WO2015064535A1 - 制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池 - Google Patents

制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池 Download PDF

Info

Publication number
WO2015064535A1
WO2015064535A1 PCT/JP2014/078488 JP2014078488W WO2015064535A1 WO 2015064535 A1 WO2015064535 A1 WO 2015064535A1 JP 2014078488 W JP2014078488 W JP 2014078488W WO 2015064535 A1 WO2015064535 A1 WO 2015064535A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
lead
mass
lead battery
control valve
Prior art date
Application number
PCT/JP2014/078488
Other languages
English (en)
French (fr)
Inventor
響子 平井
河添 宏
広喜 葛岡
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015064535A1 publication Critical patent/WO2015064535A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control valve type lead-acid battery separator and a control valve type lead-acid battery using the same.
  • control valve type lead storage batteries are used for uninterruptible power supplies and power storage applications.
  • the electrolyte of the control valve type lead-acid battery is usually retained in a separator.
  • the specific gravity of the electrolytic solution decreases and the pH also tends to increase.
  • lead sulfate produced in the electrode plate by discharge is deposited in the electrolyte.
  • dendritic lead crystals may grow on the negative electrode side.
  • lead sulfate is deposited in the separator.
  • the separator of the present invention is characterized in that it contains glass fiber and at least one clay mineral selected from imogolite, sepiolite, kaolin, and saponite.
  • the separator of the present invention preferably uses ultrafine glass fibers from the viewpoint of difficulty in short-circuiting. This increases the density of the separator itself. A plurality of fibers may be combined.
  • the ultrafine glass fiber preferably has a fiber diameter of 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the thickness of the separator is preferably 0.3 to 3.0 mm, although it depends on the size of the battery. This can be applied to various lead-acid batteries.
  • the porous substrate is preferably made from a papermaking product. This makes it easy to improve the strength and battery characteristics, and facilitates cost reduction and thickness control. Further, the separator may be produced by a plurality of paper making processes or may be produced at a time.
  • the present invention adsorbs lead ions in the neutral region and releases lead ions in the acidic region, thereby preventing lead from permanently fixing to the separator.
  • the present invention is a control valve type lead-acid battery comprising the above-described control valve-type lead acid battery separator, so that it is possible to prevent lead from permanently fixing to the separator, thus preventing a permeation short circuit and a long life. Make it possible.
  • the present invention it is possible to provide a lead-acid battery that permanently prevents a short circuit during overdischarge and has an excellent long life.
  • the separator for a control valve type lead-acid battery of the present invention contains glass fiber and at least one clay mineral selected from imogolite, sepiolite, kaolin, and saponite.
  • the glass fiber is preferably alkali glass.
  • the fiber diameter of the glass fiber is not particularly limited, but the number average fiber diameter is preferably 0.5 to 5.0 ⁇ m, more preferably 0.5 to 4.0 ⁇ m, and 0.5 to 2 More preferably, it is 0.0 ⁇ m.
  • the fiber diameter of the glass fiber is 0.5 ⁇ m or more, it tends to be a uniform pore diameter, and if it exceeds 5.0 ⁇ m, the structure becomes brittle.
  • the fiber length of the glass fiber is not particularly limited, but the number average fiber length is preferably 1.0 ⁇ m to 30 mm, more preferably 100 ⁇ m to 20 mm, and further preferably 500 ⁇ m to 10 mm.
  • an electrochemical separator having sufficiently high strength for example, 1 MPa or more
  • it tends to be easy to obtain good papermaking properties at the time of papermaking described later.
  • the number average fiber diameter and the number average fiber length of the fibers are determined by direct observation using, for example, a dynamic image analysis method, a laser scanning method (for example, conforming to JIS L1081), a scanning electron microscope, or the like. be able to. Specifically, the fiber diameter and the fiber length can be obtained by observing about 50 fibers using these methods and taking the average value.
  • the glass fiber content is not particularly limited, but is preferably 1 to 99% by mass, more preferably 50 to 95% by mass, and 70 to 95% by mass based on the total mass of the separator. More preferably.
  • the glass fiber content is more preferably 70% by mass or more, both sufficient strength and liquid retention tend to be obtained, and by 95% by mass or less, strength, liquid retention, cycle There is a tendency to achieve both properties.
  • the separator for a valve-regulated lead-acid battery of the present invention can have clay minerals present inside and outside the separator by mixing glass fiber and at least one clay mineral selected from imogolite, sepiolite, kaolin and saponite at the time of papermaking.
  • the clay mineral is entangled with the glass fiber, and the clay mineral can be non-uniformly present in the separator structure or on the separator surface.
  • light and shade may occur at the location in the separator, but there is no particular problem.
  • a resin may be used as necessary.
  • the glass fiber sheet prepared in advance is selected from at least one kind of clay mineral or imogolite sol, sepiolite sol, kaolin sol, saponite sol selected from imogolite, sepiolite, kaolin, saponite containing resin. At least one of the above is sprayed or applied, and a glass sheet is laminated thereon to form a layer.
  • the layered sheet is pressed by melting the resin at a temperature equal to or higher than the melting point by a roll press or the like.
  • the shape of at least one clay mineral selected from imogolite, sepiolite, kaolin, and saponite may be any of particles, gels, and fibers.
  • the content of at least one clay mineral selected from imogolite, sepiolite, kaolin, and saponite is preferably 1 to 99 mass%, more preferably 5 to 50 mass%, based on the total mass of the separator. More preferably, it is 5 to 30% by mass. Further, when the content of the clay mineral is preferably 30% by mass or less, the effect of the clay mineral tends to be sufficiently obtained, and by setting the content to 5% by mass or more, the liquid retention of the separator can be sufficiently ensured.
