WO2015064481A1 - カーボンナノチューブシートの製造方法 - Google Patents

カーボンナノチューブシートの製造方法 Download PDF

Info

Publication number
WO2015064481A1
WO2015064481A1 PCT/JP2014/078284 JP2014078284W WO2015064481A1 WO 2015064481 A1 WO2015064481 A1 WO 2015064481A1 JP 2014078284 W JP2014078284 W JP 2014078284W WO 2015064481 A1 WO2015064481 A1 WO 2015064481A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
substrate
adhesive
nanotube layer
layer
Prior art date
Application number
PCT/JP2014/078284
Other languages
English (en)
French (fr)
Inventor
怜史 今坂
井上 鉄也
拓行 円山
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013224814A external-priority patent/JP6080738B2/ja
Priority claimed from JP2013239416A external-priority patent/JP6057877B2/ja
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2015064481A1 publication Critical patent/WO2015064481A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Definitions

  • the present invention relates to a method for producing a carbon nanotube sheet.
  • Patent Document 1 there is a method disclosed in Patent Document 1 as a method of manufacturing a thin film carbon nanotube layer.
  • This carbon nanotube layer manufacturing method includes a step of growing a carbon nanotube array on a substrate and a step of forming a carbon nanotube thin film by pressing the carbon nanotube array using a pressing device.
  • an object of the present invention is to provide a method of manufacturing a carbon nanotube sheet that can peel the carbon nanotube sheet formed on the surface of the substrate without breaking.
  • the first carbon nanotube sheet manufacturing method of the present invention includes a layer forming step of forming a vertically aligned carbon nanotube layer on the surface of the first substrate; A transfer step in which the carbon nanotube layer formed on the first substrate by the layer forming step is pressed against the second substrate coated with an adhesive and transferred to the second substrate; A carbon nanotube layer transferred by this transfer step is immersed in an adhesive solution to dissolve the adhesive, and a method comprising:
  • the pressure-sensitive adhesive is a method using water-soluble one and water as a solution, More preferably, an organic paste is used as the adhesive, and an organic solvent that dissolves the paste is used as a solution.
  • the second carbon nanotube sheet manufacturing method of the present invention includes a layer forming step of forming a vertically aligned carbon nanotube layer on the surface of a substrate, A pressing step of pressing the carbon nanotube layer formed on the substrate by this layer forming step; An application step of applying an adhesive to the carbon nanotube layer pressed by this pressing step; And a dissolving step of dissolving the adhesive from the carbon nanotube layer by immersing the carbon nanotube layer coated with the adhesive in this coating step in a solution of the adhesive,
  • the pressing step is arranged after the coating step,
  • a water-soluble adhesive is used and water is used as a solution. More preferably, in the production method described above, an organic paste is used as an adhesive and an organic solvent that dissolves the paste is used as a solution.
  • the carbon nanotube sheet when the carbon nanotube sheet is obtained, unlike the conventional method in which the carbon nanotube layer is peeled directly from the substrate, the carbon nanotube layer is held by the adhesive.
  • the carbon nanotube layer can be prevented from being broken when peeling off.
  • the carbon nanotube sheet according to the first embodiment is such that a large number of vertically aligned carbon nanotubes are formed in parallel on the surface of the substrate, in other words, a group of vertically aligned carbon nanotubes formed in layers. It is.
  • the surface of the first substrate 1 made of a thin steel plate made of stainless steel is vertically aligned using, for example, a CVD method (including chemical vapor deposition method: thermal CVD method).
  • the carbon nanotube group C is formed with a predetermined height, that is, a predetermined thickness (layer forming step).
  • a predetermined thickness layer forming step
  • the carbon nanotube group having the predetermined thickness will be referred to as a carbon nanotube layer.
