WO2015062015A1 - 一种光接收机的信号检测方法、装置及系统 - Google Patents
一种光接收机的信号检测方法、装置及系统 Download PDFInfo
- Publication number
- WO2015062015A1 WO2015062015A1 PCT/CN2013/086299 CN2013086299W WO2015062015A1 WO 2015062015 A1 WO2015062015 A1 WO 2015062015A1 CN 2013086299 W CN2013086299 W CN 2013086299W WO 2015062015 A1 WO2015062015 A1 WO 2015062015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- noise
- signal
- signals
- voltage
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 254
- 238000005070 sampling Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0775—Performance monitoring and measurement of transmission parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2210/00—Indexing scheme relating to optical transmission systems
- H04B2210/07—Monitoring an optical transmission system using a supervisory signal
- H04B2210/078—Monitoring an optical transmission system using a supervisory signal using a separate wavelength
Definitions
- the present invention relates to the field of optical communications, and in particular, to a signal detecting method, apparatus and system for an optical receiver. Background technique
- TWDM PON has been initially identified by the standards organization as the standard architecture for next-generation passive optical networks.
- TWDM PON due to the introduction of additional Demux devices, optical amplifiers are usually required to meet the optical power budget required by the system.
- the implementation of SD signal detection is as follows. First, the optical signal is converted into a voltage signal v proportional to its power by PD reception and TIA amplification. The voltage signal is compared with a predetermined voltage threshold Vth, and the two voltages are compared by a comparator. If V ⁇ Vth, the output is low, otherwise it is high, triggering a subsequent series of receiving operations.
- the SD signal detecting device In an OLT without OA, if no optical signal is incident and the background noise level is low, the SD signal detecting device can work well, but in the presence of OA, the situation is complicated.
- the OA When OA is present, the OA still has an ASE light output if no light signal is incident, and in some cases, the power of this ASE light is very close to the light power at which the light signal is incident. Therefore, in the absence of an optical signal input, the voltage output V of the TIA will be very close to Vth, so that due to some noise, false triggering of the SD signal may occur, that is, in the absence of incident light signals, The SD signal also outputs a high level, resulting in malfunction of the optical receiver. Therefore, in the TWDM-PON environment, the original SD trigger device can no longer meet the requirements.
- Embodiments of the present invention provide a signal detecting method, apparatus, and system for an optical receiver, which can effectively prevent an erroneous triggering action of light receiving.
- a first aspect of the embodiments of the present invention provides a signal detecting apparatus for an optical receiver, including: an optical amplifier, a demultiplexer, N+1 photoelectric converters, and N voltage comparators, where N > 2 is an integer, where
- the optical amplifier amplifies the received wavelength division multiplexed WDM signal to generate a first optical signal, - -
- the WDM signal is generated by multiplexing N single-wavelength optical signals
- the demultiplexer separates N single-wavelength optical signals and one-way noise optical signals from the first optical signal, and the demultiplexer is provided with N single-wavelength optical signal output ports and one noise optical signal.
- An output port wherein the demultiplexer outputs N single-wavelength optical signals and one noise optical signal output port to output one-way noise optical signals from N single-wavelength optical signal output ports;
- N+1 photoelectric converters respectively convert N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals;
- each voltage comparator receives the noise voltage signal, and the sampling pins of each voltage comparator respectively receive N useful voltage signals, if the useful voltage signal loaded on the sampling pin of the voltage comparator is greater than the reference The noise voltage signal is loaded on the pin, and the voltage comparator outputs a high level. Otherwise, the voltage comparator outputs a low level.
- the N+1 photoelectric converters include N+1 photodetectors and N+1 transimpedance amplifiers, where
- the N+1 photodetectors respectively convert N single-wavelength optical signals into N useful current signals and convert 1 channel noise optical signals into 1 channel noise current signals;
- the N+1 transimpedance amplifiers convert N effective current signals and 1 noise current signals into N effective voltage signals and 1 noise voltage signals, respectively.
- an optical filter is disposed in the demultiplexer, and the optical filter filters out the first optical signal.
- the N-channel single-wavelength optical signal generates a noise optical signal, and outputs the noise optical signal from the noise optical signal output port.
- the photodetector connected to the noise optical signal output port of the demultiplexer is a PIN tube, and the PIN tube is At least two optical branches are connected between the noise optical signal output ports.
- a second aspect of the present invention provides an optical signal receiving system, including an optical network unit ONU, any one of the signal detecting devices and an optical receiver provided by the first aspect;
- An output end of the ONU is connected to an input end of the optical amplifier, and an output end of each voltage comparator is connected to the optical receiver, and if the light receiving is 1, the output end of any one of the voltage comparators is completely measured. When it is high, the receiving action is started.
- a third aspect of the present invention provides a signal detecting method for an optical receiver, including: - amplifying the received wavelength division multiplexed WDM signal to generate a first optical signal, the WDM signal being generated by multiplexing N single-wavelength optical signals, N > 2 and being an integer;
- N single-wavelength optical signals and one-way noise optical signals Separating N single-wavelength optical signals and one-way noise optical signals from the first optical signal; converting N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals, respectively;
- a high level is output on the corresponding i-th branch, 1 N and is an integer.
- the step of converting the N single-wavelength optical signal and the 1-channel noise optical signal into the N-channel useful voltage signal and the 1-channel noise voltage signal respectively includes:
- the N-channel useful current signal and the 1-channel noise current signal are respectively converted into an N-channel useful voltage signal and a 1-channel noise voltage signal.