  • At least one clay mineral selected from imogolite, sepiolite, kaolin, and saponite can be provided while maintaining fine pores.
  • Clay minerals other than imogolite, sepiolite, kaolin, and saponite may be used in combination.
  • Examples of clay minerals other than imogolite, sepiolite, kaolin, and saponite include those made of electrically insulating metal oxides, metal nitrides, metal carbides, silicon oxides, and the like.
  • metal oxide examples include Al 2 O 3 , SiO 2 (except for fibrous ones), attapulgite, wollastonite, montmorillonite, mica, allophane, bentonite, talc, ZnO, TiO 2 , BaTiO 3 , ZrO. 2 and zeolite.
  • the pore diameter of the separator is 0.1 to 30 ⁇ m.
  • the pore diameter of the separator is preferably 0.1 to 30 ⁇ m, and more preferably 0.1 to 15 ⁇ m.
  • the pore diameter of the separator can be measured by a mercury intrusion method, a bubble point method (JIS K 3832), or the like.
  • ⁇ Method for producing separator for lead-acid battery> There is no restriction
  • This production method includes a step of preparing a slurry containing at least one kind of clay mineral selected from glass fiber, imogolite, sepiolite, kaolin, and saponite, and if necessary, a resin, and a step of making a paper by making the slurry.
  • Step for preparing slurry glass fiber and clay mineral are essential, and if necessary, other raw material components such as resin and pulp are dispersed in a predetermined dispersion medium to prepare slurry.
  • the adjustment of the slurry can be performed by, for example, a mixer, a ball mill, a pulper, or the like. Note that water is generally used as the dispersion medium. What is necessary is just to adjust content of each raw material component in a slurry so that content of each raw material component in the separator obtained may become said range.
  • the slurry may contain organic fibers or polymer particles as necessary.
  • organic fibers include natural fibers, regenerated fibers, and synthetic fibers.
  • the organic fiber for example, at least one selected from the group consisting of aramid fiber, polyamide fiber, polyester fiber, polyurethane fiber, polyacrylic fiber, polyethylene fiber, and polypropylene fiber is preferably used. These organic fibers may be used alone or in combination of two or more.
  • polymer particles it is possible to use at least one selected from the group consisting of polyolefin particles, polybutyl acrylate particles, crosslinked polymethyl methacrylate particles, polytetrafluoroethylene particles, benzoguanamine particles, crosslinked polyurethane particles, crosslinked polystyrene particles, and melamine particles. preferable. These polymer particles may be used alone or in combination of two or more. All the above polymer particle groups include those sulfonated.
  • the slurry may contain a surfactant.
  • the surfactant By including the surfactant, it becomes easy to disperse the raw material components when manufacturing the separator.
  • the surfactant may be decomposed in a subsequent heat treatment.
  • any of a silane coupling agent, a cationic surfactant, an anionic surfactant, and a nonionic surfactant may be used.
  • the content of the surfactant is preferably 0.01 to 5% by mass based on the total mass of the slurry.
  • an alkylammonium salt is preferably used, dioctyldimethylammonium chloride, didecyldimethylammonium chloride, dicocodimethylammonium chloride, coco (rectified) benzyldimethylammonium chloride, octadecyltrimethylammonium chloride, chloride.
  • anionic surfactants include carboxylates, N-acyl sarcosinates, alkane sulfonates, linear and branched alkyl aryl sulfonates, dialkyl sulfosuccinates, aryl sulfonates, naphthalene sulfonates, N Acyl-N-alkyl laurates, 2-sulfoethyl esters of fatty acids, olefin sulfonates, alkyl sulfates, sulfonated natural oils, sulfonated alkylphenol alkoxylates, alkanols, phenols and Phosphate esters of alkylphenol alkoxylates, alkyl (aryl) sulfonates, sulfate esters, phosphate esters, alkyl (aryl) phosphates, alkyl Aryl) phosphonates, polyoxyethylene alkyl ether phosphate
  • nonionic surfactants include polyoxyalkylene dialkyl esters, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl ethers, and sorbitan alkyl esters.
  • the slurry may contain a flocculant.
  • the yield of the separator manufactured by including a flocculant can be improved.
  • the flocculant may be either a cationic polymer flocculant or an anionic polymer flocculant, and both may be used together.
  • the content of the flocculant is preferably 0.001 to 0.5% by mass based on the solid content of the slurry.
  • slurry is made using a general papermaking machine, and then the papermaking body is made. To form a compressed body. In order to obtain a desired compressed body, the papermaking body is preferably compressed at 1 to 30 MPa for 1 to 5 minutes.
  • Step of heat-treating the compressed body This step is not necessarily performed, but is performed according to the material configuration of the separator as necessary.
  • the resin By heat-treating the compressed body at a temperature equal to or higher than the softening point of the resin in this step, the resin is softened and the glass fibers, viscosity minerals, etc. can be securely bound to each other.
  • the resin By covering a part or all of the surface with a resin, flexibility can be imparted to the separator. Further, the resin can be partially decomposed to function as a template, and the holding power of the electrolytic solution can be improved.
  • the treatment temperature is not necessarily limited because it depends on the softening point of the resin, but it is preferably performed at 100 to 200 ° C. By setting the treatment temperature to 100 ° C.
  • glass fibers, viscous minerals and the like tend to be bound to each other, and by setting the processing temperature to 200 ° C. or lower, the manufacturing process is easily simplified.
  • a control valve type lead-acid battery can be produced as follows, for example. First, lead powder (PbO) as an active material is mixed with barium sulfate, carbon material, reinforcing short fibers (acrylic fiber, polypropylene fiber, polyethylene terephthalate fiber, etc.), and the mixture is kneaded. Water and lignin sulfonic acid are added and mixed, and further dilute sulfuric acid is added to prepare a negative electrode active material paste.