  • the tip portion of the carbon nanotube layer C formed on the surface of the substrate 1 is pressed and transferred (it is a transfer process in which it is inverted and pressed, it can also be called a press-transfer process). Then, the first substrate 1 is peeled off, and the carbon nanotube layer C on the first substrate 1 side is transferred to the second substrate 2 side.
  • polyvinyl alcohol hereinafter referred to as PVA
  • PVA polyvinyl alcohol
  • aqueous solution having a PVA concentration of 5 to 15% by weight is applied by a doctor blade method and then dried.
  • a pressure-sensitive adhesive layer having a predetermined thickness was obtained.
  • the reason why the carbon nanotube layer C is pressed is that the vertically aligned carbon nanotubes are entangled with each other to improve the self-supporting property and to improve the thermal conductivity and the electrical conductivity.
  • the pressing force is preferably in the range of 1 to 50 kgf / cm 2 (0.1 to 4.9 MPa).
  • the adhesive V is dissolved by immersing the second substrate 2 onto which the carbon nanotube layer C is transferred in a solution Y that can dissolve the adhesive V (dissolution step).
  • a solution Y that can dissolve the adhesive V
  • PVA used as the pressure-sensitive adhesive is water-soluble
  • warm water (about room temperature water) of about 80 ° C. is used as the solution Y.
  • the carbon nanotube layer C itself is released (peeled) from the second substrate 2.
  • an organic paste may be used as the adhesive V and an organic solvent that dissolves the paste may be used as a solution (the same applies to the second embodiment described below).
  • a fibrous sheet 11 made of, for example, tetrafluoroethylene resin is disposed below the peeled carbon nanotube layer C, and the fibrous sheet 11 is moved upward from below to form a carbon nanotube. Scrape up layer C.
  • the curve A indicates the case where the thickness t of the carbon nanotube layer C before pressing is 200 ⁇ m
  • the curve B indicates the case where the thickness of the carbon nanotube layer C before pressing is 400 ⁇ m.
  • the thickness t of the carbon nanotube layer C changes according to the pressing force f (1 to 50 kgf / cm 2 ). That is, it can be seen that the thickness t of the carbon nanotube sheet S can be adjusted (controlled) by the pressing force f (the same applies to the second embodiment described below).
  • the first substrate 1 can be called a carbon nanotube production plate
  • the second substrate 2 can be called a carbon nanotube transfer plate.
  • the carbon nanotube layer is held by the adhesive. In doing so, the carbon nanotube layer can be prevented from being broken.
  • the carbon nanotube layer is temporarily held by the adhesive, and then immersed in the solution to dissolve the adhesive, thereby peeling the carbon nanotube layer from the second substrate. Therefore, compared with the case where the carbon nanotube layer is peeled off by using a mechanical means such as a blade, the carbon nanotube sheet manufacturing apparatus can be simplified.
  • this manufacturing method includes a layer forming step of forming a vertically aligned carbon nanotube layer on the surface of the first substrate, and a pressure sensitive adhesive comprising the carbon nanotube layer formed on the first substrate by the layer forming step.
  • a transfer step of pressing the applied second substrate and transferring it to the second substrate, and a dissolution step of dissolving the adhesive by immersing the carbon nanotube layer transferred by the transfer step in an adhesive solution It is the method which comprises.
  • the substrate with the carbon nanotube layer attached is immersed in the solution and the carbon nanotube layer is peeled off.
  • the second The carbon nanotube layer may be peeled from the substrate (peeling step), and the peeled carbon nanotube layer may be immersed in a solution to dissolve the adhesive (melting step).
  • Embodiment 1 it has been described that an adhesive is applied to the second substrate for transfer, and the carbon nanotube layer formed on the first substrate is pressed against the second substrate.
  • the adhesive is applied from the surface to the first substrate on which the carbon nanotube layer is formed without using the transfer substrate.
  • a vertically aligned carbon nanotube layer C is formed on the surface of the substrate 21 by the CVD method (layer forming step), and as shown in FIG.