- a fourth aspect of the present invention provides a light receiving and receiving signal detecting apparatus, including:
- An amplifying module configured to amplify the received wavelength division multiplexing WDM signal to generate a first optical signal, where the WDM signal is generated by multiplexing N single-wavelength optical signals, where N>2 is an integer;
- a separating module configured to separate N single-wavelength optical signals and one-way noise optical signals from the first optical signal
- a conversion module configured to convert N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals, respectively;
- the output module is configured to output a high level on the corresponding i-th branch if the useful voltage signal of the i-th path is greater than the noise voltage signal, and output a low level, l i N and an integer.
- the conversion module is configured to:
- the N-channel useful current signal and the 1-channel noise current signal are respectively converted into an N-channel useful voltage signal and a 1-channel noise voltage signal.
- a fifth aspect of the present invention provides a light receiving system, comprising: an optical network unit ONU, any one of the detecting device and the optical receiver provided by the fourth aspect, wherein the ONU is connected to the receiving module, and the output module is connected to the The optical receiver, if the optical receiver detects any branch output - - When high level, the receiving action is started.
- the photoelectric converter converts the noise light signal outputted from the output port into a corresponding noise voltage signal, and the noise voltage signal serves as a reference voltage of the voltage comparator, and a solution
- the useful voltage signals generated by the remaining output ports of the multiplexer are compared to generate corresponding SD signals.
- the reference voltage in the present invention changes with the change of the noise optical signal.
- the voltage comparator only outputs a low level, so that the optical receiver due to the noise optical signal can be effectively avoided. False trigger.
- FIG. 1 is a schematic structural diagram of a signal detecting apparatus of an optical receiver according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a light receiving system according to an embodiment of the present invention
- FIG. 3 is another schematic structural diagram of a light receiving system according to an embodiment of the present invention.
- FIG. 4 is a schematic flow chart of a signal detecting method of an optical receiver according to an embodiment of the present invention
- FIG. 5 is another schematic structural diagram of a signal detecting apparatus of an optical receiver according to an embodiment of the present invention.
- Embodiments of the present invention are applicable to a PON communication system, for example, using an asynchronous transfer mode
- FIG. 1 is a schematic structural diagram of a signal detecting apparatus of an optical receiver according to an embodiment of the present invention.
- the detecting apparatus includes an optical amplifier 10, a demultiplexer 11, and N+1.
- the multiplexer 11 has N+1 output ports, wherein the N+1 output ports are composed of one noise optical signal output port and N single-wavelength optical signal output ports, and the value N is equal to WDM (Wavelength Division Multiplexing). Use, to detect the number of single-wavelength optical signals multiplexed in the WDM signal.
- the output port 0 is a noise optical signal output port
- the output port 1-N is a single-wavelength optical signal output port
- the noise optical signal output port outputs a noise optical signal
- the single-wavelength optical signal output port is output demultiplexed.
- the device 11 demultiplexes the generated single-wavelength optical signal into the WDM signal.
- the output ports of the N+1 photoelectric converters are respectively connected to the N+1 output ports of the demultiplexer 11, and the output port of each of the photoelectric converters is connected to the output port of the demultiplexer 11, and the noise optical signal of the demultiplexer 11
- the output of the photoelectric converter 02 connected to the output port is connected to the reference pin of each voltage comparator, and the output of the photoelectric converter where the single-wavelength optical signal output port is located is respectively connected to the sampling pin of each voltage comparator.
- a photoelectric converter is used to convert the input optical signal into a voltage signal.
- the voltage comparator is used to compare the reference voltage input on the reference pin with the voltage input to the sampling pin. If the sampling voltage is greater than the reference voltage, the output of the voltage comparator outputs a high level, and the optical receiver activates the corresponding output port. Receiving action, if the sampling voltage is less than the threshold voltage, the output of the voltage comparator outputs a low level, and the optical receiver does not start the connection.
- the demultiplexer filters the useful optical signal in the WDM signal by using an optical filter, and outputs the noise optical signal only at the noise optical signal output port.
- the WDM signal is generated by multiplexing four optical signals of wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 , and the optical filter filters out the optical signals of the above four wavelengths in the WDM signal to obtain a noise optical signal. And outputting the noise light signal from the noise light signal output port to the photoelectric converter.
- the working principle of the detecting device is that the WDM signal received by the optical amplifier is amplified to generate a first optical signal, and the WDM signal is generated by multiplexing one single-wavelength optical signal, and the demultiplexer separates the first optical signal.
- the processing generates a 1-channel noise optical signal and a single-wavelength optical signal, and the photoelectric converter respectively converts the optical signal into a 1-channel noise voltage signal and a loop useful voltage signal, and the voltage comparator compares the noise voltage signal and each channel respectively. The size of the voltage signal. Correction processing is performed before the detection device is used, and each voltage comparator output is made by increasing the optical power of the single-wavelength optical signal. - - High level, so that when a WDM signal is input, the optical receiver activates a single-wavelength optical signal output from the output port of the demultiplexer.
- the optical amplifier 10 When the optical amplifier 10 has no WDM signal input, the optical amplifier 10 will only output a noise optical signal to the demultiplexer 11, for example, an ASE (Amplified Spontaneous Emission) signal; a demultiplexer; The noise optical signal output port of 11 outputs a noise light signal. Since the wavelength distribution of the noise light signal is wide, the useful signal output port of the demultiplexer 11 outputs a small amount of single-wavelength optical signal, which is a noise light. A part of the signal, for any one of the comparators, after the photoelectric converter is converted, the noise voltage signal on the reference pin is greater than the useful voltage signal on the sampling pin, and the output of the voltage comparator is low. Level, the optical receiver will not start receiving, which can effectively prevent false triggering.
- ASE Ampontaneous Emission
- Embodiments of the present invention implement a noise optical signal output by a noise light signal output port in a demultiplexer, and the photoelectric converter converts the noise light signal outputted from the output port into a corresponding noise voltage signal, and the noise voltage signal is used as a voltage comparison.