  • the amount of lignin sulfonic acid added is preferably 0.01 to 2.0% by mass in terms of resin solid content with respect to lead powder. Further, the content of the reinforcing short fibers is preferably 0.05 to 0.3% by mass.
  • Examples of the carbon material include carbon black and graphite.
  • Examples of the carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
  • the content of the carbon material is preferably 0.2 to 1.4% by mass with respect to the lead powder.
  • the barium sulfate content is preferably 0.01 to 1.0% by mass with respect to the lead powder.
  • the current collector grid is composed of a lead-calcium-tin alloy, a lead-calcium alloy, or a lead-calcium-tin alloy or a lead-calcium alloy obtained by adding a small amount of arsenic, selenium, silver, or bismuth thereto. Things can be used.
  • the aging conditions are preferably 40 to 60 hours in an atmosphere having a temperature of 35 to 85 ° C. and a humidity of 50 to 90 RH%. Drying conditions are preferably 15 to 30 hours at a temperature of 50 to 80 ° C.
  • a reinforcing short fiber is added to lead powder, water and dilute sulfuric acid are further added, and this is kneaded to produce a positive electrode active material paste.
  • the positive electrode active material paste is filled into a current collector grid, aged and then dried to produce an unformed positive electrode plate.
  • the type of collector grid, aging conditions, and drying conditions are almost the same as in the case of the negative electrode plate.
  • the negative electrode plate and the positive electrode plate produced as described above are stacked via the lead battery separator of the present invention, and the same polarity electrode plates are connected by a strap to form an electrode plate group. This electrode group is arranged in a battery case to produce an unformed battery.
  • the specific gravity of the sulfuric acid is preferably 1.25 to 1.35.
  • the chemical conversion conditions and the specific gravity of the sulfuric acid used can be determined by the size of the electrode plate.
  • Example 1 100% by mass of the separator constituting material, 90% by mass of glass fiber having a number average fiber diameter of 1.5 ⁇ m, and 10% by mass of imogolite, 0.1% by mass of the cationic flocculant is added to the glass fiber, A separator having a thickness of 1.4 mm was obtained.
  • the manufacturing method and short circuit test method of a positive electrode plate, a negative electrode plate, and other control valve type lead acid batteries are as follows.
  • Liquid retention amount (% by mass) (M1-M0) ⁇ 100 / M0 Formula (1)
  • the liquid retention amount is 1000% by mass or more “ ⁇ ”, 800% by mass or more and less than 1000% by mass “ ⁇ ”, 760% by mass or more and less than 800% by mass “ ⁇ ”, and less than 760% by mass “ ⁇ ” was evaluated.
  • the prepared paste-type active material for negative electrode is filled into a current collector made of lead-calcium-tin alloy having a width of 43 mm, a length of 67 mm, and a thickness of 1.6 mm to produce an unformed paste-type negative electrode plate. did. And after standing for 24 hours in air
  • the four pasted positive electrode plates and the five pasted negative electrode plates were laminated via a thin separator made of a nonwoven fabric mainly composed of glass fibers having a thickness of 1.4 mm, and the electrode The ears were welded to form an electrode group, which was assembled into an ABS battery case so that the group pressure was 20 kg / dm 2 .
  • control valve type lead-acid battery After the above-mentioned battery case formation, the control valve type lead-acid battery which has been fully charged is discharged to an ambient temperature of 25 ° C., 0.2 CA (1.8 A) and a final voltage of 1.75 V (1.75 V / cell). To confirm the initial discharge capacity. Subsequently, a 30 ⁇ , 10 W enamel resistor is attached between the positive electrode terminal and the negative electrode terminal of the control valve type lead-acid battery, and the battery is completely discharged by leaving it at an ambient temperature of 40 ° C. for 24 hours. Next, constant voltage charging is performed for 16 hours at an ambient temperature of 25 ° C.
  • the short circuit test method described above is a so-called accelerated test method. In the short-circuit test, the case of short-circuiting was evaluated as “x”, and the case of not short-circuiting was determined as “ ⁇ ”.
  • Example 2 As Example 2, 90% by mass of glass fiber having a number average fiber diameter of 1.5 ⁇ m and 10% by mass of sepiolite instead of imogolite were mixed to obtain a 1.4 mm thick separator. Example 1 was repeated except that the mixed paper was changed to sepiolite.
  • Example 3 In Example 3, 90% by mass of glass fiber having a number average fiber diameter of 1.5 ⁇ m and 10% by mass of kaolin instead of imogolite were mixed to obtain a 1.4 mm thick separator. Example 1 was repeated except that the mixed paper was changed to kaolin.
  • Example 4 As Example 4, 90% by mass of glass fiber having a number average fiber diameter of 1.5 ⁇ m and 10% by mass of saponite instead of imogolite were mixed to obtain a 1.4 mm thick separator. Example 1 was repeated except that the mixed paper was changed to saponite.
  • Example 1 A glass fiber having a number average fiber diameter of 1.5 ⁇ m was mixed separately to obtain a separator having a thickness of 1.4 mm, and was the same as Example 1.