  • the pressing member 22 is pressed downward from the surface (pressing step).
  • the adhesive V is applied to the surface of the pressed carbon nanotube layer C by, for example, spin coating (application process).
  • PVA polyvinyl alcohol
  • the adhesive V polyvinyl alcohol (PVA) or the like is used as in the first embodiment. That is, an aqueous solution of polyvinyl alcohol V having a concentration of 5 to 15% (% by weight) is dropped on the surface of the carbon nanotube layer C rotated at a predetermined speed, and dried at 100 ° C. to convert the polyvinyl alcohol V to carbon. The nanotube layer C was impregnated. Thereafter, as shown in FIG. 9, the carbon nanotube layer C coated with the adhesive V is peeled off from the substrate 21 (peeling step). Next, as shown in FIG.
  • the pressure-sensitive adhesive is applied after pressing the carbon nanotube layer, but as a modification, for example, the carbon nanotube layer after applying the pressure-sensitive adhesive is pressed. Also good.
  • the pressed carbon nanotube layer may be peeled from the substrate, then immersed in a solution, and the carbon nanotube layer may be scooped up and collected.
  • the carbon nanotube layer is exfoliated from the substrate and then the carbon nanotube layer is immersed in the solution.
  • the carbon nanotube layer is not exfoliated from the substrate.
  • the carbon nanotube layer attached to the substrate is immersed in a solution, the carbon nanotube layer is peeled off from the substrate by dissolving the adhesive, and the carbon nanotube layer is formed by a fibrous sheet made of tetrafluoroethylene resin. You may make it crawl up.
  • the manufacturing method according to the second embodiment is summarized as follows according to the process format.
  • the manufacturing method includes a layer forming step of forming a vertically aligned carbon nanotube layer on the surface of the substrate, a pressing step of pressing the carbon nanotube layer formed on the substrate by the layer forming step, and the pressing step.
  • a method comprising: Moreover, it is the method of arrange
  • the single-walled carbon nanotube sheet has been described.
  • the pressure-sensitive adhesive is used (the pressure-sensitive adhesive).
  • a multilayer carbon nanotube sheet is obtained by stacking a plurality of (many) single-walled carbon nanotube sheets obtained by coating).
  • the carbon nanotube sheet manufacturing method includes a crimping step of obtaining a layered carbon nanotube by stacking and pressing a plurality of (many) carbon nanotube sheets manufactured by the manufacturing method according to each of the above embodiments, and the press bonding And a cutting step of cutting the end surfaces of the layered carbon nanotubes obtained in the step with a predetermined thickness.
  • a layered carbon nanotube sheet S2 (crimping step) is obtained by the manufacturing method according to the first embodiment or the second embodiment.
  • a polymer liquid such as epoxy, urethane, silicon rubber, latex rubber or the like is filled as an adhesive.
  • the polymer liquid is bonded in a rectangular shape in plan view after being bonded more strongly by using the intermolecular force between the carbon nanotubes by being wet-bonded with alcohol or water and drying.
  • the sheet S1 may be filled and solidified.
  • a carbon nanotube sheet After stacking a plurality (multiple) of carbon nanotube sheets formed in the vertical direction on the surface of the substrate, the front and rear end faces are cut along the thickness direction. Thus, a vertically aligned carbon nanotube sheet is obtained. Therefore, a carbon nanotube sheet having an arbitrary thickness can be manufactured by adjusting the cutting thickness.
  • this carbon nanotube sheet when used as a cooling member or a heat radiating member, the respective capacities can be improved. Even when this carbon nanotube sheet is used for an electromagnetic wave absorbing member, an electromagnetic wave shielding member, a filter member, an X-ray shielding member, a light absorbing member (for example, an antireflection film of a camera), the respective capabilities can be improved. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 第1の基板1の表面に垂直配向性のカーボンナノチューブ層Cを形成する層形成工程と、この層形成工程により第1の基板1に形成されたカーボンナノチューブ層Cを粘着剤Vが塗布された第2の基板2に押圧させて当該第2の基板2に転写する転写工程と、この転写工程により転写されたカーボンナノチューブ層Cを粘着剤Vの溶解液に浸漬させて粘着剤Vを溶解させる溶解工程とを具備する方法である。

