resistance measurement results, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
 また、比抵抗等測定用試料の黒化層についてEDS分析を行ったところ、黒化層が酸素、窒素、ニッケル、及びタングステンを含有することを確認できた。
[実験例2-5]
 黒化層13を成膜する際、チャンバー内に窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素40体積%、酸素10体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。
Further, when EDS analysis was performed on the blackened layer of the measurement sample such as the specific resistance, it was confirmed that the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
[Experimental Example 2-5]
When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM. The chamber is 40% by volume nitrogen, 10% by volume oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
 反射率と、溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。 Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
 また、比抵抗等測定用試料の黒化層についてEDS分析を行ったところ、黒化層が酸素、窒素、ニッケル、及びタングステンを含有することを確認できた。
[実験例2-6]
 黒化層13を成膜する際、チャンバー内に窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素37体積%、酸素13体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。
Further, when EDS analysis was performed on the blackened layer of the measurement sample such as the specific resistance, it was confirmed that the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
[Experimental Example 2-6]
When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount becomes 15 SCCM. The chamber is 37% by volume of nitrogen, 13% by volume of oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
 反射率と、溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。 Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
 また、比抵抗等測定用試料の黒化層についてEDS分析を行ったところ、黒化層が酸素、窒素、ニッケル、及びタングステンを含有することを確認できた。
[実験例2-7]
 黒化層13を成膜する際、チャンバー内に窒素と、酸素と、アルゴンとを合計で15SCCMになるように供給しながら行い、チャンバーには窒素10体積%、酸素40体積%、残部がアルゴンになるように各ガスを供給し、スパッタリングを行った点以外は実験例2-1と同様にして導電性基板、及び比抵抗等測定用試料を作製した。また、作製した試料について評価を行った。
Further, when EDS analysis was performed on the blackened layer of the measurement sample such as the specific resistance, it was confirmed that the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
[Experimental Example 2-7]
When the blackening layer 13 is formed, nitrogen, oxygen, and argon are supplied into the chamber so that the total amount is 15 SCCM. The chamber is 10% by volume of nitrogen, 40% by volume of oxygen, and the balance is argon. A conductive substrate and a sample for measuring specific resistance and the like were prepared in the same manner as in Experimental Example 2-1, except that each gas was supplied and sputtering was performed. Moreover, the produced sample was evaluated.
 反射率と、溶解試験の評価結果、および比抵抗の測定結果と、X線回折測定により同定された黒化層の主相について表2に結果を示す。 Table 2 shows the results of the reflectance, the evaluation results of the dissolution test, the measurement results of the specific resistance, and the main phase of the blackened layer identified by the X-ray diffraction measurement.
 また、比抵抗等測定用試料の黒化層についてEDS分析を行ったところ、黒化層が酸素、窒素、ニッケル、及びタングステンを含有することを確認できた。 Further, when the EDS analysis was performed on the blackened layer of the measurement sample such as the specific resistance, it was confirmed that the blackened layer contained oxygen, nitrogen, nickel, and tungsten.
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果によると、実験例2-1~2-7についてはいずれも、溶解試験において評価が○または△となっており、銅層及び黒化層を同時に溶解することができた。
Figure JPOXMLDOC01-appb-T000002
According to the results shown in Table 2, all of Experimental Examples 2-1 to 2-7 were evaluated as ◯ or Δ in the dissolution test, and the copper layer and the blackened layer could be dissolved simultaneously. .