  • Table 1 shows the short-circuit test results of the control valve type storage battery described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

 ガラス繊維と、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を含む制御弁式鉛蓄電池用セパレータ。膜厚が0.3~3.0mmであると好ましい。前記の鉛蓄電池用セパレータを備える制御弁式鉛蓄電池。これにより過放電時の浸透短絡を永続的に防止し、優れた長寿命性を有する制御弁式鉛蓄電池を提供することができる。

Description

制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池
 本発明は、制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池に関する。
 現在、無停電電源及び電力貯蔵用途に、メンテナンスフリーの制御弁式鉛蓄電池が用いられている。
 制御弁式鉛蓄電池の電解液は、通常セパレータ中に保液されている。鉛蓄電池は過放電状態になると、電解液の比重が下がり、pHも上昇する傾向にある。この状態が長く続くことで、放電により電極板中に生成した硫酸鉛が電解液中に析出する。この状態から充電すると、負極側でデンドライド状の鉛結晶が成長することがある。また、充電により電解液の比重が上がるとセパレータ中に硫酸鉛が析出する。前記デンドライド状の鉛結晶又は硫酸鉛がさらに充電されると、それぞれ金属鉛(Pb)若しくは二酸化鉛(PbO)になるまで還元又は酸化され、セパレータを貫通して正極板と負極板が接触する浸透短絡という問題が発生する。
 これらの問題を解決するため、例えばセパレータへホウ酸を添加する方法(特許文献1)やゼオライトを添加する方法(特許文献2)が知られている。
特許第4250910号公報 特開2006-59613号公報
 しかしながら、特許文献1及び2に記載されているセパレータにおいて、浸透短絡を防止するためには、ホウ酸、メソポーラスシリカ、ゼオライト等の無機物を多量にセパレータ中に含ませる必要がある。前記無機物が多量にセパレータ中に含まれる場合、セパレータ全体が固くなり、取り扱い性が悪くなるという問題がある。
 また、前記無機物を多量に添加することで電池特性の悪化が考えられる。
 本発明は上記の課題に鑑みたものであり、浸透短絡を防止し、かつ長寿命化を可能にすることを目的としている。
 本発明者等が鋭意検討した結果、ガラス繊維と、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を混抄させたセパレータを用いることで、鉛蓄電池の短絡を防止できることを見出した。
 すなわち、本発明のセパレータは、ガラス繊維とイモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を含むことを特徴としている。
 本発明のセパレータは、短絡のしにくさという観点で、極細のガラス繊維を用いることが好ましい。これによって、セパレータ自身の緻密さが増す。
 また複数の繊維を組合せても構わない。この場合、太い繊維と細い繊維を任意の割合で組合せることが好ましく、特に細い繊維が50質量%以上であるとより好ましい。
 極細ガラス繊維は繊維径が5μm以下であることが好ましく、3μm以下であることより好ましい。
 またセパレータの厚みは、電池のサイズにもよるが、0.3~3.0mmであることが好ましい。これによりさまざまな鉛蓄電池に適用できる。
 多孔質基体は抄造体から作製されたものであることが好ましい。これにより強度及び電池特性を向上しやくすくなるとともに、作製費用の低コスト化と厚みの制御が容易になる。
 また、セパレータは複数回の抄紙工程で作製しても構わないし、一度に作製しても構わない。
 本発明は、イモゴライト等の粘土鉱物を含むことで、中性領域では鉛イオンを吸着し、酸性領域下では鉛イオンを放出することで、永続的にセパレータへ鉛が定着することを防止する。
 本発明は、上記の制御弁式鉛蓄電池用セパレータを備える制御弁式鉛蓄電池とすることで、上記の永続的にセパレータへ鉛が定着することを防止できるので浸透短絡を防止し、かつ長寿命化を可能にする。
 本発明によれば、過放電時の短絡を永続的に防止し、優れた長寿命性を有する鉛蓄電池を提供することができる。
 以下、本発明の詳細について説明する。
<制御弁式鉛蓄電池用セパレータ>
 本発明の制御弁式鉛蓄電池用セパレータは、ガラス繊維と、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を含む。
<ガラス繊維>
 ガラス繊維は、アルカリガラスであることが好ましい。ガラス繊維の繊維径に特に制限はないが、数平均繊維径が、0.5~5.0μmであることが好ましく、0.5~4.0μmであることがより好ましく、0.5~2.0μmであることがさらに好ましい。ガラス繊維の繊維径が0.5μm以上であると均一な細孔径にし易くなる傾向にあり、また、5.0μmを超えると、構造が脆弱になる。
 また、ガラス繊維の繊維長に特に制限はないが、数平均繊維長が1.0μm~30mmであることが好ましく、100μm~20mmであることがより好ましく、500μm~10mmであることがさらに好ましい。ガラス繊維の繊維長が1.0μm以上であると均一な細孔径にし易くなる傾向にあり、また、30mm以下であると、充分に高い強度(例えば、1MPa以上)を有する電気化学セパレータを製造し易くなり、また後述する抄造時に良好な抄造性を得易い傾向にある。なお、本実施形態において、繊維の数平均繊維径及び数平均繊維長は、例えば、動的画像解析法、レーザースキャン法(例えば、JIS L1081に準拠)、走査型電子顕微鏡等による直接観察により求めることができる。具体的には、これらの方法を用いて50本程度の繊維を観察し、その平均値をとることで、上記繊維径及び繊維長を求めることができる。
 ガラス繊維の含有量に特に制限は無いが、セパレータの全質量を基準として、1~99質量%であることが好ましく、50~95質量%であることがより好ましく、70~95質量%であることがさらに好ましい。さらに好ましいとしたガラス繊維の含有量では、70質量%以上とすることで充分な強度と保液性の両者が得られる傾向にあり、95質量%以下とすることで強度、保液性、サイクル特性を両立できる傾向にある。
<イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物>
 本発明の制御弁式鉛蓄電池用セパレータは、抄造時にガラス繊維と、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を混ぜることでセパレータ内外に粘土鉱物を存在させることができる。具体的には、セパレータ製造時にセパレータの原料となる抄造溶液中(スラリー)へ、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物又はイモゴライトゾル、セピオライトゾル、カオリンゾル、サポナイトゾルから選択される少なくとも一種を加え、このスラリーを抄紙することで、粘土鉱物がガラス繊維と絡まり合い、セパレータ構造の内部あるいは、セパレータ表面へ前記粘土鉱物を不均一に存在させることができる。粘土鉱物の添加量によっては、セパレータ中でのその存在箇所に濃淡が起こる場合があるが、特に問題はない。
 また、粘土鉱物のセパレータへの充填量を向上させるため、必要に応じて樹脂を用いることもある。
 また、ガラス繊維だけでシート状とし、その表面へ前記粘土鉱物を塗布することもできる。
 また、ガラスシートを複数枚重ねる間に前記粘土鉱物を含ませることもできる。
 具体的には、予め作製したガラス繊維のシートに対し、樹脂を含ませたイモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物又はイモゴライトゾル、セピオライトゾル、カオリンゾル、サポナイトゾルから選択される少なくとも一種を噴霧、又は塗布し、その上へガラスシートを重ね、層状にする。層状にしたシートは、ロールプレスなどによって樹脂を融点以上の温度で融解させることで圧着させる。
 イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物の形状は、粒子状、ゲル状、繊維状いずれであってもよい。
 イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物の含有量は、セパレータの全質量を基準として1~99質量%であることが好ましく、5~50質量%であることがより好ましく、5~30質量%であることがさらに好ましい。さらに好ましいとした粘土鉱物の含有量が30質量%以下であると、粘土鉱物の効果を充分に得られる傾向にあり、5質量%以上とすることでセパレータの保液性を充分に確保できるため、微細な孔を維持しながらイモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を付与することができる。
 イモゴライト、セピオライト、カオリン、サポナイト以外の粘土鉱物を併用してもよい。イモゴライト、セピオライト、カオリン、サポナイト以外の粘土鉱物としては、電気絶縁性の金属酸化物、金属窒化物、金属炭化物、酸化ケイ素等からなるものも挙げられる。
 上記金属酸化物としては、Al、SiO(ただし、繊維状のものを除く)、アタパルジャイト、ワラストナイト、モンモリロナイト、雲母、アロフェン、ベントナイト、タルク、ZnO、TiO、BaTiO、ZrO、ゼオライト等が挙げられる。
<セパレータの物性>
 本実施形態において、セパレータの細孔径は0.1~30μmである。細孔径が0.1μm以上であると、緻密で強度があるだけなく、保液性を向上することができる。30μm以下であると、セパレータからのイモゴライト等の脱離を防止する。このような観点から、セパレータの細孔径は0.1~30μmであることが好ましく、0.1~15μmであることがより好ましい。なお、セパレータの細孔径は、水銀圧入法、バブルポイント法(JIS K 3832)等により測定することができる。
<鉛蓄電池用セパレータの製造方法>
 本実施形態のセパレータの製造方法に特に制限は無く、例えば、湿式抄造、乾式抄造等が挙げられる。本実施形態においては、これらの中でも、湿式法に基づく抄造法(湿式抄造)を採用することが好ましい。この製造方法は、ガラス繊維、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物、必要に応じ樹脂等を含むスラリーを調製する工程と、スラリーを抄紙して抄造体を作製する工程と、加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する工程と、必要に応じ圧縮体を樹脂の軟化点以上の温度で熱処理する工程と、を備える。この方法により、低コストかつ薄いセパレータを容易に製造することができる。
■スラリーを調製する工程
 本工程において、ガラス繊維及び粘土鉱物は必須とし、必要に応じて樹脂、パルプ等のその他原料成分を所定の分散媒体に分散させてスラリーを調製する。スラリーの調整は、例えばミキサー、ボールミル、パルパー等により行うことができる。なお、分散媒体としては水が一般的に用いられている。
 スラリー中の各原料成分の含有量は、得られるセパレータ中の各原料成分の含有量が上記の範囲となるように調整すればよい。ただし、良好な抄紙性を確保する観点から、スラリーの全質量を基準として、ガラス繊維を70~95質量%、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を5~30質量%、の分散媒体とすることが好ましい。
 上記のスラリーには必要に応じて有機繊維又はポリマー粒子を含んでいてもよい。
 有機繊維としては、天然繊維、再生繊維、合成繊維等を例示することができる。有機繊維としては、例えばアラミド繊維、ポリアミド繊維、ポリエステル繊維、ポリウレタン繊維、ポリアクリル繊維、ポリエチレン繊維及びポリプロピレン繊維からなる群より選ばれる少なくとも一種を用いることが好ましい。これらの有機繊維は単独で用いてもよいし、二種以上を混合して使用してもよい。
 ポリマー粒子としては、ポリオレフィン粒子、ポリブチルアクリレート粒子、架橋ポリメチルメタクリレート粒子、ポリテトラフルオロエチレン粒子、ベンゾグアナミン粒子、架橋ポリウレタン粒子、架橋ポリスチレン粒子及びメラミン粒子からなる群より選ばれる少なくとも一種を用いることが好ましい。これらのポリマー粒子は単独で用いてもよいし、二種以上を混合して使用してもよい。上記すべてのポリマー粒子群はスルホン化されたものも含める。