Description

カーボンナノチューブシートの製造方法
 本発明は、カーボンナノチューブシートの製造方法に関する。
 電極材や放熱部材などにカーボンナノチューブを用いる場合、シート状つまり薄膜状のカーボンナノチューブ層を得る必要がある。ところで、従来、薄膜のカーボンナノチューブ層の製造方法としては、特許文献1に開示された方法がある。
 このカーボンナノチューブ層の製造方法は、基板にカーボンナノチューブアレイを成長させるステップと、押し器具を利用してカーボンナノチューブアレイを押圧してカーボンナノチューブ薄膜を形成するステップとを具備した方法である。
特開2008-297195号公報
 上述した特許文献1に記載の方法によると、カーボンナノチューブ薄膜を得るときに、押し器具によりカーボンナノチューブアレイを押圧しているだけであり、したがって基板からカーボンナノチューブ薄膜を剥がす際に、薄膜そのものに機械的強度がないため、破れてしまうという問題がある。
 そこで、本発明は、基板の表面に形成されたカーボンナノチューブシートを破れることなく剥離させ得るカーボンナノチューブシートの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の第1のカーボンナノチューブシートの製造方法は、第1の基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、
 この層形成工程により上記第1の基板に形成されたカーボンナノチューブ層を粘着剤が塗布された第2の基板に押圧させて当該第2の基板に転写する転写工程と、
 この転写工程により転写されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させて粘着剤を溶解させる溶解工程とを具備する方法であり、
 また好ましくは、上記粘着剤として水溶性のものを用いるとともに溶解液として水を用いる方法であり、
 さらに好ましくは、上記粘着剤として有機性の糊を用いるとともに溶解液として当該糊を溶解させる有機溶媒を用いる方法である。
 本発明の第2のカーボンナノチューブシートの製造方法は、基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、
 この層形成工程により基板に形成されたカーボンナノチューブ層を押圧する押圧工程と、
 この押圧工程により押圧されたカーボンナノチューブ層に粘着剤を塗布する塗布工程と、
 この塗布工程により粘着剤が塗布されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させてカーボンナノチューブ層から粘着剤を溶解させる溶解工程とを具備する方法であり、
 また好ましくは、上記製造方法において、押圧工程を塗布工程の後に配置する方法であり、
 また好ましくは、上記製造方法において、粘着剤として水溶性のものを用いるとともに溶解液として水を用いる方法であり、
 さらに好ましくは、上記製造方法において、粘着剤として有機性の糊を用いるとともに溶解液として当該糊を溶解させる有機溶媒を用いる方法である。
 上記の各製造方法によると、カーボンナノチューブシートを得る際に、従来のように、基板からカーボンナノチューブ層を、直接、剥離させる方法とは異なり、カーボンナノチューブ層を粘着剤により保持させるようにしたので、剥離するときに、カーボンナノチューブ層が破れるのを防止することができる。
本発明の実施の形態1に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態1に係るカーボンナノチューブシートの製造方法を示す模式図である。 同実施の形態1の製造方法を説明する要部断面図である。 同実施の形態1の製造方法を説明する要部断面図である。 同実施の形態1におけるカーボンナノチューブ厚さと押圧力との関係を示すグラフである。 本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態3に係るカーボンナノチューブシートの製造方法を示す模式図である。 本発明の実施の形態3に係るカーボンナノチューブシートの製造方法を示す模式図である。
 以下、本発明の実施の形態1に係るカーボンナノチューブシートの製造方法を、図1~図5に基づき説明する。
 本実施の形態1に係るカーボンナノチューブシートは、基板の表面に垂直配向性のカーボンナノチューブが多数並列に形成されてものであり、言い換えれば、垂直配向性のカーボンナノチューブ群が層状に形成されたものである。
 まず、図1の左側に示すように、ステンレス製の薄い鋼板からなる第1の基板1の表面に、例えばCVD法(化学的気相成長法:熱CVD法も含む)を用いて、垂直配向性のカーボンナノチューブ群Cを所定高さすなわち所定厚さでもって形成する(層形成工程)。以下、この所定厚さのカーボンナノチューブ群をカーボンナノチューブ層と称して説明する。
 次に、図1の左側に示すように、ステンレス製の薄い鋼板からなり且つ表面に粘着剤Vが塗布された第2の基板2の表面に、図1の右側に示すように、第1の基板1の表面に形成されたカーボンナノチューブ層Cの先端部分を押圧させて転写(反転させて押圧する転写工程であり、押圧-転写工程と呼ぶこともできる)させた後、図2に示すように、第1の基板1を剥がし、当該第1の基板1側のカーボンナノチューブ層Cを第2基板2側に転写する。上記粘着剤Vとしては、ポリビニールアルコール(以下、PVAと称す)が用いられるとともに、PVAの濃度が5~15重量%の水溶液を、ドクターブレード法にて塗布し、その後、乾燥させることにより、所定厚さの粘着剤層を得た。なお、カーボンナノチューブ層Cの押圧を行うのは、垂直配向されたカーボンナノチューブ同士が絡み合い、自立性の向上を図るとともに、熱伝導性および電気伝導性の向上を図るためである。その押圧力は、1~50kgf/cm(0.1~4.9MPa)の範囲内が好ましい。また、粘着剤Vとしては、ポリビニールアルコール以外のもの、例えば水溶性の糊などを用いてもよい。
