WO2015064006A1 - 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 - Google Patents
継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 Download PDFInfo
- Publication number
- WO2015064006A1 WO2015064006A1 PCT/JP2014/004892 JP2014004892W WO2015064006A1 WO 2015064006 A1 WO2015064006 A1 WO 2015064006A1 JP 2014004892 W JP2014004892 W JP 2014004892W WO 2015064006 A1 WO2015064006 A1 WO 2015064006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- less
- seamless steel
- steel pipe
- rolling
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 129
- 239000010959 steel Substances 0.000 title claims abstract description 129
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 239000003129 oil well Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 139
- 238000005096 rolling process Methods 0.000 claims abstract description 74
- 239000000463 material Substances 0.000 claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 40
- 239000011796 hollow space material Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 19
- 239000010935 stainless steel Substances 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 description 23
- 238000005260 corrosion Methods 0.000 description 23
- 230000000694 effects Effects 0.000 description 18
- 229910001566 austenite Inorganic materials 0.000 description 14
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 12
- 229910000734 martensite Inorganic materials 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 150000002910 rare earth metals Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000009863 impact test Methods 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- DZGCGKFAPXFTNM-UHFFFAOYSA-N ethanol;hydron;chloride Chemical compound Cl.CCO DZGCGKFAPXFTNM-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B17/00—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
- B21B17/08—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel having one or more protrusions, i.e. only the mandrel plugs contact the rolled tube; Press-piercing mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B19/00—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B19/00—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
- B21B19/02—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
- B21B19/04—Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B23/00—Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
Definitions
- the present invention relates to the manufacture of seamless steel pipe (seamless steel pipe or pipe), and in particular, an equipment line suitable for the production of seamless steel pipe and low-temperature toughness using the equipment line. It is related with the manufacturing method of the high strength stainless steel seamless steel pipe for oil wells excellent in.
- Patent Document 1 describes a method for producing an improved martensitic stainless steel plate (steel plate) in which the corrosion resistance (corrosion resistance) of 13% Cr martensitic stainless steel is improved.
- the composition of a martensitic stainless steel containing 10 to 15% Cr by weight% limits C to 0.005 to 0.05%, Ni: 4.0 to 9.0%, Cu: 0.5
- a steel with a composition with a combined addition of ⁇ 3%, 1.0 to 3% Mo, and a Ni equivalent adjusted to -10 or more is hot-worked and allowed to cool naturally to room temperature.
- heat treatment is performed at a temperature below the temperature at which the austenite fraction is 80%, and heat treatment is performed at a temperature below the temperature at which the austenite fraction is 60%, and the structure is tempered martensitic phase, martensite phase, residual austenite It is made of martensitic stainless steel, which is composed of a retained austenitic phase and has a structure in which the total fraction of the tempered martensite phase and martensite phase is 60 to 90%. As a result, the corrosion resistance and sulfide stress corrosion cracking resistance in wet carbon dioxide environment (wet carbon dioxide environment) and wet hydrogen sulfide environment are improved.
- Patent Document 2 describes a method for producing a high-strength stainless steel pipe for oil wells having excellent corrosion resistance.
- C 0.005 to 0.05%
- Si 0.05 to 0.5%
- Mn 0.2 to 1.8%
- P 0.03% or less
- S 0.005% or less
- Cr 15.5
- V 0.02-0.2%
- N 0.01-0.15%
- Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C Steel pipe material with composition satisfying ⁇ 19.5 and Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ⁇ 11.5 is heated and formed by hot working.
- Cool to room temperature at a speed to make a seamless steel pipe of the specified dimensions then reheat the seamless steel pipe to a temperature of 850 ° C or higher, cool it to 100 ° C or lower with a cooling rate of air cooling or higher, and then lower it to 700 ° C or lower.
- a quenching and tempering process that heats the oil well, it has a structure with a ferrite phase of 10-60% by volume and the balance being a martensite phase, with a yield strength of 654 MPa or more. Strength It is going to be able to obtain a less steel pipe.
- a high strength, CO 2 and Cl - containing has sufficient corrosion resistance even at a high temperature severe corrosive environments up to 230 ° C., moreover absorbed energy at -40 °C Charpy impact test (Absorbed energy) Is said to be a steel pipe with high toughness of 50J or more.
- Oil well seamless steel pipes are required to have various thicknesses and diameters.
- the normal hot working method reduces the processing strain as the thickness increases. It becomes difficult to apply up to the thickness center, and the structure of the central portion of the thickness tends to become coarse. Therefore, compared with thin-walled steel pipes (thin-walled steel tubes or pipes), thick-walled steel pipes tend to have reduced toughness at the thickness center.
- the techniques described in Patent Documents 1 and 2 are intended for steel pipes with a maximum thickness of 12.7 mm, and Patent Documents 1 and 2 refer to further improvements in low-temperature toughness of thick-walled seamless steel pipes. Not.
- an object of the present invention is to provide an apparatus array for manufacturing seamless steel pipes that can inexpensively manufacture thick stainless steel seamless steel pipes having excellent low temperature toughness.
- the present invention makes use of these devices, yield strength: exceeding 654 MPa, excellent corrosion resistance under hot corrosive environment, and excellent low temperature at the thickness center.
- the term “thick-walled seamless steel pipe” as used herein refers to a seamless steel pipe having a wall thickness exceeding 13 mm and not more than about 100 mm.
- the present inventors have intensively studied various factors affecting the toughness of the thick-walled stainless steel seamless steel pipe wall thickness center. As a result, it came to mind that the most effective method for improving toughness is the refinement of the structure.
- the hollow materials after piercing were used in a temperature range of 600 ° C or higher.
- the temperature range of at least 50 ° C is cooled at an average cooling rate of 1.0 ° C / s or higher, which is a cooling rate of air cooling or higher, and if processing such as thinning or molding is performed, the structure becomes finer and thicker : The knowledge that the low temperature toughness is remarkably improved even at the thickness center position of the thick stainless steel seamless steel pipe exceeding 13 mm.
- test material was collected from a martensitic stainless steel seamless pipe for an oil well having a composition consisting of: The collected test materials were heated to a heating temperature of 1250 ° C. and held for a certain time (60 min), and then cooled at various cooling rates up to a cooling stop temperature in the range of 1200 to 600 ° C. which is a hot working temperature range. After completion of cooling, the test material was immediately quenched to freeze the tissue.