 しかしながら、比較例である実験例2-1、2-2については、黒化層13は酸素を含有していないため黒化層として機能しなかった。具体的には実験例2-1については黒化層が窒素も含有していないため、金属Niが黒化層の主相となっており、金属光沢を有し、光の反射を抑制する効果は何ら有していなかった。また、実験例2-2については黒化層として形成した層は酸素を含有していないため、光の反射を抑制できる色になっておらず黒化層として機能しなかった。なお、実験例2-1、2-2においては説明の便宜上黒化層との用語を用いているが、上述のように黒化層として機能するものではなかった。 However, in Experimental Examples 2-1 and 2-2 which are comparative examples, the blackened layer 13 did not function as a blackened layer because it did not contain oxygen. Specifically, in Experimental Example 2-1, since the blackened layer does not contain nitrogen, metal Ni is the main phase of the blackened layer, has a metallic luster, and suppresses reflection of light. Did not have anything. In Experimental Example 2-2, since the layer formed as the blackened layer did not contain oxygen, it did not have a color capable of suppressing light reflection and did not function as a blackened layer. In Experimental Examples 2-1 and 2-2, the term blackened layer is used for convenience of explanation, but it did not function as a blackened layer as described above.
 実験例2-1から実験例2-2~実験例2-7の順に、黒化層を成膜する際の酸素濃度が高くなるようにして黒化層の成膜条件を選択している。これらの実験例についてX線回折測定により同定された黒化層の主相は、まず、黒化層を成膜する際に窒素及び酸素を供給しなかった実験例2-1では金属Niが黒化層の主相となっている。そして、黒化層成膜時に窒素の供給を行った実験例2-2以降では黒化層の主相としてNiNが観察され、さらに黒化層成膜時の酸素の供給量を増加した、実験例2-5~実験例2-7では、黒化層の主相がNiOに変化することが確認できた。 In order of Experimental Example 2-1 to Experimental Example 2-2 to Experimental Example 2-7, the film forming conditions for the blackened layer are selected such that the oxygen concentration when forming the blackened layer is increased. The main phase of the blackened layer identified by X-ray diffraction measurement for these experimental examples is that the metal Ni is black in Experimental Example 2-1, in which nitrogen and oxygen were not supplied when the blackened layer was formed. It is the main phase of the chemical layer. Then, in Experimental Example 2-2 and later in which nitrogen was supplied during the blackening layer formation, Ni 3 N was observed as the main phase of the blackening layer, and the supply amount of oxygen during the blackening layer formation was further increased. In Experimental Examples 2-5 to 2-7, it was confirmed that the main phase of the blackened layer was changed to NiO.
 そして、実施例のうち、黒化層成膜時の酸素濃度が15体積%以下である実験例2-3~実験例2-6においては黒化層の比抵抗が2.00×10-2Ω・cm以下と低くなっていることを確認できた。 In Examples 2-3 to 2-6, the specific resistance of the blackened layer is 2.00 × 10 −2 in the examples in which the oxygen concentration during film formation of the blackened layer is 15% by volume or less. It was confirmed that the resistance was as low as Ω · cm or less.
 以上に導電性基板、及び導電性基板の製造方法を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the conductive substrate and the method for manufacturing the conductive substrate have been described in the embodiments and examples, the present invention is not limited to the above-described embodiments and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.
 本出願は、2013年10月31日に日本国特許庁に出願された特願2013-227517号、及び2014年3月31日に日本国特許庁に出願された特願2014-074591号に基づく優先権を主張するものであり、特願2013-227517号、及び特願2014-074591号の全内容を本国際出願に援用する。 This application is based on Japanese Patent Application No. 2013-227517 filed with the Japan Patent Office on October 31, 2013, and Japanese Patent Application No. 2014-075991 filed with the Japan Patent Office on March 31, 2014. The contents of Japanese Patent Application No. 2013-227517 and Japanese Patent Application No. 2014-075991 are incorporated herein by reference.
10A、10B、20A、20B、30、60        導電性基板
11、11A、11B                   透明基材
12、12A、12B                   銅層
13、13A、13B、131、132、131A、131B、132A、132B、32A、32B                       黒化層
31A、31B                      配線
10A, 10B, 20A, 20B, 30, 60 Conductive substrate 11, 11A, 11B Transparent base material 12, 12A, 12B Copper layer 13, 13A, 13B, 131, 132, 131A, 131B, 132A, 132B, 32A, 32B Blackening layer 31A, 31B Wiring