 次に、図3に示すように、カーボンナノチューブ層Cが転写された第2の基板2を、粘着剤Vを溶かし得る溶解液Yに浸漬させることにより粘着剤Vを溶かす(溶解工程)。なお、粘着剤として使用したPVAが水溶性であるため、溶解液Yとしては80℃程度の温水(常温水でもよい)が用いられる。また、水溶性の粘着剤Vが溶けると、カーボンナノチューブ層Cそのものが第2の基板2から遊離(剥離)する。なお、粘着剤Vとして有機性の糊を用いるとともに溶解液として当該糊を溶解させる有機溶媒を用いてもよい(以下に示す実施の形態2においても同様である)。
 次に、図4に示すように、剥離したカーボンナノチューブ層Cの下方に例えば四フッ化エチレン樹脂製の繊維状シート11を配置するとともにこの繊維状シート11を下方から上方に移動させてカーボンナノチューブ層Cを掬い上げる。
 次に、この掬い上げられたカーボンナノチューブ層Cを乾燥機(図示せず)にて温風を吹き付けることにより乾燥させれば、シート状のカーボンナノチューブ層C、つまり所定厚さのカーボンナノチューブシートSが製造される。
 ここで、カーボンナノチューブ層Cの第2の基板2への押圧力fとカーボンナノチューブ層Cの厚さtとの関係を調べると、図5に示すグラフのようになる。
 図5のグラフにおいて、曲線Aは、カーボンナノチューブ層Cの押圧前の厚さtが200μmの場合を示し、曲線Bはカーボンナノチューブ層Cの押圧前の厚さが400μmの場合を示している。これらの曲線から分かるように、押圧力f(1~50kgf/cm)に応じて、カーボンナノチューブ層Cの厚さtが変化しているのが分かる。すなわち、押圧力fによりカーボンナノチューブシートSの厚さtを調整(制御)し得ることが分かる(以下に示す実施の形態2においても同様である)。なお、上記第1の基板1をカーボンナノチューブの生成用板材と呼ぶことができるとともに、上記第2の基板2をカーボンナノチューブの転写用板材と呼ぶことができる。
 この製造方法によると、カーボンナノチューブシートを得る際に、従来のように、基板からカーボンナノチューブ層を、直接、剥離させる方法とは異なり、カーボンナノチューブ層を粘着剤により保持させるようにしたので、剥離するときに、カーボンナノチューブ層が破れるのを防止することができる。
 また、この製造方法によると、一旦、カーボンナノチューブ層を粘着剤により一時的に保持させた後、溶解液に浸漬させて粘着剤を溶かすことにより、第2の基板からカーボンナノチューブ層を剥離させるようにしているので、例えばブレードなどの機械的手段を用いてカーボンナノチューブ層を剥離する場合に比べると、カーボンナノチューブシートの製造装置の簡略化を図ることができる。
 なお、ここで、上記実施の形態1に係る製造方法を簡単に纏めると、以下のようになる。
 すなわち、この製造方法は、第1の基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、この層形成工程により上記第1の基板に形成されたカーボンナノチューブ層を粘着剤が塗布された第2の基板に押圧させて当該第2の基板に転写する転写工程と、この転写工程により転写されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させて粘着剤を溶解させる溶解工程とを具備する方法である。
 ところで、上記実施の形態1においては、カーボンナノチューブ層が付着した基板ごと、溶解液に浸漬させてカーボンナノチューブ層を剥離するように説明したが、例えば、溶解液に浸漬させる前に、第2の基板からカーボンナノチューブ層を剥離しておき(剥離工程)、この剥離されたカーボンナノチューブ層を溶解液に浸漬させて粘着剤を溶かす(溶解工程)ようにしてもよい。
 次に、本発明の実施の形態2に係るカーボンナノチューブシートの製造方法を、図6~図10に基づき説明する。
 上述した実施の形態1においては、転写用の第2の基板に粘着剤を塗布しておき、この第2の基板に第1の基板に形成されたカーボンナノチューブ層を押圧させるように説明したが、本実施の形態2においては、転写用の基板を用いずに、カーボンナノチューブ層が形成された第1の基板に表面から粘着剤を塗布するようにしたものである。
 すなわち、図6に示すように、基板21の表面にCVD法により垂直配向性のカーボンナノチューブ層Cを形成し(層形成工程)、そして図7に示すように、このカーボンナノチューブ層Cを、板状の押圧部材22により、表面から下方に押圧する(押圧工程)。
 次に、図8に示すように、押圧されたカーボンナノチューブ層Cの表面に、例えばスピンコート法により粘着剤Vを塗布する(塗布工程)。なお、粘着剤Vとしては、上記実施の形態1と同様に、ポリビニールアルコール(PVA)などが用いられる。すなわち、所定速度で回転されるカーボンナノチューブ層Cの表面に、5~15%(重量%)濃度のポリビニールアルコールVの水溶液を滴下し、そして100℃で乾燥させることによりポリビニールアルコールVをカーボンナノチューブ層Cに含浸させた。この後、図9に示すように、粘着剤Vが塗布されたカーボンナノチューブ層Cを基板21から剥離させる(剥離工程)。次に、図10に示すように、カーボンナノチューブ層Cを溶解液Yである80℃程度の温水(常温水でもよい)に浸漬させて粘着剤Vを溶かした後(溶解工程)、実施の形態1の場合と同様に、四フッ化エチレン樹脂製の繊維状シートにより掬い上げ、回収すればよい。これにより、所定厚さのカーボンナノチューブシートSが得られる。