- the obtained specimen was ground and corroded (corrosion solution: vilella (1% picric acid-5-15% hydrochloric acid-ethanol)), and the structure was observed.
- the martensite phase and the ferrite phase were observed.
- the area ratio was measured.
- the martensite phase is a phase in which the austenite phase present at the cooling stop temperature is transformed upon rapid cooling.
- the obtained results are shown in FIG. 2 in relation to the average cooling rate and the ferrite amount (area ratio) at the cooling stop temperature.
- the temperature range from the heating temperature to the cooling stop temperature is cooled at 0.5 ° C./s by cooling at an average cooling rate of 1.0 ° C./s or more. It can be seen that the ferrite phase fraction is higher than that of the case.
- the cooling at an average cooling rate of 0.5 ° C./s is a cooling simulating air cooling (equivalent to air cooling) and can be said to be cooling in a state close to equilibrium.
- the ferrite phase fraction is usually high in the heating temperature range, and when cooling from the heating temperature to a cooling rate of about air cooling, the ferrite decreases with decreasing temperature. The phase decreases and the fraction of the austenite phase increases.
- the temperature range from the heating temperature to the hot working temperature (cooling stop temperature) is accelerated and cooled at an average cooling rate of 1.0 ° C / s or higher, precipitation of the austenite phase is delayed and the ferrite phase is delayed. More than the equilibrium state (equilibrium condition) remains, and a non-equilibrium condition phase distribution (microstructure) is obtained.
- the present inventors have found that refinement of the structure can be achieved by processing (rolling) the material having such a non-equilibrium structure. This is because, if strain is added to ferrite grains that exist in non-equilibrium, a large number of ⁇ ⁇ ⁇ transformation nucleation sites (nucleation sites) can be generated, and as a result, the austenite grains generated after transformation become finer and low temperature toughness Is thought to improve.
- the present inventors used a heating device (heating device) and piercing and rolling.
- a cooling device is arranged between the heating device and the piercing and rolling device or between the piercing and rolling device and the rolling device, from the conventional device row in which the device (piercing devise) and the rolling device (rolling mill) are arranged in this order. It was found that it was important to use a device array.
- the present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows.
- a heating device for heating a steel material a piercing and rolling device for subjecting the heated steel material to piercing and rolling to form a hollow material, and a rolling device for processing the hollow material to obtain a seamless steel pipe having a predetermined shape.
- a cooling device is provided between the heating device and the piercing-rolling device or between the piercing-rolling device and the rolling device.
- Equipment column for seamless steel pipe manufacturing is provided between the heating device and the piercing-rolling device or between the piercing-rolling device and the rolling device.
- the steel material is, in mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0% , Ni: 1.5 to 5.0%, Mo: 1.0 to 3.5%, V: 0.02 to 0.20%, N: 0.01 to 0.15%, O: 0.006% or less, steel material having the composition consisting of the balance Fe and inevitable impurities
- the heating is performed at a temperature of 600 ° C.
- the drilling is performed.
- the surface temperature of the hollow material before cooling with the cooling device as a cooling start temperature the cooling, at the surface temperature, the temperature difference from the cooling start temperature is at least 50 ° C.
- the manufacturing method of the high strength stainless steel seamless pipe for oil wells which makes it the process which cools with the average cooling rate of 1.0 degree-C / s or more with an outer surface temperature to the cooling stop temperature which will be 600 degreeC or more.
- a thick high-strength stainless steel seamless pipe excellent in low-temperature toughness can be easily manufactured, and the industrial effect is remarkable.
- the steel pipe structure can be refined to the center with a relatively small amount of processing, and even in thick-walled seamless steel pipes where the amount of processing at the center of the wall thickness cannot be increased, There is an effect that the improvement can be achieved.
- Drawing 1A is an explanatory view showing typically an example of the device line for manufacture of the seamless steel pipe of the present invention.
- FIG. 1B is an explanatory view schematically showing an example of an apparatus row for manufacturing a seamless steel pipe of the present invention.
- FIG. 2 is a graph showing the relationship between the average cooling rate before hot working and the ferrite content at the cooling stop temperature.
- the apparatus row for manufacturing seamless steel pipe of the present invention is an apparatus row that can be processed into a seamless steel pipe after cooling the heated steel material within an appropriate temperature range.
- column for this invention seamless steel pipe manufacture is shown to FIG. 1A and 1B.
- the apparatus row for manufacturing seamless steel pipes according to the present invention includes a heating device 1, a piercing and rolling device 2, a cooling device 4 and a rolling device 3 arranged in this order, or as shown in FIG.
- the apparatus 1 is formed by arranging the apparatus 1, the cooling apparatus 4, the piercing and rolling apparatus 2, and the rolling apparatus 3 in this order.
- the heating device 1 used in the present invention can heat a steel material such as a round cast slab and a round steel slab to a predetermined temperature, for example, a rotary hearth furnace and a walking beam heater. Any conventional heating furnace such as furnace) can be applied. Also, an induction heating furnace (induction heating furnace) may be used.
- the piercing and rolling device 2 used in the present invention may be a piercing and rolling device that can pierce and roll a heated steel material to form a hollow material.
- a barrel-shaped roll barrel shape roll
- Any generally known piercing and rolling apparatus such as a Mannesmann-inclined-roll-type-piercing-machine or a hot-extrusion-type-piercing-machine can be used.
- the rolling device 3 used in the present invention may be any device that can process a hollow material into a seamless steel pipe having a predetermined shape.
- an elongator 31 is drilled depending on the purpose.
- a rolling mill arranged in the order of a plug mill 32 for extending the hollow hollow tube thinly and long, a reeler (not shown) for smoothing the inner and outer surfaces of the hollow tube, and a sizer 33 for adjusting to a predetermined size.
- Any generally known rolling apparatus such as an apparatus can be applied.
- the rolling device 3 is preferably an elongator or mandrel mill that can take a large amount of processing.
- the cooling device 4 used in the present invention is installed between the heating device 1 and the piercing and rolling device 2 or between the piercing and rolling device 2 and the rolling device 3 in order to obtain a non-equilibrium phase distribution.
