WO2015063357A1 - Método de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácidos nucleicos - Google Patents

Método de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácidos nucleicos Download PDF

Info

Publication number
WO2015063357A1
WO2015063357A1 PCT/ES2014/070813 ES2014070813W WO2015063357A1 WO 2015063357 A1 WO2015063357 A1 WO 2015063357A1 ES 2014070813 W ES2014070813 W ES 2014070813W WO 2015063357 A1 WO2015063357 A1 WO 2015063357A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
group
biomolecule
alkene
thiol
Prior art date
Application number
PCT/ES2014/070813
Other languages
English (en)
French (fr)
Inventor
María José BAÑULS POLO
Ángel MAQUIEIRA CATALÁ
Ramón ERITJA CASADELLA
Jorge ESCORIHUELA FUENTES
Santiago GRIJALBO TORRIJO
Rosa Puchades Pla
Original Assignee
Universitat Politècnica De València
Centro De Investigación Biomédica En Red (Ciber)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València, Centro De Investigación Biomédica En Red (Ciber) filed Critical Universitat Politècnica De València
Publication of WO2015063357A1 publication Critical patent/WO2015063357A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention is part of the technical sector of Chemistry and Biotechnology, focusing- on the use of ciick ctiemistry (TEC-thioi-eno- and TYC-t ⁇ ol-Sno-) reacelons to immobilize in a povalent way and especially with.
  • Spatial nucleic acid probes on silicon-based supports It also focuses on the method of modifying nucleic acid probes (A s) to allow such anchoring.
  • a matrix of AO (or A) or probe is defined as an ordered arrangement of unique nucleic acid molecules (ANs) of known sequence (P. Sa ⁇ di, G, W. Hat ⁇ ield: D- NA phteoarrays and Gene expression: Form Experimente to Data Analysls and odeling, Cambridge University Press, Cambridge. 2011, pp 7-15).
  • ANs nucleic acid molecules
  • the ⁇ technique allows the immobilization of biomolecules in a single printing step on a large surface, following a pattern (defined by the shape of the seal used for printing and which is generally made of polydimethoxysiloxane (PDMS). They reach resolution dimensions below 1 ⁇ and have the advantage of speed and the disadvantage of printing a single type of biomolecules across the surface.
  • PDMS polydimethoxysiloxane
  • the DPN technique has much more resolution (below 100 nm) but it is much more slow, since the printing is sequential
  • being sequential it has the advantage of being able to print biomolecules of different nature on the same surface.
  • the methods of immobilization of biomolecules based on light are a flexible and alternative approach to the previous ones for the manufacture of biochips. They allow the immobilization of different types of molecules on the surface and reach a resolution in the surface pattern of the order of nanometers (as an example, Affimetrix ANs chips (www.affymetrix.com) immobilize thousands of probes in 1 cm side).
  • Affimetrix ANs chips www.affymetrix.com
  • the methods developed so far - generally based on the solid-phase, nucleotide-to-nucleotide synthesis of the probes - use protective groups that are photoprotected or reactive groups that are photoactivated. This implies the use of additional reaction steps for the protection / activation of said groups.
  • TEC thiol-ene coupling
  • the former use silicon oxide and glass surfaces that are modified with thiol or alkene groups and are used to join an alkenylated or thiolated biotin derivative by drawing a specific pattern, for this they use irradiation through a photomask. They also describe the use of thiolated oligonucleotides for anchoring to modified surfaces but through a dendrimer and not directly to the surface. In any case, the methods used require several steps and, in all cases, the use of a crosslinker.
  • Gupta et al. describe the construction of a high-capacity microarray that uses the TEC reaction to bind different proteins and markers to the surface of a polyethylene glycol-based hydrogel (PEG).
  • Chem., 2012, 84, 194-200 have very recently described the use of the TYC reaction for anchoring of thiolated oligos on diamond electrodes doped with Boron, however they require the use of an inert atmosphere to carry out the reaction.
  • Ravoo et al. C. Wendeln, S. Rinnen, C. Schulz, HF Arlinghaus, BJ Ravoo, Langmuir, 2010, 26, 15966-15971
  • the anchoring of thiolated nucleic acids is not described, and they also employ a catalyst for the anchoring reaction ( ⁇ , ⁇ -dimethoxy-phenylacetophenone, under the brand name Irgacure 651®).
  • the use of the TEC-type reaction is one of the most attractive methods for the functionalization of different surfaces by adding thiols to alkene groups.
  • the use of oligonucleotides modified with alkene groups (or vinyl groups) at the end is not frequent in the literature.
  • the only thing that is described about the use of nucleic acid probes with vinyl modification is a 2008 work by Marquette et al. (KA Heyries, LJ Blüm, CA Marquette, Chem. Matter., 2008, 20, 1251 -1253) and that does not use the TEC or TYC reaction for anchoring, but instead does copolymerize with the monomers of what will be the solid support (PDMS).
  • the approach to be protected has the following advantages: the reaction takes place in aqueous solvents and in the presence of oxygen, absence of catalysts (the reaction catalyst is light of wavelength very close to the visible one), immobilization Direct probes of ANs without the need for crosslinking agents, absence of nonspecific adsorption that avoids the use of blocking agents on the surface and the possibility of making patterns on the surface through the use of a photomask (that is, allows the patterning of the surfaces), being possible to arrange the DNA or RNA probes so as to allow specific hybridization (SNPs are discriminated) of the complementary chains with high sensitivity, without the need to use blocking agents after the immobilization step.
  • anchoring occurs in a single stage, which is an essential advantage over previous art.
  • the desired derivatization is achieved with good performance, as well as high densities of immobilization of the oligonucleotides on the surface, between 3 and 6 pmol / cm 2 , and with high reproducibility between chips (coefficient of variation less than 15% ).
  • the thiol group is understood as the substituent -SH
  • the alkyne group is the substituent of the formula -C ⁇ CH.
  • They may be substituted thiol, alkene or alkyne groups, but in general it is preferable that they be terminal groups at the end of the chain.
  • it is understood as a thiolated compound, alkenylated compound and alkylated compound to a compound comprising at its end the thiol group, the alkene group or the alkylated group, respectively.
  • the organosilane compounds used are selected from the group consisting of: 3- mercaptopropyl triethoxysilane, allyl trimethoxysilane, vinyl trimethoxysilane and 3- glycidoxypropyltrimethoxysilane with propargilamine.
  • the spacer comprising at its end the thiol, alkene or alkyne group is preferably a linear or branched hydrocarbon chain of between 1 and 20 atoms, optionally substituted with one or more substituents (such as OH groups, phenyl ...), and comprising between 0 (for example, aliphatic chains) and 6 heteroatoms, preferably oxygen.
  • substituents such as OH groups, phenyl ...)
  • heteroatoms can be in any position of the chain; in fact, they can be intercalated in said hydrocarbon chain, as for example in the case of polyethylene glycol, one of the preferred cases discussed below.
  • the spacers are selected from an aliphatic alkyl compound of between 1 and 20 carbons or a polyglycol, preferably polyethylene glycol (PEG) of the formula (CH2CH20) n (CH2) m being n an integer between 1 and 6 and m an integer between 1 and 3.
  • PEG polyethylene glycol
  • the thiolated compound is a compound of the formula (Ci-C2o) -SH or (CH2CH20) n (CH2) m SH alkyl;
  • the alkylated compound is a compound of the formula (Ci-C2o) -CECH alkyl or (CH2CH20) n (CH2) m CECH; where n is an integer between 1 and 6 and m is an integer between 1 and 3.
  • the thiolated compound is (C-C2o) -SH alkyl, more preferably - (CH2) 6-SH.
  • the same support can be anchored to more than one oligonucleotide sequence, and that these can be thiolated or alkenylated (or alkylated) sequences, depending on whether the surface of the support is alkenylated (or alkylated) or thiolated, respectively. That is, it should be understood from the above description that when the support on which the anchor is to be made is functionalized with alkene and / or alkyne groups, the oligonucleotide sequence used is a sequence modified with thiol group (thiolate).
  • the oligonucleotide sequence is an alkenylated and / or alkylated sequence (modified with alkene or alkyne groups).
  • the surface of the support can be functionalized with thiol groups and with alkene or alkyne groups at the same time, so that the activation method can be carried out with sequences of both types, alkenylated or alkylated and thiolated, producing a selective anchor with the thiol and alkene or alkyne groups of the support, respectively.
  • This does not imply any variation in the surface functionalization method described above.
  • This is interesting for the purpose of the invention in that a part of the surface can be functionalized with one of the groups and another part by other different groups, so that both types of biomolecules can be anchored on the surface.
  • the silicon base support may preferably be without limitation silicon oxide, silicon nitride, silicon or glass. It can also be presented in the form of nanoparticles, although the modified silicon-based substrate may be at best a chip, a microarray (biochip), thus resulting in the method defined in a nucleic acid biochip, and as described in This memory can have spatial selectivity by irradiation through a photomask.
  • the described method comprises a stage prior to the deposition of the biomolecule on the surface, wherein said support surface is modified or functionalized by introducing the alkene or alkyne groups and / or the thiol groups by condensation reaction with organosilane compounds. , which act as spacers between the functionalization group that is positioned at its end and the surface to be functionalized, as explained above.
  • organosilane compounds of this type are selected from chlorosilanes and alkoxysilanes, the ones chosen for this functionalization: 3-mercaptopropyl triethoxysilane, allyl trimethoxysilane, vinyl trimethoxysilane and 3-glycidoxypropyltrimethoxysilane with propargilamine.
  • Said surface modification can be carried out preferably according to the following steps (see Figure 1):
  • an organic solvent selected from the group consisting of: dichloromethane, toluene, hexane, cyclohexane, ethanol, methanol and isporopanol, and dry (for example, with compressed air); Y
  • the modification or functionalization of the surface is carried out as follows:
  • allyl trimethoxysilane (2% in toluene) when it is desired to functionalize the surface with alkene groups
  • 3-glycidoxypropyltrimethoxysilane (2% in toluene with propargilamine), when it is desired to functionalize with alkyne groups
  • / or 3-mercaptopropyl triethoxysilane (2% in toluene) when it is desired to functionalize the surface with thiol groups, for 2 hours at room temperature
  • the DNA / RNA sequence is at best a nucleic acid probe with a length between 5 and 50 bases, preferably between 15 and 25, which has an alkene or alkyne group, or a thiol terminal group.
  • terminal position of the sequence is indicated herein, this position may be for example the 3 'position or preferably the 5' end.
  • the thiol group, the alkene group or the alkyne group is attached to the biomolecule by a spacer that is a linear or branched hydrocarbon chain, of between 1 and 20 atoms, optionally substituted with one or several substituents (such as OH groups, phenyl ...), and comprising between 0 and 6 heteroatoms, preferably oxygen, and which is more preferably selected from an aliphatic alkyl compound of between 1 and 20 carbons or a polyglycol, preferably polyethylene glycol (PEG) of the formula (CH2CH20) n (CH2) m where n is an integer between 1 and 6 and m an integer between 1 and 3.
  • a spacer that is a linear or branched hydrocarbon chain, of between 1 and 20 atoms, optionally substituted with one or several substituents (such as OH groups, phenyl ...), and comprising between 0 and 6 heteroatoms, preferably oxygen, and which is more preferably selected from an aliphatic alky
  • the thiolated compound is a compound of the alkyl formula (Ci-C2o ) -SH or (CH2CH20) n (CH2) mSH;
  • the alkylated compound is a compound of the formula (Ci-C2o) -CECH alkyl or (CH2CH20) n (CH2) mCECH; n being an integer between 1 and 6 and m being an integer between 1 and 3.
  • X represents a compound selected from a thiolated compound (such that it is used for alkene or alkyne modified surfaces) and an alkenylated or alkylated compound (such that it is used in the invention for surfaces modified with thiol groups) attached to the 5 'end through a phosphate bond.
  • the thiolated compound is (Ci-C2o) -SH alkyl, being more preferably - (CH2) 6-SH.
  • the oligonucleotide probe to be anchored must contain an alkene or terminal alkyne group, as defined above. Unlike some oligonucleotide probes modified with a thiol terminal group, oligonucleotide probes with this alkene or alkyne termination are not commercially available, so they have to be synthesized, which was considered as one of the fundamental challenges of the present invention.
  • the oligonucleotide sequence can be prepared with the alkene or alkyne termination from the phosphoramidite method, prior to the deposition of step I).
  • the phosphoramidite of general formula 2 containing the desired alkene or alkyne is first synthesized, starting from an alcohol 1 obtained from commercial sources or by the usual methods known to a person skilled in the art, as described in the Scheme 1 described below:
  • oligonucleotide sequences with a thiol group R 3 being in alcohol 1 and the corresponding phosphoramidite 2 equal to alkyl (Ci-C2o) -S (GP), subsequently eliminating the group protector (GP), such as but not limited to, benzoyl, acetyl or -S-alkyl (Ci-C2o) - (OCH2CH2) nOGPi, where GPi is preferably DMT, to obtain the free thiol.