 この製造方法によると、上述した実施の形態1の場合と同様に、カーボンナノチューブシートを得る際に、従来のように、基板からカーボンナノチューブ層を、直接、剥離させる方法とは異なり、カーボンナノチューブ層を粘着剤により保持させるようにしたので、剥離するときに、カーボンナノチューブ層が破れるのを防止することができる。
 ところで、上記実施の形態2においては、カーボンナノチューブ層を押圧した後に、粘着剤を塗布するように説明したが、変形例として、例えば粘着剤を塗布した後のカーボンナノチューブ層を押圧するようにしてもよい。この場合、押圧されたカーボンナノチューブ層を基板から剥離した後、溶解液に浸漬し、そしてカーボンナノチューブ層を掬い上げて回収すればよい。
 さらに、上記実施の形態2およびその変形例においては、カーボンナノチューブ層を基板から剥離させた後、このカーボンナノチューブ層を溶解液に浸漬させるように説明したが、カーボンナノチューブ層を基板から剥離させずに、基板に付着した状態のカーボンナノチューブ層を溶解液に浸漬させて、粘着剤を溶かすことによりカーボンナノチューブ層を基板から剥離させ、そして四フッ化エチレン樹脂製の繊維状シートによりカーボンナノチューブ層を掬い上げるようにしてもよい。
 すなわち、図7に示しているように、押圧することにより、かなりの部分のカーボンナノチューブ層Cは基板21の表面から離脱された状態で基板に留まっており、敢えて、図9に示すように、基板から剥離させる必要がないためである。
 この実施の形態2に係る製造方法を工程形式により纏めて示すと下記のようになる。
 すなわち、この製造方法は、基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、この層形成工程により基板に形成されたカーボンナノチューブ層を押圧する押圧工程と、この押圧工程により押圧されたカーボンナノチューブ層に粘着剤を塗布する塗布工程と、この塗布工程により粘着剤が塗布されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させてカーボンナノチューブ層から粘着剤を溶解させる溶解工程とを具備する方法であり、
 またこの製造方法における押圧工程を塗布工程の後に配置する方法である。
 次に、本発明の実施の形態3に係るカーボンナノチューブシートの製造方法を、図11および図12に基づき説明する。
 上述した各実施の形態においては、単層のカーボンナノチューブシートを得るように説明したが、本実施の形態3においては、各実施の形態に示したように、粘着剤を用いて(粘着剤の塗布により)得られた単層のカーボンナノチューブシートを複数(多数)重ねることにより、多層のカーボンナノチューブシートを得るようにしたものである。
 すなわち、このカーボンナノチューブシートの製造方法は、上記各実施の形態に係る製造方法で製造されたカーボンナノチューブシートを複数(多数)重ねて圧着することにより層状のカーボンナノチューブを得る圧着工程と、この圧着工程で得られた層状のカーボンナノチューブの前後いずれかの端面を所定厚さでもって切断する切断工程とを具備した方法である。
 具体的には、図11に示すように、実施の形態1または実施の形態2の製造方法により得られた所定幅で且つ所定長さの平面視矩形状のカーボンナノチューブシートS1を、複数枚重ねて圧着することにより層状のカーボンナノチューブシートS2を得る(圧着工程)。
 この圧着工程では、エポキシ、ウレタン、シリコンゴム、ラテックスゴムなどの高分子液が接着剤として充填される。なお、カーボンナノチューブシートを製造する際に用いた水溶性高分子を利用してもよい。
 また、この圧着工程では、アルコールまたは水などで濡らしながら圧着することで、カーボンナノチューブ同士の分子間力を利用してより強く結合させ、そして乾燥させた後、高分子液を平面視矩形状のシートS1に充填して固形化させるようにしてもよい。
 そして、図12に示すように、所定高さに積層された積層状カーボンナノチューブS2が得られると、その前後いずれかの端面(横断面)を所定厚さでもって、丸鋸などのカッターにより切断することにより、所定厚さで高密度な配向性カーボンナノチューブシートS3が得られる(切断工程)。なお、この切断の厚さを調節することにより、任意の厚さの配向性カーボンナノチューブシートS3が得られることになる。
 このカーボンナノチューブシートの製造方法によると、基板の表面に垂直方向で多数形成されたカーボンナノチューブからなるシートを、複数(多数)重ねた後、その前後の端面を厚さ方向に沿って切断することにより、垂直配向性のカーボンナノチューブシートを得るようにしたので、その切断厚さを調節することにより、任意厚さのカーボンナノチューブシートを製造することができる。
 すなわち、このカーボンナノチューブシートを冷却部材または放熱部材として利用した場合、それぞれの能力の向上を図ることができる。このカーボンナノチューブシートを、電磁波吸収部材、電磁波シールド部材、フィルター部材、X線遮蔽部材、光吸収部材(例えば、カメラの反射防止膜)などに利用した場合でも、それぞれの能力の向上を図ることができる。
 1   第1の基板
 2   第2の基板
11   繊維状シート
21   基板
22   押圧部材
C   カーボンナノチューブ層
S   カーボンナノチューブシート
V   粘着剤
Y   溶解液