- the type of the cooling device used in the present invention is not particularly limited as long as it is a device capable of cooling a heated steel material (cooled material) at a desired cooling rate or higher. Cooling devices that can ensure a desired cooling rate relatively easily include cooling water, compressed air, or mist (on the outer surface of a heated steel material or hollow material to be cooled). It is preferable to use an apparatus that cools by supplying or supplying mist.
- the cooling device used in the present invention obtains an average cooling rate of at least 1.0 ° C./s or more at the outer surface position of the material to be cooled in order to obtain a non-equilibrium phase distribution when manufacturing a steel pipe having a stainless steel composition. It is necessary to provide a device having a cooling capacity that can be used. If the cooling capacity of the cooling device is insufficient and cooling can only be performed slower than the average cooling rate described above, a phase distribution in a non-equilibrium state cannot be obtained, and the microstructure can be refined even after subsequent processing. Disappear.
- the upper limit of the cooling rate is not particularly limited, but is preferably 30 ° C./s from the viewpoint of preventing cracking and bending due to thermal stress.
- a heat retention apparatus is arrange
- the heat retaining device it is sufficient for the heat retaining device to have a heat retaining ability that can be adjusted to a cooling rate of at least about 20 ° C./s at the surface position of the material to be cooled.
- the steel material After the steel material is heated by the heating device, the steel material is pierced and rolled by a piercing and rolling device to form a hollow material, and the hollow material is further cooled by a cooling device, and then immediately processed by the rolling device, or after the processing, a further heat retaining device.
- a cooling device After the steel material is heated by the heating device, the steel material is pierced and rolled by a piercing and rolling device to form a hollow material, and the hollow material is further cooled by a cooling device, and then immediately processed by the rolling device, or after the processing, a further heat retaining device.
- the steel materials used are mass%, C: 0.050% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, Cr: 15.5 to 18.0%, Ni: 1.5 to 5.0%, Mo: 1.0 to 3.5%, V: 0.02 to 0.20%, N: 0.01 to 0.15%, O: 0.006% or less, and the composition comprising the balance Fe and inevitable impurities.
- C is an important element related to the strength of martensitic stainless steel.
- C is preferably contained in an amount of 0.005% or more in order to ensure a desired strength.
- the content exceeds 0.050%, sensitization during tempering due to Ni inclusion increases. From the viewpoint of corrosion resistance, it is desirable that C is small. For these reasons, C is limited to 0.050% or less. Note that the content is preferably 0.030 to 0.050%.
- Si 0.50% or less Si is an element that acts as a deoxidizing agent, and it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 0.50%, the corrosion resistance is lowered, and the hot workability is also lowered. For this reason, Si was limited to 0.50% or less. Note that the content is preferably 0.10 to 0.30%.
- Mn 0.20 to 1.80% Mn is an element having an action of increasing the strength, and in order to obtain such an effect, it needs to be contained in an amount of 0.20% or more. On the other hand, if the content exceeds 1.80%, the toughness is adversely affected. For this reason, Mn was limited to 0.20 to 1.80%. The content is preferably 0.2 to 1.0%.
- Cr 15.5-18.0%
- Cr is an element that forms a protective coating and has an action of improving corrosion resistance, and further dissolves to increase the strength of steel. In order to obtain such an effect, the content of 15.5% or more is required. On the other hand, if the content exceeds 18.0%, the hot workability is lowered and the strength is further lowered. For this reason, Cr was limited to 15.5 to 18.0%. Note that the content is preferably 16.5 to 18.0%.
- Ni 1.5-5.0%
- Ni is an element that has the effect of strengthening the protective film and improving the corrosion resistance, and further increases the strength of the steel by solid solution and further improves the toughness. Such an effect is recognized when the content is 1.5% or more. On the other hand, if the content exceeds 5.0%, the stability of the martensite phase decreases and the strength decreases. For this reason, Ni was limited to 1.5 to 5.0%. It is preferably 2.5 to 4.5%.
- Mo 1.0-3.5%
- Mo is, Cl - by an element for increasing the resistance (pitting corrosion resistance) (pitting corrosion resistance) against pitting, the content thereof needs to be 1.0% or more.
- the content exceeds 3.5%, the strength decreases and the material cost increases. For this reason, Mo is limited to 1.0 to 3.5%. It is preferably 2 to 3.5%.
- V 0.02 to 0.20%
- V is an element that increases strength and improves corrosion resistance. In order to obtain such an effect, a content of 0.02% or more is required. On the other hand, if the content exceeds 0.20%, toughness decreases. For this reason, V was limited to 0.02 to 0.20%. Note that the content is preferably 0.02 to 0.08%.
- N 0.01-0.15%
- N is an element that remarkably improves the pitting corrosion resistance. In order to obtain such an effect, N is required to be contained in an amount of 0.01% or more. On the other hand, if the content exceeds 0.15%, various nitrides are formed and the toughness is lowered. Note that the content is preferably 0.02 to 0.08%.
- O 0.006% or less
- O exists as an oxide in steel and adversely affects various properties. For this reason, it is desirable to reduce as much as possible.
- O is contained in a large amount exceeding 0.006%, the hot workability, toughness and corrosion resistance are remarkably deteriorated. For this reason, O was limited to 0.006% or less.
- the above-mentioned components are basic components, but in addition to the basic components, the following groups A to D: Group A: Al: 0.002 to 0.050%; Group B: Cu: 3.5% or less, Group C: Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: 3.0% or less, B: 0.01% or less selected from 0.01% or less, Group D: Ca: 0.01% or less, REM: One or more groups selected from one or two selected from 0.01% or less can be contained.
- Group A: Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is preferably contained in an amount of 0.002% or more, but if it exceeds 0.050%, the toughness is adversely affected. For this reason, when it contains, it is preferable to limit to A group: Al: 0.002-0.050%. More preferably, it is 0.03% or less. In the case where Al is not added, Al: less than 0.002% is allowed as an inevitable impurity.