Claims (13)

  1.  透明基材と、
     前記透明基材の少なくとも一方の面側に形成された銅層と、
     前記透明基材の少なくとも一方の面側に形成され、酸素、窒素、ニッケル、及びタングステンを含有する黒化層と、を備えた導電性基板。
    A transparent substrate;
    A copper layer formed on at least one surface of the transparent substrate;
    And a blackened layer formed on at least one surface of the transparent base material and containing oxygen, nitrogen, nickel, and tungsten.
  2.  前記黒化層は、
     ニッケル-タングステン合金のターゲットを用い、
     チャンバー内に酸素を5体積%以上20体積%以下、窒素を30体積%以上55体積%以下の割合で供給しながらスパッタリング法により成膜される請求項1に記載の導電性基板。
    The blackening layer is
    Using a nickel-tungsten alloy target,
    2. The conductive substrate according to claim 1, wherein the conductive substrate is formed by a sputtering method while supplying oxygen in a ratio of 5 to 20% by volume and nitrogen in a ratio of 30 to 55% by volume in the chamber.
  3.  前記ニッケル-タングステン合金のターゲットは、タングステンを5重量%以上30重量%以下の割合で含んでいる請求項2に記載の導電性基板。 The conductive substrate according to claim 2, wherein the target of the nickel-tungsten alloy contains tungsten in a proportion of 5 wt% to 30 wt%.
  4.  前記黒化層は比抵抗が2.00×10-2Ω・cm以下である請求項1乃至3いずれか一項に記載の導電性基板。 4. The conductive substrate according to claim 1, wherein the blackened layer has a specific resistance of 2.00 × 10 −2 Ω · cm or less.
  5.  前記銅層は厚さが50nm以上であり、
     前記黒化層は厚さが15nm以上である請求項1乃至4いずれか一項に記載の導電性基板。
    The copper layer has a thickness of 50 nm or more,
    The conductive substrate according to claim 1, wherein the blackened layer has a thickness of 15 nm or more.
  6.  波長550nmの光の反射率が40%以下である請求項1乃至5のいずれか一項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 5, wherein the reflectance of light having a wavelength of 550 nm is 40% or less.
  7.  メッシュ状の配線を備えた請求項1乃至6のいずれか一項に記載の導電性基板。 The electroconductive board | substrate as described in any one of Claims 1 thru | or 6 provided with the mesh-shaped wiring.
  8.  透明基材を準備する透明基材準備工程と、
     前記透明基材の少なくとも一方の面側に銅層を形成する銅層形成工程と、
     前記透明基材の少なくとも一方の面側に、酸素、窒素、ニッケル、及びタングステンを含有する黒化層を形成する黒化層形成工程と、を有する導電性基板の製造方法。
    A transparent substrate preparation step of preparing a transparent substrate;
    A copper layer forming step of forming a copper layer on at least one surface side of the transparent substrate;
    And a blackening layer forming step of forming a blackening layer containing oxygen, nitrogen, nickel, and tungsten on at least one surface side of the transparent base material.
  9.  前記黒化層形成工程は、
     ニッケル-タングステン合金のターゲットを用い、
     チャンバー内に酸素を5体積%以上20体積%以下、窒素を30体積%以上55体積%以下の割合で供給しながらスパッタリング法により、前記黒化層を成膜する請求項8に記載の導電性基板の製造方法。
    The blackening layer forming step includes
    Using a nickel-tungsten alloy target,
    9. The conductivity according to claim 8, wherein the blackened layer is formed by a sputtering method while supplying oxygen in a ratio of 5 volume% to 20 volume% and nitrogen in a ratio of 30 volume% to 55 volume% in the chamber. A method for manufacturing a substrate.
  10.  前記ニッケル-タングステン合金のターゲットは、タングステンを5重量%以上30重量%以下の割合で含んでいる請求項9に記載の導電性基板の製造方法。 10. The method for manufacturing a conductive substrate according to claim 9, wherein the target of the nickel-tungsten alloy contains tungsten in a proportion of 5 wt% to 30 wt%.
  11.  前記銅層は厚さが50nm以上であり、
     前記黒化層は厚さが15nm以上である請求項8乃至10のいずれか一項に記載の導電性基板の製造方法。
    The copper layer has a thickness of 50 nm or more,
    The method for manufacturing a conductive substrate according to claim 8, wherein the blackened layer has a thickness of 15 nm or more.
  12.  得られる導電性基板の波長550nmの光の反射率が40%以下である請求項8乃至11のいずれか一項に記載の導電性基板の製造方法。 The method for producing a conductive substrate according to any one of claims 8 to 11, wherein the obtained conductive substrate has a light reflectance of 40% or less at a wavelength of 550 nm.
  13.  前記銅層と、前記黒化層と、をエッチングすることにより、配線を形成するエッチング工程をさらに有し、
     得られる導電性基板がメッシュ状の配線を備える請求項8乃至12のいずれか一項に記載の導電性基板の製造方法。
    Etching the copper layer and the blackened layer further includes an etching step of forming a wiring;
    The manufacturing method of the conductive substrate as described in any one of Claims 8 thru | or 12 with which the conductive substrate obtained comprises a mesh-shaped wiring.
PCT/JP2014/078817 2013-10-31 2014-10-29 Electrically conductive substrate and method for manufacturing electrically conductive substrate WO2015064664A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015545281A JP6330818B2 (en) 2013-10-31 2014-10-29 Conductive substrate, method for manufacturing conductive substrate
CN201480059111.8A CN105706182B (en) 2013-10-31 2014-10-29 The manufacture method of conductive board, conductive board
KR1020167012918A KR102170097B1 (en) 2013-10-31 2014-10-29 Electrically conductive substrate and method for manufacturing electrically conductive substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-227517 2013-10-31
JP2013227517 2013-10-31
JP2014-074591 2014-03-31
JP2014074591 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015064664A1 true WO2015064664A1 (en) 2015-05-07

