WO2013097123A1 - 光线路终端及其处理放大自发辐射的方法 - Google Patents

光线路终端及其处理放大自发辐射的方法 Download PDF

Info

Publication number
WO2013097123A1
WO2013097123A1 PCT/CN2011/084843 CN2011084843W WO2013097123A1 WO 2013097123 A1 WO2013097123 A1 WO 2013097123A1 CN 2011084843 W CN2011084843 W CN 2011084843W WO 2013097123 A1 WO2013097123 A1 WO 2013097123A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
optical
signal detection
optical power
amplified spontaneous
Prior art date
Application number
PCT/CN2011/084843
Other languages
English (en)
French (fr)
Inventor
彭桂开
周小平
林华枫
徐之光
钱银博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/084843 priority Critical patent/WO2013097123A1/zh
Priority to CN201180003491.XA priority patent/CN102577182B/zh
Publication of WO2013097123A1 publication Critical patent/WO2013097123A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to passive optical network technology, and more particularly to an optical line termination and method thereof for processing amplified spontaneous emissions. Background technique
  • OA Optical Amplifier
  • ONT optical line terminal
  • the OLT relies on the SD (Signal Detect) provided by the optical module to detect that the upstream optical power reaches a certain threshold.
  • SD Synignal Detect
  • BCDR Burst Clock and Data Recovery
  • GMAC Gigabit Media Access Control
  • the OA when the OA is powered on, the Amplified Spontaneous Emission (ASE) is generated.
  • ASE Amplified Spontaneous Emission
  • the upstream optical signal from the ONU does not come up and the power of the ASE exceeds the SD threshold, the SD false trigger will generate a high level, thereby resetting the optical module and the BCDR early, and the BCDR is lost.
  • the decision level is also not reliable.
  • the ONU's true upstream optical signal comes up it may cause an error in the GMAC parsing. Eventually, the ONU will not receive the ONU-ID within the specified time, or will not receive the EQD (Equalization Delay, Equilibrium delay), which affects the registration of the ONU.
  • EQD Equalization Delay, Equilibrium delay
  • the embodiment provides an optical line terminal and a method for processing the amplified spontaneous emission, which can solve the above problem and ensure smooth registration of the ONU.
  • An optical line terminal includes: an optical power amplifying module, an optical power attenuating module, an optical power attenuation amplitude control module, and an optical module, wherein the optical power amplifying module, the optical power attenuating module, and the optical module are sequentially connected
  • the optical power attenuation amplitude control module has an input end connected to the optical module, and an output end connected to the optical power attenuation module; the optical power attenuation module is configured to reduce amplification generated by the optical power amplification module The optical power of the spontaneous emission; the optical module is configured to convert the amplified spontaneous radiation that has been attenuated by the optical power attenuation module into an electrical signal and output signal detection information; and the optical power attenuation amplitude control module is configured to receive The signal detection information sent by the optical module controls the attenuation amplitude of the optical power attenuation module in real time.
  • a method for processing amplified spontaneous emission includes: performing attenuation processing on amplifying spontaneous emission; performing photoelectric conversion on the attenuated amplified spontaneous emission, and outputting signal detection information corresponding to the amplified spontaneous emission;
  • the signal detection information controls the attenuation amplitude of the tunable optical attenuator; adjusts the attenuation amplitude according to the control of the attenuation amplitude
  • Another optical line terminal includes: an optical power amplification module, an optical module, and a signal detection threshold control module; the optical power amplification module is connected to the optical module, and the signal detection threshold control module is The optical module is configured to convert the amplified spontaneous emission generated by the optical power amplification module into an electrical signal and output corresponding signal detection information; the signal detection threshold control module, And configured to control a size of the signal detection threshold according to the signal detection information output from the optical module.
  • Another method for processing amplified spontaneous emission includes: performing photoelectric conversion on amplified spontaneous emission, outputting signal detection information; adjusting a threshold value of the signal detection according to the signal detection information, and outputting the signal The threshold adjustment information is detected; and the threshold value of the signal detection is improved according to the signal detection threshold adjustment information.
  • the optical line terminal and the method for processing the amplified spontaneous emission according to the embodiment of the present invention reduce the power of the amplified spontaneous radiation so that the corresponding electrical signal is lower than the threshold of the signal detection or by increasing the threshold of the signal detection, so that it is larger than the amplified spontaneous emission corresponding
  • the value of the electrical signal is such that the signal detection is not triggered by the disorder, the interference is cleared for the registration of the optical network unit, and the smooth registration of the optical network unit is ensured.
  • FIG. 1 is a network architecture diagram of a system, method, and a light path terminal for processing amplified spontaneous emission according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical line terminal side receiver in a passive optical network
  • FIG. 3 is a schematic structural diagram of a system for processing amplified spontaneous emission according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for processing amplified spontaneous emission according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an optical line terminal according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system for processing amplified spontaneous emission based on the system for amplifying spontaneous emission shown in FIG. 3 according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another network architecture applicable to a system for processing amplified spontaneous emission and an optical line terminal according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of another system for processing amplified spontaneous emission according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a third system for processing amplified spontaneous emission according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another optical line terminal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a fourth system for processing amplified spontaneous emission according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of another method for processing amplified spontaneous emission according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a third optical line terminal according to an embodiment of the present invention. Specific embodiment
  • the system and method for processing the amplified spontaneous emission provided by the embodiment of the present invention can eliminate the interference caused by the ASE to the ONU registration, and ensure the smooth registration of the ONU.
  • the system and method for processing the amplified spontaneous emission provided by the embodiment of the present invention and the optical line terminal may exceed the threshold value of the SD for the optical power of the ASE, thereby causing the problem that the SD false triggering generates a high level, and two solutions are proposed: In terms of reducing the optical power of the ASE output to the optical module; on the other hand, increasing the threshold of the SD, so that the phenomenon that the ASE falsely triggers the SD to generate a high level can be eliminated.
  • the system for processing the amplified spontaneous emission adds a variable optical attenuator (VOA) between the OLT receiver and the OA, and dynamically increases the attenuation value of the VOA before the ONU registers.
  • VOA variable optical attenuator
  • the ASE of the preamplifier will not affect the normal registration of the ONU, or dynamically increase the SD threshold of the optical module before the ONU is registered, so that the OLT preamplifier output
  • the ASE does not exceed the SD threshold, so that when the ONU registers, there is no case where the ASE of the preamplifier falsely triggers the SD signal.
  • FIG. 3 A system for processing amplified spontaneous emission according to an embodiment of the present invention is shown in FIG. 3, and the system includes a tunable optical attenuator, a tunable optical attenuator controller, and an optical module.
  • the tunable optical attenuator has a first input port, a second input port, and an output port;
  • the optical module includes a PD (Photo Diode), a TIA (Translmpedance Amplifier), and an LA ( Limited Amplifier, where the LA has an input port, a first output port, and a second output port.
  • PD Photo Diode
  • TIA Translmpedance Amplifier
  • LA Limited Amplifier
  • the optical amplifier is connected to the dimmable optical attenuator through a first input port of the dimmable optical attenuator, and the output port of the dimmable optical attenuator is in the optical module
  • the PDs are connected, the PDs, TIAs, and LAs in the optical module are sequentially connected, that is, the PD is connected to the TIA, and the transimpedance amplifier is connected to the input port of the LA, and the input end of the tunable optical attenuator controller is in the optical module.
  • the first output port of the LA is connected, and the output of the dimmable attenuator controller is connected to the second input port of the dimmable attenuator.