- Group B Cu: 3.5% or less
- Group C Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: 3.0% or less, B: 0.01% or less selected from Group C: Nb, Ti , Zr, W, and B are elements that increase the strength, and can be selected and contained as necessary. Such effects are recognized when Nb: 0.03% or more, Ti: 0.03% or more, Zr: 0.03% or more, W: 0.2% or more, B: 0.0005% or more. On the other hand, inclusions exceeding Nb: 0.2%, Ti: 0.3%, Zr: 0.2%, W: 3.0%, and B: 0.01% respectively reduce toughness. For this reason, when it contains, it is preferable to limit to Nb: 0.2% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: 3.0% or less, B: 0.01% or less, respectively.
- Group D Ca: 0.01% or less
- REM One or two selected from 0.01% or less
- Group D: Ca and REM have an action of spheroidizing the form of sulfide inclusions, It has the effect of reducing the lattice strain of the matrix surrounding the inclusions and reducing the hydrogen trapping ability of the inclusions. Can be contained. In order to acquire such an effect, it is desirable to contain Ca: 0.0005% or more and REM: 0.001% or more, respectively, but if Ca is contained in excess of 0.01% and REM: 0.01%, the corrosion resistance decreases. For this reason, when contained, it is preferable to limit Ca to 0.01% or less and REM to 0.01% or less, respectively.
- the balance other than the above components is Fe and inevitable impurities.
- Inevitable impurities include P: 0.03% or less and S: 0.005% or less.
- the manufacturing method of the steel material having the above composition is not particularly limited. Using a conventional smelting furnace, such as a converter, electric furnace, etc., the molten steel of the above composition is melted and used for continuous casting, etc. It is preferable to use a steel material as a slab (round slab) by the casting method. In addition, it is good also as a steel raw material as a steel slab of a predetermined dimension by hot-rolling a slab. Moreover, there is no problem even if it is made into a steel slab by the ingot-making and bloomig method.
- a steel material having the above composition is charged into a heating device and heated to a temperature in a range of heating temperature: 600 ° C. or higher and lower than the melting point.
- Heating temperature 600 ° C. or higher and lower than the melting point
- the heating temperature of the steel material was limited to a temperature of 600 ° C. or higher and lower than the melting point.
- the temperature is preferably 1000 to 1300 ° C. from the viewpoint that the deformation resistance is small and the processing is easy, and the temperature difference during cooling can be increased. More preferably, it is 1100-1300 ° C.
- the heated steel material is then subjected to piercing and rolling with a piercing and rolling device to form a hollow material.
- the steel material can be a predetermined hollow material, it is not necessary to limit the conditions in particular, and it is preferable to use normal piercing and rolling.
- the obtained hollow material is cooled by a cooling device.
- Cooling is accelerated by cooling at an average cooling rate of 1.0 ° C / s or higher at the temperature of the outer surface position of the hollow material to a cooling stop temperature at which the temperature difference from the cooling start temperature is at least 50 ° C and 600 ° C or higher. Let it be a cooling process.
- the cooling start temperature is the thickness center temperature of the hollow material before the start of cooling, and is preferably 600 ° C. or higher in the present invention. A more preferable cooling start temperature is 1100 ° C. or higher. When the cooling start temperature is less than 600 ° C., the fine structure effect by the subsequent processing cannot be expected.
- Cooling temperature range 50 ° C. or more Cooling temperature range (cooling temperature difference), that is, the temperature difference between the cooling start temperature and the cooling stop temperature is at least 50 ° C. at the surface temperature.
- the temperature range of cooling was limited to 50 ° C. or higher.
- the larger the cooling temperature range the easier it is to secure a non-equilibrium phase fraction.
- Preferably it is 100 degreeC or more.
- Cooling stop temperature 600 ° C or higher.
- the cooling stop temperature is less than 600 ° C.
- the diffusion of the elements is delayed, and the phase transformation ( ⁇ ⁇ ⁇ transformation) by the subsequent processing is delayed, and the effect of refining the structure by the desired processing cannot be expected.
- the cooling stop temperature was limited to 600 ° C. or higher.
- Preferably it is 700 degreeC or more. Even if the temperature at the time of cooling stop is less than 600 ° C., the effect of refining the structure is exhibited when the heat generation due to double heat or subsequent hot processing is 600 ° C. or higher.
- Average cooling rate 1.0 ° C./s or more
- the cooling rate of cooling is limited to 1.0 ° C./s or more.
- the upper limit of the cooling rate is determined by the capacity of the cooling device and is not particularly limited, but is preferably 30 ° C./s or less from the viewpoint of preventing cracking due to thermal stress and preventing bending. More preferably, it is 3 to 10 ° C./s.
- the cooled hollow material is processed by a rolling device to be a seamless steel pipe having a predetermined size.
- it is preferable that the time until the processing is performed is within 600 s after the cooling is completed. If the time from the end of cooling to the start of processing exceeds 600 s, the ferrite phase transforms into an austenite phase, making it difficult to ensure a non-equilibrium state.
- the cooling rate after processing is not particularly limited. However, when cooling is performed at an average cooling rate exceeding 20 ° C./s at the wall thickness center temperature, the heat retaining temperature provided on the outlet side of the rolling apparatus. It is preferable to charge the apparatus and adjust the average cooling rate to 20 ° C./s or less. If the cooling after processing exceeds 20 ° C / s and becomes too fast, the precipitation of the austenite phase due to the ⁇ ⁇ ⁇ transformation is delayed, the austenite phase is cooled without precipitation, the processed structure is frozen, and the desired structure It becomes impossible to achieve the miniaturization.
- the cooling apparatus uses the apparatus row arranged between the piercing and rolling apparatus and the rolling apparatus.
- the same effect can be expected even when a cooling device using a device row arranged between a heating device and a piercing and rolling device is used. This is because, in the present invention, it is confirmed that there is an effect in both piercing and rolling, and the influence of the processing form of the processing apparatus is small.
- the cooling stop temperature is set according to the steel type so that the temperature range for cooling is equal to or higher than the temperature at which piercing and rolling can be performed. Need to be set. If it is the composition range of the steel raw material used by this invention, it is preferable that the cooling stop temperature shall be 600 degreeC or more. When the cooling stop temperature is less than 600 ° C., the deformation resistance becomes too high and piercing and rolling becomes difficult. For this reason, in this case, the cooling stop temperature is preferably limited to 600 ° C. or higher. Further, when cooling the heated steel material, in order to ensure a non-equilibrium phase fraction, the cooling rate at the outer surface position should be, on average, a cooling rate of 1.0 ° C./s or more. preferable.