- the reference voltage of the device is compared with the useful voltage signals generated by the remaining output ports of the demultiplexer to generate corresponding SD (Signal Detect, Detect SD) signals.
- the reference voltage in the present invention changes with the change of the noise optical signal.
- the voltage comparator only outputs a low level, so that the optical receiver due to the noise optical signal can be effectively avoided. False trigger.
- FIG. 2 is a schematic structural diagram of an optical receiving system according to an embodiment of the present invention.
- the optical receiving system includes an ONU (Optical Network Unit, an optical network unit, an ONU), and an OA (Auditical Amplifier). Amplifier, detection OA), Demux, photoelectric converter 1 - photoelectric converter 5, voltage comparator 1 - voltage comparator 4 and optical receiver.
- the output of the ONU is connected to the output of the OA, the output of the OA is connected to the input of the Demux, and the Demux is provided with five output ports.
- the top and bottom are sequentially arranged as a noise optical signal output port and a useful signal output port 1 - useful Signal output port 4, voltage comparator 1 - voltage comparator 4 reference pin is commonly connected to the output of the photoelectric converter 1, the output of the photoelectric converter 2 is connected to the sampling pin of the voltage comparator 1, the photoelectric converter 3
- the output terminal is connected to the sampling pin of the voltage comparator 2, the output end of the photoelectric converter 4 is connected to the sampling pin of the voltage comparator 3, the output end of the photoelectric converter 5 is connected to the sampling pin of the voltage comparator 4, and the voltage comparator 1 -
- the output of the voltage comparator 4 is connected to an optical receiver.
- the OA receives the WDM signal sent by the ONU to perform amplification processing to generate the first optical signal, WDM
- the signal is multiplexed by four single-wavelength optical signals of wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 , and Demux separates the first optical signal to obtain 1 channel of noise light signal and 4 channels of wavelength ⁇ 1 , ⁇ 2, ⁇ 3 and a single-wavelength optical signal of 4,
- the photoelectric converter 1 converts the noise optical signal into a noise voltage signal Vth
- the photoelectric converter 2 converts the single-wavelength optical signal of the wavelength ⁇ 1 into a useful voltage signal VI
- the photoelectric converter 3 converts the single-wavelength optical signal of the wavelength ⁇ 2 into the useful voltage signal V2
- the photoelectric converter 4 converts the single-wavelength optical signal of the wavelength ⁇ 3 into the useful voltage signal V3, and the photoelectric converter 5 sets the wavelength to The single wavelength optical signal entering 4 is converted into a useful voltage signal V4.
- the voltage comparison compares the magnitude of the useful voltage signal with the noise voltage signal.
- the voltage comparator 1 compares the magnitude of the noise voltage signal with the useful voltage signal VI.
- the detecting device performs calibration before use to adjust the optical power of each single-wavelength optical signal, so that the useful voltage signal on each voltage comparator is greater than the noise voltage signal, so that the voltage comparator 1 - voltage comparator 4 outputs a high level
- the receiving action of the optical signal corresponding to the optical path is started.
- the voltage comparator 1 outputs a high level, and the optical receiver starts to receive the useful signal output of the Demux. Port 1 to wavelength optical signal.
- the optical amplifier 10 only outputs a noise optical signal (for example, an ASE optical signal) to the demultiplexer 11, and the noise optical signal output port of the demultiplexer 11 outputs a noise optical signal due to noise.
- the wavelength distribution of the optical signal is wide, and the useful signal output port of the demultiplexer 11 outputs a small amount of single-wavelength optical signal, which is a part of the noise optical signal, for any one of the comparators, After the photoelectric converter is converted, the noise voltage signal on the reference pin will be larger than the useful voltage signal on the sampling pin, and the output of the voltage comparator will output a low level, and the optical receiver will not start receiving, which can effectively prevent errors. trigger.
- FIG. 3 is a schematic structural diagram of a light receiving system according to an embodiment of the present invention, wherein at least two optical branches exist between the noise signal output port of the Demux and the broadcast converter 1, and the photoelectric converter 1 It is a PIND (Positive Intrinsic Negative Diode), which can effectively receive component costs and avoid the use of expensive optoelectronic devices.
- PIND Positive Intrinsic Negative Diode
- FIG. 4 is a schematic flowchart of a signal detecting method of an optical receiver according to an embodiment of the present invention.
- the method includes:
- the optical amplifier OA of the detecting device amplifies the received wavelength division multiplexed WDM signal to generate a first optical signal, which is generated by multiplexing N single-wavelength optical signals.
- the demultiplexer of the detecting device separates N single-wavelength optical signals and one-way noise optical signals from the first optical signal, and the above-described separation processing can be implemented by an optical filter.
- S103 Convert N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals, respectively.
- the photodetector and the transimpedance amplifier of the detecting device convert N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals, respectively.
- the noise voltage signal compared with each of the useful voltage signals respectively, if the i-th useful voltage signal is greater than the noise voltage signal, outputting a high level on the corresponding i-th branch, otherwise outputting a low level, the light receiving When the machine detects the high level of the output on the corresponding branch, it starts to receive the optical signal output on the branch.
- the signal detecting apparatus includes an amplifying module 10, a separating module 20, a converting module 30, and an output module 40. .