 前記スラリーは、界面活性剤を含んでいてもよい。界面活性剤を含むことで、セパレータを製造する際に原料成分を分散させやすくなる。界面活性剤は、後の熱処理において分解されてもよい。界面活性剤としては、シランカップリング剤、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤のいずれであってもよい。界面活性剤の含有量は、スラリーの全質量を基準として、0.01~5質量%とすることが好ましい。
 カチオン性界面活性剤としては、アルキルアンモニウム塩を用いることが好ましく、塩化ジオクチルジメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジココジメチルアンモニウム、塩化ココ(精留)ベンジルジメチルアンモニウム、塩化オクタデシルトリメチルアンモニウム、塩化ジオクタデシルジメチルアンモニウム、塩化ジヘキサデシルジメチルアンモニウム、塩化ジ(水素化牛脂)ジメチルアンモニウム、塩化ジ(水素化牛脂)ベンジルメチルアンモニウム、塩化(水素化牛脂)ベンジルジメチルアンモニウム、塩化ジオレイルジメチルアンモニウム、塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム、塩化ジアリルジメチルアンモニウム、二塩化N-オクタデシル-N-ジメチル-N´-トリメチル-プロピレン-ジアンモニウム、ポリ(塩化ジオクチルジメチルアンモニウム)、ポリ(塩化ジデシルジメチルアンモニウム)、ポリ(塩化ジココジメチルアンモニウム)、ポリ(塩化ココベンジルジメチルアンモニウム)、ポリ(塩化オクタデシルトリメチルアンモニウム)、ポリ(塩化ジオクタデシルジメチルアンモニウム)、ポリ(塩化ジヘキサデシルジメチルアンモニウム)、ポリ(塩化ジオレイルジメチルアンモニウム)、ポリ(塩化ジ(エチレンヘキサデカンカルボキシレート)ジメチルアンモニウム)、及びポリ(塩化ジアリルジメチルアンモニウム)を例示することができる。
 アニオン性界面活性剤としては、カルボキシレート類、N-アシルサルコシネート類、アルカンスルホネート類、直鎖及び分岐鎖アルキルアリールスルホネート類、ジアルキルスルホスクシネート類、アリールスルホネート類、ナフタリンスルホネート類、N-アシル-N-アルキルラウレート類、脂肪酸類の2-スルホエチルエステル類、オレフインスルホネート類、アルキルサルフエート類、サルフエート化した天然オイル類、サルフエート化したアルキルフエノールアルコキシレート類、アルカノール類、フェノール及びアルキルフェノールアルコキシレート類のホスフェートエステル類、アルキル(アリール)スルホネート類、スルフェートエステル類、ホスフェートエステル類、アルキル(アリール)ホスフェート類、アルキル(アリール)ホスホネート類、ポリオキシエチレンアルキルエーテルホスフェート類、カルボキシル化アルキルエトキシレート類、カルボキシル化ドデシルベンゼンスルホネート類、並びにアンモニウムポリオキシエチレンアルキルエーテルサルフェート類を例示することができる。
 ノニオン性界面活性剤としては、ポリオキシアルキレンジアルキルエステル類、ポリオキシアルキレンアルキルエステル類、ポリオキシアルキレンアルキルエーテル類、及びソルビタンアルキルエステル類を例示することができる。
 スラリーは凝集剤を含んでいてもよい。凝集剤を含むことで製造されるセパレータの歩留まりを向上することができる。凝集剤としては、カチオン性高分子凝集剤及びアニオン性高分子凝集剤のいずれであってもよく、両者を共に用いてもよい。凝集剤の含有量は、スラリーの固形分量を基準として、0.001~0.5質量%とすることが好ましい。
■抄造体を作製する工程~圧縮体を作製する工程
 これらの工程では、スラリーを一般的な抄紙機を用いて抄紙し、抄造体を作製した後、さらに加圧機を用いて抄造体を厚み方向に圧縮して圧縮体を作製する。なお、所望の圧縮体を得るためには、抄造体を1~30MPaにて1~5分間圧縮することが好ましい。
■圧縮体を熱処理する工程
 本工程は必ずしも行う工程ではないが、セパレータの材料構成に合わせて必要に応じて行う。本工程において樹脂の軟化点以上の温度で圧縮体を熱処理することで、樹脂が軟化してガラス繊維、粘度鉱物等同士を確実に結着させることができ、また、ガラス繊維、粘度鉱物等の表面の一部又は全部を樹脂で被覆することで、セパレータに柔軟性を付与することができる。さらに、樹脂が一部分解してテンプレートとして機能し、電解液の保持力を向上することができる。
 なお、処理温度は樹脂の軟化点に依存するため必ずしも限定されないが、100~200℃で行うことが好ましい。処理温度を100℃以上とすることで、ガラス繊維、粘度鉱物等同士を結着させ易くなる傾向にあり、200℃以下とすることで製造工程簡略化し易くなる。なお、熱処理は、セパレータの構成材料に応じて、適宜加圧しながら行ってもよい。
<制御弁式鉛蓄電池>
 制御弁式鉛蓄電池は、例えば以下のように作製することができる。
 まず、活物質である鉛粉(PbO)に対して、硫酸バリウム、炭素材料、補強用短繊維(アクリル繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維等)等を添加して混練した混合物とし、この混合物に水及びリグニンスルホン酸を加えて混合し、さらに希硫酸を加えて負極活物質ペーストを作製する。
 前記リグニンスルホン酸の添加量は、鉛粉に対して樹脂固形分で0.01~2.0質量%が好ましい。
 また、前記補強用短繊維の含有量は、0.05~0.3質量%が好ましい。
 前記炭素材料は、カーボンブラック、黒鉛等が挙げられる。
 前記カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ケッチェンブラック等が挙げられる。
 前記炭素材料の含有量は、鉛粉に対して0.2~1.4質量%とすることが好ましい。
 前記硫酸バリウムの含有量は、鉛粉に対して0.01~1.0質量%とすることが好ましい。
 次に、上記のようにして作製した負極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の負極板を作製する。
 前記集電体格子としては、鉛-カルシウム-錫合金、鉛-カルシウム合金、又はこれらに砒素、セレン、銀、ビスマスを微量添加した鉛-カルシウム-錫系合金、鉛-カルシウム系合金などからなるものを使用することができる。