Family

ID=53004263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078817 WO2015064664A1 (en) 2013-10-31 2014-10-29 Electrically conductive substrate and method for manufacturing electrically conductive substrate

Country Status (5)

Country Link
JP (1) JP6330818B2 (en)
KR (1) KR102170097B1 (en)
CN (1) CN105706182B (en)
TW (1) TWI646870B (en)
WO (1) WO2015064664A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196298A (en) * 2014-03-31 2015-11-09 住友金属鉱山株式会社 Conductive substrate and method for manufacturing conductive substrate
WO2016190224A1 (en) * 2015-05-25 2016-12-01 住友金属鉱山株式会社 Blackening plating solution and conductive substrate
CN106249938A (en) * 2015-06-04 2016-12-21 住友金属矿山股份有限公司 Conductive board and the manufacture method of conductive board
JP2016218913A (en) * 2015-05-25 2016-12-22 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate
JP2017008405A (en) * 2015-06-25 2017-01-12 住友金属鉱山株式会社 Method for producing conductive substrate
JP2017045239A (en) * 2015-08-26 2017-03-02 住友金属鉱山株式会社 Method for manufacturing conductive substrate
WO2017057262A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Conductive substrate
JP2017185689A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate
CN107850965A (en) * 2015-07-31 2018-03-27 住友金属矿山股份有限公司 The manufacture method of conductive board, conductive board
CN107850966A (en) * 2015-07-31 2018-03-27 住友金属矿山股份有限公司 Conductive board
CN107924253A (en) * 2015-08-26 2018-04-17 住友金属矿山股份有限公司 Conductive board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595507B (en) * 2014-06-18 2017-08-11 Geomatec Co Ltd Laminates, methods of making the same, and electronic machines
JP7049759B2 (en) * 2016-07-12 2022-04-07 住友金属鉱山株式会社 Laminated board, conductive board, method of manufacturing laminated board, method of manufacturing conductive board
CN106445225A (en) * 2016-08-03 2017-02-22 深圳市骏达光电股份有限公司 Touch screen and processing method thereof
CN109375815A (en) * 2018-11-16 2019-02-22 信利光电股份有限公司 A kind of the melanism method and metal grill touch screen of metal grill touch screen
CN109857276A (en) * 2019-01-31 2019-06-07 信利光电股份有限公司 A kind of reduction metal grill touch screen lines visibility structures and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050892A (en) * 2000-07-31 2002-02-15 Mitsubishi Rayon Co Ltd Mesh structure, electromagnetic wave shield filter and its producing method
JP2006074052A (en) * 2004-09-01 2006-03-16 Samsung Corning Co Ltd Electromagnetic wave shielding film and its forming method
JP2008311565A (en) * 2007-06-18 2008-12-25 Dainippon Printing Co Ltd Composite filter for display
JP2013096003A (en) * 2011-11-04 2013-05-20 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901032A4 (en) * 1996-02-26 2000-01-12 Kuramoto Seisakusho Co Ltd Low reflectance film-carrying substrate
JP4086132B2 (en) 2001-11-16 2008-05-14 株式会社ブリヂストン Transparent conductive film and touch panel
JP5361579B2 (en) 2009-07-09 2013-12-04 信越ポリマー株式会社 Sensor panel for large display and manufacturing method thereof
JP2013069261A (en) 2011-09-08 2013-04-18 Dainippon Printing Co Ltd Electrode substrate for touch panel, touch panel, and image display device
EP2767985B1 (en) * 2012-08-31 2016-09-07 LG Chem, Ltd. Conductive structure and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050892A (en) * 2000-07-31 2002-02-15 Mitsubishi Rayon Co Ltd Mesh structure, electromagnetic wave shield filter and its producing method
JP2006074052A (en) * 2004-09-01 2006-03-16 Samsung Corning Co Ltd Electromagnetic wave shielding film and its forming method
JP2008311565A (en) * 2007-06-18 2008-12-25 Dainippon Printing Co Ltd Composite filter for display
JP2013096003A (en) * 2011-11-04 2013-05-20 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196298A (en) * 2014-03-31 2015-11-09 住友金属鉱山株式会社 Conductive substrate and method for manufacturing conductive substrate
WO2016190224A1 (en) * 2015-05-25 2016-12-01 住友金属鉱山株式会社 Blackening plating solution and conductive substrate
JP2016218913A (en) * 2015-05-25 2016-12-22 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate
CN106249938B (en) * 2015-06-04 2019-02-12 住友金属矿山股份有限公司 The manufacturing method of conductive board and conductive board
CN106249938A (en) * 2015-06-04 2016-12-21 住友金属矿山股份有限公司 Conductive board and the manufacture method of conductive board
JP2017002328A (en) * 2015-06-04 2017-01-05 住友金属鉱山株式会社 Conductive substrate, and production method of conductive substrate
JP2017008405A (en) * 2015-06-25 2017-01-12 住友金属鉱山株式会社 Method for producing conductive substrate
CN107850965A (en) * 2015-07-31 2018-03-27 住友金属矿山股份有限公司 The manufacture method of conductive board, conductive board
JPWO2017022573A1 (en) * 2015-07-31 2018-05-24 住友金属鉱山株式会社 Conductive substrate
CN107850966A (en) * 2015-07-31 2018-03-27 住友金属矿山股份有限公司 Conductive board
CN107924253B (en) * 2015-08-26 2022-07-01 住友金属矿山股份有限公司 Conductive substrate
CN107924253A (en) * 2015-08-26 2018-04-17 住友金属矿山股份有限公司 Conductive board
JP2017045239A (en) * 2015-08-26 2017-03-02 住友金属鉱山株式会社 Method for manufacturing conductive substrate
CN108027688A (en) * 2015-09-30 2018-05-11 住友金属矿山株式会社 Conductive board
KR20180061171A (en) * 2015-09-30 2018-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive substrate
JPWO2017057262A1 (en) * 2015-09-30 2018-08-16 住友金属鉱山株式会社 Conductive substrate
WO2017057262A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Conductive substrate
KR102533946B1 (en) 2015-09-30 2023-05-17 스미토모 긴조쿠 고잔 가부시키가이샤 conductive substrate
JP2017185689A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate

Also Published As

Publication number Publication date
CN105706182B (en) 2017-07-28
KR20160081925A (en) 2016-07-08
TW201540137A (en) 2015-10-16
JP6330818B2 (en) 2018-05-30
TWI646870B (en) 2019-01-01
CN105706182A (en) 2016-06-22
KR102170097B1 (en) 2020-10-26
JPWO2015064664A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6330818B2 (en) Conductive substrate, method for manufacturing conductive substrate
US10168842B2 (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
JP6380057B2 (en) Conductive substrate and method for manufacturing the same
JP6369393B2 (en) Conductive substrate and method for manufacturing conductive substrate
KR102386048B1 (en) Conductive substrate and method for manufacturing conductive substrate
JP6164145B2 (en) Conductive substrate, method for manufacturing conductive substrate
WO2016175095A1 (en) Conductive substrate and liquid crystal touch panel
JP6597139B2 (en) Blackening plating solution, conductive substrate
JP6365422B2 (en) Method for manufacturing conductive substrate
WO2016190224A1 (en) Blackening plating solution and conductive substrate
JP6595766B2 (en) Conductive substrate and method for manufacturing conductive substrate
JP2015151594A (en) Method for forming thin line pattern and method for manufacturing conductive substrate
JP2017084265A (en) Manufacturing method of conductive substrate
WO2017130869A1 (en) Blackening plating solution and method for manufacturing conductive substrate
WO2018193940A1 (en) Conductive substrate
JP6595762B2 (en) Conductive substrate and method for manufacturing conductive substrate
TWI791427B (en) Blackening plating solution and method of manufacturing conductive substrate
WO2017130867A1 (en) Conductive substrate
TWI702522B (en) Conductive substrate and manufacturing method of conductive substrate
JPWO2018193935A1 (en) Conductive substrate, method of manufacturing conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167012918

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14856817

Country of ref document: EP

Kind code of ref document: A1