- the seamless steel pipe obtained by the above-described manufacturing method is a steel pipe having the above-described composition and a structure including a martensite phase as a main phase, a ferrite phase, and a residual austenite phase.
- the “main phase” here refers to the most common phase.
- the residual austenite phase is preferably 20% or less in terms of area ratio.
- a steel pipe having such a structure has a high strength of yield strength: 654 MPa or more and an excellent low temperature toughness with an absorption energy of 50 J or more at -40 ° C Charpy impact test at the center of the wall thickness. It contains carbon dioxide and becomes a steel pipe with excellent corrosion resistance in a severe corrosive environment at a high temperature of 230 ° C.
- a steel material having the composition shown in Table 1 was used as a starting material.
- molten steel melted in a converter is made into a slab (billet) by a continuous casting method, and the slab is made into a round steel piece (230 mm ⁇ ) having the composition shown in Table 1 by molding and rolling.
- These steel materials were used to make thick-walled seamless steel pipes (outer diameter 273 mm ⁇ x wall thickness 32 mm).
- test method was as follows.
- Microstructure observation A specimen for microstructural observation is collected from the obtained steel pipe, and the cross section (C cross section) orthogonal to the longitudinal direction of the pipe is polished and corroded (corrosive liquid: Villera liquid). ) (Magnification: 100x) or scanning electron microscope (magnification: 1000x), observe and image tissue, use image analysis to determine the type of tissue and its fraction It was measured. The number of crystal grain boundaries intersecting the unit length straight line was measured from the structure photograph, and used as a crystal grain size index and a refinement index. In addition, the number of crystal grain boundaries per unit length is shown as a ratio to the reference value, with the value obtained as the reference (1.00) for the value of steel pipe No. 5.
- Impact test V-notched test bar is collected from the center position of the thickness of the obtained steel pipe so that the pipe axis direction is the longitudinal direction of the specimen, and stipulated in JIS Z 2242 In accordance with the Charpy impact test, the absorbed energy at a test temperature of ⁇ 40 ° C. was measured to evaluate toughness. The number of test pieces was three each, and the average value thereof was taken as the absorbed energy of the steel pipe.
- the structure can be refined even at the thickness center position of the thick wall, and the yield strength is 654 MPa or higher, but the Charpy impact test temperature is ⁇ 40 ° C. Absorbed energy is 50J or more, and the toughness is remarkably improved.
- the toughness of the present invention example (steel pipe No. 12) having a low work amount (rolling rate) as low as 0% is also significantly improved.
- the comparative example which is out of the scope of the present invention does not ensure the desired high strength, or the structure cannot be refined, and the desired high toughness cannot be ensured.
- Heating device Punching and rolling device 3 Rolling device 4 Cooling device 31 Elongator 32 Plug mill 33 Sizing mill (sizer)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
A群:Al:0.002~0.050%、
B群:Cu:3.5%以下、
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、W:3.0%以下、B:0.01%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.01%以下、REM(rare-earth metal):0.01%以下のうちから選ばれた1種または2種のうちから選ばれた1群または2群以上を含有する油井用高強度ステンレス継目無鋼管の製造方法。
Cは、マルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、本発明では所望の強度を確保するために0.005%以上含有することが望ましい。一方、0.050%を超えて含有すると、Ni含有による焼戻時の鋭敏化(sensitization)が増大する。なお、耐食性の観点からはCは少ないほうが望ましい。このようなことから、Cは0.050%以下に限定した。なお、好ましくは0.030~0.050%である。
Siは、脱酸剤(deoxidizing agent)として作用する元素であり、0.05%以上含有することが望ましい。一方、0.50%を超える含有は、耐食性を低下させ、さらに熱間加工性(hot workability)をも低下させる。このため、Siは0.50%以下に限定した。なお、好ましくは0.10~0.30%である。
Mnは、強度を増加させる作用を有する元素であり、このような効果を得るためには0.20%以上の含有を必要とする。一方、1.80%を超えて含有すると、靭性に悪影響を及ぼす。このため、Mnは0.20~1.80%に限定した。なお、好ましくは0.2~1.0%である。
Crは、保護皮膜(protective coating)を形成し耐食性を向上させる作用を有し、さらに固溶して鋼の強度を増加させる元素である。このような効果を得るためには、15.5%以上の含有を必要とする。一方、18.0%を超えて多量に含有すると、熱間加工性が低下し、さらに強度が低下する。このため、Crは15.5~18.0%に限定した。なお、好ましくは16.5~18.0%である。