 前記熟成条件は、温度35~85℃、湿度50~90RH%の雰囲気で40~60時間とすることが好ましい。乾燥条件は、温度50~80℃で15~30時間とすることが好ましい。
 また、正極板を作製する場合、例えば、鉛粉に対して、補強用短繊維を加え、更に水と希硫酸を加え、これを混練して正極活物質ペーストを作製する。
 この正極活物質ペーストを集電体格子に充填して、熟成した後に、乾燥させ、未化成の正極板を作製する。
 集電体格子の種類、熟成条件、乾燥条件は、負極板の場合とほぼ同様である。
 上記のように作製した負極板と正極板を、本発明の鉛電池用セパレータを介して積層し、同極性の極板同士をストラップで連結させて極板群とする。この極板群を電槽内に配置して未化成電池を作製する。
 上記未化成電池に希硫酸を入れ、化成した後に、電解液を一度抜き、その後硫酸を入れて、本発明の鉛蓄電池とする。前記硫酸の比重は1.25~1.35とすることが好ましい。
 なお、化成条件や使用する硫酸の比重は極板のサイズによって決めることができる。
(実施例1)
 セパレータ構成材料を100質量%として、数平均繊維径1.5μmのガラス繊維を90質量%、及びイモゴライトを10質量%として混抄し、カチオン性凝集剤をガラス繊維に対し0.1質量%加え、1.4mm厚のセパレータとした。なお、正極板及び負極板、その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は下記したものである。
<保液性>
 セパレータの保液性は、試料を20mm×20mmに切り出した後、秤量した(M0)。切り出した試料を、ポリ容器に入れた精製水に1分浸漬した。次いで、ピンセットで試料を取り出し、1分保持後、再度秤量した(M1)。保液量は、以下の式(1)を用いて算出した。
   保液量(質量%) = (M1-M0)×100/M0    式(1)
ここで、保液量が1000質量%以上を「◎」、800質量%以上、1000質量%未満を「○」、760質量%以上、800質量%未満を「△」、760質量%未満を「×」として評価した。
<制御弁式鉛蓄電池の製造>
 一酸化鉛を主成分とする鉛粉:100kg、PET繊維(繊度:2.0D(denier)、繊維長:3.0mm):0.2kgを混合し水を加えた後、希硫酸:20kg(比重:1.260、20℃換算)に鉛丹:30kgを加えて攪拌したスラリーを加え混練し、正極用ペースト状活物質を作製した。作製した正極用ペースト状活物質を、幅が43mm、長さが67mm、厚さが2.7mmの鉛-カルシウム-錫合金製の集電体に充填した。そして、40℃、湿度95%RHの大気中で24時間放置して熟成をした後に、50℃で16時間の乾燥をして未化成のペースト式正極板を作製した。
 一酸化鉛を主成分とする鉛粉:90kg、PET繊維(繊度:2.0D(denier)、繊維長:3.0mm):0.27kg、硫酸バリウム:0.45kg、リグニン:0.18kgを混合し、水を加えた後、希硫酸:10kgを加え混練し、負極用のペースト状活物質を作製した。ペースト状活物質の格子基板への充填性を考慮し、ペースト状活物質が所定の硬さになるように、加える水の量を調整した。
 作製した負極用ペースト状活物質を、幅が43mm、長さが67mm、厚さが1.6mmの鉛-カルシウム-錫合金製の集電体に充填して未化成のペースト式負極板を作製した。そして、40℃、湿度95%RHの大気中で24時間放置して熟成をした後に、50℃で16時間の乾燥をして未化成のペースト式負極板を作製した。
 作製したペースト式正極板が4枚とペースト式負極板が5枚とを、上記の厚みが1.4mmのガラス繊維を主成分とする不織布からなる薄形のセパレータを介して積層し、電極の耳部を溶接して電極群とし、20kg/dmの群加圧となるようABS製の電槽に組み込んだ。これに、電解液を注入し、周囲温度が約25℃、課電量が250%、化成時間が48時間の条件で電槽化成を行い、公称容量が9Ah-12Vの制御弁式鉛蓄電池を作製した。
<制御弁式鉛蓄電池の短絡試験>
 上記した電槽化成の後に、満充電状態にした制御弁式鉛蓄電池を、周囲温度が25℃、0.2CA(1.8A)で終止電圧が1.75V(1.75V/セル)まで放電して初期の放電容量を確認する。続いて、制御弁式鉛蓄電池の正極端子と負極端子との間に、30Ω、10Wのホーロー抵抗を取り付け、周囲温度が40℃雰囲気で24時間放置して完全放電をする。次に、周囲温度が25℃で14.7V(2.45V/セル)、制限電流が2.7Aの定電圧充電を16時間行う。そして、充電状態で制御弁式鉛蓄電池を解体して、セパレータに短絡痕があるか否かを確認した。なお、上記した短絡試験方法は、いわゆる加速試験方法である。
 短絡試験は短絡した場合を「×」、短絡しなかった場合を「○」と判定し評価した。
<繰り返し短絡試験>
 前記した短絡試験を繰り返し、短絡のしにくさを評価した。繰り返し短絡評価結果は試験の繰り返し数が3回未満で短絡したものを「△」、6回未満で短絡したものを「○」、6回以上で短絡しなかったものを「◎」とし評価した。
(実施例2)
 実施例2として、数平均繊維径1.5μmのガラス繊維90質量%とイモゴライトのかわりにセピオライトを10質量%混抄し、1.4mm厚のセパレータとした。混抄品をセピオライトに変えた以外は実施例1と同様とした。
(実施例3)
 実施例3として、数平均繊維径1.5μmのガラス繊維90質量%とイモゴライトのかわりにカオリンを10質量%混抄し、1.4mm厚のセパレータとした。混抄品をカオリンに変えた以外は実施例1と同様とした。
(実施例4)
 実施例4として、数平均繊維径1.5μmのガラス繊維90質量%とイモゴライトのかわりにサポナイトを10質量%混抄し、1.4mm厚のセパレータとした。混抄品をサポナイトに変えた以外は実施例1と同様とした。
(比較例)
 数平均繊維径1.5μmのガラス繊維を単独で混抄し、1.4mm厚のセパレータとした以外は、実施例1と同様とした。
 表1に上記した制御弁式蓄電池の短絡試験結果を示した。
Figure JPOXMLDOC01-appb-T000001
―:短絡試験において短絡したため未評価
 表1に示した試験結果から、粘土鉱物を含む本セパレータは保液性に優れ、繰り返し短絡試験にも短絡の抑制効果が大きく、粘土鉱物を含まない比較例よりも著しく優れることが分かった。

Claims (3)

  1.  ガラス繊維と、イモゴライト、セピオライト、カオリン、サポナイトから選択される少なくとも一種の粘土鉱物を含む制御弁式鉛蓄電池用セパレータ。