Claims (7)

  1.  第1の基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、
     この層形成工程により上記第1の基板に形成されたカーボンナノチューブ層を粘着剤が塗布された第2の基板に押圧させて当該第2の基板に転写する転写工程と、
     この転写工程により転写されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させて粘着剤を溶解させる溶解工程とを具備することを特徴とするカーボンナノチューブシートの製造方法。
  2.  粘着剤として水溶性のものを用いるとともに溶解液として水を用いたことを特徴とする請求項1に記載のカーボンナノチューブシートの製造方法。
  3.  粘着剤として有機性の糊を用いるとともに溶解液として当該糊を溶解させる有機溶媒を用いたことを特徴とする請求項1に記載のカーボンナノチューブシートの製造方法。
  4.  基板の表面に垂直配向性のカーボンナノチューブ層を形成する層形成工程と、
     この層形成工程により基板に形成されたカーボンナノチューブ層を押圧する押圧工程と、
     この押圧工程により押圧されたカーボンナノチューブ層に粘着剤を塗布する塗布工程と、
     この塗布工程により粘着剤が塗布されたカーボンナノチューブ層を粘着剤の溶解液に浸漬させてカーボンナノチューブ層から粘着剤を溶解させる溶解工程と
     を具備することを特徴とするカーボンナノチューブシートの製造方法。
  5.  押圧工程を塗布工程の後に配置することを特徴とする請求項4に記載のカーボンナノチューブシートの製造方法。
  6.  粘着剤として水溶性のものを用いるとともに溶解液として水を用いたことを特徴とする請求項4または5に記載のカーボンナノチューブシートの製造方法。
  7.  粘着剤として有機性の糊を用いるとともに溶解液として当該糊を溶解させる有機溶媒を用いたことを特徴とする請求項4または5に記載のカーボンナノチューブシートの製造方法。
PCT/JP2014/078284 2013-10-30 2014-10-24 カーボンナノチューブシートの製造方法 WO2015064481A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013224814A JP6080738B2 (ja) 2013-10-30 2013-10-30 カーボンナノチューブシートの製造方法
JP2013-224814 2013-10-30
JP2013-239416 2013-11-20
JP2013239416A JP6057877B2 (ja) 2013-11-20 2013-11-20 カーボンナノチューブシートの製造方法

Publications (1)

Publication Number Publication Date
WO2015064481A1 true WO2015064481A1 (ja) 2015-05-07

Family

ID=53004087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078284 WO2015064481A1 (ja) 2013-10-30 2014-10-24 カーボンナノチューブシートの製造方法