  • the tunable optical attenuator is used for the optical power of the ASE generated by the descending optical amplifier; the optical module is configured to convert the ASE attenuated by the tunable optical attenuator into an electrical signal and output SD information to the Dimmable attenuator controller.
  • the tunable optical attenuator controller is configured to receive SD information output by the optical module, and control the attenuation amplitude of the tunable optical attenuator in real time;
  • the SD information may be any one of a high level or a low level.
  • the system can be located at an OLT in the PON, and in particular, the system can be integrated into a receiver of the OLT.
  • the attenuation amplitude of the dimmable attenuator is adjusted so that the ASE generated by the optical amplifier is attenuated by the dimmable attenuator and is less than the SD threshold.
  • the dimming attenuator controller senses that the SD information is high, indicating that the ASE generated by the optical amplifier is too large, the dimming attenuator controller increases the attenuation of the dimmable attenuator until The SD information is low.
  • the ASE generated by the optical amplifier will not exceed the SD threshold after being attenuated by the dimming attenuator, and the SD level transition will not be triggered by mistake, thereby ensuring the normal registration of the ONU.
  • the method for processing the amplified spontaneous emission is provided.
  • the embodiment of the present invention provides a method for processing the amplified spontaneous emission. As shown in FIG. 4, the method includes:
  • Step 401 performing attenuation processing on the ASE
  • Step 402 Perform photoelectric conversion on the attenuated ASE, and output SD information corresponding to the ASE.
  • the optical module After the ASE enters the optical module, the optical module will perform photoelectric conversion on the ASE. The value after the ASE photoelectric conversion will affect the SD information of the output. If the power value of the ASE after photoelectric conversion is not When the threshold of SD is reached, the SD information output by the optical module is low. If the power value after ASE is photoelectrically converted is higher than the threshold of SD, the SD information output by the optical module is high.
  • Step 403 Control, according to SD information provided by the optical module, a attenuation amplitude of the VOA.
  • the VOA controller does not need to adjust the attenuation amplitude of the VOA. If the SD information output by the optical module is high, the VOA controller increases the amplitude of the VOA attenuation.
  • Step 404 adjusting the attenuation amplitude according to the control of the attenuation amplitude.
  • the VOA adjusts its attenuation amplitude according to the control of the attenuation amplitude of the VOA controller.
  • the SD information may be any one of a high level or a low level.
  • the method for processing the amplified spontaneous emission according to the embodiment of the present invention is performed before the ONU is registered, that is, after the OLT is powered on, the registration authorization window is not issued to the ONU, and the amplified spontaneous emission generated by the optical amplifier is specifically processed.
  • the VOA controller to receive the SD information output by the optical module, the attenuation amplitude of the VOA is dynamically controlled, thereby ensuring that the ASE does not falsely trigger the SD to generate a high level, and finally the ONU can be successfully registered.
  • the optical line terminal includes an optical power amplifying module 501 and an optical power attenuating module 502, as shown in FIG. 5, according to the embodiment of the present invention.
  • the optical power attenuation module 502 is configured to reduce the optical power of the amplified spontaneous emission generated by the optical power amplification module 501;
  • the optical module 504 is configured to convert the amplified spontaneous radiation that has been attenuated by the optical power attenuation module 502 into an electrical signal and output SD information;
  • the optical power attenuation amplitude control module 503 is configured to receive SD information sent by the optical module 504, and perform real-time control on the attenuation amplitude of the optical power attenuation module 502.
  • the SD information may be any one of a high level or a low level.
  • the optical power amplification module 501 can be an optical amplifier OA
  • the optical power attenuation module 502 can be a VOA
  • the optical power attenuation amplitude control module 503 can be a VOA controller.
  • the optical module 504 can include a photodiode, a transimpedance amplifier, and a limiting amplifier. The diode and the transimpedance amplifier are connected, and the transimpedance amplifier and the limiting amplifier are connected. At this time, the optical power attenuation module 502 is connected to the photodiode, and one end of the optical power attenuation amplitude control module 503 and the optical module 504 is connected to the optical module 504. On the limiting amplifier.
  • the optical line terminal uses the optical power attenuation amplitude control module to perform real-time control on the attenuation amplitude of the optical power attenuation module, so as to ensure that the amplified spontaneous emission generated by the optical power amplification module does not trigger the SD, thereby ensuring the normal registration of the ONU. .
  • FIG. 6 Another system for processing amplified spontaneous emission according to an embodiment of the present invention is shown in FIG. 6.
  • the other system for processing the amplified spontaneous emission is similar to the system for amplifying the spontaneous emission shown in FIG. 3, the main difference being that the processing of the amplified spontaneous emission system provided in this embodiment requires the dimming attenuation shown in FIG.
  • a Band Pass Filter (BPF) is added between the amplifier and the optical amplifier to further eliminate the negative impact of the ASE generated by the optical amplifier on the ONU registration.
  • BPF Band Pass Filter
  • the BPF is located between the optical amplifier and the dimmable attenuator, the input end of the BPF is connected to the optical amplifier, and the output end of the BPF is connected to the first input port of the dimmable optical attenuator, and other structures are processed as shown in FIG.
  • the structure of the amplified spontaneous emission system is the same.
  • the optical band pass filter is configured to filter the ASE noise outside the passband, and retain the ASE in the passband, and the passband range of the BPF is matched with the wavelength of the uplink optical signal of the ONU, for example, in GPON (Gigabit- In the "Enable Passive Optical Network" or EPON (Ethernet Passive Optical Network) system, the wavelength of the ONU upstream optical signal is between 1260 nm and 1280 nm, and the passband range of the BPF can be set to 1260 nm.
  • the method for processing the amplified spontaneous emission according to the above embodiment provides a second method for processing the amplified spontaneous emission.
  • the method for processing the amplified spontaneous emission provided by the embodiment and the processing for amplifying the spontaneous emission shown in FIG. 4 Compared with the method, the main difference is that before step 401, a separate step "optical bandpass filtering for ASE" is added. By performing ASE first optical bandpass filtering, the ASE noise in the passband can be preserved, and the passband is filtered out. The ASE noise is thus achieved by filtering a portion of the ASE.
  • Another embodiment of the present invention provides another optical line terminal, which is provided by another embodiment of the present invention.
  • the optical line terminal provided in this embodiment is the same as the optical line terminal shown in FIG.
  • the main difference is that an optical band pass filter module is added.
  • the optical band pass filter module is located between the optical power amplification module and the optical power attenuation module, and the input end of the optical band pass filter module is connected to the optical power amplification module.
  • the output of the optical band pass filter is connected to the optical power attenuation module, and the others are the same as the optical line terminal for amplifying the spontaneous emission shown in FIG.
  • the pass band range of the optical band pass filter module is matched with the wavelength of the ONU uplink optical signal.
  • the system for processing amplified spontaneous emission provided by the embodiment of the present invention can also be applied to a 40G wavelength stacked PON as shown in FIG.
  • the system for processing the amplified spontaneous emission provided by the embodiment of the present invention can be applied equally with only minor modifications.
  • the optical amplifier in the above system is located in the solution.
  • the dimmable attenuator, the optical module and the dimmable attenuator controller in the above system are located at the output of the demultiplexer, for each of the four outputs of the demultiplexer
  • the output has the tunable optical attenuator, the optical module and the dimmable attenuator controller, and the whole structure is as shown in FIG. 8 .
  • the values of the four VOAs are adjusted separately, and then the attenuation of the VOA is adjusted by the SD level feedback so that the value after the ASE enters the optical module is less than the SD threshold.
  • the present invention also provides a variation based on the system shown in Figure 8, as shown in Figure 9.
  • a third processing system for amplifying spontaneous emission includes an optical amplifier, a tunable optical attenuator, a tunable optical attenuator controller, a demultiplexer, and four optical modules.
  • OR gate circuit The tunable optical attenuator has a first input port, a second input port, and an output port; the demultiplexer has one input port and four output ports; and the optical module includes a photodiode and a transimpedance amplifier.