  • group protector such as but not limited to, benzoyl, acetyl or -S-alkyl (Ci-C2o) - (OCH2CH2) nOGPi, where GPi is preferably DMT, to obtain the free thiol.
  • the deposition of the DNA / RNA sequence on the support by contactless printing in step I) of the method of the invention is carried out by an automatic non-contact microarray printer using reduced volumes.
  • the light used in the photo irradiation for anchoring the sequence in step II) of the method of the invention is ultraviolet light close to the visible one with a wavelength of 320 to 370 nm.
  • the wavelength is 350 nm to 375 nm, and in the most preferred case it is 365 nm; In this sense, it should be taken into account that the optimal wavelength is 365 nm (monochromatic), but the lamps do not give monochromatic light, so that they always have a bandwidth.
  • the optimal wavelength can be defined as 365 ⁇ 30 nm.
  • the irradiation time is between 10 minutes and 2 hours, including both limits.
  • the anchoring is carried out by irradiating through a photomask, so that the selectivity / spatial location of the oligonucleotide sequence on the surface of the silicon support is achieved, without cross-reactivity and maintaining the bioavailability of the sequence.
  • This mask allows inducing covalent and selectively photoimmobilization of the functionalized oligonucleotide on the support, that is, a selective anchoring of the sequence in a simple, clean and efficient manner.
  • any known photomask can be used, that is, any device that allows the passage of light selectively spatially.
  • the complementary sequence target oligonucleotide can be applied to that anchored to the surface, allowing it to hybridize to conditions such as those set forth in the examples.
  • a suitable volume of labeled complementary probe solution (for example with a fluorescent label) is deposited in hybridization buffer on the microarray and the solution is extended with the aid of a coverslip. After an incubation time at a temperature between 20 ° C and 37 ° C, the coverslip is removed, the support is washed and the result is read (in a fluorescence reader if it is a fluorescent tide).
  • This method allows the identification of DNA nucleotide sequences from the probes anchored in the support, such as for example E. coli sequences (see example).
  • a second object of the present invention is the solid support in chemically activated silicon base by direct covalent anchoring of at least one biomolecule that is a sequence of DNA or RNA oligonucleotides, obtainable by the method described above in any of its variants.
  • These supports result in high densities of immobilization of the oligonucleotides on the surface, between 3 and 6 pmol / cm 2 , with good reproducibility (standard deviations between chips below 15%).
  • the product obtained by this method is actually the first support activated with biomolecules, especially chip, which has oligonucleotide sequences anchored directly to the alkenylated and / or thiolated support without intermediates (crosslinkers, catalysts) using light to activate the reaction.
  • supports derivatized with organosilane compounds have been described, such as microarrays using crosslinkers, chips to which oligonucleotides and surface of the support are directly linked without intermediary have not been dated to date.
  • said support activated with biomolecules is a microarray (biochip) of nucleic acids, and more preferably it is a microarray of nucleic acids where the anchored probes are selectively located in the areas of the surface where it has been irradiated with light.
  • biochip microarray
  • the activated support is a biochip or microarray for any utility already known for a DNA biochip: forensic medicine, detection of genetically modified organisms, identification of bacterial strains (such as for example the discrimination of pathogenic microorganisms such as E. coli), clinical, veterinary diagnosis, etc.
  • FIG. 1 Schematic representation of the strategies based on the TEC reaction.
  • the silicon support is functionalized with an alkene group and a nucleic acid is assembled with a thiol group.
  • strategy B the silicon support is functionalized with a thiol group and a nucleic acid is assembled with an alkene group
  • Figure 3 a) Schematic illustration of patterning on the functionalized surface. Surface modification: stage a) silanization; step b) application of the oligonucleotide labeled with Cy5; step c) irradiation through a photomask; stage d) removal of the photomask. b) Fluorescence image obtained after irradiation.
  • Figure 4 Discrimination tests of mismatches in SSC 1 ⁇ with different formamide concentrations (0%, 10% and 25%) for the two strategies A (upper graph) and B (lower graph) proposed in the present invention and using the 4 oligonecleotide sequences described in memory: PM (black bar), MM1 (diagonal line bar), MM2 (white bar) and MM3 (vertical line bar).
  • PM black bar
  • MM1 diagonal line bar
  • MM2 white bar
  • MM3 vertical line bar
  • Microarray printing was carried out with a low-volume non-contact distribution system from BioDot (Irvine, CA, USA), model AD1500.
  • X-ray photoelectronic spectroscopy was performed with a spectrophotometer from Sage 150 Nano Surface Analysis GmbH (Berlin, Germany). For the irradiation through a photomask the automatic alignment system EVG, model EVG620 was used.
  • the fluorescence signal of the microarray points was detected and quantified by a homemade surface fluorescence reader equipped with a high sensitivity CCD camera Remove EXi from Qlmaging Inc, (Burnaby, Canada).
  • the image processing software GenePix Pr 4.0 of Molecular Devices, Inc. (Sunnyvale, CA, USA) was used.
  • Example 1 Modification of the surface of a silicon substrate that can be used as a support in the method object of the present invention.
  • the silicon chips were supplied by the nanophotonics technology center (NTC) of the Polytechnic University of Valencia with a layer of silicon oxide 3 microns thick grown on a silicon wafer (100). These were first treated with piranha solution (H2S04: H2C> 2 3: 1 v / v) for 1 hour at 50 ° C to remove organic matter. The chip was then washed with deionized water and dried with compressed air. Then, in order to functionalize the surface, the chip was introduced under argon in 10 mL of a solution of allyltrimethoxysilane (2% in toluene) for 2 hours at room temperature. Next, the chip was washed with 2-propanol and dried with compressed air.
  • NTC nanophotonics technology center
  • the chip was cured at 150 ° C for 30 minutes, so that functionalized surfaces with alkene groups were obtained.
  • This silicon derivatization pathway proves to be highly effective for anchoring molecules containing thiol groups, such as thiolated oligonucleotides.
  • Si wafers were cut into 2 x 1 cm 2 pieces and Piranha solution (H 2 S0 4 : 30% H2O2 03:01 v / v) was cleaned for 1 h at 60 0 C to remove organic contaminants.
  • Piranha solution H 2 S0 4 : 30% H2O2 03:01 v / v
  • the chips were immersed in a solution of 2% 3-glycidoxypropyl triethoxysilane and propargilamine (10 mL) in toluene for 2 h at room temperature. After 2 h, it was washed several times with 2-propanol. Then the chips were heated for 10 min at 150 ° C. Finally, the samples were washed several times with dichloromethane and then dried under a stream of nitrogen.
  • the silicon chips were treated with piranha solution (H2S04: H2C> 2 3: 1 v / v) for 1 hour at 50 ° C.
  • the chip was then washed with deionized water and dried with compressed air.
  • the chip was introduced under argon in 10 mL of a solution of 3-mercaptopropyl triethoxysilane (2% in toluene) for 2 hours at room temperature. Subsequently, the chip was washed with 2-propanol and dried with compressed air. Finally, the chip was cured at 150 ° C for 30 minutes.
  • the surfaces were characterized using different techniques such as contact angle, ATR-FT! R and XPS.
  • the contact angle (WCA) after cleaning with Piranha solution was below 10 °, which indicates that the hydroxylated surface of SIO2 was very hydrophilic.
  • WCA increased to 74 °, according to the presence of a more hydrophobic layer on the surface.
  • the WCA value decreased to 51 °.
  • Example 2 Synthesis of phosphoramidite 2 to modify the oligonucleotide sequence capable of being used in the method of the present invention.
  • Example 3 Synthesis of a modified oligonucleotide sequence capable of being used in the method of the present invention.
  • the assembly of the DNA probes was done in the usual way in the synthesis of nucleic acids.
  • the phosphoramidite alkene 2 was added following the standard protocol for the addition of a nucleotide by the phosphoramidite method consisting of the following steps: 1) removal of the dimethoxytrityl (DMT) protecting group from the 5' end with a solution 3% trichloroacetic acid in dichloromethane, 2) phosphoramidite coupling (0.1 M) by activation with a 0.4M solution of 1 H-tetrazol in acetonitrile (Caruthers et al. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method.
  • DMT dimethoxytrityl
  • the resulting products were analyzed by HPLC and the majority peak obtained was analyzed by the MALDI-TOF technique.
  • the HPLC analysis was performed on a Waters 2998 HPLC equipment equipped with a diode detector. Column: XBridge OST C18 semi-preparative (10 x 50 mm, 2.5 microns). Flow: 3 mL / min.
  • Solution A 5% acetonitrile in 100 mM triethylammonium acetate (pH 7.0).
  • Solution B 70% acetonitrile in 100 mM triethylammonium acetate (pH 7.0). Linear gradient from 0% of B to 30% of B for 10 minutes.
  • the retention time of the oligonucleotides is detailed in Table 1.
  • the molecular weight analysis by mass spectroscopy was performed in a MALDI-TOF Voyager-DE RP (Applied Biosystems) equipment using the detector in the negative mode using 2,4,6-trihydroxyacetophenone matrix and ammonium citrate as an additive.
  • Table 1 shows the results of the MALDI-TOF spectra of the modified oligonucleotides.
  • Example 4 Immobilization of oligonucleotide sequences on the silicon support according to the method of the present invention.
  • the chips were exposed to UV light between 10 minutes and 2 hours using a low pressure mercury lamp (365 nm, 6.0 mW / cm2, Jelight) placed at a distance of approximately 0.5 cm, to induce photoreaction and immobilization through the TEC reaction. After exposure to UV light, the chips were washed with PBS-T, with deionized water and finally dried with air.
  • a low pressure mercury lamp 365 nm, 6.0 mW / cm2, Jelight
  • a thiolated probe was deposited by non-contact microprinting and the created microarray was exposed to UV light through a mask for 20 minutes to induce photoimmobilization of the oligonucleotide in localized areas of the chip. The chip was then washed with distilled water and dried.
  • Example 5 Demonstration of the invention: obtaining chemically activated supports according to the method of the present invention, using photomask, for hybridization of DNA nucleotide sequences, mismatch discrimination and detection of Escherichia coli.
  • a commercial thiolate probe of sequence SH- (T) 15- was printed and It was then exposed to UV light to induce photoimmobilization of the oligonucleotide. After exposure, the chips were washed with PBS-T, with deionized water and dried with air. Next, the complementary sequence target oligonucleotide (AATGCTAGCTGGTCAATCGGG) labeled with Cy5 was applied, and allowed to hybridize in a humid chamber at 37 ° C for 1 hour. Next, the chips were washed with PBS-T, with deionized water and finally dried with air.
  • the probe synthesized with a spacer was printed with a terminal alkene group in the 5 'position, sequence (TTGATTACAGCCGGTGTACGACCCT) and then exposed to UV light to induce the photoimmobilization of the probe. After exposure, the chips were washed with PBS-T, with deionized water and finally dried with air. Next, the Cy5- complementary sequence labeled Cy5- labeled oligonucleotide (AGGGTCACACCGGCTGTAATCAAA) was applied, and allowed to hybridize in a humid chamber at 37 ° C for 1 hour. Then, the chips were washed with PBS-T, with deionized water and dried with air.
  • the selectivity of the proposed strategies was evaluated through hybridization with different oligonucleotides that consisted of a perfectly complementary probe (PM) and three probes with mutations of 1 to 3 nitrogenous bases (MM 1, MM2 and MM3).
  • the silicon chips were functionalized with allyltrimethoxysilane according to the procedure described above.
  • an E. coli specific oligonucleotide probe and a non-specific control probe were printed, both functionalized with thiol -CeSH terminal groups (5 ' end), creating an 8x4 point microarray, in which probe rows alternated specific (odd rows) with control rows (even rows).
  • the chips were exposed to UV light to induce immobilization of the probes. Then, the chips were washed with PBS-T, with deionized water and finally dried with air.
  • 50 ⁇ _ of the PCR product labeled with Cy5 was deposited in hybridization buffer (SSC 1 ⁇ ) and covered with a glass coverslip.
  • SSC 1 ⁇ hybridization buffer
  • coli PCR product was first heated for 5 minutes at 95 ° C, followed by rapid cooling for 1 minute on ice. After incubating 1 h at 37 ° C, the chips were washed with PBS-T, with deionized water and dried with air.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La presente invención se refiere aun método de activación química superficial por reacción tiol-eno (TEC) o tiol-ino (TYC) de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomoléculaque esuna secuencia de oligonucleótidos de ADN ó ARN, donde a)la superficie del soporte está funcionalizada con grupos alqueno o alquino y la biomolécula presenta un grupo tiol terminal, y/o b) la superficie del soporte está funcionalizada con grupos tiol y la biomolécula presenta un grupo alqueno o alquino terminal; dicho método comprendiendo las etapas de: depositar la secuencia de oligonucleótidos sobre la superficie del soporte mediante técnicas de impresión con o sincontacto; y anclar la secuencia de oligonucleótidos a la superficie del soporte por adición radical mediante reacción TEC o TYC provocada por fotoirradiación con luz UV cercana al visible durante un intervalo de tiempo comprendido entre 5 minutos y 3 horas, sin necesidad de emplear crosslinkers y/o catalizadores.

Description

ÉTODO DÉ ACTIVACIÓN QUÍ ICA SUP FIC AL DE m SOPORTE SÓLIDO EN BASÉ SILICIO PEDIANTE NQUU-E CQVÁLE TE D HEC 0 DE AL MEMOS
UHA mmOIBQULñ BE. AGIDOS NUCLSíCOS
La invención sé enmarca en el sector técnico de la Química y la Biotecnología, centrándose- en el empleo de reacelones de ciick ctiemistry (TEC -tioi-eno- y TYC -tíol- Sno-} para inmovilizar de manera povalente y especialment con. localización espacial sondas de ácidos nucleicos sobre soportes en base silicio. También se centra en el método de modificación de las sondas de ácidos nucleicas. (A s) para permitir dicho anclaje.
Aateotdente» tía te ¥@rsc te
Las tecnologías de nncmarray seo «n potente plataforma de ensayo, con diversas aplicaciones de gran interés. Sus principaiee veníalas son su formato minlaíurizado y su alta capacidad de trabaje que ofrece la posibilidad de realizar múltiples ensayos en paralelo y COR una disposición espacial prefijada.
En su sentido má simple-, una matriz: de AO (o A ) o sonda se define como una disposición ordenada -de moléculas únicas de ácidos nucleicos (ANs) de secuéncia conocida (P. Saídi, G,W. Hatíield: D-NA fteoarrays and Gene expressíon: Form Experimente to Data Analysls and odeling, Cambridge üniversity Press, Cambridge. 2011 , pp 7-15). En el desarrollo cíe una químic útil fiable para ía producción de matrices de ADN con prestaciones competitivas, son parámetros críticos a considerar; la accesibilidad y la funcionalidad del AD uríido a la superficie, la densidad -de inmovilización, la estabilidad de. ía matriz, la reproduci idad dé la química de fijación, y la especificidad de las secuencias d anclaje. El desarrollo de derivalizaciones químicas superficiales eficientes para la fabricación de micromaínees de ADN sobre soportes sólidos se ha convertido, po tanto en esencial para el desarrollo de la tecnología de c lps de ADN.
Como la mayoría de tes superficies, sólidas no poseen de manera original ia estructura química necesaria pata la adecuada inmovilización de moléculas de ADN, se han impiementado diferentes metodologías' de fijación. Los métodos típicos implican la generación de : grupos funcionales activos en la superficie, que reaccionan covalentemente con la sonda de ADN, que a su vez ha sido modificada con el grupo funcional adecuado. En casi todas las ocasiones, es necesario emplear agentes de entrecruzamiento, conocidos como crosslinkers, para lograr la unión entre el grupo funcional de la sonda y el de la superficie. Si nos centramos en soportes de base silicio (incluyendo vidrio, óxido de silicio, nitruro de silicio y silicio, entre los más importantes sin ser limitantes), la química de los organosilanos han sido la más ampliamente utilizada para la modificación superficial (D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhami, D. Villaume, Anal. Chim. Acta 568 (2006) 84-108; M. Stutzmann, J. A. Garrido, M. Eickhoff, M. S. Brandt, Phys. Status Solidi A 203 (2006) 3424-3437; R.J. Hamers, Annu. Rev. Anal. Chem. 1 (2008) 707-736; J.N. Chazalviel, P. Allongue, A.C. Gouget-Laemmel, C. Henry de Villeneuve, A. Moraillon, F. Ozanam, Sci. Adv. Mater. 3 (201 1) 332-353).
Sin embargo, estos métodos no son capaces de realizar la inmovilización de sondas de ADN con selectividad espacial. Esto, actualmente, sólo se consigue de dos maneras:
1) Por microimpresión de contacto (microcontact printing, μΟΡ) o por nanolitografía de plumillas deslizantes (dip-pen nanolithography DPN). La técnica de μΟΡ permite la inmovilización de biomoléculas en un solo paso de impresión sobre una gran superficie, siguiendo un patrón (que se define por la forma que tiene el sello utilizado para la impresión y que generalmente está hecho de polidimetoxisiloxano (PDMS). Se alcanzan dimensiones de resolución por debajo de 1 μηι y presenta la ventaja de la rapidez y la desventaja de imprimir un único tipo de biomoléculas por toda la superficie. La técnica de DPN tiene mucha más resolución (por debajo de 100 nm) pero es mucho más lenta, puesto que la impresión es secuencial. Por otro lado, al ser secuencial, presenta la ventaja de poder imprimir biomoléculas de diferente naturaleza sobre la misma superficie.
2) Por irradiación a través de una fotomáscara. Los métodos de inmovilización de biomoléculas basados en luz son una aproximación flexible y alternativa a las anteriores para la fabricación de biochips. Permiten la inmovilización de distintos tipos de moléculas sobre la superficie y alcanzan una resolución en el patronaje de la superficie del orden de nanómetros (como ejemplo, los chips de ANs de Affimetrix (www.affymetrix.com) inmovilizan miles de sondas en soportes de 1 cm de lado). Sin embargo, los métodos desarrollados hasta el momento -generalmente basados en la síntesis en fase sólida, nucleótido a nucleótido, de las sondas- usan grupos protectores que se fotodesprotegen o bien grupos reactivos que se fotoactivan. Esto implica el uso de pasos adicionales de reacción para la protección/activación de dichos grupos. Además, en los casos en que la longitud de onda utilizada es menor de 300 nm, existe el riesgo de dañar irreversiblemente a la molécula responsable del bioreconocimiento en el bioensayo. Por tanto, el desarrollo de métodos de fotoinmovilización que impliquen un solo paso y que sean biocompatibles sigue siendo de gran interés para el desarrollo de nuevas vías de inmovilización.
La reacción conocida como TEC (thiol-ene coupling) implica la unión de un grupo sulfhidrilo (o tiol) con un alqueno en presencia de fuentes de radicales o por irradiación con luz. Esta reacción ha demostrado ser un método de unión robusto con la gran mayoría de los atributos de las reacciones de click chemistry de acuerdo con la guía formulada por Sharpless y colaboradores en 2001 (H.C. Kolb, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed., 2001 , 40, 2004-2021). Así, posee las características de ortogonalidad con otros procedimientos sintéticos comunes, condiciones de reacción muy suaves, uso de catalizadores y disolventes inocuos (en esta reacción el catalizador es la luz, y la reacción se lleva a cabo en agua), alta velocidad de reacción, insensibilidad a la presencia de oxígeno, regioselectividad completa, facilidad de manejo, y altos rendimientos. Es por tanto, entendible que haya encontrado numerosas aplicaciones (CE. Hoyle, A.B. Lowe, C.N. Bowman, Chem. Soc. Rev., 2010, 39, 1355; y A.B. Lowe, Polym. Chem. 2010, 1 , 17-36) en campos como polímeros y síntesis de materiales para recubrimiento dental, lentes de contacto, adhesivos y procesos fotolitográficos, entre otros.
También se encuentran descritas aplicaciones de la reacción TEC para bioconjugación (ver las tres referencias anteriores). Wittrock et al. (S. Wittrock, T. Becker, H. Kunz, Angew. Chem. Int. Ed., 2007, 46, 5226-5230) emplean la reacción TEC para unir un sacárido asociado a la formación de tumores a modo de antígeno con una proteína (BSA) transportadora y así desarrollar una vacuna antitumoral. Existen otros ejemplos de empleo de la reacción TEC para aplicaciones relacionadas con glicoconjugaciones que pueden encontrarse recopiladas en el artículo de revisión de Dondoni y Marra (A. Dondoni, A. Marra, Chem. Soc. Rev., 2012, 41 , 573-586). Con respecto a las aplicaciones reportadas hasta el momento de la reacción TEC en la construcción de microarrays se encuentran únicamente los trabajos desarrollados por Waldmann y colaboradores (P. Jonkheijm, D. Weinrich, M. Kóhn, H. Engelkamp, P.C.M. Christianene, J. Kuhlman, J.C. Maan, D. Nüssse, H. Schroeder, R. Wacker, R. Breinbauer, C. M. Niemeyer, H. Waldmann, Angew. Chem. Int. Ed., 2008, 47, 4421-4424; y D. Weinrich, M. Kóhn, P. Jonkheijm, U. Westerlind, L. Dehmelt, H. Engelkamp, P. C. M. Christianene, J. Kuhlmann, J. C. Maan, D. Nüsse, H. Schróder, R. Wacker, E. Voges, R. Breinbauer, H. Kunz, C. M. Niemeyer, H. Waldmann, ChemBioChem.2010, 11 , 235-247), y el de Gupta et al. (N. Gupta, B. F. Lin, L. M. Campos, M. D. Dimitrou, S. Hikita, N. D. Treat, M. V. Tirrel, D. O. Clegg, E. J. Kramer, C. J. Hawker, Nature Chem., 2010, 2, 138-145). Los primeros usan superficies de óxido de silicio y de vidrio que son modificadas con grupos tiol o alqueno y que se emplean para unir un derivado alquenilado o tiolado de biotina dibujando un patrón determinado, para ello emplean la irradiación a través de una fotomáscara. También describen el empleo de oligonucleótidos tiolados para el anclaje a las superficies modificadas pero a través de un dendrímero y no directamente a la superficie. En cualquier caso, los métodos empleados requieren de varios pasos y, en todos los casos, del empleo de algún crosslinker. Por otro lado, Gupta et al. (ver referencia anterior) describen la construcción de un microarray de alta capacidad de trabajo que usa la reacción TEC para unir diferentes proteínas y marcadores a la superficie de un hidrogel basado en polietilenglicol (PEG). En este caso no emplean una fotomáscara, sino que los reactivos son directamente impresos en una superficie. El método es especialmente interesante para proteínas donde la adsorción inespecífica es muy alta en superficies hidrofóbicas, sin embargo implica un gran número de pasos, no siendo tan apropiado para el anclaje de ácidos nucleicos, que presentan muchos menos problemas de adsorción inespecífica. Respecto a aplicaciones fuera del ámbito del microarraying, se encuentra el trabajo de Linford y colaboradores (N. Madaan, A. Terry, J. Harb, R. C. Davis, H. Schlaad, M. R. Linford, J. Phys. Chem. C, 201 1 , 1 15, 22931- 22938) que usan la reacción TEC para anclar oligos tiolados sobre superficies de oro, que a su vez han sido modificadas también con grupos tiol usando para ello un polímero con múltiples alquenos a modo de crosslinker, en este trabajo no se demuestra la inmovilización selectiva a través de una fotomáscara y tampoco se demuestra la biodisponibilidad de los oligonucleótidos anclados a través de un ensayo de hibridación. Una reacción similar a la TEC, pero que sustituye el grupo alqueno por un triple enlace es la conocida como TYC (thiol-yne coupling chemistry), en ella se produce la adición radical de grupos tiol al grupo alquino, es una reacción menos conocida y explotada que la TEC, sin embargo se pueden encontrar ejemplos de su aplicación en ciencia de materiales y en bioconjugación (A. Massi, D. Nanni, Org. Biomol. Chem., 2012, 10, 3791-3807). Respecto a las aplicaciones que implican su utilización para modificar la superficie de soportes sólidos, se encuentran los trabajos de Patton (R. M. Hensarling, V. A. Doughty, J. W. Chang, D. L. Patton, J . Am. Chem. Soc , 2009, 131 , 14673-14675) y colaboradores que la utilizan para modificar un polímero tipo peine con dos moléculas distintas, ambas conteniendo al menos un grupo tiol, mediante el uso de una fotomáscara. Sin embargo las moléculas ancladas no son bioreceptores que se puedan usar para realizar bioensayos. Por otro lado, Meziane et al. (D. Meziane, A. Barras, A. Kromka, J. Houdkova, R. Boukherroub, S. Szunerits, Anal. Chem., 2012, 84, 194-200) muy recientemente han descrito el uso de la reacción TYC para el anclaje de oligos tiolados sobre electrodos de diamante dopados con Boro, sin embargo requieren del uso de atmósfera inerte para llevar a cabo la reacción. Finalmente, Ravoo y colaboradores (C. Wendeln, S. Rinnen, C. Schulz, H. F. Arlinghaus, B. J. Ravoo, Langmuir, 2010, 26, 15966-15971 ) emplean las reacciones TEC y TYC para la reparación de microarrays de galactósidos por CP. Sin embargo el anclaje de ácidos nucleicos tiolados no se describe, y además emplean para la reacción de anclaje un catalizador (α,α-dimetoxi- a- fenilacetofenona, de nombre comercial Irgacure 651®).
En definitiva, lo poco que hay descrito sobre la utilización de las reacciones TEC y TYC para anclaje de ácidos nucleicos sobre soportes sólidos utiliza oligos con terminación tiol y además, en todos los casos es necesario al menos el uso de un crossiinker para llevar a cabo la unión a la superficie.
Tal y como se ha comentado anteriormente, el empleo de la reacción de tipo TEC es uno de los métodos más atractivos para la funcionalización de distintas superficies mediante la adición de tioles a grupos alqueno. Sin embargo, el empleo de oligonucleótidos modificados con grupos alqueno (o grupos vinilo) en el extremo no es frecuente en la bibliografía. Así, lo único que se encuentra descrito sobre el uso de sondas de ácidos nucleicos con modificación de tipo vinílica es un trabajo de 2008 de Marquette y colaboradores (K. A. Heyries, L. J. Blüm, C. A. Marquette, Chem. Matter., 2008, 20, 1251 -1253) y que no usa la reacción TEC o TYC para el anclaje, sino que lo hace copolimerizar con los monómeros de lo que será el soporte sólido (PDMS). Además se puede encontrar un trabajo de Maeda y colaboradores de 1999 (Y. Ozaki, Y. Katayama, T. Ihara, M. Maeda, Anal. Sci. 1999, 15, 389-392), en el cual oligonucleótidos de tipo vinilo fueron inmovilizados en una superficie de una manera similar al método que se emplea mediante el recubrimiento con poli-acrilamida. Finalmente, un trabajo descrito por Nagahama y colaboradores (C. Nagahama, K, C. Itou, US2009/0023601 A1) muestra el uso de oligonucleótidos vinílicos empleando como copolímeros dos tipos de acrilamidas (dimetilacrilamida y metilenebisacrilamida). Recientemente se encuentra también descrita la síntesis enzimática de ADN modificado con 8-vinil-2'- deoxyguanosina para su uso como sonda fluorescente (B. Holzberger, J. Strohmeier, V. Siegmund, U. Diederichsen, A. Marx, Bioorg. Med. Chem. Lett., 2012, 22, 3136-3139).
Frente a estos antecedentes, la aproximación que se quiere proteger presenta las siguientes ventajas: la reacción transcurre en disolventes acuosos y en presencia de oxígeno, ausencia de catalizadores (el catalizador de la reacción es luz de longitud de onda muy próxima al visible), inmovilización directa de las sondas de ANs sin necesidad de agentes de entrecruzamiento (crossiinkers), ausencia de adsorción inespecífica que evita el uso de agentes de bloqueo en la superficie y posibilidad de realizar patrones sobre la superficie mediante el uso de una fotomáscara (esto es, permite el patterning de las superficies), siendo posible disponer las sondas de ADN o ARN de manera que permiten la hibridación específica (se discriminan SNPs) de las cadenas complementarias con alta sensibilidad, sin necesidad de usar agentes de bloqueo tras el paso de inmovilización.
Descripción de la invención
Un primer objeto de la presente invención está constituido por un método de activación química superficial por reacción tiol-eno (TEC) o tiol-ino (TYC) de un soporte sólido en base silicio, como son óxido de silicio, nitruro de silicio, silicio y vidrio, mediante anclaje covalente directo de al menos una biomolécula que es una secuencia de oligonucleótidos de ADN ó ARN, donde A) la superficie del soporte está funcionalizada con grupos alqueno o alquino y la secuencia de oligonucleótidos presenta un grupo tiol terminal, y/o B) la superficie del soporte está funcionalizada con grupos tiol y la secuencia de oligonucleótidos presenta un grupo alqueno o alquino terminal (preferentemente un grupo CH2=CH-CH2-(OCH2CH2)n-, donde n es=3); dicho método comprendiendo las etapas de:
I) depositar la biomolécula sobre la superficie del soporte mediante técnicas de impresión con o sin contacto; y
II) anclar la biomolécula a la superficie del soporte por adición radical mediante reacción del grupo alqueno (TEC) o alquino (TYC) con el grupo tiol provocada por fotoirradiación con luz ultravioleta de longitud de onda de 320 nm a 400 nm, más preferentemente en el intervalo de 350 nm a 375 nm y siendo en el caso más preferido de 365±30 nm, durante un intervalo de tiempo comprendido entre 5 minutos y 3 horas, en ausencia de crosslinkers y catalizadores. El anclaje se produce en una única etapa, lo que supone una ventaja esencial frente al arte previo. De esta forma, se consigue la derivatización buscada con buen rendimiento, así como densidades altas de inmovilización de los oligonucleótidos en la superficie, comprendidas entre 3 y 6 pmol/cm2, y con elevada reproducibilidad entre chips (coeficiente de variación inferior al 15%).
En el ámbito de la presente invención se entiende por grupo tiol al sustituyente -SH, por grupo alqueno al sustituyente de fórmula (-CH=CH2) y por grupo alquino al sustituyente de fórmula -C≡CH. Pueden ser grupos tiol, alqueno o alquino sustituidos, pero en general es preferible que sean grupos terminales al final de la cadena. Del mismo modo, se entiende por compuesto tiolado, compuesto alquenilado y compuesto alquinilado a un compuesto que comprende en su extremo el grupo tiol, el grupo alqueno o el grupo alquinilado, respectivamente. De esta forma, también debe entenderse que la expresión "funcionalizado con un grupo tiol/alqueno/alquino", o "presenta un grupo tiol/alqueno/alquino" no tiene por qué referirse a que el sustituyente en cuestión está unido directamente a la superficie del soporte o al extremo de la biomolécula, sino que lo hace por medio de un compuesto o grupo espaciador al que se encuentra unido, tal como se ilustra en la presente memoria.
Cualquier experto en el campo puede conocer, de acuerdo con sus conocimientos medios en el campo y siguiendo las indicaciones aquí aportadas, qué espaciadores pueden emplearse para funcionalizar superficies de silicio mediante grupos tiol, alqueno
0 alquino, o para funcionalizar biomoléculas de ácido nucleico, con estos tres sustituyentes. No obstante, cabe destacar que cuando se trata de la superficie del soporte en base silicio, los espaciadores empleados con cualquiera de los tres sustituyentes objeto de interés son preferiblemente compuestos organosilanos que comprenden en su extremo una agrupación seleccionada entre tiol, alqueno o alquino, De manera más preferible aún, el compuesto organosilano es un compuesto de fórmula general: R2-Si(Y1)3, siendo: Y1=R10-, R1- ó Cl-, siendo R1 una cadena hidrocarbonada de
1 a 4 carbonos; y R2 una cadena hidrocarbonada lineal o ramificada, de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes (como por ejemplo grupos OH, fenilo,... ) y que comprende entre 0 y 6 heteroátomos, preferentemente N u O, y que contiene en su extremo uno de los siguientes grupos -SH; -CH=CH2; ó -C≡CH. Entre estos organosilanos, los más preferidos en el ámbito de la presente invención son los clorosilanos o alcoxisilanos. Más preferentemente todavía, los compuestos organosilanos empleados son seleccionados dentro del grupo compuesto por: 3- mercaptopropil trietoxisilano, alil trimetoxisilano, vinil trimetoxisilano y 3- glicidoxipropiltrimetoxisilano con propargilamina.
Cuando se trata de las biomoléculas, el espaciador que comprende en su extremo el grupo tiol, alqueno o alquino es preferentemente una cadena hidrocarbonada lineal o ramificada de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes (como por ejemplo grupos OH, fenilo... ), y que comprende entre 0 (por ejemplo, las cadenas alifáticas) y 6 heteroátomos, preferentemente oxígeno. Estos heteroátomos pueden estar en cualquier posición de la cadena; de hecho, pueden estar intercalados en dicha cadena hidrocarbonada, como por ejemplo ocurre en el caso del polietilenglicol, uno de los casos preferidos que se comentan a continuación. Efectivamente, más preferentemente aún, los espaciadores son seleccionados entre un compuesto alquilo alifático de entre 1 y 20 carbonos o un poliglicol, preferentemente polietilenglicol (PEG) de fórmula (CH2CH20)n(CH2)m siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3. De manera más preferida aún, el compuesto tiolado es un compuesto de fórmula alquilo(Ci-C2o)-SH ó (CH2CH20)n(CH2)mSH; el compuesto alquenilado es un compuesto de fórmula alquilo(Ci-C2o)-CH=CH2 ó (CH2CH20)n(CH2)mCH=CH2; y el compuesto alquinilado es un compuesto de fórmula alquilo(Ci-C2o)-CECH ó (CH2CH20)n(CH2)mCECH; siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3. En la realización más preferida, el compuesto alquenilado es un compuesto de fórmula -(CH2CH20)nCH2CH=CH2 y más preferentemente n es 3. En otra realización preferida, el compuesto tiolado es alquilo(Ci- C2o)-SH, siendo más preferentemente -(CH2)6-SH. En la Figura 1 se muestra un esquema del método de la invención utilizando la reacción TEC siguiendo cualquiera de las dos estrategias descritas (A y B).
De la presente descripción se debe entender que un mismo soporte puede estar anclado a más de una secuencia de oligonucleótidos, y que éstas pueden ser secuencias tioladas o alqueniladas (o alquiniladas), dependiendo de si la superficie del soporte es alquenilada (o alquinilada) o tiolada, respectivamente. Es decir, debe entenderse de la descripción anterior que cuando el soporte sobre el que se va a realizar el anclaje está funcionalizado con grupos alqueno y/o alquino, la secuencia de oligonucleótidos empleada es una secuencia modificada con grupo tiol (tiolada). De manera alternativa, cuando el soporte está funcionalizado con grupos tiol, la secuencia de oligonucleótidos es una secuencia alquenilada y/o alquinilada (modificada con grupos alqueno o alquino). No obstante, en una tercera alternativa de la invención, la superficie del soporte puede estar funcionalizada con grupos tiol y con grupos alqueno o alquino a la vez, por lo que el método de activación puede llevarse a cabo con secuencias de ambos tipos, alqueniladas o alquiniladas y tioladas, produciéndose un anclaje selectivo con los grupos tiol y alqueno o alquino del soporte, respectivamente. Esto no implica ninguna variación en el método de funcionalización superficial antes descrito. Esto es interesante para el objeto de la invención en la medida en que una parte de la superficie puede estar funcionalizada con uno de los grupos y otra parte por otros grupos diferentes, de tal forma que en la superficie puede anclarse ambos tipos de biomoléculas.
El soporte en base silicio puede ser preferentemente y sin carácter limitante óxido de silicio, nitruro de silicio, silicio o vidrio. Puede presentarse también en forma de nanopartículas, aunque el sustrato en base silicio modificado puede ser en el mejor de los casos un chip, un microarray (biochip), resultando así el método definido en un biochip de ácidos nucleicos, y que como se describe en esta memoria puede tener selectividad espacial mediante irradiación a través de una fotomáscara.
En una realización preferida, el método descrito comprende una etapa previa a la deposición de la biomolécula en la superficie, donde dicha superficie del soporte se modifica o funcionaliza introduciendo los grupos alqueno o alquino y/o los grupos tiol mediante reacción de condensación con compuestos organosilanos, que actúan de espaciadores entre el grupo de funcionalización que se encuentra posicionado en su extremo y la superficie a funcionalizar, como se ha explicado anteriormente. Los compuestos organosilanos más preferidos son de fórmula general R2-Si(Y1)3, siendo: Y1=R10-, R1-ó Cl-, siendo R1 una cadena hidrocarbonada de 1 a 4 carbonos; y R2 una cadena hidrocarbonada lineal o ramificada, de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes (como por ejemplo grupos OH, fenilo, ... ) y que comprende entre 0 y 6 heteroátomos, preferentemente N u O, y que contiene en su extremo uno de los siguientes grupos -SH; -CH=CH2; ó -CECH. Más preferentemente aún, los compuestos organosilanos de este tipo son seleccionados entre clorosilanos y alcoxisilanos, siendo los elegidos para esta funcionalización: 3-mercaptopropil trietoxisilano, alil trimetoxisilano, vinil trimetoxisilano y 3-glicidoxipropiltrimetoxisilano con propargilamina. Dicha modificación de la superficie puede realizarse de manera preferida de acuerdo con las siguientes etapas (ver Figura 1):
someter el soporte de silicio a una atmósfera de argón en una disolución del compuesto organosilano a una concentración comprendida entre 0,5% y 5%, durante un tiempo comprendido entre 1 hora y 16 horas a una temperatura comprendida entre 20°C y los 50°C;
lavar el soporte con un disolvente orgánico seleccionado dentro del grupo compuesto por: diclorometano, tolueno, hexano, ciclohexano, etanol, metanol e isporopanol, y secar (por ejemplo, con aire comprimido); y
curar el soporte a 150°C durante 30 minutos.
En un caso más particular, la modificación o funcionalización de la superficie se realiza del siguiente modo:
someter el soporte de silicio a una atmósfera de argón en una disolución seleccionada entre alil trimetoxisilano (2% en tolueno) cuando se desea funcionalizar la superficie con grupos alqueno, 3-glicidoxipropiltrimetoxisilano (2% en tolueno con propargilamina), cuando se desea funcionalizar con grupos alquino, y/o 3-mercaptopropil trietoxisilano (2% en tolueno) cuando se desea funcionalizar la superficie con grupos tiol, durante 2 horas a temperatura ambiente;
lavar el soporte con un disolvente orgánico, preferentemente con 2-propanol y secar (por ejemplo, con aire comprimido); y
curar el soporte a 150°C durante 30 minutos.
De esta forma, se obtienen superficies funcionalizadas con grupos alqueno o alquino y/o grupos tiol. Es conveniente eliminar la materia orgánica del soporte de silicio antes de su funcionalización; preferentemente, esta acción se lleva a cabo tratando el soporte con disolución piraña (H2S04: H202:3:1 v/v) durante 1 hora a 50°C, lavando posteriormente el soporte con agua desionizada y secándolo con aire comprimido, aunque también pueden emplearse otros métodos conocidos en el campo (NaOH 1 M, ácido nítrico... ). Por otra parte, la secuencia de ADN/ARN es en el mejor de los casos una sonda de ácidos nucleicos de longitud comprendida entre 5 y 50 bases, preferentemente entre 15 y 25 que presenta un grupo alqueno o alquino, o un grupo tiol terminal. Cuando se indica posición terminal de la secuencia en la presente memoria, esta posición puede ser por ejemplo la posición 3' o preferiblemente el extremo 5'.
Como se ha dicho, de manera preferida, el grupo tiol, el grupo alqueno o el grupo alquino se encuentra unido a la biomolécula mediante un espaciador que es una cadena hidrocarbonada lineal o ramificada, de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes (como por ejemplo grupos OH, fenilo... ), y que comprende entre 0 y 6 heteroátomos, preferentemente oxígeno, y que es más preferentemente seleccionado entre un compuesto alquilo alifático de entre 1 y 20 carbonos o un poliglicol, preferentemente polietilenglicol (PEG) de fórmula (CH2CH20)n(CH2)m siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3. De manera más preferida aún, el compuesto tiolado es un compuesto de fórmula alquilo(Ci-C2o)-SH ó (CH2CH20)n(CH2)mSH; el compuesto alquenilado es un compuesto de fórmula
Figure imgf000013_0001
ó (CH2CH20)n(CH2)mCH=CH2; y el compuesto alquinilado es un compuesto de fórmula alquilo(Ci-C2o)-CECH ó (CH2CH20)n(CH2)mCECH; siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3.
En el ejemplo que se presenta como prueba de concepto se han escogido las siguientes secuencias como preferidas, sin ser limitantes de la invención:
- PM: 5'-X- CCCGATTGACCAGCTAGCATT-3' ;
- MM 1 : 5'-X-CCCGATTGACCTGCTAGCATT-3';
- MM2: 5'-X- CCCGATTGATTAGCTAGCATT-3' y
- MM3: 5'-X-CCATATTGACCAGCTATCATT-3' ,
donde X representa un compuesto seleccionado entre un compuesto tiolado (de tal forma que se emplea para las superficies modificadas con alqueno o alquino) y un compuesto alquenilado o alquinilado (de tal forma que se emplea en la invención para las superficies modificadas con grupos tiol) unidos al extremo 5' a través de un enlace tipo fosfato. En los casos más preferidos, X representa un compuesto tiolado de fórmula alquilo(Ci-C2o)-SH ó (CH2CH20)n(CH2)mSH; un compuesto alquenilado de fórmula ó (CH2CH20)n(CH2)mCH=CH2; o un compuesto alquinilado de fórmula alquilo(Ci-C2o)-CECH o (CH2CH20)n(CH2)mCECH, estando unidos al extremo 5' del ácido nucleico a través de un enlace tipo fosfato; y siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3.
En la realización más preferida, el compuesto alquenilado es un compuesto de fórmula -(CH2CH20)nCH2CH=CH2 y más preferentemente n es 3. En otra realización preferida, el compuesto tiolado es alquilo(Ci-C2o)-SH , siendo más preferentemente -(CH2)6-SH .
Cuando la superficie del soporte está funcionalizada al menos con grupos tiol, la sonda de oligonucleótidos a anclar debe contener un grupo alqueno o alquino terminal, tal y como se han definido anteriormente. A diferencia de algunas sondas de oligonucleótidos modificadas con un grupo tiol terminal, las sondas de oligonucleótidos con esta terminación alqueno o alquino no se encuentran disponibles comercialmente por lo que han de ser sintetizadas, lo que se planteó como uno de los retos fundamentales de la presente invención.
Así, en una realización preferida de la invención cuando el soporte está funcionalizado con grupos tiol, se puede preparar la secuencia de oligonucleótidos con la terminación alqueno o alquino a partir del método del fosforamidito, de forma previa a la deposición de la etapa I).
Así, en primer lugar se sintetiza el fosforamidito de fórmula general 2 conteniendo el alqueno o alquino deseado, partiendo de un alcohol 1 obtenido de fuentes comerciales o por los métodos habituales conocidos por un experto medio en la materia, tal y como se describe en el Esquema 1 descrito a continuación:
Figure imgf000014_0001
Reactivos: DIPEA, NC(CH2)20P(iPr2N)CI, CH2CI2, 0°C— t.a, 1 h 30min
Esquema 1 donde R3 es seleccionado entre alquilo(Ci-C2o)-CH=CH2, ó alquilo(Ci-C2o)-CHECH , siendo n=0-6. A continuación se funcionaliza la secuencia de oligonucleótidos de ADN/ARN por reacción con el correspondiente fosforamidito 2, para introducir el compuesto alquenilado o alquinilado (por ejemplo CH2=CH-CH2-(OCH2CH2)n-, en uno de sus extremos, por ejemplo en el extremo 5', mediante protocolo estándar para la adición de un nucleótido. Debe considerarse que ésta es la mejor manera de preparar la secuencia para su anclaje de acuerdo con el método de la invención.
Esta misma metodología también podría aplicarse para la obtención de secuencias de oligonucleótidos funcionalizadas con un grupo tiol, siendo R3 en el alcohol 1 y en el correspondiente fosforamidito 2 igual a alquilo(Ci-C2o)-S(GP), eliminando posteriormente el grupo protector (GP), como por ejemplo pero sin limitarse, benzoilo, acetilo o -S- alquilo(Ci-C2o)-(OCH2CH2)nOGPi, donde GPi es preferentemente DMT, para obtener el tiol libre.
De manera preferida, el depósito de la secuencia de ADN/ARN sobre el soporte mediante la impresión sin contacto en la etapa I) del método de la invención se lleva a cabo mediante un impresor de micromatrices automático de no contacto usando volúmenes reducidos.
También de manera preferida, la luz empleada en la fotoirradiación para el anclaje de la secuencia en la etapa II) del método de la invención es luz ultravioleta cercana al visible con longitud de onda de 320 a 370 nm. En otro caso preferido, la longitud de onda es de 350 nm a 375 nm, y en el caso más preferido es de 365 nm; en este sentido, debe tenerse en cuenta que la longitud de onda óptima es 365 nm (monocromática), pero las lámparas no dan luz monocromática, de tal forma que siempre presentan un ancho de banda. Dependiendo de qué lámpara se use para irradiar, ésta emite en un intervalo (320-370 nm) u otro (350-375 nm), y cuanto más monocromática, más adecuada es la irradiación para el método de anclaje. De forma más genérica, se puede definir la longitud de onda óptima como 365 ± 30 nm.
Preferentemente, el tiempo de irradiación está comprendido entre 10 minutos y 2 horas, incluidos ambos límites. En el caso más preferido de la invención, el anclaje se realiza irradiando a través de una fotomáscara (photomasking), de tal forma que se consigue la selectividad/localización espacial de la secuencia de oligonucleótidos sobre la superficie del soporte de silicio, sin reactividad cruzada y manteniendo la biodisponibilidad de la secuencia. Esta máscara permite inducir la fotoinmovilización covalente y de forma selectiva del oligonucleótido funcionalizado sobre el soporte, es decir, un anclaje selectivo de la secuencia de manera simple, limpia y eficiente. En el ámbito de la presente invención, puede emplearse cualquier fotomáscara conocida, es decir, cualquier dispositivo que permite el paso de la luz de forma selectiva espacialmente. Puede ser por ejemplo una máscara de vidrio cromado, o un cubre de vidrio con papel de de aluminio agujereado, de tal manera que sólo deja pasar la luz por donde dicho papel de aluminio presenta huecos. De esta forma, se puede posteriormente aplicar el oligonucleótido diana de secuencia complementaria a la anclada a la superficie, dejándose hibridar a condiciones como las expuestas en los ejemplos. Para ello se deposita un volumen adecuado de disolución de sonda complementaria marcada (por ejemplo con un marcador fluorescente) en tampón de hibridación sobre el microarray y se extiende la disolución con ayuda de un cubreobjetos. Tras un tiempo de incubación a una temperatura comprendida entre 20 °C y 37 °C se retira el cubreobjetos, se lava el soporte y se lee el resultado (en un lector de fluorescencia si se trata de mareaje fluorescente). Este método permite la identificación de secuencias de nucleótidos de ADN a partir de las sondas ancladas en el soporte, como por ejemplo pueden ser secuencias de E. coli (ver ejemplo).
Tras la irradiación, es conveniente lavar el producto (por ejemplo, con agua desionizada) y secar (por ejemplo al aire).
Un segundo objeto de la presente invención lo constituye el soporte sólido en base silicio activado químicamente mediante anclaje covalente directo de al menos una biomolécula que es una secuencia de oligonucleótidos de ADN ó ARN, obtenible por el método anteriormente descrito en cualquiera de sus variantes. Estos soportes presentan como resultado densidades altas de inmovilización de los oligonucleótidos en la superficie, comprendidas entre 3 y 6 pmol/cm2, con buena reproducibilidad (desviaciones estándar entre chips inferiores al 15%). El producto obtenido por este método es en realidad el primer soporte activado con biomoléculas, especialmente chip, que posee secuencias oligonucleótidas ancladas directamente al soporte alquenilado y/o tiolado sin intermediarios (crosslinkers, catalizadores) utilizando luz para activar la reacción. Aunque se han descrito soportes derivatizados con compuestos organosilanos, como son sobretodo microarrays usando crosslinkers, no se han datado hasta la fecha chips en los que oligonucleótidos y superficie del soporte estén unidos directamente sin intermediario.
En un caso preferido, dicho soporte activado con biomoléculas es un microarray (biochip) de ácidos nucleicos, y más preferentemente es un microarray de ácidos nucleicos donde las sondas ancladas se localizan selectivamente en las zonas de la superficie donde se ha irradiado con luz. Esto implica asimismo el uso del soporte activado como biochip o microarray para cualquier utilidad ya conocida para un biochip de ADN: medicina forense, detección de organismos genéticamente modificados, identificación de cepas de bacterias (como por ejemplo puede ser la discriminación de microorganismos patógenos como es E. coli), diagnóstico clínico, veterinaria, etc. Breve descripción de las Figuras
Figura 1. Representación esquemática de las estrategias basadas en la reacción TEC. Según la estrategia A se funcionaliza el soporte de silicio con un grupo alqueno y se ensambla un ácido nucleico con un grupo tiol. Según la estrategia B, se se funcionaliza el soporte de silicio con un grupo tiol y se ensambla un ácido nucleico con un grupo alqueno
Figura 2. Densidades de inmovilización obtenidas, de acuerdo al procedimiento descrito en el ejemplo 4, para las dos estrategias A y B de modificación y anclaje de oligonucleótidos objeto de protección.
Figura 3. a) Ilustración esquemática del patterning en la superficie funcionalizada. Modificación de la superficie: etapa a) silanización; etapa b) aplicación del oligonucleótido marcado con Cy5; etapa c) irradiación a través de una fotomáscara; etapa d) eliminación de la fotomáscara. b) Imagen de fluorescencia obtenida después de la irradiación.
Figura 4. Ensayos de discriminación de mismatches en SSC 1 χ con diferentes concentraciones de formamida (0%, 10% y 25%) para las dos estrategias A (gráfico superior) y B (gráfico inferior) planteadas en la presente invención y utilizando las 4 secuencias de oligonecleótidos descritas en la memoria: PM (barra de color negro), MM1 (barra de líneas diagonales), MM2 (barra de color blanco) y MM3 (barra de líneas verticales). Figura 5. Discriminación de E. coli. mediante el soporte de base silicio activado de acuerdo con la presente invención.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos sirven para ilustrar la invención y no deben ser considerados en ningún caso como limitativos del alcance de la misma.
Ejemplos
Métodos e instrumentación
La impresión de microarrays se llevó a cabo con un sistema de distribución sin contacto de bajo volumen de BioDot (Irvine, CA, EE.UU.), modelo AD1500. El sistema de ángulo de contacto OCA20 equipado con software de SCA20 era de Dataphysics Instruments GmbH (Fiiderstadt, Alemania). Las mediciones (n=5) se realizaron a temperatura ambiente usando 10 μί de agua 18μΩ. La espectroscopia fotoelectronica de Rayos X se realizó con un espectrofotómetro de Sage 150 Nano Surface Analysis GmbH (Berlín, Alemania). Para la irradiación a través de una fotomáscara se empleó el sistema de alineación automática EVG, modelo EVG620. Se detectó la señal de fluorescencia de ios puntos del microarray y se cuantificó mediante un lector de fluorescencia de la superficie casero equipado con una cámara CCD de alta sensibilidad Retiga EXi de Qlmaging Inc, (Burnaby, Canadá). Para el análisis de las imágenes registradas se usó el software de tratamiento de imágenes, GenePix Pr 4.0 de Molecular Devices, Inc. (Sunnyvale, CA, EE.UU.).
Ejemplo 1. Modificación de la superficie de un sustrato de silicio susceptible de emplearse como soporte en el método objeto de la presente invención.
Modificación con grupos algueno (Estrategia A figura 1)
Los chips de silicio, fueron suministrados por el centro de tecnología nanofotónica (NTC) de la Universidad Politécnica de Valencia con una capa de óxido de silicio de 3 mieras de grosor crecida sobre una oblea de silicio (100). Estos se trataron, en primer lugar, con disolución piraña (H2S04:H2C>2 3:1 v/v) durante 1 hora a 50 °C para eliminar la materia orgánica. Seguidamente el chip se lavó con agua desionizada y se secó con aire comprimido. A continuación, con el fin de funcionalizar la superficie, el chip se introdujo bajo atmósfera de argón en 10 mL de una disolución de aliltrimetoxisilano (2% en tolueno) durante 2 horas a temperatura ambiente. Seguidamente, el chip se lavó con 2- propanol y se secó con aire comprimido. Finalmente, el chip se curó a 150 °C durante 30 minutos, de modo que se obtuvieron superficies funcionalizadas con grupos alqueno. Esta vía de derivatización de silicio resulta ser altamente eficaz para el anclaje de moléculas conteniendo grupos tiol, tales como oligonucleótidos tiolados.
Modificación con grupos alguino (Estrategia A', figura 1)
Las obleas de Si se cortaron en trozos de 2 x 1 cm2 y se limpiaron solución Piranha (H2S04: H2O2 al 30% 03:01 v/v) durante 1 h a 60 0 C para eliminar los contaminantes orgánicos. Tras lavar con agua y secar, los chips fueron sumergidos en una solución de 3-glicidoxipropil trietoxisilano al 2% y propargilamina (10 mL) en tolueno durante 2 h a temperatura ambiente. Después de 2 h, se lavó varias veces con 2-propanol. A continuación, los chips se calentaron durante 10 min a 150°C. Finalmente, las muestras se lavaron varias veces con diclorometano y después se secaron bajo una corriente de nitrógeno.
Modificación con grupos tiol (Estrategia B, figura 1)
Los chips de silicio se trataron con disolución piraña (H2S04: H2C>2 3:1 v/v) durante 1 hora a 50°C. A continuación el chip se lavó con agua desionizada y se secó con aire comprimido. Seguidamente, el chip se introdujo bajo atmósfera de argón en 10 mL de una disolución de 3-mercaptopropil trietoxisilano (2% en tolueno) durante 2 horas a temperatura ambiente. Posteriormente el chip se lavó con 2-propanol y se secó con aire comprimido. Finalmente, el chip se curó a 150 °C durante 30 minutos.
Para las tres estrategias las superficies se caracterizaron empleando distintas técnicas como ángulo de contacto, ATR-FT!R y XPS. El ángulo de contacto (WCA) después de la limpieza con solución Piranha estaba por debajo de 10°, lo que indica que la superficie hidroxilada del SÍO2 era muy hídrófila. Tras la reacción con aliltrimetoxisilano, WCA aumentó a 74 °, de acuerdo con la presencia de una capa más hidrófoba en la superficie. Finalmente, después de la inmovilización de la sonda de ADN por irradiación UV, el valor de WCA disminuyó a 51°. En el caso de la superficie tiolada de la estrategia B, un WCA de 58° se midió después de organosilanizacion, mientras que después de la unión sonda de ADN fue de 53°, resultado muy similar ai valor obtenido para la estrategia de A. La evidencia del anclaje íiol~eno se obtuvo usando XPS y ATR-FTIR. A partir del análisis XPS, la silanizaeión del chip de silicio resultó en una disminución en la señal de Si y un aumento en la señal de 1 s C en comparación con el material de partida. La deconvolución del pico 1s C se utilizó para sondear los estados químicos de carbono en la superficie. Para las superficies funcionaüzadas con alqueno la señal de s C se pudo descomponer en tres componentes a 286,5, 285,3 y 284,9 eV, asignadas a C-O, C-C y C = C, respectivamente. El espectro de ATR-FTIR de la superficie con alqueno las bandas de tensión H-C-H de cadena aiifática a 2932 y 2864 crrr1. Por otra parte, se observó también una banda a 3082 crrr atribuible a la tensión H-C^C del alqueno terminal. Para la superficie tioiada, el pico 1 s C en el XPS se puede deconvolucionar en tres componentes a 287, 286 y 285 eV, asignadas a C-O, C-S y C-C, respectivamente. En el espectro de ATR-FTIR se observaron bandas correspondientes a las vibraciones de estiramiento características de HCH alifático (932 y 2864 cm -1) y SH (2571 cm
Ejemplo 2. Síntesis del fosforamidito 2 para modificar la secuencia de oligonucleótidos susceptible de emplearse en el método de la presente invención.
A una solución de trietilenglicol alil éter (1 ) (150 mg; 0.640 mmol) obtenido según el procedimiento descrito en Chem. Eur. J., 2012, 52, 16689, en 2 mL de diclorometano anhidro, se adicionó lentamente la N,N- diisopropiletilamina (223 pL; 1.28 mmol) a temperatura ambiente. La disolución se enfrió a 0°C y se adicionó gota a gota la β- cianoetil-A/,A/-diisopropilaminoclorofosfina (153 pL; 0.640 mmol). La disolución resultante se dejó en agitación 5 minutos a 0°C y se permitió posteriormente que alcanzara la temperatura ambiente, dejando la reacción en agitación durante una hora y media. Seguidamente, se adicionaron 10 mL adicionales de diclorometano y se lavó la fase orgánica con una disolución 0.5M NaHCOs (3 x 5 mL). La fase orgánica se secó sobre MgS04 anhidro y el disolvente se eliminó a sequedad. El crudo resultante correspondiente al 2-cianoetil-(3,6,9, 12-tetraoxapentadec-14-en-1 -il) diisopropilaminofosforamidito (2) se empleó sin ningún tipo de purificación adicional en la posterior etapa de conjugación con los distintos oligonucleótidos.
2-Cianoetil-(3,6,9, 12-tetraoxapentadec-14-en-1-il) diisopropilaminofosforamidito (2): 1 H- RMN (400 MHz, CDCb) δ: 5.87 (m, 1 H), 5.20 (m, 2H), 4.00 (t, J = 7.1 Hz; 2H), 3.97 (t, J= 7.0 Hz; 2H), 3.8 (m, 2H), 3.62 (m, 14H), 3.58 (m, 4H), 2.64 (m, 2H), 1.16 (d, J = 7.02 Hz; 6H), 1.14 (d, J = 7.01 Hz; 6H). 13C-NMR (100 MHz, CDCb) δ: 134.7, 1 17.0, 72.2, 71.1 , 70.5, 69.3, 62.6, 58.4, 42.9, 24.6, 20.3. 31 P-NMR (162 MHz, CDC ) δ: 149.9. HRMS (ESI+): m/z caled para C20H39N2O6P ([M+H]+) 435.2618 encontrada 435.2617.
Ejemplo 3. Síntesis de una secuencia de oligonucleótidos modificados susceptible de emplearse en el método de la presente invención.
El ensamblaje de las sondas de ADN se hizo de la forma habitual en la síntesis de ácidos nucleicos. En el extremo 5' se añadió el fosforamidito alqueno 2 siguiendo el protocolo estándar para la adición de un nucleótido por el método del fosforamidito que consta de las siguientes etapas: 1) eliminación del grupo protector dimetoxitritilo (DMT) del extremo 5' con una solución al 3% de ácido tricloroacético en diclorometano, 2) acoplamiento del fosforamidito (0.1 M) por activación con una solución 0.4M de 1 H- tetrazol en acetonitrilo (Caruthers et al. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods in Enzymology 154, 287-313 (1987)). 3) Una vez que el fosforamidito alqueno (2) fue incorporado, se llevó a cabo la reacción de oxidación del P seguido de la desprotección de los grupos protectores de las nucleobases y del fosfito y 4) la liberación de los cuatro conjugados de los soportes sólidos mediante el tratamiento de una disolución de amoniaco (32%) a 55°C durante toda la noche. Los soportes sólidos se filtraron y los oligonucleótidos modificados obtenidos (PM, MM1 , MM2 y MM3 con X=alilo-(OCH2-CH2)3) se pasaron por una columna Sephadex (NAP-10).
Los productos resultantes se analizaron por HPLC y el pico mayoritario obtenido se analizó por la técnica de MALDI-TOF. El análisis por HPLC se realizó en un equipo de HPLC Waters 2998 equipado con un detector de diodos. Columna: XBridge OST C18 semipreparativa (10 x 50 mm, 2.5 mieras). Flujo: 3 mL/min. Solución A: 5% de acetonitrilo en acetato de trietilamonio 100 mM (pH 7.0). Solución B: 70% acetonitrilo en acetato de trietilamonio 100 mM (pH 7.0). Gradiente lineal desde el 0% de B hasta el 30% de B durante 10 minutos. El tiempo de retención de los oligonucleótidos se detalla en la Tabla 1.
El análisis del peso molecular mediante espectroscopia de masas se realizó en un equipo de MALDI-TOF Voyager-DE RP (Applied Biosystems) utilizando el detector en el modo negativo utilizando como matriz 2,4,6-trihidroxiacetofenona y citrato amónico como aditivo. En la Tabla 1 se muestran los resultados de los espectros de MALDI-TOF de los oligonucleótidos modificados.
Tabla 1. Caracterización de los oligonucleótidos modelo modificados con grupo alilo terminal (PM, MM1 , MM2 y MM3, respectivamente)
Figure imgf000022_0002
Figure imgf000022_0001
Ejemplo 4. Inmovilización de secuencias de oligonucleótidos sobre el soporte de silicio de acuerdo con el método de la presente invención.
Superficie con grupos algueno (Estrategia A)
Se partió de la superficie funcionalizada con grupos alilo (ejemplo 1A), y se depositaron distintas concentraciones, por impresión, de un oligonucleótido con grupo tiol terminal en el extremo 5' ((CH2)6-SH), marcado con el fluoroforo Cy5 en el extremo 3', y de secuencia de bases: CCCGATTGACCAGCTAGCATT adquirido de Aldrich Química (Madrid, España). La impresión se llevó a cabo con un impresor de bajo volumen y no contacto de Biodot (modelo AD1500, Irvine, CA, USA). A continuación, los chips se expusieron a luz UV entre 10 minutos y 2 horas utilizando una lámpara de mercurio de baja presión (365 nm, 6.0 mW/cm2, Jelight) colocada a una distancia aproximada de 0,5 cm, para inducir la fotorreacción e inmovilización mediante la reacción TEC. Tras la exposición a la luz UV, los chips se lavaron con PBS-T, con agua desionizada y finalmente se secaron con aire.
Superficie con grupos tiol (Estrategia B)
Se partió de la superficie funcionalizada con grupos propanotiol (ejemplo 1 B), y se depositaron por impresión los oligonucleótidos sintetizados con grupos alqueno terminales (extremo 5'), de secuencia de bases PM y marcados con Cy5 en el extremo 3'. A continuación, se aplicó el mismo protocolo de trabajo que se describe en el párrafo anterior. Los análisis de dichas superficies se realizaron empleando técnicas de ángulo de contacto, ATR-FTIR, XPS y fluorescencia. La efectividad del anclaje se calculó en función de las intensidades de fluorescencia de las sondas impresas. Los resultados indican que se consigue la derivatización buscada con buen rendimiento en todos los casos (densidades de inmovilización desde 1.8 hasta 3.9 pmol cnr2) Así, empleando las estrategias A y B basadas en la reacción TEC, se han alcanzado densidades de inmovilización de 3 y 6 pmol/cm2, respectivamente (Figura 2). A su vez, los análisis mediante AFM de las superficies funcionalizadas muestran un buen grado de homogeneidad, con valores de rms (root-mean -square roughness) desde 2.10 hasta 2.70. Superficie con grupos a/quino
En las superficies que contenían grupos alquino, se depositaron, por microimpresión de no contacto, gotas una sonda tiolada y el microarray creado se expuso a luz UV a través de una máscara durante 20 minutos para inducir la fotoinmovilización del oligonucleótido en zonas localizadas del chip. A continuación el chip se lavó con agua destilada y se secó.
Mediante estas tres estrategias, fue posible la inmovilización covalente y de forma selectiva sobre los soportes (Figura 3). De este modo, se consiguió el anclaje selectivo de ANs de una manera simple, limpia y eficiente.
Ejemplo 5. Demostración de la invención: obtención de soportes activados químicamente de acuerdo con el método de la presente invención, con empleo de fotomáscara, para hibridación de secuencias de nucleótidos de ADN, discriminación de mismatches y detección de Escherichia coli.
En las superficies que contenían grupos alqueno y/o grupos tiol (es decir, sólo grupos alqueno, sólo grupos tiol o ambos grupos), se depositaron una sonda de oligonucleótidos tiolada marcada con Cy5 (estrategia A) y/o una sonda de oligonucleótidos con un grupo alqueno terminal marcada con Cy5 (estrategia B), y se expusieron a luz UV a través de una máscara para inducir la fotoinmovilización del oligonucleótido en zonas localizadas del chip. Tras la exposición, los chips se lavaron con PBS-T, con agua desionizada y finalmente se secaron con aire.
Ensayos de hibridación
En las superficies que contenían grupos alqueno terminal (estrategia A), se imprimió una sonda tiolada comercial de secuencia SH-(T)15-(CCCGATTGACCAGCTAGCATT) y a continuación se expuso a luz UV para inducir la fotoinmovilización del oligonucleótido. Tras la exposición, los chips se lavaron con PBS-T, con agua desionizada y se secaron con aire. Seguidamente, se aplicó el oligonucleótido diana de secuencia complementaria (AATGCTAGCTGGTCAATCGGG) marcado con Cy5, y se dejó hibridar en una cámara húmeda a 37 °C durante 1 hora. A continuación, los chips se lavaron con PBS-T, con agua desionizada y finalmente se secaron con aire.
Por otra parte, para las superficies funcionalizadas con grupos tiol (estrategia B), se imprimió la sonda sintetizada con un espaciador con un grupo alqueno terminal en la posición 5', de secuencia (TTGATTACAGCCGGTGTACGACCCT) y a continuación se expuso a luz UV para inducir la fotoinmovilización de la sonda. Tras la exposición, los chips se lavaron con PBS-T, con agua desionizada y finalmente se secaron con aire. Seguidamente, se aplicó el oligonucleótido diana marcado con Cy5 de secuencia complementaria Cy5- (AGGGTCACACCGGCTGTAATCAAA), y se dejó hibridar en una cámara húmeda a 37 °C durante 1 hora. Después, los chips se lavaron con PBS- T, con agua desionizada y se secaron con aire.
En ambos casos, la fluorescencia resultante de la hibridación sonda/diana se midió con una cámara CCD.
Ensayos de discriminación de mismatches
La selectividad de las estrategias propuestas se evaluó a través de la hibridación con diferentes oligonucleótidos que consistían en una sonda perfectamente complementaria (PM) y tres sondas con mutaciones de 1 a 3 bases nitrogenadas (MM 1 , MM2 y MM3).
Estrategia A: Para esta aproximación, se partió de una superficie funcionalizada con aliltrimetoxisilano y, se emplearon cuatro sondas de oligonucleótidos tiolados comerciales adquiridos de Sigma-Aldrich (Madrid, España) y de secuencias: SH-(T)15- (CCC GAT TGA CCA GCT AGC ATT) (PM), SH-(T)15-(CCC GAT TGA CCT GCT AGC ATT) (MM1), SH-(T)15-(CCC GAT TGA TTA GCT AGC ATT) (MM2) y SH-(T)15- CCA TAT TGA CCA GCT ATC ATT) (MM3), que contienen ninguno, uno, dos y tres mismatches en la secuencia bases, respectivamente. Estas sondas se inmovilizaron, siguiendo el procedimiento descrito anteriormente, sobre un chip de silicio modificado con grupos alqueno. Tras lavar con agua desionizada y secar con aire, se aplicó el oligonucleótido diana marcado con Cy5 (extremo 5') de secuencia (AATGCTAGCTGGTCAATCGGG) en tampón SSC en diferentes condiciones y se dejó hibridar en una cámara húmeda a 37 °C durante 1 hora. Tras lavar los chips con PBS-T, agua desionizada y secarlos con aire, se midió la fluorescencia en una cámara CCD. Estrategia B: En este caso, se emplearon cuatro oligonucleótidos sintetizados con un espaciador que contiene un alqueno terminal (CH2=CH-CH2-(OCH2CH2)3-) de secuencias (CCCGATTGACCAGCTAGCATT) (PM), (CCCGATTGACCTGCTAGCATT) (MM 1), (CCCGATTGATTAGCTAGCATT) (MM2) y (CCATATTGACCAGCTATCATT) (MM3) que contienen ninguno, uno, dos y tres mismatches en las bases, respectivamente. Se inmovilizaron sobre el chip de silicio modificado 3- mercaptopropiltrietoxisilano de acuerdo a lo descrito arriba. Tras lavar con agua desionizada y secar con aire, se aplicó el oligonucleótido diana marcado con Cy5 (extremo 5') de secuencia (AGGGTCACACCGGCTGTAATCAAA) disuelto en tampón SSC en diferentes condiciones y se dejó hibridar en una cámara húmeda a 37 °C durante 1 hora. Tras lavar los chips con PBS-T, agua desionizada y secarlos con aire, se midió la fluorescencia de los puntos donde se produjo hibridación.
En ambos casos, bajo las condiciones de hibridación estudiadas (SSC 1 * a 3*), y diferentes contenidos en formamida (de 0 a 25%) permitió discriminar (Figura 4) la sonda complementaria (PM) de la sonda con una única mutación (MM 1). Un aumento de la fuerza iónica del tampón de hibridación (SSC 3*) redujo la eficiencia discriminatoria; mientras que una disminución dé la fuerza iónica (SSC 0,1 *) y del contenido en formamida permitió discriminar incluso una mutación de una sola base nitrogenada. Detección de Escherichia coli
Los chips de silicio se funcionalizaron con aliltrimetoxisilano según el procedimiento descrito anteriormente. A continuación, se imprimió una sonda de oligonucleótidos específica de E. coli y una sonda control no específica, ambas funcionalizadas con grupos tiol terminales -CeSH (extremo 5'), creando un microarray de 8x4 puntos, en el que se alternaron filas de sonda específica (filas impares) con filas control (filas pares). A continuación, los chips se expusieron a luz UV para inducir la inmovilización de las sondas. Después, los chips se lavaron con PBS-T, con agua desionizada y finalmente se secaron con aire. Seguidamente, se depositaron 50 μΙ_ del producto de la PCR marcado con Cy5 en tampón de hibridación (SSC 1 χ) y se cubrió con un cubreobjetos de vidrio. El producto de la PCR de E. coli se calentó primero durante 5 minutos a 95 °C, seguido de un enfriamiento rápido durante 1 minuto en hielo. Tras incubar 1 h a 37 °C, los chips se lavaron con PBS-T, con agua desionizada y se secaron con aire.
En las condiciones descritas, los puntos correspondientes a la sonda específica de E. coli mostraron una alta fluorescencia, mientras que en los correspondientes al control no se observó ninguna señal. Así, la metodología desarrollada se pudo ensayar con éxito en la identificación de la bacteria E. coli y se detectaron concentraciones de 50 ng/mL. (Figura 5).

Claims

REIVINDICACIONES
1. Un método de activación química superficial por reacción tiol-eno o tiol-ino de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula que es una secuencia de oligonucleótidos de ADN ó ARN, donde A) la superficie del soporte está funcionalizada con grupos alqueno o alquino y la secuencia de oligonucleótidos presenta un grupo tiol terminal, y/o B) la superficie del soporte está funcionalizada con grupos tiol y la secuencia de oligonucleótidos presenta un grupo alqueno o alquino terminal; dicho método comprendiendo las etapas de:
I) depositar la biomolécula sobre la superficie del soporte mediante técnicas de impresión con o sin contacto; y
II) anclar la biomolécula a la superficie del soporte por adición radical mediante reacción del grupo alqueno o alquino con el grupo tiol provocada por fotoirradiación con luz ultravioleta de longitud de onda de 320 nm a 400 nm, durante un intervalo de tiempo comprendido entre 5 minutos y 3 horas, en ausencia de crosslinkers y catalizadores.
2. El método según la reivindicación anterior, donde la superficie del soporte está funcionalizada simultáneamente con grupos tiol y con grupos alqueno o alquino, y la activación química se lleva a cabo empleando tanto secuencias de oligonucleótidos con un grupo tiol terminal como secuencias de oligonucleótidos con un grupo alqueno o alquino terminal.
3. El método según una cualquiera de las reivindicaciones anteriores, donde el soporte en base silicio es seleccionado dentro del grupo compuesto por óxido de silicio, nitruro de silicio, silicio y vidrio.
4. El método según la reivindicación anterior, donde el soporte en base silicio es un chip.
5. El método según una cualquiera de las reivindicaciones anteriores, donde la superficie del soporte está funcionalizada mediante compuestos organosilanos que comprenden en su extremo una agrupación seleccionada entre tiol, alqueno o alquino.
6. El método según la reivindicación anterior, donde el compuesto organosilano es seleccionado entre un clorosilano y un alcoxisilano.
7. El método según una cualquiera de las reivindicaciones anteriores, que comprende una etapa previa a la deposición de la biomolécula en la superficie del soporte en la que dicha superficie se funcionaliza introduciendo los grupos alqueno o alquino y/o los grupos tiol mediante reacción de condensación con compuestos organosilanos, de fórmula general R2-Si(Y1)3, siendo: Y1=R10-, R1- ó Cl-, siendo R1 una cadena hidrocarbonada de 1 a 4 carbonos; y R2 una cadena hidrocarbonada lineal o ramificada, de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes y que comprende entre 0 y 6 heteroátomos, preferentemente N u O, y que contiene en su extremo uno de los siguientes grupos -SH; -CH=CH2; ó -C≡CH.
8. El método según una cualquiera de las reivindicaciones 6 ó 7, donde los compuestos organosilanos son seleccionados dentro del grupo compuesto por: 3-mercaptopropil trietoxisilano, alil trimetoxisilano, vinil trimetoxisilano y 3-glicidoxipropiltrimetoxisilano con propargilamina.
9. El método según una cualquiera de las reivindicaciones anteriores, donde la biomolécula es una sonda de ácidos nucleicos de longitud comprendida entre 5 y 50 bases.
10. El método según una cualquiera de las reivindicaciones anteriores, donde la biomolécula presenta el grupo tiol o el grupo alqueno o alquino en el extremo 5'.
1 1. El método según una cualquiera de las reivindicaciones anteriores, donde la biomolécula presenta el grupo tiol, el grupo alqueno o el grupo alquino en el extremo de un espaciador que es una cadena hidrocarbonada lineal o ramificada de entre 1 y 20 átomos, opcionalmente sustituida con uno o varios sustituyentes, y que comprende entre 0 y 6 heteroátomos, preferentemente oxígeno.
12. El método según la reivindicación anterior, donde el espaciador es seleccionado entre un compuesto alquilo alifático de entre 1 y 20 carbonos o un poliglicol.
13. El método según una cualquiera de las reivindicaciones 11 ó 12, donde el grupo tiol y el espaciador forman un compuesto tiolado de fórmula alquilo(Ci-C2o)-SH ó (CH2CH20)n(CH2)mSH; el grupo alqueno y el espaciador forman un compuesto alquenilado de fórmula
Figure imgf000028_0001
ó (CH2CH20)n(CH2)mCH=CH2; y el grupo alquino y el espaciador forman un compuesto alquinilado de fórmula alquilo(Ci-C2o)- CECH ó (CH2CH20)n(CH2)mCECH; siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3.
14. El método según una cualquiera de las reivindicaciones anteriores, donde la biomolecula es seleccionada dentro del grupo compuesto por:
- 5'-X- CCCGATTGACCAGCTAGCATT-3' ;
- 5'-X-CCCGATTGACCTGCTAGCATT-3';
- 5'-X- CCCGATTGATTAGCTAGCATT-3' y
- 5'-X-CCATATTGACCAGCTATCATT-3',
donde X representa un compuesto seleccionado dentro del grupo que consiste en: un compuesto tiolado de fórmula alquilo(Ci-C2o)-SH ó (CH2CH20)n(CH2)mSH; un compuesto alquenilado de fórmula
Figure imgf000029_0001
ó (CH2CH20)n(CH2)mCH=CH2; o un compuesto alquinilado de fórmula alquilo(Ci-C2o)-CECH o (CH2CH20)n(CH2)mCECH, siendo n un numero entero entre 1 y 6 y m un número entero entre 1 y 3; y estando unidos al extremo 5' del ácido nucleico a través de un enlace tipo fosfato.
15. El método según una cualquiera de las reivindicaciones 10 a 17, donde el compuesto alquenilado es -(CH2CH20)nCH2CH=CH2, donde n=3, y el compuesto tiolado es -(CH2)6SH.
16. El método según una cualquiera de las reivindicaciones anteriores, que comprende preparar la biomolécula de forma previa a su deposición en la superficie del soporte, por derivatización química mediante el método del fosforamidito.
17. El método según una de las reivindicaciones anteriores, donde la impresión sin contacto se lleva a cabo mediante un impresor de micromatrices automático de no contacto con volúmenes reducidos.
18. El método según la reivindicación anterior, donde la longitud de onda de la luz ultravioleta es de 365 ± 30 nm.
19. El método según una de las reivindicaciones anteriores, donde el tiempo de irradiación está comprendido entre 10 minutos y 2 horas, incluidos ambos límites.
20. El método según una de las reivindicaciones anteriores, donde el anclaje se realiza irradiando a través de una fotomáscara que induce la fotoinmovilización covalente y de forma selectiva de la biomolécula funcionalizada sobre el soporte sin reactividad cruzada.
21. Un soporte sólido en base silicio con superficie activada químicamente mediante anclaje covalente directo y sin agentes de entrecruzamiento de al menos una biomolécula que es una secuencia de oligonucleótidos de ADN ó ARN, obtenible por el método descrito en cualquiera de las reivindicaciones anteriores, que presenta una densidad de inmovilización de los oligonucleótidos en su superficie comprendida entre 3 y 6 pmol/cm2 y un grado de reproducibilidad con coeficiente de variación entre soportes inferior al 15%.
22. El soporte según la reivindicación anterior, donde dicho soporte es un biochip de ácidos nucleicos.
23. El soporte según una cualquiera de las reivindicaciones 21 ó 22, donde dicho soporte es un biochip de ácidos nucleicos con selectividad espacial cuando la irradiación de anclaje de la biomolécula a la superficie del soporte se aplica a través de una fotomáscara.
24. Uso del soporte descrito en una cualquiera de las reivindicaciones 21 a 23, que comprende una de las siguientes aplicaciones: medicina forense, detección de organismos genéticamente modificados, identificación de cepas de bacterias, diagnóstico clínico y veterinaria.
PCT/ES2014/070813 2013-10-30 2014-10-29 Método de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácidos nucleicos WO2015063357A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201331587A ES2537097B1 (es) 2013-10-30 2013-10-30 Metodo de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácido nucleico.
ESP201331587 2013-10-30

Publications (1)

Publication Number Publication Date
WO2015063357A1 true WO2015063357A1 (es) 2015-05-07

Family

ID=53003406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070813 WO2015063357A1 (es) 2013-10-30 2014-10-29 Método de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácidos nucleicos

Country Status (2)

Country Link
ES (1) ES2537097B1 (es)
WO (1) WO2015063357A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958430A (en) * 1998-02-20 1999-09-28 Battelle Memorial Institute Thin film composition with biological substance and method of making
WO2001016372A1 (en) * 1999-08-27 2001-03-08 Matrix Technologies Corporation Methods of immobilizing ligands on solid supports and apparatus and methods of use therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958430A (en) * 1998-02-20 1999-09-28 Battelle Memorial Institute Thin film composition with biological substance and method of making
WO2001016372A1 (en) * 1999-08-27 2001-03-08 Matrix Technologies Corporation Methods of immobilizing ligands on solid supports and apparatus and methods of use therefor

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BHAIRAMADGI, N.S. ET AL.: "Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol-yne versus Thiol-ene Click Chemistry''.", LANGMUIR, vol. 29, 2013, pages 4535 - 4542 *
ESCORIHUELA, J. ET AL.: "Direct Covalent Attachment of DNA Microarrays by Rapid Thiol-Ene ''Click'' Chemistry''.", BIOCONJUGATE CHEMISTRY, vol. 25, 2014, pages 618 - 627 *
ESCORIHUELA, J. ET AL.: "DNA Microarrays on silicon surfaces through thiol-ene chemistry''.", CHEMICAL COMMUNICATIONS, vol. 48, no. 5, 2012, pages 2116 - 2118 *
GUPTA, N. ET AL.: "A versatile approach to high-throughput Microarrays using thiol-ene chemistry", NATURE CHEMISTRY, vol. 2, 2010, pages 138 - 145 *
SU , X. ET AL.: "Mild Two-Step Method to Construct DNA-Conjugated Silicon Nanoparticles: Scaffolds for the Detection of MicroRNA-21", BIOCONJUGATE CHEMISTRY, vol. 25, 2014, pages 1739 - 1743 *
WEINRICH, D. ET AL.: "Preparation of Biomolecule Microstructures and Microarrays by Thiol-ene Photoimmobilization''.", CHEMBIOCHEM, vol. 11, 2010, pages 235 - 247 *
WENDELN, C. ET AL.: "Photochemical Microcontact Printing by Thio-Ene and Thiol-Yne Click Chemistry''.", LANGMUIR, vol. 26, no. ISSUE, 2010, pages 15966 - 15971 *

Also Published As

Publication number Publication date
ES2537097A1 (es) 2015-06-02
ES2537097B1 (es) 2016-04-05

Similar Documents

Publication Publication Date Title
US7183050B2 (en) Gradient resolved information platform
Herzer et al. Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates
ES2385015T3 (es) Artículos que tienen moléculas localizadas dispuestas sobre ellos y métodos de producción de los mismos
CN101149379B (zh) 硅烷混合物
US8003771B2 (en) Compositions, probes and conjugates and uses thereof
AU2018392919A1 (en) Flow cells with hydrogel coating
KR20070090193A (ko) 링커 부분을 갖는 흡착된 다공성 반응층을 포함하는 전극어레이 디바이스
JP2008530540A (ja) 支持体への生体分子の光化学的結合のための方法
US20050181384A1 (en) Selectivity of nucleic acid diagnostic and microarray technologies by control of interfacial nucleic acid film chemistry
AU2004272465B2 (en) Size-controlled macromolecule
CN102171368B (zh) 在载体上固定化核酸的方法
AU2017379867B2 (en) Array including sequencing primer and non-sequencing entity
KR20030068537A (ko) 개질된 탄소, 규소 및 게르마늄 표면
WO2015063357A1 (es) Método de activación química superficial de un soporte sólido en base silicio mediante anclaje covalente directo de al menos una biomolécula de ácidos nucleicos
Wittmann Immobilisation of DNA on Chips: Immobilization of DNA on Microarrays
RU2741805C1 (ru) Каталитически активные вещества
JP5747432B2 (ja) 2置換修飾シクロデキストリンおよびこれを用いた核酸検出方法
US20080274917A1 (en) Surface activation methods for polymeric substrates to provide biochip platforms and methods for detection of biomolecules thereon
US20220154273A1 (en) Incorporation and imaging mixes
KR100348868B1 (ko) 고분자 광산발생제를 이용한 고체기질 위에서의 염기함유 올리고머 합성방법
Frydrych-Tomczak et al. Application of epoxy functional silanes in the preparation of DNA microarrays
Lim Surface Templating Using a Photolabile Terpolymer to Construct Mixed Films of Oligomers and Oligonucleotides for DNA Biosensor Development
Manning et al. Functionalization of surfaces with synthetic oligonucleotides
JP4951116B2 (ja) 光応答性プローブを用いたメチルシトシンの検出法
CN117222752A (zh) 流通池和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858821

Country of ref document: EP

Kind code of ref document: A1