Country Status (1)

Country Link
WO (1) WO2015064481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524255A (ja) * 2015-06-12 2018-08-30 リンテック株式会社 カーボンナノチューブフォレスト積層体及びカーボンナノチューブフォレスト積層体の製造方法
CN108877961A (zh) * 2018-06-22 2018-11-23 中国工程物理研究院激光聚变研究中心 一种x光宽带选能器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (ja) * 2002-10-03 2004-04-22 Hitachi Zosen Corp カーボンナノチューブ導電性材料およびその製造方法
JP2005007861A (ja) * 2003-05-27 2005-01-13 Mitsubishi Gas Chem Co Inc 三層構造の配向性カーボンナノチューブ膜複合シート、および該配向性カーボンナノチューブ膜の固定化方法
JP2006008473A (ja) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc 配向性カーボンナノチューブのパターン化された柱形状集合体および電界放出型冷陰極の製造方法
JP2007063051A (ja) * 2005-08-30 2007-03-15 Tokai Univ カーボンナノチューブ分散液の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127737A (ja) * 2002-10-03 2004-04-22 Hitachi Zosen Corp カーボンナノチューブ導電性材料およびその製造方法
JP2005007861A (ja) * 2003-05-27 2005-01-13 Mitsubishi Gas Chem Co Inc 三層構造の配向性カーボンナノチューブ膜複合シート、および該配向性カーボンナノチューブ膜の固定化方法
JP2006008473A (ja) * 2004-06-29 2006-01-12 Mitsubishi Gas Chem Co Inc 配向性カーボンナノチューブのパターン化された柱形状集合体および電界放出型冷陰極の製造方法
JP2007063051A (ja) * 2005-08-30 2007-03-15 Tokai Univ カーボンナノチューブ分散液の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524255A (ja) * 2015-06-12 2018-08-30 リンテック株式会社 カーボンナノチューブフォレスト積層体及びカーボンナノチューブフォレスト積層体の製造方法
CN108877961A (zh) * 2018-06-22 2018-11-23 中国工程物理研究院激光聚变研究中心 一种x光宽带选能器件及其制作方法

Similar Documents

Publication Publication Date Title
JP6080738B2 (ja) カーボンナノチューブシートの製造方法
JP6057877B2 (ja) カーボンナノチューブシートの製造方法
KR101931831B1 (ko) 그래핀 막의 전사 방법 및 투명 도전막의 제조 방법
JP6788013B2 (ja) 接着剤と1つ又は複数のナノファイバーシートとを備える複数層複合材
JP5097172B2 (ja) グラフェン層の剥離方法、グラフェンウエハの製造方法、及び、グラフェン素子の製造方法
CN107635767A (zh) 石墨复合膜及其制造方法、以及散热部件
CN202322703U (zh) 具有导热性能的胶带
JP5973390B2 (ja) グラフェン製造方法
CN106332520A (zh) 一种石墨膜复合体及其制备方法
US10906286B2 (en) Method for transferring two-dimensional nanomaterials
US8852376B2 (en) Method for making heaters
WO2015064481A1 (ja) カーボンナノチューブシートの製造方法
WO2017110140A1 (ja) 金属と炭素繊維との複合材の製造方法
JP6713068B2 (ja) カーボンナノチューブ複合膜で二次元ナノ材料を転写する方法
TW201247422A (en) Method of transferring a graphene film
WO2024146041A1 (zh) 一种高强度石墨烯导热垫片及其制备方法
TWI464946B (zh) 鋰離子電池電極的製備方法
JP5002778B2 (ja) 透明導電性膜基材の製造方法及び透明積層体の製造方法
KR20170111573A (ko) 2차원 물질의 전사 방법
WO2013121796A1 (ja) 吸着用多孔質シートおよび吸着用多孔質シートに用いる交換用表面層
JP6383670B2 (ja) アルミニウムと炭素粒子との複合材の製造方法及び絶縁基板の製造方法
JP2007001302A (ja) 熱伝導性複合シート、それを用いた電子部品アッセンブリーの製造方法
KR20190088172A (ko) 평면 구조의 다층 박막을 형성하기 위한 방법
CN103625035A (zh) 一种碳纳米管散热体及其制备方法
JP2018199840A (ja) 金属−炭素粒子複合材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14857844

Country of ref document: EP

Kind code of ref document: A1