- the amplifying module 10 is configured to: amplify the received wavelength division multiplexing WDM signal to generate a first optical signal, where the WDM signal is generated by multiplexing N single-wavelength optical signals, where N>2 is an integer;
- a separating module 20 configured to separate N single-wavelength optical signals and one-way noise optical signals from the first optical signal
- the conversion module 30 is configured to convert N single-wavelength optical signals and one-way noise optical signals into N-channel useful voltage signals and one-way noise voltage signals, respectively;
- the output module 40 is configured to output a high level on the corresponding i-th branch if the i-th useful voltage signal is greater than the noise voltage signal, or output a low level, l i N and be an integer.
- the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
- the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明提供了一种光接收机的信号检测装置,包括OA、Demux、N+1个光电转换器和N个电压比较器,OA将接收到的波分复用WDM信号放大生成第一光信号,WDM信号由N 路单波长光信号复用生成的;Demux从第一光信号分离出N路单波长光信号和1路噪声光信号,Demux分别从N个单波长光信号输出端口输出N路单波长光信号和1个噪声光信号输出端口输出1路噪声光信号;N+1个光电转换器分别将N路单波长光信号和1路噪声光信号转换成N路有用电压信号和1路噪声电压信号;每个电压比较器的参考引脚接收噪声电压信号,每个电压比较器的取样引脚分别接收N路有用电压信号。本发明还提供了一种检测方法和系统,采用本发明,可有效防止光接收机的误触发。
Description
一 一
一种光接^的信号检测方法、 装置及系统
技术领域
本发明涉及光通信领域, 尤其涉及一种光接收机的信号检测方法、装置及 系统。 背景技术
TWDM PON目前已经被标准组织初步确定为下一代无源光网络的标准构 架, 在 TWDM PON中, 由于引入了额外的 Demux器件, 因此通常需要采用 光放大器才能满足系统所需的光功率预算。
SD信号探测的实现过程如下, 首先光信号经 PD接收和 TIA放大转变成 与其功率成正比的电压信号 v。 该电压信号与某一预先设定的电压阈值 Vth, 两个电压通过一个比较器进行比较, 如果 V<Vth, 输出为低电平, 否则为高电 平, 触发后续一系列的接收动作。
在没有 OA的 OLT中, 如果没有光信号入射, 背景噪声水平很低, 该 SD信号检测装置可以较好的工作, 但是在存在 OA的时候, 情况就会复杂。
当 OA存在时, 如果没有光信号入射, OA仍然会有 ASE光输出, 并且 在某些情况下, 这个 ASE光的功率与有光信号入射时的光功率非常接近。 因 此, 在没有光信号输入的情况下, TIA的电压输出 V会和 Vth非常接近, 这 样由于一些噪声的影响, 就可能会产生 SD信号的误触发, 也就是在没有光信 号入射的情况下, SD信号也输出高电平, 从而导致光接收机的误动作。 因此 在 TWDM-PON的环境下, 原有的 SD触发装置已经不能满足要求。
发明内容
本发明实施例提供了一种光接收机的信号检测方法、装置和系统, 可以有 效的防止光接收的误触发动作。
本发明实施例第一方面提供了光接收机的信号检测装置, 包括: 光放大器、 解复用器、 N+1个光电转换器和 N个电压比较器, N > 2且为 整数, 其中,
所述光放大器将接收到的波分复用 WDM信号放大生成第一光信号,所述
- -
WDM信号由 N路单波长光信号复用生成的;
所述解复用器从所述第一光信号分离出 N路单波长光信号和 1路噪声光 信号, 所述解复用器设有 N个单波长光信号输出端口和 1个噪声光信号输出 端口, 所述解复用器分别从 N个单波长光信号输出端口输出 N路单波长光信 号和 1个噪声光信号输出端口输出 1路噪声光信号;
N+1个光电转换器分别将 N路单波长光信号和 1路噪声光信号转换成 N 路有用电压信号和 1路噪声电压信号;
每个电压比较器的参考引脚接收所述噪声电压信号,每个电压比较器的取 样引脚分别接收 N路有用电压信号, 若电压比较器的取样引脚上加载的有用 电压信号大于参考引脚上加载的噪声电压信号,电压比较器输出高电平,否则, 电压比较器输出低电平。
在第一种可能的实现方式中, 所述 N+1个光电转换器包括 N+1个光电探 测器和 N+1个跨阻放大器, 其中,
所述 N+1个光电探测器分别将 N路单波长光信号转换成 N路有用电流信 号和将 1路噪声光信号转换成 1路噪声电流信号;
所述 N+1个跨阻放大器分别将 N路有用电流信号和 1路噪声电流信号转 换成 N路有用电压信号和将 1路噪声电压信号。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述解复用器中设有光滤波器, 所述光滤波器滤除所述第一光信号中的 N路单 波长光信号生成噪声光信号,并将所述噪声光信号从所述噪声光信号输出端口 输出。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 与 所述解复用器的噪声光信号输出端口连接的光电探测器为 PIN管, 所述 PIN 管与所述噪声光信号输出端口之间至少连接两条光支路。
本发明第二方面提供了一种光信号接收系统, 包括光网络单元 ONU、 第 一方面提供的任意一种信号检测装置和光接收机;
所述 ONU的输出端与所述光放大器的输入端连接, 每个电压比较器的输 出端连接所述光接收机,若所述光接收才 1全测到任意一个电压比较器的输出端 输出高电平时, 启动接收动作。
本发明第三方面提供了一种光接收机的信号检测方法, 包括:
- - 将接收到的波分复用 WDM信号放大生成第一光信号 ,所述 WDM信号由 N路单波长光信号复用生成的, N > 2且为整数;
从所述第一光信号分离出 N路单波长光信号和 1路噪声光信号; 将 N路单波长光信号和 1路噪声光信号分别转换成 N路有用电压信号和 1路噪声电压信号;
若第 i路有用电压信号大于所述噪声电压信号, 则在对应的第 i支路上输 出高电平, 1 N且为整数。
在第一种可能的实现方式中, 所述将 N路单波长光信号和 1路噪声光信 号分别转换成 N路有用电压信号和 1路噪声电压信号的步骤包括:
分别将 N路单波长光信号转换成 N路有用电流信号和将 1路噪声光信号 转换成 1路噪声电流信号;
分别将 N路有用电流信号和 1路噪声电流信号转换成 N路有用电压信号 和将 1路噪声电压信号。
本发明第四方面提供了一种光接收接的信号检测装置 , 包括:
放大模块,用于将接收到的波分复用 WDM信号放大生成第一光信号,所 述 WDM信号由 N路单波长光信号复用生成的, N > 2且为整数;
分离模块, 用于从所述第一光信号分离出 N路单波长光信号和 1路噪声 光信号;
转换模块, 用于将 N路单波长光信号和 1路噪声光信号分别转换成 N路 有用电压信号和 1路噪声电压信号;
输出模块, 用于若第 i路有用电压信号大于所述噪声电压信号, 则在对应 的第 i支路上输出高电平, 否则输出低电平, l i N且为整数。
在第一种可能的实现方式中, 所述转换模块用于:
分别将 N路单波长光信号转换成 N路有用电流信号和将 1路噪声光信号 转换成 1路噪声电流信号;
分别将 N路有用电流信号和 1路噪声电流信号转换成 N路有用电压信号 和将 1路噪声电压信号。
本发明第五方面提供了一种光接收系统, 包括光网络单元 ONU、 第四方 面提供的任意一种的检测装置和光接收机, 所述 ONU与所述接收模块连接, 所述输出模块连接所述光接收机,若所述光接收机检测到任意一条支路上输出
- - 高电平时, 启动接收动作。
实施本发明实施例, 具有如下有益效果:
通过在解复用器设置噪声光信号输出端口输出噪声光信号,光电转换器将 该输出端口输出的噪声光信号转换成相应的噪声电压信号,噪声电压信号作为 电压比较器的参考电压,与解复用器其余的输出端口产生的有用电压信号分别 进行比较产生相应的 SD信号。, 本发明中的参考电压随着噪声光信号的变化 而变化, 当光放大器没有光信号输入时, 电压比较器只会输出低电平, 因此可 以有效的避免由于噪声光信号导致的光接收机误触发。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例的一种光接收机的信号检测装置的结构示意图; 图 2是本发明实施例的一种光接收系统的结构示意图;
图 3是本发明实施例的一种光接收系统的另一结构示意图;
图 4是本发明实施例的一种光接收机的信号检测方法的流程示意图; 图 5是本发明实施例的一种光接收机的信号检测装置的另一结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例可应用于 PON通信系统, 例如, 使用基于异步传输模式
( ATM ) 的无源光网络、 宽带无源光网络(BPON )、 基于以太网 (Ethernet ) 的无源光网络、 基于通用成帧规程 ( GFP ) 的吉比特无源光网络(GPON )等 为 7 载方式的通信系统。
- - 请参照图 1 , 为本发明实施例的一种光接收机的信号检测装置的结构示意 图, 在本实施例中, 所述检测装置包括光放大器 10、 解复用器 11、 N+1个光 电转换器(光电转换器 02-光电转换器 N2 )和 N个电压比较器(电压比较器 13-电压比较器 N3 ), 光放大器 10的输出端连接解复用器 11的输出端, 解复 用器 11具有 N+1个输出端口,其中 N+1个输出端口由 1个噪声光信号输出端 口和 N个单波长光信号输出端口组成,数值 N等于 WDM( Wavelength Division Multiplexing, 波分复用, 检测 WDM )信号中复用的单波长光信号的数量。 在 本实施例中,假设输出端口 0为噪声光信号输出端口,输出端口 1-N为单波长 光信号输出端口, 噪声光信号输出端口输出噪声光信号,单波长光信号输出端 口输出解复用器 11对 WDM信号解复用处理生成的单波长光信号。 N+1个光 电转换器的输出端口分别连接解复用器 11的 N+1输出端口, 每个光电转换器 的连接一个解复用器 11的输出端口,解复用器 11的噪声光信号输出端口连接 的光电转换器 02的输出端连接每个电压比较器的参考引脚, 单波长光信号输 出端口所在的光电转换器的输出端分别连接每个电压比较器的取样引脚。
光电转换器用于将输入的光信号转换成电压信号。电压比较器用于比较参 考引脚上输入的参考电压和取样引脚上输入的区域的电压,若取样电压大于参 考电压, 电压比较器的输出端输出高电平, 光接收机启动相应输出端口的接收 动作, 若取样电压小于阈值电压, 电压比较器输出端输出低电平, 光接收机不 启动接 ^。
可选的, 解复用器使用光滤波器对 WDM信号中的有用光信号进行滤波, 只在其噪声光信号输出端口输出噪声光信号。例如,假设 WDM信号由波长为 λ 1、 λ 2、 λ 3和 λ 4四种单波长的光信号复用生成的, 光滤波器滤除 WDM 信号中上述四种波长的光信号得到噪声光信号,并将噪声光信号由噪声光信号 输出端口输出至光电转换器。
所述检测装置的工作原理为:光放大器接收到的 WDM信号进行放大处理 生成第一光信号, WDM信号由 Ν个单波长光信号复用生成的,解复用器将第 一光信号进行分离处理生成 1路噪声光信号和 Ν路单波长光信号, 光电转换 器分别将上述的光信号转换成 1路噪声电压信号和 Ν路有用电压信号, 电压 比较器分别比较噪声电压信号和每路有用电压信号的大小。在检测装置使用之 前进行校正处理,通过增加单波长光信号的光功率使每个电压比较器输出均为
- - 高电平,使得有 WDM信号输入时, 光接收机启动接收解复用器的输出端口输 出的单波长光信号。
光放大器 10没有 WDM信号输入时, 光放大器 10只会向解复用器 11输 出噪声光信号, 例如, ASE ( Amplified Spontaneous Emission, 放大的自发福 射, 筒称 ASE ) 光信号; 解复用器 11的噪声光信号输出端口会输出噪声光信 号, 由于噪声光信号的波长分布范围广, 解复用器 11的有用信号输出端口会 输出少量的单波长光信号, 该单波长光信号为噪声光信号中的一部分,对于其 中任意一个比较器而言, 经过光电转换器转换后, 其参考引脚上的噪声电压信 号会大于取样引脚上的有用电压信号, 电压比较器的输出端均输出低电平, 光 接收机不会启动接收, 能有效防止误触发。