  • the limiting amplifier has an input port, a first output port and a second output port, wherein the photodiode is connected to the transimpedance amplifier, and the transimpedance amplifier is connected to the input port of the limiting amplifier;
  • the OR gate circuit has four input ports and one output port.
  • the optical amplifier is connected to the first input port of the tunable attenuator, and the output port of the tunable optical attenuator is connected to the input port of the demultiplexer, and the four output ports of the demultiplexer are respectively connected to the four optical modules.
  • the photodiodes are connected, and the first output ends of the limiting amplifiers in the four optical modules are respectively connected to the four input ends of the OR gate, and the output end of the OR gate is connected to the input end of the dimmable optical attenuator controller, dimmable
  • the output of the attenuator controller is coupled to a second input port of the dimmable attenuator.
  • the tunable optical attenuator is configured to attenuate the optical power of the amplified spontaneous emission generated by the optical amplifier; and the demultiplexer is configured to decompose the one amplified natural emission optical signal into four amplified spontaneous emission optical signals according to the wavelength;
  • the optical module is configured to convert the amplified spontaneous emission optical signal into an electrical signal and output SD information
  • the OR gate circuit is configured to perform an operation on the SD information output by the optical module, and output or operate the result
  • the dimmable attenuator controller is configured to control a attenuation amplitude of the dimmable attenuator according to an operation result of the OR gate circuit.
  • the SD information is any one of a high level or a low level.
  • the system for processing the amplified spontaneous emission as shown in FIG. 9 provided by the embodiment of the present invention, as long as one of the four SDs outputted by the limiting amplifier in the four optical modules is a high level, the output of the OR gate is high. Level, in this case, the high level of the OR gate output triggers the dimmable attenuator controller Adjust the attenuation of the dimmable attenuator until the SD output of the four optical modules is low. The dimming attenuator controller stops adjusting and the ONU registration can proceed smoothly.
  • the third process described above for amplifying spontaneous emission can be integrated into a receiver within an OLT in a 40GPON.
  • the third embodiment of the present invention provides a third optical line termination corresponding to the system for processing the amplified spontaneous emission of the 40G wavelength stacked PON provided by the embodiment of the present invention.
  • the third optical line termination provided by the embodiment of the present invention includes an optical power amplification module 1001, an optical power attenuation module 1002, a demultiplexing module 1003, an optical module 1004, and a logic operation module 1005.
  • the optical power attenuation module 1002 is configured to attenuate the optical power of the amplified spontaneous emission generated by the optical power amplification module 1001;
  • the demultiplexing module 1003 is configured to decompose one channel of the amplified spontaneous optical signal into four optical signals according to the wavelength;
  • the optical module 1004 is configured to convert the amplified spontaneous emission optical signal attenuated by the optical power attenuation module 1002 into an electrical signal and output SD information;
  • the logic operation module 1005 is configured to perform logic operation on the SD information output by the optical module 1004.
  • the optical power attenuation amplitude control module 1006 is configured to control the attenuation amplitude of the optical power attenuation module 1002 according to the operation result of the logic operation module 1005.
  • the optical power amplifying module 1001 may be an OA
  • the optical power attenuating module 1002 may be a VOA
  • the demultiplexing module 1003 may be a demultiplexer
  • the optical module 1004 may include a PD, a transimpedance amplifier, and an LA.
  • the logic operation module 1005 may be an OR circuit with four input ports and one output port
  • the optical power attenuation amplitude control module 1006 may be a VOA controller.
  • the SD information is any one of a high level or a low level.
  • the foregoing is a third system for processing the self-radiated radiation and the optical line terminal provided by the embodiment of the present invention, wherein the system and the optical line terminal adopt a side in which the adjustable optical attenuator is disposed behind the optical amplifier.
  • the ASE enters the power of the optical module, so that the value of the electrical signal corresponding to the ASE is lower than the threshold of the SD, so that it does not trigger a high level, which ensures the smooth registration of the ONU.
  • a fourth system for processing amplified spontaneous emission includes an optical amplifier, an optical module, and an SD threshold control circuit.
  • the optical module may include a photodiode, a transimpedance amplifier, and a limiting amplifier.
  • the limiting amplifier has a first input port, a second input port, a first output port, and a second output port, and the photodiode and the transimpedance The amplifier is connected, and the transimpedance amplifier is connected to the first input port of the limiting amplifier.
  • An optical amplifier is connected to the photodiode in the optical module, a first output port of the limiting amplifier in the optical module is connected to an input port of the SD threshold control circuit, an output port of the SD threshold control circuit is The second input port of the limiting amplifier is connected;
  • the optical module is configured to convert the amplified spontaneous emission generated by the optical amplifier into an electrical signal and output corresponding SD information
  • the SD threshold control circuit is configured to control the size of the SD threshold according to the SD information output from the optical module.
  • the SD information is any one of a high level or a low level.
  • the limiting amplifier in the optical module is connected to the SD threshold control circuit, and the SD threshold outputted in the optical module is continuously fed back to the SD threshold control circuit, and when the SD threshold output by the optical module becomes small,
  • the SD threshold control circuit increases the SD threshold by outputting the control signal, so that the value of the corresponding electrical signal when the ASE enters the optical module is lower than the SD threshold, thereby realizing the effect that the ASE does not falsely trigger the SD.
  • the fourth embodiment of the present invention provides a method for processing the amplified spontaneous emission.
  • the embodiment of the present invention provides another method for processing the amplified spontaneous emission. As shown in FIG. 12, the method includes: Step 1201: Performing photoelectric on the ASE Convert, output SD information;
  • the optical module performs photoelectric conversion on the ASE. If the value of the ASE after photoelectric conversion is lower than the threshold of SD, the SD information output by the optical module is low level; if the value of the ASE after photoelectric conversion is higher than the threshold of SD, the light is The SD information output by the module is high.
  • Step 1202 Adjust the threshold of the SD according to the SD information output by the optical module, and output SD threshold adjustment information.
  • the SD threshold control circuit does not process; if the SD information output by the optical module is high, the SD threshold control circuit needs to output information that increases the SD threshold.
  • Step 1203 Increase the SD threshold according to the SD threshold adjustment information output by the SD threshold control circuit.
  • the SD information is any one of a high level or a low level.
  • the method for processing the amplified spontaneous emission according to the embodiment of the present invention is performed before the ONU is registered, that is, after the OLT is powered on, the registration authorization window is not issued to the ONU, and the amplified spontaneous emission generated by the optical amplifier is specifically processed.
  • the SD threshold control circuit outputs real-time monitoring of the SD information output by the optical module, and outputs the information of increasing the SD threshold, realizing the real-time adjustment of the SD threshold, thereby ensuring that the ASE does not falsely trigger the SD to generate a high level, and finally ensures that the ONU can Successful registration.
  • the fourth embodiment of the present invention provides a fourth optical line terminal.
  • the optical line terminal includes: an optical power amplification module 1301, and the light is provided.
  • the optical module 1302 is configured to convert the amplified spontaneous emission generated by the optical power amplifying module 1301 into an electrical signal and output corresponding SD information;
  • the SD threshold control module 1303 is configured to control the size of the SD threshold according to the SD information output from the optical module 1302.
  • the SD information is any one of a high level or a low level.
  • the above is the fourth optical line terminal corresponding to the system for processing the amplified spontaneous emission according to the embodiment of the present invention, and the SD threshold is controlled by the SD threshold control module to prevent the ASE from triggering the SD phenomenon, and the ONU is successfully registered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种光线路终端,包括:光功率放大模块(501),光功率衰减模块(502),光功率衰减幅度控制模块(503)和光模块(504)。其中,光功率放大模块(501)、光功率衰减模块(502)及光模块(504)依次相连,光功率衰减幅度控制模块(503)的输入端连接于光模块(504),输出端连接于光功率衰减模块(502)。光功率衰减模块(502)用于降低由光功率放大模块(501)产生的放大自发辐射的光功率,光模块(504)用于将经过光功率衰减模块(502)衰减后的放大自发辐射转换成电信号并输出信号检测信息,光功率衰减幅度控制模块(503)用于接收光模块(504)发出的信号检测信息,对光功率衰减模块(502)的衰减幅度进行实时控制。一种处理放大自发辐射的方法。