  2.  膜厚が0.3~3.0mmである請求項1に記載の制御弁式鉛蓄電池用セパレータ。
  3.  請求項1又は2に記載の鉛蓄電池用セパレータを備える制御弁式鉛蓄電池。
PCT/JP2014/078488 2013-11-01 2014-10-27 制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池 WO2015064535A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013228196 2013-11-01
JP2013-228196 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064535A1 true WO2015064535A1 (ja) 2015-05-07

Family

ID=53004138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078488 WO2015064535A1 (ja) 2013-11-01 2014-10-27 制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池

Country Status (1)

Country Link
WO (1) WO2015064535A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206781A (zh) * 2015-09-05 2015-12-30 苏州宏久航空防热材料科技有限公司 一种铅酸蓄电池隔板及其制备方法
JP2017033863A (ja) * 2015-08-05 2017-02-09 日立化成株式会社 制御弁式鉛蓄電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193059A (ja) * 1986-02-18 1987-08-24 Matsushita Electric Ind Co Ltd セパレ−タ
JP2004273282A (ja) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp 電池の製造方法
JP2009004220A (ja) * 2007-06-21 2009-01-08 Nippon Sheet Glass Co Ltd 鉛蓄電池用リブ付きセパレータの製造方法
JP2011105947A (ja) * 2004-12-07 2011-06-02 Daramic Llc 微孔質材料およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193059A (ja) * 1986-02-18 1987-08-24 Matsushita Electric Ind Co Ltd セパレ−タ
JP2004273282A (ja) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp 電池の製造方法
JP2011105947A (ja) * 2004-12-07 2011-06-02 Daramic Llc 微孔質材料およびその製造方法
JP2009004220A (ja) * 2007-06-21 2009-01-08 Nippon Sheet Glass Co Ltd 鉛蓄電池用リブ付きセパレータの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033863A (ja) * 2015-08-05 2017-02-09 日立化成株式会社 制御弁式鉛蓄電池
CN105206781A (zh) * 2015-09-05 2015-12-30 苏州宏久航空防热材料科技有限公司 一种铅酸蓄电池隔板及其制备方法

Similar Documents

Publication Publication Date Title
JP7405740B2 (ja) 炭素を組み込んでいる改良された鉛蓄電池セパレータ
JP6689885B2 (ja) 3次元網構造形態の電気化学素子用電極、その製造方法およびこれを含む電気化学素子
JP2019517713A (ja) 鉛蓄電池用の改良されたセパレータ、改良された電池及び関連方法
CN110651382A (zh) 用于铅酸电池的改进的复合层或隔板
WO2015064535A1 (ja) 制御弁式鉛蓄電池用セパレータ及びこれを用いた制御弁式鉛蓄電池
JP6544126B2 (ja) 制御弁式鉛蓄電池
JPH11260335A (ja) 密閉型鉛蓄電池用セパレータ
JPWO2019088040A1 (ja) 鉛蓄電池用セパレータおよび鉛蓄電池
US11417889B2 (en) Acid battery pasting carrier
JP2005108538A (ja) 密閉型鉛蓄電池用セパレータおよび密閉型鉛蓄電池
US11349175B2 (en) Separator for lead acid storage batteries, and lead acid storage battery
JP4298215B2 (ja) 密閉型鉛蓄電池用セパレータ
JP6769306B2 (ja) 鉛蓄電池用セパレータ及び鉛蓄電池
WO2020144732A1 (ja) セパレーター及び鉛蓄電池
JP6436092B2 (ja) 鉛蓄電池用セパレータ及び鉛蓄電池
JP6699383B2 (ja) 鉛蓄電池
JP3705146B2 (ja) 鉛蓄電池用セパレータ及び鉛蓄電池
JP2016018660A (ja) 鉛蓄電池用セパレータ及びこれを用いた鉛蓄電池
JP2021136219A (ja) セパレーター及びその製造方法、並びに、蓄電デバイス
JP2023020286A (ja) 鉛蓄電池用セパレータおよび鉛蓄電池
JP2020123482A (ja) 鉛蓄電池用セパレーター、鉛蓄電池及びその製造方法、並びに、密着性向上方法
KR20240108534A (ko) 탄소를 도입한 개선된 납축전지 분리기
JPS63110547A (ja) 鉛蓄電池用隔離板
JP2021530851A (ja) 改良された鉛蓄電池セパレータ
JPH05325931A (ja) アルカリ電池用セパレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP