WO2015062277A1 - 一种智能配电系统递进式调度方法 - Google Patents

一种智能配电系统递进式调度方法 Download PDF

Info

Publication number
WO2015062277A1
WO2015062277A1 PCT/CN2014/079573 CN2014079573W WO2015062277A1 WO 2015062277 A1 WO2015062277 A1 WO 2015062277A1 CN 2014079573 W CN2014079573 W CN 2014079573W WO 2015062277 A1 WO2015062277 A1 WO 2015062277A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
distribution system
node
scheduling
power
Prior art date
Application number
PCT/CN2014/079573
Other languages
English (en)
French (fr)
Inventor
余昆
陈星莺
陈楷
朱红
姚建国
廖迎晨
蔡敏
Original Assignee
江苏省电力公司南京供电公司
河海大学
南京河海科技有限公司
国家电网公司
中国电力科学研究院
江苏省电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省电力公司南京供电公司, 河海大学, 南京河海科技有限公司, 国家电网公司, 中国电力科学研究院, 江苏省电力公司 filed Critical 江苏省电力公司南京供电公司
Priority to US14/647,910 priority Critical patent/US9891645B2/en
Publication of WO2015062277A1 publication Critical patent/WO2015062277A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to a progressive scheduling method for an intelligent power distribution system, and belongs to the technical field of intelligent scheduling. Background technique
  • the distribution network is an intermediate link between the power user and the transmission network. Optimizing the allocation of various resources through the optimal scheduling of the distribution network is the key content of building a smart grid.
  • distributed generation technology there are various distributed power sources in the distribution network, as well as various energy supply modes such as cold, heat and electricity.
  • the small-capacity distributed power supply is directly connected with the user to form a micro-grid. And then connect to the distribution network in different grid connection modes.
  • Distributed power supplies and various large-capacity shock loads such as electric vehicle charging and discharging facilities are connected to the distribution network, and large-capacity dynamic loads such as large motors and air conditioners are increasing, which have changed the operating characteristics of the distribution network.
  • the power system has experienced traditional economic dispatch, market competition scheduling, and energy-saving power dispatching, and is developing toward low-carbon scheduling and intelligent dispatching, but these studies are mainly concentrated in the transmission grid.
  • distribution network scheduling has also begun to receive attention, and research has been conducted on network operation modes, demand response such as interruptible load, and distributed power dispatching.
  • demand response such as interruptible load
  • distributed power dispatching for the actual distribution network, because the measurement information is small and the information quality is not high, the current level of intelligence is not high, mainly relying on experience for scheduling, or in a "blind" state.
  • the present invention proposes a progressive multi-time scale optimization scheduling mode for intelligent distribution system, aiming at The distribution network with new physical structure and characteristics, as well as the scheduling objectives and objects of the distribution network, propose optimized scheduling modes and key technologies, and provide basis for coordinated scheduling of distribution network, power supply and load.
  • the present invention provides a progressive scheduling method for intelligent power distribution systems, which automatically coordinates real-time data with historical data, planning data, and operational data, based on long-term periodic changes in load, short-term random changes. And take into account the temporary load power supply and maintenance requirements, form a multi-stage progressive multi-time scale optimization scheduling method, intelligent distribution system for distributed power, microgrid, energy storage device, electric vehicle charging and discharging facilities and other elements
  • the scheduling is carried out to realize the coordinated operation of the network, power supply and load resources to ensure the safe, reliable, high-quality and efficient operation of the intelligent power distribution system.
  • the technical solution adopted by the present invention is a progressive dispatching method of intelligent power distribution system, which is based on the principle of "local balance, one-zone coordination, and overall absorption", and coordinates distributed power, micro-grid, energy storage device, and controllable Scheduling objects such as load, improve the reliability and economy of power distribution network, and achieve the high-efficiency operation target of intelligent power distribution system.
  • the present invention provides four scheduling phases and their scheduling modes, and the relationship between them.
  • the specific steps of the four-step progressive scheduling method are as follows:
  • the short-term optimization scheduling realizes the multi-period energy balance and operation mode coordination mode that takes into account temporary maintenance and temporary power conservation.
  • the steps are to divide the next-day load curve into multiple time periods according to the trend of load over time and maintenance information. Calculate the power loss rate of the intelligent power distribution system in each operation mode, and select the operation mode with the lowest power loss rate, and then compare the differences between the operation modes in the order of each time period to obtain a short-term switching operation scheme;
  • the steps are to adjust the distributed power and energy storage device power in the event of an emergency, or transfer the load to On other feeders, if a fault or defect signal is received, the connected switch state is turned off, and the switch state of the load that has lost the power supply is turned off, otherwise if the load or distributed power output is received
  • the abrupt signal changes the charge and discharge state of the energy storage device to balance the abrupt energy. If the energy storage device loses its ability to adjust, the controllable distributed power output is adjusted to balance the abrupt energy.
  • the present invention controls the intelligent power distribution system by using a multi-stage progressive optimization scheduling method, and can obtain the following effects: 1. Through long-term optimization scheduling, it can reduce load peak-to-valley difference and reduce peak load; optimize the distribution of feeder contact points, plan for distributed power supply, electric vehicle charging and discharging facilities, and interruptible load;
  • the normal operation mode can be optimized to improve the efficiency of intelligent power distribution system operation
  • FIG. 1 is a flow chart of a multi-stage progressive optimization scheduling scheme for an intelligent power distribution system according to the present invention
  • FIG. 2 is a schematic structural view of a test system for an intelligent power distribution system according to the present invention.
  • the progressive dispatching method of the intelligent power distribution system proposed by the present invention is composed of four steps of long-term, medium-long, short-term and ultra-short-term optimal scheduling.
  • Long-term optimization scheduling is a structural transformation of the distribution network, including electrical equipment such as lines, switches, distributed power supplies, energy storage devices, and interruptible loads. It ensures that important users have different types of power supplies, using interruptible load as Resource scheduling, electric vehicle charging and discharging strategy change load curve, reduce load peak-to-valley difference, reduce peak load through coordination of these networks, power supply and load, use controllable distributed power supply to improve power supply reliability, and use clean and renewable as much as possible Energy power generation achieves energy conservation and emission reduction.
  • the power grid structure and parameters shown in FIG. 2 include four feeder lines, 26 topological nodes, and 22 sectional switches and four tie switches.
  • the load increases by 10%, then When a fault occurs between the twenty-first node 21 and the twenty-second node 22, the load between the twenty-second node 22 and the twenty-sixth node 26 can only be obtained by the busbar of the first node 1 or the seventh node 7.
  • the load of the twenty-second node 22 to the twenty-sixth node 26 cannot be restored, if a tie line and a tie switch are set between the third node 3 and the second node 22 Or accessing the energy storage device at the twenty-third node 23, accessing the distributed power source at the twenty-sixth node 26, then the twenty-second node 22 to the
  • the load between the twenty-six nodes 26 can be powered by the busbars of the first node 1 and the seventh node 7, respectively, and can provide power supply for all loads.
  • Medium- and long-term optimization scheduling realizes the normal mode of operation mode based on load long-period law change, maintenance and temporary power supply.
  • the steps are to calculate the power flow of intelligent power distribution system under various operating modes for working day load curve and holiday load curve respectively. Data, further statistics on the power loss rate, selecting the operating mode with the smallest power loss rate on weekdays and holidays, and comparing the differences between the operating modes in chronological order, and obtaining the switching operation scheme, for example, based on the typical load curve of the holiday, Opening the switch between the eleventh node 11 and the twelfth node 12 in FIG.
  • the short-term optimization scheduling implements a multi-period energy balance and operation mode coordination mode that takes into account temporary maintenance and temporary power conservation.
  • the steps are to divide the next-day load curve into multiple time periods according to the trend of load over time and maintenance information, such as the fifth.
  • the line between the node 5 and the eleventh node 11 needs temporary maintenance, and the load curve is divided into a peak period greater than 70% of the maximum load, a valley period less than 50% of the average load, and a waist period of other parts, in the medium and long term.
  • the switch state is closed.
  • the power flow data of the intelligent power distribution system in various operating modes is calculated for each time period, the power loss rate is further calculated, and the operation mode with the smallest power loss rate is selected, and then the operation mode is compared according to the order of each time period.
  • the difference between the two, the switch operation scheme is obtained, for example, the disconnection between the thirteenth node 13 and the sixteenth node 16 in FIG.
  • the power loss rate of the system is 5.4%
  • the output switch operation steps such as first closing the fourth node 4 and the fifth node 5 Switching between, then disconnecting the switch between the fifth node 5 and the eleventh node 11, then closing the switch between the eleventh node 11 and the twelfth node 12, and finally disconnecting the thirteenth node 13 And the switch between the sixteenth node 16.
  • the ultra-short-term optimal scheduling implements the fault and defect processing mode of the ultra-short-term energy balance mode and the network source-load interaction.
  • the step is that in the event of an emergency, for example, the total load is 16581kW+j8014kvar, and the ninth node 9 is an important load. Need to ensure reliable power supply, if a fault occurs at the eighth node 8, causing When the downstream node is powered off, the switch state connected to it is turned off, and the switch state connected to the load that has lost the power supply is turned off. For example, in FIG. 2, the eleventh node 11 and the twelfth node 12 are first disconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种智能配电系统递进式调度方法,从数据的采集、分析到调度措施的生成都具有自动化和自适应特性,在无人为干预情况下,自动协调实时数据与历史数据、规划数据与运行数据,基于负荷长周期规律性变化、短期随机变化,并计及临时负荷供电和检修需求,形成多阶段递进式多时间尺度优化调度方法,对含分布式电源、微电网、储能装置、电动汽车充放电设施等元素的智能配电系统进行调度,实现网络、电源、负荷资源的协调运行,保证智能配电系统持续安全可靠、优质高效运行。

Description

说明书 一种智能配电系统递进式调度方法 技术领域
本发明涉及一种智能配电系统递进式调度方法, 属于智能调度技术领域。 背景技术
配电网是连接电力用户和输电网之间的中间环节,通过配电网的优化调度实 现各种资源的优化配置是建设智能电网的关键内容。随着分布式发电技术的发展 和推广应用,配电网中存在各种分布式电源以及冷、热、电联产等多种供能方式, 小容量分布式电源则直接与用户相连构成微电网,然后再以不同的并网方式接入 配电网运行。分布式电源和各种大容量冲击负荷如电动汽车充放电设施等接入到 配电网, 大型电动机、 空调等大容量动态负荷越来越多, 这些都改变了配电网的 运行特性, 使其运行状态变化频繁, 供电可靠性和电能质量下降, 甚至会发生电 压不稳定现象。 因此, 有条件、有必要通过各种分布式电源及负荷资源的调度优 化配电网, 实现其高效运行与节能减排目标。
电力系统经历了传统经济调度、 市场竞争调度、 节能发电调度, 向着低碳调 度、 智能调度方向发展, 但这些研究主要集中在输电网。 随着智能电网的发展, 配电网调度也开始受到关注, 分别在网络运行方式、可中断负荷等需求响应、 分 布式电源调度方面进行了研究。 但是, 对于实际配电网, 由于量测信息少、 信息 质量不高,因此目前调度的智能化程度不高,主要依赖经验进行调度,或处于 "盲 调"状态。
通过研究智能配电网优化调度的目标和调度对象, 智能配电网能量流、信息 流、业务流的互动模式, 本发明提出一种智能配电系统递进式多时间尺度优化调 度模式,针对具有新的物理结构和特点的配电网, 以及配电网的调度目标和对象 提出优化调度模式和关键技术, 为实现配电网络、 电源、 负荷的协调调度提供依 据。
发明内容
发明目的: 本发明提出一种智能配电系统递进式调度方法, 自动协调实时数 据与历史数据、 规划数据与运行数据, 基于负荷长周期规律性变化、 短期随机变 化, 并计及临时负荷供电和检修需求, 形成多阶段递进式多时间尺度优化调度方 法, 对含分布式电源、 微电网、 储能装置、 电动汽车充放电设施等元素的智能配 电系统进行调度, 实现网络、 电源、 负荷资源的协调运行, 保证智能配电系统持 续安全可靠、 优质高效运行。
技术方案: 本发明采用的技术方案为一种智能配电系统递进式调度方法, 以 "局部平衡一分区协调一整体吸纳 "为原则, 协调分布式电源、 微电网、 储能装 置、可控负荷等调度对象, 提高配电网供电可靠性与经济性, 实现智能配电系统 高效运行目标。为此本发明给出了四个调度阶段及其调度模式、相互之间的关系。 四步递进式调度方法的具体步骤如下:
1 ) 长期优化调度实现网源荷协调发展模式, 其步骤为将分布式电源、 可中 断负荷和储能装置通过开关连接到配电网,由开关的开闭决定其是否接入配电网;
2) 中长期优化调度实现基于负荷长周期规律变化、 检修和临时供电的变常 态运行方式协调模式,其步骤为分别针对工作日负荷曲线和节假日负荷曲线, 计 算各种运行方式下智能配电系统的电能损耗率,选出工作日和节假日电能损耗率 最小的运行方式, 并按工作日和节假日在时间上交替延续的顺序, 比较相邻工作 日和节假日运行方式之间的差异, 得出中长期开关操作方案;
3) 短期优化调度实现计及临时检修和临时保电的多时段能量平衡与运行方 式协调模式,其步骤为根据负荷随时间的变化趋势和检修信息将次日负荷曲线分 为多个时段,对每个时段计算各种运行方式下智能配电系统的电能损耗率, 并选 出电能损耗率最小的运行方式, 然后按各时段的顺序比较运行方式之间的差异, 得出短期开关操作方案;
4) 超短期优化调度实现超短期能量平衡模式和网源荷互动的故障与缺陷处 理模式, 其步骤为在发生突发事件时, 调节分布式电源和储能装置功率, 或将负 载转接到其它馈线上, 如果收到故障或缺陷信号, 则将其所连接的开关状态置为 断开, 并将失去供电的负荷所连接开关状态置为闭合, 否则如果接收到负荷或分 布式电源出力的突变信号, 则改变储能装置的充放电状态以平衡突变的能量, 如 果储能装置失去调节能力, 则调节可控分布式电源出力以平衡突变的能量。
有益效果:本发明对智能配电系统采用多阶段递进式优化调度方法进行控制, 可以得到如下效果: 1、 通过长期优化调度, 可降低负荷峰谷差、 减少尖峰负荷; 优化馈线联络 点的分布, 分布式电源、 电动汽车充放电设施、 可中断负荷等的规划;
2、 通过中长期优化调度, 可优化常态运行方式, 提高智能配电系统运行的 高效性;
3、 通过短期优化调度, 可以提高能源利用效率, 降低用户的能源支付和局 部区域的能量总需求, 降低峰谷差率, 同时对长期优化调度阶段产生影响, 最终 提高智能配电系统运行的高效性;
4、 通过超短期优化调度, 能实现超短期能量平衡、 平滑负荷曲线、 降低峰 谷差、同时会对长期优化调度阶段产生影响,最终提高智能配电网运行的高效性。 附图说明
图 1为本发明智能配电系统多阶段递进式优化调度方案的流程图;
图 2为本发明智能配电系统试验系统的结构示意图。
具体实施方式
下面结合附图和具体实施例, 进一步阐明本发明, 应理解这些实施例仅用于 说明本发明而不用于限制本发明的范围,在阅读了本发明之后, 本领域技术人员 对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
如图 1所示, 本发明所提出的智能配电系统递进式调度方法, 由长期、 中长 期、 短期和超短期优化调度四个步骤组成。
长期优化调度是对配电网进行结构性改造, 包括线路、 开关、 分布式电源、 储能装置、可中断负荷等电气设备,保证重要用户具有不同类型的多个电源供电, 利用可中断负荷作为资源进行调度、 电动汽车充放电策略改变负荷曲线, 通过这 些网络、 电源、 负荷的协调降低负荷峰谷差、 减少尖峰负荷, 利用可控分布式电 源供电以提高供电可靠性,尽量利用清洁可再生能源发电实现节能减排。对于本 发明的试验系统, 如图 2所示的电网结构和参数, 包括 4条馈线、 26个拓扑节 点及 22个分段开关和 4个联络开关的结构, 如果负荷均增长 10%, 则当第二十 一节点 21和第二十二节点 22之间发生故障时, 第二十二节点 22至第二十六节 点 26之间的负荷只能由第一节点 1或第七节点 7所在母线供电, 并且由于容量 的限制, 不能将第二十二节点 22至第二十六节点 26的负荷都恢复供电, 如果在 第三节点 3和第二十二节点 22之间设置联络线和联络开关或在第二十三节点 23 处接入储能装置、第二十六节点 26处接入分布式电源, 则第二十二节点 22至第 二十六节点 26之间的负荷可分别由第一节点 1和第七节点 7所在母线供电, 可 为所有负荷提供电能供应。
中长期优化调度实现基于负荷长周期规律变化、检修和临时供电的变常态运 行方式协调模式,其步骤为分别针对工作日负荷曲线和节假日负荷曲线, 计算各 种运行方式下智能配电系统的潮流数据,进一步统计电能损耗率, 选出工作日和 节假日电能损耗率最小的运行方式, 并按时间顺序比较运行方式之间的差异, 得 出开关操作方案, 比如以节假日典型负荷曲线为基础, 断开图 2 中第十一节点 11和第十二节点 12之间的开关、 闭合第十三节点 13和第十六节点 16之间的开 关、 断开第四节点 4和第五节点 5之间的开关、 闭合第五节点 5和第十一节点 11之间的开关, 则该系统的电能损耗率为 5. 2%, 输出开关操作步骤, 比如首先 合上第十三节点 13和第十六节点 16之间的开关, 然后断开第十一节点 11和第 十二节点 12之间的开关, 再合上第五节点 5和第十一节点 11之间的开关, 最后 断开第四节点 4和第五节点 5之间的开关。
短期优化调度实现计及临时检修和临时保电的多时段能量平衡与运行方式 协调模式,其步骤为根据负荷随时间的变化趋势和检修信息将次日负荷曲线分为 多个时段, 比如第五节点 5和第十一节点 11之间的线路需要临时检修, 将负荷 曲线分为大于最大负荷 70%以上的高峰时段、 小于平均负荷 50%以下低谷时段及 其它部分的腰荷时段,在中长期优化调度执行后的变常态运行方式基础上, 比如 图 2中第十一节点 11和第十二节点 12之间的开关状态为断开、 第十三节点 13 和第十六节点 16之间的开关状态为闭合, 对每个时段计算各种运行方式下智能 配电系统的潮流数据,进一步统计电能损耗率, 并选出电能损耗率最小的运行方 式, 然后按各时段的顺序比较运行方式之间的差异, 得出开关操作方案, 比如断 开附图 2中第十三节点 13和第十六节点 16之间的开关、 闭合第十一节点 11和 第十二节点 12之间的开关,则该系统的电能损耗率为 5. 4%,输出开关操作步骤, 比如首先合上第四节点 4和第五节点 5之间的开关,然后断开第五节点 5和第十 一节点 11之间的开关, 再合上第十一节点 11和第十二节点 12之间的开关, 最 后断开第十三节点 13和第十六节点 16之间的开关。
超短期优化调度实现超短期能量平衡模式和网源荷互动的故障与缺陷处理 模式, 其步骤为在发生突发事件时, 比如总负荷为 16581kW+j8014kvar, 且第九 节点 9处为重要负荷, 需要保证可靠供电, 如果在第八节点 8处发生故障, 造成 下游节点停电, 则将其所连接的开关状态置为断开, 并将失去供电的负荷所连接 开关状态置为闭合,比如图 2中首先断开第十一节点 11和第十二节点 12之间的 第十三开关 kl3、 然后闭合第五节点 5和第十一节点 11之间的第七开关 k7、 最 后闭合第十三节点 13和第十六节点 16之间的第十五开关 kl5, 否则如果接收到 负荷或分布式电源出力的突变信号,比如第二十三节点 23处的负荷突然增大 30%, 则改变储能装置的充放电状态以平衡突变的能量,比如安装在此节点处的储能装 置放电, 如果储能装置失去调节能力, 比如第二十三节点 23处的负荷突然增大 一倍, 则调节可控分布式电源出力以平衡突变的能量, 比如增大安装于第二十六 节点 26处分布式电源出力。 本发明的不局限于上述实施例所述的具体技术方案,凡采用等同替换形成的 技术方案均为本发明要求的保护范围。

Claims

权利要求书
1、 一种智能配电系统递进式调度方法, 其特征在于, 包括以下步骤:
1 )首先将分布式电源、 可中断负荷和储能装置通过开关连接到配电网, 由 开关的开闭来决定其是否接入配电网;
2)分别针对工作日负荷曲线和节假日负荷曲线, 计算各种运行方式下智能 配电系统的电能损耗率,选出工作日和节假日电能损耗率最小的运行方式, 并按 工作日和节假日在时间上交替延续的顺序,比较相邻工作日和节假日运行方式之 间的差异, 得出中长期开关操作方案;
3) 根据负荷随时间的变化趋势和检修信息将次日负荷曲线分为多个时段, 对每个时段计算各种运行方式下智能配电系统的电能损耗率,并选出各个时段电 能损耗率最小的运行方式, 然后按各时段的时间顺序比较运行方式之间的差异, 得出短期开关操作方案;
4) 在发生突发事件时, 调节分布式电源和储能装置功率, 或将负载转接到 其它馈线上。
PCT/CN2014/079573 2013-10-30 2014-06-10 一种智能配电系统递进式调度方法 WO2015062277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/647,910 US9891645B2 (en) 2013-10-30 2014-06-10 Progressive optimization dispatching method of smart distribution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310525909.4 2013-10-30
CN201310525909.4A CN103577892A (zh) 2013-10-30 2013-10-30 一种智能配电系统递进式调度方法

Publications (1)

Publication Number Publication Date
WO2015062277A1 true WO2015062277A1 (zh) 2015-05-07

Family

ID=50049635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079573 WO2015062277A1 (zh) 2013-10-30 2014-06-10 一种智能配电系统递进式调度方法

Country Status (3)

Country Link
US (1) US9891645B2 (zh)
CN (1) CN103577892A (zh)
WO (1) WO2015062277A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426300A (zh) * 2015-10-20 2016-03-23 中国电力科学研究院 一种电力系统cim/e模型的标准符合性测试系统和方法
CN105913158A (zh) * 2016-04-28 2016-08-31 国家电网公司 一种基于dp-mpso算法的电网调度周检修计划编制优化方法
CN106157170A (zh) * 2016-07-06 2016-11-23 北京中恒博瑞数字电力科技有限公司 一种基于供电可靠性的电力系统调度操作控制方法
CN110472822A (zh) * 2019-07-05 2019-11-19 广东工业大学 一种智能配电网供电可靠性评估系统及方法
CN111401696A (zh) * 2020-02-28 2020-07-10 国网浙江省电力有限公司台州供电公司 一种计及可再生资源不确定性的配电系统协调规划方法
CN111555366A (zh) * 2020-04-16 2020-08-18 杭州市电力设计院有限公司 一种基于多时间尺度的微网三层能量优化管理方法
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
US11043808B2 (en) * 2016-11-02 2021-06-22 China Electric Power Research Institute Co. Ltd. Method for identifying pattern of load cycle
CN113344273A (zh) * 2021-06-08 2021-09-03 中国农业大学 基于建筑用能的区域配电网峰谷差调节优化方法及系统
CN113783184A (zh) * 2021-08-19 2021-12-10 国网四川省电力公司 一种基于加权指标优化的配电网多级网络重构方法
CN114156870A (zh) * 2021-11-23 2022-03-08 特变电工西安电气科技有限公司 一种储能系统参与多应用领域优化调度方法
CN114188950A (zh) * 2021-12-15 2022-03-15 国网山东省电力公司日照供电公司 基于备用移动储能应急调度的配电系统韧性提升方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112909A2 (en) * 2010-03-12 2011-09-15 Sunrise Micro Devices, Inc. Power efficient communications
CN103577892A (zh) * 2013-10-30 2014-02-12 河海大学 一种智能配电系统递进式调度方法
US10078315B2 (en) * 2014-07-11 2018-09-18 Nec Corporation Collaborative balancing of renewable energy overproduction with electricity-heat coupling and electric and thermal storage for prosumer communities
CN104156788A (zh) * 2014-08-20 2014-11-19 国家电网公司 一种基于禁忌搜索算法的配网资源抢修优化调度方法
US10490999B2 (en) * 2014-12-22 2019-11-26 Battelle Memorial Institute Hierarchical operational control of aggregated load management resources
CN108734305A (zh) * 2017-04-13 2018-11-02 宁波轩悦行电动汽车服务有限公司 电动汽车租赁系统的检修序列调控方法
CN107239874B (zh) * 2017-04-26 2023-05-16 广西电网有限责任公司电力科学研究院 一种面向轨道交通的电能质量及节能分析系统
CN108985532B (zh) * 2017-06-02 2021-05-11 上海交通大学 基于碳排放的网源荷调度评估系统及方法
CN107730034B (zh) * 2017-09-29 2022-01-28 国网上海市电力公司 一种A+区域10kV架空网的配电自动化终端布点规划方法
CN107979060A (zh) * 2017-12-26 2018-05-01 四川福润得数码科技有限责任公司 一种充放电电路及电源供电控制电路和控制方法
CN110245771B (zh) * 2018-03-09 2021-08-20 亿可能源科技(上海)有限公司 需量预测方法、需量控制方法及系统
CN109149635B (zh) * 2018-09-03 2022-03-11 国网江西省电力有限公司电力科学研究院 一种配电网分布式光伏并行优化配置方法及系统
CN109190777B (zh) * 2018-09-28 2021-06-08 国家电网公司西北分部 一种多时间尺度协调的检修计划优化方法
CN109256792B (zh) * 2018-10-10 2023-12-22 华南理工大学 一种面向分布式储能需求的储能集聚系统及其优化方法
CN109460907A (zh) * 2018-10-26 2019-03-12 广东电网有限责任公司 一种基于源网荷储协调的电力系统
CN109888787A (zh) * 2018-12-30 2019-06-14 国网浙江省电力有限公司丽水供电公司 配电网负荷切换降损系统
CN109687530B (zh) * 2019-01-08 2022-06-10 南京工程学院 一种考虑阻塞和储能分时电价的电网混合滚动调度方法
CN109787224B (zh) * 2019-01-23 2022-05-13 中国电力科学研究院有限公司 一种防止连锁过载的地区电网负荷转供策略生成方法
CN110289622B (zh) * 2019-03-26 2021-11-26 国网浙江省电力有限公司嘉兴供电公司 一种光储充能量路由器的日前经济优化调度方法
CN112086978B (zh) * 2019-06-13 2023-07-21 苏州震旦科技有限公司 一种基于需求侧响应的能源调度与控制系统
CN110350553B (zh) * 2019-06-25 2021-07-23 上海交通大学 基于多功率调节技术的进线功率尖峰抑制方法及系统
CN110378534B (zh) * 2019-07-22 2023-07-18 中国南方电网有限责任公司 电力市场下的调频与电能联合出清方法、装置及设备
CN110581571A (zh) * 2019-08-29 2019-12-17 昆明理工大学 一种主动配电网动态优化调度方法
CN110580588A (zh) * 2019-09-19 2019-12-17 国网上海市电力公司 一种基于泛在物联网的电网调度系统和电网调度方法
CN110675049B (zh) * 2019-09-20 2022-10-04 国网江苏省电力有限公司南京供电分公司 一种基于柔性台区的经济调度方法
CN111932053B (zh) * 2020-06-11 2022-08-09 南京南瑞信息通信科技有限公司 配网调度操作指令票智能排序方法、装置及系统
CN112003277B (zh) * 2020-08-21 2021-11-30 山东大学 一种输配协同负荷恢复优化控制方法及系统
CN112129995B (zh) * 2020-09-25 2023-03-21 中国电力科学研究院有限公司 一种可再生能源电力生产和消纳量计量方法及系统
CN112465305B (zh) * 2020-11-09 2022-11-18 中国南方电网有限责任公司 清洁能源优化调度评价方法、装置及设备
CN112769163B (zh) * 2021-03-10 2023-01-13 河北北方学院 一种微电网实时控制系统及其控制方法
CN113393340B (zh) * 2021-06-15 2022-08-26 湖南省白沙电力有限公司 一种基于用电终端负载数据分析的电力传输调度管理方法及调度管理平台
CN113538168B (zh) * 2021-07-23 2022-07-29 国网天津市电力公司 交直流混联城市电网脆弱性评估方法
CN114239903B (zh) * 2021-10-27 2023-02-17 国网浙江省电力有限公司杭州市钱塘新区供电公司 基于设备同时率的配电网可开放容量计算方法
CN114069858B (zh) * 2021-11-15 2024-04-05 国网江苏省电力有限公司盐城供电分公司 一种电力系统优化调度方法
CN114333220A (zh) * 2022-01-21 2022-04-12 北京天恒安科集团有限公司 一种工地临时用电管理方法
CN114552669B (zh) * 2022-03-01 2024-03-12 合肥工业大学 考虑灵活性的含高渗透率分布式电源配电网络分区方法
CN115663791A (zh) * 2022-09-30 2023-01-31 国网山东省电力公司淄博供电公司 基于运行环境时变性的智能配电网多目标自适应调度方法
CN116562464B (zh) * 2023-07-03 2023-09-19 南京菁翎信息科技有限公司 一种基于深度强化学习的电力系统低碳优化调度方法
CN117096874B (zh) * 2023-09-27 2024-01-05 华中科技大学 一种电力系统调度模型的建模方法及应用
CN117132420B (zh) * 2023-10-27 2024-02-27 国网湖北省电力有限公司营销服务中心(计量中心) 一种电力需求响应对象的响应特性分析方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068631A1 (en) * 2008-06-10 2011-03-24 Rolls-Royce Plc Electrical generator network and a local electrical system
CN102945296A (zh) * 2012-10-15 2013-02-27 河海大学 一种需求响应视角下的配电网不确定性重构建模方法
CN102969787A (zh) * 2012-09-26 2013-03-13 江西省电力科学研究院 一种配电变压器经济运行控制方法
CN103066592A (zh) * 2012-12-17 2013-04-24 山东电力集团公司济宁供电公司 一种电力网络损耗在线监测方法
CN103280810A (zh) * 2013-04-15 2013-09-04 江苏省电力公司南京供电公司 一种提高配电网负载率的优化调度方法
CN103577892A (zh) * 2013-10-30 2014-02-12 河海大学 一种智能配电系统递进式调度方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9148019B2 (en) * 2010-12-06 2015-09-29 Sandia Corporation Computing architecture for autonomous microgrids
US7991512B2 (en) * 2007-08-28 2011-08-02 General Electric Company Hybrid robust predictive optimization method of power system dispatch
US7979222B2 (en) * 2008-10-14 2011-07-12 Abb Research Ltd. Short-term load forecasting based capacity check for automated power restoration of electric distribution networks
US8041467B2 (en) * 2008-10-31 2011-10-18 General Electric Company Optimal dispatch of demand side electricity resources
US8706650B2 (en) * 2009-01-14 2014-04-22 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
CN102122822A (zh) * 2010-01-07 2011-07-13 陈栋新 基于前一工作日与节假日的变电站电压无功综合控制方法
US8972070B2 (en) * 2010-07-02 2015-03-03 Alstom Grid Inc. Multi-interval dispatch system tools for enabling dispatchers in power grid control centers to manage changes
US10373082B2 (en) * 2011-02-24 2019-08-06 Qcoefficient, Inc. Integration of commercial building operations with electric system operations and markets
CN102157923B (zh) * 2011-04-08 2014-03-26 河海大学 配电网自愈的分层递阶控制方法
WO2013078541A1 (en) * 2011-11-29 2013-06-06 Energy Aware Technology Inc. Method and system for forecasting power requirements using granular metrics
CN102570455B (zh) * 2012-01-12 2013-11-20 天津市电力公司 智能微电网供电系统
US20140075517A1 (en) 2012-09-12 2014-03-13 GM Global Technology Operations LLC Authorization scheme to enable special privilege mode in a secure electronic control unit
JP6024758B2 (ja) * 2012-10-01 2016-11-16 富士通株式会社 配電管理装置、パターン抽出方法及びパターン抽出プログラム
CN103336891B (zh) * 2013-06-09 2016-08-17 广东电网公司佛山供电局 一种用于配电网状态估计的伪量测生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068631A1 (en) * 2008-06-10 2011-03-24 Rolls-Royce Plc Electrical generator network and a local electrical system
CN102969787A (zh) * 2012-09-26 2013-03-13 江西省电力科学研究院 一种配电变压器经济运行控制方法
CN102945296A (zh) * 2012-10-15 2013-02-27 河海大学 一种需求响应视角下的配电网不确定性重构建模方法
CN103066592A (zh) * 2012-12-17 2013-04-24 山东电力集团公司济宁供电公司 一种电力网络损耗在线监测方法
CN103280810A (zh) * 2013-04-15 2013-09-04 江苏省电力公司南京供电公司 一种提高配电网负载率的优化调度方法
CN103577892A (zh) * 2013-10-30 2014-02-12 河海大学 一种智能配电系统递进式调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, XINGYING ET AL.: "An Intelligent Distribution Network Dispatching Mode and its Key Techniques", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 36, no. 18, 25 September 2012 (2012-09-25), pages 22 - 26 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426300B (zh) * 2015-10-20 2021-01-15 中国电力科学研究院 一种电力系统cim/e模型的标准符合性测试系统和方法
US11176028B2 (en) 2015-10-20 2021-11-16 China Electric Power Research Institute Company Limited System, method and storage device for CIM/E model standard compliance test
CN105426300A (zh) * 2015-10-20 2016-03-23 中国电力科学研究院 一种电力系统cim/e模型的标准符合性测试系统和方法
CN105913158A (zh) * 2016-04-28 2016-08-31 国家电网公司 一种基于dp-mpso算法的电网调度周检修计划编制优化方法
CN106157170A (zh) * 2016-07-06 2016-11-23 北京中恒博瑞数字电力科技有限公司 一种基于供电可靠性的电力系统调度操作控制方法
CN106157170B (zh) * 2016-07-06 2019-11-19 北京中恒博瑞数字电力科技有限公司 一种基于供电可靠性的电力系统调度操作控制方法
US11043808B2 (en) * 2016-11-02 2021-06-22 China Electric Power Research Institute Co. Ltd. Method for identifying pattern of load cycle
CN110472822A (zh) * 2019-07-05 2019-11-19 广东工业大学 一种智能配电网供电可靠性评估系统及方法
CN111401696A (zh) * 2020-02-28 2020-07-10 国网浙江省电力有限公司台州供电公司 一种计及可再生资源不确定性的配电系统协调规划方法
CN111401696B (zh) * 2020-02-28 2023-09-22 国网浙江省电力有限公司台州供电公司 一种计及可再生资源不确定性的配电系统协调规划方法
CN111555366A (zh) * 2020-04-16 2020-08-18 杭州市电力设计院有限公司 一种基于多时间尺度的微网三层能量优化管理方法
CN112784475A (zh) * 2020-12-28 2021-05-11 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN112784475B (zh) * 2020-12-28 2023-08-18 云南电网有限责任公司瑞丽供电局 基于多代理技术的配电网多级电压协调控制方法
CN113344273A (zh) * 2021-06-08 2021-09-03 中国农业大学 基于建筑用能的区域配电网峰谷差调节优化方法及系统
CN113344273B (zh) * 2021-06-08 2024-04-19 中国农业大学 基于建筑用能的区域配电网峰谷差调节优化方法及系统
CN113783184B (zh) * 2021-08-19 2023-06-27 国网四川省电力公司 一种基于加权指标优化的配电网多级网络重构方法
CN113783184A (zh) * 2021-08-19 2021-12-10 国网四川省电力公司 一种基于加权指标优化的配电网多级网络重构方法
CN114156870A (zh) * 2021-11-23 2022-03-08 特变电工西安电气科技有限公司 一种储能系统参与多应用领域优化调度方法
CN114156870B (zh) * 2021-11-23 2023-08-22 特变电工西安电气科技有限公司 一种储能系统参与多应用领域优化调度方法
CN114188950A (zh) * 2021-12-15 2022-03-15 国网山东省电力公司日照供电公司 基于备用移动储能应急调度的配电系统韧性提升方法
CN114188950B (zh) * 2021-12-15 2023-09-05 国网山东省电力公司日照供电公司 基于备用移动储能应急调度的配电系统韧性提升方法

Also Published As

Publication number Publication date
US20160239032A1 (en) 2016-08-18
US9891645B2 (en) 2018-02-13
CN103577892A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2015062277A1 (zh) 一种智能配电系统递进式调度方法
WO2018129829A1 (zh) 一种新型微网系统以及基于该系统的组网调度方法
CA2954190C (en) Grid network gateway aggregation
US9893526B2 (en) Networked power management and demand response
Zhang et al. Investigating the impact of demand side management on residential customers
CN106709610B (zh) 一种微电网电储能、冰蓄冷联合优化调度方法
AU2018102183A4 (en) Grid-connected tie-line power control system of micro-grid and method thereof
CN104767224A (zh) 一种含多类储能的并网型风光储微电网的能量管理方法
CN107294102B (zh) 一种电气化铁路储能供电装置及其控制方法
JP2014241718A (ja) 制御装置及び制御方法
CN113263938A (zh) 一种基于边缘计算的智能有序充电系统及方法
CN102638096A (zh) 基于gprs的配电变压器无线监控系统
Almassalkhi et al. Impact of energy storage on cascade mitigation in multi-energy systems
CN110350553B (zh) 基于多功率调节技术的进线功率尖峰抑制方法及系统
Qin et al. Overview of micro-grid energy management system research status
CN105811393A (zh) 一种基于负荷曲线的直流微网能量管理方法
CN104281984A (zh) 一种用于微电网经济运行的供电方法
Jia et al. Smart control for battery energy storage system in a community grid
CN103280823B (zh) 基于移动储能设备的电网实时自动调度策略
Ming et al. The Future Development of Smart Grid in China
Rahman et al. High frequency ripple injection signals for the effective utilization of residential EV storage in future power grids with rooftop PV system
Fuxing et al. Research on economic dispatching and collaborative optimization of industrial park micro-grid with solar-battery-charge
Rajapandiyan et al. Energy management in distribution system due to the integration of renewable energy powered EV charging infrastructures
Zhang et al. Energy Storage Configuration of An Integrated Energy System Considering the Response of Air-Conditioning Load and The Uncertainty of Source-Load
Zhichun et al. Research on Orderly Charging Strategy of Electric Vehicles Based on Intelligent Fusion Terminal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14647910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858850

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14858850

Country of ref document: EP

Kind code of ref document: A1