Description

光线路终端及其处理放大自发辐射的方法 技术领域
本发明涉及无源光网络技术, 特别地涉及一种光线路终端及其处理放 大自发辐射的方法。 背景技术
应用 OA(Optical Amplifier, 光放大器)扩大光功率是实现无源光网络 ( Passive Optical Network, PON ) 中光纤长度拉远和分支比扩大常用的方 法, 具体来说, 如图 1所示, 现有技术通过将 OA放置在局端的光线路终端 ( Optical Line Terminal , OLT )侧扩大光功率, 同时, 保持 PON中的 ODN ( Optical Distribution Network,光分配网络 )是无源的。
如图 2所示, 在 ONU ( Optical Network Unit, 光网络单元 )上行注册过 程中, OLT要依靠光模块提供的 SD ( Signal Detect, 信号检测)检测到上行 光功率达到一定的阈值后, 再为光模块和 BCDR ( Burst Clock and Data Recovery, 突发时钟和数据恢复 )模块复位, GMAC ( Gigabit Media Access Control, 吉比特媒质接入控制)进行数据的解析, 这样才能确保 ONU的注 册顺利进行。
但是, 常用的 OA在上电启动时, 都会产生放大自发辐射(Amplified Spontaneous Emission, ASE ) , 当在 OLT端的接收机前置 OA后, 只要该 OA 一上电, 在上行方向就有 ASE输出, 当来自 ONU的上行光信号没有上来而 ASE的功率又超过 SD阈值时, 就会导致 SD误触发产生高电平, 从而提早复 位光模块和 BCDR, —方面导致 BCDR失锁, 另一方面建立的判决电平也不 是可靠的, 这样当 ONU真正的上行光信号上来时, 可能导致 GMAC解析出 现错误, 最终使得 ONU在规定的时间内收不到 ONU-ID, 或收不到 EQD ( Equalization Delay, 均衡延迟) , 从而影响 ONU的注册。
发明内容
针对上述放大自发辐射误触发 SD弓 I发的干扰 ONU正常注册问题, 本发 明实施例提供了一种光线路终端及其处理放大自发辐射的方法, 能够对上 述问题加以解决, 保障 ONU的顺利注册。
本发明实施例提供的一种光线路终端包括: 光功率放大模块, 光功率 衰减模块, 光功率衰减幅度控制模块和光模块, 其中, 所述光功率放大模 块、 光功率衰减模块及光模块依次相连, 所述光功率衰减幅度控制模块的 输入端连接于所述光模块, 输出端连接于所述光功率衰减模块; 所述光功 率衰减模块, 用于降低由所述光功率放大模块产生的放大自发辐射的光功 率; 所述光模块, 用于将经过所述光功率衰减模块衰减后的放大自发辐射 转换成电信号并输出信号检测信息; 所述光功率衰减幅度控制模块, 用于 接收所述光模块发出的信号检测信息, 对所述光功率衰减模块的衰减幅度 进行实时控制。
本发明实施例提供的一种处理放大自发辐射的方法包括: 对放大自发 辐射进行衰减处理; 对经过衰减后的放大自发辐射进行光电转换, 输出与 所述放大自发辐射对应的信号检测信息; 根据所述信号检测信息对可调光 衰减器的衰减幅度进行控制; 根据所述衰减幅度的控制对衰减幅度进行调
T。
本发明实施例提供的另一种光线路终端, 包括: 光功率放大模块, 光 模块, 信号检测阈值控制模块; 所述光功率放大模块与所述光模块相连, 所述信号检测阈值控制模块与所述光模块相连; 所述光模块, 用于将输入 其中的、 由所述光功率放大模块产生的放大自发辐射转换成电信号并输出 相应的信号检测信息; 所述信号检测阈值控制模块, 用于根据从所述光模 块输出的信号检测信息, 对信号检测阈值的大小进行控制。
本发明实施例提供的另一种处理放大自发辐射的方法包括: 对放大自 发辐射进行光电转换, 输出信号检测信息; 根据所述信号检测信息对所述 信号检测的阈值进行调整, 输出所述信号检测阈值调整信息;根据所述信号 检测阈值调整信息提高信号检测的阈值。 本发明实施例提供的处理放大自发辐射的光线路终端与方法通过降低 放大自发辐射的功率使其对应的电信号低于信号检测的阈值或者通过提高 信号检测的阈值, 使其大于放大自发辐射对应的电信号的值, 达到了信号 检测不会被乱触发, 为光网络单元的注册清除了干扰, 保证了光网络单元 的顺利注册。 附图说明
图 1所示为本发明实施例提供的处理放大自发辐射的系统、 方法与光线 路终端适用的网络架构图;
图 2所示为无源光网络中光线路终端侧接收机的结构示意图; 图 3所示为本发明实施例提供的处理放大自发辐射的系统的结构示意 图;
图 4为本发明实施例提供的处理放大自发辐射的方法的流程图; 图 5为本发明实施例提供的光线路终端的结构示意图;
图 6为本发明实施例提供的基于图 3所示的处理放大自发辐射的系统而 得到的一种处理放大自发辐射的系统的结构示意图;
图 7为本发明实施例提供的另一种处理放大自发辐射的系统与光线路 终端适用的网络架构示意图;
图 8为本发明实施例提供的另一种处理放大自发辐射的系统的结构示 意图;
图 9为本发明实施例提供的第三种处理放大自发辐射的系统的结构示 意图;
图 10为本发明实施例提供的另一种光线路终端的结构示意图; 图 11为本发明实施例提供的第四种处理放大自发辐射的系统的结构示 意图;
图 12为本发明实施例提供的另一种处理放大自发辐射的方法的流程 图;
图 13为本发明实施例提供的第三种光线路终端的结构示意图。 具体实施例
对于上述 ASE影响 ONU正常注册的问题, 本发明实施例提供的处理 放大自发辐射的系统、 方法与能够消除 ASE对 ONU注册造成的干扰, 保 证 ONU的顺利注册。
本发明实施例提供的处理放大自发辐射的系统、 方法与光线路终端针 对上述 ASE的光功率可能会超过 SD的阈值从而导致 SD误触发产生高电 平的问题,提出了两种解决思路: 一方面降低 ASE输出到光模块的光功率; 另一方面提高 SD的阈值, 这样 ASE误触发 SD产生高电平的现象就可以 消除。
具体地, 本发明实施例提供的处理放大自发辐射的系统在 OLT接收机 与 OA之间增加一个可调光衰减器(VOA, Variable Optical Attenuator ), 在 ONU注册之前, 动态增大 VOA的衰减值, 直至前置 OA的 ASE不会超过 SD阈值, 因此, 前置放大器的 ASE就不会影响 ONU的正常注册, 或者在 ONU注册前, 动态增大光模块 SD阈值, 使得 OLT的前置放大器输出的 ASE不超过 SD阈值, 这样在 ONU注册时, 就不会存在前置放大器的 ASE 误触发 SD信号的情况。
本发明实施例提供的处理放大自发辐射的系统如图 3所示, 所述系统 包括可调光衰减器、 可调光衰减器控制器、 光模块。 其中, 所述可调光衰 减器具有第一输入端口、 第二输入端口和输出端口; 所述光模块包括 PD ( Photo Diode, 光电二极管;)、 TIA ( Translmpedance Amplifier,跨阻放大器) 和 LA ( Limited Amplifier, 限幅放大器), 其中, LA具有输入端口、 第一 输出端口和第二输出端口。 在所述系统中, 光放大器通过可调光衰减器的 第一输入端口与可调光衰减器相连, 可调光衰减器的输出端口与光模块中 的 PD相连接, 所述光模块中的 PD、 TIA和 LA依次相连即 PD与 TIA相 连,跨阻放大器与 LA的输入端口相连,可调光衰减器控制器的输入端与所 述光模块中 LA的第一输出端口相连,可调光衰减器控制器的输出端与可调 光衰减器的第二输入端口相连。