Niは、保護皮膜を強固にし、耐食性を高める作用を有する元素であり、さらに固溶して鋼の強度を増加させ、さらに靭性(toughness)を向上させる元素でもある。このような効果は1.5%以上の含有で認められる。一方、5.0%を超えて含有すると、マルテンサイト相の安定性が低下し、強度が低下する。このため、Niは1.5~5.0%に限定した。なお、好ましくは2.5~4.5%である。
Moは、Cl-による孔食に対する抵抗性(耐孔食性)(pitting corrosion resistance)を増加させる元素であり、1.0%以上の含有を必要とする。一方、3.5%を超える多量の含有は、強度が低下するとともに、材料コストが高騰する。このため、Moは1.0~3.5%に限定した。なお、好ましくは2~3.5%である。
Vは、強度を増加させるとともに、耐食性を改善する元素である。このような効果を得るためには、0.02%以上の含有を必要とする。一方、0.20%を超えて含有すると、靭性が低下する。このため、Vは0.02~0.20%に限定した。なお、好ましくは0.02~0.08%である。
Nは、耐孔食性を著しく向上される元素であり、このような効果を得るためには0.01%以上の含有を必要とする。一方、0.15%を超えて含有すると、種々の窒化物を形成し靭性を低下させる。なお、好ましくは0.02~0.08%である。
Oは、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、できるだけ低減することが望ましい。とくに、Oが0.006%を超えて多量に含有すると、熱間加工性、靭性および耐食性の低下が著しくなる。このため、Oは0.006%以下に限定した。
A群:Al:0.002~0.050%、
B群:Cu:3.5%以下、
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、W:3.0%以下、B:0.01%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種
のうちから選ばれた1群または2群以上を含有することができる。
A群:Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.002%以上含有することが好ましいが、0.050%を超えて含有すると、靭性に悪影響を及ぼす。このため、含有する場合には、A群:Al:0.002~0.050%に限定することが好ましい。より好ましくは0.03%以下である。Al無添加の場合には、不可避的不純物としてAl:0.002%未満程度が許容される。
B群:Cuは、保護皮膜を強固し、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を高める。このような効果を得るためには0.5%以上含有することが望ましい一方、3.5%を超える含有は、CuSの粒界析出(grain boundary precipitation)を招き、熱間加工性が低下する。このため、含有する場合には、B群:Cuは3.5%以下に限定することが好ましい。なお、より好ましくは0.8~2.5%である。
C群:Nb、Ti、Zr、W、Bはいずれも、強度を増加させる元素であり、必要に応じて選択して含有できる。このような効果は、Nb:0.03%以上、Ti:0.03%以上、Zr:0.03%以上、W:0.2%以上、B:0.0005%以上の含有で認められる。一方、Nb:0.2%、Ti:0.3%、Zr:0.2%、W:3.0%、B:0.01%、をそれぞれ超える含有は、靭性を低下させる。このため、含有する場合は、Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、W:3.0%以下、B:0.01%以下に、それぞれ限定することが好ましい。
D群:Caおよび、REMは、硫化物系介在物の形態を球状化する作用を有し、介在物周囲のマトリックス(matrix)の格子歪(lattice strain)を小さくして、介在物の水素トラップ能(hydrogen trapping ability)を低下させる効果を有し、必要に応じ選択して1種または2種を含有できる。このような効果を得るためには、それぞれCa:0.0005%以上、REM:0.001%以上含有することが望ましいが、それぞれCa:0.01%、REM:0.01%を超えて含有すると、耐食性が低下する。このため、含有する場合には、それぞれCaは0.01%以下に、REMは0.01%以下に限定することが好ましい。
加熱温度が600℃未満では、組織が単相であり、変態を利用した組織の微細化が達成できない。一方、融点以上では加工を施すことができない。このため、鋼素材の加熱温度は600℃以上融点未満の温度に限定した。なお、好ましくは変形抵抗(deformation resistance)が小さく加工が容易であり、冷却時の温度差を大きくとれるという観点から1000~1300℃である。より好ましくは1100~1300℃である。
冷却の温度範囲(冷却温度差)、すなわち、冷却開始温度と冷却停止温度の温度差は、少なくとも表面温度で50℃以上とする。冷却の温度範囲が50℃未満では、顕著な非平衡状態の相分率を確保できなくなり、その後の加工により所望の組織の微細化を達成できない。このため、冷却の温度範囲は50℃以上に限定した。冷却の温度範囲は大きいほど、非平衡状態の相分率を確保できやすくなる。なお、好ましくは100℃以上である。
冷却停止温度は600℃以上とする。冷却停止温度が600℃未満では、元素の拡散が遅くなり、その後の加工による相変態(phase transformation)(α→γ変態)が遅れ、所望の加工による組織の微細化の効果が期待できなくなる。このため、冷却停止温度は600℃以上に限定した。なお、好ましくは700℃以上である。なお、冷却停止時の温度が600℃未満でも、複熱やその後に加えられる熱間加工による加工発熱で600℃以上となる場合には、組織の微細化効果を発揮する。
冷却の平均冷却速度が1.0℃/s未満では、非平衡状態の相分率を確保できなくなり、その後の加工により所望の組織の微細化を達成できない。このため、冷却の平冷却速度は1.0℃/s以上に限定した。なお、冷却速度の上限は、冷却装置の能力により決定され、とくに限定する必要はないが、熱応力による割れ防止や、曲がり防止の観点から、30℃/s以下とすることが好ましい。なお、より好ましくは3~10℃/sである。
なお、圧延後は放冷(0.1~1.5℃/s)した。得られた厚肉継目無鋼管にさらに熱処理(焼入焼戻処理あるいは焼戻処理)を施した。
得られた鋼管から、組織観察用試験片を採取し、管長手方向に直交する断面(C断面)を研磨、腐食(腐食液:ビレラ液)して、光学顕微鏡(optical microscope)(倍率:100倍)または走査型電子顕微鏡(scanning electron microscope)(倍率:1000倍)で組織を観察し、撮像して、画像解析(image analysis )を用い、組織の種類およびその分率を測定した。なお、組織写真から、単位長さの直線と交差する結晶粒界の数を測定し、結晶粒のサイズ指標とし、微細化の指標とした。なお、単位長さ当たりの結晶粒界数は、得られた値を、鋼管No.5の値を基準(1.00)として、基準値に対する比率として示した。
得られた鋼管から、管軸方向が引張方向となるように、丸棒引張試験片(round bar type tensile specimen)(平行部6mmφ×G.L.20mm)を採取し、引張試験を実施し、降伏強さYSを求めた。なお、降伏強さは0.2%伸びでの強度とした。
得られた鋼管の肉厚中央位置から、管軸方向が試験片長手方向となるように、Vノッチ試験片(V-notched test bar)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験(Charpy impact test)を実施し、試験温度:-40℃における吸収エネルギー(absorbed energy)を測定し、靭性を評価した。なお、試験片は各3本とし、それらの平均値を当該鋼管の吸収エネルギーとした。
2 穿孔圧延装置
3 圧延装置
4 冷却装置
31 エロンゲータ
32 プラグミル
33 サイジングミル(sizing mill)(サイザー)
Claims (6)
- 鋼素材を加熱する加熱装置と、該加熱された鋼素材に穿孔圧延を施し中空素材とする穿孔圧延装置と、該中空素材に加工を施し所定形状の継目無鋼管とする圧延装置とを配設してなる継目無鋼管製造用装置列において、前記加熱装置と前記穿孔圧延装置との間に、または前記穿孔圧延装置と前記圧延装置との間に、冷却装置を配設してなる継目無鋼管製造用装置列。
- 前記冷却装置が、被冷却材の外表面位置の平均冷却速度で1.0℃/s以上の冷却能を有する請求項1に記載の継目無鋼管製造用装置列。
- 前記圧延装置の出側に、保温装置を配設する請求項1または2に記載の継目無鋼管製造用装置列。
- 請求項1ないし3のいずれかに記載の継目無鋼管製造用装置列を利用した継目無鋼管の製造方法であって、鋼素材を前記加熱装置で加熱後、前記穿孔圧延装置で穿孔圧延を施して中空素材とし、さらに該中空素材を前記冷却装置で冷却したのち、前記圧延装置で加工を施して、あるいはさらに該加工後に前記保温装置を通過させる処理を施して、所定寸法の継目無鋼管とするにあたり、前記鋼素材を、質量%で、
C:0.050%以下、 Si:0.50%以下、
Mn:0.20~1.80%、 Cr:15.5~18.0%、
Ni:1.5~5.0%、 Mo:1.0~3.5%、
V:0.02~0.20%、 N :0.01~0.15%、
O:0.006%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記加熱を、600℃以上融点未満の温度に加熱する処理とし、前記穿孔圧延を施したのちで、前記冷却装置で冷却する前の前記中空素材の表面温度を冷却開始温度として、前記冷却を、表面温度で、前記冷却開始温度からの温度差が少なくとも50℃以上で、かつ600℃以上となる冷却停止温度まで、外表面温度で1.0℃/s以上の平均冷却速度で冷却する処理とする油井用高強度ステンレス継目無鋼管の製造方法。 - 前記加工後に前記保温装置内を通過させる処理が、平均冷却速度で20℃/s以下の冷却となるように調整する処理とする請求項4に記載の油井用高強度ステンレス継目無鋼管の製造方法。
- 前記組成に加えてさらに、質量%で、下記A群~D群のうちから選ばれた1群または2群以上を含有する請求項4または5に記載の油井用高強度ステンレス継目無鋼管の製造方法。
記
A群:Al:0.002~0.050%、
B群:Cu:3.5%以下、
C群:Nb:0.2%以下、Ti:0.3%以下、Zr:0.2%以下、W:3.0%以下、B:0.01%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.01%以下、REM:0.01%以下のうちから選ばれた1種または2種
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016121031A RU2664582C2 (ru) | 2013-10-29 | 2014-09-25 | Технологическая линия изготовления бесшовной стальной трубы и способ изготовления бесшовной трубы из высокопрочной нержавеющей стали для нефтяных скважин в технологической линии |
US15/032,421 US10570471B2 (en) | 2013-10-29 | 2014-09-25 | Equipment line for manufacturing seamless steel tube or pipe and method of manufacturing high-strength stainless steel seamless tube or pipe for oil wells using the equipment line |
EP14857371.0A EP3023507B1 (en) | 2013-10-29 | 2014-09-25 | Equipment line for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-224235 | 2013-10-29 | ||
JP2013224235A JP6171851B2 (ja) | 2013-10-29 | 2013-10-29 | 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015064006A1 true WO2015064006A1 (ja) | 2015-05-07 |
Family
ID=53003642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004892 WO2015064006A1 (ja) | 2013-10-29 | 2014-09-25 | 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10570471B2 (ja) |
EP (1) | EP3023507B1 (ja) |
JP (1) | JP6171851B2 (ja) |
AR (1) | AR098119A1 (ja) |
RU (1) | RU2664582C2 (ja) |
WO (1) | WO2015064006A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3321389A4 (en) * | 2015-07-10 | 2018-05-16 | JFE Steel Corporation | High strength seamless stainless steel pipe and manufacturing method therefor |
US10544476B2 (en) * | 2014-11-27 | 2020-01-28 | Jfe Steel Corporation | Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6341181B2 (ja) * | 2015-03-25 | 2018-06-13 | Jfeスチール株式会社 | 二相ステンレス継目無鋼管の製造方法 |
US20180204423A1 (en) * | 2015-12-25 | 2018-07-19 | Hitachi-Omron Terminal Solutions, Corp. | Automatic transaction system |
CN106064183A (zh) * | 2016-07-18 | 2016-11-02 | 内蒙古北方重工业集团有限公司 | 一种含Cr、Mo合金大型挤压厚壁制坯件的缓冷方法 |
RU2698233C1 (ru) * | 2016-07-27 | 2019-08-23 | ДжФЕ СТИЛ КОРПОРЕЙШН | Высокопрочная бесшовная труба из нержавеющей стали для трубных изделий нефтепромыслового сортамента и способ ее производства |
CN109158422A (zh) * | 2018-08-06 | 2019-01-08 | 宁波大学 | 一种用于高铁空心车轴的成形装置 |
CN110756616B (zh) * | 2019-10-30 | 2021-04-30 | 江苏隆达超合金股份有限公司 | 一种高碳马氏体不锈钢管材减量化的制备方法 |
CN113913708A (zh) * | 2021-09-08 | 2022-01-11 | 邯郸新兴特种管材有限公司 | 一种95钢级超级13Cr无缝钢管及生产方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195059A (ja) * | 1992-01-13 | 1993-08-03 | Nippon Steel Corp | 微細な金属組織を有する厚鋼板の製造法 |
JPH101755A (ja) | 1996-04-15 | 1998-01-06 | Nippon Steel Corp | 耐食性、耐硫化物応力腐食割れに優れたマルテンサイトステンレス鋼及びその製造方法 |
JP2003105441A (ja) * | 2001-09-28 | 2003-04-09 | Kawasaki Steel Corp | 高強度・高靭性13Crマルテンサイト系ステンレス鋼継目無管の製造方法 |
JP2004027351A (ja) * | 2001-08-29 | 2004-01-29 | Jfe Steel Kk | 高強度・高靭性マルテンサイト系ステンレス鋼継目無管の製造方法 |
JP2004124188A (ja) * | 2002-10-03 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | 高Cr耐熱鋼及びその製造方法 |
JP2005336595A (ja) | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
JP2011241477A (ja) * | 2010-04-19 | 2011-12-01 | Jfe Steel Corp | 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52152814A (en) | 1976-06-14 | 1977-12-19 | Nippon Steel Corp | Thermo-mechanical treatment of seamless steel pipe |
JPS57100806A (en) * | 1980-12-16 | 1982-06-23 | Nippon Kokan Kk <Nkk> | Producing device for seamless steel pipe |
JPS57127505A (en) * | 1981-01-22 | 1982-08-07 | Nippon Steel Corp | Direct rolling manufacturing device for steel |
DE60231279D1 (de) * | 2001-08-29 | 2009-04-09 | Jfe Steel Corp | Verfahren zum Herstellen von nahtlosen Rohren aus hochfester, hochzäher, martensitischer Rostfreistahl |
ES2243904T3 (es) * | 2002-01-09 | 2005-12-01 | Sms Meer Gmbh | Procedimiento y planta de laminacion para la obtencion de alambre, barras o tubos sin costura. |
CN100451153C (zh) | 2003-08-19 | 2009-01-14 | 杰富意钢铁株式会社 | 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法 |