实施本发明的实施例,通过在解复用器设置噪声光信号输出端口输出噪声 光信号,光电转换器将该输出端口输出的噪声光信号转换成相应的噪声电压信 号, 噪声电压信号作为电压比较器的参考电压, 与解复用器其余的输出端口产 生的有用电压信号分别进行比较产生相应的 SD ( Signal Detect, 信号探测, 检 测 SD )信号。, 本发明中的参考电压随着噪声光信号的变化而变化, 当光放大 器没有光信号输入时, 电压比较器只会输出低电平, 因此可以有效的避免由于 噪声光信号导致的光接收机误触发。
参见图 2, 为本发明实施例的一种光接收系统的结构示意图, 在本实施例 中,该光接收系统包括 ONU ( Optical Network Unit,光网络单元,检测 ONU )、 OA ( Aptical Amplifier, 光放大器, 检测 OA )、 Demux、 光电转换器 1-光电转 换器 5、 电压比较器 1-电压比较器 4和光接收机。
ONU的输出端与 OA的输出端连接, OA的输出端与 Demux的输入端连 接, Demux设有 5个输出端口, 从上往下排列依次为噪声光信号输出端口、 有用信号输出端口 1-有用信号输出端口 4,电压比较器 1-电压比较器 4的参考 引脚共同连接光电转换器 1的输出端,光电转换器 2的输出端连接电压比较器 1的取样引脚, 光电转换器 3的输出端连接电压比较器 2的取样引脚, 光电转 换器 4的输出端连接电压比较器 3的取样引脚,光电转换器 5的输出端连接电 压比较器 4的取样引脚,电压比较器 1-电压比较器 4的输出端均与光接收机连 接。
OA接收 ONU发送的 WDM信号进行放大处理生成第一光信号, WDM
信号由四个波长为 λ 1、 λ 2、 λ 3和 λ 4的单波长光信号复用而成的, Demux 将第一光信号进行分离处理得到 1路噪声光信号和 4路波长为 λ 1、 λ 2、 λ 3 和入4的单波长光信号,光电转换器 1将噪声光信号转换成噪声电压信号 Vth, 光电转换器 2将波长为 λ 1的单波长光信号转换成有用电压信号 VI , 光电转 换器 3将波长为 λ 2的单波长光信号转换成有用电压信号 V2, 光电转换器 4 将波长为 λ 3的单波长光信号转换成有用电压信号 V3, 光电转换器 5将波长 为入4的单波长光信号转换成有用电压信号 V4。 电压比较比较有用电压信号 与噪声电压信号的大小, 例如, 电压比较器 1比较噪声电压信号与有用电压信 号 VI的大小。 检测装置在使用前进行校正, 调节每一路单波长光信号的光功 率,使每个电压比较器上的有用电压信号大于噪声电压信号, 这样电压比较器 1 -电压比较器 4均输出高电平, 光接收才 1全测到电压比较器输出的高电平时, 就启动对应光路上的光信号的接收动作, 例如, 电压比较器 1输出高电平, 光 接收机启动接收 Demux的有用信号输出端口 1的到波长光信号。
若 ONU不发送 WDM信号时, 光放大器 10只会向解复用器 11输出噪声 光信号(例如, ASE光信号), 解复用器 11的噪声光信号输出端口会输出噪声 光信号, 由于噪声光信号的波长分布范围广, 解复用器 11的有用信号输出端 口会输出少量的单波长光信号, 该单波长光信号为噪声光信号中的一部分,对 于其中任意一个比较器而言, 经过光电转换器转换后,其参考引脚上的噪声电 压信号会大于取样引脚上的有用电压信号, 电压比较器的输出端均输出低电 平, 光接收机不会启动接收, 能有效防止误触发。
可选的, 参见图 3, 为本发明实施例的一种光接收系统的结构示意图, 其 中, Demux的噪声信号输出端口与广电转换器 1之间至少存在两条光支路, 光电转换器 1为 PIND ( Positive Intrinsic Negative Diode, 正本征负二极管, 筒 称 PIND ), 可有效接收元器件成本, 避免使用昂贵的光电器件。
参见图 4, 为本发明实施例的一种光接收机的信号检测方法的流程示意 图, 在本实施例中, 所述方法包括:
5101、 将接收到的波分复用 WDM信号放大生成第一光信号。
具体的,检测装置的光放大器 OA将接收到的波分复用 WDM信号放大生 成第一光信号, 该 WDM信号由 N个单波长光信号复用生成的。
5102、 从所述第一光信号分离出 N路单波长光信号和 1路噪声光信号。
- - 具体的,检测装置的解复用器从第一光信号分离出 N路单波长光信号和 1 路噪声光信号, 上述分离处理可由光滤波器实现。
S103、 将 N路单波长光信号和 1路噪声光信号分别转换成 N路有用电压 信号和 1路噪声电压信号。
具体的,检测装置的光电探测器和跨阻放大器将将 N路单波长光信号和 1 路噪声光信号分别转换成 N路有用电压信号和 1路噪声电压信号。
S103、 若第 i路有用电压信号大于所述噪声电压信号, 在在对应的第 i支 路上输出高电平, 否则输出低电平。
具体的, 分别比较噪声电压信号和每路有用电压信号, 若第 i路有用电压 信号大于所述噪声电压信号, 在在对应的第 i支路上输出高电平, 否则输出低 电平, 光接收机检测到对应支路上输出的高电平时, 启动接收该支路上输出的 光信号。
参见图 5 , 为本发明实施例的一种光接收机的信号检测装置的结构示意 图, 在本实施例中, 所述信号检测装置包括放大模块 10、 分离模块 20、 转换 模块 30和输出模块 40。
放大模块 10, 用于将接收到的波分复用 WDM信号放大生成第一光信号, 所述 WDM信号由 N路单波长光信号复用生成的, N > 2且为整数;
分离模块 20, 用于从所述第一光信号分离出 N路单波长光信号和 1路噪 声光信号;
转换模块 30, 用于将 N路单波长光信号和 1路噪声光信号分别转换成 N 路有用电压信号和 1路噪声电压信号;
输出模块 40, 用于若第 i路有用电压信号大于所述噪声电压信号, 则在对 应的第 i支路上输出高电平, 否则输出低电平, l i N且为整数。
本发明实施例和方法项实施例属于同一构思, 其带来的技术效果也相同, 具体请参照方法项实施例的描述, 此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明实施例所提供的一种光接收机的信号检测方法、装置及系统
- -
述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种光接收机的信号检测装置, 其特征在于, 包括:
光放大器、 解复用器、 N+1个光电转换器和 N个电压比较器, N > 2且为 整数, 其中,
所述光放大器将接收到的波分复用 WDM信号放大生成第一光信号 ,所述 WDM信号由 N路单波长光信号复用生成的;