所述可调光衰减器, 用于降氏光放大器产生的 ASE的光功率; 所述光模块, 用于将经过可调光衰减器衰减后的 ASE转换成电信号并 输出 SD信息给所述可调光衰减器控制器。
所述可调光衰减器控制器, 用于接收所述光模块输出的 SD信息, 实时 控制可调光衰减器的衰减幅度;
其中, 所述 SD信息可以是高电平或低电平中的任一项。
所述系统可以位于 PON中的 OLT上,具体地说,所述系统可以集成于 OLT的接收机中。 在 ONU向 OLT注册前, 调节好可调光衰减器的衰减幅 度, 使得光放大器产生的 ASE经过可调光衰减器衰减后小于 SD阈值。 在 ONU注册前, 如果可调光衰减器控制器感知到 SD信息为高电平, 说明光 放大器产生的 ASE过大, 可调光衰减器控制器增大可调光衰减器的衰减幅 度, 直至 SD信息为低电平,这时光放大器产生的 ASE经过可调光衰减器衰 减后不会超过 SD阈值, 不会误触发 SD电平的跳变, 从而保证 ONU的正 常注册。
基于上述实施例提供的处理放大自发辐射的系统, 本发明实施例提供 了一种处理放大自发辐射的方法, 如图 4所示, 所述方法包括:
步骤 401 , 对 ASE进行衰减处理;
OA产生 ASE后, ASE会进入 VOA, VOA即对 ASE进行衰减处理。 步骤 402, 对经过衰减后的 ASE进行光电转换, 输出与所述 ASE对应 的 SD信息;
ASE进入光模块后, 光模块会对 ASE进行光电转换, ASE光电转换后 的值会对输出的 SD信息产生影响, 如果 ASE经过光电转换后的功率值没 有达到 SD的阈值, 则光模块输出的 SD信息为低电平, 若 ASE经过光电 转换后的功率值高于 SD的阈值, 则光模块输出的 SD信息为高电平。
步骤 403, 根据所述光模块提供的 SD信息, 对 VOA的衰减幅度进行 控制;
如果光模块输出的 SD信息为低电平, 则 VOA控制器不需要对 VOA 的衰减幅度进行调节; 如果光模块输出的 SD信息为高电平, 则 VOA控制 器加大 VOA衰减的幅度。
步骤 404, 根据所述衰减幅度的控制, 对衰减幅度进行调节。
VOA根据 VOA控制器对其衰减幅度的控制, 对自身的衰减幅度进行 调节。
其中, 所述 SD信息可以是高电平或低电平中的任一项。
以上本发明实施例提供的处理放大自发辐射的方法,在 ONU注册之前 进行, 即在 OLT上电之后不对 ONU下发注册授权窗口, 以专门对光放大 器产生的放大自发辐射进行处理,所述方法通过利用 VOA控制器接收光模 块输出的 SD信息对 VOA的衰减幅度进行动态控制,从而保证 ASE不会误 触发 SD产生高电平, 最终保证 ONU能够顺利注册。
基于上述实施例提供的处理放大自发辐射的系统, 本发明实施例还提 供了一种光线路终端, 如图 5所示, 所述光线路终端包括光功率放大模块 501 , 光功率衰减模块 502, 光功率衰减幅度控制模块 503, 光模块 504, 其 中, 光功率放大模块 501、 光功率衰减模块 502及光模块 504依次相连, 光 功率衰减幅度控制模块 503的一端连接于光功率衰减模块 502,另一端连接 于光模块 504;
所述光功率衰减模块 502,用于降低由光功率放大模块 501产生的放大 自发辐射的光功率;
所述光模块 504,用于将经过所述光功率衰减模块 502衰减后的放大自 发辐射转换成电信号并输出 SD信息; 所述光功率衰减幅度控制模块 503, 用于接收所述光模块 504发出的 SD信息, 对光功率衰减模块 502的衰减幅度进行实时控制;
其中, 所述 SD信息可以是高电平或低电平中的任一项。
光功率放大模块 501可以是光放大器 OA,光功率衰减模块 502可以是 VOA, 光功率衰减幅度控制模块 503可以是 VOA控制器, 光模块 504可以 包括光电二极管、 跨阻放大器和限幅放大器, 光电二极管和跨阻放大器连 接, 跨阻放大器和限幅放大器连接, 此时, 光功率衰减模块 502与光电二 极管连接, 光功率衰减幅度控制模块 503与光模块 504连接的一端连接在 光模块 504中的限幅放大器上。
本发明实施例提供的光线路终端利用光功率衰减幅度控制模块对光功 率衰减模块的衰减幅度进行实时控制, 保证光功率放大模块产生的放大自 发辐射不会乱触发 SD, 从而保证 ONU的正常注册。
本发明实施例提供的另一种处理放大自发辐射的系统, 如图 6所示。 所述另一种处理放大自发辐射的系统与图 3所示的处理放大自发辐射的系 统相似, 主要区别在于, 本实施例提供的处理放大自发辐射系统需要在图 3 所示的可调光衰减器和光放大器之间增加一个光带通滤波器 (Band Pass Filter, BPF ), 以进一步消除光放大器产生的 ASE对 ONU注册的消极影响。
所述 BPF位于光放大器和可调光衰减器之间, BPF的输入端与光放大 器相连, BPF 的输出端与可调光衰减器的第一输入端口相连, 其他结构与 图 3所示的处理放大自发辐射系统的结构相同。
所述光带通滤波器,用于过滤通带外的 ASE噪声,保留通带内的 ASE, 且所述 BPF的通带范围要和 ONU的上行光信号的波长匹配,例如在 GPON ( Gigabit-capable Passive Optical Network, 吉比特无源光网络)或 EPON ( Ethernet Passive Optical Network, 以太无源光网络) 系统中, ONU上行 光信号波长在 1260nm—1280nm, 则 BPF的通带范围可设置为 1260nm— 基于上述实施例提供的处理放大自发辐射的系统, 本发明实施例提供 了第二种处理放大自发辐射的方法, 本实施例提供的处理放大自发辐射的 方法与图 4所示的处理放大自发辐射的方法相比,主要区别在于在步骤 401 之前增加一个独立的步骤 "对 ASE进行光带通滤波", 通过对 ASE先进行 光带通滤波可以保留通带内的 ASE噪声, 滤掉通带外的 ASE噪声,从而达 到过滤一部分 ASE的目的。
基于上述实施例提供的另一种处理放大自发辐射的系统, 本发明实施 例提供了另一种光线路终端, 本实施例提供的另一种光线路终端与图 5所 示的光线路终端相比, 主要区别在于增加了光带通滤波模块, 所述光带通 滤波模块位于光功率放大模块和光功率衰减模块之间, 所述光带通滤波模 块的输入端与光功率放大模块相连接, 所述光带通滤波器的输出端与光功 率衰减模块相连接, 其他均与图 5所示的处理放大自发辐射的光线路终端 相同。
其中,所述光带通滤波模块的通带范围要和 ONU上行光信号的波长相 匹配。
本发明实施例提供的处理放大自发辐射的系统也可以适用于网络架构 如图 7所示的 40G波长堆叠 PON中。
对于如图 7所示的网络架构, 本发明实施例提供的处理放大自发辐射的 系统只需做轻微改动就可以同样适用, 针对图 7所示的网络架构, 上述系统 中的光放大器位于解复用器的输入端上, 上述系统中的可调光衰减器、 光 模块和可调光衰减器控制器位于解复用器的输出端上, 对于解复用器的四 个输出端, 每个输出端上均具有所述可调光衰减器、 光模块和可调光衰减 器控制器, 整个结构如图 8所示。 先分别对四个 VOA的值予以调节设定, 然 后通过 SD电平的反馈调节 VOA的衰减值, 以便让 ASE进入光模块后的值小 于 SD的阈值。
对于本发明实施例提供的如图 8所示的处理放大自发辐射的系统, 本发 明实施例还提供了一种基于图 8所示系统的变形, 如图 9所示。
本发明实施例提供的第三种处理放大自发辐射的系统, 如图 9所示, 包 括光放大器, 可调光衰减器, 可调光衰减器控制器, 解复用器, 四个光模 块, 或门电路。 其中, 所述可调光衰减器具有第一输入端口、 第二输入端 口和输出端口; 所述解复用器具有一个输入端口、 四个输出端口; 所述光 模块包括光电二极管、 跨阻放大器和限幅放大器, 所述限幅放大器具有输 入端口、 第一输出端口和第二输出端口, 所述光模块中, 光电二极管与跨 阻放大器相连, 跨阻放大器与限幅放大器的输入端口相连; 所述或门电路 带有四个输入端口、 一个输出端口。 光放大器与可调光衰减器的第一输入 端口相连, 可调光衰减器的输出端口与解复用器的输入端口相连, 解复用 器的四个输出端口分别与四个光模块中的光电二极管相连, 四个光模块中 的限幅放大器的第一输出端分别与或门的四个输入端相连, 或门的输出端 与可调光衰减器控制器的输入端相连, 可调光衰减器控制器的输出端与可 调光衰减器的第二输入端口相连。
所述可调光衰减器, 用于衰减光放大器产生的放大自发辐射的光功率; 所述解复用器, 用于根据波长将一路放大自发辐射光信号分解成四路 放大自发辐射光信号;
所述光模块,用于将放大自发辐射光信号转换成电信号并输出 SD信息; 所述或门电路, 用于对所述光模块输出的 SD信息进行或运算, 输出或 运算的结果;
所述可调光衰减器控制器, 用于根据或门电路的运算结果控制可调光 衰减器的衰减幅度。
其中, 上述 SD信息为高电平或低电平中的任一项。
本发明实施例提供的如图 9所示的处理放大自发辐射的系统, 只要四个 光模块中的限幅放大器输出的四个 SD中, 有一个是高电平, 则或门输出的 就是高电平, 这种情况下, 或门输出的高电平会触发可调光衰减器控制器 调节可调光衰减器的衰减幅度, 直至四个光模块输出的 SD都是低电平, 可 调光衰减器控制器停止调节, ONU的注册就能顺利进行了。 上述第三种处 理放大自发辐射的系统可以集成于 40GPON中的 OLT内的接收机中。
基于本发明实施例提供的适用于 40G波长堆叠 PON的处理放大自发辐 射的系统, 本发明实施例相应地提供了第三种光线路终端。
如图 10所示, 本发明实施例提供的第三种光线路终端包括光功率放大 模块 1001 , 光功率衰减模块 1002, 解复用模块 1003, 光模块 1004, 逻辑运 算模块 1005, 光功率衰减幅度控制模块 1006;
所述光功率衰减模块 1002, 用于衰减所述光功率放大模块 1001产生的 放大自发辐射的光功率;
所述解复用模块 1003, 用于将一路放大自发辐射光信号按照波长分解 成四路光信号;
所述光模块 1004, 用于将经过光功率衰减模块 1002衰减后的放大自发 辐射光信号转换成电信号并输出 SD信息;
所述逻辑运算模块 1005, 用于对光模块 1004输出的 SD信息进行逻辑运 算;
所述光功率衰减幅度控制模块 1006, 用于根据所述逻辑运算模块 1005 的运算结果控制光功率衰减模块 1002的衰减幅度。
所述光功率放大模块 1001可以是 OA, 所述光功率衰减模块 1002可以是 VOA,所述解复用模块 1003可以是解复用器,所述光模块 1004可以包括 PD、 跨阻放大器和 LA, 所述逻辑运算模块 1005可以是带有四个输入端口、 一个 输出端口的或门电路, 所述光功率衰减幅度控制模块 1006可以是 VOA控制 器。
其中, 上述 SD信息为高电平或低电平中的任一项。
上述为本发明实施例提供的第三种处理放大自发辐射的系统与装光线 路终端, 所述系统与光线路终端采用在光放大器后装设可调光衰减器的方 式, 降低了 ASE进入光模块的功率, 使 ASE对应的电信号的值低于 SD的阈 值, 从而保持其不会触发高电平, 保证了 ONU的顺利注册。
本发明实施例提供的第四种处理放大自发辐射的系统, 如图 11所示, 所述系统包括光放大器、 光模块和 SD阈值控制电路。 其中, 所述光模块可 以包括光电二极管、 跨阻放大器和限幅放大器, 所述限幅放大器具有第一 输入端口、 第二输入端口、 第一输出端口和第二输出端口, 光电二极管与 跨阻放大器相连, 跨阻放大器与限幅放大器的第一输入端口相连。 光放大 器与所述光模块中的光电二极管相连, 所述光模块中限幅放大器的第一输 出端口与所述 SD阈值控制电路的输入端口相连, 所述 SD阈值控制电路的输 出端口与所述限幅放大器的第二输入端口相连;
所述光模块, 用于将输入其中的、 由所述光放大器产生的放大自发辐 射转换成电信号并输出相应的 SD信息;
所述 SD阈值控制电路, 用于根据从所述光模块输出的 SD信息, 对 SD 阈值的大小进行控制。
其中, 上述 SD信息为高电平或低电平中的任一项。
在上述系统中,光模块中的限幅放大器与所述 SD阈值控制电路相连接, 光模块中输出的 SD阈值不断反馈到所述 SD阈值控制电路, 当光模块输出的 SD阈值变小时,所述 SD阈值控制电路就输出控制信号提高 SD的阈值, 以使 ASE进入光模块时对应的电信号的值低于 SD阈值, 实现了 ASE不会误触发 SD的效果。
基于上述实施例提供的第四种处理放大自发辐射的系统, 本发明实施 例提供了另一种处理放大自发辐射的方法, 如图 12所示, 所述方法包括: 步骤 1201 , 对 ASE进行光电转换, 输出 SD信息;
光模块对 ASE进行光电转换, ASE经过光电转换后的值如果低于 SD的 阈值, 则光模块输出的 SD信息为低电平; ASE经过光电转换后的值如果高 于 SD的阈值, 则光模块输出的 SD信息为高电平。 步骤 1202, 根据光模块输出的 SD信息对 SD的阈值进行调整, 输出 SD 阈值调整信息;
如果光模块输出的 SD信息为低电平, 则 SD阈值控制电路不做处理; 如 果光模块输出的 SD信息为高电平,则 SD阈值控制电路需要输出增大 SD阈值 的信息。
步骤 1203, 根据 SD阈值控制电路输出的 SD阈值调整信息提高 SD的阈 值。
其中, 上述 SD信息为高电平或低电平中的任一项。
以上本发明实施例提供的处理放大自发辐射的方法, 在 ONU注册之前 进行, 即在 OLT上电之后不对 ONU下发注册授权窗口, 以专门对光放大器 产生的放大自发辐射进行处理, 所述方法通过 SD阈值控制电路对光模块输 出的 SD信息的实时监控而输出增大 SD阈值的信息,达到了对 SD阈值的实时 调节, 进而确保 ASE不会误触发 SD产生高电平, 最终确保 ONU能够顺利注 册。
基于上述实施例提供的第四种处理放大自发辐射的系统, 本发明实施 例还提供了第四种光线路终端, 如图 13所示, 所述光线路终端包括: 光功 率放大模块 1301 , 光模块 1302, SD阈值控制模块 1303;
所述光模块 1302, 用于将输入其中的、 由所述光功率放大模块 1301产 生的放大自发辐射转换成电信号并输出相应的 SD信息;
所述 SD阈值控制模块 1303, 用于根据从所述光模块 1302输出的 SD信 息, 对 SD阈值的大小进行控制。
其中, 上述 SD信息为高电平或低电平中的任一项。
以上所述为本发明实施例提供的第四种处理放大自发辐射的系统相对 应的光线路终端, 通过 SD阈值控制模块提高 SD的阈值, 避免 ASE乱触发 SD 的现象产生, 保证 ONU顺利注册。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明披露的技术范 围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权利要求
1、 一种光线路终端, 其特征在于, 包括: 光功率放大模块, 光功率衰 减模块, 光功率衰减幅度控制模块和光模块, 其中, 所述光功率放大模块、 光功率衰减模块及光模块依次相连, 所述光功率衰减幅度控制模块的输入 端连接于所述光模块, 输出端连接于所述光功率衰减模块;
所述光功率衰减模块, 用于降低由所述光功率放大模块产生的放大自 发辐射的光功率;
所述光模块, 用于将经过所述光功率衰减模块衰减后的放大自发辐射 转换成电信号并输出信号检测信息;
所述光功率衰减幅度控制模块, 用于接收所述光模块发出的信号检测 信息, 对所述光功率衰减模块的衰减幅度进行实时控制。
2、 如权利要求 1所述的光线路终端, 所述信号检测信息为高电平或低 电平中的任一项。
3、 如权利要求 1所述的光线路终端, 其特征在于, 当所述光模块输出 的信号检测信息为高电平时, 所述光功率衰减幅度控制模块加大所述光功 率衰减模块的衰减幅度, 直至所述信号检测信息为低电平。
4、 如权利要求 1所述的光线路终端, 其特征在于, 所述光线路终端还 可以包括光带通滤波模块, 所述光带通滤波模块位于光功率放大模块和光 功率衰减模块之间, 所述光带通滤波模块的输入端与光功率放大模块相连 接, 所述光带通滤波器的输出端与光功率衰减模块相连接;
所述光带通滤波模块的通带范围和光网络单元上行光信号的波长相匹 配。
5、 如权利要求 1所述的光线路终端, 其特征在于, 所述光功率放大模 块是光放大器, 所述光功率衰减模块是可调光衰减器, 所述光模块包括光 电二极管、 跨阻放大器和限幅放大器, 所述光功率衰减幅度控制模块是可 调光衰减器控制器。
6、 如权利要求 4所述的光线路终端, 所述光带通滤波模块是光带通滤 波器。
7、 如权利要求 1所述的光线路终端, 其特征在于, 当所述光线路终端 应用于 40吉比特波长堆叠无源光网络中时, 所述光线路终端还包括解复用 模块和逻辑运算模块;
所述光功率放大模块与所述光功率衰减模块相连, 所述光功率衰减模 块与所述解复用模块相连, 所述解复用模块与所述光模块相连, 所述光模 块与所述逻辑运算模块相连, 所述逻辑运算模块与所述光功率衰减幅度控 制模块相连, 所述光功率衰减幅度控制模块的另一端与所述光功率衰减模 块相连;
所述解复用模块, 用于将一路放大自发辐射光信号按照波长分解成多 路放大自发辐射光信号;
所述逻辑运算模块, 用于对所述光模块输出的信号检测信息进行逻辑 运算。
8、 如权利要求 7所述的光线路终端, 其特征在于, 当所述逻辑运算模 块输出的结果为高电平时, 所述光功率衰减幅度控制模块增大所述光功率 衰减模块的衰减幅度, 直至所述或门运算模块输出的结果为低电平。
9、 如权利要求 7所述的光线路终端, 其特征在于, 所述解复用模块是 解复用器, 所述逻辑运算模块是或门电路。
10、 一种处理放大自发辐射的方法, 其特征在于, 包括:
对放大自发辐射进行衰减处理;
对经过衰减后的放大自发辐射进行光电转换, 输出与所述放大自发辐 射对应的信号检测信息;
根据所述信号检测信息对可调光衰减器的衰减幅度进行控制; 根据所述衰减幅度的控制对衰减幅度进行调节。
11、 如权利要求 10所述的处理放大自发辐射的方法, 其特征在于, 所 述信号检测信息为高电平或低电平中的任一项。
12、 如权利要求 10所述的处理放大自发辐射的方法, 其特征在于, 所 述根据所述信号检测信息对可调光衰减器的衰减幅度进行控制包括当所述 检测信息为高电平时, 增大可调光衰减器的衰减幅度直至所述信号检测信 息为低电平。
13、 如权利要求 10所述的处理放大自发辐射的方法, 其特征在于, 在 对放大自发辐射进行衰减处理之前还可以包括对放大自发辐射进行光带通 滤波。
14、 一种光线路终端, 其特征在于, 包括: 光功率放大模块, 光模块, 信号检测阈值控制模块;
所述光功率放大模块与所述光模块相连, 所述信号检测阈值控制模块 与所述光模块相连;
所述光模块, 用于将输入其中的、 由所述光功率放大模块产生的放大 自发辐射转换成电信号并输出相应的信号检测信息;
所述信号检测阈值控制模块, 用于根据从所述光模块输出的信号检测 信息, 对信号检测阈值的大小进行控制。
15、 如权利要求 14所述的光线路终端, 其特征在于, 所述信号检测信 息为高电平或低电平中的任一项。
16、 如权利要求 14所述的光线路终端, 其特征在于, 当所述光模块输 出的信号检测信息为高电平时, 所述信号检测阈值控制模块增大信号检测 的阈值, 直至所述光模块输出的信号检测信息为低电平。
17、 如权利要求 14所述的光线路终端, 其特征在于, 所述光功率放大 模块是光放大器;
所述光模块包括光电二极管、 跨阻放大器和限幅放大器, 其中, 所述 光电二极管与所述跨阻放大器相连接, 所述跨阻放大器与所述限幅放大器 相连接; 所述信号检测阈值控制模块是信号检测阈值控制电路。
18、 一种处理放大自发辐射的方法, 其特征在于, 包括:
对放大自发辐射进行光电转换, 输出信号检测信息;
根据所述信号检测信息对所述信号检测的阈值进行调整, 输出所述信 号检测阈值调整信息;
根据所述信号检测阈值调整信息提高信号检测的阈值。
19、 如权利要求 18所述的处理放大自发辐射的方法, 其特征在于, 所 述信号检测信息为高电平或低电平中的任一项。
20、 如权利要求 19所述的光线路终端, 其特征在于, 当所述输出的信 号检测信息为高电平时, 输出增大所述信号检测阈值的信息, 直至所述输 出的信号检测信息为低电平。
PCT/CN2011/084843 2011-12-28 2011-12-28 光线路终端及其处理放大自发辐射的方法 WO2013097123A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/084843 WO2013097123A1 (zh) 2011-12-28 2011-12-28 光线路终端及其处理放大自发辐射的方法
CN201180003491.XA CN102577182B (zh) 2011-12-28 2011-12-28 光线路终端及其处理放大自发辐射的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084843 WO2013097123A1 (zh) 2011-12-28 2011-12-28 光线路终端及其处理放大自发辐射的方法