RU2336133C1 (ru) * | 2004-07-20 | 2008-10-20 | Сумитомо Метал Индастриз, Лтд. | Способ горячей обработки хромсодержащей стали |
WO2006088107A1 (ja) * | 2005-02-16 | 2006-08-24 | Sumitomo Metal Industries, Ltd. | 継目無鋼管の製造方法 |
DE102010008389A1 (de) | 2010-02-17 | 2011-08-18 | Kocks Technik GmbH & Co. KG, 40721 | Walzanlage zum Erzeugen eines rohrförmigen Produkts und Verfahren zum Erzeugen eines rohrförmigen Produkts |
DE102010052084B3 (de) * | 2010-11-16 | 2012-02-16 | V&M Deutschland Gmbh | Verfahren zur wirtschaftlichen Herstellung von nahtlos warmgewalzten Rohren in Rohrkontiwalzwerken |
JP5273231B2 (ja) | 2011-11-01 | 2013-08-28 | 新日鐵住金株式会社 | 継目無金属管の製造方法 |
-
2013
- 2013-10-29 JP JP2013224235A patent/JP6171851B2/ja active Active
-
2014
- 2014-09-25 WO PCT/JP2014/004892 patent/WO2015064006A1/ja active Application Filing
- 2014-09-25 US US15/032,421 patent/US10570471B2/en active Active
- 2014-09-25 RU RU2016121031A patent/RU2664582C2/ru active
- 2014-09-25 EP EP14857371.0A patent/EP3023507B1/en active Active
- 2014-10-20 AR ARP140103927A patent/AR098119A1/es active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05195059A (ja) * | 1992-01-13 | 1993-08-03 | Nippon Steel Corp | 微細な金属組織を有する厚鋼板の製造法 |
JPH101755A (ja) | 1996-04-15 | 1998-01-06 | Nippon Steel Corp | 耐食性、耐硫化物応力腐食割れに優れたマルテンサイトステンレス鋼及びその製造方法 |
JP2004027351A (ja) * | 2001-08-29 | 2004-01-29 | Jfe Steel Kk | 高強度・高靭性マルテンサイト系ステンレス鋼継目無管の製造方法 |
JP2003105441A (ja) * | 2001-09-28 | 2003-04-09 | Kawasaki Steel Corp | 高強度・高靭性13Crマルテンサイト系ステンレス鋼継目無管の製造方法 |
JP2004124188A (ja) * | 2002-10-03 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | 高Cr耐熱鋼及びその製造方法 |
JP2005336595A (ja) | 2003-08-19 | 2005-12-08 | Jfe Steel Kk | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 |
JP2011241477A (ja) * | 2010-04-19 | 2011-12-01 | Jfe Steel Corp | 溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3023507A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10544476B2 (en) * | 2014-11-27 | 2020-01-28 | Jfe Steel Corporation | Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe |
US11821051B2 (en) | 2014-11-27 | 2023-11-21 | Jfe Steel Corporation | Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe |
EP3321389A4 (en) * | 2015-07-10 | 2018-05-16 | JFE Steel Corporation | High strength seamless stainless steel pipe and manufacturing method therefor |
US10876183B2 (en) | 2015-07-10 | 2020-12-29 | Jfe Steel Corporation | High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe |
Also Published As
Publication number | Publication date |
---|---|
RU2664582C2 (ru) | 2018-08-21 |
US20160265076A1 (en) | 2016-09-15 |
JP2015086412A (ja) | 2015-05-07 |
RU2016121031A (ru) | 2017-12-05 |
EP3023507A4 (en) | 2016-08-24 |
EP3023507B1 (en) | 2022-11-02 |
US10570471B2 (en) | 2020-02-25 |
EP3023507A1 (en) | 2016-05-25 |
JP6171851B2 (ja) | 2017-08-02 |
AR098119A1 (es) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015064006A1 (ja) | 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法 | |
JP6197850B2 (ja) | 二相ステンレス継目無鋼管の製造方法 | |
US11821051B2 (en) | Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe | |
JP6037031B1 (ja) | 高強度継目無厚肉鋼管およびその製造方法 | |
WO2013133076A1 (ja) | 耐硫化物応力割れ性に優れた高強度鋼材の製造方法 | |
JP6341125B2 (ja) | 2相ステンレス継目無鋼管の製造方法 | |
JP2016164288A (ja) | 油井用高強度ステンレス継目無鋼管の製造方法 | |
JP6292142B2 (ja) | 油井用高強度ステンレス継目無鋼管の製造方法 | |
JP6341128B2 (ja) | 油井用薄肉高強度ステンレス継目無鋼管の製造方法 | |
JP6315076B2 (ja) | 油井用高強度ステンレス継目無鋼管の製造方法 | |
US11066718B2 (en) | Method of manufacturing stainless pipe for oil wells and stainless steel pipe for oil wells | |
JP6137082B2 (ja) | 低温靭性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6202010B2 (ja) | 高強度2相ステンレス継目無鋼管の製造方法 | |
JP6206423B2 (ja) | 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法 | |
JP6341181B2 (ja) | 二相ステンレス継目無鋼管の製造方法 | |
WO2015059871A1 (ja) | 厚肉鋼材製造用装置列及び厚肉鋼材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14857371 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014857371 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15032421 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016008987 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016121031 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016008987 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160422 |