所述解复用器从所述第一光信号分离出 N路单波长光信号和 1路噪声光 信号, 所述解复用器设有 N个单波长光信号输出端口和 1个噪声光信号输出 端口, 所述解复用器分别从 N个单波长光信号输出端口输出 N路单波长光信 号和 1个噪声光信号输出端口输出 1路噪声光信号;
N+1个光电转换器分别将 N路单波长光信号和 1路噪声光信号转换成 N 路有用电压信号和 1路噪声电压信号;
每个电压比较器的参考引脚接收所述噪声电压信号,每个电压比较器的取 样引脚分别接收 N路有用电压信号, 若电压比较器的取样引脚上加载的有用 电压信号大于参考引脚上加载的噪声电压信号,电压比较器输出高电平,否则, 电压比较器输出低电平。
2、 如权利要求 1所述的装置, 其特征在于, 所述 N+1个光电转换器包括 N+1个光电探测器和 N+1个跨阻放大器, 其中,
所述 N+1个光电探测器分别将 N路单波长光信号转换成 N路有用电流信 号和将 1路噪声光信号转换成 1路噪声电流信号;
所述 N+1个跨阻放大器分别将 N路有用电流信号和 1路噪声电流信号转 换成 N路有用电压信号和 1路噪声电压信号。
3、 如权利要求 2所述的装置, 其特征在于, 所述解复用器中设有光滤波 器, 所述光滤波器滤除所述第一光信号中的 N路单波长光信号生成噪声光信 号, 并将所述噪声光信号从所述噪声光信号输出端口输出。
4、 如权利要求 3所述的装置, 其特征在于, 与所述解复用器的噪声光信 号输出端口连接的光电探测器为 PIN管, 所述 PIN管与所述噪声光信号输出 端口之间至少连接两条光支路。
5、 一种光信号接收系统, 其特征在于, 包括光网络单元 ONU、 如权利要 求 1-4任一项所述的信号检测装置和光接收机;
所述 ONU的输出端与所述光放大器的输入端连接, 每个电压比较器的输 出端连接所述光接收机,若所述光接收机检测到任意一个电压比较器的输出端 输出高电平时, 启动接收动作。
6、 一种光接收机的信号检测方法, 其特征在于, 包括;
将接收到的波分复用 WDM信号放大生成第一光信号,所述 WDM信号由 N路单波长光信号复用生成的, N > 2且为整数;
从所述第一光信号分离出 N路单波长光信号和 1路噪声光信号; 将 N路单波长光信号和 1路噪声光信号分别转换成 N路有用电压信号和 1路噪声电压信号;
若第 i路有用电压信号大于所述噪声电压信号, 则在对应的第 i支路上输 出高电平, 1 N且为整数。
7、 如权利要求 6所述的方法, 其特征在于, 所述将 N路单波长光信号和 1路噪声光信号分别转换成 N路有用电压信号和 1路噪声电压信号的步骤包 括:
分别将 N路单波长光信号转换成 N路有用电流信号和将 1路噪声光信号 转换成 1路噪声电流信号;
分别将 N路有用电流信号和 1路噪声电流信号转换成 N路有用电压信号 和将 1路噪声电压信号。
8、 一种光接收机的信号检测装置, 其特征在于, 包括:
放大模块,用于将接收到的波分复用 WDM信号放大生成第一光信号,所 述 WDM信号由 N路单波长光信号复用生成的, N > 2且为整数;
分离模块, 用于从所述第一光信号分离出 N路单波长光信号和 1路噪声 光信号;
转换模块, 用于将 N路单波长光信号和 1路噪声光信号分别转换成 N路 有用电压信号和 1路噪声电压信号;
输出模块, 用于若第 i路有用电压信号大于所述噪声电压信号, 则在对应 的第 i支路上输出高电平, 否则输出低电平, l i N且为整数。
9、 如权利要求 7所述的装置, 其特征在于, 所述转换模块用于: 分别将 N路单波长光信号转换成 N路有用电流信号和将 1路噪声光信号 转换成 1路噪声电流信号;
分别将 N路有用电流信号和 1路噪声电流信号转换成 N路有用电压信号 和将 1路噪声电压信号。
10、 一种光接收系统, 其特征在于, 包括光网络单元 ONU、 如权利要求 8或 9任一项所述的检测装置和光接收机, 所述 ONU与所述接收模块连接, 所述输出模块连接所述光接收机,若所述光接收才 1全测到任意一条支路上输出 高电平时, 启动接收动作。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/086299 WO2015062015A1 (zh) | 2013-10-31 | 2013-10-31 | 一种光接收机的信号检测方法、装置及系统 |
CN201380001762.7A CN104798322B (zh) | 2013-10-31 | 2013-10-31 | 一种光接收机的信号检测方法、装置及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/086299 WO2015062015A1 (zh) | 2013-10-31 | 2013-10-31 | 一种光接收机的信号检测方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015062015A1 true WO2015062015A1 (zh) | 2015-05-07 |
Family
ID=53003141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/086299 WO2015062015A1 (zh) | 2013-10-31 | 2013-10-31 | 一种光接收机的信号检测方法、装置及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104798322B (zh) |
WO (1) | WO2015062015A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9722695B2 (en) | 2015-07-22 | 2017-08-01 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Optical network unit and optical detecting method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1677142A (zh) * | 2004-03-30 | 2005-10-05 | 日立通讯技术株式会社 | 光波长插入分支装置 |
US20100321072A1 (en) * | 2007-11-20 | 2010-12-23 | Imec | Device and Method for Signal Detection in a TDMA Network |
WO2012102300A1 (ja) * | 2011-01-25 | 2012-08-02 | 日本電信電話株式会社 | 光信号検出回路および光受信器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007189294A (ja) * | 2006-01-11 | 2007-07-26 | Nec Corp | 信号検出システム、信号検出回路、信号検出方法およびプログラム |
CN102577182B (zh) * | 2011-12-28 | 2014-11-05 | 华为技术有限公司 | 光线路终端及其处理放大自发辐射的方法 |
CN103166714B (zh) * | 2013-02-22 | 2016-08-03 | 青岛海信宽带多媒体技术有限公司 | 基于突发模式光接收机的信号检测装置 |
-
2013
- 2013-10-31 WO PCT/CN2013/086299 patent/WO2015062015A1/zh active Application Filing
- 2013-10-31 CN CN201380001762.7A patent/CN104798322B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1677142A (zh) * | 2004-03-30 | 2005-10-05 | 日立通讯技术株式会社 | 光波长插入分支装置 |
US20100321072A1 (en) * | 2007-11-20 | 2010-12-23 | Imec | Device and Method for Signal Detection in a TDMA Network |
WO2012102300A1 (ja) * | 2011-01-25 | 2012-08-02 | 日本電信電話株式会社 | 光信号検出回路および光受信器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9722695B2 (en) | 2015-07-22 | 2017-08-01 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Optical network unit and optical detecting method |
Also Published As
Publication number | Publication date |
---|---|
CN104798322B (zh) | 2017-04-12 |
CN104798322A (zh) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240146435A1 (en) | Multiplex conversion for a passive optical network | |
US9590724B2 (en) | Cooperative multi-point (CoMP) in a passive optical network (PON) | |
US8351787B2 (en) | Field framing with built-in information | |
CN107517080B (zh) | 一种光功率检测方法、装置、设备及光模块 | |
US20100014866A1 (en) | Digital Automatic Gain Control Apparatus and Method in Burst Mode Optical Receiver | |
CN102130720A (zh) | 无源光网络的光功率检测方法、系统和装置 | |
US8929396B2 (en) | Ethernet media access control organization specific extension | |
US9479264B2 (en) | Avalanche photodiode bias control in passive optical networks | |
US20200322063A1 (en) | Signal detection circuit, optical receiver, master station device, and signal detection method | |
TWI599197B (zh) | 用於光二極體陣列之集成的光學及射頻技術 | |
WO2013097123A1 (zh) | 光线路终端及其处理放大自发辐射的方法 | |
WO2022262799A1 (zh) | 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质 | |
CA2875762A1 (en) | Burst signal receiving apparatus and method, pon optical line terminal, and pon system | |
US8630550B2 (en) | Optical repeater and optical signal amplifying method thereof | |
WO2015078091A1 (zh) | 一种带rssi功能的gpon终端收发一体光组件 | |
JP2008148321A (ja) | オンチップ・リセット信号を生成するバーストモード受信機及びバーストモード受信方法 | |
WO2015062015A1 (zh) | 一种光接收机的信号检测方法、装置及系统 | |
JP5588814B2 (ja) | バースト受信機,バースト受信制御方法、およびシステム | |
US8538271B2 (en) | Combined burst mode level and clock recovery | |
US20080267625A1 (en) | Multi-Rate Multi-Wavelength Optical Burst Detector | |
JP2009212676A (ja) | バースト受信装置 | |
Qiu et al. | Evolution of burst mode receivers | |
CN114975677A (zh) | 光接收装置、光接收封装装置、相关设备和方法 | |
JP5093290B2 (ja) | 光受信装置及び光信号の受信方法 | |
JP6034749B2 (ja) | 光増幅器およびそれを用いた光受信器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13896325 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13896325 Country of ref document: EP Kind code of ref document: A1 |