Publications (1)

Publication Number Publication Date
WO2013097123A1 true WO2013097123A1 (zh) 2013-07-04

Family

ID=46417498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084843 WO2013097123A1 (zh) 2011-12-28 2011-12-28 光线路终端及其处理放大自发辐射的方法

Country Status (2)

Country Link
CN (1) CN102577182B (zh)
WO (1) WO2013097123A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798322B (zh) * 2013-10-31 2017-04-12 华为技术有限公司 一种光接收机的信号检测方法、装置及系统
CN105812066B (zh) * 2014-12-31 2018-07-20 海思光电子有限公司 控制光接收机的方法与装置及光接收机
CN105975248A (zh) * 2016-05-24 2016-09-28 富尧 一种基于放大自发辐射的量子随机数发生器和产生方法
CN107809285B (zh) * 2017-11-15 2019-12-20 成都嘉纳海威科技有限责任公司 一种用于突发模式接收机的限幅放大器
CN108039915B (zh) * 2017-12-13 2019-08-13 武汉电信器件有限公司 一种级联可变光功率单元快速协同控制方法及装置
CN108809412A (zh) * 2018-06-01 2018-11-13 四川斐讯全智信息技术有限公司 一种测试光通信产品稳定性的方法、装置及系统
CN110324088A (zh) * 2019-07-23 2019-10-11 成都市德科立菁锐光电子技术有限公司 带光放大器的光模块及光信号的放大控制方法
CN114520691A (zh) * 2020-11-20 2022-05-20 广东海信宽带科技有限公司 一种光模块
CN112929083B (zh) * 2021-02-04 2022-04-26 烽火通信科技股份有限公司 一种相干光模块及其监测方法
CN114966997B (zh) * 2021-02-20 2023-09-26 青岛海信宽带多媒体技术有限公司 一种光模块及接收光功率监控方法
CN113541816B (zh) * 2021-07-27 2022-04-26 烽火通信科技股份有限公司 一种光信号处理方法与装置及soa控制单元
CN116782062A (zh) * 2022-03-07 2023-09-19 华为技术有限公司 光功率控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963361A (en) * 1998-05-22 1999-10-05 Ciena Corporation Optical amplifier having a variable attenuator controlled based on detected ASE
CN1304596A (zh) * 1999-05-10 2001-07-18 Afc技术公司 具有动态增益均衡的输入独立无倾斜宽带放大器
US20040240042A1 (en) * 2003-05-13 2004-12-02 Alcatel Optical amplifier, communication system and method for control tilt of a communication system
US20060082868A1 (en) * 2004-10-15 2006-04-20 Nec Corporation Optical amplifying apparatus, optical transmission system and method of adjusting optical transmission loss
US20100322633A1 (en) * 2009-06-23 2010-12-23 Fujitsu Telecom Networks Limited Transmission system and method of correcting tilt of the transmission system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0765045B1 (en) * 1995-09-21 2001-12-19 Alcatel Arrangement for amplifying and combining optical signals, and method for upstream transmission realised therewith
US8644711B2 (en) * 2006-10-20 2014-02-04 Electronics And Telecommunications Research Institute Apparatus and method for OLT and ONU for wavelength agnostic wavelength-division multiplexed passive optical networks
CN101651499B (zh) * 2008-08-12 2014-04-16 华为技术有限公司 无源光网络中控制中继单元中的光放大器的方法及系统
CN101895350B (zh) * 2010-08-17 2013-06-05 索尔思光电(成都)有限公司 一种10g以太网无源网络单纤双向光模块
CN102143059B (zh) * 2010-12-20 2014-01-01 华为技术有限公司 10g epon的上行链路带宽分配方法、系统和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963361A (en) * 1998-05-22 1999-10-05 Ciena Corporation Optical amplifier having a variable attenuator controlled based on detected ASE
CN1304596A (zh) * 1999-05-10 2001-07-18 Afc技术公司 具有动态增益均衡的输入独立无倾斜宽带放大器
US20040240042A1 (en) * 2003-05-13 2004-12-02 Alcatel Optical amplifier, communication system and method for control tilt of a communication system
US20060082868A1 (en) * 2004-10-15 2006-04-20 Nec Corporation Optical amplifying apparatus, optical transmission system and method of adjusting optical transmission loss
US20100322633A1 (en) * 2009-06-23 2010-12-23 Fujitsu Telecom Networks Limited Transmission system and method of correcting tilt of the transmission system

Also Published As

Publication number Publication date
CN102577182A (zh) 2012-07-11
CN102577182B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2013097123A1 (zh) 光线路终端及其处理放大自发辐射的方法
US8346098B2 (en) Receiving apparatus and receiving method
JP7156280B2 (ja) 光受信モジュール、光受信方法、局側装置、及び、ponシステム
JP2005006313A (ja) 受動光通信網の光パワー等化装置
US20110129235A1 (en) Burst-mode optical signal receiver
JP2008211702A (ja) 前置増幅器およびそれを用いた光受信装置
CN101861698A (zh) 光突发信号接收装置
JP4204984B2 (ja) 受信感度の最適化を行う多重速度バースト光信号受信器
JP5066591B2 (ja) 双方向光増幅器及びponシステム及びponシステムの通信方法
EP3567756B1 (en) Optical receiver
KR101850991B1 (ko) 광 중계기 및 그것의 광신호 증폭 방법
JP5065426B2 (ja) 光信号断検出回路および光受信器
JP5899866B2 (ja) 光中継増幅装置及び方法
KR100537901B1 (ko) 버스트 모드 광 수신기
WO2022262799A1 (zh) 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质
JP4912340B2 (ja) バースト光信号受信方法および装置
JP4911922B2 (ja) 光増幅器
JP5588814B2 (ja) バースト受信機,バースト受信制御方法、およびシステム
US20080267625A1 (en) Multi-Rate Multi-Wavelength Optical Burst Detector
JP4657144B2 (ja) 光バースト信号受信回路
KR100475880B1 (ko) 버스트 모드 광수신기 및 버스트 모드 광수신기의 입력광세기 자동 제어 장치 및 방법
JP6034749B2 (ja) 光増幅器およびそれを用いた光受信器
WO2023197975A1 (zh) 一种光接收机
WO2015062015A1 (zh) 一种光接收机的信号检测方法、装置及系统
JP4956639B2 (ja) デュアルレート受信回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003491.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878544

Country of ref document: EP

Kind code of ref document: A1